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First-Principles and Molecular Dynamics Studies of Ferroelectric Oxides:
Designing New Materials for Novel Applications

Abstract
In recent years, there has been an increasing demand for materials that can serve for a variety of technological
applications, such as nonvolatile ferroelectric random access memory for computers, SONAR sensor device
for military vehicles, dielectric materials for telecommunication, and photovoltaic materials for solar energy
conversion. In this thesis, we present computational studies of a special class of complex oxides. Specifically,
we studied perovskite ferroelectric materials with the general chemical formula ABO3, where A and B
correspond to different chemical species.

Using computational and theoretical tools, we started our search for novel materials by improving our
understanding of how the microscopic chemistry and physics determine the macroscopic properties of
materials that have been previously synthesized and characterized. Thus, having validated our computational
methods, we used those to predict novel materials with superior properties and further developed some
general rules and guidelines for the design of novel materials. Depending on the specific problem at hand, we
used either ab initio density functional theory (DFT) or classical molecular dynamics (MD) modeling.

First, we employed ab initio DFT to investigate the material Bi(Zn1/2Ti1/2)O3 (BZT), which is considered to
be good analogue of the more commonly used PbTiO3. Although PbTiO3 is ubiquitously used, a lead free
ceramics, such as Bi(Zn1/2Ti1/2)O3, is desirable due to environmental concerns. Our results confirm the
material's superior large cation displacement and tetragonal distortion compared to PbTiO3, but also indicate
that the conventional electrostatic model (for determining the most favored cation ordering) should be
corrected under special lattice geometric circumstances. As the tetragonal distortion increases, the
electrostatic contribution to the total energy decreases, rendering other interaction forces relatively more
important in determining the ordering of cations. Inspired by our work on BZT, we continued to develop a
guideline for designing ferroelectric materials with similar lattice parameters (high tetragonality).
Traditionally, Landau-Ginzburg-Devonshire (LGD) theory has been considered a powerful tool for studying
ferroelectrics, which relies on the polarization (P) as the order parameter. However, the lack of LGD
parameters limits the utility of LGD theory when applied to novel materials with compositional variation,
requiring the development of an alternative design rule. To this end, we began by carefully choosing a group of
PbTiO3-derived solid solutions. By extracting the essential geometric information (ionic displacement and
strain) as well as the polarization of the solutions, we discovered a very good linear correlation between B-
cation displacement squared and strain for all 25 solid solutions, suggesting that the B-cation displacement is a
more natural order parameter rather than the polarization of the material. Furthermore, we found that the
magnitude of the ionic displacement is mostly affected by both the ion covalency and the ion sizes, allowing
us to increase the B-cation displacement by substituting the B-site with either a small-size cation or the small
fraction of a large-size cation surrounded by rigid TiO6 neighbors. The advances we made in this work
contribute a significant piece to the big picture of understanding the relationships between different
microscopic and macroscopic properties for perovskite ferroelectrics.

Next, we turned our attention to the electronic structures for those highly tetragonal ferroelectric materials
that we studied so far only the structural properties. We chose three target materials, namely Bi(Zn1/2Ti1/

2)O3, Bi(Zn3/4W1/4)O3 and Bi(Zn3/4Mo1/4)O3. All of these materials have two types of B-cations.
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Different local chemistries, including B-cation ordering, lattice strain, cation identity and oxygen cage O6 tilt,
affect the electronic band gap structure. We found that the cation ordering effect most profoundly affects
electronic band gaps in these materials, which also changes the carrier mobility accordingly. More
importantly, we discovered that by reorienting the polarization direction by 90o, the band gap can be altered
by as much as 0.6 eV. This result highlights the possibility of using a single chemical composition compound
for multi-junction solar energy conversion. By arranging cations differently at different layers, different layers
would absorb different frequencies of photons of the solar spectrum.

Finally, we utilized a classical bond-valence model (BVMD) to trace the ferroelectric material's fast dynamics
under external perturbations, such as electric field or strain field.

One of our studies is about the polarization switching dynamics of the prototypical perovskite ferroelectric
PbTiO3, by coherently controlling the collective structural change. A specially shaped terahertz electric field
pulse train is pumped to resonate with a particular IR-active phonon mode. We proved that the atoms in the
crystal could move collectively from the initial domain orientation to the opposite one during a very short
time period (15 ps), suggesting a new time scale for ultrafast ``read'' and ``write'' speed in computers
equipped with ferroelectric non-volatile random access memory.

Also, we employed MD simulations to study the domain wall nucleation dynamics under an external strain
field. The 90o domain wall width is observed to be around one or two lattice constants thick, consistent with
other DFT studies, high-resolution transmission electron microscopy (HRTEM), and atomic force
microscopy (AFM) experiments. A very interesting antisymmetry at the wall was revealed with atomic scale
details. Our preliminary data for the domain wall nucleation process shows a good match with Merz's law.
Additional 90o domain wall nucleation under strain dynamics studies are currently under investigation.
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ABSTRACT

FIRST-PRINCIPLES AND MOLECULAR DYNAMICS STUDIES OF

FERROELECTRIC OXIDES:

DESIGNING NEW MATERIALS FOR NOVEL APPLICATIONS

Tingting Qi

In recent years, there has been an increasing demand for materials that can serve for

a variety of technological applications, such as nonvolatile ferroelectric random access

memory for computers, SONAR sensor device for military vehicles, dielectric mate-

rials for telecommunication, and photovoltaic materials for solar energy conversion.

In this thesis, we present computational studies of a special class of complex oxides.

Specifically, we studied perovskite ferroelectric materials with the general chemical

formula ABO3, where A and B correspond to different chemical species.

Using computational and theoretical tools, we started our search for novel mate-

rials by improving our understanding of how the microscopic chemistry and physics

determine the macroscopic properties of materials that have been previously synthe-

sized and characterized. Thus, having validated our computational methods, we used

those to predict novel materials with superior properties and further developed some

general rules and guidelines for the design of novel materials. Depending on the spe-

cific problem at hand, we used either ab initio density functional theory (DFT) or

classical molecular dynamics (MD) modeling.

v



vi

First, we employed ab initio DFT to investigate the material Bi(Zn1/2Ti1/2)O3

(BZT), which is considered to be good analogue of the more commonly used PbTiO3.

Although PbTiO3 is ubiquitously used, a lead free ceramics, such as Bi(Zn1/2Ti1/2)O3,

is desirable due to environmental concerns. Our results confirm the material’s supe-

rior large cation displacement and tetragonal distortion compared to PbTiO3, but

also indicate that the conventional electrostatic model (for determining the most

favored cation ordering) should be corrected under special lattice geometric circum-

stances. As the tetragonal distortion increases, the electrostatic contribution to the

total energy decreases, rendering other interaction forces relatively more important

in determining the ordering of cations. Inspired by our work on BZT, we contin-

ued to develop a guideline for designing ferroelectric materials with similar lattice

parameters (high tetragonality). Traditionally, Landau-Ginzburg-Devonshire (LGD)

theory has been considered a powerful tool for studying ferroelectrics, which relies on

the polarization (P ) as the order parameter. However, the lack of LGD parameters

limits the utility of LGD theory when applied to novel materials with compositional

variation, requiring the development of an alternative design rule. To this end, we

began by carefully choosing a group of PbTiO3-derived solid solutions. By extract-

ing the essential geometric information (ionic displacement and strain) as well as the

polarization of the solutions, we discovered a very good linear correlation between

B-cation displacement squared and strain for all 25 solid solutions, suggesting that



vii

the B-cation displacement is a more natural order parameter rather than the po-

larization of the material. Furthermore, we found that the magnitude of the ionic

displacement is mostly affected by both the ion covalency and the ion sizes, allow-

ing us to increase the B-cation displacement by substituting the B-site with either

a small-size cation or the small fraction of a large-size cation surrounded by rigid

TiO6 neighbors. The advances we made in this work contribute a significant piece to

the big picture of understanding the relationships between different microscopic and

macroscopic properties for perovskite ferroelectrics.

Next, we turned our attention to the electronic structures for those highly tetrag-

onal ferroelectric materials that we studied so far only the structural properties.

We chose three target materials, namely Bi(Zn1/2Ti1/2)O3, Bi(Zn3/4W1/4)O3 and

Bi(Zn3/4Mo1/4)O3. All of these materials have two types of B-cations. Different

local chemistries, including B-cation ordering, lattice strain, cation identity and oxy-

gen cage O6 tilt, affect the electronic band gap structure. We found that the cation

ordering effect most profoundly affects electronic band gaps in these materials, which

also changes the carrier mobility accordingly. More importantly, we discovered that

by reorienting the polarization direction by 90◦, the band gap can be altered by as

much as 0.6 eV. This result highlights the possibility of using a single chemical com-

position compound for multi-junction solar energy conversion. By arranging cations

differently at different layers, different layers would absorb different frequencies of
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photons of the solar spectrum.

Finally, we utilized a classical bond-valence model (BVMD) to trace the ferroelec-

tric material’s fast dynamics under external perturbations, such as electric field or

strain field.

One of our studies is about the polarization switching dynamics of the prototypical

perovskite ferroelectric PbTiO3, by coherently controlling the collective structural

change. A specially shaped terahertz electric field pulse train is pumped to resonate

with a particular IR-active phonon mode. We proved that the atoms in the crystal

could move collectively from the initial domain orientation to the opposite one during

a very short time period (15 ps), suggesting a new time scale for ultrafast “read” and

“write” speed in computers equipped with ferroelectric non-volatile random access

memory.

Also, we employed MD simulations to study the domain wall nucleation dynamics

under an external strain field. The 90◦ domain wall width is observed to be around

one or two lattice constants thick, consistent with other DFT studies, high-resolution

transmission electron microscopy (HRTEM), and atomic force microscopy (AFM)

experiments. A very interesting antisymmetry at the wall was revealed with atomic

scale details. Our preliminary data for the domain wall nucleation process shows a

good match with Merz’s law. Additional 90◦ domain wall nucleation under strain

dynamics studies are currently under investigation.



Contents

1 Introduction 1

1.1 Materials Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Perovskite Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Empirical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Ferroelectric Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theory and Methodology—Density Functional Theory 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . 18

2.3 The Hartree-Fock equations and the Self-consistent Field Approximation 20

2.4 Correlation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Density Functional Theory and Kohn-Sham Equation . . . . . . . . . 23

2.6 Plane Wave Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 The Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Post-DFT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x

3 Theory and Methodology—Molecular Dynamics 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Velocity Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Integration Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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1.1 Materials Science

Due to the rapid scientific and technological development in the last century, the ratio-

nal design of materials has become possible. That is, rather than improving existing

or developing novel materials by trial and error, the properties of a novel material can

be fine-tuned for a particular application by taking advantage of the understanding

how its microscopic properties affect its macroscopic ones. Our current microscopic

understanding of materials is based on the tremendous scientific knowledge, which has

been accumulated in various areas, such as solid-state physics, inorganic chemistry,

organic chemistry and physical chemistry. Besides its scientific component, materials

science presents also challenges to engineering, such as the synthesis of materials and

their characterization.

This thesis focuses on the scientific part of materials science, by investigating

and characterizing fundamental properties of materials. Specifically, computational

tools are employed, providing insights into the microscopic structure of the materi-

als of interest and their response to external perturbations at a level of detail that

is not possible to achieve experimentally. Thus, computer simulations of materi-

als further our understanding of how certain material structures give rise to certain

properties, enabling the design of new materials with the desired properties. For ex-

ample, recent collaborative work between the research groups of Rappe and Bonnell

on barium titanate (001) surface reconstruction not only confirmed the experimental
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findings of several surface reconstruction patterns, but also suggested surface recon-

struction patterns that are not easily accessible via experiment, enabling prediction

of surface structures and properties under entire range of accessible environmental

conditions [74].

The materials that we will discuss in this thesis are one group of ceramic oxides,

namely perovskite materials (formula ABO3). The perovskite oxides are a class of

materials of fundamental scientific interest as well as varied technological applica-

tions [11, 106, 16], since they display a variety of properties including piezoelectric-

ity, pyroelectricity, ferroelectricity, and many others. There is a strong demand for

perovskite oxides with higher performance and better functionality for use in many

different types of devices.

1.2 Perovskite Ferroelectrics

The name “perovskite” is used to refer to materials that share a similar lattice struc-

ture with CaTiO3, which is the first perovskite mineral that was discovered. In

1945, the first perovskite crystal structure of the common perovskite barium titanate

(BaTiO3) was determined by Helen Dick McGaw via X-ray diffraction [85]. Per-

ovskites can adopt various crystal structures of different symmetry, the simplest of

which exhibits cubic symmetry. It consists of 12-coordinated A cations on the corners

of a cube unit cell, oxygen anions on the faces, and B cations in the center Fig. 1.1. It
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is important to note that most perovskite structures do not have such high symmetry

as the cubic case. Usually, the cation displacements away from oxygen cage center

and the O6 octahedra rotations occur. Such deviation of the perovskite structures

from cubic symmetry relates to the properties of the A and B substituted atoms.

Factors that contribute to distortion include mainly the radius size effect [101] and

the Jahn-Teller effect [31]. The breaking of cubic symmetry, as explained later, is

crucial to polarization.
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Figure 1.1: The perovskite (ABO3) lattice structure is shown, where grey, blue and
red represent A, B and O atoms.
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In perovskite ABO3, the A site is usually occupied by a rare earth or alkali-

earth metal cation, while the B site is usually occupied by a transition metal cation.

Sometimes, the A-site and the B-site can each be occupied by two or more than two

chemical species. Depending upon the choice of A- and B-site atoms, the perovskites

structures and properties can vary dramatically. In rare occasions, even the oxygen

anions in ABO3 can be substituted by other types of anions, such as the sulfur anion

S−2 [13].

Ferroelectric oxides are a subgroup of perovskite oxides that possess a permanent

electric dipole, and were named in analogy to the ferromagnetic material (e.g. Fe) that

has a permanent magnetic dipole. At low temperature, a spontaneous polarization ex-

ists, which can be reversed by an applied external electric field. The relation between

polarization and electric field obeys a hysteresis loop with significant nonlinearities.

The polarization is prohibited in the presence of centrosymmetry. Otherwise, the

crystal would be polar. When the temperature is raised above the Curie temperature

(Tc), a phase transition (from the ferroelectric phase to the paraelectric phase) occurs

accompanied by a sudden disappearance of the spontaneous polarization. The ferro-

electric phase transition can often be characterized as displacive (barium titanate),

order-disorder, or both (lead titanate) [111].
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1.3 Empirical Models

Although, the quantitative determination of the physical properties of perovskites is

a difficult undertaking, some simple, but powerful empirical models were developed

that can help us gain important physical insights without the need of elaborate ex-

periments or computations. These models are the tolerance factor argument [45],

Brown’s rule [22] and the Landau theory of phase transition [33].

We are going to discuss the tolerance factor argument first. Goldschmidt was

the first one to examine the octahedral tilting distortions that are present in many

perovskites. He found that the degree of distortion in ABO3 perovskites can be

generally determined using the following equation:

t =
RA−O

RB−O

√
2

(1.1)

where t is the tolerance factor, RA−O is the sum of A and O ionic radii and RB−O is the

sum of B and O ionic radii. A t value for stable perovskite structures is approximately

between 0.78 and 1.05. If t < 1, it usually leads to the rotation or expansion of the

B-O6 octahedra. Such octahedral rotations often generate a low-temperature anti-

ferroelectric phase (e. g. PbZrO3). If t > 1, the B-O6 octahedra are stretched from

their preferred B-O bond lengths, promoting B-cation distortions by creating space

for the B-cations to move off-center. Therefore, simple perovskites with t > 1 are

usually ferroelectric.

We can use this tolerance factor argument to obtain a general idea about the
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preferred ground state of an unknown perovskite material. The relationship between

the sizes of the A-O and the B-O2 sublattices contributes to the material properties.

However, we need to keep in mind that it is only a rough estimate. The tolerance fac-

tor provides exceptions. Careful calculations still need to be performed to determine

the fine features of the lattice geometry [6].

In the following, we are discussing Brown’s rule, which states that the bond length

is well correlated to the bond valence through an inverse power relation. The power-

ful description in terms of traditional chemical concepts of atoms and bonds provides

insights and inherent simplicity. Knowledge of such correlation allows experimental

bond valences to be calculated from observed bond lengths. Unfortunately, deter-

mining this correlation is not an easy task, because the expected bond valence can

only be reliably predicted in a limited number of cases. A fitting procedure is usually

carried out to obtain the correlation. Typically, a simple two parameter algebraic

equation is sufficient to relate bond valence and bond length.

V = (R/R0)
−N (1.2)

or

V = e(R0−R)/b (1.3)

where V is the calculated bond valence, R the observed bond length, R0, b or N are

fitted bond valence parameters. R0 can be thought of as the nominal length of a bond
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of unit valence, depending on the sizes of the atoms (that participating in forming the

bond). N or b represents the bond stiffness. In this thesis, we chose V = (R/R0)
−N

for treating A-O and B-O chemical bonding within the perovskite structure, and the

total atomic valence of each atom equal to the sum of its bond valences. In our bond-

valence (BV) molecular dynamics model, the constituent energy terms are defined as

following for PbTiO3:

Eb =
3
∑

β=1

Sβ

Nβ
∑

i=1

|Viβ − Vβ|αβ (1.4)

Viβ =
3
∑

β′=1

∑

i′(NN)





rββ′

0

rββ′

ii′





Cββ′

(1.5)

where Eb is the bond-valence contribution to the potential energy. Viβ is the bond

valence of the ith atom of type β, calculated according to Brown’s formulation. β is

the index for Pb, Ti and O ions, NN means the nearest-neighbor atoms, and Nβ is

the number of the β ions. Vβ is the desired atomic valence of the β ion, and rββ′

ii′ is the

distance between the ith β ion and the i′th β ′ion. Our group developed a robust BV

model parameter set for PbTiO3 by fitting the model containing unknown parameters

to a database containing structures calculated from first-principles calculations (the

details of which will be discussed in a later chapter). With the BV model, we are able

to run MD simulations for systems of sizes far beyond the scope of the DFT method.

The last empirical model discussed here is the Landau theory. The original work of

Landau was developed to describe a second order phase transition. The key in Landau
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theory is an order parameter whose non-zero value indicates the ferroelectric phase,

while the order parameter remains zero in the high temperature phase (paraelectric

phase). In 1949, Devonshire independently derived a phenomenological theory that

has the same nature as the Landau theory and successfully describes ferroelectric

phase transitions and the temperature dependence of dielectric properties for barium

titanate [33]. Moreover, Devonshire generalized Landau’s approach to first order

transitions as well. Since then, Landau-Ginzburg-Devonshire (LGD) theory has been

applied widely for studying ferroelectric materials, especially in the aspects of phase

transition and domain pattern formation [139, 27, 57].

In LGD theory, the free energy G is expanded as a power series, depending on

temperature T and on an order parameter (usually polarization P ). We can spec-

ify a thermodynamic equilibrium state for any ferroelectric crystal by using several

variables, such as temperature T , electric field E, polarization P , stress σ and strain

s.

G =
1

2
α(T − T0)P

2 +
1

4
βP 4 +

1

6
γP 6 + ... (1.6)

The above is a simple case when polarization is along one of the lattice axis, in the

absence of an electric field and stress field. The unknown coefficients (α, γ and β)

can be fit to experiments, and are generally temperature dependent. Commonly, a

sixth order of Taylor expansion provides a good estimate for G. However, depending

on the questions asked, higher order expansions could be necessary.
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The free energy G is a double well potential with two energy minima at P = +Ps

and P = −Ps, where the derivative of G with respect to polarization P is zero. The

signs of the LGD coefficients α, β and γ determine the type of phase transition (first

order or second order). In most cases, perovskite ferroelectric materials show first

order phase transitions (discontinuous phase transition), where the order parameter

P drops suddenly at Tc to zero. We can also determine the type of phase transition

by reading the plot of dielectric susceptibility with temperature, as the two types of

phase transition have distinctly different features. Under the influence of an electric

field or stress field, additional terms −PE and 1
2
Ks2 − σs need to be taken into

account respectively, in the total free energy G expression.

1.4 Ferroelectric Domains

A domain is defined as a collection of unit cells that share the same or a similar polar-

ization direction. A domain pattern in a bulk ferroelectric material, which contains

more than one domain, is inevitable. A ferroelectric domain pattern can be caused

or influenced by strain, defects, depolarization field and thermal history. Even in an

ideal crystal, domains are expected because of the energetic preference: minimizing

the energy by abolishing the surface charges, domains are introduced so that the

polarization is oriented parallel to the surface. For example, in lead titanate, the

two neighboring domains could be either antiparallel to each other, or bisects the 90◦
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angle between two domain walls pointing head to tail. Compared with 90◦ domain

wall, 180◦ domain wall is more widely studied. Understanding the microscopic picture

of domain is crucial for better engineering macroscopic piezoelectric, dielectric, and

pyroelectric properties.

The formation of domain walls involves several key energetic contributions: the

elastic energy of the material, the temperature, the location of the domain relative

to the sample boundary (edge), the polarization switching energy barrier, electro-

static interactions and many more [5]. Therefore, the domain formation is a complex

problem.

In Chapter 4, we performed first-principles calculations to study the extremely

tetragonal ferroelectric material Bi(Zn1/2Ti1/2)O3 (BZT) [100]. In agreement with

experiment, we find that BZT displays extremely large cation displacements and

tetragonality. Despite its high tetragonality and polarization, the local structure of

the material exhibits a high degree of local disorder that is more typical of solid

solutions close to the morphotropic phase boundary. For the tetragonal phase of

BZT, we show that a planar ordered (010) B-cation arrangement with the Zn and Ti

stacking direction perpendicular to direction of P is the lowest in energy, in contrast

with the (111) B-cation ordering usually found in perovskites. We attribute this

unusual preference to the large cation displacements found in BZT, which raises the

importance of A-B cation repulsive interactions, favoring separation of Zn and Ti
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cations.

In Chapter 5, we continued using first-principles calculations investigating the

dependence of tetragonality on local structure in a variety of ferroelectric solid solu-

tions [101]. We demonstrate that tetragonality is strongly coupled to the B-cation

displacement and weakly coupled to the A-cation displacement. Examination of var-

ious BiM3+O3 additives to PbTiO3 for different M3+ ionic sizes reveals that substi-

tution of either small B-cations or low doping of large B-cations gives rise to large

spontaneous polarization and tetragonality. Understanding how the phase transition

temperature (Tc) and tetragonality are affected by Pb-based and Bi-based perovskite

additives provides a rational path for designing new high-temperature piezoelectric

materials.

In Chapter 6, we examine band structure engineering in extremely tetragonal fer-

roelectric perovskites (ABO3) to make these materials suitable for photovoltaic ap-

plications. Using first-principles generalized-gradient approximation (gga) and local-

density approximation+U calculations, we study how B-site ordering, lattice strain,

cation identity, and oxygen octahedral cage tilts affect the energies and the composi-

tions of the valence and conduction bands. We find that extreme tetragonality makes

the band gap highly sensitive to the B-cation arrangement, with a specially layered

B-site arrangement exhibiting a small band gap. It also leads to a strong sensitivity

of the band gap to the oxygen octahedral tilting. These effects only occur for cations
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with filled d states located near the valence band maximum or empty d states at

the conduction band minimum; this criterion is explained by crystal field theory. In

addition to a smaller band gap, the layered B-site arrangement has a strong impact

on the carrier mobility. We find that excited electron effective mass is similar to that

found in Si and other classic semiconductors, an order of magnitude smaller than

what is usually found in perovskites. Moreover, the hole effective mass is strongly

anisotropic, indicating a 2D hole gas in the layered B-cation arrangement.

In Chapter 7, we show that properly shaped terahertz fields, resonant with se-

lected lattice vibrational frequencies, could be used to move ions in ferroelectric crys-

tals from their positions in an initial domain orientation along well defined collective

microscopic paths into the positions they occupy in a new domain orientation [102].

Collective coherent control will enable direct observation of fast highly nonlinear ma-

terial responses and far-from-equilibrium structures that can be harnessed in electro-

optic devices and non-volatile computer memory.

Finally, in Chapter 8, we investigated the atomistic structure of the 90◦ do-

main boundaries in the bulk ferroelectric perovskite compound PbTiO3 using a first-

principles based classical potential model. Strain induced domain wall dynamics has

been studied in detail focusing on the nucleation-forming step. We found 90◦ domain

wall width asymmetric and very narrow with an order of several lattice constants.

The domain nucleation follows the Merz’s law.
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2.1 Introduction

Inspired by a number of very interesting observations and experiments (the discovery

of cathode rays by Michael Faraday in 1838, the statement of the black body radiation

problem by Gustav Kirchhoff in 1859, and the suggestions of the discrete energy states

by Ludwig Boltzmann in 1877), it was realized that classical physics exhibits certain

limitations in explaining the physical world. Building on the revolutionary discoveries

and theories of quantum mechanics, the first theoretical calculations in chemistry were

those of Walter Heitler and Fritz London in 1927. In the following, we present a brief

introduction on the concepts of quantum chemistry.

For a single particle moving in the presence of a potential the time-independent

Schrödinger equation can be written as:

[

−1

2
∇2 + V (~r)

]

ψ(~r) = Eψ(~r) (2.1)

The first term in the equation represents the kinetic energy of the particle while the

second term represents the potential energy of the particle as a function of position.

Materials of interest, such as molecules and solids, consist of numerous electrons and

nuclei interacting with each other. In this case, each particle moves in a potential

field generated by the other particles. For a system of N electrons and K nuclei with
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charges, Zk the Hamiltonian of the system can be written as follows:

H = −
N
∑

i=1

1

2
∇2

i + −
K
∑

k=1

1

2Mk
∇2

k +
1

2

N
∑

i,j=1,i6=j

1

|~ri − ~rj |

+
1

2

K
∑

k,k ′=1,k 6=k ′

ZkZk ′

|~Rk − ~Rk ′|
−

N
∑

i=1

K
∑

k=1

Zk

|~ri − ~Rk|
(2.2)

The first two terms in the Hamiltonian account for the kinetic energy of the electrons

and the nuclei, respectively. The third and fourth terms carry the electron-electron

and nucleus-nucleus Coulomb repulsions, while the final term represents an electron-

nucleus attractive potential. For a many-body system the wave function is dependent

on the positions of both the electrons and the nuclei.

2.2 The Born-Oppenheimer Approximation

As we can see from above, it is a formidable task to compute the energies and the wave

functions for systems that are more complicated than a hydrogen atom, since those

systems contain two or more nuclei and electrons. In order to accurately calculate

the system, we will need to consider the nucleus-electron interaction, nucleus-nucleus

interaction, electron-electron interaction and the coupling between all these interac-

tions. In some special cases for hyperfine details, even spin-spin coupling between

nuclear spin and electron spin should be necessary to be included. The Hamiltonian

becomes very complicated for us to study explicitly. Therefore, it is desirable to

wisely simplify the total Hamiltonian. One of the most important simplifications is

Born-Oppenheimer (BO) approximation [18].
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It is well known that the static electron mass is much smaller than nucleus mass by

three order of magnitude. As a result, the electron moves much more rapidly than the

nucleus does. The Born-Oppenheimer approximation assumes that: at any instant

in time, the nuclei are located at some relative positions, and the electronic states

for the electrons are the same as those in the case when the nuclei have remained

at the same relative locations at all time. Alternatively, we can draw the equivalent

of this approximation: the nuclei and the electrons move independently from each

other. The electronic wave functions depend only upon the nuclei’s relative positions,

but not upon nuclei’s velocities. The nuclei see a smeared-out potential from all the

speedy electrons. The BO Hamiltonian can be written as:

HBO = −
N
∑

i=1

1

2
∇2

i +
1

2

N
∑

i,j=1;i6=j

1

|~ri − ~rj |
+

N
∑

i=1

K
∑

k=1

Zk

|~ri − ~Rk|
, (2.3)

For instance, if we apply this BO approximation for a molecular system, we would

then be able to separate translational, rotational and vibrational motions of the nuclei

from the electronic states. The interaction between nuclei and electrons can be treated

as a perturbation on motions of nuclei, if necessary. Thus, the total wave function

of the system can be simply approximated as the product of the nuclear state wave

function and the electronic state wave function.



20

2.3 The Hartree-Fock equations and the Self-consistent Field Approxi-

mation

When more than one electron present, even after employing BO approximation, it is

still almost impossible to solve the Schrödinger equation analytically because of the

complication of the Hamiltonian that we discussed earlier. In order to seek approx-

imate solutions to the electronic Schrödinger equation, we can further simplify the

equation to a set of one-electron equations (Hartree equations), with a potential for

one electron approximated by an average electronic interactions.

For a system with N -electrons, if the single-particle wave function of ith electron is

ψi(~ri), its electron charge distribution would be −|ψi(~ri)|2. The electrostatic potential

generated by ith electron at ~rj (jth electron location) is:

V i(~rj) = −
∫

1

rij

|ψi(~ri)|2dτi (2.4)

rij = |~ri − ~rj| (2.5)

The total electrostatic potential generated by all electrons besides jth electron itself

at ~rj is:

V (~rj) = −
N
∑

i6=j

∫

1

rij
|ψi(~ri)|2dτi (2.6)

Therefore, the overall potentail for jth electron at any location ~r is:

Vj(~r) = −Z
r

+
N
∑

i6=j

∫ 1

|~ri − ~r| |ψi(~ri)|2dτi (2.7)
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The Hamiltonian is:

~Hj = −1

2
∇2 − Z

r
+

N
∑

i6=j

∫ 1

|~ri − ~r| |ψi(~ri)|2dτi (2.8)

Finally, the Schrödinger equation is:

~Hjψj(~r) = ǫjψj(~r) (2.9)

where j=1,2,...,N . These equations are called Hartree equations, where ψj is the

single-particle wave function for jth electron. In order to solve the Schrödinger equa-

tion, Hartree approximated the potentail to be local, which means that Vj(~r) is only

a function of ~r. Then the solution to the equation would have the form like:

ψj(~rj) = Rnj lj(rj)Yljmlj
(θj ,j ) (2.10)

If the one-electron wave functions are known, the total electronic charge density

distribution is also known. By deducing backwards, we can compute the average

potential for each electron, and solve for the one-electron wave functions. As the one-

electron wave function and its average potential determine each other, the answers

have to be self-consistent. We call the average potential that meets the above cri-

terion a self-consistent field (SCF). The Hartree equations are approximately solved

by means of iterative algorithm, and the solution is usually one of the many possible

solutions. Hartree was the first one to propose this idea.

Clearly, the wave function form Rnj lj(rj)Yljmlj
(θj ,j ) does not subject to the Pauli

exclusion principle. In terms of fermions (in our case, electrons), the total wave
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function must be antisymmetric upon electron exchange. Slater and Fock introduced

Slater determinant as the total wave function form into Hartree equations. This

type of Hartree equations are called Hartree-Fock equations. The Slater determinant

was specially designed, so that each element contained in the determinant is a single-

electron spin-orbital wave function. For the next step, the total energy can be derived

iteratively by inserting the Slater determinant into Hartree-Fock equation, via the

variational principle. Compared with other trial wave function forms, the Slater

determinant always gives lower total energy for solving Hartree-Fock equations.

2.4 Correlation Energy

The Hartree-Fock SCF approximation assumes that the electron moves independently

within an average potential, neglecting any momentary correlation within an electron

pair. Any two non-interacting electrons with antiparallel spins would be allowed to

appear at the same position at the same time based on the previous approximation.

But obviously, due to the Coulomb repulsion between electrons, this is impossible.

The approximation that assumes electrons move independently, has to be modified.

When an electron is at a certain position in space, its close neighboring space around

this point forbids or lowers the probabilities for other electrons to enter because of the

Coulomb interaction. Such neighboring space is also called Coulomb hole and such

type of interaction is known as electron correlation, which directly affects the average
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potential.

In Hartree-Fock equations with the Slater determinant, because of the inclusion of

Pauli exclusion principle, the two electrons with parallel spin are not allowed to appear

at the same position at the same time. Thus, it correctly describes the so-called Fermi

hole around the electrons. The difference between the real energy of a many-body

electronic system and the energy calculated from the Hartree-Fock approximation

comes from the failure of properly treating antiparallel-spin electrons. We call this

the correlation energy. Unfortunately, it remains extremely difficult to accurately

count for the correlation energy for a complex system.

2.5 Density Functional Theory and Kohn-Sham Equation

In 1927, shortly after the introduction of Schrödinger equation, the Thomas-Fermi

(TF) model was developed independently by Thomas and Fermi. This model was

the first attempt to describe a many-electron system on the basis of electron charge

density instead of wave functions. In spite of the TF model’s poor quantitative pre-

dictions, it is still viewed as a grand precursor to modern density functional the-

ory (DFT). DFT was developed by Hohenberg and Kohn [59, 73], resolving the

many-electron problem by assuming a universal functional of the electron density.

The many-electron Schrödinger equation is replaced by the problem of finding suffi-

ciently accurate approximations to the change density and then solving appropriate
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single-electron equations (here, we call these Kohn-Sham equations). Unlike the wave

function, which becomes significantly more complicated as the number of electrons

increases, the determination of the electron density is fairly independent of the to-

tal number of electrons. The minimum value of the total-energy functional is the

ground-state electron charge density. The Kohn-Sham total-energy functional for a

set of doubly occupied electronic states can be written as:

[

−1

2
∇2 + Vext(~r) + VH[ρ](~r) + Vxc(~r)

]

ψi(~r) = εiψi(~r). (2.11)

Here εi is the Kohn-Sham eigenenergy of the state ψi(~r) and the terms VH[ρ](~r) and

Vxc[ρ](~r) are defined as:

VH[ρ](~r) =
δEH[ρ]

δρ(~r ′)
=
∫

ρ(~r)

|~r ′ − ~r|d
3~r ′ (2.12)

Vxc[ρ](r) =
δExc[ρ]

δρ(~r)
(2.13)

The antisymmetry of the wave function produces a spatial separation between

parallel-spin electrons and thus reduces the Coulomb energy of the electronic sys-

tem by representing orbitals by using the Slater determinant. The reduction in the

energy of the electronic system due to the antisymmetry of the wave function is

called exchange energy. DFT would have been of very little interest if there had not

been a simple and very practical approximation for the electron exchange-correlation

energy. One approximation that is widely used is the local density approximation

(LDA) [93, 25]. LDA assumes that the exchange correlation energy is only a function
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of electron density, which yields surprisingly accurate results despite of the crude

approximation.

Exc[ρ] =
∫

εxc[ρ](~r)ρ(~r)d
3~r. (2.14)

ELDA
xc [ρ] =

∫

εLDA
xc (ρ(~r))ρ(~r)d3~r. (2.15)

where ǫxc(n) is known as exchange-correlation energy per particle of a uniform electron

gas of density n. With the single input of ǫxc(n), a function of one variable, the

ground state energies and density distributions ρ(~r), of any system can be easily

calculated in the LDA with accuracy levels, which depends on the system and on

the question asked. There are also other approximations for exchange-correlation

energy, such as Generalized Gradient Approximations (GGA), where the gradient of

the non-uniformity of the electron density is accounted as extra [94, 95, 96].

2.6 Plane Wave Basis Sets

The choice of the basis sets is very important for the SCF iteration. If the basis set is

not appropriate, the poorly represented wave functions would lead to the inaccurate

results and increasingly large computational effort. Although, theoretically any com-

plete basis set of mathematical functions can be applied to express any wave function,

we usually want as few basis set functions as possible. In fact, the requirement of

using fewer basis set functions and the requirement of achieving more accurate re-

sults often cannot be satisfied simultaneously. It is up to us to choose a compromise
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between the two.

The earliest basis set is called LCAO (linear combination of atomic orbitals)-MO

(molecular orbital). Nowadays, the more commonly used basis sets are the Slater

basis sets, the Gauss basis sets, and the plane-wave basis sets. For systems with

periodic boundary condition (as in this thesis), it is more advantageous to apply the

plain-wave basis sets, as opposed to others.

f ~G(~r) = ei ~G·~r, (2.16)

where ~G are the reciprocal space lattice vectors. A periodic function can then be

expanded in a plane wave basis:

φ(~r) = φ(~r + ~L) =
∑

~G

φ( ~G)ei ~G·~r. (2.17)

Hence, Bloch functions [17] can be used to represent the one-electron wave func-

tions for electrons moving freely throughout the static potential of the ions. Since

the Kohn-Sham potential is periodic, Bloch’s theorem states that the eigenfunctions

of the wave equation can be rewritten as the product of a plane wave e(i
~k·~r) times a

cell-periodic function un~k(~r):

ψn~k(~r) = un~k(~r)e
i~k·~r, (2.18)

where n is the band index and ~k is a wave vector. Applying equation 2.17, the

cell-periodic function un~k(~r) can be expanded in a discrete set of plane waves:

un~k(~r) =
∑

~G

cn~k(
~G)ei~k·~r. (2.19)
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Therefore the wave functions of the system are simply a sum over plane-waves:

ψn~k(~r) =
∑

~G

cn~k(
~G)ei(~k+ ~G)·~r. (2.20)

Although this is a simple method, it requires a large number of plane waves to

represent the electronic wave functions in the core region. Therefore, Orthogonalized

Plane Wave (OPW) method was proposed. It contains basis functions that are or-

thogonalized with respect to all core states, which ensures a better convergence in

the eigenvalues. Alternatively, people applied the Augmented Plane Wave method

(APW) which assumes a muffin-tin crystal potential. The effective crystal potential

was found approximately constant beyond certain cutoff core radius (Rc), so that the

electronic wave function inside of Rc is atomic function like and the part outside of

Rc is represented as plane waves. Note that the wave function at Rc has to remain

continuous. However, both OPW and APW methods are computationally very de-

manding. As a result, Linearized Augmented Plane Wave method was developed on

the basis of APW method. The wave function at Rc is designed not only continuous

but also differentiable.

2.7 The Pseudopotential Method

As only the valence electrons participate in forming a chemical bond, the tightly

bound core electrons can be neglected, since they are chemically very stable. The va-

lence wave function oscillates rapidly as it approaches the core region, which requires
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a very large plane-wave basis set to express. Hence, we replace the strong potential in

the core region by a much weaker pseudopotential, while keeping the pseudopotential

outside of the cutoff radius (rc) identical with the all-electron potential. The result-

ing pseudo wave function in the core region would display no radial nodes, while the

pseudo wave function outside of rc is identical with the all-electron wave function 2.1.

Basically, by using pseudopotentials, the core states no longer exist, and the valence

pseudo wave functions are smooth close to the nuclei. The smoother pesudo wave

function for the valence electrons means a much smaller plane-wave basis set.

In many atoms (especially transition metal elements, such as Ti and Cu), the

valence and near-valence core states (also called semicore states) interact strongly.

These semicore states cannot be simply treated as core states, since these play im-

portant roles in chemical bonding. It is very necessary to include semicore electrons

into valence, which helps to increase the accuracy and transferability.

In order to guarantee a good match between the results generated from pseu-

dopotential calculation and from all-electron calculation, it is important to make the

pseudopotential norm conserving and non-local [55, 72, 105]. The norm-conserving

pseudopotential means that the integrals from 0 to rc of the all-electron and pseudo

charge densities agree for each valence state. It guarantees the electrostatic potential

outside of rc is identical for all-electron and pseudo charge distributions, and is very

important for optimal pseudopotential transferability [55]. Since different angular
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momentum states are scattered differently, we need different pseudopotentials for ac-

curate representation of different angular momentum s, p, d, f ...electronic states.

The HSC (Hamann, Schlüter and Chiang) procedure generates non-local and norm

conserving pseudopotentials [55].

For all-electron calculations (in Rydberg energy units), we have

[

− d2

dr2
− 2Z

r
+ Vhxc(r) +

l(l + 1)

r2

]

φl(r) = εlφl(r) (2.21)

We are able to convert the Kohn-Sham equation to find the screened semi-local pseu-

dopotential V scr
l ,

V scr
l = ǫl −

l(l + 1)

r2
+

1

φl(r)

d2 [φl(r)]

dr2
(2.22)

By descreening the screened pseudopotential, we obtain the ionic pseudopotential:

V ps
l (r) = V scr

l (r) − Vhxc

[

ρval(r)
]

(2.23)

Unfortunately, HSC is not very efficient pseudopotential form. Instead, there is an-

other very efficient method to evaluate the angular momentum dependent pseudopo-

tential contribution to the energy is by Kleinman and Bylander (KB) [55, 72, 105].

Within the KB representation, we can express the semi-local pseudopotential in non-

local separable form.

V̂NL = V̂loc(r) +
∑

l

|δV̂l(r)ψl >< ψlδV̂l(r)|
< ψl|δV̂l(r)|ψl >

(2.24)

where, δVl(r) = V̂ ps
l (r) − V̂loc(r), V̂loc(r) is arbitrary and ψl are the pseudo-atom

wave functions. It is important to note that upon the use of KB pseudopotentials,
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unphysical electronic states (ghost states) sometimes present and should be examined.

The ghost states can be eigenstates with nodes with energies even below the zero-node

state. We could avoid the ghost states by switching the local potential or changing

the cutoff radii.
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Figure 2.1: The pseudo wave functions for Ti are displayed.
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By exploiting the flexibility of separating local and non-local components in the

Kleinman-Bylander form, Ramer and Rappe presented a new method of generating

pseudopotentials with enhanced transferability [103]. A local augmentation operator

is added to the local potential V̂ ps
l (r) = (V̂loc(r) + Â) + δV̂ DNL

l (r), we have

δV̂ DNL
l (r) =

∑

l

|(δV̂l(r) − Â)ψl >< ψl(δV̂l(r) − Â)|
< ψl|(δV̂l(r) − Â)|ψl >

(2.25)

By adjusting Â, we are able to obtain better agreement between all-electron and

pseudo eigenvalues.

2.8 Post-DFT Method

Although DFT has provided insights into various materials, it suffers from a notable

number of shortcomings. One significant shortcoming is DFT’s failure in terms of

predicting proper band gap values for insulators and semiconductors. DFT seems

to systematically underestimate the band gap by about 30-50% [63]. The failure

is especially obvious for strongly correlated materials containing transition metal or

rare earth ions. Since strongly localized d or f electrons are not well characterized in

DFT. The strong electron-electron correlation needs to be taken into account. Also,

although DFT is an exact theory to describe ground state properties, addressing

excited state properties is beyond its scope. There are many ways to properly estimate

the electronic band gap and other excited state properties, such as LDA+U and GW

approximation.
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GW approximation is for calculating self-energy in many-electron systems. It has

emerged as a particularly successful method for accurate quantitative band structure

calculations. Similar to Hartree-Fock approximation, single-particle approximation

is applied, where exchange and correlation effect is rigorously contained in the self-

energy operator. The electrons are treated as quasiparticles that closely mirror the

real situation [23, 4, 79].

In LDA+U formalism (used in this thesis), a Hubbard U correction is taken to

shift the LDA d/f orbitals. The delocalized s and p electrons could still be described

by using LDA. The results depend strongly on the definition of the localized orbitals

and the value of the interaction parameters used in the calculation. If one assumes

that the total number of d electrons N =
∑

i ni, we use the on-site d-d Coulomb

interaction 1
2
U
∑

i6=j ninj instead of the averaged Coulomb energy 1
2
UN(N − 1). We

have the following functional:

E = ELDA − 1

2
UN(N − 1) +

1

2
U
∑

i6=j

ninj (2.26)

The resulting LDA+U potential Vi(~r by taking a variation on the charge density of

a particular i-th orbital ni(~r):

Vi(~r) =
∂E

∂ni(~r)
= VLDA(~r) + U(

1

2
− ni) (2.27)

The LDA+U eigenvalues (orbital energies) ǫi are derivatives of E with respect to the
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orbital occupations ni:

ǫi =
∂E

∂ni
= ǫi(LDA) + U(

1

2
− ni) (2.28)

For occupied states, we have the occupied orbital energies ǫi = ǫi(LDA) − U
2
, and the

unoccupied orbital energies ǫi = ǫi(LDA) + U
2
. These simple formulars shift the orbital

energies and increase the electronic band gap.

Having this type of highly accurate DFT modeling is necessary for understand-

ing the origin of the various properties exhibited by perovskites used in the current

state-of-the-art technology, in order to improve the design of new materials with en-

hanced performances. Over the last decade, first-principles calculations emerge as a

vital tool for studying complex solid bulk systems due to a combination of method-

ological improvements and faster computer speeds. DFT is an extremely successful

approach for description of ground state properties of metals, semiconductors, and

insulators [59, 73] because of a combination of accuracy and computational efficiency.



Chapter 3

Theory and Methodology—Molecular Dynamics

36
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3.1 Introduction

The history of molecular dynamics (MD) dates back to the mid 1950’s, when the

first computer simulations on simple systems were performed. Initially, MD simula-

tions were time consuming and computationally expensive. As the computing speed

is getting faster and faster, even simulations of solvated proteins can be routinely

calculated up to the nanosecond and microsecond time scales.

Molecular dynamics is one of the most important techniques for modeling a many-

body system at atomic scale. MD simulations are in many aspects very similar to

real experiments. We can investigate the equilibrium and transport properties, and

model detailed microscopic dynamical behavior of many different types of systems as

found in chemistry, physics or biology.

All the atoms, or ions are modeled classically. The dynamics is propagated by

using Newton’s equation of motion. Newton’s second law F = ma is the basic equa-

tion of motion for MD simulations, where F is the force exerted on the particle, m

is the mass and a is the acceleration. With the interatomic potential known, the

force on each atom can be derived, allowing the determination of a for each atom by

integrating the equations of motion. It allows us to trace the trajectories that de-

scribes the positions x, velocities v and accelerations a for every particle as it moves

in time t. From the trajectories, the average values of the properties of interest can

be determined as a function of atoms’ positions and momenta. The procedure is de-
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terministic, i.e. once the starting positions and velocities of each particle are known,

the state of the system can be predicted at any time in the future or the past [41].

All MD simulations should be performed under a certain ensemble condition,

such as microcanonical NV E ensemble and canonical NV T ensemble. The system

that we are interested needs to be evaluated first, and then we can choose a proper

ensemble condition for representing the particular thermodynamic system of interest

on a thermodynamic level. In this thesis, both NV E and NV T ensembles are picked

under different circumstances [84].

3.2 Velocity Initialization

For a particularly assigned system (containing information such as the total number

of atoms, temperature, pressure, and time duration), the MD simulation starts with

initialization: the initial positions and velocities need to be set for all particles in the

system. In most cases, the position information is given from the input file, while the

velocities are not specified. As we know, the average thermal kinetic energy is related

to the average temperature as following:

〈1
2
mv2

α〉 =
1

2
kBT (3.1)

where vα is the α component of the velocity of a given particle. In thermal equilibrium,

the above equation should hold. However, the initial velocities do not necessarily

have to obey the Maxwell distribution, as the temperature deviates from the desired



39

anyway before equilibration. There are many ways to adjust velocities for the purpose

of achieving constant temperature at equilibrium. Most commonly, velocity rescaling

and Nosé-Hoover thermostat are applied to control velocities so that the average

temperature match the desired T .

3.3 Integration Equations

After the velocities initialization, we need to perform the force calculation, which is

the most time-consuming part of the simulation. In the simplest case only two-body

interaction exists. It implies that, for a system of N particles, we need to evaluate

N(N − 1)/2 pair distances. Unfortunately, in most cases, taking into account only

two-body interaction is insufficient, and the presence of many-body interaction would

make the force evaluation even more expensive. If two atoms are close enough to

interact, the forces need to be computed, so does the contribution to the potential

energy u(r):

fx(r) = −∂u(r)
∂x

(3.2)

With the computed forces for all atoms, we can now integrate Newton’s equation

of motion. Different algorithms are designed for the best efficiency, among which

Verlet algorithm is usually one of the simplest and the most efficient, a good balance

point for both good speed and high accuracy.

r(t+ δt) ≈ 2r(t) − r(t− δt) +
f(t)

m
δt2 (3.3)
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The estimation for the new position r(t + δt) has an error of order δt4, where δt

is the time step. Other Verlet-like algorithms should be applied, if higher accuracy

is wanted. In this thesis, we used the modified Beeman’s equation to propagate our

trajectories. The superscript p and c represent predicted and corrected respectively.

The procedures are as following:

x(t+ δt) = x(t) + δtẋ(t) +
δt2

6
[4ẍ(t) − ẍ(t− δt)] (3.4)

ẋ(p)(t+ δt) = ẋ(t) +
δt

2
[3ẍ(t) − ẍ(t− δt)] (3.5)

ẍ(t+ δt) = f
(

xi(t+ δt), ẋ
(p)
i (t+ δt), i = 1...n

)

(3.6)

ẋ(c)(t+ δt) = ẋ(t) +
δt

6
[2ẍ(t+ δt) + 5ẍ(t) − ẍ(t− δt)] (3.7)

Finally replace ẋ(p) with ẋ(c) and go to step 3.6, iterate until the predicted and cor-

rected velocities have converged to a relative precision of better than 1 part in 10−7.

Any integration error, no matter how small, would always cause the deviation of a

simulated trajectory from the true trajectory increases exponentially with time. How-

ever, the trajectory deviation is not considered to be crucial, as a MD simulation does

NOT have to precisely predict what happens to the system starting from a known

initial condition. We are only interested in the average behavior of the system, or we

say statistical predictions.
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3.4 Nosé-Hoover Thermostat

Here, we will introduce how we maintain a constant temperature for our simulation

system by using Nosé-Hoover thermostat. A large enough heat bath is coupled with

our system, and the heat reservoir controls the temperature of the given system,

making the temperature fluctuate around target value. The thermal interaction be-

tween the heat reservoir and the system results in the exchange of the kinetic energy

between them. The general idea is to use extended Lagrangian method. Assume

that the system contains N atoms, with coordinates q
′

i, masses mi, potential U(q
′

),

and momenta p
′

i. We introduce an additional artificial variable s, so that the virtual

variables (coordinates qi, momenta pi and time t) are related to the real variables (q
′

i,

p
′

i, t
′

) as following:

q
′

i = qi (3.8)

p
′

i = pi/s (3.9)

dt
′

= dt/s (3.10)

We can derive the real velocity:

dq
′

i

dt′
= s

dq
′

i

dt
= s

dqi
dt

(3.11)

The artificial variable s plays the role of a time-scaling parameter. It stretches the

timescale in the extended system by the factor s. The Lagrangian of the extended



42

system of the N -atom system combining variable s in terms of the virtual variables

is

LNose =
N
∑

i=1

mi

2
s2q̇2

i − U(q) +
Q

2
ṡ2gkT ln(s) (3.12)

where, Q is an effective mass associated with s. The magnitude of Q determines

the coupling between the reservoir and the real system, and it also influences the

temperature fluctuations. g equals to the total number of degrees of freedom of the

system. Please note that the logarithmic dependence of the potential on the variable s

is very important for producing the canonical ensemble for the system. The momenta

conjugate to qi and s are:

pi =
∂LNose

∂q̇i
= mis

2q̇i (3.13)

ps =
∂LNose

∂ṡ
= Qṡ (3.14)

This gives the total Hamiltonian for the extended system:

HNose =
N
∑

i=1

p2
i

2mis2
+ U(q) +

p2
s

2Q
+ gkT ln(s) (3.15)

Now, we could define the equations of motion:

dqi
dt

=
∂HNose

∂pi
=

pi

mis2
(3.16)

dpi

dt
=
∂HNose

∂qi
= −∂U

∂qi
(3.17)
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ds

dt
=
∂HNose

∂ps
=
ps

Q
(3.18)

dps

dt
=
∂HNose

∂s
=

∑ p2

i

mis2 − gkt

s
(3.19)



Chapter 4

First-Principles Investigation of A Highly Tetragonal Ferroelectric

Material: Bi(Zn1/2Ti1/2)O3
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4.1 Introduction

Lead-free piezoelectric materials are attracting increased attention recently due to

environmental concerns. Bi-based materials are considered as promising alternatives

to Pb because of the similar 6s2 “stereochemically active lone pair” electron configu-

ration. Bi3+ is likewise easily polarized, which promotes ferroelectric and piezoelectric

properties. However, Bi-based materials are less stable than their Pb-based equiva-

lents, and they are much less well studied. While numerous perovskite compounds

based on Bi have been reported [65, 10, 9, 8], few form the perovskite structure under

ambient conditions [76, 61]. In order to find better alternatives to the widely used

ceramic solid solution PbZr1−xTixO3 (PZT), many lead titanate (PbTiO3, PT) solid

solutions with morphotropic phase boundary (MPB) forming Bi-based additives have

been studied [35, 138, 28, 88, 118, 50, 117]. Alloying with almost all Bi-based per-

ovskites reduces the tetragonality of PT, but an unexpected enhancement of c/a was

recently discovered in the PbTiO3-Bi(Zn1/2Ti1/2)O3 (PT-BZT) solution. The c/a ra-

tio of the system systematically increases with the addition of BZT, reaching a value

of 1.11 at the limit of substitution (≈ 50% BZT) under ambient pressure [118].

The preparation of BZT in perovskite form at high pressure was also reported

recently. It has an extremely high c/a ratio (1.211), and the refinement of x-ray

diffraction data found large Bi (0.88 Å) and Zn/Ti (0.60 Å) displacements. This

was ascribed to the pronounced influence of the 6s2 stereochemically active electron



46

pair [120, 119]. The refinement of x-ray diffraction data also found large thermal

factors even at room temperature. This is likely due to structural disorder in the

system, which cannot be fit exactly with a five-atom unit cell used in a standard

Rietveld refinement. Because BZT is such a strongly polar material, its polarization

could not be easily measured. Instead, using the refined coordinates and formal ionic

charges, the polarization magnitude was estimated to be 1.03 C/m2. Despite the

large differences in both charge and size between the Zn and Ti cations, the electron

diffraction did not give any evidence for long-range or short-range order of the B

sites. This is in contrast to Pb(Sc1/2Nb1/2)O3 and other perovskites with similar

charge and size differences that exhibit rocksalt (111) type B-cation ordering [24].

The high tetragonality of BZT is also interesting in light of its low tolerance factor

(t=0.95). Typically, such a low tolerance factor leads to the appearance of large

octahedral tilts and therefore an antiferroelectric phase, as seen in PbZrO3 (PZ) [114]

and Bi(Mg1/2Ti1/2)O3 (BMT), the Mg analog of BZT [70].

In this work, we use first-principles density functional theory (DFT) methodology

to study properties of BZT that are not available from any current experiments. We

evaluate the polarization of the material and study the local environment, resolving

displacements of individual ions as well as tilts of the O6 octahedra. We investigate

the energetics of B-site cation ordering in BZT and find that they are qualitatively

different from the previously studied ferroelectric perovskites. Due to its extreme
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tetragonality, the lowest-energy B-cation ordering is not rocksalt, but rather a (010)

ordering with the planar stacking direction orthogonal to the direction of polarization.

4.2 Methodology

The local B site arrangements are studied using 40-atom supercells, which can be

thought of as snapshots of small regions of the real disordered solution. The ABINIT

software package was used to relax the ionic positions and lattice constants [46]. All

atoms are represented by norm-conserving optimized [105] designed nonlocal [103]

pseudopotentials generated using the OPIUM code [1] with a plane-wave cutoff of

60 Ry. A generalized gradient approximation (GGA) [94] and a 2×2×2 Monkhorst-

Pack sampling of the Brillouin zone [87] are used. Our calculations find both tetrago-

nal and rhombohedral phase stable structures. GGA calculations find the experimen-

tally observed tetragonal phase to be preferred, in contrast to the LDA calculations

which find the opposite. Although GGA is known to generally overestimate lattice

parameters of ferroelectric perovskites [131, 15], the slight overestimation of tetrag-

onality compared with experiment (5%-6%) still makes the predictions reliable. For

cubic lattice parameters, there are six possible arrangements of the Zn and Ti B

cations in the 2×2×2 supercell. For the tetragonal lattice parameters, four of these

arrangements have two different orientations relative to the (001) polar axis leading

to a total of ten unique B-cation arrangements studied in this work (Fig. 4.1).
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Figure 4.1: Ten B-cation arrangements for 40-atom tetragonal BZT supercells used
in this work.
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4.3 Results

4.3.1 Local structure

Since BZT is experimentally found to be tetragonal, we focus our analysis on the

tetragonal ground states. First we analyze the size and the tilt angle of the O6 cages

from relaxed structures to characterize the distortions of the oxygen anions away

from the perfect perovskite positions. For all relaxed supercells, the Zn-O6 octahedra

are larger than Ti-O6 octahedra by ≈16%. As shown in Fig. 4.2, there is almost

no overlap in the size distribution of the two types of octahedra. The difference in

volumes is consistent with the ionic size difference of Zn and Ti cations (ionic radius

of 0.740 Å for Zn and 0.605 Å for Ti). The peak at small volumes of the Ti-O6

octahedra comes from structure (c) which differs from other structures in terms of

c/a ratio and volume (as presented in Table 4.1).

Examination of the octahedral tilt angles reveals a broad distribution (from 0◦

-15◦) (Fig. 4.2). A small tolerance factor means that the A-O sublattice prefers a

smaller lattice constant than the B-O sublattice. Octahedral tilting preserves the

large B-O cages, while decreasing the A-O distances, allowing both sublattices to

achieve their preferences. While the majority of tilt angles are small and are com-

parable to the tilt angles found in tetragonal ferroelectric PZT [49], a significant

fraction of tilt angles are larger, similar to the ones found in antiferroelectric mate-

rials such as BMT and PZ. The large octahedral tilts mostly come from structure
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(c) and are expected from the tolerance factor analysis. The fact that most of the

tilts are small shows that the tolerance factor argument is too simplistic to make

correct ground-state crystal structure predictions [6]. In highly tetragonal materials,

the large A-cation off centering creates short A-O distances. Thus, the octahedral

tiliting is no longer the only possibility to achieve the preferences of both sublattices.
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Table 4.1: DFT energetics (eV/five-atom cell), tetragonality, spontaneous polariza-
tion (C/m2), electrostatic ordering energy (eV/five-atom cell), and the relative dis-
tances of Bi to Zn(Ti) cations ( Å) are listed. The electrostatic energy is calculated
using vacuum permittivity.
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DFT Energy c/a P electrostatic RBi−Zn RBi−Ti

supercell c 0.0827 1.077 0.815 -3.911 3.36 3.47

supercell d 0.0759 1.266 1.368 -2.976 3.44 3.34

supercell j 0.0463 1.275 1.375 -2.626 3.41 3.36

supercell e 0.0442 1.276 1.381 -2.295 3.35 3.33

supercell i 0.0439 1.284 1.386 -3.683 3.37 3.32

supercell h 0.0408 1.280 1.354 -4.651 3.35 3.31

supercell b 0.0398 1.274 1.405 0.644 3.39 3.34

supercell a 0.0364 1.271 1.362 -5.100 3.43 3.28

supercell f 0.0211 1.280 1.398 -1.942 3.35 3.45

supercell g 0.0000 1.286 1.428 -1.611 3.42 3.48
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Figure 4.2: Above: octahedral volume of Zn and Ti octahedra in BZT. The Zn
cations always have larger octahedral cages than the Ti cations. Below: distribution
of octahedral tilts away from the Cartesian axes. The majority of BZT structures
have widely distributed tilt angles.
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Relaxation of all ions yields large cation distortions. At the A site, Bi cations move

by 1.0±0.1 Å, creating three or four short Bi-O bonds and transforming the Bi-O12

cages into a Bi-O4 square pyramid. The creation of shorter Bi-O bonds is necessary to

satisfy the Bi valence of 3, since the Bi valence is only 2.84 in the ideal cubic perovskite

structure. Off-center displacements are also favored by the long-range electrostatic

interactions. At the B site, both Zn and Ti cations move off center by 0.6-0.7±0.1 Å,

creating short Zn-O and Ti-O bonds and making an important contribution to the

overall polarization (Fig. 4.3).

We find that the directions of individual cation displacement are distributed in

a cone of about 25◦ around the (001) overall polarization direction (Fig. 4.3). In

agreement with previous results for the PZT solid solution [49], the A-site displace-

ment directions vary more than the B-site displacement directions. This is due to

the influence of the B-cation arrangement on cation displacements which is stronger

for the A site [50]. To avoid oxygen underbonding and overbonding, Bi cations tend

to avoid the high-valence Ti and move toward the low-valence Zn. A simple illustra-

tion is provided by considering the Bi off-center distortions of structure (b). The Bi

cations moving toward Zn cations move off center by about 1.21 Å along the (001)

direction, while the Bi cations facing Ti cations move off center by about 0.79 Å

along the (001) direction. The displacements of Bi cations facing the Zn cations are

purely along (001), while the Bi cations facing Ti cations exhibit a significant (0.41 Å)



57

displacement component in the xy plane.
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Figure 4.3: Above: distribution of cation displacements ( Å) away from the oxygen
cage centers. Below: angle distribution of cations away from the tetragonal direction.
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The broad distributions found for cation displacement magnitude and direction

account for the large thermal factors found by experimental Rietveld refinement. A

thermal factor of 0.05 Å2 found by Suchomel et al. for the Bi cations is equivalent

to a thermal vibration amplitude of about 0.1-0.22 Å. Such a large vibration is not

reasonable at low temperature [68] and is better explained by the variation in dis-

placement magnitudes and directions of Bi cations found by our 0 K calculations.

Experimental thermal factors for the Zn and Ti cations are about half those of the

Bi cations, corresponding to the narrower distribution for Zn and Ti displacements

in Fig. 4.3. Thus, while the c/a of BZT is much greater than that of PT, local struc-

ture shows a resemblance to the Pb(Mg1/3Nb2/3)-PbTiO3 and PZT solid solutions of

smaller c/a.

4.3.2 Strain and polarization

The total occupation of the B site by highly ferroelectrically active Zn and Ti cations

and the coupling of A-site and B-site distortions allows extremely large cation dis-

placements, stabilizing large polarization and strain. With the exception of supercell

(c), we find that polarization of all supercells are in the 1.35-1.43 C/m2 range; c/a is

in the 1.27-1.29 range (Table 4.1). Thus, for the most part, the variation in B-cation

ordering has only a minor impact on the polarization of the material. We found that

our calculated polarization is significantly larger than the one estimated by Suchomel
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et al. (1.03 C/m2). The reason for this is that they used formal ionic charges which

are smaller than the Born effective changes (Z∗). The 1.38 C/m2 average polarization

found for BZT is to our knowledge the largest known polarization for a stable ground

state of a material.

The large polarization indicates that the Curie temperature (Tc) of BZT is also

high, as Tc was found to be proportional to the square of the polarization for a variety

of ferroelectrics. Using the proportionality constant between Tc and P 2 obtained from

previous work (870 Km4/C2) [51], we can estimate the Tc of BZT as 1656 K, well

above its decomposition temperature and higher than the 1400 K Tc of LiNbO3, the

highest known Tc in a perovskite-related ferroelectric to date.

4.3.3 Energetics of B-cation ordering

First-principles examination of the energetics of Zn/Ti ordering in BZT reveals unique

features not found in other perovskites. Analysis of x-ray diffraction data carried out

by Suchomel et al. did not find any B-cation rocksalt ordering peaks for BZT. It is

possible that in BZT the energy differences between the rocksalt ordering and other

B-cation arrangements are small; thus, no ordering will be observed except for a very

careful annealing protocol. This is to be expected as previous work showed that large

off centering due to the stereochemically active lone pair reduces the preference for

rocksalt in Pb-based perovskites as compared to Ba-based perovskites [24]. Alterna-
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tively, it is possible that unlike the case of Ba- and Pb-based perovskites, B-cation

ordering other than rocksalt is preferred for BZT. Our DFT calculations show that

the latter is true, with two of the ten possible 2×2×2 supercell B-cation arrangements

lower in energy than the rocksalt ordering.

The energetics of the different B-cation arrangements are presented in Table 4.1

and Fig. 4.4. The lowest energy 40-atom supercell exhibits a (010) ordering, with Zn

and Ti planes alternating perpendicular to the tetragonal direction. This is in contrast

with Ba- and Pb-based perovskites where such an ordering is the highest in energy.

We attribute the unusual preference for (010) ordering to the extreme tetragonality

of BZT. Our finding implies that with a slow enough annealing schedule it should be

possible to synthesize the (010) ordered BZT in the bulk. This is quite unusual, as

until now planar (001) or (010) B-cation ordering has only been achieved in the bulk

for the La(Cu1/2Sn1/2)O3 material [2].
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Figure 4.4: DFT energy differences from the lowest energy B-cation arrangement
shown for the relaxed tetragonal (black) and rhombohedral (red) structures. Also
shown are the electrostatic energy differences for the relaxed cubic structures com-
puted using formal ionic charges (blue). To facilitate comparison, the energy differ-
ences for the cubic structures are scaled down by factors of 100.
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To verify that it is the extreme tetragonality of BZT that is causing the anomalous

preference for the (010) ordering, we determine the energetics of rhombohedral BZT

supercells (Fig. 4.4). Here, due to the tetragonal symmetry breaking, only six B-

cation arrangements are possible in a 2×2×2 supercell. We find that for rhombohedral

BZT, the rocksalt B-cation ordering is the lowest in energy and the planar (010)

ordering is the highest in energy, following the B-cation arrangement energy ranking

seen previously in Ba-based and Pb-based perovskites. The energy ranking follows

exactly the electrostatic energy differences for the cubic, undistorted BZT structures,

as can be seen from Fig. 4.4. The energy difference between electrostatically favored

(111) B-cation ordering and the less favored (010) ordering in Pb-based systems

such as Pb(Sc1/2Nb1/2)O3 (PSN) [24] is about four times larger than the energy

difference in BZT. This is most likely due to the high covalency and the large off

centering of the Bi cations. Burton and Cockayne [24] argued that the Pb 6s-O

2p hybridization enables bonding of Pb cations to the underbonded oxygen atoms,

which reduces the energy cost of deviation from the (111) B-cation arrangement.

Bi exhibits even greater covalency and hybridization than Pb, so it is not surprising

that the large Bi off-center distortions reduce the B-cation ordering energy differences

more. Thus, in the rhombohedral phase, the cation distortions set the scale of the

energy differences between the different B-cation orderings, while the electrostatics

determines the energy ranking.
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Electrostatic interactions are also important in tetragonal BZT, as shown by the

comparison of the energies of the B-cation arrangements that are only different due

to breaking of cubic symmetry by the tetragonal distortion. For example, for the

case of (001) or (010) ordering where Zn and Ti cations are arranged in alternating

planes [structure (b) and (g)], the DFT energy is higher for structure (b) with the

tetragonal distortion parallel to the Zn/Ti sheet stacking direction and is lower for

structure (g) with the tetragonal distortion perpendicular to the stacking direction.

We consider the Zn cation as negative point charge and the Ti as positive charge (rel-

ative to the average formal charge of the B sites). On one hand, there are attractive

electrostatic interactions between the Zn and Ti sheets. On the other hand, the elec-

trostatic interactions within each sheet are repulsive. A tetragonal distortion parallel

to the stacking direction leaves the repulsion unchanged and weakens the attractions.

Conversely, a tetragonal distortion perpendicular to the stacking direction weakens

repulsions and leaves the attractions unchanged. This leads to a higher energy for

structure (b) as compared to structure (g). Similar arguments are applicable for ex-

plaining the other energy splittings between structures (d) and (i), (e) and (j), and

(c) and (h).

The inadequacy of the electrostatic model [12] to explain BZT B-cation ordering

energetics suggests that there are important contributions other than electrostatics.

Repulsion between the A-site and B-site cations, both of a direct and of through-
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oxygen kind, have been found to be important for compositional phase transitions

in ferroelectrics [48, 52]. These interactions are particularly important for materials

where the large A-site displacements from high symmetry decrease the A-B cation

distances, as is the case of BZT. We expect Bi-Ti repulsion to be more important due

to the greater charge of the Ti cation, and we use the position of the first peak in

the Bi-B cation partial pair-distribution function (PDF) as a rough measure of the

strength of the Bi-B cation repulsion (Table 4.1)).

To reduce the Bi-Ti repulsion, Bi cations favor avoiding Ti and moving toward Zn.

Such a preference can be best satisfied by the B-cation arrangements where Zn and

Ti cations are grouped separately. This is opposite to the effect of the electrostatic

interactions, which are favorable when Zn and Ti cations are interspersed. The (010)

planar ordering of Zn and Ti easily allows the Bi cations to avoid Ti cations, raising

the minimum Bi-Ti distance (3.48 Å) and lowering repulsive energy. Similarly, the

highly grouped Zn and Ti cations in arrangement (f) lead to large Bi-Ti distances

and low repulsion. For the rocksalt structure (a), the alternation of Zn and Ti cations

makes it impossible to avoid Ti, giving rise to the shortest observed Bi-Ti distances

(3.28 Å) and a high repulsive energy. For the (001) planar Zn and Ti ordering, the

need to avoid Ti conflicts with the strong displacement along (001) that are required

by the strain-polarization coupling. This makes the Bi-Ti distances shorter than in

the (010) structure.
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4.4 Conclusion

We report a first-principles study of BZT. We demonstrate that this material has

a number of unique properties, generated by its large c/a. Despite its macroscopic

similarity with PT, BZT exhibits a disordered local structure similar to that of PZT.

To the best of our knowledge, the polarization of 1.38 C/m2 is the largest one reported

for a bulk material (57% larger than P of PT). The relationship among c/a, P and

Tc allows us to predict a Tc of about 1600 K for BZT, larger than the 1460 K of the

current highest Tc ferroelectric LiNbO3. Finally, examination of the B-cation ordering

energetics shows that the planar (010) stacking of Zn and Ti is the favored B-cation

arrangment, unlike the rocksalt ordering typically favored in perovskite materials.

We ascribe this anomalous effect to the greater importance of Bi-B cation repulsive

interactions in BZT, driven by the large cation displacements in the material. A more

general electrostatic model by Wu and Krakauer [132] included the effective charge

on the A sites, depending on the local B-site configuration. In this approach, fitting

to first-principles calculations is required, which might give interesting insights into

the extent of Bi covalent bonding with O in different B-cation arrangements.



Chapter 5

Correlations between tetragonality, polarization, and ionic displacement

in PbTiO3-derived ferroelectric perovskite solid solutions
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5.1 Introduction

In Chapter 4, we discussed highly tetragonal ferroelectric material BZT. And now in

Chapter 5, equipped with better understanding of this type of perovskite oxides, we

proceed to systematically look into solid solutions that resemble BZT.

Perovskite ferroelectrics are a class of materials of fundamental scientific interest

as well as varied technological applications [11, 106, 16]. Tetragonal distortion of

the lattice is particularly important. It has long been known that a tetragonal end

member is crucial for promoting high piezoelectric performance at the solid solution’s

morphotropic phase boundary (MPB) [117]. Recently, novel Bi-based ferroelectrics

possessing extreme tetragonality (c/a = 1.1-1.25) have been discovered [118, 120,

115, 53], far surpassing PbTiO3 (c/a = 1.06). The large spontaneous polarization and

structural anisotropy of highly tetragonal ferroelectric materials make them promising

for areas such as negative thermal expansion, multiferroics, birefringent optics [26,

60, 67].

A fundamental goal of materials science is to understand how a material’s com-

position gives rise to its properties. Since the landmark paper of Devonshire [33],

Landau-Ginzburg-Devonshire (LGD) theory has been proved to be a powerful tool

for studying ferroelectrics. As a phenomenological model, LGD theory treats the

macroscopic observable polarization (P ) as the order parameter. If the LGD param-

eters are known, predictions can be made relating properties to each other within a
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given material. However, the property changes due to compositional variation cannot

be determined by standard LGD theory. The lack of an effective and quantitatively

accurate theoretical tool for understanding how compositional changes affect tetrago-

nality hinders the search for new materials with enhanced properties. Previously, we

were the first to show that a simple universal proportionality relates the ferroelectric-

paraelectric transition temperatures in PbTiO3-based solid solutions to the square of

their ground state polarization (P 2) [50, 51].

In this work, using first-principles calculations, we show that the use of a micro-

scopic property, the average cation off-center displacement, as the order parameter

in the LGD framework enables prediction of tetragonality by a simple expression.

The displacement-strain coupling parameter is general for a large number of PbTiO3-

derived ferroelectric perovskite solid solutions. We also elucidate the crystal chemical

properties that control the average atomic displacement in perovskites. Together,

these two advances provide a roadmap for the design of new ferroelectric materials.

5.2 Methodology

We study 25 different tetragonal ferroelectric materials using density functional the-

ory (DFT) [59, 96]. The details of the computational approach are the same as in

previous work [50, 51]. Four different cation arrangements with minimal oxygen over-

and under-bonding [49, 50] are used to study 0.25 BiM3+O3-0.75 PbTiO3. Only one
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cation arrangement was used for 0.125 BiM3+O3-0.875 PbTiO3. Berry’s phase cal-

culations [126] were carried out to obtain the polarization. All data are presented in

Table 5.1.
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Table 5.1: DFT and experimental data for tetragonal PbTiO3-derived ferroelectric
perovskite solid solutions. A- and B-cation averaged displacements (DA, DB) and
polarization (P ), averaged over several different cation arrangements, are DFT pre-
dictions. All the displacement data listed here are for the (001) components of the
total displacement vectors. Data marked by † and ∗ are taken from our previous
works, Ref. [50, 51]. The c/a-1 and Curie temperature (Tc) data are from experimen-
tal literature [117, 118]. The Tc datum for Bi(Zn1/2Ti1/2)O3 is omitted, since this
compound decomposed before undergoing phase transition [120].
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c/a-1 P Tc DB DA

PT † 0.065 0.87 765 0.280 0.450

0.75 PbZn1/3Nb2/3O3-0.25 PT † 0.033 0.66 547 0.218 0.461

0.5 PbZrO3-0.5 PT 0.023 0.76 659 0.165 0.440

0.5 PbSc1/2Nb1/2O3-0.5 PT 0.020 0.50 560 0.142 0.296

0.5 PbIn1/2Nb1/2O3-0.5 PT 0.028 0.45 623 0.129 0.255

0.375 PbSc2/3W1/3O3-0.625 PT 0.020 0.61 517 0.176 0.350

0.375 PbMg1/3Nb2/3O3-0.625 PT † 0.044 0.66 583 0.201 0.387

0.375 PbZn1/3Nb2/3O3-0.625 PT † 0.048 0.74 643 0.241 0.424

0.33 PbZrO3-0.67 PT 0.046 0.84 700 0.210 0.450

0.25 PbSc1/2Nb1/2O3-0.75 PT 0.041 0.74 640 0.220 0.412

0.25 PbIn1/2Nb1/2O3-0.75 PT 0.046 0.65 695 0.208 0.387
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c/a-1 P Tc DB DA

Bi(Zn1/2Ti1/2)O3 0.220 1.34 0.489 0.903

0.5 Bi(Mg1/2Ti1/2)O3-0.5 PT ∗ 0.047 0.88 733 0.200 0.515

0.5 Bi(Zn1/2Ti1/2)O3-0.5 PT ∗ 0.120 1.17 1100 0.365 0.675

0.25 Bi(Mg1/2Zr1/2)O3-0.75 PT ∗ 0.041 0.86 721 0.216 0.478

0.25 Bi(Mg1/2Ti1/2)O3-0.75 PT ∗ 0.061 0.93 803 0.258 0.505

0.25 Bi(Zn1/2Zr1/2)O3-0.75 PT ∗ 0.064 0.93 740 0.263 0.508

0.25 Bi(Zn1/2Ti1/2)O3-0.75 PT ∗ 0.088 1.04 875 0.319 0.550

0.25 BiScO3-0.75 PT 0.040 0.84 768 0.220 0.488

0.25 BiGaO3-0.75 PT 0.057 0.84 768 0.226 0.447

0.25 BiInO3-0.75 PT 0.080 0.90 856 0.257 0.539

0.125 BiAlO3-0.875 PT 0.050 0.84 758 0.243 0.473

0.125 BiScO3-0.875 PT 0.053 0.85 780 0.257 0.442

0.125 BiGaO3-0.875 PT 0.057 0.83 757 0.241 0.427

0.125 BiInO3-0.875 PT 0.077 0.94 847 0.295 0.535
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5.3 Results
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Figure 5.1: Linear correlations for the average cation displacement (D2
A in blue squares

and D2
B in black circles) vs experimentally observed c/a-1 and theoretical P 2 (P 2 in

red triangles) and experimentally observed c/a-1 are shown. Unlike D2
A and P 2, D2

B

is closely correlated with c/a-1. All of the fits shown are forced to cross the origin.
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Table 5.2: Fitting functions set I is simple linear regression. R is the notation for
correlation coefficient. Fitting parameters a, b and d are in the unit of Å−2, e is in
the unit of m4C−2, and c is unitless. Fitting functions set II is forced to cross the
x-axis at the origin. By using different fitting variables to fit strain (s), we conclude
that D2

B is the most universal parameter with the best linear correlation with s.
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Fitting functions set I R

aD2
A + c 0.958

a = 0.2703, c = -0.0054

bD2
B + c 0.984

b = 0.8938, c = 0.0020

aD2
A + bD2

B + c 0.985

a = 0.0553, b = 0.7236, c = -0.0003

dDADB + c 0.983

d = 0.5016, c = -0.0025

aD2
A + bD2

B + dDADB + c 0.986

a = -0.2646, b = -0.5987, d = 1.2928, c = 0.002

eP 2 + c 0.924

e = 0.1108, c = -0.0208
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Fitting functions set II R

aD2
A 0.946

a = 0.2466

bD2
B 0.984

b = 0.9058

aD2
A + bD2

B 0.985

a = 0.0530, b = 0.7201

dDADB 0.981

d = 0.4820

aD2
A + bD2

B + dDADB 0.986

a = -0.2664, b = -0.6019, d = 1.3082

eP 2 0.807

e = 0.0816
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Comparison of the correlations between the experimental c/a-1 values and the ab

initio data P 2, average A-site off-center displacement squared (D2
A) and average B-site

off-center displacement squared (D2
B) shows that DB is the parameter that controls

tetragonality. Figure 5.1 presents a general trend of higher P corresponding to higher

c/a-1; however, the correlation weakens at high P values. In Fig. 5.1, similarly poor

linear correlation is found for c/a − 1 and D2
A. On the other hand, we find that

c/a − 1 and D2
B are strongly correlated, with all of the data points falling close to

a straight line through the origin. Including D2
A, D2

B and the DADB cross terms

for fitting the c/a-1 data does not significantly improve the correlation coefficient,

proving that tetragonality is only weakly dependent on A-site displacement, and that

the correlation between c/a-1 and D2
A comes from the coupling between the A- and

B-site displacements.

It is important to note that a simple linear regression yields nonzero intercepts for

c/a− 1 vs D2
A, and c/a− 1 vs P 2. However, the same linear regression finds that the

fit for c/a − 1 versus D2
B goes naturally through the origin. The nonzero intercepts

for the linear regression fits of c/a − 1 vs D2
A, and c/a-1 vs and P 2 come from the

large scatter in the data. If additional solid solutions were included, the values of the

x-axis intercept for these fits should also be zero.

Our results suggest the following interpretation. First, tetragonality has a univer-

sal scaling with average B-cation displacement in ferroelectric PbTiO3 derived solid
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solutions for a variety of A- and B-site compositions. Second, the modified LGD

theory with B-site displacement replacing P as order parameter can be used to pre-

dict tetragonality of the different compositions. This model can be understood intu-

itively, by emphasizing that the mechanical property of tetragonality should be more

strongly correlated with another mechanical property, atomic displacement, rather

than an electrical property such as polarization. We describe the strain-displacement

coupling contribution to the free energy in terms of DA and DB by:

G = −γAsD
2
A − γBsD

2
B − γABsDADB +

1

2
Ks2 (5.1)

where strain s is the tetragonality c/a-1, and γ and K are the strain-displacement

coupling and the elastic constants, respectively. Minimizing the free energy with

respect to s, we get

s = (γAD
2
A + γBD

2
B + γABDADB)/K. (5.2)

The high quality of the fit to D2
B data in Fig. 5.1 means that γA and γAB are small

compared to γB, and can be neglected.

On the other hand, if the free energy G is written in a standard form with the

overall polarization Ptot as the order parameter, the minimum-energy s is given by

s = γ(Z∗
ADA + Z∗

BDB)2/K (5.3)
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where we express Ptot as the sum of the A- and B-site contributions given by the

average product of cation displacement and its Born effective charge Z∗. This forces

the coupling constants between s and A- and B-site off-center displacements squared

to scale as the their respective Z∗ squared. In Table 5.2, fit aD2
A + bD2

B + c shows

that the γB/γA ratio is ≈ 13, much larger than the (Z∗
B/Z

∗
A)2=3.4 ratio for PbTiO3.

The disagreement is even worse for Bi(Zn1/2Ti1/2)O3, where (Z∗
B/Z

∗
A)2=1.4. The

overestimation of the A-site contribution in the fit of s data to P 2 weakens the

correlation and leads to the unphysical result that Ptot 6= 0 when s=0, fit eP 2 + c in

Table 5.2, making Ptot a less accurate predictor of c/a.

The interplay between bonding and geometry in a perovskite structure explains

the differences in the strain dependence on the cation displacements of the A- and

B-sites. We consider a strain along the (100) direction. For the B-cations, a (100)

off-center displacement is along the O-B-O axis and strongly affects the B-O bond

orders along that direction. Increased strain elongates the (100) lattice constant

allowing more space for the B-cation distortion and making B-cation off-centering

displacement more favorable [31]. For the A-site, there is a ≈ 45◦ angle between the

(100) direction of the A-cation off-center displacements and the (110) direction of the

A-O bonds. In this case, a tetragonal strain leads to relatively small changes in the

A-O bond length and its bond order. Hence, displacement-strain coupling for the

A-cations is not as strong as for the B-cations.
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At first glance, the weak correlation between c/a-1 and P found in our work

contradicts the well-known scaling of the tetragonality with the square of polarization

as temperature is varied. However, sinceDA andDB are coupled, for a single material,

temperature variation changes PA and PB and therefore Ptot in a similar way, so

that Ptot has a strong correlation with c/a-1 as T is varied. However, changing

the composition affects one cation site more strongly than the other. For example,

PA is more affected by A-site substitution, while PB is more affected by the B-site

substitution. As a result, the proportionality between c/a-1 and P 2
tot no longer holds

tight for compositional variation.
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Figure 5.2: The average B-cation ionic size effect RB
avg on average cation displacement

DA and DB in solid solution x BiM3+O3 - (1-x) PbTiO3 is shown. Compositions x
= 0.125 and x = 0.25 are noted as unfilled and filled symbols respectively. Ionic
displacements are increased by substitution of either very large (In3+, RIn = 0.80 Å)
or very small (Al3+, RAl = 0.53 Å) RM . 0.25 BiAlO3 - 0.75 PT lattice constants are
estimated from extrapolation.



87

0.58 0.6 0.62 0.64 0.66

R
 B,avg

(Å)

0.44

0.48

0.52

D
A

,a
vg
(Å

)

Al

In

Ga

Sc
Ga

Sc

In

Al

0.58 0.6 0.62 0.64 0.66

R
B, avg

(Å)

0.24

0.28

D
B

,a
vg
(Å

)

Al Ga

Sc

In

Ga
Sc

In

Al



88

The relationship between DB and c/a elucidated here, as well as the previously-

obtained correlation between P and Tc reduce the problem of new ferroelectric mate-

rial design to that of enhancing DA and DB values. In previous work, we found that

DFT-obtained cation displacements DM in ferroelectric PbTiO3-based solid solutions

are remarkably transferable from one material to another. [51] The displacement ten-

dency of each cation can therefore be characterized by parameter D0
M , the displace-

ment that cation M would make in almost pure PbTiO3 at a very low doping fraction.

The D0
M value variation cannot be explained by ionic size argument alone, since it

is also closely related to the covalency of the M-O bond, with higher covalency lead-

ing to enhanced ionic displacement. This can be illustrated by a comparison of the

more covalent Zn2+ (D0
Zn=0.25 Å, RZn=0.74 Å) and more ionic Mg2+ (D0

Mg=0.08 Å,

RMg=0.72 Å) cations [50, 51].

Here, we examine the ionic size R impact on DB, by holding D0
B nearly constant.

We performed ab initio calculations on x BiMO3 - (1-x) PbTiO3 (M3+ = Al3+, Ga3+,

Sc3+, In3+). Fig. 5.2 shows that both DA,avg and DB,avg average displacement magni-

tudes depend non-monotonically on the average B-cation ionic size RB,avg, implying

two competing effects exist and they switch dominant role depending on RB,avg. Also

we can see that the two effects are influenced by the doping fraction of BiMO3. The

B-site displacements are more sensitive to the change in x as seen for a larger shift of

the minimum cation displacement values. Next, we discuss the two effects for small
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and large ionic size substituents.

When RM is small, the increase in the ionic displacement for smaller B-site can

be explained by the well-known rattling cation effect. The mismatch between the

short cation-oxygen bonds preferred by the dopant ion and the larger lattice constant

preferred by the A-O sublattice favors off-centering of the dopant and an increase in

the average A-site and B-site displacements.

When RM is large, the increased ionic displacements DB for large substituent B-

site ions (e.g. In3+) are due to the expansion of the crystal volume. Introducing very

large cations on the B-site creates a conflict between the preference of the subsitutent

for a larger unit cell volume and the preference of the A-cations for a smaller A-O

sublattice. Usually, such a conflict is resolved by the rotation of the B-O6 octahedra;

however, for a low concentration of largeB-cations, the stiffness of the TiO6 octahedra

in PbTiO3 and their resistance to tilting make these large rotations energetically

unfavorable. [54] Instead, the A-site off-centering increases, bringing the A-cations

closer to the O anions to achieve the desired short A-O bonds. Thus, in a solid

solution, alloying a larger-volume perovskite into a smaller-volume one expands the

A-site for the smaller A-cations, equivalent to applying negative pressure [122] to the

smaller-volume perovskite.

The understanding of the relationships between cation characteristics and the

technologically important Tc and c/a properties of perovskite ferroelectrics provides
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guidance for the design of new materials with enhanced performance. For example,

the finding that tetragonality scales with the B-site displacement means that compo-

sitions with a small charge on the A-site (e.g. Ag+-based ABO3) can be extremely

tetragonal. For enhancement of c/a and P at small dopant fraction, large cation size

and displacement are favorable. At higher substituent fraction, smaller ionic size is

favorable, suggesting that cations such as Al3+ (RAl = 0.53 Å) and V4+ (RV = 0.58 Å)

and V5+ (RV = 0.54 Å) are promising for enhancing polarization and c/a.

For PbTiO3-derived piezoelectric materials, the highest performance occurs at the

MPB. For operation at high temperatures, the Tc at the MPB must be high. To create

an MPB, a rhombohedral or antiferroelectric perovskite is mixed with PbTiO3, to

destabilize the tetragonal phase and reduce c/a (typically, MPB compositions exhbit

c/a ≈ 1.025). From the demonstrated correlations above, reduction in c/a means that

the B-site displacement must be diminished. However, high Tc is favored by large

polarization, with contributions from both A- and B-cation displacements. Hence,

the optimal strategy is to mix in a perovskite with D0
B < D0

Ti and D0
A > D0

Pb; this

decreases c/a while the increased A-site polarization compensates for the smaller B-

site P contribution. Another strategy is to substitute large cations on the B-site. As

shown above in Fig. 5.2 at higher x, a large substituent increases DA while decreasing

DB, driving c/a down while maintaining a high P and Tc. This type of combination

is in fact observed for the x BiScO3 - (1-x) PbTiO3 [36] and x BiMg1/2Ti1/2O3 - (1-x)
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PbTiO3 [117, 104] solid solutions. These exhibit an immediate decrease in c/a but an

initial rise in Tc which leads to enhanced TMPB
c compared to the classic Pb(Zr,Ti)O3.

5.4 Conclusion

In conclusion, using DFT calculations we have revealed a universal scaling of c/a in

ferroelectric perovskites with the displacement of the cation B-site. The developed

composition-structure-property relations provide guidance for systematic exploration

of new materials. Of course, we are aware of the fact that providing guidance for

structural geometry is not enough for all perovskite oxides’ applications, road maps

for how to design materials with electronic structure serving versatile purposes are

also important. We will continue to discuss the electronic structure engineering in

the next chapter, Chapter 6.



Chapter 6

First-Principles Investigation of Electronic Band Gap Coupling to Local

Environment in Complex Oxides
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6.1 Introduction

In Chapter 6, we study some specially chosen perovskite oxides to study the electronic

band structure coupling with structural geometries.

Ferroelectric (FE) photovoltaic materials have recently attracted increasing at-

tention for use in solar cell applications. The strong inversion symmetry breaking

and spontaneous polarization P of ferroelectrics separate charge carriers well [64, 42],

making them a promising class of photovoltaic materials [135, 29, 125]. However, the

poor matching of the band gap Eg of most perovskite ABO3 FE materials (3-4 eV)

with the solar spectrum greatly reduces their solar energy conversion efficiency. In

the last decades, great efforts have been made to understand electronic band struc-

tures [34, 121, 130, 128, 37, 66, 97] and to engineer a lower electronic band gap

in oxide materials [44, 14] using first-principles calculations. In this work, we use

first-principles DFT calculations to explore how B-site ordering, lattice strain, cation

identity and oxygen octahedral cage tilts affect the electronic band gap in highly

tetragonal ferroelectric perovskites. We find that local chemistry can be used to re-

duce the band gap by 1-2 eV and achieve the desired combination of low band gap,

high polarization and high electron mobility in FE perovskites.

We first focus our study on the newly synthesized Bi(Zn1/2Ti1/2)O3 (BZT), as well

as proposed materials Bi(Zn3/4W1/4)O3 (BZW) and Bi(Zn3/4Mo1/4)O3 (BZM). BZT

experimentally exhibits tetragonal symmetry [120], while BZW and BZM relax into
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orthorhombic symmetry. These are environmentally friendly, exhibit extremely large

tetragonality c/a and P , either in the pure state [120] or in an alloy with PbTiO3

(PTO) [117, 115], fulfilling the high polarization requirement.
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Figure 6.1: Five B-cation arrangements for 40-atom tetragonal BZW and BZM su-
percells used in this work. Bi and O ions are omitted in the sketch.



96



97

6.2 Methodology

We studied the local environment and electronic structure of each oxide with density

functional theory (DFT). We used the ABINIT program [46] to investigate 2×2×2

40-atom supercells, relaxing the internal ionic coordinates and lattice parameters.

All atoms are represented by norm-conserving optimized [105] nonlocal [103] pseu-

dopotentials generated using the OPIUM code [1] with a 60 Ry plane-wave cutoff.

We used the GGA [94] and a 2 × 2 × 2 Monkhorst-Pack k-point sampling of the

Brillouin zone [87]. Orbital-projected densities of states (PDOS) are calculated with

8×8×8 k-point meshes and Gaussian smearing. The plain DFT underestimates Eg

of semiconductors and insulators by 30-50% [63]. For instance, PTO Eg is under-

estimated by ≈ 1.5 eV. To address some of the shortcoming of DFT (concerning

localized orbitals), the LDA+Hubbard U (LDA+U) method was developed by using

the on-site Coulomb interaction instead of the averaged Coulomb energy for localized

d and f electrons [3, 30]. Appropriate Hubbard U values for Ti, Zn, W and Mo are

estimated from the binary oxides (TiO2, ZnO, WO3 and MoO3) and ABO3 (PTO

and BaTiO3) whose experimental Eg are well-known. It should be noted that the

presented results do not qualitatively change for reasonable variations of U . How-

ever, since LDA+U has the shortcoming of predicting densities of states inaccurately,

we only apply LDA+U for correcting Eg values. DFT is used for local structure

relaxation and band dispersion analysis.
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In cubic phase BZT, there are in total six possible B-cation arrangements in a

40-atom supercell. When the lattice symmetry becomes tetragonal, four of these

arrangements have two different orientations relative to the (100) polar axis leading

to a total of ten unique B-cation arrangements as in Fig. 4.1. The 3:1 Zn-B′ cation

ratio leads to five possible arrangements for tetragonal phase 40-atom supercells of

BZW and BZM, as shown in Fig. 6.1.

6.3 Results and Discussion

All three oxides show significant cation displacement and spontaneous polarization.

Since A-site Bi3+ is small and very covalent, it usually moves off-center by a large

amount (≈ 1 Å). B-site Zn is known as a ferroelectrically active cation [52], showing

large displacement. Because of the B-site and A-site displacement coupling [101], we

observe large cation off-centering and large polarization for all three materials. The

local geometries and energetics of the relaxed BZW and BZM structures resemble

BZT, as found in our previous study [100]. The general cation displacement trend is

DBi > DZn,Ti > DW,Mo. With smaller DBi and smaller averaged B-site Born effective

charges in BZW and BZM, their polarization magnitude is about 20% smaller than

that of BZT. BZW and BZM also show larger O6 octahedral rotations and non-

(001) cation displacement components, due to their smaller tolerance factors of 0.934,

compared with 0.949 for BZT.
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Figure 6.2: Cation displacement (top) and oxygen octahedral tilt angle (bottom)
population distributions averaged over all supercells for BZT (left), BZW (center)
and BZM (right). Bi, Zn, Ti, W and Mo data are plotted in black, red, green, blue
and purple.
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Table 6.1: BZT is experimentally determined to show tetragonal symmetry [120].
Some B-cation orderings lead to uneven two short lattice constants, within 5% dif-
ference in magnitude. We take the average of the two for caculating approximate
tetragonality c/a. DFT energies (eV/5-atom cell), tetragonality, polarization (C/m2)
ẑ component and total magnitude, Eg (eV, LDA+U), and averaged O6 tilting angles
(◦) are presented for relaxed structures. The subscripts i and d indicate indirect and
direct Eg. Γ/Z means a k-point that is in between Γ and Z.
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EDFT c/a Pz Ptot Eg transition O6 tilt

BZT

a 0.036 1.271 1.36 1.39 2.24d Γ → Γ 1.5

b 0.040 1.274 1.41 1.42 1.48i Γ/Z→ Γ 2.4

c 0.083 1.077 0.82 1.05 2.77i R→ Γ 9.7

d 0.076 1.266 1.37 1.38 1.93i X→ Γ 2.5

e 0.044 1.276 1.38 1.40 2.13i A→ Γ 2.4

f 0.021 1.280 1.40 1.40 2.13i Z→ Γ 2.6

g 0.000 1.286 1.43 1.43 2.09d Γ → Γ 2.4

h 0.041 1.280 1.35 1.39 2.37d Γ → Γ 0.6

i 0.044 1.284 1.39 1.42 2.24d Γ → Γ 1.0

j 0.046 1.275 1.38 1.39 2.17i X→ Γ 2.9
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Figure 6.3: Band structures for BZT arrangements a (top) and b (bottom) near the
fermi level. The high-symmetry points in the Brillouin zone are Γ (0, 0, 0), X(0.5, 0,
0), M (0.5, 0.5, 0), A(0.5, 0.5, 0.5), Z(0, 0, 0.5) and R(0.5, 0, 0.5).
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Figure 6.4: Projected density of states for BZT B-cation arrangements b. Bi, O, Ti
and Zn data are plotted in black, red, green and blue.
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For the three Bi-based materials, analysis of the ground state wavefunctions shows

that the valence band is mostly O 2p with some Zn 3d. The conduction band is

chiefly Bi 6p with some transition metal d and O 2p. This is different from many

previously studied ferroelectrics, where the valence band maximum and conduction

band minimum usually consist of O 2p and the B-site transition metal d states (e.g.

Ti 3d in PTO), respectively. In addition to the unusual presence of the A-site cation

states at the conduction band minimum, we find that the Zn 3d states are located at

or just below the valence band maximum.

6.3.1 The effect of B-cation ordering

The proximity and connectivity of Zn cations have a strong impact on the electronic

structure (Figure 4.1 and Table 6.1). For all ten B-cation arrangements we study here,

the Eg values are approximately 2.2 eV, except for supercell b. This structure exhibits

a significantly lower band gap of 1.48 eV and has alternating Zn and Ti B-cation

layers stacked along the polar axis. Ju et al. [67] reported Eg lowering in this specific

B-cation arrangement using a 20-atom supercell, but did not discuss or explain the

origin of this effect. An even stronger difference (≈ 1 eV) between the arrangements

containing all-Zn xy planes, and the other arrangements is obtained for the BZM and

BZW structures relaxed under the constraints of uniaxial polarization and suppressed

O6 rotations (Table 6.3). We will refer to these as constrained structures in further
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discussion.

What is the reason for such strong Eg sensitivity to B-cation arrangement? Fig-

ure 6.3 shows that while the conduction bands of arrangements a and b have similar

energy and dispersion, the top valence bands of arrangement b rise by ≈ 1 eV rel-

ative to arrangement a. The major atomic orbital components of the valence band

maximum are O 2px and O 2py for arrangement a; Zn 3dx2−y2 , O 2px and O 2py for

arrangement b. Additionally, in arrangement b, the O orbitals at the valence band

maximum come only from the O atoms in the all-Zn plane, and the higher energies

of the Zn 3dx2−y2 orbitals lead to a decreased band gap (1.48 eV).

The significant Zn 3dx2−y2 character at the valence band maximum can be ex-

plained in a crystal field theory framework. The filled Zn 3d states have a repulsive

interaction with the O 2p states. The differences in shape and orientation of the five

Zn 3d orbitals lead to a difference in the strength of repulsion, breaking the Zn 3d

degeneracy. In cubic perovskites, the transition metal B-sites are surrounded by six

closest oxygen atoms in an octahedral environment, in which dz2 and dx2−y2 are de-

generate. By contrast, because of the high c/a ratio in BZT and significant B-cation

off-centering displacement, every Zn atom is in a square pyramidal coordination with

five nearest-neighbor oxygen atoms. The Zn 3d orbitals split, with 3dx2−y2 highest in

energy, since it has the largest overlap with the O 2px and O 2py. Thus, the change

from octahedral to square pyramidal geometry due to extreme tetragonality destabi-
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lizes the Zn 3dx2−y2 orbitals in BZT, which rise toward the valence band maximum.

This effect is present for both arrangements a and b. However, in arrangement b an

additional crystal field effect due to the presence of an all-Zn plane leads to a further

destabilization of the Zn 3dx2−y2 orbital, as we discuss next.
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Figure 6.5: Schematic picture shows the bond order variation caused by B-cation
arrangement. The bold and dashed lines indicate stronger and weaker bonds respec-
tively.
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Figure 6.6: The charge density contour plots for constrained BZT structures a and b.
The top and bottom rows are B-O and A-O bonding plane respectively. In structure
a, the Zn-O bond is weaker than Ti-O bond. We observe stronger Bi-O bond (close
to the all-Zn plane) in structure b than in structure a. In structure b, the strongly
underbonded O atoms between two Zn atoms are compensated by a stronger bond
from their nearest Bi neighbors. The charge density is in the unit of e−/bohr3.
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The O atoms in an all-Zn xy plane layer are underbonded. In BZT, the average

total valence of each O atom’s B-site neighbors is six (Zn2++Ti4+). This is the case

for all the O atoms in arrangement a. When an O atom has two Zn neighbors, the

total valence of its B-site neighbors is only four. The B-O bonding is weaker than

average, and the underbonded O valence must be compensated by the creation of

shorter and stronger Bi-O bonds. This can be seen by comparing the Born effective

charges and Bi-O bond lengths for the O atoms in arrangements a and b. The O Z∗
xx

element of the Born effective charge tensor is -3.2 for arrangement a but only -2.1

for the O atoms in the all-Zn plane in arrangement b. Similarly, the shortest Bi-O

distance is 2.41 Å in arrangement a and 2.33 Å in arrangement b, indicating that

a stronger Bi-O bond valence compensates the weaker B-O bonding in arrangement

b. Comparing electron density distributions of the two arrangements, we see that

there is a depletion of density from the B-site opposite the Zn atom as the Ti-O bond

is replaced by the Zn-O bond, and a build up of charge density in the Bi-O bonds

closer to Zn (Fig. 6.6). Such an electron density redistribution increases the repulsion

between the O 2px, O 2py and Zn 3dx2−y2 orbitals. It destabilizes the Zn 3dx2−y2 even

more, raises its energy to the valence band maximum, and decreases Eg, as observed

in BZT arrangement b.
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6.3.2 strain effect

To explore the connection between the extreme tetragonality and the unusual cation-

arrangement sensitivity ofEg, we calculated theEg values for the tetragonal-symmetric

BZT arrangements a and b at a range of lattice parameters (Table 6.2). As we will

discuss later, O6 octahedral rotation is another important local environment effect.

Therefore, to isolate the effect of strain, we varied the lattice parameters without

oxygen cage tilt.

We find that the c/a ratio is a good predictor of the Eg sensitivity to the cation

arrangement. Decreasing c/a, either by a smaller c lattice parameter or larger a,

makes the band gap difference between arrangements a and b (∆Ea−b
g ) smaller. In

contrast, neither the volume nor the individual lattice constants a and c are good

predictors of ∆Ea−b
g (Table 6.2). Reducing the c lattice parameter reduces the square

pyramidal crystal field splitting of the Zn d orbitals, dropping the Zn dx2−y2 states

below the valence band maximum and reducing ∆Ea−b
g . Increasing a decreases the

electrostatic repulsion between the O 2p states and the filled Zn 3d states, and ∆Ea−b
g

is also reduced. These two effects are of approximately the same magnitude, such that

a simultaneous increase of a and c leads to only slight changes in ∆Ea−b
g . Thus, a

large c/a ratio is crucial for strong sensitivity of Eg to B-cation arrangement.
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Table 6.2: c/a ratio, a and c lattice constants (Å), 5-atom cell volume (Å3), Eg for
B-cation arrangements a and b (eV, LDA+U), and their difference (eV) are presented
for structures relaxed without O6 rotations. The data lines with c/a=1.27 represent
the equilibrium lattice parameters for material BZT.
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c/a a c Vol. Eg(a) Eg(b) ∆Ea−b
g

BZT 1.30 3.82 4.97 72.66 1.93 1.04 0.89

1.27 3.82 4.86 70.92 1.88 1.09 0.79

1.24 3.82 4.74 69.12 1.81 1.18 0.63

1.06 3.82 4.05 59.09 1.18 1.27 -0.09

1.30 3.74 4.86 68.12 1.97 1.11 0.86

1.27 3.82 4.86 70.92 1.88 1.09 0.79

1.24 3.92 4.86 74.66 1.66 1.03 0.63

1.06 4.58 4.86 102.16 0.31 0.52 -0.21

BMT 1.27 3.82 4.86 70.92 1.76 1.42 0.34

BZZ 1.27 3.82 4.86 70.92 1.66 0.45 1.21

PGN 1.27 3.82 4.86 70.92 2.47 2.52 -0.05

PSN 1.27 3.82 4.86 70.92 2.28 2.42 -0.14

PAN 1.27 3.82 4.86 70.92 2.55 2.61 -0.06

PZM 1.27 3.82 4.86 70.92 1.61 metal ≥1.61



118

6.3.3 cation identity effect

The energy ordering of the d orbitals is crucial for the band gap engineering mecha-

nism; we demonstrate this by studying substitution of different A- and B-cations. To

isolate the effect of the cation identity, we use the equilibrium lattice constants from

constrained BZT arrangements a and b. We first replace the Zn2+ ions by Mg2+. In

Bi(Mg1/2Ti1/2)O3 (BMT), the change in Mg/Ti ordering has almost no impact on

Eg, since Mg 2p orbitals are too far below the valence band maximum. On the other

hand, for Bi(Zn1/2Zr1/2)O3 (BZZ), where Zr replaces Ti, the strong sensitivity of the

Eg to the cation arrangement is preserved, as see from the data in Table 6.2. To

examine the impact of the changes in cation arrangement on Eg for +3/+5 (B/B
′

)

A(B1/2B
′

1/2)O3 perovskites, we substitute Pb for Bi on the A-site and Ga/Nb for

Zn/Ti on the B-site. Despite the proximity of Ga to Zn in the periodic table, our

calculations show small valence band level change for Pb(Ga1/2Nb1/2)O3 (PGN), be-

cause Ga 3d orbitals are too low to reach the valence band frontier and affect Eg.

Similar results are found for Pb(Al1/2Nb1/2)O3 (PAN) and Pb(Sc1/2Nb1/2)O3 (PSN).

In PAN, there are no d orbitals in the underbonded all-Al plane; in PSN, the Sc 3d

orbitals are too high in energy and are located above the conduction band edge.

For PGN, PAN and PSN at BZT lattice constants, the extreme tetragonality has

a two-fold impact on the conduction band. First, the conduction band minimum is

mainly composed of Pb 6p orbitals, similar to the case of three Bi-based materials
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we discussed earlier. Second, we find that the B-site d0 transition metal states (Nb

4d) are shifted down by the change from B-cation arrangement a to b. Nb 4d states

redistribute due to different B-cation orderings, however, it does not alter the Eg

value since the conduction band minimum is set by the energy of Pb 6p orbitals.

The crystal field theory framework is helpful in understanding the mechanism for Nb

4d states shift due to B-cation ordering in the conduction band. The higher than

average bond order of the Nb-O bonds in the all-Nb plane leads to a decrease in Pb-O

bonding for the O atoms bonded to two Nb cations. Such a charge transfer out of the

Pb-O bond and into the Nb-O bond decreases the electrostatic repulsion between the

electrons in the Pb-O bonds and the Nb d states. This shifts the Nb d states down

in energy, especially Nb 4dxy.

In order to engineer the combination of the valence and the conduction band

by B-cation arrangement, we pick Pb(Zn1/2Mo1/2)O3 (PZM) to study. The higher

electronegativity of Mo6+ (relative to Nb5+) makes Mo 4d located at the conduction

band minimum instead of Pb 6p, so that the change in the cation arrangement from a

to b lowers the energy of the conduction band (Mo 4d) while raising the valence band

level (Zn 3d). Our LDA+U calculations show that PZM arrangement a is an insulator

with Eg=1.6 eV, while PZM arrangement b is metallic. We estimated ∆Ea−b
g to be

as large as 2 eV.
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Figure 6.7: Band dispersion for BZWB-cation arrangement a′ with constrained (with-
out O6 rotations, top) and relaxed structures (bottom) near the fermi level.
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Table 6.3: All BZW and BZM supercells relax into orthorhombic symmetry. The
two short lattice vectors are within 5% difference in magnitude. We take the average
of the two for caculating approximate tetragonality c/a. DFT energies (eV/5-atom
cell), tetragonality, polarization (C/m2) ẑ component and total magnitude, Eg (eV,
LDA+U), and averaged O6 tilting angles (◦) are presented for the constrained without
O6 rotations (set I) structures and the fully relaxed (set II) structures. The subscripts
i and d indicate indirect and direct Eg.
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EDFT c/a Pz Ptot Eg transition O6 tilt

BZW (set I)

a′ 0.259 1.197 0.96 0.96 0.53d Γ → Γ 0.0

b′ 0.301 1.287 1.30 1.30 0.82d Γ → Γ 0.0

c′ 0.101 1.323 1.51 1.51 1.74i Γ/Z→ Γ 0.0

d′ 0.107 1.248 1.28 1.28 1.77i Γ/X→ Γ 0.0

e′ 0.309 1.211 0.97 0.97 1.33d Γ → Γ 0.0

BZM (set I)

a′ 0.332 1.248 1.00 1.00 0.33d Γ → Γ 0.0

b′ 0.299 1.326 1.17 1.17 0.53d Γ → Γ 0.0

c′ 0.101 1.329 1.56 1.56 1.72i Γ/Z→M/A 0.0

d′ 0.147 1.304 1.36 1.36 1.62i Γ →A 0.0

e′ 0.333 1.321 1.16 1.16 1.43i Γ/X→ Γ 0.0
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EDFT c/a Pz Ptot Eg transition O6 tilt

BZW (set II)

a′ 0.064 1.219 0.92 0.98 2.12i Z→A 5.6

b′ 0.066 1.203 0.88 1.01 2.25i Γ → Γ 5.3

c′ 0.000 1.285 1.07 1.07 2.18i M→ Γ 5.0

d′ 0.038 1.233 1.20 1.20 2.33i X/M→ Γ 4.7

e′ 0.021 1.080 0.58 0.68 2.31i R→ Γ 12.8

BZM (set II)

a′ 0.102 1.195 0.67 0.84 2.18i Z→Z/R 8.0

b′ 0.090 1.230 0.91 1.03 2.22d Γ → Γ 5.3

c′ 0.000 1.316 1.45 1.45 2.13i M→A 3.9

d′ 0.038 1.283 1.27 1.34 2.11i X→M 3.5

e′ 0.188 1.297 1.16 1.21 2.04i Γ →A 6.0
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6.3.4 oxygen cage tilt effect

The band gap of extremely tetragonal materials is highly sensitive to the tilting of

the O6 octahedra. To determine the effect of the O6 tilt, we compare the Eg values of

fully relaxed and constrained supercells for BZT, BZW and BZM. The effect of tilting

is even more pronounced for BZW and BZM than for BZT. Here, the constrained

structures without O6 rotations exhibit low Eg values (≈ 0.5-1.5 eV) with extremely

high c/a and P . Between the arrangements containing all-Zn xy planes and the other

arrangements, the band gap difference is around 1 eV. However, the Eg values of fully

relaxed BZW and BZM supercells vary around 2.2 eV (Table 6.3), with almost the

same Eg values for different B-cation arrangements.

A comparison of the band structures for the constrained and the fully relaxed

geometries of BZW arrangement a′ (Fig. 6.1 and Figure 6.7) shows that suppressing

O6 rotations increases the bandwidth for both the valence band and the conduction

band, decreasing Eg. Our results suggest that the Eg can be significantly lowered

by suppression of the O6 rotations, which is in agreement with the experimental

observations on alkali tantalate materials LiTaO3, NaTaO3 and KTaO3. For these

materials, distortions in the Ta-O-Ta bond angles (37◦, 17◦ and 0◦, respectively)

track with the band gap (4.7 eV, 4.0 eV and 3.6 eV, respectively) [75].
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6.3.5 E field tunable Eg and effective mass

In addition to the Eg engineering via local chemistry, the extremely high tetrago-

nality in Bi-based perovskites leads to unusual carrier mobility. For example, we

find a strong dispersion at the conduction band in BZT arrangements a and b. The

calculated electron effective mass tensors are 0.3-0.5 me for all three Cartesian direc-

tions. This is comparable to the effective mass for the classic semiconductors (Si, Ge

and GaAs), and much smaller than the electron effective mass usually found for the

conduction band of perovskites (e.g., BaTiO3 longitudinal and transverse electron

effective masses are 3-4 me and 1.1-1.3 m0 [7]). The effective mass is an important

parameter predicting charge carrier mobility, and low carrier mobility is one of the ob-

stacles to the use of ferroelectrics for efficient solar energy conversion. A low electron

effective mass along the polarization direction in BZT therefore indicates significantly

improved electron mobility over the current perovskite ferroelectrics.

Unlike the electron effective mass, the hole effective mass tensor in BZT displays

strong anisotropy. For arrangement a, the longitudinal hole effective mass is 25.3 me,

and the transverse hole effective mass is 1.9 me. The anisotropy is even stronger in

arrangement b. While its transverse hole effective mass is 0.8 me, the longitudinal

hole effective mass is essentially infinity. The extremely large ẑ direction hole effective

masses are easily understood, since the large c lattice parameter (≈ 4.5 Å, GGA)

makes the structure almost 2D layered, such that all-Zn planes are isolated from their
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ẑ direction neighbors. Hence, the orbital overlap is significantly reduced. It impedes

hole transfer along the polarization direction, forming a 2D hole gas (2DHG). This

has previously been found for a number of interfacial semiconductor systems [133, 89].

However, to our knowledge, BZT is the first example of a 2DHG in a single-phase

bulk material.

6.4 Conclusion

In summary, our first-principles calculations suggest several key factors for band struc-

ture engineering of highly tetragonal FE perovskites to make these materials suitable

for visible sunlight absorption in solar energy applications. A combination of ex-

treme tetragonality and all-Zn planes stacked perpendicular to the polar axis can

significantly raise the energy of the valence band in ABO3 perovskites, decreasing

Eg compared with other B-cation arrangements. Increased valence and conduction

bandwidths are favored by smaller octahedral tilting. Lower conduction band ener-

gies can be induced by incorporating B cations with higher electronegativity. Design

of extremely tetragonal materials with specially layered B-cations and suppressed

oxygen octahedral rotation is a promising direction for the development of new low-

Eg highly polar FE semiconductors. Now, we have covered three chapters for DFT

oriented calculations studying perovskite ferroelectrics. For the next Chapter 7 and

Chapter 8, I am going to present more MD oriented studies on dynamics.



Chapter 7

Collective coherent control: Synchronization of polarization in

ferroelectric PbTiO3 by shaped THz fields

128
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7.1 Introduction

Coherent optical control over ultrafast molecular behavior including chemical reac-

tions has been explored in recent years [91], spurred by the application of optimal

control theory and related methods [107, 80] and by the development of femtosec-

ond pulse shaping techniques [127, 129, 20] through which complex optical wave-

forms have been crafted and optimized to induce specified molecular responses. Here,

we propose and model theoretically the extension of coherent control to collective

structural change. We show through numerical simulations that temporally shaped

terahertz (THz) fields can be used to induce ferroelectric domain switching with ex-

tensive control over the collective microscopic pathway from initial to final structure,

in a coherent process that is very different from the conventional stepwise switching

mechanism [124].

Perovskite ferroelectric crystals have simple collective lattice vibrational modes

that describe the microscopic pathways along which structural change occurs [see

Fig. 7.1]. For this reason, these crystals are prototypes for the study of collective

structural rearrangements, with many modelling studies interrogating both static

and dynamic aspects of their phase transitions [98, 113]. A particularly important

aspect is domain switching, the process of reorienting part or all of a domain so that

its macroscopic polarization points in a different direction. We and others [32, 81,

92, 112, 19] have sought to illuminate how microscopic interatomic interactions affect
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the rate and mechanism of ferroelectric domain switching.
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Figure 7.1: (a) PTO unit cell in the tetragonal ferroelectric phase, with a +z domain
orientation. The soft vibrational mode is indicated by the arrows on the ions. (b)
Time-dependent lattice response to a single asymmetric THz pulse (shown in blue)
with its large lobe polarized along the -z direction, i.e. “anti-parallel” to the static
ferroelectric polarization. The z-component Pz (shown in green) oscillates about its
static nonzero value as the Ti and other ions oscillate about their lattice positions in
the +z domain. No significant responses of the other components Px and Py (shown
in black and red respectively) about their static values of zero are induced.
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In the tetragonal phase of lead titanate (PbTiO3, PTO), the crystal has two do-

main orientations characterized by opposite polarization directions along the tetrago-

nal axis with symmetrically equivalent ground states separated by an energy barrier.

The polarization direction can be reversed under an electric field. This is exploited

extensively in ferroelectric memory devices, so the dynamics of domain switching have

been of technological as well as fundamental interest. There is great experimental in-

terest in rapid ferroelectric polarization switching under strong electric fields, with

most experimental approaches limited to the thin film regime [124, 47, 38, 82, 83].

Most studies of polarization reversal focus on domain wall properties and dynamics

under the influence of an electric field that is applied through electrodes at the sample

surfaces [112, 69, 123]. Earlier attempts to control crystalline soft modes and phase

transitions through impulsive stimulated Raman scattering used nonresonant optical

pulses without tailored pulse profiles [134, 39, 90] and were based on simple models

for the impulsively driven lattice vibrations and the crystalline responses to them;

so far such attempts have failed to find experimental validation because the high

light intensities needed to reach sufficient vibrational amplitudes far exceed typical

material damage thresholds.

In contrast, here we explore the fundamental limit of the polarization switching

time of ferroelectric PTO under the coherent control of a terahertz-frequency elec-

tromagnetic driving field that permeates the sample and is resonant with its soft
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mode frequency. Using a well validated atomic potential model of PTO [112, 111],

we consider the coherent reorientation of a large region, without domain wall forma-

tion or movement, and we consider a terahertz-frequency driving field with tailored

amplitude, phase, and polarization profiles, motivated by recent progress in the gener-

ation of large-amplitude shaped terahertz fields and in the observation of anharmonic

responses of ferroelectric soft modes to them [56]. We examine the possibility of

coherent control over domain reversal to “read” or “write” bulk ferroelectric data

storage media on picosecond time scales.

7.2 Methodology

We carried out molecular dynamics (MD) simulations of PTO with a 6×6×6 super-

cell using a classical potential formulated and parameterized [111] to reproduce the

energies and all atomic forces encountered in Car-Parrinello simulations for a large

set of thermally accessed structures. The interatomic potential consists of four parts:

a term with the bond-valence [21] potential energy form (but modified numerical

constants), a Coulomb potential energy term with modified charges, a r−12 repulsion

term, and a harmonic term to reduce the angle tilts of octahedral cages. This po-

tential [111] reproduces the ferroelectric behavior of PTO accurately without being

fit to any experimental observations. MD simulations show a ferroelectric transition

at 575 K with a mixed order-disorder and displacive phase transition character [113].



135

Important results have been achieved with this model, including identification of the

nucleation and growth mechanism of the 180◦ domain wall of PTO under an external

electric field [112] and correlations between the structure and the dielectric properties

of Pb-based relaxor ferroelectrics [68].

To simulate THz experiments, we set the tetragonal lattice constants to the ex-

perimental values (a = 3.9 Å, b = 4.15 Å) and one or more electric field pulses were

applied to the system. All the pulses we used had an asymmetric electric field profile

with a large-amplitude lobe of short duration (a full width at half maximum of ≈

150 fs, to include frequency components up to about 6.6 THz) and a lower-amplitude

lobe of longer duration in the opposite polarity. The electric field integrates to zero

as required for optical pulses [Fig. 7.1b]. The asymmetric field profile is well suited

for driving nonlinear responses in the direction of the large-amplitude lobe. Even

shorter pulses could also drive polarization oscillations similar to the pulses we chose.

However, to flip polarization with the same number of shorter pulses, much higher

electric field amplitude is required, which is very challenging to generate and could

lead to material damage.

7.3 Results and Discussion

To switch the polarization from +ẑ to -ẑ, the most direct way is to apply electric

field pulses along -ẑ. Fig. 7.1b shows that applying a -ẑ-oriented electric field pulse
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causes the z component of the polarization (Pz) to oscillate in time about its nonzero

static value. The other polarization components (Px and Py) remain essentially zero.

The oscillation period of about 240 fs, which corresponds to 4.2 THz, is independent

of pulse magnitude, indicating an essentially harmonic mode (the Pb-O or so-called

Last mode) at these amplitudes. The phonon frequency is in good agreement with

DFT calculations and the experimental value [40] of 4.5 THz.

In order to reorient the lattice polarization, the coherent vibrational amplitude

must be made large enough to overcome the potential energy barrier between the

two stable polarization states. The Pz vibrational coherence could be reduced or

enhanced by successive pulses depending on their timing. As shown in Fig. 7.2a,

polarization reversal can be achieved within 15 ps with seven pulses of amplitude

3 MV/cm. In order to suppress coherent return of the polarization to its original

direction and multiple successive domain flipping events, we applied one additional

-ẑ-oriented pulse out of phase with the Pz oscillations. This guaranteed that after

the system acquires sufficient energy to cross the barrier freely, we can then trap it

in the desired polarization state. At 0 K, one out-of-phase pulse reliably leaves the

domain completely flipped. It is also important to note that the out-of-phase pulse

cools down the system substantially (≈ 95 K), since much of the energy is in the

coherent mode after the first six pulses. In order to avoid excessive heating of the

system, such an out-of-phase pulse could be useful not only at 0 K but also at finite
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temperature.



138

Figure 7.2: Collective coherent control over ferroelectric polarization with shaped
terahertz waveforms. (a) Sequence of seven asymmetric THz pulses (in blue), all
z-polarized with large lobes (3 MV/cm) along the -ẑ direction. Each successive pulse
makes the polarization (Pz in green) oscillation amplitude bigger than the previous
by driving the soft mode in-phase with the oscillation already present. The time
interval between pulses is an integer number of soft mode periods which gradually
grow longer due to anharmonicity. (b) Lattice potential energy surface (PES) with
respect to Px and Pz, calculated using our MD model. A PES local maximum appears
at the high-symmetry cubic structure with Px = Pz = 0. The z-polarized THz field in
(a) drives the system over this potential energy barrier. Domain switching can occur
with lower energies along trajectories that pass through or near the saddle points in
the PES. (c) Sequence of four THz pulses with x̂-oriented fields followed by a final
THz pulse with -ẑ-oriented field. (d) Power spectrum from Fourier transformation of
Px and Pz in (c). A strong peak stems from Px oscillations at the 1.6 THz phonon
frequency. The smaller peak shows the second harmonic frequency of oscillations in
Pz.
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It is well known from the quasi-DC limit that polarization rotation offers lower-

energy pathways to polarization flipping than directly surmounting the local potential

energy maximum at the high-symmetry cubic lattice configuration. Atomistically, po-

larization rotation corresponds to a trajectory for Ti that goes around, rather than

through, the unit cell center [43]. We therefore investigated prospects for maintaining

soft mode vibrational coherence while undergoing trajectories of this sort. This alter-

native scheme involves significant ionic motions and lattice polarization components

along the x̂ and/or ŷ directions as well as ẑ, and therefore it involves exploration of

much more of the three-dimensional lattice potential energy surface (PES). Fig. 7.2b

shows the lattice potential energy obtained from our MD model as a function of Pz

and Px. The energies required to reach the high-symmetry PES local maximum and

a saddle point (∆Ez and ∆Ex respectively) are compared in Table 7.1. The saddle

point energy is about 20% lower, offering lower-energy switching trajectories than

those that pass through the PES maximum.
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Table 7.1: Comparison of potential energy local maximum ∆Ez vs. saddle point ∆Ex

for polarization switching in PTO
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DFT our MD model

∆Ez (eV/unit cell) 0.168 0.143

∆Ex (eV/unit cell) 0.136 0.110

∆Ex/∆Ez 0.81 0.77
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In order to explore coherent control of domain switching with trajectories that go

around the PES maximum, we conducted MD simulations with sequences of x̂- and ẑ-

polarized asymmetric terahertz pulses rather than all ẑ-polarized pulses as described

earlier. Fig. 7.2c shows an example with four x̂-polarized pulses (with large lobes

of amplitude 1 MV/cm along +x̂) followed by one ẑ-polarized pulse (with a large

lobe of amplitude 2 MV/cm along -ẑ). After a single x̂-oriented pulse, the simulation

shows that both Px and Pz oscillations were excited, corresponding to polarization

rotation in the x̂ẑ plane. The power spectrum in Fig. 7.2d shows that the frequency

for Pz oscillation was twice that of Px (1.6 THz), which is a consequence of the lattice

symmetry about the x = 0 plane. The curvature of the PES draws the z-component of

the polarization toward smaller values when the x-component undergoes an excursion

toward positive or (symmetry-equivalent) negative values. For example, the Ti ion

moves toward the z = 0 plane when it is displaced in either direction from the x = 0

plane. Thus each half-cycle of Px corresponds to a full cycle of Pz. The oscillation

amplitude of Pz depends quadratically on that of Px until highly anharmonic regimes

are reached, and the Pz response would give rise to z-polarized frequency-doubling of

x-polarized incident THz radiation.

The simulation results in Fig. 7.2c show that each successive x-polarized pulse

increases the lattice polarization rotation amplitude, as each time Px reaches a maxi-

mum excursion away from zero, Pz reaches a maximum excursion away from its initial
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nonzero value toward a smaller value. After the fourth x̂-oriented pulse, Px exceeds

Pz at the extrema of oscillation, which means that the polarization is rotating more

than 45◦ and approaching the saddle point of the PES. Finally, a -ẑ-oriented pulse is

applied to push the system over the saddle point. This approach (Fig. 7.2c) switches

the ferroelectric domain more efficiently than the former method (Fig. 7.2a), in terms

of the number of pulses, their peak magnitudes, and their integrated energy. The

result illustrates the value of shaping the polarization as well as the amplitude and

phase profiles of the terahertz control field. Polarization shaping has proved valuable

in some examples of molecular coherent control with visible light fields [56].

Maintaining coherence at finite temperature is more challenging than at 0 K,

because the increase in random fluctuations makes the final state more difficult to

predict. The increased temperature changes several key factors that affect the switch-

ing process. First, coherence is lost more rapidly due to faster energy dissipation and

pure dephasing. Second, the ferroelectric well depth decreases with higher temper-

ature, as the higher entropy of the paraelectric state makes its free energy more

competitive with that of the ferroelectric state. These two effects compete, with the

first inhibiting coherence and the second facilitating domain flipping.

To guide our understanding of finite temperature domain switching, we concen-

trate on the response of the domain to a single -ẑ-oriented pulse. For a single pulse

to reorient the polarization, the pulse strength should be sufficient for the system
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to visit the potential energy minimum of the opposite polarization, yet not strong

enough for the polarization to flip back. Shorter dissipation times can help to remove

the excess energy from the soft mode by coupling the polarization with other modes.

Our findings are summarized in Fig. 7.3. Due to thermal fluctuations, the same ini-

tial conditions can yield different results, with flipping success being a probabilistic

event. We chose four different initial sample temperatures (50, 100, 200 and 300 K) to

analyze statistically. For each temperature, we traced 250 trajectories starting from

different equilibrated states irradiated by a single -ẑ-oriented pulse. To avoid exces-

sive heating of the material, we limited the amplitude of the short duration electric

field lobe. In Fig. 7.3, the circles indicate the probability that the system climbs over

the PES barrier before damping reduces the energy in the coherent mode to below

the barrier height (flip), and diamonds indicate the probability that it crosses back to

the original domain orientation (flipback). Hence, the difference between these two

datasets is the probability of exactly one flip reversing a domain. Eq. 7.1 fits the

simulation results well (the fitting parameters are presented in Table 7.2):

P(E , T , \) =
∞
∈ +

∞
∈ tanh

(

α[
E
E′

−∞]
)

(7.1)

where α and E0 depend on temperature (T ) and n. The E0 values for both “flip”

(n = 1) and “flipback” (n = 2) decrease monotonically with T . E0(T, 1) closely tracks

the T -dependent free energy barrier, while E0(T, 2) is higher than E0(T, 1) because
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of damping within one half period. This effect nearly doubles the range of field

amplitudes over which single flipping is achieved as T is raised from 50 K to 300 K.

The trends from MD simulations illustrate well the competing effects introduced by

temperature. We find that the required minimum magnitude of the pulse decreases as

the temperature increases because of the decreasing ferroelectric double well depth.

Meanwhile, the range of pulse magnitudes that achieve “flip” without “flipback” is

larger at higher temperatures because of increased dissipation.
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Figure 7.3: The probability of at least a single “flip” or at least two flips (denoted
“flipback”) of polarization in response to a single -ẑ-oriented pulse with varied peak
field amplitudes at different temperatures. At higher temperatures, lower field ampli-
tudes are sufficient to flip the domain, while stronger dissipation in the new domain
suppresses flipback for a wider range of field amplitudes.
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Table 7.2: Fitting parameters of flipping probabilities at different finite temperatures
according to Eq. 7.1. Temperature is in Kelvin, α is unitless, and field E0 is in
MV/cm.
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Temp. α(T, 1) α(T, 2) E0(T, 1) E0(T, 2) E0(T, 2) − E0(T, 1)

50 22.43 30.75 5.18 5.54 0.36

100 11.25 16.03 4.68 5.16 0.48

200 8.32 11.39 3.78 4.43 0.65

300 6.64 9.51 2.99 3.76 0.77
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7.4 Conclusion

Through MD simulations, we have demonstrated that collective coherent control over

ferroelectric domain orientation should be possible through the use of shaped THz

pulse sequences. Our results show that shaping of all aspects of the THz fields – the

amplitude, phase, and polarization profiles – can contribute substantially to coherent

control over collective material dynamics and structure.



Chapter 8

Molecular dynamics study of ferroelectric 90◦ domain wall properties and

mechanism in PbTiO3

152
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8.1 Introduction

Ferroelectric materials exhibit domains over which the atom displacements lead to a

net dipole polarization in one direction alternating with domains with the polarization

in another direction. For those materials in tetragonal phase, the polarization could

be switched by 180◦ or 90◦ applying external electrical field or mechanical stress. It

leads to broad applications such as non-volatile ferroelectric random access memories

(NFERAMs), actuators, sensors and transducers. Although ferroelectrics have been

studied quite intensively, microscopic explanation of how the walls form and move is

poor and even domain wall width is still puzzling especially for the case of 90◦ domain

walls.

A phenomenological level of description has been used in many previous theo-

retical works, such as phase-field model [136, 5, 27], finite element model [62] and

Ginzburg-Landau-Devonshire theory based model [58]. They provide alternatives for

significantly larger systems. The model parameters required to describe individual

systems are crucial. The shortcoming is that it depends largely on how accurate

the experimental observations are. First-principles calculation is also a powerful ap-

proach on the other hand. Many predictions have been made and confirmed. 90◦

PbTiO3 domain walls width was predicted to be on the order of one or two lattice con-

stants [86, 99, 92], matching the state of the art atomic force microscopy results [108].

Moreover, ab initio studies on sheer stress-induced 90◦ domain switching [109] reveals
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that the Pb-O bond reconstruction associating with the domain migration. However,

the ab initio calculations’ heavy computational load is well known. Hence, effective

Hamiltonian model, shell model [77, 78, 110], bond-valence model [111, 112] and

others derived from DFT extend the applicable range of atomic-level simulations.

Recent X-ray diffraction experiment performed by Vlooswijk et al. revealed the

narrowest (6-7 nm) possible a domain as well as the shortest c|a|c domain periodicity

(27-31 nm). The small periodicity makes it potentially promising for ferroelectric

memories. Inspired by their work, we set our goal to providing unprecedented detailed

atomistic features of the 90◦ domain wall forming dynamics induced by external

mechanical stress in bulk PbTiO3, focusing on studying the microscopic pictures

of the creation of new domain wall pairs and their separation giving rise to a new

domain. It provides us with a better understanding about macroscopic control of the

spontaneous polarization and the piezoelectric responses, which are closely related to

the domain wall kinetics.
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Figure 8.1: A stable zigzag domain pattern forms under strain at 0 K. Pb, Ti and
O are color coded. Big arrows indicate the domain polarization directions. Dashed
lines indicate the domain wall location.
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8.2 Methodology

We carried out molecular dynamics (MD) simulations of PTO with a classical po-

tential formulated and parameterized [111] to reproduce the energies and all atomic

forces encountered in Car-Parrinello simulations for a large set of thermally accessed

structures. The inter-atomic potential consists of four parts: a term with the bond-

valence [21] potential energy form (but modified numerical constants), a Coulomb

potential energy term with modified charges, a r−12 repulsion term, and a harmonic

term to reduce the angle tilts of octahedral cages. This potential [111] reproduces

the ferroelectric behavior of PTO accurately without being fit to any experimental

observations. MD simulations show a ferroelectric transition at 575 K with a mixed

order-disorder and displacive phase transition character [113]. Important results have

been achieved with this model, including identification of the nucleation and growth

mechanism of the 180◦ domain wall of PTO under an external electric field [112] and

correlations between the structure and the dielectric properties of Pb-based relaxor

ferroelectrics [68]. The contribution of each atom to the spontaneous polarization is

computed as the product of the Born effective charge [71] tensors Z∗ and the atomic

displacement vector. The local polarization in each cell, ~Pl, is defined as the average

of the atomic polarization of one Ti atom, its eight nearest-neighbor Pb atoms and

its six nearest-neighbor O atoms.
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Figure 8.2: We compare our result (in black) and the calculated domain wall angle
from ref. [86] (in red). α is the angle between two polarization vectors in adjacent
domains which are far away from the domain walls.
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8.3 Results and Discussion

8.3.1 Static Properties

To guide our understanding of strain induced 90◦ domain wall evolution, we begin

with aca supercells with all polarizations aligned in y. We simplified a 3D problem

to a pseudo-2D one (N × N× 2). The volume as well as the z lattice constant are

kept the same before and after the strain. Here, the unitless strain s is defined as the

percentage of average c lattice constant change. When a compressive strain (larger

than nucleation strain) is applied along y, lattices in x expand accordingly, some of

the local polarizations rotate towards x forming 90◦ domain walls (denoted as a|a

wall), while the z component of polarizations of each unit cell is almost zero. Since

the energy of the 90◦ domain wall is calculated to be about a factor of 4 lower than

the energy of its 180◦ counterpart [86], we naturally only expect 90◦ domain patterns

(Fig. 8.1).
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Figure 8.3: Lattice constants across a 90◦ domain wall, calculated with a supercell of
30 × 30 × 2 perovskite unit cells.
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Figure 8.4: Polarization profile across a 90◦ domain wall calculated within a supercell
of 30 × 30 × 2 perovskite unit cells. P⊥ and P‖ represent the local polarizations
perpendicular and parallel to the domain wall, calculated with a supercell of 30 × 30
× 2 perovskite unit cells.
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Models based on continuum Landau-Ginzburg theory describe the domain wall as

a soliton, predicting domain wall to be gradual rather than sudden. The domain wall

energy can then be extracted from the order parameter across the wall. And the lattice

constants across the wall are assumed to be symmetric [116]. However, we found both

the unit cells’ lattice constants and the local polarization vectors are asymmetric

across the wall. The asymmetric polarization profile owing to the overshooting and

undershooting of the lattice parameters was previously reported [137]. Although

their PQEq force field method predicted a much wider domain wall width (21 nm),

the qualitative lattice constant profile is the same as ours (Fig. 8.3). Instead of a

geometrically interface with an angle of π-2arctan(a/c) = 93.4◦, we found the crystal

forms a slightly larger angle θ (Fig. 8.2). The angle mismatch was explained by Meyer

and Vanderbilt [86] by the artificial electric field effects introduced by interacting

dipole layers at the wall. However, as we increase the supercell size, there is an angle

mismatch between our converged θ = 94.5◦ and continuum Landau-Ginzburg theory

suggested θ = 93.4◦. We consider this as an indication of breaking domain wall’s

mirror symmetry. Rigorously, 90◦ domain wall is not a twin wall. As N approaches

30, θ converges. It also means that the interaction between two adjacent domain

walls almost vanishes as their separation is larger than 85 Å.

In Fig. 8.4, the polarization component which is perpendicular to the wall (P⊥)

shrinks at the wall. It makes the domain wall effectively a dipole layer, or we can
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think of a non-zero electric potential slope across the wall. Given the symmetry

reduction at the wall, we predict that two driving force with the same magnitude but

along antiparallel directions should move domain wall towards one and the other side

differently. The effect is insignificantly small and might be difficult to observe, but it

exists. Also, P⊥ shows different magnitude in different domains, one is bigger than

the other by 2.8 %. It is also interesting to note that P⊥ is very sensitive to the unit

cell location relative to the walls. The kinky curve especially at the unit cells close to

the walls is a signature of asymmetric domain wall. The polarization component that

is parallel to the wall (P‖) shows the domain wall position approximately centered on

O-O plane (Fig. 8.4). There’re two layers of rapid polarization change at the domain

wall and one layer of slow transition. The domain wall width is around 15 Å.
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Figure 8.5: Snapshots of the polarization from a molecular dynamics simulation show
a stepwise nucleation mechanism. The local polarization vectors are indicated by
arrows, where the red colored arrows represent a larger polarization magnitude than
the ones in green color.



169



170

8.3.2 Nucleation Dynamics

The domain growth mechanism is stepwise at finite temperature (Fig. 8.5). Some

football-shape nuclei start to appear along (110), (-1-10), (1-10) and (-110) diagonal

directions. However, the thermal fluctuation overcomes the nuclei that are too small

sized. Only the big nuclei are able to survive. We characterize the critical nucleus

size d by its 50 % surviving probability. We tested for temperatures within 25 K

and 150 K, and found d is as small as around 3-5 unit cells per layer. Next, One or

more nucleation sites grow rapidly along diagonal directions into continuous stripes.

The stripes are sometimes parallel to each other and sometimes perpendicular so that

they cross. They are equally probable, and the latter is obviously less energetically

favorable than the former situation. Moreover, once such crosses are formed, thermal

fluctuation is usually not strong enough to evolve the crosses into the other more

energetically favorable periodically alternating zigzag pattern. The local polarization

vectors in center of the cross region have a non-zero divergence, instead of a vortex

like polarization vector distribution. Finally, the stripes grow sidewise wider forming

stable domains separated by walls.
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Figure 8.6: The probabilities of not emerging critical nucleus, four unit cells, at
different final s train states of a N×N× 2 supercell starting from zero strain at 50 K.
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When a shock strain is applied, there is a certain time period before the system

starts to respond. The stress is gradually relieved during the domain formation. Since

the nucleation size is much smaller compared with the whole supercell size, we roughly

count the stress driving force almost a constant during the nucleation process. To

extract the nucleation rate J from the molecular dynamics data, we plot fraction of

the simulation trajectories exhibiting no critical nucleation by time t versus time t

(Fig. 8.6). The curve starts with a plateau followed by hypertangent decay. The

nucleation rate J is calculated by taking the reciprocal of the probability curves’ half

decay time:

J(s, T ) =
1

thalf−decay
(8.2)
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Figure 8.7: The nucleation rate J as a function of temperature and strain. J is in
the unit of ps−1 per unit cell.
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At lower temperature, J converges quickly as size N reaches 30. The domain

separation is large enough for domain-domain interactions to vanish. At higher tem-

perature, the domain wall becomes more diffuse. As a result, larger N values is

required for getting converged J values. For instance, N has to reach 38 for temper-

ature 150 K. By calculating J under different strains and temperatures, we found a

good linear relationship between ln(J) and 1/s. The dynamics seems to match the

Merz’s law:

ln(J) = −σa,T

σ
= −σa,T

Ks
(8.3)

where σa,T , σ and s are activation stress, applied external stress and applied

external strain respectively. K is the elastic force constant. Provided with J and s,

we are able to get the activation stress σa,T . As N is sufficiently large, we observe

a monotonically decreasing trend of σa,T with respect to T , which implies an easier

formation of 90◦ domain wall nucleus under a higher temperature.

However, the activation stress doesn’t seem to converge with respect to N . The

reason is as following. As we track a number of different trajectories starting from

equilibrated configurations, sometimes there are more than one nucleation sites. The

bigger the supercell is, the more the nucleation sites will appear. If we only track

the first appearance of all the nucleation sites, we only count the fastest nucleation

site. However, the Merz’s law describes J as number of nucleation cells per second.

The bigger N gets, the more the nucleation rate J is overestimated, which leads to an
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underestimation of the activation stress. Therefore, we correct our results by counting

the averaged appearance time of all nucleation sites instead.
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Figure 8.8: The activation stress as a function of temperature.
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However, we did observe a slight decrease of the activation stress as we increase

the value of N . It is possible that the activation stress already reaches convergence,

the slight change in activation stress is due to the numerical fluctuation. In the

meanwhile, it is also possible that the decrease of activation stress with respect to

supercell size is physically meaningful. At the moment, there are some disadvantages

of the bond-valence model which limit us to simulate supercell size with N¿42, since

the supercell would fall apart. Therefore, we could not exclude the false possibility

yet. Now we are currently working on developing new generation of bond-valence

model, possibly including some of the good quality from the shell-model and with

good NPT quality.

8.4 Conclusion

In summary, we found the 90◦ domain wall width is of several lattice constants,

consistent with other DFT studies, HRTEM and AFM experiments. The Merz’s

law seems to be able to describe the nucleation dynamics well, however, the larger

simulation cell is necessary but missing for further validation of Merz’s law. We hope

that our prediction on nucleation rate and asymmetric domain wall structure can

provide a better knowledge of 90◦ domain wall. In the near future, we would be

able to perform a better and complete investigation with improved parameter sets for

bond-valence model.



Chapter 9

Summary and Future Directions
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The first three chapters of this thesis illustrate how we use the first-principles DFT

calculations to investigate the properties of bulk perovskite ferroelectric materials.

Since the chemical bonding fundamentally determines both the geometry and the

properties of a material, we approach our problems by understanding the chemical

bonding first.

In Chapter 4, we saw chemical bonding as a combination of different interac-

tions. And what we found is that the Coulomb force becomes less important when

it comes to extremely tetragonal polar systems. We have found the total energy is

contributed from electrostatic interactions, strain-polarization coupling, short-range

repulsion and maybe bond-valence energy. It would be neat to derive the contribu-

tion quantitatively, and see whether this energy model is transferable to other similar

highly tetragonal polar oxides.

In Chapter 5, large coupling between strain and polarization leads to large cou-

pling energy difference between structures with different cation orderings, making

the structure energetics sensitive to the cation arrangement. By identifying a strong

correlation between strain and the B-cation displacement for a large number of Pb-

based and Bi-based tetragonal solid solutions, we derive guidelines for searching solid

solution end-members with high-Tc morphotropic phase boundary. For the moment,

this knowledge has not been expanded covering solid solutions with magnetic ions.

The strong magnetic and electric coupling would add complexity. However, it would
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be interesting and necessary to develop a similar roadmap for the multiferroic solid

solutions.

In Chapter 6, we analyzed the atomic orbital components of the electronic band

structure for highly polar perovskite oxides, we are able to engineer the band gap

and carrier mobilities. The effective mass is one of the most important parameters

in photovoltaic applications. It’s determined by the curvature of valence band maxi-

mum and conduction band minimum. The bigger curvature of the electronic bands,

the easier charge carrier transport. However, so far it places challenges for the exper-

imentalists to grow crystals for a particular cation arrangement, even layer by layer

B-cations. The conventional annealing method will lead to a complex compounds

with all possible cation arrangements, since the energy difference from one cation

ordering to the other is very small. For the future directions, searching for a material

that automatically solves the above problems would make it one step closer to the

actual photovoltaic application. Plus, we found the possibility of building a multi-

junction solar cell using single-component material. The polarization direction can be

switched by 90◦ via external electrical field, accompanied with structural relaxation.

We have proved that for layered B-cation arrangement of BZT, the band gap can be

tuned by as significant as 0.6 eV in this way. However, it has not been demonstrated

in a dynamic process. This topic can be very interesting and promising as a future

research direction.
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The last two chapters of this thesis are related to the molecular dynamics study

using an accurate and transferrable classical interatomic potential— the bond-valence

model. This model relates the strength of a bond between two ions to the distance

between them, which enables us to perform much larger scale of atomistic simulations

for perovskite materials with a high level of accuracy that is comparable to DFT

calculations.

In Chapter 7, by applying an external electric field on PbTiO3, we track the

atomic scale response which depends on temperature, E field pulse shape, magnitude

and pulse-pulse time separation. We learned how to achieve the ferroelectric domain

flipping coherently in an optimal way. This idea has interested many research groups,

among which Lindenberg group from Stanford University have shown special interests

and have been actively working on this matter. The future plan is to closely work with

experimental group and help them to realize this dynamic process in the lab. Recently,

they have found that they were able to use optical pulses to make the polarization

fluctuate. As the charge carriers are generated by materials absorb optical pulses,

the electrons and holes flow in the opposite directions to the surfaces. It changes the

depolarization field, further changes the bulk polarization magnitude. We should be

able to contribute to this aspect by using DFT. First, we should be able to model

how the change of surface charge affects the bulk polarization. And then, we might

be able to incorporate some of the DFT insights into MD simulation and model the
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dynamics. Plus, time scale of carrier transport process can be figured out based on

the calculation of intrinsic mobility.

In Chapter 8, by applying an external mechanical stress, we examine not only the

static properties of the 90◦ domain wall but also whether the nucleation dynamics

obeys the Merz’s law. Although lead titanite is so far our major target to study,

developing BV model for other ferroelectric perovskite materials are also feasible.

The most interesting other prototypical materials for the future studies are: BaTiO3,

SrTiO3 and BiFeO3. Each of them possesses different interesting structures, ferro-

electric and dielectric properties. BaTiO3 might present some level of challenge for

BV parameter development, because it has three different ferroelectric phases plus

one paraelectric phase. Although they have been widely studied experimentally and

theoretically, there are still many unsolved puzzles. Furthermore, once the robust BV

model parameter sets are derived for both end-members for solid solutions, we will be

able to simulate and characterize solid solutions that show properties unachievable in

single-component materials. For future directions, BiFeO3 is of particular interests,

which is famous for its multiferroic properties.
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[99] S. Pöykkö and D. J. Chadi. Ab initio study of 180◦ domain wall energy and

structure in pbtio3.Chem.Phys .Lett ., 75 : 2830 −−2, 1999.

[100] T. Qi, I. Grinberg, and A. M. Rappe. First-principles investigation of a highly tetrag-

onal ferroelectric material: Bi(zn1/2ti1/2)o3. Phys. Rev. B, 79:094114–1–5, 2009.

[101] T. Qi, I. Grinberg, and A. M. Rappe. Correlations between tetragonality, polarization,

and ionic displacement in pbtio3-derived ferroelectric perovskite solid solutions. Phys.

Rev. B, 82:134113–1–5, 2010.



201

[102] T. Qi, Y. H. Shin, K. L. Yeh, K. A. Nelson, and A. M. Rappe. Collective coherent

control: Synchronization of polarization in ferroelectric pbtio3 by shaped thz fields.

Phys. Rev. Lett., 102:247603 1–4, 2009.

[103] N. J. Ramer and A. M. Rappe. Designed nonlocal pseudopotentials for enhanced

transferability. Phys. Rev. B, 59:12471–8, 1999.

[104] C. A. Randall, R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward, and I. M. Reaney.

Investigation of a high Tc piezoelectric system: (1-xbi(mg1/2ti1/2)o3–(x)pbtio3. J.

Appl. Phys., 95:3633–9, 2004.

[105] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos. Optimized pseu-

dopotentials. Phys. Rev. B Rapid Comm., 41:1227–30, 1990.

[106] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and

M. Nakamura. Lead-free piezoceramics. Nature, 432:84–7, 2004.

[107] S. Shi and H. Rabitz. Selective excitation in harmonic molecular-systems by optimally

designed fields. Chem. Phys., 139:185–99, 1989.

[108] D. Shilo, G. Ravichandran, and K. Bhattacharya. Investigation of twin-wall structure

at the nanometre scale using atomic force microscopy. Nature Materials, 3:453–7,

2004.



202

[109] T. Shimada, Y. Umeno, and T. Kitamura. Ab initio study of stress-induced domain

switching in pbtio3. Phys. Rev. B, 77:094105–1–7, 2008.

[110] T. Shimada, K. Wakahara, Y. Umeno, and T. Kitamura. Shell model potential for

pbtio3 and its applicability to surfaces and domain walls. J. Phys. Cond. Matt.,

20:325225–1–10, 2008.

[111] Y.-H. Shin, V. R. Cooper, I. Grinberg, and A. M. Rappe. Development of a bond-

valence molecular-dynamics model for complex oxides. Phys. Rev. B, 71(5):054104–

1–4, 2005.

[112] Y.-H. Shin, I. Grinberg, I.-W. Chen, and A. M. Rappe. Nucleation and growth

mechanism of ferroelectric domain-wall motion. Nature, 449:881–884, 2007.

[113] Y.-H. Shin, J.-Y. Son, B.-J Lee, I. Grinberg, and A. M. Rappe. Order-disorder

character of pbtio3. Condens. Matter, 20:015224–1–5, 2008.

[114] D. J. Singh. Structure and energetics of antiferroelectric pbzro3. Phys. Rev. B,

52:12559–63, 1995.

[115] D. M. Stein, M. R. Suchomel, and P. K. Davies. Enhanced tetragonality in (x)pbtio3-

(1-x)bi(b’b”)o3 systems: Bi(zn3/4w1/4)o3. Appl. Phys. Lett., 89:132907–1–3, 2006.

[116] S. Stemmer, S. K. Streiffer, and M. Rühle. Atomistic structure of 900 domain walls

in ferroelectric pbtio3 thin films. Philosophical Magazine A, 71:713–24, 1995.



203

[117] M. R. Suchomel and P. K. Davies. Predicting the position of the morphotropic phase

boundary in high temperature pbtio3-bi((bb’)-b-’)o-3 based dielectric ceramics. J.

Appl. Phys., 96:4405–4410, 2004.

[118] M. R. Suchomel and P. K. Davies. Enhanced tetragonality in (x)pbtio3-(1-

x)bi(zn1/2ti1/2)o-3 and related solid solution systems. Appl. Phys. Lett., 86:262905,

2005.

[119] M. R. Suchomel, A. M. Fogg, M. Allix, H. Niu, J. B. Claridge, and M. J. Rosseinsky.

Additions and corrections to ”bi2zntio6: A lead-free close-shell polar perovskite with

a calculated ionic polarization of 150µc cm−2”. Chem. Matter., 18:5810, 2006.

[120] M. R. Suchomel, A. M. Fogg, M. Allix, H. Niu, J. B. Claridge, and M. J. Rosseinsky.

Bi2zntio6: A lead-free close-shell polar perovskite with a calculated ionic polarization

of 150µc cm−2. Chem. Matter., 18:4987, 2006.

[121] P. V. Sushko, A. L. Shluger, and C. R. A. Catlow. Relative energies of surface and

defect states: ab initio calculations for the mgo(001) surface. Surf. Sci., 450:153–70,

2000.

[122] S. Tinte, K. M. Rabe, and D. Vanderbilt. Anomalous enhancement of tetragonality

in pbtio3 induced by negative pressure. Phys. Rev. B, 68:144105–1–9, 2003.

[123] T. Tybell, C. H. Ahn, and J.-M. Triscone. Ferroelectricity in thin perovskite films.

Appl. Phys. Lett., 75:856–8, 1999.



204

[124] T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone. Domain wall creep in epi-

taxial ferroelectric pb(zr0.2ti0.8)o3 thin films. Phys. Rev. Lett., 89:097601–1–4, 2002.

[125] K. K. Uprety, L. E. Ocola, and O. Auciello. Growth and characterization of trans-

parent pb(zi,ti)o-3 capacitor on glass substrate. J. Appl. Phys., 102:084107, 2007.

[126] D. Vanderbilt and R. D. King-Smith. Electric polarization as a bulk quantity and its

relation to surface charge. Phys. Rev. B, 48:4442, 1993.

[127] M. M. Wefers and K. A. Nelson. Generation of high-fidelity programmable ultrafast

optical wave-forms. Opt. Lett., 20:1047–9, 1995.

[128] S.H. Wei and A. Zunger. Calculated natural band offsets of all ii-vi and ill-v semi-

conductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett.,

72:2011–3, 1998.

[129] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci.

Instrum., 71:1929–60, 2000.

[130] M. H. Whangbo and R. Hoffmann. The band structure of the tetracyanoplatinate

chain. J. Amer. Chem. Soc., 100:6093–8, 1978.

[131] Z. Wu, R. E. Cohen, and D. J. Singh. Comparing the weighted density approximation

with the lda and gga for ground-state properties of ferroelectric perovskites. Phys.

Rev. B, 70:104112–7, 2004.



205

[132] Z. G. Wu and H. Krakauer. Charge-transfer electrostatic model of compositional

order in perovskite alloys. Phys. Rev. B, 63:184113 1–8, 2001.

[133] Y.H. Xie, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson. Very high-

mobility 2-dimensional hole gas in si/gexsi1−x/ge structures grown by molecular-beam

epitaxy. Appl. Phys. Lett., 63:2263–4, 1993.

[134] Y. X. Yan, E. B. Gamble, and K. A. Nelson. Impulsive stimulated scattering - general

importance in femtosecond laser-pulse interactions with matter, and spectroscopic

applications. J. Chem. Phys., 83:5391–9, 1985.

[135] S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H.

Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh. Above-bandgap voltages

from ferroelectric photovoltaic devices. Nature Nonotechnology, 5:143–7, 20110.

[136] J. X. Zhang, R. Wu, S. Choudhury, Y. L. Li, S. Y. Hu, and L. Q. Chen. Three-

dimensional phase-field simulation of domain structures in ferroelectric islands. Appl.

phys. Lett., 92:122906–1–3, 2008.

[137] Q. Zhang and W. A. Goddard III. Charge and polarization distribution at the 900

domain wall in barium titanate ferroelectric. Appl. Phys. Lett., 89:182903–1–3, 2006.

[138] S. J. Zhang, C. J. Stringer, R. Xia, S. M. Choi, C. A. Randall, and T. R. Shrout.

Investigation of bismuth-based perovskite system: (1-x)bi(ni1/2nb1/2)o3-xpbtio3. J.

Appl. Phys., 98:034103–1–5, 2005.



206

[139] W. Zhong, D. Vanderbilt, and K. M. Rabe. First-principles theory of ferreoelec-

tric phase transitions for perovskites: The case of batio3. Phys .Rev .B , 52 : 6301 −

−12, 1995.


	University of Pennsylvania
	ScholarlyCommons
	Spring 5-16-2011

	First-Principles and Molecular Dynamics Studies of Ferroelectric Oxides: Designing New Materials for Novel Applications
	Tingting Qi
	Recommended Citation

	First-Principles and Molecular Dynamics Studies of Ferroelectric Oxides: Designing New Materials for Novel Applications
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords


	Untitled

