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Single Molecule investigations of DNA Looping Using the Tethered
Particle Method and Translocation by Acto-Myosin Using Polarized Total
Internal Reflection Fluorescence Microscopy

Abstract
Single molecule biophysics aims to understand biological processes by studying them at the single molecule
level in real time. The proteins and nucleic acids under investigation typically exist in an aqueous environment
within approximately ten degrees of room temperature. These seemingly benign conditions are actually quite
chaotic at the nanoscale, where single bio-molecules perform their function. As a result, sensitive experiments
and statistical analyses are required to separate the weak single molecule signal from its background. Protein-
DNA interactions were investigated by monitoring DNA looping events in tethered particle experiments. A
new analysis technique, called the Diffusive hidden Markov method, was developed to extract kinetic rate
constants from experimental data without any filtering of the raw data; a common step that improves the
signal to noise ratio, but at the expense of lower time resolution. In the second system, translocation of the
molecular motor myosin along its actin filament track was studied using polarized total internal reflection
(polTIRF) microscopy, a technique that determines the orientation and wobble of a single fluorophore
attached to the bio-molecule of interest. The range of resolvable angles was increased 4-fold to include a
hemisphere of possible orientations. As a result, the handedness of actin filament twirling as it translocated
along a myosin-coated surface was determined to be left-handed. The maximum time resolution of a polTIRF
setup was increased 50-fold, in part by recording the arrival times and polarization state of single photons
using a modified time-correlated single photon counting device. A new analysis, the Multiple Intensity
Change Point algorithm, was developed to detect changes in molecular orientation and wobble using the raw
time-stamped data with no user-defined bins or thresholds. The analysis objectively identified changes in the
orientation of a bifunctional-rhodamine labeled calmodulin that was attached to a myosin V molecule
translocating along an actin filament. Long intervals corresponding to stable positions between tilting
motions of the lever arm during each step were routinely observed. Substeps in the cycle that preceded these
long dwells were measured, but only occasionally most likely because of the low number of photons detected
during these rapid events.
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ABSTRACT

SINGLE MOLECULE INVESTIGATIONS OF DNA LOOPING USING THE TETHERED

PARTICLE METHOD AND TRANSLOCATION BY ACTO-MYOSIN USING POLARIZED TOTAL

INTERNAL REFLECTION FLUORESCENCE MICROSCOPY

John F. Beausang

Philip C. Nelson and Yale E. Goldman

Single molecule biophysics aims to understand biological processes by studying them at

the single molecule level in real time. The proteins and nucleic acids under investigation typi-

cally exist in an aqueous environment within∼ ten degrees of room temperature. These seem-

ingly benign conditions are actually quite chaotic at the nanoscale, where single bio-molecules

perform their function. As a result, sensitive experiments and statistical analyses are required

to separate the weak single molecule signal from its background. Protein-DNA interactions

were investigated by monitoring DNA looping events in tethered particle experiments. A new

analysis technique, called the Diffusive hidden Markov method, was developed to extract ki-

netic rate constants from experimental data without any filtering of the raw data; a common

step that improves the signal to noise ratio, but at the expense of lower time resolution. In

the second system, translocation of the molecular motor myosin along its actin filament track

was studied using polarized total internal reflection (polTIRF) microscopy, a technique that

determines the orientation and wobble of a single fluorophore attached to the bio-molecule of

interest. The range of resolvable angles was increased 4-fold to include a hemisphere of possi-

ble orientations. As a result, the handedness of actin filament twirling as it translocated along
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a myosin-coated surface was determined to be left-handed. The maximum time resolution of

a polTIRF setup was increased 50-fold, in part by recording the arrival times and polarization

state of single photons using a modified time-correlated single photon counting device. A new

analysis, the Multiple Intensity Change Point algorithm, was developed to detect changes in

molecular orientation and wobble using the raw time-stamped data with no user-defined bins

or thresholds. The analysis objectively identified changes in the orientation of a bifunctional-

rhodamine labeled calmodulin that was attached to a myosin V molecule translocating along

an actin filament. Long intervals corresponding to stable positions between tilting motions of

the lever arm during each step were routinely observed. Substeps in the cycle that preceded

these long dwells were measured, but only occasionally most likely because of the low number

of photons detected during these rapid events.
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Chapter 1

Introduction

For over 20 years, researchers have been struggling to measure single molecules. Why? In

many ways it is the logical next step in the scientific approach where complex systems are

broken into smaller and smaller parts in order to understand how they work. In biology, single

macromolecules such as nucleic acids and proteins are the fundamental building blocks that

are responsible for many of the basic functions in a cell. For example, many forms of cell

motility can be reduced to just two proteins: actin and myosin, which in the presence of

ATP can produce force and movement relative to one another. Understanding how these two

proteins work together helps explain the complex macroscopic phenomena that are built upon

them.

Historically, experiments involving large numbers of molecules have always been stud-

ied from a statistical view that relied on determining the mean and variance of the ensemble

of molecules. The single molecule approach instead aims to construct the distribution of

molecules one at a time [1]; but in the end, the characterization of its mean and variance
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should be the same as found from the ensemble approach. The difference, however, is that the

properties and behavior of individual molecules can be studied and transient features such as

short-lived states and rare, but important fluctuations that were lost in the ensemble average

are revealed. In order to obtain such information in an ensemble experiment, techniques to

synchronize a majority of molecules are required so that their collective signal can be mea-

sured during the short time before the random nature of the individual molecular processes

dissipates the signal (see Reference [2] for examples).

Single molecule experiments differ from ensemble measurements in several key ways. In

single molecule experiments, kinetics are directly measured by recording the trajectory of

the molecule over time, where rare events and random fluctuations can be measured directly.

Force is also a unique variable in many single molecule experiments that can be used to probe

the function of motor proteins (i.e., their “mechanochemistry”) or denature proteins in un-

folding experiments. Single molecule experiments can provide a useful link that connects the

extremely detailed, yet static structures from X-ray crystallography, cryo-EM and NMR with

biochemical experiments that determine rates into a single picture, or more appropriately a

movie, of how the molecule performs its function.

There are many excellent reviews of single molecule research, including reviews devoted

to the sub-field of single molecule biophysics. Several good early reviews include References

[1,3,4] and more recent ones by Greenleaf et al. [5] and Ritort [6] survey many of the current

experimental tools and recent results. Numerous books reviewing the field are also available

[7–10].

This introduction will review some of the landmark developments in single molecule bio-

2



physics with particular attention to the areas of DNA mechanics and the molecular motor

myosin. Subsequent chapters begin with a separate introduction that reviews the background

relevant for that section. The material presented here is intended to put those chapters into

the wider context of the single molecule biophysics field. Next, non-fluorescence based single

molecule experiments will be briefly summarized followed by a discussion of fluorescence

based research.

1.0.1 Non-Fluorescence based single molecule experiments

The first experiment with single molecule sensitivity was performed by Neher and Sakmann

in 1976 on the acetylcholine receptor using a current probe known as a patch clamp that

measured the change in conductance as a single ion channel opened and closed [11]. Since

this pioneering work, electrical measurements on single ion channels have developed into a

separate field, nearly independent from the other areas of research that are typically grouped

into the phrase “single molecule biophysics”. This review will also focus on non-channel

related single molecule experiments.

Outside of the ion channel field, non-fluorescence single molecule experiments awaited

development of two key devices: the optical trap in 1970 [12] and the atomic force micro-

scope (AFM)1 in 1985 [13]. An optical trap consists of a laser beam that is focused on to

a small spot, typically using a microscope objective in an aqueous medium. Small particles

such as microspheres with diameter 0.1–1 µm and an index of refraction greater than water

are confined to the focal point of the laser by the highly refracted beam. Arguably, 1987

1A glossary of common abbreviations can be found at the end of the manuscript
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might be considered the first year for a single molecule biophysics experiment when Ashkin

and Dziedzic [14] used an optical trap to capture and manipulate single bacteria and tobacco

mosaic viruses, while viewing them in an optical microscope. Optical traps have since been

used in countless biophysical experiments to exert 1-100 pN of force on individual biological

molecules. For example, they have been used to unfold molecules such as titin [15] and exert

forces on molecular motors such as kinesin [16], RNA polymerase [17], myosin [18], and the

φ29 bacteriophage DNA packaging motor [19].

An AFM consists of a small cantilever with an extremely sharp tip that is scanned across

a surface. Small deflections of the tip, due either to direct contact with the surface or indirect

interactions with fields such as van der Waals forces, are magnified by a laser that is reflected

from the back of the cantilever onto an optical sensor. AFM is traditionally considered a sur-

face imaging device, but it can also be used to manipulate single molecules. Typical AFM

experiments involve pulling one end of a molecule off of a surface and recording unfolding

events in force-extension curves. Typically, AFMs operate at larger forces (20-10 000 pN)

than optical traps. The classic example of an AFM pulling experiment is the unfolding of the

gigantic muscle protein titin, which was first performed by Rief et al. [20] in 1997. Titin and

other multi-domain proteins are well-suited for AFM pulling experiments because each do-

main unfolds sequentially, resulting in a repeatable pattern of events that can be distinguished

from spurious interactions with the surface. Many proteins also reversibly refold as the force

is reduced so that the process can be repeated multiple times with the same molecule. AFMs

have since become one of the most widely used single molecule instruments [6].
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Single molecule investigations of DNA

The first single molecule manipulation of DNA was by Chu in 1991 [21] when his lab used

an optical trap to measure the elastic response of a DNA molecule attached to a bead. Shortly

thereafter [22], the elasticity of single molecules of DNA in solution were investigated by

attaching one end of the DNA to a surface and the other to a magnetic bead. Fluid flow or

magnetic force could be used to stretch out the entropic elasticity and elongate the molecule

with forces up to 30 pN. The resulting force-extension curves were in good agreement with

the wormlike chain theory, which predicts the mechanical properties of the polymer assuming

that adjacent segments are related by an elastic bending energy. A few years later, experiments

were performed that pulled the DNA with higher forces into a nonlinear elastic regime where

it was stretched to ∼ 1.7× its original length at a constant force of ∼ 65 pN using either a

micropipette [23] or optical trap [24]. The influence of the DNA helix on its elasticity was

investigated by twisting the DNA while pulling on it using a “magnetic tweezers” [25]. Similar

to optical traps, a magnetic tweezer uses a magnetic field to control the orientation of a small

magnetic bead attached to the free end of a surface-tethered DNA molecule. They determined

that slightly unwinding the DNA helix dramatically reduced the amount of force required to

disturb the DNA structure. This is relevant to biological molecules such as topoisomerases

and helicases, which unwind DNA as part of their function and may utilize this asymmetry in

vivo.

These experiments all investigated the role of force on DNA structure; a method to study

DNA-protein interactions under no external load was developed in 1995 by Finzi and Gelles

[26]. They observed the Brownian motion of a small bead attached to the microscope surface
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via a DNA tether. The DNA contained a sequence from the lac operon, where a single repres-

sor protein can simultaneously bind to the DNA at two distinct sites and form a loop. Loop

formation shortened the DNA and abruptly changed the motion of the tethered particle. Dis-

sociation of the protein allowed the loop to break, and the process to repeat at a rate dictated

in part by the concentration of protein in solution. A new method to determine the kinetics of

DNA loop formation and breakdown in tethered particle experiments is the subject of Sect. 2.

Recent high resolution AFM experiments of DNA adhered to a surface estimated the elas-

tic properties of the DNA on the 5–100 nm length scale. They determined that DNA is more

flexible at these short lengths than predicted by the wormlike chain model [27]. The elasticity

of DNA at short length scales was also investigated using tethered particle experiments [28]

by engineering the spacing between protein binding sites on the DNA so that only small loops,

which theoretically have a prohibitively high bending energy, can form. Comparing the loop-

ing probability for different length loops, including comparison to a Monte Carlo simulation

with no free parameters [29], indicated that short loops form more often than predicted by the

wormlike chain model.

1.0.2 Fluorescence-based single molecule experiments

Several investigators [3,30] credit Hirschfeld [31] with detecting the first optical detection of a

single molecule, an antibody labeled with 80-100 fluoresceine isothiocyanate, in 1976. Other

early fluorescence measurements of single molecules included DNA [32] and cell surface re-

ceptors [33], in both cases each molecule of interest was decorated with ∼ 100 fluorophores.

In 1984, single actin filaments labeled with multiple rhodamine-phalloidin molecules were

6



observed using epifluorescence as they translocated on myosin-coated cover slips [34]; a tech-

nique now commonly referred to as a gliding filament assay. True single molecule sensitivity

was first accomplished in 1989 by detecting a single fluorescence molecule of p-terphenyl

embedded in a crystal at extremely low temperature (1.6 K), albeit by using an absorption

measurement [35]. Using the same experimental system, the first fluorescence measurement

with single molecule sensitivity was achieved a year later [36].

In the intervening years fluorescence has overwhelmingly become the preferred method

for optical detection of single molecules. A major advance for eventual biological applica-

tions came in 1990 when the first single fluorophore was detected at room temperatures [37].

The experiment involved confocal detection of single fluorophores suspended in an aqueous

environment; as the molecules transiently diffused into the small detection volume, a large

burst of fluorescence was detected. This technique has evolved into the field of fluorescence

correlation spectroscopy (FCS) [38]. A few years later, single fluorescence molecules, im-

mobilized on a surface, were detected using near-field [39] and far-field [40, 41] scanning

optical microscopy (SOM). These experiments were notable achievements, but they were not

amenable to wide-spread biological research.

A more common biological tool is fluorescence microscopy, where single molecule de-

tection was first achieved in wide-field epifluorescence in 1995 [30, 42]. Funatsu et al. [42]

mentioned several steps that were necessary to obtain the reduction in background required

to detect single molecules: choosing the proper combination of fluorophore and optical fil-

ters/dichroic; using low autofluorescence immersion oil and objectives; minimizing the amount

of contaminating dust; and using low auto-fluorescence quartz instead of glass for cover slips
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and/or microscope slides. These modifications reduced the background ∼ 40-fold, allowing

them to detect single Cy3-labeled myosin molecules adhered to the surface using a sensitive

CCD camera [42]. They reduced the background another ∼ 40-fold by using total internal re-

flection (TIR) illumination, which only excited a thin region of the sample close to the quartz

surface. Combining TIR excitation with fluorescence microscopy (i.e., TIRF) and a fluores-

cent ATP analog, they were able to detect single hydrolysis events by a myosin molecule

adhered to the surface [42]. Individual fluorescent molecules were also detected using a low-

background epifluorescence microscope (without TIR), which was used in a gliding assay to

measure the translocation of actin filaments sparsely labeled with single molecules of rho-

damine [30]. These researchers also highlight the importance of optimizing the excitation

light path and minimizing stray light that scatters in the microscope in order to achieve single

molecule sensitivity.

In addition to imaging the position of single molecules, quantitative distance measure-

ments between two molecules can be obtained by using Förster Resonance Energy Transfer

(FRET), which entails the nonradiative transfer of energy between two different fluorophores

that are spatially separated by only a few nanometers (i.e., the Förster radius, R0). With this

close configuration, excitation of the shorter wavelength fluorophore does not result in its flu-

orescence emission; instead, the energy is “transferred” to the longer wavelength fluorophore,

which does emit its fluorescence. In a typical experiment, emission from the shorter wave-

length fluorophore indicates that the two probes are more than the R0 apart, whereas emission

of the longer wavelength fluorophore indicates that the two probes are less than the R0 apart;

thus providing a quantitative distance measurement. FRET has been studied since the late
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40’s, and has been applied routinely to determine intermolecular distances in ensemble mea-

surements [43]. The first demonstration of single molecule FRET was in 1996 [44], using

near-field SOM to simultaneously measure the position and spectra of two closely spaced flu-

orophores. Since then it has become a standard single molecule tool for measuring short dis-

tances between two fluorophores, a “spectroscopic ruler” [45]. Advances in single molecule

FRET are reviewed in Reference [46].

Recently, there has been a large increase in single molecule fluorescence experiments that

exploit a loophole in the “diffraction limit” in order to image single fluorophores with nanome-

ter accuracy. (The diffraction limit stipulates the minimum resolvable distance between two

objects, not the localization of a single object.) One of the earliest examples of such nanome-

ter localization were recordings of the hand-over-hand motion of a myosin V molecule “walk-

ing” on actin with steps several times smaller than the wavelength of light [47]. Combining

nanometer localization with either controlled [48, 49] or random [50] fluorophore excitation

and quenching has resulted in “super-resolution” images constructed by superimposing the

precise location of thousands of fluorophores to build up an entire image with resolution be-

low the diffraction limit of light. Such images promise to unlock numerous biological secrets

that lie just beyond the limits of traditional light microscopy.

Other single molecule fluorescence strategies are being combined with nanometer localiza-

tion including labeling molecules with inorganic fluorescent probes called quantum dots [51],

which results in a slightly larger probe but a much brighter fluorescence signal. Three dimen-

sional imaging of fluorophores has been achieved by introducing an asymmetry in the detected

light path by, for example, splitting half of the image on to two focal planes [52] or introduc-
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ing a cylindrical lens [53]. Lastly, a major development has been live cell imaging of single

fluorescent molecules [54–56], where previous in vitro single molecule results can be tested

in the more authentic environment of a cell. Next, a the sub-field of polarized single molecule

fluorescence will be discussed.

1.0.3 Single molecule fluorescence polarization

A fluorescent molecule absorbs and emits light according to the electromagnetic properties of

an oscillating dipole [43]. Consequently, it is excited preferentially by light that is polarized

along its dipole axis, and its fluorescence emission is also polarized along its dipole axis. Uti-

lizing these polarization properties of fluorescence at the ensemble level is a mature field [43].

In 1996, Ha et al., was the first to use polarized illumination in an epifluorescence microscope

to measure the orientation of the in-plane component of a single fluorophore adhered to a sur-

face in air with 0.2◦ accuracty [57]. In a follow-up study 2 years later the rotational dynamics

of single fluorophores tethered to the surface by single-stranded DNA in an aqueous envi-

ronment were investigated [58]. Molecules could be seen repeatedly adsorbing and releasing

from the glass substrate, sometimes at a preferred orientation.

Sase et al. [59], added polarized detection to the sparsely-labeled gliding filament assay

mentioned previously, and they were able to discern rotation of the actin filament about its

axis as it translocated along myosin. The pitch of this twirling motion was much longer than

the intrinsic pitch of the actin helix, supporting other results that showed that myosin only

interacts with actin for a small fraction of the ATPase cycle. Warshaw et al. [60] exchanged

rhodamine-labeled light chains onto smooth muscle myosin, and detected angle changes via
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the polarized emission using a confocal fluorescence microscope. The fast time resolution in

these experiments (1-10 ms) allowed them to measure a highly mobile state of the light chain

when the myosin was detached from actin.

Forkey et al. [61] extended single molecule fluorescence polarization to TIRF microscopy

(polTIRF), and determined the 3D orientation of the probe, not just its projection in the x-y

plane. Bifunctional-rhodamine labeled calmodulin were exchanged onto the myosin V lever

arm, and angle changes were observed during translocation along actin. Quinlan et al. [62]

used polTIRF to study the orientation of bifunctional-rhodamine labeled light chains on heavy

meromyosin (HMM) and myosin subfragment-1 bound to actin in rigor. They confirmed

that both heads of HMM are bound to adjacent actin monomers and under strain, similar to

predictions from ensemble measurements. Forkey et al. [63] compared the orientation of fluo-

rophores on sparsely labeled actin filaments with measurements of densely labeled filaments,

and verified that the single molecule and ensemble approaches were consistent. They deter-

mined that the uncertainty of the angular estimates for θ and φ are ∼ 10◦ at 40 ms time

resolution. Single molecule fluorescence polarization is reviewed in References [64, 65].

1.0.4 Overview

The following chapters in this thesis describe two new analysis tools for analyzing single

molecule experiments and improvements to a polarized TIRF setup that were used to investi-

gate acto-myosin translocation. Specifically, Chapter 2 develops a specialized hidden Markov

method for determining the kinetics of DNA loop formation and breakdown in TPM experi-

ments, without requiring any filtering of the raw data. Chapter 3 describes modifications to
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the polTIRF apparatus described in References [61–63] that increase the range of discernable

angles 4-fold, and then use it to determine the handedness of actin filament twirling in the glid-

ing assay mentioned previously [59]. Chapter 4 describes a new analysis technique based on

finding intensity change points in data where each photon’s arrival time and polarization state

is measured. In chapter 5, modifications to the polTIRF setup that increase the time resolution

50-fold compared to the experiments in Reference [61] are discussed, and the analysis from

chapter 4 is used to identify substeps within the myosin V cycle as it translocates on actin. At

the end is a glossary of some abbreviations encountered throughout the text.
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Chapter 2

Diffusive Hidden Markov Method

2.1 Introduction

This chapter discusses a new technique (the Diffusive Hidden Markov Method, DHMM) for

analyzing data from Tethered Particle Motion (TPM) experiments. The purpose of the method

is to determine the kinetics of DNA loop formation and breakdown from the raw data with no

additional binning or filtering nor any imposed thresholds or other external parameters. First

background on DNA looping and TPM experiments are discussed, followed by a review of the

existing TPM analysis methods. After showing that the standard HMM applied to the TPM

raw data fails, the new DHMM approach is described, tested on simulated data, and applied

to experimental looping data.
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2.1.1 Biological motivation for DNA looping

Loops of DNA are an important feature in gene regulation. For example, in both eukaryotic

and prokaryotic cells transcription factors bind DNA many base pairs away from the site of

transcription initiation, yet they can influence transcription directly if a loop in the intervening

DNA forms thereby bringing the two sites into physical contact [66]. Schleif [67] was the first

to show DNA looping in the E. coli gene regulation of ara, but the phenomena is common in

several of the classic networks including gal, lac and the lambda bacteriophage. The physical

properties of the DNA and its helical structure are clearly important to the level of gene ex-

pression in some cases. For example, by varying the length of the DNA loop in the lac system

over a wide range, Müller [68] showed a periodic 11-12 base pair phasing (the pitch of the

DNA helix is 12.5 base pairs) in the levels of repression of lac promoter in E. coli when the

DNA is in the looped state. Recently, Choi [69] showed that the kinetics of loop formation

has a direct impact on gene expression and cell fate.

The role of looping in the lytic-lysogenic decision in lambda phage is a classic gene reg-

ulation system that has been extensively studied by TPM [70]. lambda is distinguished from

other systems by a complex kinetic scheme involving 2 groups of 3 binding bites for the cI

repressor protein. During lysogeny the phage is silently incorporated into the bacteria’s DNA

with cI repressor bound to each site, thereby preventing expression of genes required for mass

virus replication and subsequent lysis of the bacteria. In this state the unlooped DNA results in

continual expression of cI protein from a gene in the middle of the loop. In order to avoid this

presumably wasteful expenditure of energy, at high cI concentrations a stable loop is formed

between the two operators with as many as 12 cI repressor proteins in a single dodecamer
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complex. In this work, data from tethered particle experiments (courtesy of the Finzi lab)

using lambda DNA and cI repressor protein was used to develop and test the diffusive hidden

Markov method.

2.1.2 Physical motivation for DNA looping

Since DNA is a semi-flexible polymer, its physical properties, such as elasticity and structure,

play an important role in gene regulation. A simple but powerful model of DNA ignores the

sequence information and treats the polymer as a linear elastic worm-like chain whose prop-

erties can be summarized by a single parameter, the persistence length. The persistence length

is the maximum distance between two points along a polymer where the motion between the

two points is coupled together by the elasticity of the polymer [71]. Loop formation is re-

duced at small lengths by a bending energy penalty and at long lengths by an entropic penalty

for the two ends to find each other in space. Loop formation is energetically favorable due

to the binding energy of repressor proteins [72] that stabilize the loop. More detailed mod-

els that include the 3D anisotropic elasticity due to the helical structure of DNA are required

for some experiments that twist the DNA [73] or are sensitive to the orientation of a protein

along the DNA [29]. Non-linear elastic models [27] have been proposed that may explain the

high incidence of loop formation of DNA at short length scales where they are expected to

be strongly suppressed by the large elastic bending energy. In some cases, incorporating the

precise sequence dependence of the elasticity may be important [74]. Finally, more complex

loop topologies due to DNA supercoiling may also play a role [75].
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2.2 Tethered particle experiments

2.2.1 Overview of the experiments

Tethered particle motion (TPM) is an in vitro assay where single segments of a polymer,

typically DNA, hundreds to thousands of base pairs long can be investigated with minimal

external force. One end of the DNA is attached to a small particle such as a plastic bead or

a small particle of gold and the other end is tethered to the surface of a microscope coverslip

(Fig. 2.1). The 2D projected position of the particle is imaged through a microscope onto

a CCD camera, and the restricted Brownian motion of multiple particles in a single field of

view can be recorded for long periods of time (e.g., 30–60 minutes). Short camera exposure

times minimize blurring in bead position and allow single particle tracking software to pre-

cisely localize the (x, y) coordinate of the particle during each exposure. Some of the current

implementations track multiple particles with 20–50 ms time and ∼10 nm spatial resolution,

allowing rather precise determination of effective tether length from data [76–78]. Other cur-

rent work observes a time-averaged image instead of using single particle tracking [79]. Even

for short-timescale transitions, the long observations possible with TPM give an advantage,

because the hidden Markov analysis discussed here can extract reliable information from long

time series, even when it has low signal to noise ratio.

By using DNA from known gene regulatory systems (e.g., lac, gal, ara and lambda phage),

loops in the DNA between specific sites form and break, in the presence of the appropriate

DNA binding protein (i.e., LacI, GalR, AraC, cI). TPM experiments provide a relatively sim-

ple platform for studying how physical parameters such as loop length, protein concentration,
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Figure 2.1: In tethered particle experiments a DNA molecule flexibly links a bead to a surface. The
motion of the bead’s center is observed and tracked in each video frame, and the position vector, pro-
jected to the xy plane, is found. Typically, the DNA studied has two sets of binding sites (“operators”)
that bind a specific repressor protein. The scheme shown here is simplified; in reality, each operator can
at a given moment be occupied or unoccupied. Abrupt changes in the motion of the particle indicate
looping, where the time constants τLF and τLB determine the rates to form and break loops, respectively.

DNA elasticity, and binding site location influence DNA looping and thus gene regulation in a

carefully controlled in vitro environment. Equilibrium properties of the loop formation are in-

formative, but like other single molecule methods, a big advantage of TPM is that the kinetics

of loop formation and breakdown can be determined directly from recordings of bead position.

Typically, experiments assume two state kinetic schemes for the unlooped and looped tether,

but more complex topologies are also possible [28, 70, 79]. Reliably obtaining these rates is

thus a major goal of TPM.

2.2.2 Background on DNA looping

Tethered particle experiments were initially developed to study the transcription kinetics of

RNA polymerase attached to a glass surface [80]. Using video-enhanced light microscopy,

the motion of a 40 nm gold particle attached to the DNA template was recorded as it was tran-

scribed by the polymerase. TPM was first used to visualize DNA looping in the lac system
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by Finzi and Gelles in 1995 [26]. Recent TPM experiments with lac have focused on how the

conformational flexibility of the repressor [79, 81] effects looping kinetics. TPM experiments

that systematically vary the concentration of repressor and loop length have teased apart the

chemical (i.e., protein binding energy) and physical (i.e., entropic and elastic energy) contri-

butions to looping [28]. By varying the loop length in one base pair increments over a full

helical repeat of the DNA, the effect of the repressor orientation on looping is measured.

Several theoretical papers have also carefully examined TPM experiments. Qian and Elson

proposed using TPM to study conformational dynamics of the DNA molecule (independent of

looping) and provided a useful analysis combining fundamental polymer physics with single

particle tracking [78]. Segall et al., propose a theory to quantify the small force exerted on the

DNA due to the excluded volume between the particle and the microscope slide [77]. They

verify the theory with an equilibrium Monte Carlo simulation of a worm-like chain DNA with

only known experimental parameters including the length of the DNA, particle diameter, and

DNA persistence length. Nelson et al. [76], apply a similar Monte Carlo simulation to non-

looping (i.e., no repressor protein) TPM experiments of lambda DNA in order to reproduce

the observed distributions of particle excursion with no free fit parameters. Towles et al.

[29], further extend the Monte Carlo approach to looped DNA by incorporating the binding

orientation, position and size of the lacI repressor protein from its crystal structure bound to the

DNA [82]. With no free fit parameters, they determine the equilibrium looping probability as

a function of operator spacing along the DNA in good agreement with experimental data [28].

Other applications of TPM include monitoring single molecule translation by a ribosome

[83]. TPM also provides an attractive assay for studying the formation of DNA loops by
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protein complexes that bind to multiple sites along the DNA such as the restriction enzymes

NaeI and NarI [84]. The 3D position of the particle has also been obtained by measuring

the relative intensity of a fluorescent bead in the evanescent decay of a TIRF beam, while

simultaneously imaging its position [85].

2.2.3 Experimental details of looping by lambda phage DNA

TPM experiments [70, 76, 86] in which the projected (x, y) positions of up to 6 beads are si-

multaneously imaged using differential interference contrast microscopy and recorded along

with a time stamp for up to 45 minutes are analyzed. Images are recorded from alternate

rows of pixels every 20 ms from a CCD operating in interlaced mode. Due to the difficulty

in obtaining precise alignment of the two rows of pixels, each time series is treated as two

separate sets with 40 ms time resolution. Rejection of anomalous beads (e.g., double tethers,

surface adhesion, etc.) and correction for microscope drift are described in [76]. Simultaneous

tracking of multiple beads allows microscope drift to be estimated from the collective motion

of all the beads and then subtracted from each bead separately [76]. The long–time drift is

determined by first finding the average (x, y) position of each bead in a 20 s and then a spa-

tial average over all the beads is calculated by summing over each of the 20 s time averages.

An interpolating function that passes through these points is fitted and subtracted from each

measurement [76]. This second average over the beads results in a smoother interpolation

that minimizes any inadvertent removal of true bead motion. Rarely (2 points in Fig. 2.2), an

anomalous outlying point or a missing frame is replaced with an interpolation of the neigh-

boring points. All subsequent references to x and y are to the drift-corrected time series.
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Figure 2.2: Typical time series of bead positions. DNA constructs of total length 3477 bp were at-
tached at one end to a glass coverslip and at the other to a 480 nm diameter bead. The vertical axis
gives the actual distance of the bead center from its attachment point, after drift subtraction. The
DNA construct contained two sets of three operator sites. The two sets of operators were separated
by 2317 bp. The system contained cI repressor protein at concentration 200 nM (where 200 nM refers
to the concentration of cI dimers since monomers do not bind to DNA); repressor proteins bind to the
operator sites on the DNA, and to each other, looping the DNA as in Fig. 2.1. A sharp transition can
be seen from a regime of no loop formation to one of dynamical loop formation at ∼ 650 s. Later
Sect. 2.5.3 will argue that the latter regime itself consists of two kinetically distinct subregimes. The
dashed lines represent the two values of ρmax corresponding respectively to the looped and unlooped
states; control data in these two states was observed never to exceed these values. A brief sticking
event, indicated by the inverted triangle, was excised from the data prior to analysis. Section 2.4.3
uses these observed values of ρmax to create truncated Gaussian step distributions for the models of the
looped and unlooped Brownian motion. (Experimental data for this and subsequent figures from [86],
kindly supplied by C. Zurla and L. Finzi.)

Adding 200 nM of cI repressor protein converts the homogeneous tethered Brownian mo-

tion of the particle to a regime characterized by abrupt, dynamic transitions in bead motion

(Figs. 2.2–2.4), a fraction of which have long enough dwell times (∼1–100 sec) to be visible

by eye in the raw data. Data from two kinds of control experiments is also used: (1) tethered

beads with no protein and thus no looping, and (2) a small subset of beads with cI present that

remain in a permanently looped configuration for many minutes (data not shown, see [86]).

The first of these controls is obtained with every experiment from a preliminary 20 minute
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Figure 2.3: Left solid curve: Normalized probability distribution function (pdf) of bead center loca-
tion for experimental control data corresponding to a permanently looped tether (about 65 000 video
frames). Right solid curve: Corresponding pdf for unlooped control data (about 200 000 video frames).
Dashed curves: Corresponding pdfs for simulated bead motion, computed using the step distribution
functions found in Sect. 2.4.3, with similar numbers of simulated steps. Although the agreement with
the experimental data is not perfect, it is quite nontrivial: The step distribution functions were not cho-
sen to make these distributions agree, but rather to match the observed distributions of steps between
pairs of adjacent video frames. (Data from [86].)
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Figure 2.4: Time series for x and y corresponding to Fig. 2.2. The graphs show that the drift subtrac-
tion scheme leads to visually similar traces for x and y.

recording with no repressor present. Figs. 2.3–2.5 show the histogram and autocorrelation

of the experimental data (solid curves), along with simulation results to be discussed in later

sections. The probability of a given x-y pair belonging to a particular length tether is known

because it can be obtained from calibration data of non-looping DNA of known length.
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Figure 2.5: Upper solid curve: Semilog plot of the time autocorrelation function, 1/2〈rt · rt+τ〉 for
unlooped experimental control data used in Fig. 2.3. Lower solid curve: Analogous function for perma-
nently looped control data. Dashed curves: Analogous functions for simulated control data, computed
using the step distribution functions found in Sect. 2.4.3. As in Fig. 2.3, the agreement is nontrivial:
The simulation was based on pairs of data points differing by just one video frame, so the approximate
agreement supports the assumption that the tethered bead motion is Markovian.

2.3 Prior methods for determining kinetic rate constants

2.3.1 Threshold method

The traditional method for determining transition rates in a single molecule experiment is to

record the signal over many transitions, histogram the dwell times between transitions for

each state, and then fit to an exponential (or multi-exponential) distribution. The parameters

of the fits are the state lifetimes and their inverses are the transition rates. Transition events

are defined when the signal crosses some threshold value. In data with high signal to noise,

determining the threshold is easy and the results are independent of the exact threshold value.

In data with low signal to noise, however, the threshold is often chosen arbitrarily despite

strongly influencing the results.

TPM experiments present some additional difficulties for this straightforward approach.

First, the observed signal (bead center position) is only indirectly related to the desired DNA
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looping state. For example, in the unlooped state the bead will spend an appreciable fraction of

its time close to the attachment point, mimicking the looped state, see Fig. 2.3. Additionally,

the height coordinate z of bead position is either not measured (e.g. in [70,76]) or is measured

to less precision than x, y (e.g. in [85]), increasing further the overlap between the probability

density functions (pdfs) (Fig. 2.3). Thus looping states of a majority of the individual data

points in the time series can be in either looped state; e.g., measurements with ρt less than

∼ 450 nm.

To overcome this difficulty, the raw data are often filtered using a sliding time window

of width W, whose value is chosen to make clearly visible steps emerge in the data (inset

in Fig. 2.2). Often this filtering step is a calculation of the signal’s variance in the window,

which has the additional advantage of being insensitive to instrumental drift over time scales

slower than W. Next, a threshold is chosen that separates the high- and low-variance states,

which now appear more clearly in the filtered data. Dwell times are then defined between

those threshold crossings of the filtered data whose durations exceed the filter dead time (see

[81, 87]). If the window W contains many independent measurements, then the variance is

accurately measured, and there are few spurious reported threshold crossings between the

high- and low-variance states.

Unfortunately, any filter based on a finite-sample estimate of bead position variance con-

verges slowly as W is increased. For a time series of uncorrelated samples, the variance of the

estimated variance is proportional to 1/(number of samples in the window W) [88, 89]. This

observation may make it seem that recording data at a high enough frame rate γ would make

1/(Wγ) sufficiently small. But successive snapshots of bead position are not uncorrelated.
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Figure 2.6: Black dots: Lifetime results for the windowing/threshold method for DNA loop formation
lifetime (points), as a function of filter window size W. These results are based on the segment of
data between 650–1750 seconds in Fig. 2.2 (total of 27 500 video frames). For each value of W, dwell
times longer than twice the filter dead time (i.e. W) were histogrammed and fit to single exponentials
to determine τLF. No attempt was made to correct for missed events. Open dots: Similar results for
loop breakdown time scale τLB. The dependence of the inferred lifetime on the filter can complicate the
“best” choice of W. The DHMM method developed in this chapter uses no window.

The appropriate prefactor is not 1/(Wγ) but rather τdiff/W, where τdiff is the diffusion time

for the bead to traverse its range of motion. For TPM experiments with ∼µm length DNA

fragment and ∼ 0.5 µm diameter beads, τdiff ≈ 140 ms is estimated from the 1/e decay of

the position autocorrelation function.

Consequently, the fractional statistical noise in the estimate of bead variance,
√

τdiff/W,

decreases slowly with increasing W; W must therefore be taken large to obtain sufficient

noise rejection (sufficiently rare spurious threshold crossings). For example, W less than 1–2

seconds introduces spurious looping events in the unlooped control data where there should

be none. On the other hand, W must be taken smaller than the shortest state lifetime (∼

1 second); otherwise too many genuine state transitions are missed. These two constraints

set a fundamental limit on the accuracy of the windowing/threshold method. Applying the

threshold-crossing method to experimental data of reasonable duration resulted in reported

lifetimes that depend on the choice of W (see Fig. 2.6) [86].
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2.3.2 Application of hidden Markov methods to tethered particle exper-

iments

This section briefly reviews the standard hidden Markov method, considers its possible appli-

cation to tethered particle experiments, and points out a serious limitation in its applicability.

The purpose is to motivate the modifications to standard HMM in Sect. 2.4, and to establish

some mathematical notation to be used there.

Hidden Markov Methods (HMM) were first described by mathematicians in the 1960s [90]

and applied to speech recognition in the 1970s [91]. A classic tutorial [91] from the speech

recognition field provides simple examples and a detailed procedure on how to perform the

analysis. A common example of HMM in biophysics is inferring the number of open/closed

ion channels in a membrane from the measured ion current across the membrane [92, 93].

Other single molecule applications of HMM include determining:(1) the step size of proces-

sive myosin motors labeled with fluorescent dyes [94, 95], (2) stroke size of non-processive

myosin in optical trap experiments [89], and (3) the folding dynamics of an DNA Holliday

Junction using single molecule FRET [96].

Classic HMM [91] involves a sequence of observations O = {O1, O2, . . . } that are re-

lated to an underlying kinetic process Q = {q1, q2, . . . } that is not directly observable but is

assumed to be described by a model. Markov statistics arise because the state of the system at

time t depends only on its value at time t− 1. The typical tasks of an HMM analysis are to

(1) determine the probability of observing the sequence O given the model P(O); (2) find the

most likely sequence of hidden states Q? corresponding to the observations O and the model;

and (3) to determine the parameters of the model that maximize P(O). It is important to real-

25



ize that the resulting probabilities and parameters depend on the assumed model, and they do

not prove its validity. Some authors retain the model (e.g., λ) in their notation to emphasize

that the probability P(O) is conditional on the model P(O|λ).

DNA looping experiments are natural candidates for application of hidden Markov meth-

ods, because the probability distribution functions (pdfs) for the bead position (called

pbead(r|q)) can be calculated a priori [76,77] or measured directly [70,76]. To model dynam-

ical looping data, an underlying (hidden) 2-state Markov process describing loop formation

and breakdown is proposed and then in each of the two states the observed quantity (bead

position) is drawn from the pdf appropriate to the current looping state. The overlap between

the two unlooped and looped pdfs “hides” the true state of the tether. The underlying pro-

cess has two unknown parameters, the rate constants 1/τLF for loop formation and 1/τLB for

loop breakdown. Using assumed values for these parameters, and the known pdfs for bead

position, the likelihood that any given time series of bead positions would be observed is cal-

culated. Substituting an actual observed time series and maximizing the likelihood over τLF

and τLB then yields the best estimates for the lifetimes, which are the quantities of interest.

In TPM, the x-y position of the bead center location is the observed signalO = {(xt, yt)} =

{rt}, and it reports, with a known probability, on the state of the invisible tether in either the

looped or the unlooped configuration. Underlying this observed signal is the desired sequence

Q = {qt} of the DNA conformational state (e.g., in a 2-state system, q = 1 means unlooped,

and q = 2 looped, at each time point). In principle, the probability distribution P(rt, qt) for

the bead position and looping state at time t could depend on the entire prior history of the

system, that is, on rt−1, qt−1, rt−2, qt−2 . . . r1, q1. Standard hidden Markov modeling [91] as-
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sumes that the observed signal is uncorrelated, depending only on the current hidden state via

a distribution pbead(rt|qt), and that this hidden state in turn depends only on the previous one,

via a transition matrix T(qt|qt−1):

PHMM(rt, qt) = pbead(rt|qt)T(qt|qt−1) (2.3.1)

This assumption, however does not apply to TPM experiments, in part because of correlations

in position due to the diffusive character of the bead’s motion. Essentially, DHMM replaces

the above assumption with a slightly more general version, in which P(rt, qt) depends on both

rt−1 and qt−1.

Before critiquing the HMM approach, the technique will be explicitly stated. The standard

HMM [91] supposes that an observed signal reflects two processes: An autonomous Markov

process (here, loop formation and breakdown) generates a time series Q = {qt} at a discrete

set of times t = 1, . . . M, using a 2× 2 matrix of transition probabilities to represent T(q|q′),

where the t subscripts are dropped and the prime denotes the preceding measurement. Q is

not directly observable, but it influences an observable signal O = {ρt}: At each time, ρt is

drawn from a probability distribution pbead(ρt|qt), which depends only on the current value of

qt. In particular, there is assumed to be no “back reaction” from the observed value of ρ onto

the underlying Markov process, and no “memory” in the process that generates O = {ρt}.

The overall likelihood of observing a time series O is then taken to be a sum over all

possible hidden trajectories Q:

Ptot,HMM(O) = ∑
Q

[
M

∏
t=2

pbead(ρt|qt)T(qt|qt−1)

]
π(ρ1, q1) (2.3.2)

This is the equation for solving task (1), where the product is initialized with the probabilities
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π(ρ1, q1), and ρ is the radial distance ρ =
√

x2 + y2 from the projected bead center to the

tether attachment point (because pbead is circularly symmetric).

The evaluation of Eq. (2.3.2) may at first seem prohibitively difficult: Typically there can

be M = 70 000 video frames, and hence 2M terms in the sum over Q. But closer inspection

shows that Eq. (2.3.2) is the product of M 2× 2 matrices, which can be evaluated in order-M

steps. Namely, Eq. (2.3.2) can be rewritten as

Ptot,HMM(O) = (1, 1) · THMM(ρM) · · ·THMM(ρ2)Π(ρ1) (2.3.3)

where

THMM(ρ) =




1− (∆t/τLF) (∆t/τLB)

(∆t/τLF) 1− (∆t/τLB)







pbead(ρ|q = 1) 0

0 pbead(ρ|q = 2)




(2.3.4)

The row vector (1, 1) is used in Eq. (2.3.3) to obtain a scalar probability, and Π(ρ)q = π(ρ, q)

is regarded as a column vector. The first factor in Eq. (2.3.4) is just T(q|q′) regarded as a

matrix; ∆t is a time step that is much smaller than τLF or τLB.

Evaluating the expression and optimizing it over the parameters τLF and τLB is not so pro-

hibitive; however, in larger, more complex systems efficient optimization (task (3)) is one of

the biggest challenges for implementing a practical HMM. Iterative procedures such as the

popular Baum-Welch method (a form of the Expectation-Modification method in statistics)

are often employed. In the simple two-state looping system discussed here for TPM experi-

ments, merely calculating Eq. (2.3.3) over a range of guesses of τLF and τLB requires only a

few minutes of computation time.

After determining the optimum parameters for the model, the most likely sequence of
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hidden states Q? (task 2) corresponds to the best estimate of the looped state at every time

point, and is determined from a final pass through the data using the Viterbi algorithm. Q?

is a useful consistency check since the dwell times of these states can be histogrammed, fit

to the proper distribution, and the parameters compared to those obtained directly from the

HMM. The algorithm maintains a list of the most likely transition and its likelihood for each

state at every observation. At the end of the data set, the state with the highest likelihood is

the most likely. The sequenceQ? is built up by working backwards through the list, each time

choosing the current state’s most likely predecessor.

A numerical issue does arise when dealing with long time traces, in that the value of Ptot

becomes very small. To handle this, a normalization procedure is performed after each time

step [91] in the calculation of Eq. (2.3.3). For example, after the first t multiplications, the

two entries in the matrix are divided by their sum st, thus keeping all of the terms in the

multiplication close to unity. A running tally St of the normalizing factors ln st is maintained

so that by the end of the calculation of Eq. (2.3.3), the final value SM is the logarithm of the

desired Ptot(O).

ad hoc fix for Hidden Markov methods

One problem with the procedure outlined above, as mentioned in Sect. 2.3.2, is that it neglects

correlations in observed bead position due to the Brownian character of tethered particle mo-

tion. Equation Eq. (2.3.2) assumes that the “noise” (bead motion) has no memory. Although

this may be a valid assumption for the noise in ion channels, it is certainly not the case for teth-

ered particle motion if the sample times are separated by less than the bead’s diffusion time.
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And indeed, HMM in this form was not able to determine reasonable lifetimes in experimental

data.

Applying the standard hidden Markov analysis (Eq. (2.3.2)) to tethered particle experi-

ments resulted in unrealistically short lifetimes for loop formation and breakdown that are on

the same order as τdiff. These lifetimes are inconsistent with obvious looping events visible in

the data, depend on the sampling rate of the measurement, and are present in data from control

experiments with no looping. The most probable looping sequence for Q? corresponding to

these fast lifetimes can be calculated, and is consistent with the bead moving diffusively be-

tween regions of large and small ρ, effectively masquerading as very fast looping events. That

is, the spurious reported transitions reflect the fact that successive video frames are not really

independent measurements of the underlying tether state.

This problem can be reduced by thinning the data, thereby decreasing the influence of

diffusion and making successive points more independent of each other. Repeating the HMM

analysis on the thinned data results in an increase in the reported lifetimes. If this thinning

process is repeated, the calculated lifetimes eventually plateau to a value roughly consistent

with the time scale of the looping events as identified by eye (Fig. 2.7). The looping sequence

corresponding to these longer lifetimes also agrees with the looping events observed by eye in

the raw data.

While this ad hoc approach for addressing bead diffusion may be acceptable in some cir-

cumstances, a better approach is to modify the HMM procedure itself to include bead diffusion

directly. Section 2.4 will show that the required modification is simple, and computationally

no more difficult than the calculations sketched in this section.
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Figure 2.7: Hidden Markov analysis of the data from Fig. 2.2 illustrate how the diffusive time scale of
the bead and tether dominate the inferred lifetimes when the measurement sampling interval is faster
than the time scale for bead/tether diffusion. If the sampling time is artificially slowed down by thinning
the data then the inferred lifetimes plateau approximately to the values obtained by DHMM (solid/open
symbols refer to the inferred lifetimes for loop formation/breakdwon). For a thinning of ’2’ all of the
odd points are separated from the even and then these two data sets are concatenated to reconstitute the
original length trace. An analogous process was applied for higher order thinning. The HMM analysis
of the concatenated recording gives results approximately equal to the average of the results if each
thinned trace was considered individually (data not shown).

2.4 Diffusive hidden Markov method

2.4.1 Overview

The previous section argued that the standard HMM approach cannot be applied to tethered

particle motion because its starting point, Eq. (2.3.2), is not valid. First, even if the rate of

loop formation is zero (as it is in the absence of any cI protein), there will still be correlations

in the observed bead positions that the algorithm interprets as spurious transitions. In fact, the

time series of bead positions itself has a Markov character: Each position rt is drawn from a

probability distribution Tunl(rt|rt−1) depending only on rt−1, independent of the positions at

prior times [97].

The HMM assumption in Eq. (2.3.2) that the loop formation/breakdown process is inde-
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pendent of the observed bead positions is also not valid. As an extreme example, if at some

time the bead position is observed to be so far from the attachment point that the tether is

stretched nearly straight, then it is geometrically impossible for a loop to form and the mo-

mentary rate of loop formation must equal zero.

In short, the dynamics of the bead/tether system must be regarded as a single, extended

Markov process, with a joint conditional probability TDHMM(rt|rt−1)qt,qt−1; Eq. (2.3.3) is re-

placed by

Ptot,DHMM(O) = (1, 1) · TDHMM(rM|rM−1) · · ·TDHMM(r2|r1)Π(r1) (2.4.1)

From this point on, Ptot,DHMM is abbreviated as Ptot. (The transition matrix TDHMM matrix will

be defined in Eq. (2.4.2))

Note that since the goal is to capture the dynamics of the bead motion, simplifying the

description of the bead center as the length ρ from the full position vector r is no longer

valid because there are pairs of points with the same ρ that are nevertheless spatially distant.

Replacing r by ρ would therefore discard some valuable, observed, information. Since the z

position is not observed, the full 3-dimensional position is replaced by its 2D projection r.

It may seem that the most desirable feature of HMM is lost, namely that the transition

matrix is fully determined by the two fit parameters τLF and τLB, along with functions known

a priori (the two empirically observed pdfs pbead(ρ|q)). To address this concern we next

propose a correspondingly simple DHMM transition matrix TDHMM(r|r′)q,q′ , which depends

on two continuous quantities r, r′. Although not rigorously justified, it retains the properties

of depending on empirically determined functions and two fit parameters τLF, τLB; also, it in-

corporates the diffusive character of bead motion, which is not included in Eq. (2.3.2). The
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empirical functions describing the tethered motion of the bead are Tunl(r|r′) and Tloop(r|r′)

for the unlooped and looped states, respectively. First the form T is stated, and then its mean-

ing is discussed. Subsequent sections will show how to extract the empirical functions from

control data, then how to apply the model to data on dynamic looping.

The proposal is to assume that the matrix TDHMM takes the form

TDHMM(r|r′) =




1− (∆t/τLF)Θ (∆t/τLB)

(∆t/τLF)Θ 1− (∆t/τLB)







Tunl(r|r′) 0

0 Tloop(r|r′)


 (2.4.2)

In this formula, Θ ≡ 1−Θ(ρ− ρmax) is a step function, equal to 1 if looping is geometrically

permitted, and 0 otherwise. The value of ρmax is to be obtained from experimental data, as

described in Sect. 2.4.3.

When looping is either forbidden or obligatory, Eq. (2.4.2) reduces to tethered Brownian

motion in either the unlooped or looped states respectively (no dynamic looping). In other

cases, the formula can be thought of as describing an alternating series of transitions. First,

the bead takes a diffusive step based on its current looping state (second matrix factor in

Eq. (2.4.2)). Next, the tether updates its looping state, using probabilities that depend in a

simple way on its current position (first matrix factor in Eq. (2.4.2)). Then the process repeats.

If ∆t is much smaller than either the diffusion time or the loop formation/breakdown times,

then no significant error is made by decomposing the process in this way. Note that Eq. (2.4.2)

is properly normalized, as verified by summing it over all final states r, q.
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2.4.2 Critique of approach

Although it is reasonable, the DHMM proposal does make some strong and perhaps naive

assumptions about the looping process. Before turning to the implementation of the method,

these assumptions are made explicit, and future experiments that would help justify them are

suggested.

DNA loop formation involves the motion of the molecule through a high-dimensional

space of shapes, driven by thermal motion, subject to a free energy landscape determined by

the molecule’s elasticity. When binding sites on the proteins encounter each other, or the

DNA’s operator sequences, binding may ensue depending on the precision of their alignment

and the relevant binding constants. Phrased in this way, it’s clear that the calculation of DNA

loop formation kinetics is very complicated. However, such ab initio calculations are not the

goal.

The goal is to develop a simple characterization for the looping behavior seen in TPM

experiments, in a way that is also relevant for looping behavior in vivo, and that is sensitive

to differences in behavior as system parameters are changed. For a free DNA chain, polymer

dynamics repeatedly brings binding sites into juxtaposition at some rate, with a certain proba-

bility that any such encounter leads to formation of a bound state. The product of the attempt

rate and the probability per encounter is an average loop formation rate. If each encounter’s

probability for binding is small, then it is reasonable to expect that overall loop formation (and

breakdown) processes should be monomolecular reactions describable with simple exponen-

tial kinetics.

Turning from free DNA to the case of DNA tethering a large reporter bead, it is noted that

34



the presence of the bead does not by itself alter the thermal force fluctuations on the looping

part of the DNA; these equilibrium fluctuations are determined by equipartition applied to the

entropic elasticity of the semi-flexible polymer chain. It is true that bead-surface repulsion can

tend to stretch the DNA, altering the equilibrium constant for loop formation [77]. However,

this entropic force falls off rapidly when the distance from the polymer’s endpoint to the

surface exceeds the bead diameter; it can be minimized by choosing small enough beads (or

by replacing the bead by a functionalized colloidal gold particle [80, 98]).

Notwithstanding the above remarks about equilibrium, the large, sluggish bead is expected

to significantly alter looping kinetics. But precisely because the bead is slowly diffusing,

whenever it is close to the attachment point of the DNA to the wall, it is likely to stay close

for many milliseconds. During this time, the bead offers no significant obstacle to the same

thermally-driven chain rearrangements that bring the operator sites of free DNA into juxtapo-

sition. Hence, when the bead is close to the wall attachment point, it is expected that DNA

loop formation will proceed as if the DNA were free in solution (or part of a larger bacterial

genome). More precisely, the time required for the polymer tether to explore its available

conformations is assumed to be much less than the time for the bead to diffuse a significant

fraction of its total range of motion. In the contrary case (the bead is far from the attach-

ment point), loop formation is geometrically forbidden. A similar argument suggests that loop

breakdown kinetics should not be altered by the presence of the reporter bead.

Eq. (2.4.2) embodies the above ideas, together with the idea that the bead wanders in and

out of the range allowed for looping, subject to distributions Tloop and Tunl that themselves

can be found from the observed behavior of permanently looped or unlooped tethers. Thus
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the parameters τLF and τLB appearing in Eq. (2.4.2) are expected, when the model is fit to

TPM data, to give a good guide to looping rates for DNA free in solution. In contrast, simply

applying the windowing/threshold method to data does not correct for the expected slowing-

down of loop formation due to the presence of the bead. Indeed, applying that method to the

data considered here leads to inferred τLF values significantly slower than the one that will be

obtained in Sect. 2.5 below.

Although the preceding paragraphs have argued that the DHMM approach is reasonable,

it is crude in some respects. For example, once the bead center is observed to be at a certain

distance from the attachment point, this distance amounts to a stretching of the DNA chain.

The expected rate for loop formation will be some decreasing function of this stretching, but

not of course a step function, as assumed in Eq. (2.4.2).

Another simplification is to ignore the unobserved height variable z, in effect treating the

bead motion as diffusion in two dimensions. Although in free Brownian motion all three

coordinates perform independent random walks, in TPM the presence of the wall and tether

couple x, y, and z. To some extent, the technique of obtaining Tunl and Tloop in Eq. (2.4.2)

directly from control data will correct for this effect, but the criterion for loop formation to be

possible really depends on the full 3D separation
√

x2 + y2 + z2, not on ρ =
√

x2 + y2 as

assumed in Eq. (2.4.2). A more detailed analysis might treat z as another hidden (unobserved)

variable.

Rotatory Brownian motion of the bead is also ignored. The ability of the tether to form

loops actually depends on the distance between the two DNA end points. One endpoint, where

the DNA attaches to the microscope slide, is fixed. The bead center location is a proxy for the
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other endpoint, but really the point where the DNA attaches to the bead also depends on the

angular orientation of the bead. Again, a more detailed analysis might treat this orientation as

another hidden variable.

The justifications for all three of the above simplifications are simply that (a) although

the pdfs for projected bead position in the looped and unlooped states overlap partially, they

are nevertheless fairly distinct, allowing reliable state identification even with the simplified

model; (b) the projected-step distribution functions Tunl and Tloop that are extracted from

control-experiment data do have the qualitative form expected for two-dimensional diffusion

in an effective spring trap [97] (see Sect. 2.4.3); and (c) changing the cutoff ρmax in the analysis

does not significantly change the inferred values of the rate constants (data not shown). De-

spite these encouraging observations, however, other experimental tests of the method would

certainly be desirable, for example, analyzing the kinetics of loop formation in identical tethers

attached to different-sized beads, to check that similar values of τLF and τLB emerge.

2.4.3 Implementation

Obtaining step distribution functions

It would be a daunting task to determine the appropriate step distribution functions Tunl and

Tloop appearing in Eq. (2.4.2) a priori directly from theory. For example, bead–wall hydro-

dynamic interactions depend on the bead’s height, which is not observed; the tether couples

the unobserved bead orientational fluctuations to the observed position fluctuations; and so

on. These difficulties are circumvented by empirically determining the Tunl and Tloop from

experimental control data for the two states. After these functions are obtained, the simple
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model of tethered-particle dynamics constructed from them is confirmed to reproduce some

nontrivial features of the real control data (Figs. 2.3 and 2.5). Finally, dynamic-looping data

are examined, and the two remaining free parameters τLB and τLF in Eq. (2.4.2) are adjusted

until the log-likelihood, ln[Ptot(O)], is a maximum.

In order to obtain Tunl(r|r′) from the unlooped control data, note that this function must

be symmetric under rotations of both r and r′ about the attachment point by a common angle.

Thus this function for r′ only needs to be determined on the x̂-axis, at some radial distance

ρ′. Starting from a time series for unlooped DNA (no repressor protein present), all of the

points in the time series for which the bead center’s distance from the anchor point, ρ′, lies

in a particular range are selected. Next, the rotation in the plane that brings r′ to the x̂-axis is

determined, and also applied to ∆r = r− r′, the bead’s vector displacement to its position on

the following video frame. Finally, a 2-dimensional histogram of the observed displacements

∆r is constructed, and normalized to obtain Tunl(r|r′). The process is repeated, producing

histograms for all observed initial distances ρ′. Using data obtained from about 30 minutes

of bead observation, the observed range of ρ′ could be divided into 30 intervals and still have

reasonable statistics in the histograms; Figs. 2.8–2.9 shows typical examples for two values of

ρ′. A similar procedure is applied to the permanently-looped control data to obtain Tloop(r|r′).

The step-probability distributions (Fig. 2.9) obtained in this way show that at small ρ′

there is no preferred direction for the next time step; for larger ρ′, the tether is stretched and

exerts a restoring force on the bead, so the step distribution shows a bias to diffuse toward

the attachment point (the −x̂ direction). Next, a convenient analytical representation of these
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Figure 2.8: 2D histograms of unlooped control data at two values of ρ′ near (left) and far (right) from
the anchor point (0,0) after rotation onto the x̂ and ŷ axes (see text). The dots on the upper x-y plane
indicate the initial position ρ′ (full circle) and the mean midpoint of the final position µ(ρ′) (open
circle). For ρ′ near the anchor point the two dots coincide.
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Figure 2.9: Projections of the two distributions in Fig. 2.8 onto the x̂ and ŷ axes, together with Gaus-
sian distributions chosen to idealize them. Left: the vertical lines represent two choices for the initial
bead position; dots represent the corresponding distributions of bead positions on the next video frame.
Note the shift in the mean x̂ at larger ρ′ (open) compared to shorter ρ′ (full). Right: No such shift is
observed in the ŷ direction.

distributions, both for computing the likelihood function Ptot(O), and also for simulation

purposes is described.

Each distribution is seen to be roughly a 2D Gaussian, with one principal axis along the

radial direction to the attachment point. After rotating r′ to lie along the x̂ axis as described

above, the principal axes of the distribution are the x̂- and ŷ-axes. The center point also lies
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Figure 2.10: Empirical fit functions for the mean (left) and variance (right) of the 2D histograms
(see e.g. Fig. 2.8) for experimental control data corresponding to unlooped (solid symbols) and looped
(open symbols) tether states. Corresponding fit parameters for the functions of Eq. (2.4.3) are located
in Sect. 2.4.3.

on the x̂-axis, and is increasingly shifted from ρ′x̂ toward the attachment point (0, 0) as ρ′

increases due to the tether’s entropic elasticity. Accordingly, Tunl(r|r′) is characterized for

each fixed r′ = (ρ′, 0) by finding its mean 〈x〉 and the variances in the x and y directions.

The mean 〈y〉 equals zero (see for example Fig. 2.9), as it must by rotational invariance. Thus

three functions of ρ′ that characterize the histograms are required: a 3rd-order polynomial for

the mean µ(ρ′) ≡ 〈x〉ρ′ , and sigmoids for the variances σ2
x(ρ′) and σ2

y (ρ′)(see Fig. 2.10):

µx(ρ) = a0 + a1ρ + a2ρ2 + a3ρ3

σ2
x(ρ) = b0/(1 + e(ρ−b1)/b2) + b3

σ2
y (ρ) = c0/(1 + e(ρ−c1)/c2) + c3

(2.4.3)

Using these fit functions, the observed step probabilities are represented as the product of 1D

40



Gaussian distributions in x and y starting from the point r′ = (ρ′, 0):

Tunl(r|r′) = Gx(x|ρ′) · Gy(y|ρ′) where (2.4.4)

Gx(x|ρ′) = (2πσ2
x(ρ′))−1/2 exp

(−(x− µ(ρ′))2

2σ2
x(ρ′)

)
(2.4.5)

Gy(y|ρ′) = (2πσ2
y (ρ′))−1/2 exp

(
−y2

2σ2
y (ρ′)

)
(2.4.6)

Examples of these functions for illustrative values of ρ′ appear in Fig. 2.10. For arbitrary r′

(not necessarily on the x̂ axis), the probability is evaluated by rotating r′ to the x̂-axis, rotating

r by the same amount, and evaluating Eq. (2.4.4) on the components of the rotated r.

Truncated Gaussian approximation

The procedure summarized in Eqs. (2.4.4–2.4.6) is conceptually simple. The accuracy of the

calculations, however, can be improved with a small elaboration. Like any Gaussian, the dis-

tribution defined above is nonzero for any x and y. In reality, however, the DNA tether sets an

absolute limit on ρ beyond which the probability must be exactly zero. Not surprisingly, fol-

lowing the procedure outlined above yielded simulated time series that occasionally violated

this limit. Although the effect of this error may be minor for the unlooped step distribution,

for the looped distribution it could interfere with looping state identification.

Accordingly, formula for Tunl(r|r′) is modified to account for the limit in an approximate

(and computationally inexpensive) way: Eq. (2.4.5) is replaced by a truncated Gaussian func-

tion. That is, Gx(x|ρ′) is set to zero for x > ρmax, and a Gaussian with modified parameters

for x < ρmax. The modified parameters were chosen in such a way that the truncated Gaussian

would again have the mean µ(ρ′) and variance σ2
x(ρ′) shown in Fig. 2.10. That is, for each

value of ρ′, the µ and σ2
x determined empirically from the data were not used directly; instead
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a new Gaussian, with modified parameters µ̃ and σ̃2
x is found, which has mean µ and variance

σ2
x when the probability of values greater than ρmax is set to zero.

Ideally G should be chosen to be a function that vanishes when x2 + y2 exceeds (ρmax)2,

and falls smoothly to zero as that boundary is approached. To make the calculations tractable,

G is taken to be the product of a cutoff, shifted, 1D-Gaussian in x times an ordinary Gaussian

in y. Examination of many graphs like Fig. 2.8 indicate that this simplification adequately

represents the empirical histograms. Moreover, since the axes are rotated to make the initial

position lie along the x-axis, an extra excursion along x is more likely to violate the tether

condition than one along y. Small changes in the choice of the empirical function G have little

effect (see Sect. 2.6) on the final results.

To implement efficient calculation of the truncated Gaussian Gx(x|ρ′), a look–up table

for the Gaussian with mean, variance, and normalization (µ̃(ρ′), σ̃2(ρ′) and Ñ) is evaluated

such that when ρ > ρmax this Gaussian is zero and satisfies the mean and variance (µ(ρ′) and

σ2
x(ρ′)) determined empirically from data in [86]:

∫ ρmax

−∞
dx

1
Ñ

e−(x−µ̃)2/(2σ̃2) = 1,
∫ ρmax

−∞
dx

x
Ñ

e−(x−µ̃)2/(2σ̃2) = µ(ρ′) (2.4.7)

∫ ρmax

−∞
dx

x2

Ñ
e−(x−µ̃)2/(2σ̃2) = σ2

x(ρ′) (2.4.8)

Such look-up tables were evaluated at 100 values of ρ′ for both (unlooped, looped) tether

states using Eq. (2.4.3) and parameters: a0=(0,0), a1= (-0.068, -0.238), a2= (-5.0e-4, -7.9e-4),

a3 = (1.52e-7, 6.30e-8), b0= (35.1, 30.6), b1=(161.75, 107.95), b2=(242.3, 173.8), b3=(100.16,

66.42), c0=(37.11, 11.43), c1=(159.8, 126.3), c2=(444.88, 177.06), c3=(180.72, 67.86), where

ρ is measured in nm.
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Figure 2.11: Evaluation of ln[P∗tot(O)] on a logarithmically-spaced grid of τLF, τLB lifetimes corre-
sponding to data from Fig. 2.2.

Optimization

The optimum lifetimes are found by evaluating Ptot(O) on an evenly-spaced logarithmic grid

of values for τLF and τLB, and the location of the maximum P∗tot(O) determined. The result-

ing likelihood surface is smooth (Fig. 2.11), so the peak likelihood can be determined more

precisely by fitting a 2D quadratic in the neighborhood of the optimum lifetimes. The un-

certainty of the optimum lifetimes corresponding to ln[P∗tot(O)]− 2, i.e., enclosing 97% of

the probability, were estimated along the principal axes of this 2D quadratic to account for

any correlation between the estimated lifetimes. In order to facilitate this iterative process, an

automated simplex solver routine was implemented to find the maximum [99].

Simulation strategy

Simulations of bead motion, with and without dynamic looping, were performed in Mathe-

matica to test the DHMM model. Each step of the simulation (a) first determined whether or

not to remain in the current looped state, and then (b) the next spatial position was determined

appropriate for the particular loop state. In more detail, (a) If the initial state was looped, a

pseudorandom number was used to determine whether to transition to the unlooped state with
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probability ∆t
τLB

. If the initial state was unlooped, and if ρ < ρmax, then a transition to the

looped state was allowed with probability ∆t
τLF

. Next (b) a (∆x, ∆y) pair was drawn from the

appropriate distribution obtained in Sect. 2.4.3. That is, ∆y was Gaussian distributed, and

similarly for ∆x except that steps resulting in ρ > ρmax were discarded and the step repeated

in order to achieve a truncated Gaussian as discussed earlier.

2.5 Results and discussion

Section 2.4.3 outlined how to determine Tunl(r|r′) and Tloop(r|r′) from the control data, then

used these functions to simulate tethered particle motion. In this section one-state simulations

are compared with control data and two-state simulations with dynamic looping data. Also, a

change in looping dynamics, possibly indicating a change in protein occupancy of one or both

of the lambda operators is determined using DHMM.

2.5.1 One-state modeling

To validate the assumptions used to model the equilibrium, tethered Brownian motion, a

simple simulation using the step-distribution functions obtained from adjacent video frames

(Sect. 2.4.3) is performed and compared to the resulting trajectories with the experimental

control data. The resulting simulated time series {ρt} are difficult to distinguish from ac-

tual data by inspection (not shown), so the equilibrium properties of the motion are compared

using the radial probability distributions (Fig. 2.3) and the dynamic properties using the au-

tocorrelation function (Fig. 2.5). Both of these non-trivial checks agree fairly well with the

actual data, although for unknown reasons the equilibrium distribution of the longer tether is
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captured better by the model than the shorter tether.

The two-state DHMM approach is also applied to permanently-unlooped experimental

control data to see if the algorithm would incorrectly report any looping transitions. Instead,

the algorithm correctly reported loop-formation times that were proportional to the length

of the data set (that is, consistent with infinity), and loop-breakdown times approaching the

sampling interval (that is, consistent with zero). Simulations of unlooped motion behaved

similarly. As expected, DHMM applied to permanently-looped experimental control data and

simulations did not detect any false loop breakdown events with the trends for loop breakdown

and formation lifetimes exchanged from the unlooped case. Another consistency check was to

verify that the step distribution functions originally calculated from the experimental control

data Sect. 2.4.3 were the same for the simulations.

Finally, the maximum likelihood transition sequence corresponding to the optimal lifetime

valuesQ? is determined. No false looping transitions were reported for either of the control

data sets, indicating that the rate for false positives for loop formation and breakdown is low.

2.5.2 Dynamic looping

The two-state DHMM algorithm is applied to the part of the time series in Fig. 2.2 that dis-

plays dynamic looping (the region between 650 and 1750 seconds). The algorithm reported

τLF = 5.8 s± 25% and τLB = 9.9 s± 25%; it also determined the most-likely sequence of

state transitions. To see whether the model is really detecting dynamic transitions between the

two tether lengths in this parameter regime, DHMM is applied to a 20-minute simulation of

dynamic looping generated using the same lifetime values. In addition to comparing the re-
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# Events τLF τLB ln[Ptot(O)] 1
M ln[Ptot(O)]

Data 50 5.8 9.9 −374 089 −12.714

Sim. #1 68/75 4.9 9.2 −376 951 −12.811

Sim. #2 57/64 6.4 9.3 −378 173 −12.853

Sim. #3 62/77 5.6 8.3 −378 228 −12.855

Average Sim. 62.3/72 5.6 9.0 −377 784 −12.840

Table 2.1: Comparison of results for three simulations, their average, and data (from Fig. 2.2). The
inferred lifetimes for the data were used as input for the simulations. All trials had a total number
of points M = 29 424. The second number in the event column is the (known) number of events.
Lifetimes are in seconds and other terms are nondimensional.

ported lifetimes, each of the transitions in the simulated data are known and can be compared

with the reconstructed sequence from the algorithm. The lifetimes for the simulation and the

experiment agree within uncertainty (∼ 20%, see Table 2.1), and the state sequence success-

fully detects ∼ 85–90% of the known transitions, with missing events usually less than ∼ 1 s

in duration. Like any Hidden Markov method, a benefit of DHMM is that it is not specifi-

cally sensitive to missing events, since event identification is performed after the lifetimes are

determined. Instead of binning identified events and fitting the resulting histogram, DHMM

directly maximizes the likelihood that a function describes the entire data set. If the time scale

of events is too short compared to other time scales in the problem, DHMM reports that fact

via its estimates of uncertainty in the fit parameters.

Simulations of looping with lifetimes different from those seen in the experimental data

were also performed. A 5× 5 log-spaced grid of different combinations of lifetimes centered

on the optimum lifetimes obtained from the experimental data was defined. DHMM was
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Figure 2.12: 25 simulations were performed with input lifetimes τLF and τLB distributed on a log-
spaced grid (gray crosses) centered at the optimum lifetimes obtained from experimental data. Each
simulated data set had length M equal to that of the experimental data. Next, DHMM was performed
for each simulated data set, to determine the most-likely lifetimes (black symbols).

applied to simulations generated using those assumed lifetimes to see how well it could extract

them (Fig. 2.12). The agreement over the range (1/4× to 4×) was good to within the error

bars estimated by the curvature of the log-likelihood function (Fig. 2.11). These error bars in

part reflect the finite sample size M, which is often limited by experimental considerations.

To check that last assertion, 10 additional simulated data sets were generated all with the same

“true” lifetimes and number of data points M as the experimental data discussed previously.

The variation in lifetimes deduced from the known transition times represents the minimal

variation due to finite sample size. Indeed, the scatter in the best-fit lifetimes determined by

DHMM is no worse than this minimum amount. Simulations with longer lifetimes τLF =

τLB = 20 s and a total time of ≈ 60 minutes to give more transitions were similarly successful

(agreement of lifetimes within 10% and 92% success in detecting events, data not shown).

As discussed in Sect. 2.3, in both the threshold method and traditional HMM the time

resolution depends on how the data are analyzed (i.e., window size and degree of thinning
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respectively). To demonstrate the robustness of the DHMM method, the data set is subdivided

(taken at a frame rate of (20 ms)−1) into two subsets with ∆t = 40 ms, and also into four

subsets with ∆t = 80 ms and lifetimes for all of these subsets are computed. All lifetimes

agree within the uncertainty of the method (data not shown; note that Eqs. (2.4.3–2.4.6) must

be re-calculated for different ∆t).

2.5.3 Detection of very long-lived state transitions

So far, the peak of the likelihood function Ptot(O) and its vicinity have been used to determine

the optimum looping lifetimes and their uncertainty. The likelihood function can be further

utilized to assess the uniformity of the dynamics. This is a useful scenario because in a real

DNA-looping system there are certainly more than two discrete states: e.g., individual repres-

sor proteins can bind and unbind to their operator sites [79]. Indeed, the data studied here

came from a system with two sets of three operators, leading to a large set of potential occu-

pancy patterns. Presumably the obvious change in behavior in Fig. 2.2 at t = 700 s reflects

the arrival of another repressor at an operator site, enabling loop formation. But there seems

also to be a less obvious transition in the data around t = 1250 s, from one looping regime to

another one with different kinetics. Can DHMM locate such changes objectively?

If the data had uniform, two-state looping behavior for the entire recording, then the log-

likelihood of the whole would be equal to the sum of the log-likelihoods of its parts, and

also the best-fit lifetimes should come out roughly equal for each part separately as for the

whole. To test this, a procedure used by Ref. [100] is adapted: the data in Fig. 2.2 is restricted

to the region after 650 s, but this time the data is divided into two regions, A from 1 to M′
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Figure 2.13: See text. The peak in ln Ptot(OAB) (solid line) suggests that the data from Fig. 2.2 is
composed of two regions at M′ ' 61%M with different kinetics. The gray/dotted lines are the results
from simulated data with/without a transition at M′ ' 61%M, respectively. For comparison purposes,
each likelihood has had its peak vertically shifted to 0 by subtracting a constant.

and B from M′ to M, and then separately applied DHMM on the two regions to determine

ln Ptot(OAB) ≡ ln Ptot(OA) + ln Ptot(OB). The resulting ln Ptot(OAB) has a single, very

sharp peak at a particular value of M′ (Fig. 2.13). In agreement with visual inspection, the

optimal value of M′ is roughly two-thirds of the way through the retained data, that is, around

t = 1300 s in Fig. 2.2. Moreover the reported optimal lifetime values in the two subsets are

quite different: (τLF, τLB)A ' (10 s, 20 s) and (τLF, τLB)B ' (3 s, 4 s). When the procedure

is repeated with simulated data including a transition at M′ = 0.6M where looping kinetics

changes from (τLF, τLB)A to (τLF, τLB)B values, a peak in ln Ptot(OAB) very similar to the one

in the experimental data is found(Fig. 2.13). In contrast, when the procedure was applied to

simulated constant, two-state dynamics, ln Ptot(OAB) was insensitive to M′ as expected.

2.6 Conclusions

The purpose of DHMM is to enhance the ability of tethered particle experiments to study

DNA looping kinetics in vitro. For illustration, a simplified 2-state model that includes the
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one looped and one unlooped tether state is used, i.e., the various possible occupancies of the

repressor protein on the DNA binding sites is ignored, but the method can readily be extended

to include such details. Since publication, DHMM has been used to study the kinetics of DNA

looping by the Type II restriction enzyme SfiI [101].

Previously, threshold methods were applied to the data to quantify the kinetic rates be-

tween various looped and unlooped states. This method involves filtering the data to extract

the transitions from the noisy diffusive motion of the bead, then fitting a (single or double)

exponential to the tail of a histogram of the dwell times. Both filtering and histogramming

discard potentially useful information; moreover, at least in the lambda phage system stud-

ied here, the choice of filter window can influence the reported results. The DHMM method

avoids any such steps.

Hidden Markov modeling is a useful tool to learn about the hidden conformation of the

DNA tether from the observed motion of the bead, because the observed motion can be statis-

tically quantified and simple models used to describe the unobserved state of the tether. The

uninteresting diffusive motion is determined empirically from control experiments, and then

the looping is assumed to follow exponential kinetics with unknown parameters corresponding

to the loop formation and breakdown lifetimes. Then the likelihood that the experimental data

(or a simulation) came from the proposed model is maximized. The method is implemented

in a computationally efficient code in Mathematica. Since there is no filtering and no binning

of the data in DHMM, the kinetic parameters can be determined unambiguously. If desired,

the most-likely transition state sequence can also be determined.

It is easy to obtain unlooped control data to train the DHMM algorithm by omitting re-
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pressor protein during the experiment; however looped control data can be more challenging.

For the lambda system considered here, infrequent yet long-lived looped states made this

a relatively simple task. In other systems alternatives exist, including separate experiments

on constructs with shorter length tethers corresponding to the expected looped length or, if

available, mutant repressor proteins with stronger affinity for DNA that result in permanently

looped tethers. In the lambda system, the robustness of DHMM to the model of the looped

state is verified by varying the fit parameters in Eq. (2.4.3) by ±10% and noting that τLB and

τLF remained unchanged (data not shown).

Another advantage of DHMM is its ability to, at least partially, compensate an experi-

mental bias inherent in the tethered particle method: Loops cannot form between successive

measurements if the DNA is in an extended conformation due to the time for the bead to dif-

fuse to a location closer to the anchor point. This effect inflates the observed loop formation

times relative to the case of interest (free DNA in solution); indeed, in simulations where the

lifetimes are known a priori, this effect inflates τLF by ∼ 30%. The DHMM model compen-

sates for this by allowing loops to form only when ρ < ρmax.

The recent incorporation of single–particle tracking into the TPM method was essen-

tial, because it allows rapid and precise measurements of bead position that are required for

DHMM. In particular, the ability to simultaneously track multiple tethered beads is helpful for

removing instrumental drift [76]. Future experiments could in principle remove drift from the

data entirely by simultaneously tracking a fixed, fiducial marker object.

DHMM is applied to one illustrative experimental dataset of lambda DNA with 200 nM

cI, and it determined loop formation and breakdown lifetimes of ∼6 and 10 s respectively.
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One surprisingly biologically relevant application of this work is that, at physiological [cI]

corresponding to the lysogenic state, the loop is not permanently closed. It is interesting that

these lifetimes are neither representative of all the beads that were observed in [86] (data not

shown), nor even for the entire observation time of any single bead (see Fig. 2.2). Prior to

adding cI, most beads have nearly identical tethered diffusive motion; however, after addition

of cI, the kinetics of looping varied widely. Some beads were mostly unlooped with occasional

looping events, some beads were the inverse of this, others showed long periods of dynamic

looping, and some like Fig. 2.2 seemed to show very sharply-defined changes between long-

lived (often > 10 min) regimes of homogeneous behavior. One hypothesis to explain these

long-time looping trends is that the occupancy of cI protein among the 6 lambda binding sites

changes, resulting in periods with more or less stable loops. For example, when all 6 sites are

occupied a very stable loop might form, whereas 4-sites occupancy could result in a less stable,

but still detectable, loop. Future experiments with fewer operators, or perhaps fluorescent cI

protein, could be used to test this hypothesis directly.

One technique for considering such complex kinetic scenarios is to use a more elaborate

state diagram; however, a different approach might be appropriate if cI proteins are binding

and unbinding on a time scale much slower than loop formation, as observed. In this case,

DNA looping data could be adequately represented by a concatenation of 2-state models, each

with different kinetics, rather than by a far more elaborate model with many states. There

appear to be three such regions in the data shown in Fig. 2.2. First, the mostly unlooped

region was removed to focus on the faster dynamics of the later region, which was split in all

possible ways into two subregions. Each subregion was analyzed separately using DHMM,
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and the partition that resulted in the highest total likelihood, which was also much higher

than if the two regions were assumed to be one homogeneous kinetic regime, was chosen.

The sharp peak in Fig. 2.13 indicates that DHMM is a sensitive tool to localize such subtle

transitions in time.
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Chapter 3

Twirling of actin by myosin II observed

via polarized TIRF in a modified gliding

assay

3.1 Introduction

The swinging lever arm model [102, 103] explains force production and movement between

actin and myosin II in muscle contraction [104] and also applies to non-muscle myosins [105].

Separate crystal structures of myosin and actin docked into cyro-EM maps of actomyosin

[106] indicate that the lever arm swing is nearly parallel to the axis of the actin filament,

thereby efficiently converting the free energy released from ATP hydrolysis into motion along

the filament. Even small torque components around the filament axis, however, may have

biological roles in muscle contraction (Ref. [107], and references therein) or regulation [108].
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For processive non-muscle motors, a torque may be desirable for navigating cargo around

obstacles present in the crowded environment of the cell [109–111].

Several studies have suggested off-axis components to the relative motion between actin

and myosin. For example, decreased lateral spacing of the filaments of frog skeletal muscle

in rigor compared with relaxation was attributed to radial forces between the thick and thin

filaments [112]. In a modified gliding assay, actin filaments that were selectively immobi-

lized onto the slide at their pointed ends formed superhelices that suggested a right-handed

component of torque generated by myosin II [113]. In standard gliding assays where the

filaments are free to translocate, a torque component of the cross-bridge force could result in

rotation of the filament about its longitudinal axis, i.e., “twirling.” Actin filaments with marker

beads attached at their ends showed no twirling on HMM-coated slides [114] while gliding,

but when the filaments were marked sparsely with fluorescently labeled actin monomers, si-

multaneous twirling and gliding of the filaments was observed by polarized fluorescence mi-

croscopy [59, 65]. Symmetries in the fluorescence polarization technique prevented both of

those studies from determining the handedness of the twirling motion.

A separate way of gauging sideways motions and possible components of torque between

actin and processive myosins is to suspend the actin filament above the surface of the micro-

scope slide and record the path of a bead being transported by myosin along the suspended

filament [115,116]. Off-axis force causes the bead to travel in a helical path. In the suspended

filament assay, myosins V [115] and VI [116] exhibited left-handed and right-handed helical

paths, respectively.

Polarized epifluorescence microscopy [59] and polarized total internal reflection fluores-
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cence (polTIRF) microscopy [62,63,65] typically use incident and/or detected light polarized

along the x, y and z axes of the microscope. In such configurations, rotation of the fluo-

rophore, but not the handedness of its helical motion, can be observed because orientations of

the fluorophore reflected across any of the Cartesian planes give the same fluorescence inten-

sities and thus are not distinguishable. Intermediate excitation or emission polarizations that

break these symmetries enable the handedness to be recovered [117].

In the present work, extra linear polarizations are added to the previously reported polTIRF

technique [2,61–63,65] that are intermediate between those aligned along the Cartesian direc-

tions. As a result, there is a four-fold increase in the range of unambiguously detected probe

orientations. The orientation is then estimated within a hemisphere, the remaining two-fold

ambiguity being an unavoidable property of dipolar absorption and emission of light.

This chapter reports on twirling and its handedness from gliding actin filaments that are

translocated by whole myosin II. The twirling motion is nearly always left-handed with an

average pitch, i.e. the distance that the filament translocates during one complete rotation,

of approximately 0.5 µm that is not strongly influenced by myosin concentration, Mg·ATP

concentration or filament length in the range studied here. These values for the twirling pitch

are much longer and opposite in handedness to the intrinsic pitch of the actin filament. Several

mechanical effects are discussed that could give rise to filament twirling.
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3.2 Methods

3.2.1 Biological samples

Proteins, buffers, and slides were prepared as in [2, 63] with minor modifications. Briefly,

whole myosin II was purified from rabbit fast skeletal muscle and stored in 300 mM KCl,

5 mM Hepes, pH 7.0, 5 mM NaN3 and 50% glycerol at -20◦C [118]. Actin was prepared

from rabbit muscle in G-buffer (2 mM Tris, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.5 mM

DTT), frozen in liquid N2, and stored at -80◦C [119]. G-actin monomers were labeled [120]

at Cys374 with 5-iodoacetamido-tetramethylrhodamine (a gift from J. E. T. Corrie, National

Institute for Medical Research, Mill Hill, London). Filaments, sparsely-labeled (∼ 0.05%)

with rhodamine-actin, were polymerized by mixing labeled and unlabeled monomers, at 1 µM

total actin concentration, in F-buffer (50 mM KCl, 2 mM MgCl2, 1 mM EGTA, 10 mM Hepes,

pH 7.4) and stabilized with 1.1µM Alexa 647 labeled phalloidin (Invitrogen A22287).

In order to remove “dead” myosin heads that do not release actin upon binding ATP, a 12

mg/ml myosin stock was diluted in high salt buffer (500 mM KCl, 10 mM Hepes, pH 7.0, 5

mM MgCl2) and combined with a molar excess of actin filaments, 2.5 mM ATP and 5 mM

DTT and then centrifuged at 200 000 × g for 30 min on the day of each experiment. The

concentration of protein retained in the supernatant was then determined by Bradford assay.

A ∼ 20 µl flow cell was created using a clean quartz microscope slide, glass cover slip,

and two pieces of double-sided tape. For myosin II, a 1 mg/ml solution of poly-L-lysine was

flowed into the cell and incubated for 1 min. Excess polylysine was rinsed out with 20 µl of

high salt buffer, and then the myosin, diluted from stock in high salt buffer, was flowed into
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the cell and incubated for 2 min. The following solutions were made in wash buffer (WB: 25

mM KCl, 20 mM Hepes pH 7.4, 5 mM MgCl2) and flowed through the cell. 2× 0.5 mg/ml

BSA, 2× 5 µM unlabeled sheared actin filaments to block any remaining dead myosin heads,

2 mM ATP to dissociate actin from the active heads, and 2× WB to wash out the free actin

and excess ATP. Finally, 5 nM 0.05% rhodamine-labeled Alexa 647 phalloidin-stabilized actin

filaments and motility buffer with 5-20 µM ATP, 50 mM DTT, 5 mM phosphocreatine and 0.4

mg/ml creatinephosphokinase were flowed into the cell. All experiments were performed at

22-23◦C.

The concentration of myosin II flowed into the cell was equal to 0.03, 0.1, 1, or 3 mg/ml.

Mg·ATP concentration was varied between 5 and 20 µM which resulted in filament velocities

of 0.1-0.5 µm/s. For low myosin concentrations (≤0.1 mg/ml), 0.1% methylcellulose was

added to the motility solution to increase filament run length. Twirling of filaments with

variable lengths in the range 1-50 µm was determined at concentrations of 0.03 and 0.1 mg/ml

myosin.

3.2.2 Experimental Setup

The polarized total internal reflection fluorescence (polTIRF) setup has been described in

detail previously [2, 63]. Here a brief explanation is provided followed by a description of the

modifications that enable linear polarizations of the incident laser illumination to be polarized

in between the s- and p- polarization directions, see Fig. 3.1.

Two alternating beams from a 532 nm Nd:YAG laser are focused onto a prism such that the

incident angle (with respect to the z axis, normal to the quartz slide/water interface) is ∼ 68◦
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Figure 3.1: At the sample plane, the two incident laser beams alternately propagate nearly along the
x (Beam 1) and y (Beam 2) axes, illuminating the sample with one of four linear polarizations: s,
p, L, or R for each path (see inset). For clarity, a portion of Beam 2 is omitted. It reflects from the
sample interface similar to Beam 1, but propagates in the y-z plane perpendicular to the page. Beam 1 is
focused by a lens (L1) at a glancing angle through a coupling prism (CP) onto the sample (SAM) and
terminated in a beam dump (BD). Reflecting mirrors are shown as thick black lines. The laser intensity
is controlled by a rotatable half wave plate (HWP) and vertical polarizer (P0). The polarization of
the beam is switched between vertical and horizontal polarizations by a Pockels cell (PC0), passed
through a shutter (S) and directed along paths 1 and 2 by a polarizing beam splitter (PBS0) and clean-
up polarizers (P1 andP2). The polarization in each path is controlled by a Berek compensator (BC1or
BC2) and a second Pockels cell (PC1 or PC2), which change the polarization every 10 ms to p, s, L
and R. The emitted fluorescence intensity is collected by a microscope objective lens, passed through
a barrier filter (BF) and directed onto either a CCD camera or reflected by a removable mirror (RM)
onto two avalanche photodiodes (APDx and APDy) that measure the fluorescent intensity polarized
along the x and y axes by PBS1. A small fraction of the beam prior to the shutter (S) is directed into
a feedback circuit [63] that controls the polarization from PC0 in order to maintain high extinction
between Beams 1 and 2.

. Fluorescent emission is collected by a 100× 1.2 NA water immersion lens, passed through a

long pass blocking filter and either imaged onto an intensified CCD camera or passed through

a polarizing beam-splitter onto two avalanche photodiodes (APDs). Using a Pockels cell (PC0

in Fig. 3.1) and a polarizing beam splitting cube (PBS0), the incident illumination is cycled

between two paths that are aligned predominantly along the x and y directions and intersect at
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the sample. Four linear polarizations in each beam path (termed s, p, R, and L) are obtained

by applying different voltages to additional Pockels cell (PC1 and PC2, ConOptics M370)

and then passing the beam through a Berek variable compensator (BC1, BC2, New Focus Inc)

in each path. With 45◦ between the crystal axis of the PC and the linearly polarized incident

light, the PCs produce vertical, horizontal or elliptically polarized light depending on the input

voltage. The Berek compensator acts essentially as a 1/4-wave plate to convert the elliptically

polarized light to beams linearly polarized at any arbitrary azimuth. The bending mirrors used

to project the excitation onto the sample re-introduce phase shifts and resulting ellipticity into

the intermediately polarized (L and R) beams. The Berek compensator is adjusted in angle

and retardation slightly away from the 1/4-wave setting to correct for these extra phase shifts.

The L and R linearly polarized beams are obtained by adjusting the PC voltages and the Berek

compensators until the beams are linearly polarized at angles intermediate (approximately

±45◦) between s and p at the entry to the coupling prism (CP). Polarizations are verified

with a crossed linear polarizer, which extinguishes the beam immediately prior to the final

focusing lens (L1).

Each polarization alternately illuminates the sample for 10 ms in the sequence: s1, p1, p2,

s2, R1, L1, L2, and R2. The fluorescence emission from a selected rhodamine fluorophore

is directed through a polarizing beam splitter (PBS1) that separates its x and y components

onto two APDs (APDx and APDy) for a total of 16 measured intensities s1 Ix, s1 Iy, p1 Ix,

p1 Iy, etc. . . , see Fig. 3.2A. For imaging of the field, a mirror (RM) is removed so that the

fluorescence is projected onto the intensified CCD camera.

The evanescent field generated by the incident p polarized light has a slight (∼ 5%) el-

60



lipticity in the x-z and y-z planes for Beams 1 and 2, respectively, due to the component of

incident radiation parallel to the reflecting surface. In addition to this x-z ellipticity under p-

polarized illumination, the L- and R- polarizations in Beam 1 have additional ellipticity in the

y-z plane due to the different phase shifts in the evanescent wave from the s and p components

(δs and δp, see Appendix 3.5.1). A similar phase shift holds for elliptical polarizations from

R2 and L2. As done before with ellipticity induced by p-polarization [2, 63], the ellipticity

of L and R excitation are included in the analytical equations used to determine the probe

orientation.
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Figure 3.2: Typical polarized fluorescence intensity data for a single molecule of rhodamine attached
to a twirling actin filament with 0.1 mg/ml myosin loading concentration, 10 µM Mg·ATP, and velocity
of 0.24 µm/s. The filament translocated at an angle of -95◦(i.e, φactin) relative to the positive x-
axis. (A) Calibration factors for the 16 recorded intensities have been applied to the raw data and the
background of each has been subtracted. (B) The data prior to the bleach at ∼ 3.6 s (H, see Fig. 3.4
for the total fluorescence intensity) is passed through a 5-point (0.4 s) mean filter before maximum
likelihood analysis for extracting angles. The resulting intensity calculated from the probe model is in
good agreement (dotted) with the filtered data (solid). Peak intensities occur when the probe is aligned
with the detector and the incident polarization. Consequently, evidence for twirling of the probe can
be directly seen in the data as sets of oscillating intensity curves that are out of phase with one another.
For example, in this case the data recorded for Beam 1 by APDy shows a pattern of sequential peak
intensities R1 Iy, s1 Iy, L1 Iy that repeats with each rotation of the probe (see also Fig. 3.6).

3.2.3 Single molecule position and average filament velocity

After mounting the sample slide and adding motility buffer, a 30 s movie of a field of ∼20-40

single rhodamine fluorophores was recorded by the CCD camera to determine the average
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filament speed. Mg·ATP concentration was limited to 5-20 µM so that the filaments moved

slowly enough (0.1-0.5 µm/s) to enable 2-7 s recording of the fluorophore as it passed across

the 1.8 µm diameter projected spot size of the APDs before photo-bleaching. A second movie

was recorded after a series of polarization measurements to verify consistent speeds at the

beginning and end of the experiment. Occasionally, the first movie was omitted in order to

obtain measurements of long filaments, which become shorter due to shearing at high con-

centrations of myosin. The (x, y) coordinates of the filament were tracked automatically by

fitting a 2D Gaussian intensity distribution to the image of the fluorophore for each frame.

The x-y path of the fluorophore was smoothed using a 5-point Savitsky-Golay filter [99], and

the filament velocity was determined from the path length of 15-30 measurements. Average

filament velocity for each slide was obtained from 7-10 filaments.

3.2.4 Single molecule orientation and filament twirling

Prior to recording each polarization trace, two images of the field of candidate fluorophores

were recorded with the CCD camera, superimposed and displayed on a monitor. These images

were used to calculate a filament-specific velocity for each fluorophore, which could be used

as an alternative to the average velocity mentioned above. A molecule was then selected for

polarization analysis, and centered above the objective by a computer-controlled piezoelectric

stage. The collected fluorescent emission was directed away from the CCD and onto the

photodiodes by replacing the removable mirror (RM in Fig. 3.1). Thus, during polarization

recording, spatial information from the fluorophores was not available.

After a moving rhodamine molecule was selected and centered over the APDs, 125 cycles
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of 16 polarized fluorescent intensities were recorded for 10 s. Typically, the fluorescence

signal photobleached to the background level in a single step during this 10 s period. For

recordings with the occasional double bleach, presumably arising from two nearby labeled

monomers, only the single fluorophore region before the final bleach was used for analysis.

The orientation of the probe was estimated by fitting analytical equations that predict the

polarized fluorescence intensities during each complete illumination cycle as described in [63]

and expanded here to include the L- and R- incident polarizations. Briefly, the raw intensity

traces are corrected for instrument factors using a calibration procedure (see Reference [63]

with additional terms in Appendix 3.5.2) and the background is subtracted. Sixteen intensities

(one complete 80 ms cycle) are combined in a mathematical model of the probe that describes

its 3D orientation and rotational motions (see Fig. 3.3A) by approximating it as an electro-

magnetic dipole that absorbs and emits photons preferentially polarized along its dipole axis;

see Appendix 3.5.1 for details. Corrections for partial mixing of the components of polarized

fluorescent emission due to refraction by the high NA objective are included in the model; see

References [2, 63] for details.

The maximum likelihood values for the probe’s 3D orientation and rotational wobble

(θ, φ, δ, κ) are determined for each 80 ms cycle using a Levenberg-Marquardt C algorithm

that matches the predicted and measured intensities. κ is an amplitude factor that scales the

total intensity of the probe to the number of photons collected during each cycle. δ describes

wobble motions on a time scale faster than measurement time (∼ 10 ms) but slower than the

fluorescent lifetime of the probe (∼ 4 ns). The parameter describing rotational wobble on

time scales faster than the fluorescent lifetime, δ f , was fixed during the analysis at 22.5◦ [65].
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Figure 3.3: Calculations are performed in the microscope coordinate frame (A), where the +z axis
is the optical axis, pointing toward the microscope objective, and the +x and +y axes are in the plane
of the quartz/water interface and aligned with the plane of propagation of Beams 1 and 2, respectively.
The evanescent TIRF field decays in the +z direction. θ is the polar angle of the probe with respect
to the +z axis and +φ is the azimuthal angle of the probe around z defined positively from the +x
axis towards the +y axis. The extent of fast (δ f , not shown) and slow wobble (δ) motions are included
in the analysis model to account for mixing between the polarizations due to motions of the probe on
two time scales, both much faster than the twirling rate. Twirling is quantified in a frame of reference
relative to the actin filament (B) where β is the polar angle of the probe with respect to the forward
moving end of the actin filament axis and α is the azimuthal angle around the filament axis.

The angular values (θ, φ) in the microscope coordinate frame were rotated into the coordinate

frame of the actin filament (β, α) using the direction of probe motion from the preceding pair

of video frames as the polar axis in the actin frame of reference (see Fig. 3.3B, Appendix 3.5.3,

and [2] for more details).

3.2.5 Filament length

In order to estimate the length of the actin filament, the sample was briefly illuminated with a

HeNe laser to excite the Alexa 647 labeled phalloidin. The fluorescent emission was passed

through a band pass filter (Omega 670DF40) and captured in a single image by the CCD. The

Alexa 647 image of the filaments was overlaid with two subsequently acquired images of the

rhodamine fluorophores to aid in molecule selection. Switching lasers required approximately

1-2 s so that matching the rhodamine actin with its filament was unambiguous. Filament
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lengths were measurable for the first 20 min of data recording. The length of the filament was

estimated in ImageJ [121] by summing short line segments manually selected along the fila-

ment contour. Filament length could only be determined at low (0.03 and 0.1 mg/ml) myosin

concentration due to shearing of the filaments, which for high (1 and 3 mg/ml) concentrations

occurred within the first 1-2 min of adding motility buffer to the flow cell.

3.3 Results

Polarized fluorescence intensities from a filament twirling about its axis during translocation

show prominent oscillations (e.g., Fig. 3.2A). When all of the separate polarized fluorescence

intensities are summed together the resulting total is a constant intensity that bleaches to back-

ground in a single step (see Fig. 3.4). Strong variation of the polarized fluorescence intensities

with constant total intensity is an indicator of probe rotation. The intensities of the different

channels oscillate with different phases as the rotating probe temporarily comes into align-

ment with the polarization direction of the incident illumination. Prior to maximum likelihood

analysis, a 5-point running average is applied to the data (solid lines in Fig. 3.2B) in order to

remove some high-frequency noise. The traces and their oscillations due to changes in α as

the filament translocates are reproduced by the predictions of the fitted model (dotted lines in

Fig. 3.2B).

In a plot of (θ vs. φ) actin filaments translocating uniformly (i.e., with constant velocity

and direction within the x-y plane) that are also twirling with a constant angular velocity show

a circular pattern that is centered at (90◦, φactin), see Fig. 3.5A,B. φactin is the direction in the

x-y plane of the filament trajectory with respect to the +x axis. θ oscillates about 90◦ because
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Figure 3.4: Total intensity for each 80 ms cycle of the 16 raw, uncorrected polarized fluorescence intensities
for (A) the molecule shown in Fig. 3.2, (B) a typical molecule with constant intensity prior to bleaching (indi-
cated by H), and (C) the molecule shown in Fig. 3.7. Twirling motion is accompanied by strong undulations in
individual polarized fluorescence intensities (see Fig. 3.2) that when summed together during a complete polar-
ization cycle are relatively flat, apart from photon noise fluctuations, prior to bleaching. Bleaching to background
in a single step is indicative of a single fluorophore recording. Occasionally, molecules decrease in intensity dur-
ing the recording despite clear twirling motions (e.g., A). Two possible mechanisms for this decrease in signal
include the molecules being translocated away from the small spot detected by the APDs, or the filament moving
away from the surface (and thus out of the evanescent field).

a probe that is fixed in a twirling filament will spend half of each rotation pointing above the

x-y plane and the other half pointing below it.

For a filament that is uniformly twirling about its axis, β is approximately constant between

0◦ and 90◦ (Fig. 3.5C), and α increases (right-handed pitch) or decreases (left-handed pitch)
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Figure 3.5: For each complete cycle of the polarization data in Fig. 3.2, the maximum likelihood angle
in the microscope frame (θ, φ) and actin frame (β, α) are plotted. Twirling is seen in the microscope
frame either (A) as oscillations in time of θ and φ or (B) as a circle when plotted as θ vs.φ (open circle
is t = 0s). In the actin frame twirling is indicated by (C) a relatively constant β, here equal to ∼ 40◦,
and (D) saw-tooth shape for α(t). (F) When α(t) is shifted by 360◦ after each rotation, the saw-tooth
becomes a straight line with slope ω equal to the twirling frequency, here≈ −0.94rev/s. The direction
of translocation (along the +x-axis) is required for determining the handedness of the twirling motion;
left- and right-handed are depicted here by a negative and positive slope for α(t), respectively. The
slow wobble cone (δ) of the probe is ∼ 45◦. Approximately half of the twirling filaments have traces
similar to the quality shown here.

linearly in the range -180◦ < α < 180◦ (Fig. 3.5D). The wobble, δ, of the probe attached

to actin is noisy (Fig. 3.5E), similar to results from [65], but it neither exhibits systematic

variation with α and β, nor prevents determination of the probe orientation, as would be the
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Figure 3.6: Relative phasing amongst the different polarized fluorescence intensities (colors) is in good agree-
ment between a simplified simulation (A) and the data from Fig. 3.2 in the text reproduced in (B). The simulation
assumes a uniformly twirling probe undergoing -3.5 rotations (i.e., ∆α = −1260◦) with β = 45◦, δ = 45◦, and
φactin = −135◦. The simulated trace does not display the decrease in intensity found in the actual data (see
Fig. 3.2 for details and complete maximum likelihood solution).

case if the probe could freely rotate about its attachment point, i.e., δ = 90◦ . A continuous

line for α can then be obtained by shifting the values after each full rotation (Fig. 3.5F) by

360◦.

The angular frequency ω of filament twirling is calculated from the slope of the line fit to α

vs. time. For the filament in Fig. 3.2, ω was 0.94 rev/s and its linear velocity was 0.24 µm/s.

The direction of rotation for α combined with the direction of motion of the filament, allows
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for determination of the handedness of actin twirling. To be sure of this handedness, the 3D

orientation of the fluorescence signals was carefully checked with polarizers that extinguish

the various polarized incident beams and the sign of the x-y coordinates of the camera images

by physically moving the stage while observing the video output. The value of the twirling

motion pitch is given by the ratio of the linear velocity to angular frequency v/ω, which for

the filament of Fig. 3.2 is 0.25 µm. Simulated polarization intensities of a uniformly twirling

filament with parameters similar to those in Fig. 3.5 (β = δ = 45◦ and ∆α = 3 rotations) are

shown for comparison to the data in Fig. 3.6. The traces in Fig. 3.2 agree quite well with the

prediction of the simulations despite the simplifications of constant β and δ.

Twirling assays were performed over a range of myosin and Mg·ATP concentrations; how-

ever, most data were collected at 10 µM Mg·ATP and 0.1 mg/ml myosin, where filament length

was also determined. Recordings were selected for orientation analysis when the total inten-

sity (i.e., the sum over both APD signals for each complete cycle plotted as a function of

time, e.g., Fig. 3.4) prior to irreversible fluorophore photo-bleaching was 1.5 - 2× the total

background intensity (711 out of 3 528 recordings). For further analysis, the filaments were

required to meet several other criteria: (i) approximately constant rotational velocity (i.e., lin-

ear fit of α(t) vs. time with |correlation coefficient| > 0.9), (ii) a minimum total rotation

about the filament axis of 180◦, and (iii) a recorded signal duration before bleaching of at least

1.6 s. 144 filaments satisfied these criteria. After checking the 3D orientation results and fitted

lines for these filaments, an additional 47 filaments were rejected due to apparent large, abrupt

changes in θ, φ, or δ that were inconsistent with a smoothly twirling filament (see Fig. 3.7

and Fig. 3.8 for examples and more detail on the selection process). Of the remaining 97
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Figure 3.7: Measured polarized fluorescence intensities (A) for a rejected filament. The agreement between
the filtered data (B, solid) and the maximum likelihood intensity (B, dashed) is good despite its rejection. The ini-
tial rejection of 2817 molecules was due to missed recording of the molecule (e.g., recording only background),
recording of contamination (unreasonably high intensity or irregular intensity), double molecules, etc. These
molecules were never analyzed. Of the remaining 711 after the first cut, 567 were rejected because the total rota-
tion was less than 180◦, the bleach duration was less than 1.6 s, or the magnitude of the correlation coefficient r
of the linear fit to α(t) was less than 0.9. Of the remaining 144 molecules after the second cut, 47 were rejected
due to abrupt change in β, θ, or φ. Abrupt changes did not occur in α (i.e., they didn’t twirl one way and then
the other nor did they simply stop twirling), but rather there was a large change in some other angle that was
inconsistent with a continuously translocating/twirling filament (see Fig. 3.8).

filaments, 94 and 3 of the filaments twirled with left- and right- handed pitches, respectively.

There was no apparent trend or additional defining characteristic of the rejected filaments.

Approximately 450-550 of the filaments had sufficient duration and signal quality but did not

twirl, thus resulting in a twirling fraction of ∼ 20%. Nearly all (∼ 95%) of the filaments that
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Figure 3.8: Maximum likelihood results for the recording shown in Fig. 3.7. Refer to Fig. 3.5 for detailed
descriptions of the parameters in A-F. This molecule had a high quality bleach to background (Fig. 3.4) and
|r| > 0.9, but was rejected because of the abrupt change in θ and φ at ∼ 3 s.

twirled did so with a left-handed pitch, which is opposite to the intrinsic right-handed pitch of

actin.

Excluding as outliers the three filaments that seemingly twirled with opposite pitch, the

average twirling pitch of −0.47± 0.2 µm (mean ± SD, n = 94) is quite long compared to

that of the long-pitch actin strands (74-76 nm). The angular velocity of the filaments was

correlated with the linear velocity (Fig. 3.9). If the path of a twirling filament was dictated by

structural considerations, then the linear and angular velocities would be coupled together in
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Figure 3.9: Angular frequency versus average filament velocity with linear fits (solid) and 95%
confidence interval (dashed) for the fitted lines for (A)0.03, (B)0.1, (C), 1.0, (D)3.2 mg/ml myosin
II loading concentration. Solid points correspond to left-handed twirlers (negative angular frequency).
Open points, which are not included in the fit, correspond to right-handed twirlers (positive angular
frequency).

direct proportion. The lines fitted to the data at each myosin concentration, however, do not go

through zero (angular and linear velocity are not directly proportional), suggesting that kinetic

aspects (such as the rate of myosin binding and/or detaching from actin) determine the pitch

as well as structural ones.

As myosin concentration loaded into the flow cell increased from 0.03 to 3.2 mg/ml, the

velocity of the filaments increased for a fixed Mg·ATP concentration (see Fig. 3.10). Ob-

taining polarization data from filaments moving faster than ∼0.25 µm/s (corresponding to

> 15 µM Mg·ATP and & 1 mg/ml myosin concentration), however, was difficult using the

present polTIRF setup. In order to maximize the time traversing the relatively small APDs,
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Figure 3.10: Average filament velocities and standard deviations at 5, 10, 15, and 20 µM Mg·ATP concen-
trations for the four myosin loading concentrations 0.03 (magenta), 0.1 (green), 1.0 (red), 3.2 mg/ml (blue).
As discussed in the text, the average in (A) is from 5-7 filaments each recorded for ∼ 30 frames, and in (B)
the average is of all the two-point velocities for each molecule measured from the two CCD images obtained
just before the polTIRF recording. The two trends are similar, but the standard deviation of the average in (B)
is greater than in (A) since two-point velocity estimates were more variable than the velocity obtained from a
longer recording.
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Figure 3.11: Average values and linear fits (solid) for (A) velocity, (B) angular frequency, and (C)
pitch computed at each myosin concentration (from the data in Fig. 3.9) with error bars determined
by the bootstrap method [99]. Negative values of angular frequency indicate left-handed rotation in
the actin reference frame. The magnitude of the twirling frequency decreased with increasing myosin
concentration while the velocity of the filaments was relatively constant. Predictions (dashed) in each
panel are calculated from the fits of the other two panels using the relation pitch = v/! and are in
approximate agreement with their respective fits.
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lower Mg·ATP concentrations were used at the higher myosin concentrations in most of the

experiments. As a result, when the data from Fig. 3.9 were averaged and considered ver-

sus myosin concentration, the linear velocity (Fig. 3.11A) and pitch were fairly constant

(Fig. 3.11C). A slight decrease of the magnitude of the (negative) angular frequency over

this range (Fig. 3.11B) is not statistically significantly.

At 0.03 and 0.1 mg/ml myosin concentrations, filament velocity is independent of filament

length, see Fig. 3.13, as reported previously [122]. The twirling frequency and pitch are also

insensitive to filament lengths longer than ∼ 1 µm (Fig. 3.12). Filament twirling by myosins

II is summarized in Table 3.1 and also compared with myosin V [123] and VI [124] data.

3.4 Discussion

3.4.1 Angular scope of polTIRF measurements

Several previous reports [59, 65, 113, 115, 116] have indicated that under various conditions,

myosin isoforms produce a torque either in conjunction with axial force production, or while

stepping along actin in a helical path. Previous work using polarized total internal fluorescence

(polTIRF) microscopy [65] indicated filament twirling; however, symmetries in the measure-

ment of the probe orientation resulted in an ambiguous sign for the azimuthal angle and thus

did not report the handedness. These symmetries were broken here by incorporating incident

polarizations (L and R) that are intermediate between p and s into the polTIRF method [117].

The only remaining ambiguity of probe orientation is unavoidable due to its inherent dipole

symmetry: (θ, φ) is equivalent to (π − θ, π + φ).
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Figure 3.12: Average (A) velocity, (B) angular frequency, and (C) pitch as a function of filament
length at 0.03 (gray) and 0.1 mg/ml(black) loading concentration of myosin with linear fits (solid)
and 95% confidence interval of the fit (dashed).

Recordings of actin filaments, labeled with rhodamine at Cys374, and gliding under the

propulsion of myosin isoforms II, V [123], or VI [124] corresponded to oscillations of the

probe orientation (θ, φ), which in the actin frame of reference were consistent with a fairly

constant axial angle β and linearly increasing or decreasing azimuthal angle α . This angular

response of the probe during motility shows that the filament often twirls about its axis during
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Figure 3.13: Average filament velocity (including twirling and non-twirling filaments) at myosin loading
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translocation, and also confirms that the method, with the additional input polarizations and the

attendant analysis, resolves the probe orientation within a hemisphere as expected. Twirling

generated by myosin II and V has a strong left-handed bias while twirling by myosin VI was

strongly right-handed, arguing against a dominating experimental artifact, which would likely

result in twirling with either handedness independent of the myosin isoform.

3.4.2 Non-twirling filaments

Similar to earlier reports [115], only∼ 20% of the filaments translocated by myosin V showed

clear twirling rotations. In the twirling assay with myosin II most of the filaments translo-

cated, but only 20% clearly twirled, thus indicating that azimuthal rotation is not necessary

for gliding. In this work, probe orientation and location were not measured simultaneously;

consequently the initial direction of gliding was assumed to be maintained during the polar-

ization analysis. If a filament were to undergo large, unobserved changes in this motion, such

as stopping or turning, it would likely be rejected during screening of the filaments. Such

motions, however, are unlikely to account for all of the non-twirling filaments since U-turns

and stopping events were observed for only 10-20% of filaments during a 30 s observation,

which is much less than the 80% of filaments that did not twirl. Non-twirling filaments were

difficult to characterize, but they rarely exhibited steady α and β orientations, which would be

expected if the filament slides perfectly straight or stops moving completely, as is seen when

ATP is omitted [65].

The suspended-filament bead assay reported earlier for myosin V [115] and VI [116]

showed that often the motors stepped straight along the filament, rather than in a helical path.

79



Thus, both twirling and non-twirling motions are observed in experiments with single motors

and in gliding assays where multiple motors are involved.

3.4.3 Handedness of twirling

Measuring the probe orientation unambiguously for half of a rotation or more allows the direc-

tion of angular rotation to be determined. Combining this angular direction with the direction

of filament sliding indicates the handedness of actin filament twirling; a feature not obtained in

previous experiments using single molecule polarized fluorescence [59, 65]. When filaments

twirl by fast skeletal whole myosin II and native myosin V from chick brain, they consistently

have a left-handed pitch, opposite to the intrinsic right-handed long pitch of actin. Filaments

twirled with a relatively long pitch of 0.47 and 1.7 µm for myosin II and V, respectively, see Ta-

ble 3.1. Myosin VI twirls filaments with the opposite, right-handed pitch [124]. Right-handed

twirling by myosin VI is not simply due to its “backward” pointed-end directed motility, as

can be realized by considering a nut twirling on a machine screw, where the handedness is the

same for tightening and loosening. Preliminary twirling experiments using myosin V with a

truncated lever arm, having only 4 calmodulin-binding IQ motifs, twirls a higher fraction of

filaments to the right than full-length myosin V with 6 IQ-motifs per head (J. H. Lewis, per-

sonal communication). The truncated lever arm results suggest that the handedness is related

to the step distance of these molecules.

Single and multiple molecules of myosin V move a proportion (20%) of bead duplexes in

a helical path around a suspended actin filament [115] with the same left-handedness and a

similar pitch (2.2-2.5 µm) as twirling filaments in the gliding assay, pitch ∼ 1.7 µm. Similar
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Myosin Isoform II V [123] VI [124]

Myosin, mg/ml 0.1-3.3 0.26 0.26

Ave. Velocity,µm/s 0.091-0.61 0.07-0.27 0.09 - 0.21

ATP, µM 5 - 20 10 - 2000 500 - 1000

Handedness Left Left Right

Number? 94 42 23

Frequency, rev/s -0.50±0.19 -0.12±0.12 0.14±0.05

Total Rotation ∆α , rev -1.4±0.7 -0.6±0.4 0.7 ±0.4

Pitch, µm -0.47±0.19 -1.7±0.6 1.3 ±0.5

Probe Angle β, ◦ 49±19 55±12 54 ±9

Slow Wobble δ,◦ 48±17 30±13 30 ±11

Table 3.1: Summary of actin filament twirling by myosins II, V and VI (mean ± SD). The range of
angular rotations (∆α) for myosins II, V and VI are -0.5 to -4.4, -0.09 to -1.8, and +0.2 to +2.0 rotations,
respectively. ’Number’ indicates those molecules twirling with the dominant handedness, which are the
basis for the other average values in the table (see text for details). ?A minority of filaments (3, 1, and
0 for myosins II, V, and VI, respectively) twirled with the opposite handedness, and are not included in
the table averages.
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experiments with myosin VI [116] gave a right handed pitch, in agreement with the polTIRF

twirling assay [124], although the pitch of the bead-duplex path was longer (2.2-5.6 µm) than

the twirling pitch (1.3± 0.1 µm) in the gliding assay. Regardless of whether multiple motors,

fixed on a microscope slide, were translocating actin, or a single motor was stepping along a

suspended filament, the rotational motion is similar. This agreement in handedness between

the two different assays suggests that a similar mechanism underlies torque generation in these

two geometries.

Formation of actin filament superhelices by HMM translocating filaments at 1 mM Mg·ATP

[113] indicate a right-handed torque, opposite to that of the twirling actin filaments obtained

here. This discrepancy might arise from the difference in Mg·ATP concentration, which was

higher in the superhelix experiments and limited in the twirling experiments to produce ve-

locities compatible with time resolution and size of the photodetector in the present setup.

Another difference is that the supercoiling filaments [113] were specifically attached to the

slide at their pointed ends and the remaining filament forced to buckle by a track of HMM,

created by decorating the filament prior to surface attachment. Twirling filaments here were

moved by myosin molecules randomly distributed on the surface.

3.4.4 Possible mechanisms of twirling

The mechanisms responsible for twirling filaments are not known, but the experiments pre-

sented here suggest several possible effects: a torque component to the myosin power stroke

[113, 115], the step size of myosin relative to the actin filament helix [59, 115], or the drag

force of rigor heads on the filament. A torque between myosin and actin could arise if the vec-
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tor of the myosin working stroke is not parallel to the axis of the actin filament, thus resulting

in a small angular component to the velocity in addition to the linear component. An estimate

of the vectorial direction of the working stroke for myosin II can be obtained from crystal

structures in the pre-power stroke position [125] and near the end of the power stroke [126]

when both structures are docked into cryo-electron microscopy density maps of actin deco-

rated with myosin subfragment-1 [106]. The flexible joint between the light chain domain

and myosin rod is located near Lys843 of chicken skeletal myosin. Between the pre-power

stroke and the near rigor state of the docked structures, Lys843 moves predominantly along

the filament axis, but with a slight (∼ 20◦) right-handed tilt relative to the actin axis. A tilt

in the other direction would be required to induce the typical twirling pitch that was detected

in myosin II and V. Thus the left-handed twirling that was observed is not explained by the

path of the power stroke, unless the docked structures are misoriented by at least 20◦. Also, if

the torque is generated directly by the working stroke, then a strong coupling between linear

and angular velocities would be expected in the twirling assay. The twirling measurements

discussed here, however, show only weak coupling between these two quantities.

Alternatively, the handedness seen in processive bead assays [115, 116] could arise from

the interaction between the stride length of myosin and the helical disposition of the actin

monomers. Actin filaments are torsionally flexible, but often approximated as a 13/6 helix

when interpreting the path of myosins on actin [115, 116]. The 13/6 index defines an actin

filament with monomers disposed around the left-handed short-pitch ‘genetic’ helix rotating

6 full turns in 13 monomers. Starting from the zeroth actin monomer as the origin, the 13th

monomer along this short pitch helix is located at the same azimuthal orientation around the

83



filament as the original one. Each monomer is 360◦ · (−6/13) ≈ −166◦ azimuthally around

the short pitch helix (negative sign means to the left). The 2nd monomer is positioned at:

−166◦ · 2 = −332◦ = 360◦ − 332◦ = 28◦ , i.e., on the right-handed long-pitch strand. On

the 13/6 helix, a motor whose stride is 13 monomers (∼ 36 nm) would walk straight. Left-

handed rotation would arise if the motor made more 11 monomer steps than 15, and vice versa

for a right-handed helical path.

Electron micrograph data showing the spacing of myosin V rigor heads bound to actin

[127] indicated a distribution of stride lengths spanning mostly 13 monomers, and significant

amounts of 11 and 15 monomer spans. There were more 15s than 11s, which would im-

ply a bias toward a right-handed helical path. Our twirling results and the experiments with

suspended actin filaments [115, 116], however, show left-handed bias.

Reference [128] pointed out that this apparent discrepancy would be resolved if the fil-

ament structure is not a 13/6 helix. For instance a 28/13 helix, which has also been ob-

served [129] has an azimuthal rotation of the left-handed genetic helix of 360◦× (−13/28) ≈

−167◦ . The 13th and 15th actin monomers are positioned at 13◦ to the left and right of the

axial (straight) direction, respectively. Then a motor, such as myosin V, which takes more 13-

monomer steps than 15s (as shown in the EM distribution of spans [127]) would walk slightly

left-handed, as we observe.

Myosin VI adopts a straight or slightly right-handed helical path [116, 124]. This was

interpreted as indicating an even longer stride than myosin V [115], but it could also indicate

the presence of much shorter steps, for instance the proper ratio of 6 and 7 monomer steps

on a 13/6 helix (azimuthally oriented at 83◦ to the left and right, respectively) could also
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result in a slight right-handed helical pitch. Myosin VI has a very wide distribution of step

sizes [124,130], making the azimuthal path of the individual molecules highly variable [124].

It is less clear how to extend the effect of stride-length to the smaller, non-processive

steps of myosin II. If they followed the long-pitch actin helix, then myosin II would twirl

actin with a short right-handed pitch (74 nm) and not the more gradual left-handed motion

that is observed. The step-size idea also predicts a strong correlation between linear velocity

and azimuthal twirling frequency, variables that are only weakly correlated in the data here

Fig. 3.9).

Theoretical modeling [131] suggests that left-handed actin twirling by non-processive

myosin in a gliding assay arises from myosin heads preferentially binding to actin monomers

that approach at the correct azimuth. This preference arises because only a fraction of the

monomers, which are helically distributed around the filament, lie within a range of azimuthal

orientations suitable for binding of myosin (“target zone” [132]). These monomers are pre-

sented to the head at regular intervals as the filament translocates above it. In the 13/6 actin

helix, if the myosin head binds to the 13 monomer, then the filament would glide straight

(black arrow in Fig. 3.14A). If attachment is very fast, however, then monomers within the

range of acceptable azimuths (e.g., the hatched area in Fig. 3.14A) and leading the center of

the target zone (e.g., number 11) will become the preferred binding site. In a gliding assay the

torque arises as the left-of-center monomer (monomer 11) is pulled in toward the filament axis

during the stroke (red arrow) analogous to the mechanism proposed for the processive bead

assays [115, 116]. A prediction of this model is that an experiment at higher ionic strength,

which would weaken myosin binding to actin, might show straighter or even right-handed
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Figure 3.14: Two models for actin twirling: (A) Target zone model. Monomer 11 of the translo-
cating actin filament (gray helix, pointed-end up) enters the target zone (shaded) of the myosin head
(black dot) before monomer 13 and therefore binds more rapidly to myosin, despite lying slightly off
the filament axis. Twirling of the filament occurs during the power stroke as monomer 11 is pulled
predominantly along the direction of filament motion, but also in toward the filament axis (red ar-
row). Myosin attachment to on-axis monomer 13, however, would translocate actin during the power
stroke without twirling the filament (black arrow). For convenience, monomers are labeled relative
to a supposed previous binding site one helical repeat away at monomer 0 along the 13/6actin helix.
(B) Rigor drag model: Hypothetical motions for myosin attached to actin are shown by arrows at a
possible binding site along the actin helix. The motion due to the power stroke of the myosin heads at-
tached to actin (solid black) is mostly along the z-direction, but may also apply a slightly right-handed
torque [106,113]. The drag due to the rigor heads attached to actin (blue) retards the linear motion, but
instead of acting along the same direction as the power stroke (dotted black), it is sufficiently skewed
to cause the resultant motion (red) to be slightly left-handed.

twirling. Higher velocity filaments, due to higher Mg·ATP concentrations, might also affect

the twirling pitch by altering which monomers within the target zone are the most likely bind-

ing sites.

Finally, the drag force of the rigor heads, which are bound tightly to actin, is considered

since they are probably the dominant retarding force on a gliding actin filament at the low

Mg·ATP concentrations used here. If forward motion of the filament is due to a nearly straight
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or slightly right-handed power stroke [113], then left-handed twirling may result from a drag

force due to rigor heads pulling backwards but also slightly laterally. Hopkins et al. [133]

measured tilting and twisting of myosin regulatory light chains in muscle fibers. They reported

a twisting motion of the myosin (i.e., the γ angle) when a rigor muscle is allowed to shorten,

but no twisting in an active muscle. The analogous drag force of rigor heads in a gliding assay

would result in a left-handed torque to the gliding filament. In Fig. 3.14B, the resultant velocity

(red arrow) on an actin filament is shown as the vector sum of velocities due to the power stroke

(black arrow) from active heads and drag from strongly attached rigor heads (blue arrow). The

rigor-drag hypothesis may explain the insensitivity of twirling to filament length and myosin

concentration because twirling would instead be attributed to the ratio of active and rigor

heads along the filament and not their absolute number. Unlike models that explain twirling

via a direct structural coupling between linear and angular velocity, the rigor-drag hypothesis

would predict a larger pitch at higher Mg·ATP concentrations because linear velocity would

increase as angular velocity decreased (since there are fewer rigor heads bound to actin).

This prediction has not been tested critically in this work or previous experiments [59] due

to the limited range of Mg·ATP concentrations tested. Since the fraction of heads bound

to a filament in the rigor state decreases at high Mg·ATP concentrations, the tendency to

twirl with a left-handed pitch would be reduced, and thus possibly reconcile the difference

between the left-handed twirling at low Mg·ATP concentrations measured in this work with

the experiments by Nishizaka et al. [113] that showed a right-handed torque at high (2 mM)

Mg·ATP concentration.
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3.4.5 Conclusions

PolTIRF has been extended to enable measurement of probe angles within a hemisphere of

solid angle. It has been used to determine the handedness of twirling actin filaments gliding

over a surface containing myosin II. Approximately 20% of analyzable filaments, translocated

by myosin II, twirled with left-handed pitch. The magnitude of the pitch depends on myosin

isoform, but for myosin II is insensitive to filament velocity, filament length or myosin con-

centration in the range investigated. A torque component to the working stroke, the myosin

stride length, the helical distribution actin monomers, and the drag of rigor myosin heads may

contribute to the azimuthal force component in a gliding assay, but no single one of these

influences adequately describes the rotational motions observed.
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3.5 Appendix

3.5.1 ±45◦ degree polarization terms

In order to determine the 3D orientation and rotational (‘wobble’) motions of a single fluo-

rescent molecule, measured polarized fluorescence intensities are compared to intensities that

are calculated from a theoretical model of the molecule. This model approximates the probe

as an electromagnetic dipole µ̂ (see main text and [63]) that absorbs and emits photons polar-

ized preferentially along its dipole axis. This appendix derives the equation for calculating the

intensity I of a probe oriented with respect to both the polarization direction of the detector

and the linearly polarized electric field of the incident illumination:

ε̂ Iα̂ = κ · Pa(µ̂a, ε̂) · Pe(µ̂e, α̂) (3.5.1)

Where I is the rate of photons collected from a static dipole µ̂ with probability P of absorbing

(a) or emitting (e) photons relative to the incident electric field polarization (ε̂) or analyzer

(α̂). κ is an overall normalization factor. The complex quantity (ε̂) describes the polarization

of the electric field E, but not its magnitude E0:

E = E0ε̂e−z/de−iωt (3.5.2)

ε̂ can be decomposed into its Cartesian components:

ε̂ = [x̂εxe−iδx + ŷεye−iδy + ẑεze−iδz ] (3.5.3)

This appendix is concerned with the new features of the model required for the off-axis

incident polarizations (L1, R1, L2, R2); thus only the terms describing the absorption proba-
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bility, Pa, need to be modified:

Pa(µ̂a, ε̂) ≡ |µ̂a · ε̂|2 (3.5.4)

∝ (ε2
xµ2

x + ε2
yµ2

y + ε2
zµ2

z + 2εxεyµxµy sin(δs − δp) (3.5.5)

+2εyεzµyµz cos(δs − δp))

Note that for Beam 2, εx should be replaced with εy and vice versa in Eq. (3.5.5). Similarly

for µx and µy.

Calculations are performed in the reference frame of the microscope; where z points into

the objective and the x-y plane is parallel to the stage with the x and y axes along the direction

of propagation of Beam 1 and 2, respectively, see Fig. 3.3. The orientation (θ, φ) of the

dipole in this frame is given by µ̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). The Cartesian

components of ε̂ in the microscope frame are determined from the magnitude of the s and p

polarizations. The s component of ε is entirely in the y(x) direction for Beam 1(2). Due to

the shallow glancing angle (θi) of the incident beams, the p component of ε is predominantly

normal to the reflection plane (εp,n ∼ ẑ); however the small tangential component (εp,t ∼ x̂

and ŷ) in Beam 1 and 2, respectively, is also included in the analytical expressions. The cross

terms (4th and 5th terms of Eq. (3.5.5)) arise when the polarization of the electric field, given

by angle ζ, is intermediate between p and s. The components of the evanescent field are given

by:

εp,t = −2 cos(ζ) cos(θi) sin(δp)

εp,n = 2 cos(ζ) sin(θi) cos(δp)/ξ2

εs = 2 sin(ζ) cos(δs) (3.5.6)
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Where ξ is the ratio of the indices of refraction in the aqueous solution to the higher index

slide material at the reflecting surface, and ζ = +45◦ and −45◦ for εL and εR, respectively.

cos2(δp) =
ξ4 cos2(θi)

ξ4 cos2(θi) + sin2(θi)− ξ2

sin2(δp) =
sin2(θi)− ξ2

ξ4 cos2(θi) + sin2(θi)− ξ2

cos2(δs) =
cos2(θi)
1− ξ2 (3.5.7)

The previous equations describe a static dipole. As described in more detail in [63], rota-

tional motions of the dipole are separated into a fast and slow time scale. Rapid motions that

re-orient the dipole on a time scale faster than the ∼ 4 ns fluorescent lifetime are assumed to

occur within a wobble cone of half-angle δ f . Rotational motion of the probe on time scales

slower than ∼ 4 ns, yet faster than the 10 ms illumination time are assumed to occur within

a wobble cone of half-angle δ. See Reference [2] for a complete derivation of these terms,

which are used in a Levenberg-Marquardt C code to find the parameters (θ, φ, δ, δ f , κ) that

maximize the likelihood of the measured intensities.
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3.5.2 Calibration factors

Calibration factors are defined for the additional L and R excitation polarizations:

p1 Iy = p1 Ir
y

p1 Ix = p1 Ir
x/Cd

s1 Iy = s1 Ir
y/X1

s1 Ix = s1 Ir
x/(X1 · Cd)

p2 Iy = p2 Ir
y/X12

p2 Ix = p2 Ir
x/(X12 · Cd)

s2 Iy = s2 Ir
y/(X2 · X12)

s2 Ix = s2 Ir
x/(X2 · Cd · X12)

L1 Iy = L1 Ir
y/XL1

L1 Ix = L1 Ir
x/(XL1 · Cd)

R1 Iy = R1 Ir
y/XR1

R1 Ix = R1 Ir
x/(XR1 · Cd)

L2 Iy = L2 Ir
y/(XL2 · X12)

L2 Ix = L2 Ir
x/(XL2 · Cd · X12)

R2 Iy = R2 Ir
y/(XR2 · X12)

R2 Ix = R2 Ir
x/(XR2 · Cd · X12) (3.5.8)

Where Cd and the various X’s represent the 8 calibration factors, and the r superscript indi-

cates a raw polarized fluorescence intensity. Calibration data is obtained by recording three
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background measurements followed by three recordings of a 15 nM solution of Rhodamine

B in 5% dimethylformamide that is flowed into the sample chamber (see Reference [63] for

details). The calibration factors are obtained from a model similar to the one described in Ap-

pendix 3.5.1, but modified to accommodate multiple molecules free in solution by increasing

the wobble cone to δ = 90◦.

3.5.3 Twirling analysis

The path traced out by a probe bound to an actin filament that is twirling about its longitudinal

axis is evident in two different representations of the angular motion. First a plot of θ vs. φ

for one rotation of the probe traces out a circle that is centered at (90◦, φactin) where φactin

is the direction in the x-y plane of the actin filament translocation. The reason that θ = 90◦

is because a probe that is attached to a filament, which is uniformly twirling about its axis in

the x-y plane, maps out a locus of points that lie along the surface of a cone with symmetry

axis in the x-y plane. Alternatively, the probe orientation can be represented in the (β, α)

reference frame of the actin filament [65], where β is the polar angle with respect to the actin

axis toward the forward moving end of the actin filament and α is the azimuthal angle around

the filament; for details, see Fig. 3.3. In the actin frame a uniformly left-hand twirling filament

has a constant β and a decreasing α with a constant rate equal to the angular velocity (ω) of

the twirling motion.

The inherent dipole symmetry implies two equally valid solutions to Eq. (3.5.1): (θ, φ)

and (θ′, φ′) = (180◦ − θ, φ + 180◦), either of which the numerical solver can obtain. Con-

sequently, we need to determine one set of solutions that describes the trajectory of one end
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of the dipole. This is relatively straight-forward for a uniformly twirling filament because

subsequent orientations of the dipole should be nearby previous orientations. Prior to quanti-

fying any twirling motions, we determine the minimum trajectory by choosing the orientation

at time t (either (θ, φ)t or (θ′, φ′)t) that is closer to the orientation at t − 1 and then re-

peat for the entire trace. Mathematically, we accomplish this by choosing µ̂t that minimizes:

ψt = arccos (µ̂t · µ̂t−1). We arbitrarily choose the initial probe orientation as the one that

points closer to the direction of positive translocation.

In order to reduce the impact of a single spurious point on the entire trajectory, the pro-

cess is repeated omitting the point with the largest ψ to make sure the path of the minimum

trajectory does not change. If φt′ crosses the hemisphere from +180◦ to −180◦ then 360◦ is

added to φ values with t > t′ in order to generate a continuous trajectory (similarly, 360◦ is

subtracted for crossings in the opposite direction). Sometimes this automated detection fails

and we manually shift the data onto a more confined trajectory in order to undo unrealistically

large and sudden angle changes.

In order to transform angles into the actin frame, we rotate the twirling axis of the filament

to align with the x-axis (i.e., φ′ = φ− φactin) and apply the transformation:

α = arctan2 (µy, µz)

β = arccos(µx) (3.5.9)

Where α = arctan2 (µy, µz) is similar to α = arctan (µy/µz) but with a larger range of

unique angles: −180◦ < α < 180◦. After this transformation, a uniformly rotating probe

will exhibit a constant β and a sawtooth pattern for α, which repeats after every rotation. In

order to determine the angular velocity, ω, we fit a line to α after first shifting all α’s after

94



each complete right (left) handed rotation by +(−)360◦. Because φactin is determined from

only two CCD frames, we sometimes manually adjust φactin to minimize the error of the fit,

usually only within ±30◦ and never by more than 90◦, which would change the handedness

of rotation. Due to the probe’s dipole symmetry, orientations that are aligned with α = 0◦ and

180◦ have identical intensities in all 16 polarizations. These points are manually adjusted by

±180◦ prior to fitting the line to α.
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Chapter 4

Multiple Intensity Change Point

Algorithm

4.1 Introduction

The goal of polarized TIRF (polTIRF) measurements is to determine the orientation and wob-

ble of a single fluorescent molecule. The approach discussed in Sect. 3 accomplishes this by

comparing the relative magnitudes of the different polarized fluorescence intensities (PFIs)

measured in 10 ms width bins to those predicted by a dipole model of the probe. Incorpo-

rating single photon counting (SPC) technology into polTIRF (Sect. 5) allows the intensities

to be determined in arbitrarily long or short regions of the data since there is no binning of

the photons. The question becomes: When during the recording does the intensity change?

Change point analysis provides a statistically rigorous way to answer this question by locating

the point in the data where the intensity abruptly changes magnitude but is otherwise constant
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in the two flanking regions. The advantages of this approach are that no artificial time base

due to binning is imposed on the data, there is no need for user adjustable thresholds that sep-

arate the molecule into supposedly different states, and there is no assumed model or kinetic

scheme. Instead, abrupt intensity changes in the raw data are identified assuming only that the

photons arise from a random Poisson process, independent of any model.

PFIs that change magnitude in sudden discrete steps, but are otherwise constant would not

be a good description of the continuously varying PFIs measured twirling experiments, but it

would be a reasonable model for a myosin V molecule that takes steps along an actin filament.

Section 5 describes polTIRF measurements of a bifunctional rhodamine labeled calmodulin

attached to the myosin V lever arm. At low Mg·ATP concentrations, the molecule dwells for a

relatively long time before binding ATP and rapidly stepping to the next actin binding site. The

ultimate goal of the algorithm is to find change points in the PFIs recorded from a rhodamine

probe undergoing these orientation changes. After locating the change point in the recording,

the PFIs in the intervals between adjacent change points are input to the dipole model (see

Sect. 3.2.4) to determine the molecule’s orientation and wobble during the recording.

The single intensity case for detecting change points in SPC data was thoroughly devel-

oped by Watkins and Yang [100] and applied by them to single molecule FRET recordings to

determine the intensity changes in each of the donor/acceptor fluorophores [134]. The multiple

intensity change point (MICP) analysis presented here extends their work to single molecule

polTIRF measurements where the change in intensity occurs simultaneously across multiple

PFIs while the total intensity is constant. In a later paper, Xu and Yang [135] developed an

affinity functional (an integral expression for comparing two probability distributions) for the
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joint analysis of the change point information in each of the donor/acceptor FRET intensities.

In this work, the polarization information is combined into a single likelihood function and

the change points are identified simultaneously on all the PFIs.

In the following sections, a conventional approach for distinguishing different intensity

regions in a binned intensity trace is reviewed and contrasted with the change point method.

The change point analysis is then formulated from binomial statistics, and the analysis de-

scribed in detail for the case of a single change point [100]. The method is then extended to

multiple intensities suitable for polarized TIRF measurements and an algorithm for searching

for multiple change points described. The MICP is tested on several types of simulated inten-

sity changes, including the change in PFIs expected for a labeled myosin V molecule stepping

along actin. In Sect. 5, it is applied to high time resolution polTIRF experiments of myosin V

motility.

4.1.1 Conventional analysis of time binned data

Typically, intensity traces are obtained by counting the number of photons that are detected

during a fixed interval of time. A meaningful change in intensity is claimed to have occurred

when the signal crosses a user defined threshold. In noisy data, the bin width is increased or the

data is filtered to increase the signal to noise ratio and minimize the number of false positive

threshold crossing events. Issues with this approach, such as missing short-lived threshold

crossing events, can effect the results and were discussed extensively in Sect. 2. An alternative,

discussed in that section, was the hidden Markov method that detects events by incorporating

the statistical noise of the raw observation into the kinetic model used to describe the system.
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Alternatively, if little is known about the specific intensities and the underlying model, the

size of the change could be compared using a statistical test, as is done in various step finding

algorithms [136, 137].

Even if one of these approaches reliably identified the transitions, their time resolution

would be limited by the width of the time bin, thus requiring corrections for any missed events.

One improvement is to record the arrival time of each photon using single photon counting

technology and then, after the experiment is complete, an optimum bin size can be chosen.

The time resolution of the analysis is still limited by the bin size, and new complications

arises as to choosing the proper bin width. As shown in Sect. 2, hidden Markov models can be

designed for unbinned raw data including single photon counting data [138, 139]; however, a

kinetic model must still be imposed on the analysis. Single photon counting data is amenable

to change point analysis, which as mentioned in the introduction is well-suited for detecting

the abrupt changes in the PFIs observed in polTIRF experiments of myosin V stepping.

Change point analysis exploits the time stamped data directly by modeling the statistics of

the photon arrival times. The statistics of the photons that arrive before and after a putative

change point at time ti are compared to the statistics if there were no change point. There are

several mathematical descriptions for counting photons in the regions before and after ti: (1)

two different Poisson distributions for the number of photons emitted during the two inter-

vals [100], (2) two different exponential distributions for the time intervals between photons,

and (3) two different binomial distributions of the photons in either region. Each approach

assumes that photons are emitted randomly at a constant rate, and each leads to a similar final

expression for the likelihood of a change point occurring in the data.
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4.2 Change point analysis

Before developing the MICP analysis, the single intensity case will be reviewed. Important

results include the basic likelihood equation, the threshold for false positives, and a correction

scheme that is required for minimizing bias in the change point location within the interval.

These same topics will then be extended to the case of two intensities, and the results pertinent

for polTIRF experiments, which typically include 8 or 16 PFIs, are included. In developing

the method, a single interval with only one change point is considered. Later in Sect. 4.2.3,

this assumption will be relaxed and the algorithm will be applied to data with multiple change

points.

4.2.1 One change point and one intensity

Mathematical framework

The goal of the change point analysis is to determine if the intensity of the fluorescence emis-

sion changed during an interval, and if so when in the interval did the change occur. Before

considering photons that are detected in multiple polarizations, the change in intensity of a

single stream of photons is considered; for example, a single fluorescence molecule that emits

at rate κ1 and then photo-bleaches to the background rate κ2 (e.g., Fig. 4.2A). In this scenario

N photons are recorded during the interval T where each photon i = 1, 2, 3 . . . N is tagged

with its arrival time ti using single photon counting technology (Fig. 4.1, and Sect. 5 for ex-

perimental details). During periods of high intensity the interval between adjacent photons

∆ is shorter than in periods of low intensity, which can be visualized by plotting the photon
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Figure 4.1: Diagram illustrating 10MHz sync pulses that discritize time into short bins δ = 100 ns
such that the probability of detecting more than one photon by the APD (blue) in δ is very low. The
“macrotime” ti indicate which bin the ith photon arrived in. The “microtime” specifies the precise
arrival time within δ, and is not used here. In the case of a single change point at ti, the time inter-
vals between successive photons ∆i = ti+1 − ti that arrive before the change point are exponentially
distributed with mean 1/κ1, after the change point the remaining ∆’s are distributed with mean 1/κ2.

arrival times (Fig. 4.2B). For constant rate of emission the slope of the curve is the average

interval between detected photons 〈∆〉, which is equal to the inverse of the emission rate 1/κ.

Changes in intensity are clearly identified by a kink in the curve (Fig. 4.2B). Locating the

position of these kinks is the heart of change point analysis. The challenge is distinguishing

changes in the slope that correspond to different emissive states of the molecule, especially in

short intervals, with the small changes in the slope due to the random photon arrival times.

The algorithm locates the intensity change by comparing two scenarios: Either the probe

emits i photons with constant rate κ1 until time ti and the remaining N− i photons with rate κ2

from ti to T, or the probe emits all N photons with constant rate κ0 during the entire interval.

The sync pulse in the SPC circuit (Fig. 4.1) discretizes time into bins that are very short (here

δ = 100 ns) so that the probability of detecting a photon in any one bin is much less than unity

(κ0δ ¿ 1), and therefore the probability of detecting two photons in one bin is negligible, i.e.,

∼ (κ0δ)2. The total number of bins is N = tN/δ, where N of the bins contain one photon

and the remaining N − N are empty. To make this comparison precise, the two scenarios are

formulated as hypotheses and the relative likelihood compared in a ratio test.

The first hypothesis is that the i photons before change point at time ti are binomially
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Figure 4.2: Example of a single change point at N/2 in a single-intensity simulation with N = 200
and a ratio between the high and low intensity of χ = 3. A) The intensity is binned with 20 constant-
width bins and shows a transition in the approximate location of the actual (H) and inferred (dotted
line) change point. B) The kink in the cumulative distribution of photons clearly indicates a change in
intensity when i ∼ N/2. C) The peak of the likelihood surface L? occurs at i = 99 (vertical dotted
line) and the L? − 2 confidence intervals at i = 98 and 102 enclose the actual change point (inset,
horizontal lines)

distributed amongst Ni bins and after the change point the remaining N− i photons are bino-

mially distributed amongst the N −Ni bins:

HA =
[(

i
Ni

)
(p1)i(1− p1)Ni−i

]
·
[(

N − i
N −Ni

)
(p2)N−i(1− p2)N−Ni−(N−i)

]
(4.2.1)

where, Ni = ti/δ are the number of bins prior to the change point,

p1 = κ1δ = i
ti

δ is the probability of detecting a photon in a bin δ during the region before the

change point and,

p2 = κ2δ = N−i
tN−ti

δ is the probability of detecting a photon in a bin δ after the change point.1

HA will be compared with the second (null) hypothesis that no change point occurred

during the same two intervals:

H0 =
[(

i
Ni

)
(p0)i(1− p0)Ni−i

]
·
[(

N − i
N −Ni

)
(p0)N−i(1− p0)N−Ni−(N−i)

]
(4.2.2)

where, p0 = κ0δ = N
tN

δ is the probability of detecting photon in a bin δ during the entire

interval.
1The two probabilities can be left as unknown parameters in the likelihood function and then maximized to

find their optimum value. The result is that the probability for emission is equal to the mean rate of emission (κ

= total photons/time interval) multiplied by the time bin δ as expected for independent events
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Note that maintaining the two regions in H0 even though the emission probability is con-

stant allows for the combinatorial terms to cancel when a likelihood ratio test, Lo
i = ln HA,i

H0,i
,

is performed at each photon in the interval [100, 140]:

Lo
i = ln

[(
p1

p0

)i (1− p1

1− p0

)Ni−i
·
(

p2

p0

)N−i (1− p2

1− p0

)N−Ni−(N−i)
]

After substituting and rearranging terms, the ratio is the product of a function that depends

on the arrival time of the ith photon and a negligible correction term (with the underbrace),

which approaches unity when the number of photons is much less than the number of bins

(i.e., N ¿ N or κ0δ ¿ 1).

Lo
i = ln




(
i/ti

N/tN

)i ( (N − i)/(tN − ti)
N/tN

)N−i

·
(

1− p1

1− p0

)Ni−i (1− p2

1− p0

)N−Ni−(N−i)

︸ ︷︷ ︸




Dropping the correction term and normalizing the arrival time by the total time Vi = ti/T

gives a very simple result [100]:

Lo
i = i ln

(
i/N
Vi

)
+ (N − i) ln

(
1− i/N
1−Vi

)
(4.2.3)

This equation converts the list of photon arrival times into a list of likelihoods that the

two-intensity hypothesis fits the data better at each point than the one-intensity hypothesis.

The index of the photon i? with the peak likelihood

Lo? = max
i=1...N

Lo
i

is the most likely location of the change point, in principle with single photon precision. The

uncertainty in the location of the peak is quantified with 95% confidence intervals that include

the photons with likelihoods within two log-units of the peak, i.e., Lo
i ≥ Lo? − 2 [88]. Since

there will always be a maximum value in the list, merely finding the peak is not sufficient for
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proving that a change point actually occurred. Next a process for determining the significance

of the peak will be described.

Example of single intensity change point

A single intensity change point at i = 100 for N = 200 and χ = κ1/κ2 = 3 is simulated

(Fig. 4.2) in order to demonstrate the analysis. The approximate location of the intensity

change is clear in the binned intensity plot (Fig. 4.2A), and with more precision in the graph

of the photon arrival times (Fig. 4.2B). The likelihood surface (Fig. 4.2C) indicates that the

change point is close to the expected location with a prominent peak that exceeds the false

positive threshold (horizontal dashed line Fig. 4.2C) found in Fig. 4.3A. The uncertainty in

the change point, determined from those photons with Lo
i ≥ L? − 2, is ±2 photons and

encloses the known location of the change point (Fig. 4.2C inset).

Threshold for false positives detection

The probability that Lo? is a false positive can be determined if the distribution of Lo? when

no change point is known. A threshold for false positives ρ0 can then be defined such that (for

example) 95% of the Lo? are below the threshold and correctly report no change, whereas the

remaining 5% of the Lo? exceed the threshold and report a false positive. In actual data, any

Lo? that exceeds the threshold is taken to be a valid change point with 95% confidence. If the

fraction of acceptable false positives is referred to as α then the probability of a false-positive

can be used to determine the unknown threshold ρ0 according to:

Pr
(
Lo?

i ≥ ρ0
1−α(N); i = 1, . . . , N − 1

)
= α (4.2.4)
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Figure 4.3: Values of the threshold ρ for 5% false positive error rate for NP = 1, 2, 8 and 16 intensities
as a function of the number of photons in the interval N. (A) Threshold for the uncorrected likelihood
function defined in Eq. (4.2.6). (B) The threshold after correcting for the non-uniform false positive
error rate.

Note that the threshold does not depend on the absolute rate of photon emission, but it does

depend on the total number of photons in the interval; as expected since Eq. (4.2.3) increases

with increasing N.

Impressively, Eq. (4.2.4) can be computed exactly for the single intensity case using an al-

gorithm that was initially developed by Noé [141] for calculating probabilities of Kolmogorov-

Smirnov statistics. Since the threshold is the unknown quantity and not α, it is found by nu-

merically solving Eq. (4.2.4) for the the desired false positive rate. The dependence of the

threshold on N is found by repeating the calculations over the range of photons that will be

encountered experimentally [100,142]. The threshold is also easy to compute via simulations,

which will be necessary in multiple intensity data since Noé’s algorithm only applies to the

one intensity case. Thresholds corresponding to α = 0.05 were simulated (see Sect. 4.3.1)

over a wide range of N and fit to a power law function (see Table 4.1) for use in the change

point algorithm (see Fig. 4.3A).
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Non-uniform distribution of false positives

Even though this technique successfully determines the number of false positives, the location

of these false positives across the interval is highly non-uniform (e.g., black line for 16 inten-

sities in Fig. 4.4). The probability of detecting a change point is ∼ 10× higher in a region

near the boundaries of the interval containing∼ 1− 5% of the total photons than in the center

of the interval. This problem has been addressed successfully for single change points and a

two step solution proposed [143].

Qualitatively the phenomena is not unexpected: When testing for a change point near the

edge of the interval, a random fluctuation in the region with a small number of photons is better

fit with an intensity that differs from the intensity estimated in the larger region. Essentially,

overfitting to these fluctuations results in change points being identified near the boundaries

of the interval. When testing for a change point in the middle of the interval, however, there

are enough photons in either region to prevent large fluctuations. Mathematically, this bias

arises because photons in middle of the interval can arrive with a relatively wide distribution

of times, all of which are centered about 0.5 (in normalized units of time), whereas photons

near the boundaries of the interval have a relatively narrow distribution of times, either close

to zero or close to unity. The result is that the likelihood function Lo
i, which depends on

these distributions in the different regions, is larger on average near the boundaries than in the

middle.

In order to correct for this asymmetric likelihood function the distribution at each i is

normalized so that it has zero mean and unity standard deviation. This is accomplished by

subtracting the mean likelihood E[Lo
i] and dividing by its standard deviation σi at each value
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Figure 4.4: The distribution of false positives for NP = 16 across an interval is strongly peaked
near the edge of the interval for uncorrected likelihoods Lo

i (black). The uncorrected distributions
rise from zero immediately at the edge, increase rapidly before peaking and then decay slowly down
to a minimum at the center. The distribution becomes increasingly peaked as N is increased from
N = 1000(A) to 10 000(B). The fraction of the total probability lying within the first and last 5% of
each interval is 30% and 60% (instead of 10%) for N = 1000 and 10 000, respectively. Applying
the correction factors (see Fig. 4.6) to the likelihood and excluding 2.5% of the photons from near the
edges (vertical dashed lines, see Sect. 4.3.1) results in a nearly uniform distribution of false positives
(blue), as expected for the 5% false positive rate used here (horizontal dashed line).

of i:

Lo
i =

Lo
i − E[Lo

i]
σi

If the initial distributions of Lo
i at each i were different size Gaussian distributions, then

the distribution of false positives would now be uniform across the interval. Instead, the Lo
i

are actually beta distributed random variables [143] and the normalization procedure is not

sufficient. An ad hoc additional weighting function Wi = 0.5 ln
(
4i(N − i)/N2) is applied

to further penalize the likelihoods near the edge of the interval [143]. The final form of the

corrected likelihood function Li is:

Li =
Lo

i − E[Lo
i]

σi
+ Wi = Lo

i + Wi (4.2.5)

Amazingly, for the one intensity case the E[Lo
i] and σi can be evaluated analytically [143],

and thus the threshold for false positives (using Eq. (4.2.4) with ρ in place of ρ0) can still be

calculated using Noé’s algorithm [100]. These analytic solutions, however, are not readily
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extended to multiple intensities and so are not repeated here. As will be discussed in Sect. 4.3,

the E[Lo
i] and σi can be obtained from simulations for any number of intensities. Determining

these correction factors requires numerous simulations over the desired range of photons N

and number of intensities NP (see Sect. 4.3.1), but they only need to be performed once and

then the results referenced by the algorithm.

4.2.2 Theory for one change point and multiple intensities

Mathematical framework

Polarized TIRF data consists of multiple polarized fluorescence intensities (PFIs) that report

on the orientation of a fluorescent molecule. When the molecule suddenly changes orientation,

for example during the step of a labeled myosin V, the magnitude of the PFIs change abruptly

and simultaneously. Depending on the orientation of the probe in the two states, some PFIs

will change greatly and others very little. If the probe is illuminated from multiple directions

such that it is always well-excited, then the total intensity remains approximately constant

even though the underlying PFIs can change dramatically.

Just as the binomial distribution was used to describe the statistics of N photons inN bins,

a multinomial distribution for multiple intensities can be used to describe the probability of

detecting Np different “types” of photons. Here the different “types” of photon are detected

under different polarization conditions but could also be different wavelengths, as in FRET

for example. The probability of n1 photons being detected in channel 1 and n2 in channel 2
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and so on, each with individual detection probabilities p1, p2. . . is:

Pr(n1, n2, . . . nj|p1, p2, . . . pj) =

N!
n1!n2! . . . nj!

pn1
1 pn2

2 . . . p
nj
j

[
1− (p1 + p2 + . . . pj)

]N−(n1+n2...nj)

︸ ︷︷ ︸

If the hypothesis of a change point after i photons is compared with the null hypothesis of

no change point at point i, then the multinomial coefficients drop out, similar to the binomial

case discussed for a single change point (Sect. 4.2.1). Also, the last term quantifying the

probability of detecting no photons in any of the channels (underbrace in the above equation)

is close to unity as long as the number of photons is much less than the number of available

bins (N ¿ N ). These assumptions allow Eq. (4.2.3) to be rewritten as a sum over each of

the independent channels (since the log of a product equals the sum of their log’s):

Lo
i =

Np

∑
j=1

(
nj,i ln

(
nj,i/Nj

Vi

)
+ (Nj − nj,i) ln

(
1− nj,i/Nj

1−Vi

))
(4.2.6)

where Nj is the total number of photons in the jth intensity such that ∑ Nj = N. nj,i is a set of

j vectors (one for each intensity) each containing N elements that starts with 0 and increments

after a photon is detected in that channel up to Nj. Vi is the same vector of the photon arrival

times normalized by the total time T as for the single intensity case. Defining the set of

vectors nj,i allows each PFI to contribute its photons to the likelihood function in the order in

which they were detected. As with the single intensity case, Lo
i for the multiple intensity case

also suffers from a non-uniform of distribution false positives, which is corrected in the same

way by subtracting off the mean likelihood E[Lo
i], dividing by the standard deviation σi and

applying a weighting factor, W, see Sect. 4.2.1. These correction factors and the weighting

function are different from the single intensity case and remove most of the bias except for a
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small peak very close to the boundary. In order to avoid any residual bias, the MICP algorithm

only considers change points that occur within the center 95% of the interval. That is, change

points are neglected if they occur within a 0.025N buffer on either end of the interval (see for

example Fig. 4.4 vertical dashed lines for the 16 intensity case).

The procedure for locating the peak, finding its confidence interval, and testing for its

significance are the same as for the one intensity case, except that a new threshold for false

positives must be computed for the multiple intensity case.

Threshold for false positive detection

As mentioned in Sect. 4.2.1, the threshold for false positive detection depends on N, but as

shown in Eq. (4.2.6) it also depends upon the number of intensities Np among which the pho-

tons are divided. The new threshold values with and without the correction factors E[Lo
i] and

σi, are determined from simulations as described for the one intensity case but with the photons

divided amongst the different intensities. The details of the simulations will be discussed in

Sect. 4.3.1, but the thresholds for 1, 2, 8 and 16 PFIs and α = 0.05 are shown in Fig. 4.3.

Least-squares fits to the simulated values were determined using the functions ρ0(N) =

A + B
(
log10 N

)C for the uncorrected likelihoods and ρ(N) = a/
(

1 + b
(
log10 N

)c
)

for

the corrected likelihoods. The se functions were empirically chosen because they appeared to

fit the data well, see Table 4.1 for the values of the parameters.

Example of multiple intensity change point

In order to demonstrate the technique for locating a change point with multiple intensities,

photon arrival times for two-intensity channels with a change point at the 100th photons are
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NP A B C a b c

1 -85.07 87.91 0.0229 6.207 1.481 -3.029

2 -120.0 124.2 0.0182 5.369 1.360 -3.314

8 -50.25 61.09 0.0352 4.212 1.671 -3.377

16 21.22 8.857 -2.004 3.839 1.338 -3.032

Table 4.1: Fitting parameters used to determine the 5% false positive threshold ρ(N) for different
number of intensities NP using the uncorrected likelihood ρ0(N) = A + B

(
log10 N

)C and corrected

likelihood ρ(N) = a/
(

1 + b
(
log10 N

)c
)

simulated for N = 200 total photons (H Fig. 4.5). One intensity increases by a factor of

χ = 3 (red line Fig. 4.5) while the other decreases by 1/χ (blue line) such that the total

intensity remains constant (black line). Intensity traces constructed from 20 equal time bins

across the interval indicate the approximate location of the actual change point (Fig. 4.5A).

The distribution of arrival times (black line Fig. 4.5B) has a constant slope with no significant

kinks; however the relative arrivals in each of the separate intensities (i.e., nj,i/Nj, the blue

and red lines in Fig. 4.5B) indicate a clear kink at i = N/2. The peak of the likelihood

surface (Fig. 4.5C) exceeds the false positive threshold for 2 polarizations (horizontal dashed

line). The uncertainty in the change point, determined from those photons with Lo
i ≥ L?− 2,

includes photons 97− 101 thus bracketing the known location of the change point at N = 100

(Fig. 4.2C inset).
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Figure 4.5: Example of a single change point in a two-intensity simulation with N = 200 where
one intensity changes by χ = 3 and the other by 1/χ at i = N/2.(A) The individual (red,blue)
intensities are binned with 20 constant-width bins and show a transition in the approximate location
of the actual (H) and inferred (dotted line) change point, whereas the total intensity (black) is constant
across the interval. (B) The kink in the cumulative distribution of photons nj,i/Nj clearly indicates a
simultaneous change in in both intensities when i = N/2. (C) The peak of the likelihood surface Lo?

occurs at i = 100 (vertical dotted line) and the Lo? − 2 confidence intervals at i = 97 and 101 enclose
the actual change point (inset, horizontal line)

4.2.3 MICP algorithm

In experimental data, a processive myosin V is recorded for multiple translocation steps and

consequently multiple changes in orientation of the attached fluorophore are contained within

the data, not just a single change point flanked by constant intensities as has been discussed

so far. Fortunately, the method can be applied directly to the entire data set [100] and each

change point found in an iterative process. For the first few change points that are found, the

flanking regions are clearly not constant since they contain the other change points. After the

change points are found in this rough manner, however, they are optimized one at a time in

order to eliminate the influence of neighboring change points. More precisely:

1. For a single recording, which includes N photons, NP PFIs and multiple change points,

the MICP algorithm is applied as follows: (1) calculate Lo
i for each photon in the

interval with Eq. (4.2.3), (2) apply the correction and weighting factors E[Lo
i], σi, and

Wi to each value of Lo
i to obtain the corrected likelihood function for each photon in

the interval Li, (3) within the interval 0.025N-0.0975N find the most likely change
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point as the location i? of the likelihood peak, (4) test the candidate change point for

significance by comparing it with the false positive threshold L? > ρα, (5) if the peak

exceeds the threshold, record its location as a change point and determine its confidence

interval from those photons with likelihoods greater than L? − 2.

2. On the next iteration, the data prior to the peak at i? is analyzed and the location of its

largest peak above the threshold is determined. Similarly, the largest peak in the region

between i? and the end of the data set is determined. This process is repeated on each

sub-region of the data until none of the peaks exceed their respective thresholds.

3. After determining the approximate location of the change points, the location of each

one is re-evaluated over the range limited by its neighbors. If the change point no

longer exceeds the threshold over this smaller range, then the region is combined with

its neighbor and then that neighbor is evaluated. Regions containing less than 50 photons

are automatically combined with the neighboring region.

4. After refining the location of each change point, the intervals between all adjacent

change points are tested for additional change points.

5. Steps 2- 4 are repeated 4 times to optimize the location and number of change points.

In these iterations the interval between change points is determined from the confidence

intervals and not the location of the change points.

6. The final list of change points with their confidence intervals are stored for subsequent

analysis.
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After the change points are determined, the intensities in each interval are used to estimate

the maximum likelihood orientation and wobble of the fluorophore, as described in Sect. 3.2.4.

In order to assess the sensitivity of the inferred orientation to the precise location of the change

point, four additional sets of intensities are determined for each interval by using the edges of

the confidence intervals as the boundary instead of the change point. For example, consider

two change points at ti and ti+1, the first with confidence intervals (τ−i , τ+
i ) and the second

with (τ−i+1, τ+
i+1). Five sets of orientations are determined for the ith interval:

{
(ti, ti+1), (ti − τ−i , ti+1 − τ−i+1), (ti − τ−i , ti+1 + τ+

i+1), . . .

. . . (ti + τ+
i , ti+1 − τ−i+1), (ti + τ+

i , ti+1 + τ+
i+1)

}

When applied to myosin V motility experiments, each set of these PFIs is input into the

dipole model in order to determine the sensitivity of the estimated probe parameters to the

uncertainty in the change point location.

4.2.4 Critique of MICP

The MICP algorithm makes several simplifying assumptions that will be listed here before

discussing the simulations.

For single molecule experiments, the time fluorophore’s emission rate limits the achievable

time resolution. Typical count rates are 20− 50 photons/ms.

The statistical model that underlies the multiple intensity likelihood function (Eq. (4.2.6)),

assumes that photons in each intensity channel can be emitted independent of one another and

detected simultaneously. In practice, however, polTIRF experiments alternately illuminate the

sample so that only one excitation polarization state is measured at a time. Artifacts may arise
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if the motions of the molecule are comparable to the cycle frequency, but this is not typically

the case for biological molecules and >10 kHz cycling frequencies.

The threshold for false positives is clearly a crucial parameter as it determines the validity

of a particular change point. An advantage of the change point analysis is that this threshold

is not a user-defined value, but is instead determined by the desired limit α on false positives.

The analytic method used to calculate the single change point threshold is fast, but is not

readily applied to multiple intensities. Determining the false positive rate from simulations is

easily performed on a personal computer. Furthermore, the threshold is a smooth function of

the number of photons in the interval, so only a few values of N need to be calculated and the

rest can be obtained from a equation fit to the results of the simulations.

In Sect. 4.2.2, the threshold for false positives was determined assuming that the intensity

of the separate PFIs were equal. For applications specific to polTIRF experiments, a better

assumption might be that each PFI is consistent with the intensity emitted from an isotropic

distribution of fluorophores. Because the likelihood function Eq. (4.2.6) depends on the num-

ber of photons in each state, the false-positive threshold in these two scenarios would not be the

same. Distributing the photons equally, however, results in the largest magnitude likelihood

(on average) so the threshold determined in this way is a conservative estimate of whether or

not a false positive occurred. Also, assuming an equal distribution of photons is advantageous

because it is independent of the model used to represent the molecule’s fluorescence emission

and detection.

The weighting function W and the 2.5% buffer zone used to remove the remaining bias,

are easy to apply to the change point analysis with minimal additional computation. The
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origin of the weighting function appears to be somewhat ad hoc [143]; however, it is effective

in simulated data and has been used successfully by other groups [100]. A key feature of

the weighting function is that although it suppresses detection of change points near the edge

of the interval, it does not preclude them entirely; a legitimate change point will be detected

if its likelihood is large enough. The additional buffer zone on either end of the interval,

however, precludes the detection of change points in this small region. Short duration events

that precede or follow a long duration event may be missed, but in typical experiments events

longer than 10 000 photons are not common, and the resulting dead time of 250 photons is

near the limit of detection. In cases where this trade-off is not desirable, the MICP algorithm

would be useful for identifying the long duration dwells, which could then be subjected to a

local analysis at the two ends to test for additional change points.

Estimating the 95% confidence intervals from the likelihood surface is a common statisti-

cal practice [88, 140]; however, more rigorous confidence intervals can also be defined [100].

For example, all photons adjacent to a change point for which the alternate hypothesis is at

least 5% likely to be true would be included in the 95% confidence interval. In the single

intensity case, Watkins and Yang [100] found that the fraction of change points that fell within

the confidence interval depended on the magnitude of the change point. Simulations to de-

termine the confidence interval in the multiple rate case would be more expensive than those

used to determine the false positive threshold, because both the magnitude of the change point

and the number of photons in the interval would need to be varied. Given these limitations,

simply estimating the 95% confidence interval from −2 offset on the likelihood surface (i.e.,

all photons i with L ≥ L? − 2) is a practical approach.
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The MICP algorithm can be used to detect multiple change points in a trace one at a time

on progressively smaller subsets of the data until no change points remain. Each change point

is then tested again for significance independent from its neighbors. This piece-wise approach

is in contrast to a single likelihood function that includes all of the change points, whose

optimal positions are found simultaneously. Occasionally, evidence that the assumption of

independent change points breaks down can be seen in a group of 3 change points that never

settle on precise locations. For example, the intervals defined by two change points support

the inclusion of a third change point in between them, but if that change point is included

then one of the initial two loses its significance. The occurrence of this is rare, but could be

addressed by incorporating the three change points into a single function and optimizing all

three at once for the most likely configuration. In fact, all of the change points detected via the

sequence of independent 1D searches suffer a similar problem: a more likely configuration

might be attained by moving the two change points relative to one another in a 2D search.

The issue is mitigated somewhat by iteratively passing through the data multiple times, but

nonetheless it is never completely resolved. The computational cost of simultaneously vary-

ing two change points is relatively high since each interval of N photons would require N2/2

calculations; considering some intervals have thousands of photons a full 2D search is pro-

hibitive. A compromise may be desirable in some situations such as when two nearby change

points are subjected to a 2D search over a limited region of the interval.

In single molecule polTIRF experiments, change points are expected to occur when the

probe changes orientation, but change points will also be detected when the total intensity

changes magnitude, similar to the scenario in single-intensity change point analysis. Typ-
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ically re-orientations are associated with constant intensity, but some fluctuations in steady

state intensity are also detectable. For example, the change point algorithm easily detects the

step decrease in intensity when the single molecule bleaches to background, as well as the

occasional double bleach and blinking events where the fluorophore turns off and then back

on again.

4.3 Simulation results

Three types of simulations were performed to test the algorithm: (1) no change point sim-

ulations tested the null hypothesis and were used to determine the correction factors E[Lo
i]

and σi and the threshold for false positives; (2) single change point simulations assessed the

false-negative rate of the algorithm over a range of change point magnitudes and duration; (3)

double change point simulations of a large transition followed by a short-lived state with a

second transition tests the algorithm’s sensitivity to detect substeps within the myosin V cy-

cle. The various intensities for a simulation are generated either arbitrarily to give intuition

on the detection algorithm or by calculating the PFIs that correspond to actual fluorophore

orientations using the dipole model (see Sect. 3.2.4 for details). A fourth set of simulations,

independent of the change point algorithm, was used to determine the minimum number of

photons required for the dipole model to reliably detect orientations relevant to myosin V

processivity experiments in shot-noise limited data.

The simulations of the MICP analysis rely on generating a specified number of inter-

photon arrival times from an exponential distribution. Each photon is randomly assigned to

one of the independent polarization channels (usually NP = 8 or 16, which correspond to the
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typical number of channels in experimental data) with a probability that is weighted according

to its relative intensity. For example, if the probe model assigns rate κ to 6 PFIs, and rate

2κ to the remaining 2, then the photon arrival times are generated with κtot = 10κ, and each

photon is randomly assigned to one of the six low rate channels with probability 0.1 and to

one of the two high rate channels with probability 0.2. This two-step process ensures that the

total intensity is constant, and that each of the individual PFIs has the proper relative rate with

exponentially distributed arrival times.

Most simulations were performed in Mathematica 7.0 on a standard PC with two Intel 2.5

GHz processors. A particularly useful command for achieving the proper intensity and arrival

time of the photons in each PFI is RandomChoice [{weights}, {values}], which randomly

picks a number from a set of values according to a user-defined list of weights for each number.

As just discussed, these weights w are defined consistent with the intensity in each PFI, wj =

κj
κtot

. A simulation thus consists of generating N exponentially distributed inter-photon arrival

times from a distribution with rate κtot, each of which is randomly assigned a value j =

1..NP according to the weights wj. A change point is introduced after the ith photon by using

one set of weights from 1 . . . i and second set of weights from i . . . N. The MICP algorithm

(Sect. 4.2.3) is then applied to the simulated data, and any statistically significant change

points are recorded. This process is repeated M times (typically 500− 10 000 depending on

the simulation) to minimize statistical fluctuations.
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4.3.1 No change point simulations

The peak likelihood L? calculated from Eq. (4.2.6) must exceed a threshold to be considered

a valid change point (with false positive rate α). The threshold is determined from simulations

over a range of photons N and intensities NP for α = 0.05. Before calculating the thresh-

old, however, the correction factors E[Lo
i] and σi are determined since they will affect its

magnitude.

Correction factors

As discussed in Sect. 4.2.1, the distribution of peak likelihoods simulated under conditions

of the null hypothesis (i.e., no change point) is not uniform across the interval and results

in a bias for detecting false-positive change points preferentially near the boundaries of the

search interval. The distribution of Lo
i can be empirically determined by repeatedly apply-

ing Eq. (4.2.6) to a constant intensity simulation. The mean and standard deviation of Lo

at each point across the interval is then used to normalize the likelihood. Specifically, the

first and second moments at each point i are tallied for M ≥ 10 000 simulations so that

E[Lo
i] = 〈Lo

i〉M and σ2
i =

〈
(Lo

i)
2
〉

M
− 〈Lo

i〉2M. The process is repeated over a range

of N = {50, 76, 100, 200, 300, 500, 700, 800, 1000, 2000, 3000, 5000, 7500, 9000, 10000,

30000, 40000, 50000} to generate a look-up table for the two correction factors. Values of N

not in the look up table are linearly interpolated between the two nearest values.

The resulting correction factors E[Lo
x] and σx for N = {50, 100, 500, 1000, 5000, 10000,

50000} follow a similar pattern across the interval as N is increased for both 8 and 16 inten-

sities (Fig. 4.6). In order to compare simulations with different numbers of photons on the
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same graph, the photon index i is normalized by the total number x = i/N and plotted on

a logarithmic scale to emphasize the region close to the boundary of the interval. Since the

correction factors are symmetric about x = 0.5 the counting statistics are improved 2 fold by

superimposing the results from the two halves of the interval. As the number of polarizations

increase from 8 to 16 the magnitude of both E[Lo
x] and σx increase, as expected since the

number of ln terms in Eq. (4.2.6) doubles.

When N & 500, all of the correction factors show a plateau in the center of the interval

that increases as the edge of the interval is approached and then falls abruptly immediately

at the edge. The increase in both the mean and the standard deviation near the edge of the

interval reflect the observed increase in the rate of false positives. Unlike the correction factors

for change points with multiple intensities, the correction factors in the single intensity case

(not shown) increase monotonically at the edge of the boundary. The reason that multiple

intensity correction factors experience a sharp decrease immediately at the boundary is that the

magnitude of the Lo depends on the number of logarithm terms in Eq. (4.2.6) that contribute

to the sum. If enough photons are present in each region (before and after a change point)

then every term can contribute to the sum. But, as the algorithm tests points that are closer to

the boundary, eventually the number of photons in some of the intensity channels will drop to

zero and the corresponding terms will drop out of the sum (since 0 ln 0 = 0). This will lower

Lo proportionally until the minimum at i = 1 where half of the terms in Eq. (4.2.6) are zero.

An additional weighting function Wi and a buffer consisting of 2.5% of the photons is

applied to the interval to penalize change points from occurring at the edges. The omitted

photons are included in the estimate of the average emission rate but only values in the range
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Figure 4.6: MICP correction factors for the expected value E[Lo
x](A,C) and the standard deviation σx

(B,D) of the likelihood function Lo (Eq. (4.2.3)) for N = {50, 100, 500, 1000, 5000, 50000} and NP =
8(top) and NP = 16 (bottom). The horizontal axis x = i/N indicates the position of the ith photon
across the interval normalized to the total number of photons. For clarity, only half the distribution is
shown since the correction factors are symmetric about x = 0.5. The correction factors are applied
to each photon i in the interval so that the resulting likelihood of each Lo

i = (Lo
i − E[Lo

i]) /σi is
approximately normally distributed with mean zero and variance one.

0.025N < i < 97.5N are considered for change points. The final result including the correc-

tion factors, weighting function and buffer is a uniform distribution of false positives, at least

in the range considered here N = 50− 50 000 and NP = 8 and 16 (blue line Fig. 4.4).

False positive threshold

Determining the threshold for false positives is similar to the set of constant intensity simu-

lations just described. Instead of recording the first and second moments of Lo, however, the

peak likelihood L? and its location i? is recorded for each of the M simulations. This list of

L? is sorted and the value that separates the largest M · α from the remaining M · (1− α) is
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the desired threshold. The functional dependence on N is obtained by repeating the calcula-

tion over a range, typically N = {50, 75, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000,

25000, 50000}. Because actual data can have any value of N, the simulated values of ρ are fit

to the interpolating function ρ(N) = a/(1 + b(log10 N)c) to determine a, b and c. Finally the

entire process is repeated for different numbers of intensities. The results for Np = 1, 2, 8, 16

are shown in Fig. 4.3B and the corresponding values of a, b and c for each fit are summarized

in Table 4.1. All thresholds used here correspond to a 5% false positive rate (α = 0.05).

For comparison purposes, the same set of simulations can be used to determine the thresh-

old for uncorrected likelihood function Lo? Fig. 4.3A. The simulations over a range of N are

fit to the expression ρ0(N) = A + B
(
log10 N

)C to determine A, B and C, see Table 4.1.

The threshold for uncorrected likelihoods ρ0 increases slowly with N (Fig. 4.3A), unlike

the threshold for corrected likelihoods ρ which increases abruptly and then is fairly constant

as N is increased. The dependence of the ρ on the number of intensities is the opposite as

for ρ0, presumably because of the larger magnitude correction factors for NP = 16 compared

with NP = 8 (Fig. 4.6).

4.3.2 Single change point detection

Power of MICP for detecting arbitrary intensity change

A low false positive rate is important for confidence in the results; however a low rate of false-

negatives (i.e., the power of a test) is also crucial in order to detect a majority of the change

points.

The power of the MICP algorithm is determined from simulations performed with 8 and
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16 intensities over a range of photons N and change point magnitudes χ. The intensities were

not based on any assumed orientation of the probe; half of the intensities changed from 1 to χ

and the other half change from χ to 1 thus ensuring a constant total intensity. Change points

were simulated at the midpoint of the interval (N/2) and the MICP was successful if the

L? − 2 confidence interval enclosed the true location.

Simulations were performed over a range of change point magnitudes χ = {1, 1.1, 1.2, 1.3,

1.4, 1.5, 2, 2.5, 3} and photon intervals N = {100, 500, 1000, 5000} for NP = 8 (Fig. 4.7A)

and NP = 16 (Fig. 4.7B). 5000 simulations for each combination of {N, χ, NP} were run

and the fraction of trials with a detected change point are recorded (solid lines), as well as, the

fraction of change points whose confidence interval includes the true location (dotted line).

As expected, simulations with a large N and χ resulted in a higher fraction of detected change

points, and larger intensity changes required fewer photons to identify the change point. At

the larger χ and N nearly 100% of the change points are detected. Even though an interval

corresponding to the 95% confidence interval was chosen, the actual accuracy of the method

exceeded 98% depending on N and χ (data not shown). The non-zero fraction of detected

events at χ = 1 indicates the false positive error rate.

Increasing the number of PFIs from 8 to 16 decreases the power of the test slightly due

to the increase in the photon counting noise that occurs when N photons are divided into

twice as many intensity channels. The sensitivity to additional intensities is mitigated in the

arbitrary intensity model used here because all of the intensities contribute equally to the

change point. This is not true when the intensity change arises from probe re-orientations,

since some PFIs respond more strongly to a particular change then others. Consequently, in
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Figure 4.7: Power of the MICP algorithm to detect change points of different magnitudes depending
on the number of intensities NP = 8(A, C) and NP = 16(B, D) and the number of photons in the
interval.Top row The fraction of change points detected versus an arbitrary intensity change of χ (see
Fig. 4.2 for the definition of χ) and N = {100, 500, 1000, 5000}.Bottom row: The fraction of change
points detected for an angle change corresponding to the tilting motion of a probe attached to the
myosin V lever as it steps (see Table 4.2) as a function of signal-to-background ratios (SBR) for N =
{100, 200, 300, 500, 1000, 5000}. More than 95% of the actual change point falls within the L? − 2
confidence interval indicating that these confidence intervals are conservative (dotted).

polTIRF experiments there is a trade-off between accuracy, which requires more PFIs, and

time resolution, which requires fewer PFIs.

Power for detecting myosin lever arm change

In order to determine the power of the MICP in experiments of myosin V stepping, simulations

of the probe angle before and after a step (see Table 4.2) are performed using the dipole model

to determine the PFIs. Instead of an arbitrary factor χ, the simulations were performed at
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State {θ, φ} {β, α} δ

Pre-step {96.7, 168.8} {20,−20} 40

Detached - - 90

Post-step {18.9, 23.3} {80,−85} 40

Table 4.2: Orientation and wobble (δ) used in the simulations of myosin V stepping. The orientations
are represented in the microscope (θ, φ) and actin (β, α) frames. All angles are in degrees.

different signal-to-background ratios (SBR) by varying the intensity of the fluorophore in the

dipole model with a constant background. Otherwise, the simulation conditions were similar

as in the previous section.

As in the arbitrary intensity case, the power of the algorithm to detect change points in-

creases with increasing SBR and number of photons (Fig. 4.7). The reduction in sensitivity

when the number of PFIs is increased from 8 (Fig. 4.7C) to 16 (Fig. 4.7D) is larger than in

the arbitrary intensity case because some of the additional PFIs are not sensitive to the angle

change yet still contain a fraction of the total number of photons. Experiments with SBR’s of

3 require ∼ 200 and ∼ 400 photons for ∼ 90% detection in the 8 and 16 PFI configurations,

respectively. If the fluorophore emits with a rate of ∼ 30/ms then the corresponding time

resolution in the two cases would be 7-10 ms and 13-25 ms. The shortest detectable events

will be tested directly in the next section.

4.3.3 Two change point detection

Substeps in the myosin V ATPase cycle are predicted to occur in a short period of time imme-

diately before or after a step is taken; that is, a second, short duration interval adjacent to the
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long interval that accompanies the tilting motion of a step. Simulations are used to determined

the sensitivity of the MICP algorithm to detecting these short-lived states over a range of pho-

tons in the transient state Nt = 1− 1000 and signal-to-background ratios SBR= 1.5, 2, 3,

and 4.

The simulation consists of a long-lived state with a well-defined orientation, followed by a

short-lived state with large wobble (no well-defined orientation), and ends in a long-lived state

also with a well-defined orientation, see Table 4.2. The number of photons in the post-step

and leading head states is held fixed at 2000 each and the number of photons in the transient

state is varied. Each combination of Nt and SBR is simulated 500 times and the fraction of

trials resulting in single, double and triple change points is recorded for the 8 (Fig. 4.8A,B,C)

and 16 (Fig. 4.8D,E,F) PFI configurations.

The simulations are generated as outlined in Sect. 4.3.2. To find the change points in each

trial, the algorithm is applied 3 times: first to the entire interval of Nt photons, and if the peak

likelihood exceeds the threshold, the regions to the left and right of the peak are interrogated

for change points in these shorter regions. In the event that three change points are detected,

the middle one is re-evaluated on the interval between the other two and only retained if its

peak exceeds the required threshold.

As the number of photons in the transient state increases, the fraction of trials with single

change points decreases (Fig. 4.8A,D), while the fraction with two change points increases to

∼ 90% (Fig. 4.8B,E). The fraction of trials with a spurious third change point is relatively

constant at ∼ 10%. When there is no transient state, the fraction of trials with single change

points is ∼ 90%, indicating a ∼ 10% false positive rate (Fig. 4.8C,F).
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Figure 4.8: The power of the MICP algorithm to detect short duration states in the Myosin V ATPase
cycle, specifically the short-lived detached state after the trailing head (pre-step state) releases from
actin but before it re-binds to as the new leading head (post-step state) is determined from intensities
simulated using the angles in Table 4.2. Simulations with NP = 8 (top) and NP = 16 (bottom)
indicate one (left), two (middle) or three (right) detected change points as the number of photons
in the transient state is increased from 0 to 1200 for different signal-to-background ratios SBR =
{1.5, 2, 3, 4} (symbols). Requiring that the interval be detected with at least 10% accuracy (dashed,
middle) significantly increases the number of photons needed to identify the state.

If the known locations of the simulated change points are used to determine the accuracy of

the detected change points then fewer of the trials will be considered successes. For example,

if the overlap between the detected and the actual interval of the transition is required to be

between 90− 110% then 2-3× more photons in the transient state are required to detect the

same fraction of events. If a fluorophore emits ∼ 30 photons/ms then only 300 photons will

be recorded during a 10 ms transient state. If the signal-to-background ratio is assumed to be

3 then ∼ 500 photons are required to detect 50% of the events in the 8 PFI configuration and

∼ 700 photons in the 16 PFI configuration, approximately twice as many as was required in

the single change point simulations.
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4.3.4 Number of photons required to measure large probe wobble

The interval between change points indicates the orientation, wobble and/or brightness of the

molecule, and are determined by using the dipole model. This analysis is used to identify

myosin V stepping events, since the orientation of the probe on either side of the change point

should change. Variability in the results for a given state is expected due to the low signal

to background ratio and finite number of photons. Simulations that include these statistical

fluctuations are performed to determine the minimum number of photons required to identify

a particular state.

Simulations of the orientation and wobble before (Fig. 4.9A,D), during (B,E) and after

(C,F) a step are performed over a range of photons (N = 50-1000) and signal-to-background

ratios (SBR = 1.5, 2, 3, 4, ∞) for the 8 (A-C) and 16 (D-F) polTIRF configurations. The

orientation and wobble during the three states, denoted (θ?, φ?, δ?), are the same as used

previously (Table 4.2). Each combination of N and SBR is simulated 500 times and the

PFIs used as input in the orientation analysis to determine the most likely set of parameters

(θ′, φ′, δ′) for the dipole orientation and wobble. The fraction of trials with parameters that

fall within 15◦ of the simulated values are reported as successes in Fig. 4.9. For the simulation

during the step, δ? = 90◦ and the orientation is not well defined, so a successful trial is defined

as δ′ ≥ 75◦. For the pre- and post-step states, a successful trial requires that 32.5 ≤ δ′ ≤

47.5◦ (i.e., the range of acceptable δ is 15◦) and the absolute angular displacement ζ between

(θ′, φ′) and (θ?, φ?) be less than 15◦. That is, ζ ≤ 15◦, where ζ = arccos
(−→O ? · −→O′

)
and

−→O ? is the vector pointing in the direction of the simulated value and
−→O′ is the vector pointing

in the direction estimated from the analysis.
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Perhaps most informative are the simulations with zero background (SBR = ∞) since

they represent the best case scenario for detection of a photon-limited polTIRF signal. For

example, approximately 500 photons are required to measure a large wobble cone with 90%

accuracy, whereas actual experiments have SBR . 3 and would only detect 50% of these

duration events.

A striking feature of the 8 PFI simulations is that a large wobble cone cannot be reliably

measured, even with zero background and large numbers of photons. The reason for this is

that there is a symmetry that arises from exciting and detecting the fluorophores along the 3

orthogonal axes; the diagonal polarizations in the 16 PFI data break this symmetry. The probe

model predicts the same 8 intensities for δ = 90◦ as for an orientation {θ, φ} = {54.7◦, 45◦}.

54.7◦ = arctan
(√

2
)

is the “magic” angle in ensemble polarization experiments and corre-

sponds to the angle of the analyzer (with respect to the excitation polarization) required for

equal detection of the polarized fluorescence.

4.4 Discussion

Fluorescence experiments that utilize single photon counting technology can achieve very high

time resolution by recording the arrival time of each detected photon. There is no binning of

the raw data; afterward the experimentalist can choose any bin size to analyze the data. This

chapter describes an alternate approach that never imposes a bin size on the data and uses the

photon arrival times directly. Change point detection algorithms meet both of these require-

ments and are particularly powerful because they do not require any user-defined thresholds

(e.g., a threshold that separates high and low intensity states [100]). All parameters within

130



F
ra

c
ti
o

n
 D

e
te

c
te

d

Number of Photons

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

�

s

¯

r

£

SBR = ∞
4

3

2

1.5

P
re

-s
te

p
 s

ta
te

D
e

ta
c
h

e
d

 s
ta

te
P

o
t-

s
te

p
 s

ta
te

A D

N
P
=8 N

P
=16

B E

C F

Figure 4.9: Sensitivity of the orientation analysis (i.e., no change points) to optimize to large wobble
cones (75◦ ≤ δ ≤ 90◦) in simulations representing polarized TIRF experiments with δ = 90◦ in
the 8 PFI (A) and 16 PFI (B) configurations. In the range of low to moderate numbers of photons
(N = 50− 1000) with the signal to background ratios (SBR= 1.5, 2, 3, 4, inf), the case of NP = 8
nearly orthogonal PFIs is insufficient for determining large probe wobble, but the off-axis PFIs in the
NP = 16 case break a symmetry which allows large wobbles to be determined. Each point represents
the fraction of successful trials in 500 simulations.

the change point algorithm are statistically defined, once an acceptable false positive rate is

chosen.

The high time resolution polTIRF experiments discussed in Sect. 5 are an example of

fluorescence experiments that implement SPC technology. In addition to recording photon
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arrival times, the polarization state (either 8 or 16) of the detected photons is also recorded.

In these experiments, the majority of change points do not involve any change in the overall

intensity; instead the time when the PFIs change relative to one another is determined. Because

of this distinction, a new multiple-intensity change point (MICP) analysis was developed to

analyze the high time resolution polTIRF data.

The basic idea of the change point method is to test if two adjacent regions of the data

are better described by two intensities or one constant intensity. Because three free parameters

(i.e., two rates and the location of the change point) will fit the data better than one, a threshold

consistent with a specified false positive rate is defined that requires the two-intensities to be

significantly better than the one-intensity. If that condition is met, the location in the interval

with the largest likelihood above this threshold is identified as an intensity change point. All

of the change points in the data can be determined by applying this test recursively to the

intervals between previously determined change points.

The two pieces of information recorded in polTIRF experiments can be viewed as separate

terms in Eq. (4.2.6):

Lo
i =

Np

∑
j=1

[
nj,i ln

(
nj,i/Nj

)
+ (1− nj,i/Nj) ln

(
1− nj,i/Nj

)] ·

− [i ln Vi + (N − i) ln (1−Vi)] (4.4.1)

The time stamp information reports on the overall intensity of the fluorophore and is contained

in the second term, which depends only on the arrival time of each photon and not its polar-

ization. The polarization information, which only consists of a number (j = {1, 2 . . . NP})

for each photon, is contained in the first term, where the nj,i’s are the accumulated number of

photons in each polarization channel.
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In recordings with only one channel, the likelihood simplifies to the previously derived ex-

pression [100]; changes in the total intensity (Fig. 4.2A) can be located within a few photons of

the actual change (Fig. 4.2C). Qualitatively, this precision is consistent with the abrupt change

in intensity when the arrival times are plotted in the order that they were measured(Fig. 4.2B).

In recordings with two intensities, which are analogous to a simplified polarization mea-

surement, the location of the change point is determined predominately by the first set of terms

in Eq. (4.4.1) since the total intensity is constant (e.g., black curve Fig. 4.5A) and the indi-

vidual PFIs change abruptly (e.g., blue/red curve Fig. 4.5A). Despite the relative coarseness

of the polarization information, change points can still be accurately identified (Fig. 4.5C).

In practice both pieces of information are useful since the orientation of the fluorophore can

change in addition to the total intensity; for example, due to a bleaching event or fluctuation

in laser intensity.

One disadvantage of the likelihood function Eq. (4.2.3), is that its magnitude is not uniform

across the interval and is higher on average near the boundary even if no change point exists.

The peaks in the likelihood function (and thus the change points) are therefore biased near the

edge of the interval especially for large numbers of photons (black line, Fig. 4.4). Physically,

this is not surprising as regions near the edge have fewer photons and are thus susceptible

to relatively large fluctuations in apparent intensity. Fitting these fluctuations with an inten-

sity that is different from the remainder of the interval, where fluctuations are smaller, falsely

appears to be a significant improvement. Analytical corrections for this effect have been de-

rived [143] for the one intensity case and successfully applied to fluorescence data [100].

Analogous correction factors were determined here from simulations (Fig. 4.6) for the multi-
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ple intensity case and used in the MICP algorithm. Modifying the likelihood function using the

correction factors, a weighting function, and a narrow exclusion region that prohibits change

points from occurring within the first and last 2.5% of the data, nearly eliminates the bias

across a wide range of photons (blue line, Fig. 4.4). Correcting for this effect is particularly

relevant for finding substeps in myosin V polTIRF experiments since the intervals of interest

are expected to follow shortly after a prominent change point, which is the same region that is

sensitive to a false positive.

For intervals with a sufficient number of photons N & 500, the shape of the correction

factors across the interval follows a pattern as N is increased. Their average values are rel-

atively constant in the center region, peak near the edge, and then drop precipitously at the

boundary. The reason for this drop is that the likelihood (Eq. (4.2.6)) is proportional to the

number of polarization terms; if there are too few photons in a region then some of the terms

drop out and the likelihood function decreases. This effect is clearly seen when comparing the

distribution of correction factors for various number of intensities (not shown), where in the

single intensity case there is no decrease at the edge and it becomes more pronounced as the

number of intensities increases. The total number of terms in the likelihood function is also

directly proportional to the magnitude of the correction factors. For example, the plateau of

E[Lo
i] doubles from 4 to 8 as the number of intensities doubles from 8 to 16. A similar trend

can be seen for N . 500 where the correction factors slowly increase in magnitude as the

number of photons increase.

The false positive thresholds with (ρ0) and without (ρ) the correction factors are similar

but differ in significant ways (Fig. 4.3). Both increase as the number of photons in the interval
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increases, but ρ remains fairly constant after N ∼ 1000 whereas ρ0 continues to increase

(albeit a small increase in absolute terms considering the log scale for N in Fig. 4.3). As a

result ρ is fit by a hyperbolic equation and ρ0 by a power law (see Table 4.1). The magnitude of

ρ and ρ0 for the NP = 1 case are similar, but they trend in opposite directions with increasing

NP. ρ0 increases as the number of intensities increases because the number of logarithmic

terms in Eq. (4.2.6) increases with each additional intensity. In contrast, ρ decreases with

additional intensities, presumably because the correction factors more than compensate for

the additional number of logarithmic terms.

Single change point simulations with 8 and 16 intensities were accurately identified over a

range of photons N and signal-to-background ratios (SBR, Fig. 4.7). The number of photons

required to detect an event was inversely proportional to the size of the transition, i.e, large

magnitude change points events were easier to detect. Simulations that assume that each

of the intensities participate equally in the change point are used to compare the 8 and 16

(Fig. 4.7A,B) PFI cases. For a given N and SBR there is a small reduction in the sensitivity

when the number of intensities is increased, but often this is a useful trade off because the

orientation of the probe is better defined with 16 polarizations.

The accuracy the algorithm can also be determined by comparing the change point with

its known location. The confidence limits are expected to bracket the known location for 95%

of the trials. The actual accuracy depended on the number of photons and SBR, but was often

greater than 98% for most of the conditions (dashed lines, Fig. 4.7).

If the dipole model for the probe is used instead of distributing photons equally according

to χ, then the sensitivity of the analysis for experimental data can be assessed. Because the

135



experiment entails a single molecule of myosin V translocating along actin, the orientation

of the probe before and after the myosin steps is simulated (see Table 4.2). The detection of

events improves as the number of photons and the SBR increases, however the decrease in

performance upon increasing from 8 to 16 PFIs is more significant (Fig. 4.7C,D). An opti-

mistic value of the SBR in polTIRF experiments is ∼ 3 indicating that ∼ 200 photons are

required to detect 95% of the change points in the 8 PFI case. This number approximately

doubles when the number of PFIs increases to 16. The reason for this is that only a few of the

PFIs may be sensitive to a change in orientation, thus the number of photons contributing to

the change point can be fewer than expected based on the SBR. For example, a probe that

rotates 90◦ from being aligned along the x-axis to the z-axis would be obvious if the polariza-

tions were aligned along those two directions, but would be invisible to polarizations aligned

at 45◦ to those directions.

A more interesting scenario is the ability to detect a relatively short duration interval im-

mediately adjacent to a long duration interval. Such a pattern is expected during a step of

myosin V where the long interval corresponds to the tilting of the lever arm before and/or af-

ter a step and the short duration interval change point is the short lived substep of the detached

head before it rebinds to actin. Simulations emulate this scenario by modeling 3 states: (1)

a long-lived state (with 2000 photons) corresponding to the post-step head orientation with

relatively little wobble since both heads are attached to actin, (2) a variable duration substep

(0-1200 photons) of large probe wobble due to the detached head rapidly diffusing towards

the next binding site, and (3) a long-lived state (also with 2000 photons) in the leading head

orientation with relatively little wobble.
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When there is no substep, the algorithm detects 90% of the single change points

(Fig. 4.8A,D) representing the step, similar to Fig. 4.7C,D. As the number of photons in

the substep increases the probability to detect it also increases (Fig. 4.8B,E) but plateaus at

∼ 90% due to a relatively constant ∼ 10% probability to detect a spurious third change point

(Fig. 4.8C,F). For large N the 3-change point cases almost always involve a correct determina-

tion of the substep plus an additional false positive somewhere else in the interval. Detecting

the substep requires more photons in the 16 PFI case (Fig. 4.8E) compared with the 8 PFI case

(Fig. 4.8B), similar to the results discussed for single change point detection. If the detected

substep must be at least 90% accurate compared to its known location, then the fraction of

successful events decreases markedly (dashed, Fig. 4.8B,E). For an SBR = 3, approximately

750 and 1100 photons are required to detect 80% of the intervals with 90% accuracy in the 8

and 16 PFI cases, respectively.

It is important to realize that these simulations are useful estimate of the experiments, but

the actual sensitivity may be different for particular orientations. Furthermore, the simulations

of myosin stepping assume that the dipole model of the probe intensities is accurate; how-

ever, this is not a necessary assumption when experimental data is analyzed since the MICP

algorithm is model-independent.

Determining the probe orientation and wobble in the interval between change points (see

Sect. 4.2.3) can be used to validate wether a particular change point is physically relevant.

In polTIRF experiments, for example, a small change in overall intensity may result in a

statistically significant change point, but if the corresponding orientation does not also change

then its not likely to be biologically relevant. The usefulness of this approach, however, is
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compromised by spurious changes in the orientation that arise from over-fitting to photon

counting noise. The MICP algorithm minimizes this by ensuring that the maximum number

of photons are included in each dwell, but the effect still remains for short duration dwells.

In order to quantify this effect for myosin V polTIRF experiments, intensities correspond-

ing to the orientations in the post-step / detached / pre-step head states were simulated for

fixed numbers of photons and signal-to-background ratios. The intensities were used as input

in orientation analysis and those trials with orientations and angles within 15◦of the simulated

value were considered successful. The fraction of successful events depended on the actual

orientation, but in general the ability to accurately determine the angle was better in the 16

PFI case than with 8. The detached state with a high-wobble cone was particularly improved

with the addition of polarizations (Fig. 4.9B,E), due to the symmetry in the 8 PFI case between

δ = 90◦ and (θ, φ) = (54.7◦, 45◦) which result in identical polarized fluorescence intensities.

With 8 PFIs, the fraction of successful trials was comparable in the pre- and post- step

states (Fig. 4.9A,C), with plateaus at 70% and 50% respectively. These relatively low rates

occurred even with the maximum possible SBR with zero background counts. The reason

for this low success is that PFIs with similar magnitudes can correspond to different angles.

This is particularly true for values close to θ = 0◦ and θ = 90◦. In the pre-step state where

θ ∼ 97◦, increasing the number of photons N eventually results in a high success rate (data

not shown), but for the post-step state where θ ∼ 19◦, φ is not well resolved close to pole

resulting in a lower number of successful trials.

With 16 PFIs, the fraction of successful trials was higher for the post-step orientation than

for the pre-step. The reason for this is that a “success” requires both θ, φ and δ to be within
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the 15◦ tolerance. Orientations that are related by symmetries in the setup may only be broken

by a few of the PFIs thus making it susceptible to fluctuations in intensity that cause the

inferred orientation to switch between the two symmetric states. In the pre-state the symmetry

between φ and −φ is still significant for N = 1000 resulting in a lower success rate even

though φ is well determined. In order to identify the increase in the wobble parameter during

the substep with ∼ 80% accuracy approximately 700 photons are required, comparable with

what is required to detect the state using the MICP algorithm.

4.5 Conclusions

A change point analysis used for single intensity fluorescence experiments [100], was ex-

tended to multiple intensity polTIRF data. Simulations to test its accuracy and power to detect

change points was determined over a range of photons and signal-to-background ratios. Sim-

ulations indicate that approximately 700 and 1100 photons are required to detect the detached

state between myosin V steps in 8 and 16 polTIRF configurations. With 8 PFIs fewer photon

are required to locate the short-lived state; however, 16 PFIs are required to accurately iden-

tify the increase in wobble cone. In the the next chapter, the algorithm will be applied to high

time resolution polTIRF measurements of a myosin V molecule translocating along an actin

filament. Change points, corresponding to abrupt orientation changes of a probe attached to

the myosin lever arm, are expected with each step of the molecule. The algorithm will also be

used as an impartial tool for detecting potential substeps in the cycle that occur before or after

the main stepping event.
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Chapter 5

Detection of substeps in the myosin V

ATPase cycle using high time resolution

polarized TIRF

5.1 Introduction

5.1.1 Motivation

Myosin V is molecular motor found in numerous eukaryotic cell types from yeast to humans

and has been one of the most extensively studied myosins. Like muscle myosin, myosin

V is a two-headed dimer of two catalytic domains that coordinates actin binding and ATP

hydrolysis in order to perform mechanical work against a load. Unlike muscle myosin, myosin

V remains bound to actin for a large fraction of its ATPase cycle and can “walk” processively

for approximately 2 µm, taking∼ 50 steps before dissociating [47,144]. A central question is
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how the two heads of myosin coordinate their ATP hydrolysis with stepping in order to achieve

these long run lengths; a process termed “gating”. In order to study gating mechanisms that

are coupled to angular changes of the myosin V lever arm, the maximum time resolution of

the polarized TIRF setup described in Sect. 3 is increased 100-fold using a modified time-

correlated single photon counting (TCSPC) circuit. Change points in the single photon data

corresponding to angle changes of the lever arm are determined using an automated algorithm,

the Multiple Intensity Change Point (MICP) analysis described in Sect. 4.

5.1.2 Myosin V

Biological role of myosin V

Depending on the cell type, Myosin V acts as both a transporter and a tether for cellular com-

ponents. For example, in yeast the myosin V homolog Myo4p from the mother cell controls

the fate of the daughter cell by transporting an mRNA that encodes a protein which is re-

sponsible for preventing the cell from switching mating types [145]. In melanocytes, pigment

granules called melanosomes are transported to the cell periphery along microtubules, while

myosin V localizes the pigment in the actin rich dendrites of the cell [146]. In humans, patients

with the neurological disorder Griscelli syndrome often have mutations in the myosin V gene;

a discovery that was prompted by a similar phenotype in dilute mice, which also have impaired

melanosome trafficking [147]. In Drosophila photoreceptors, light induces the release of free

calcium, which triggers myosin V to carry pigment granules toward the rhabdomere (a struc-

ture in a compound eye analogous to a pupil), thereby attenuating the light that reaches the

receptor [148]. The motor function of myosin V has been made famous by numerous single
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molecule in vivo tracking experiments (e.g., Yildiz et al. [47]); however, other work (summa-

rized in reference [149]) emphasizes the non-transport role of non-muscle myosins, which for

myosin V includes roles as a dynamic tether of endosomes [150], binding to microtubules,

localization to the centrosome, and localization within the nucleus.

Structure and function of myosin V

Myosin V is a homodimer (see Fig. 5.1) with structure and sequence similarity to mus-

cle myosin with the notable exception of a 3× longer lever arm containing 6 IQ motifs

(IQXXXRGXXXR) that bind calmodulin or calmodulin-like light chains, and a long C-terminus

alpha helical domain that dimerizes and contains a globular cargo binding tail. Native myosin

V (∼ 600 kDa) was first isolated from from chick brain [151, 152], but today recombinant

constructs, often expressed using the baculovirus system in SF9 insect cells, are widely used

because the sequence can be directly manipulated and the protein expressed in large quanti-

ties. In single molecule motility measurements along actin, the tail domain is often removed

in order to avoid spurious sticking to the surface and also to prevent inactivation of the myosin

via head-tail binding (believed to be an autoinhibitory feature in vivo [153, 154]).

Kinetic measurements of a truncated single-headed 1-IQ myosin V construct indicated that

myosin V spends most of its ATPase cycle attached to actin, even in the presence of ATP, and

that the ADP release rate at (∼ 12/s) is the rate-limiting step [156], see Fig. 5.2. The fraction

of the cycle that myosin is bound to actin is termed the duty ratio, and was determined to be

> 70% for this single-headed construct at low actin and ADP concentrations [156]. Electron

micrographs of myosin V and actin in the presence of low ATP concentrations indicate a
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Figure 5.1: Schematic showing Myosin V bound to an actin filament [155] with bifunctional-
rhodamine labeled calmodulin (BR-CaM) . One of the calmodulins (there are six on each lever arm) is
labeled with bifunctional- rhodamine (inset) fluorophore that connects two Cysteines at amino acids 66
and 73, with a dipole axis represented by the red double-headed arrow. The molecule “walks” to the
right towards the “barbed” end of the actin filament, typically taking 36 nm steps so that binding occurs
on an actin monomer that is favorably oriented on the pseudo-repeat of the actin helix (green). Under
physiological conditions, the two head bound state is likely to have ADP bound to both motor domains
(blue). The symmetry in the chemical state of the two heads is broken by the mechanical asymmetry
since the lead head lever arm (yellow) is tilted backwards in the pre-power stroke configuration and the
trailing lever arm red is tilted forward in the post-power stroke configuration. The preference for for-
ward steps (i.e., gating) is believed to arise–at least in part–from intramolecular strain due to rearward
force on the lead head and forward force on the trail head that results in ADP releasing preferentially
from the rear head so that ATP can bind, freeing it to bind to the next actin binding site. Detecting
substeps in this cycle, such as tilting of the lead head lever arm before the trailing head detaches (the
“telemark” state) or the highly- mobile detached state that occurs when the trailing head steps forward,
are the goal of the work described here.

large fraction (∼ 50%) of doubly attached myosin V molecules spanning the 36 nm half-

helical repeat of actin [127]. These results are markedly different from myosin II, which

typically binds to adjacent actin monomers in the absence of ATP, and provide support for

a processive motor. Most of the attached molecules were in a state similar to the one in

Fig. 5.1, however a minority of molecules showed a kink in the lever arm of the lead head,

as if the power stroke occurred, yet could not be completed since the trail head was still

attached to actin; the so-called “telemark” state. Evidence for this state has been elusive as

143



T

M.T

M.A.TM.A

M.D.P
i

M.A.D.P
i

M.A.D M.A

P
i

D

attached:

weak binding

dettached:

Figure 5.2: Simplified ATPase cycle of myosin illustrating the dominant pathway for force production
of a single head (some states are omitted for clarity). Myosin (M) is attached to actin (A) and detaches
upon binding ATP (T), which is then hydrolyzed into ADP (D) and inorganic phosphate (Pi) while
myosin is detached from actin. Force is produced in the strong binding state after the hydrolysis
products are released upon re-binding actin and the cycle repeats. Potential substeps in the cycle that
would accompany a large angle change of the dipole and thus be detected by polTIRF include tilting
motion of the lever arm in the M.A. state before ATP binds or diffusion of the free head in the period
when myosin is detached (bottom row) or in the weak binding state (dashed).

a followup study indicated that molecules in this kinked configuration were more rare than

initially believed [157], however a third more recent study claims that they occur in 5–10% of

molecules [158].

Direct evidence for the processive nature of myosin V was first demonstrated in two

ways [18]: (1) gliding assays of actin along lower surface densities of myosin than is pos-

sible with muscle myosin and (2) optical trap measurements of multiple 36 nm displacements

of an actin filament suspended above a fixed myosin V molecule. This second approach is

known as a “3-bead assay” because each end of the actin is attached to a ∼micron sized bead,

and then positioned above the myosin, which is attached to a third bead that is fixed to the

cover slip surface. Load-dependent stepping was also observed in these optical trap experi-

ments, culminating in ∼ 3 pN stall force and backward steps, suggesting a coupling within

the molecule between force generation and the biochemical transitions.

Labeling single molecules of myosin V with fluorescent calmodulins and observing long

run lengths confirmed the processivity of single myosins along an actin filament [159]. “Hand-

over-hand” stepping, where one head remains bound while the other is released and swings
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forward to find the next actin binding site, was supported by polarized TIRF measurements

of the tilting lever arm [61]. Successive images of myosin V “walking” were soon confirmed

with fluorescence imaging at one nanometer accuracy (FIONA) measurements where asym-

metries in the step sizes of the fluorescent calmodulin attached to lever arm were consistent

with hand-over-hand motion [47]. ADP release from the rear head prior to stepping was con-

firmed by simultaneously imaging the positions of a translocating GFP-tagged myosin and

two fluorescent ATPs (deac-AminoATP) that were bound to either head [144].

At low (< 50 µM) Mg·ATP concentrations, where many single molecule experiments

are performed, myosin V is often in a two heads bound state. The trailing head is likely

in the nucleotide-free (apo) state with its lever arm titled forward in the post-power stroke

configuration making ∼ 40◦ angle with the actin filament [127] (red lever arm in Fig. 5.1).

The lead head most likely has ADP bound with its lever arm tilted backwards in the pre-

power stroke state, making an angle of ∼ 115◦ to the actin filament [127] (yellow lever arm

in Fig. 5.1). Upon binding ATP, the rear head releases actin and the lever arm of the front

head tilts forward (the power stroke) positioning the free head in a position that is favorable

to bind to the next actin binding site. As the detached head undergoes tethered Brownian

diffusion in search of the next binding site [98, 160], its lever arm reverses its conformation

(the recovery stroke) into the pre-power stroke state and ATP is hydrolyzed to ADP.Pi. Both

products remain bound to the myosin in a state that is weakly bound to actin (Fig. 5.2), but

upon locating the next binding site, the inorganic phosphate (Pi) is released, which locks the

myosin into a strongly bound state with actin [156]. Some form of intramolecular gating

mechanism maintains this nearly symmetric state until ADP is preferentially released from
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the rear head [144] allowing the cycle to repeat.

Gating is thought to include one or more of the following mechanisms [161–168]: (1)

accelerating the release of ADP on the rear head (2) retarding its release on the front head,

(3) impeding ATP binding to the front head, or (4) favoring ATP binding to the rear head.

Additionally, the angle change between the lever arm and head during the recovery stroke may

also preferentially bias the detached head for the forward actin binding site, thus minimizing

the number of back-steps [169]. The steps in ATP cycle are believed to be the same at high

ATP concentrations, except that ATP binding to the apo trailing head is very rapid so that ADP

release from this head becomes rate limiting.

Prior evidence for gating and substeps

Veigel et al. [170] measured substeps of 20 and 5 nm during the power stroke of single-headed

myosin V as it pulled on a suspended actin filament in a 3-bead assay. Since binding sites

were distributed every 36 nm along the filament, they hypothesized that the remaining 11 nm

of the step size was the result of a random search by the head for the next binding site (i.e.,

the “diffusive search”). Using a Kramer’s first passage calculation along with their measured

single head stiffness and 1 µs diffusion time of a trapped bead, they estimated the diffusive

search to be 0.1 ms. Kinetic experiments [166] of two headed constructs indicated the rapid

release of phosphate from both heads but a slower ADP release rate from the leading head,

further supporting the role for ADP in the gating mechanism.

Using high spatiotemporal optical trapping nanometry of a 200 nm diameter bead attached

to myosin V, Uemura et al. [171], measured 12 and 24 nm substeps during some of the steps of
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a myosin V translocating along actin. According to their model, the 12 nm step occurs when

the trailing head binds ATP and releases actin before the lead head has undergone its power

stroke. The 24 nm step follows after the lead head power stroke positions the detached head

in a forward position suitable for binding to the next actin binding site. If the power stroke

occurs before the trail head is released (resulting in a strained “telemark” state on the lead

head) then re-binding to the next actin site occurs in one rapid 36 nm step and no substeps are

detected. Their optical trap experiments of myosin V translocating along actin were preformed

at saturating ATP concentration with 0.5–2.5 pN of backward load, which presumably helped

maintain the detached head in a rearward position until the lead head stroke occurred. The

duration of substeps were exponentially distributed with time constant of ∼6 ms at 1 mM

Mg·ATP. The substep duration increased with increasing trap force and also in the presence of

100 mM 2,3-butanedione monoxime (BDM, traditionally a myosin II inhibitor [172]), which

slowed the substeps to ∼40 ms. Either lowering the concentration of Mg·ATP to 10 µM

or including 200 µM ADP slowed the release of the trailing head, which did not effect the

duration or size of the substeps, but it did decrease the probability of a substep being detected.

These results are consistent with their assay missing substeps when the lead head undergoes a

power stroke before the trailing head binds.

Simultaneous measurements of orientation and position of bifunctional-rhodamine labeled

calmodulin (BR-CaM, see Fig. 5.1) attached to myosin V using polTIRF with FIONA [109]

determined that the lever arm usually tilts as a single straight element and does not bend or

kink as suggested by telemarking molecules seen in EM images [127,158]. Even fluorophores

bound to the calmodulin located closest to the head at IQ-1 or IQ-2, which didn’t seem to move
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forward with every step in previous studies [47], were also found to tilt and move forward by

a small, previously unresolved amount. Sometimes large polarization changes were detected

but with only a small ±5 nm change in position with no preference for leading or trailing

head. At the low Mg·ATP concentrations used (0.15 and 0.5 µM), the fraction of the substeps

per 37 nm increased from 10 to 25% in the presence of 100 mM BDM. Noting that the actin

monomers are ∼ 5 nm apart, these small shifts in the lever arm were proposed to be a the

myosin testing its vicinity, possibly by hopping to adjacent actin monomers, before taking a

full step.

By attaching a 40 nm gold particle to the myosin V lever arm and imaging the scattered

light, Dunn et al. [98] were able to directly measure the bead position with nanometer accu-

racy and sub-millisecond temporal resolution. Increased variance in the position of the gold

particle after each step of the labeled head provided strong evidence for the diffusive search.

The durations of the searches were exponentially distributed with lifetime ∼ 15 ms, and were

slowed ∼ 50% upon addition of 100 mM BDM but unchanged in the presence of 50 mM

inorganic phosphate. The diffusive search was also measured by attaching a relatively long

microtubule to the myosin V lever arm and recording its position and orientation during motil-

ity experiments [160]. They observed large variation in the microtubule orientation after the

labeled head steps, and a long duration search that is exaggerated by the large diffusive drag

of the microtubule.

Cappello et al. [173] measured the position of a 200 nm plastic bead attached to a single

myosin molecule with subnanometer precision and microsecond time resolution using a mod-

ified optical trap-TIRF setup that also determined the z position of the bead. They observed 3
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substeps within the power stroke, and modeled the results as a small 5 nm longitudinal change

in bead position as the molecule rocks back and forth into a telemark state, which occurs after

ADP is released but before ATP binds. ATP binding releases the rear head allowing the power

stroke to pull the bead forward 25 nm with a concomitant increase in z and in the variance of

the bead position before re-binding of the free-head to the next binding site. They estimate

several time scales: the transition into the pre-step telemark state as 0.3-5 ms, depending on

ATP concentration; the power stroke as ∼ 0.1 ms; and the diffusive search to be in the mil-

lisecond time range. Some of the results are in contrast to those of Uemura et al. [171], who

measured 12 and 24 nm substeps and no dependence of the substep on ATP concentration.

Several theoretical estimates for the duration of the diffusive search have been calculated.

The first-passage calculation by Veigel et al. [170] already mentioned determined a diffusive

search of ∼0.1 ms. Using a simple model for the probability of a myosin head rebinding, the

length of processive runs, and the detachment rate due to ADP release, Smith [174] estimated

the rebinding rate to be > 900/s (corresponding to ∼ 1.1 ms between attachments). Craig

and Linke [175] simulated gating in the molecule as intramolecular strain transmitted along the

lever arms between the two heads that modified the ADP release rate. They also simulated the

dynamics of the tethered head during its search for the next binding site, and determined that

the diffusion time scale is between 0.1 and 1 ms. They conclude that rebinding of the free head

is limited by ATP hydrolysis and not the diffusion time required to find the next actin binding

site. Biochemical estimates of ATP hydrolysis rate are > 700/s and phosphate release is

175− 250/s (corresponding to mean intervals of 1.5 ms and 4-5 ms, respectively) [156,166].

In summary, substeps in the myosin V ATPase cycle have been measured by several groups
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and typically involve resolving portions of the power stroke of the attached head or the diffu-

sive search of the free head for the next binding site. Some discrepancies exist in the results as

to the exact magnitudes and dependency on ATP, ADP, and BDM, although factoring in tech-

nical differences between the techniques such as the concentration of ATP, size of reporter

particle, and the spatial and temporal time resolution may resolve many of these apparent

differences.

It is interesting to note that the diffusive search of the free head of kinesin for the next

binding site is relatively easy to measure since the ATPase cycle is shifted relative to myosin.

In kinesin ATP binding triggers neck-linker docking along the microtubule-bound head [176],

which positions the detached head in proximity to the next binding site. Simply reducing

Mg·ATP lengthens the period when the detached head is free from the microtubule. The

detached state has been measured by single molecule polarized fluorescence [177] and optical

trap [178].

5.1.3 High time resolution fluorescence measurements

Single molecule fluorescence experiments of molecular motors typically implement a high-

sensitivity CCD camera in order to image many molecules simultaneously across a large

field of view. The time resolution of such experiments is usually limited to video rates (30

frames/second) although faster rates are possible (e.g., [98, 179]). In single molecule fluores-

cence measurements, the frame interval is increased to 100’s of milliseconds (e.g., [47, 109])

in order to collect sufficient photons. Avalanche photodiodes (APDs) are an alternative pho-

ton detector with higher maximum count rates (> 105/s), but are restricted to a much
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smaller field of view. APDs are frequently used to record bursts in fluorescence correla-

tion experiments as the molecule of interest diffuses into the imaging volume [180]. A par-

ticularly powerful technique involves combining APD detection with a TCSPC device that

maximizes the time resolution of the measurement by recording the arrival time of each pho-

ton [100, 139, 181]. Such experiments with immobilized single biomolecules has also been

achieved [182], including on the molecular motor kinesin [183].

5.2 Single photon counting technology

Time-correlated single photon counting (TCSPC) technology has its origin in nuclear instru-

mentation used to measure the decay of radioactive elements, but it has been continuously de-

veloped and improved for use in measuring the nanosecond lifetime of fluorescence molecules.

An entire branch of microscopy known as fluorescence lifetime imaging (FLIM) is based on

reconstructing images based on how the fluorescence lifetime changes across a sample [184].

The technique involves periodically illuminating a fluorescent sample with a short laser

pulse and then measuring the time elapsed from the excitation pulse to the detected fluorescent

photon. Extremely fast and precise electrical circuits are required to measure these nanosecond

arrival times with picosecond accuracy, record the answer, and then reset the circuit, all before

the next laser pulse excites the sample [185]. In ensemble measurements, the laser power is

reduced such that most of the laser pulses do not result in any detected photons. This strategy

reduces the number of photons that are detected but not recorded during the instrument dead

time, which can result in artifacts. The nanosecond time between excitation and fluorescence

emission is called the “microtime” and represents the time-correlated part of TCSPC. The
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arrival time of each photon from the beginning of the experiment (termed the “macrotime”) is

also recorded.

Experiments with continuous laser illumination, such as the polTIRF experiments de-

scribed here, utilize only the single photon counting macrotime and not the microtime. The

technical challenge in developing millisecond-time resolution polTIRF is synchronizing the

rapid switching of the excitation polarizations with the photons detected during each interval.

A more practical challenge is collecting enough photons from the fluorophore in the short

period of time that a substep occurs. Increasing the laser intensity will increase the rate of

fluorescence emission, however, the rate of photo-bleaching (irreversible quenching of the flu-

orophore) also increases,thus limiting the recording time of each molecule. Next, the details of

single photon counting are summarized, and then their implementation in the polarized TIRF

setup described in Sect. 3 will be discussed in Sect. 5.2.2.

5.2.1 Hardware

Single photon counting consists of a fast timing circuit that measures the time interval between

two pulses: the sync pulse, normally corresponding to the rapidly (∼ 10− 50 MHz) pulsed

laser excitation in a conventional TCSPC configuration, and the detector pulse, corresponding

to the fluorescence emission (see Fig. 4.1). The major components of an SPC circuit that are

required to perform this calculation include a constant fraction discriminator (CFD), time-to-

amplitude converter (TAC), and analog-to-digital conversion (ADC), see Fig. 5.3.

The purpose of the constant fraction discriminator is to distinguish between detector events

that are generated by fluorescence photons from those that are generated by background noise.
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Figure 5.3: Diagram of a single photon counting circuit. The APD and sync pulses pass through a
constant fraction discriminator (CFD), which rejects anomalous pulses. The APD pules starts a voltage
ramp in the time-to-amplitude converter (TAC) that is stopped by the subsequent sync pulse. The
voltage ramp is amplified (AMP) and converted to a digital signal (ADC) that is stored in memory
along with the 3 bits of routing information which indicate the detector and polarization state when the
photon was detected.

This step is important when photomultiplier tubes are used to convert the fluorescence emis-

sion into an electrical pulse because there is considerable variability in the pulse width and

height. With single photon counting APDs, however, an internal circuit performs this task and

the output is a uniform 5 V pulse that is 40 ns in duration, and is unambiguously detected

by the SPC circuit. The quantum efficiency of the APDs is ∼ 55% at the emission peak of

rhodamine with linear detection efficiency up to 106 counts/s. Thus, discrimination of APD

pulses from the background is not an issue.

The TAC is the heart of the timing circuit. The sync pulse starts a linear voltage ramp and

the APD pulse stops the ramp so that the voltage is directly proportional to the arrival time

between the two pulses. This time interval is the microtime used to measure the nanosecond

lifetime of fluorescence molecules. In order to minimize the dead time associated with re-

setting the ramp during intervals when no photons are detected (which is most of them), the

circuit is operated in a “reverse stop-start” configuration. The ramp is only started when a

photon is detected, and then the following sync pulse stops the ramp. The desired arrival time

is then the sync pulse interval minus the ramp time.
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With the continuous laser source used here the microtime feature is not meaningful, but

a sync pulse is still required to reset the TAC. There are two ways to obtain this sync pulse:

an external pulse from a signal generator can be used to mimic the pulsed laser, or an internal

20 MHz clock can be used in conjunction with a dummy sync pulse. The dummy pulse is

basically an “echo” of the APD signal that is obtained by splitting the APD signal so that one

end goes to the detector input, and the other end is passed through a long (∼10 m) length

of cable in order to generate a delay before going into the sync input. This delay mimics

the excited state lifetime, and results in a constant microtime for each detected photon, but

its actual purpose is to reset the timing circuit so that another fluorescence photon can be

measured.

An analog to digital converter (ADC) converts the voltage from the TAC into a memory

address that encodes the micro- and macrotimes. If multiple detectors are used, an additional

3 routing bits of the memory address can be used to encode which detector measured the

photon. Because SPC experiments are performed at low fluorescence intensities, especially

when measuring single molecules, multiple detectors (up to 8) can be routed into a single SPC

board. As will be discussed, in this work one bit is used to represent the two detectors and

the other two bits are used to encode the polarization state of the setup when the photon was

recorded.

Numerous software modes exist for visualizing the data in real time, however for the single

molecule motility experiments the SPC circuit is operated in FIFO mode (first in-first out) and

the data consists of a text file containing a long list of photon arrival times measured in units

of the sync pulse. If the internal clock is used then the sync pulses arrive every 50 ns, but here
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Figure 5.4: SPC modifications to the polTIRF setup shown in Fig. 3.1. A delay generator provides a
10 kHz gate pulse that consists of a short negative pulse (typically, 3 µs at 0 V followed by 97 µs at 5
V) that provides the timing signal for a counter circuit, which changes the voltage on the Pockels cells
to preset magnitudes corresponding to the desired s, p, L, and R polarizations every 100 µs. The gate
pules is also combined with the APD signals to filter out photons that arrive during the 3 µs that the
Pockels cells undergo the voltage change, see Fig. 5.7. The filtered APD signals, experiment trigger,
and 2 bits representing the polarization state of the setup are combined in a router before input to the
TCSPC device where the arrival time of the photon pulse is measured and stored in memory on the
computer. In order to synchronize the TCSPC clock with the delay generator, the 10 MHz oscillator
signal from the delay generator is converted to a negative pulse using a custom circuit (Sine to Square)
that is then used as the SYNC signal in the TCSPC device, see Fig. 5.8.

an external signal is used to generate a sync pulse every 100 ns.

5.2.2 Modifications to polarized TIRF setup

In order to measure substeps in the myosin cycle, the polTIRF setup from Sect. 3 is modified

by increasing the frequency at which the polarized laser illuminates the sample and also by

recording the individual photon arrival times and their polarization state using a modified

TCSPC device (Fig. 5.4). The optics in the polTIRF setup (Fig. 3.1) remain unchanged, but

significant modifications to the detection hardware and software were required.

A digital delay generator (DG645, Stanford Research Systems) is used to generate a timing
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gate pulse at the desired frequency of 10 kHz for cycling the Pockels cell voltages, which

control the polarization state of the illumination laser. These voltages are controlled by a

custom built circuit that is synched to the DG645 gate pulse [63]. Fluorescence emission is

detected on two APDs (Perkin Elmer, SPCM-AQR-16) whose signals are combined into a

single channel using a specialized router (HRT-82, Becker and Hickl) and then input into the

SPC circuit (SPC-130, Becker and Hickl). A single SPC circuit is adequate for two detectors

because the photons emitted from a single fluorescence molecule are much lower than the

maximum count rate of the circuit. Here, the dead time of the SPC circuit is ∼200 ns and

corresponds to a maximum detection rate of 5× 106 photons/s, which is ∼ 50× the count

rate emitted from the molecules. Since only two detectors are used, the polarization state of

the system (up to 4 polarizations) is output from the counter circuit and substituted for the 2

unused routing bits. A trigger signal that synchronizes the beginning of the recording with the

first polarization in the cycle is also routed into the TCSPC device.

The resulting data file consists of a list of the photon arrival times, each with a tag (0-7) that

corresponds to the detector (APDx or APDy) and polarization (s1, p1, p2, s2) of the excitation

laser when the photon was detected. Plotting the polarization tag versus the arrival time results

in a staircase-like plot of the photons detected in each APD during the gate interval (points

and dashed vertical lines, respectively, in Fig. 5.5A). There are 1000 sync pulses during each

0.1 ms gate and thus 1000 potential photon arrival times, although typically only 0-5 photons

are measured during each gate.

A high-sensitivity CCD camera (Cascade II, Photometrics) replaced the V/ICCD camera

that was used to collect data for twirling experiments in Sect. 3. Due to the integral nature of
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Figure 5.5: SPC photons with polarization tags. (A) Detected photons (points) are tagged with a
number (0-7) indicating their polarization state while their macrotime, measured in units of the number
of sync pulses that have elapsed, is also recorded. One sync interval is 100 ns so that a macrotime of
10 000 equals 1 ms. Photons arrive randomly during each gate interval of 100 µs with a probability
that is proportional to the intensity of the corresponding polarized fluorescence intensity (PFI) in either
APDx (odd tags) or APDy (even tags). After the gate is complete the polarization tags increases
resulting in a staircase-like distribution of arrival times that repeats after 1 cycle of four polarizations.
(B) The number of routing bits limits the number of unique polarization tags so that experiments with
8 input polarizations (16 PFIs) need to have their tags shifted in software by 8 during every other
half-cycle.

the camera in coordinating the experiment and the significant difference in camera technology,

a new software interface was written in LabView (National Instruments, (Austin, TX)) to

replace the previous interface written in C code (Sect. 3). The functionality of the new program
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is basically the same: dual shutter controls for the 633 nm (HeNe) and 532 nm (Nd:YAG)

lasers; real-time control, acquisition and display of camera images; selection of a pixel and

its subsequent alignment above the APDs via a nanostage for polarization analysis; turning

the microscope mirror turret to direct fluorescent emission collected by the objective away

from the camera and towards the APDs; simultaneous triggering the hardware and software to

begin recording during the 1st polarization of the cycle; and control, acquisition and display

of the photons recorded by the SPC circuit. A major advantage of the LabView software is

that different camera triggering and shutter schemes can be easily implemented, resulting in a

more flexible and user-friendly interface than with the C code interface.

Another key difference with the twirling experiments is that higher laser powers are re-

quired to measure the short duration substeps within the myosin ATPase cycle. Typically, the

laser power was ∼15 mW incident on the sample plane for each beam, approximately 3×

times higher than for the twirling experiments in Sect. 3.

Pockels cell voltage decay

The low voltage signals used to set the Pockels cell voltage change rapidly (∼10 ns), however

the high voltage amplifiers needed to drive the Pockels cells change much more slowly, in

approximately 1-5 µs, see Fig. 5.6A. This response is problematic for polTIRF measurements

because the polarization state of the illumination during this transient is ambiguous and results

in detected photons that cannot be attributed to any of the polarized fluorescence intensities

(PFIs). The slow voltage change also decreases the signal to background ratio since the initial

Pockels cell (PC0 in Fig. 5.4) directs the laser between the two beam paths. Thus, leakage of
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Figure 5.6: Pockels cell high-voltage transient. (A) The voltage transient across the Pockels cell
during the change between two polarization states is shorter when the capacitance across the output
terminal of the high voltage amplifier is reduced from 5 (green) to 0 pF (red) in a custom built high-
voltage power supply (HVPS2). The voltage transient using a commercial power supply (blue HVPS1
(ConOptics, Danbury CT)) is slightly faster. A mock-APD pulse is generated on the rising edge of
the the gate pulse for synchronization purposes (magenta). (B) Probability of detecting a photon in
APDy during a polarized fluorescence measurement of the decay due to high voltage transient slowly
changing the polarization state from high to low fluorescence in Beams 1 (solid) and 2 (dashed). The
dip in intensity at 1 µs is due to the mock pulse in APDx, which prevents any photons from being
detected in APDy (see text for details).

Beam 1 photons into Beam 2 (and vice versa) directly increases the background counts during

the recording.

The voltage transient of the custom-built high-voltage power supplies is improved by re-

moving the capacitor across the power amplifier output terminal (green and red lines Fig. 5.6A),

and the resulting transient is almost as sharp as for a commercial high-voltage power supply

(ConOptics, (Danbury, CT), blue line Fig. 5.6A). In order to assess the impact of this volt-

age transient on a typical measurement, a 100 nM rhodamine solution is excited by one beam

while the other is blocked with an opaque object. The fluorescence emission is collected on

one of the APDs and a mock photon is generated in the other APD on the rising edge of the

gate pulse in order to ensure that the collected fluorescence is precisely synchronized with the

electrical signal (magenta line Fig. 5.6A). The fluorescence detected when the beam is in the

blocked path should be very low, however since the high voltage requires∼1 µs to change, the
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beam is not immediately directed into the blocked path, and a decay in the fluorescence signal

down to the low background level can be seen at the beginning of the gate interval (Fig. 5.6B).

The decay of the fluorescence for the different power supplies is in rough agreement with the

corresponding voltage decay. The dip in the distributions at ∼1 µs is because the SPC circuit

is busy detecting the mock photon pulse when the fluorescence photon was detected.

The influence of the remaining Pockels cell voltage transient is eliminated by omitting

the photons recorded immediately after the gate pulse. In order to accomplish this filtering

in hardware, the pulses from the APDs are compared with the gate pulse (using an ‘AND’

logic gate) so that photons that arrive during low voltage region of the gate pulse are rejected

and photons that arrive during the high voltage region between gate pulses are passed on

to the router (Fig. 5.7A). Using the delay generator, the duration of the gate pulse can be

set independently from its period of 0.1 ms. Fluorescence measurements similar to those

described for Fig. 5.6B were performed with gate durations of 0, 1, 2 and 3 µs to filter out the

effects of the voltage transient (Fig. 5.7B). Subsequent experiments all used 3 µs gate pulses

so that the filter rejects photons detected during the first 3% of the gate interval.

Sine to sync conversion circuit

The SPC circuit board measures the arrival time in intervals defined by an internal 20 MHz

clock. Deviations as small as 1 part in 106 between this internal clock and the external gate

pulse from the delay generator result in 1 µs of drift per second of recording. In order to avoid

any issues arising from this mismatch, the internal clock of the SPC board is bypassed with

the 10 MHz oscillator signal from the delay generator, thus ensuring that the polarization of
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Figure 5.7: APD and gate pulse filter. (A) the APD pulses in APDx (cyan) and APDy (magenta)
are AND-ed with the gate pulse (yellow) so that only photons that arrive after the short gate pulse are
recorded. (B) Experiments similar to Fig. 5.6B using HVPS2 with 0 pF capacitance with a varying
duration gate pulses (0-3 µs) to exclude photons that arrive within that interval immediately after the
Pockels cell changes voltage. Subsequent experiments were performed with a 3 µs gate pulse.

the laser changes synchronously with SPC circuit. As a result, the SPC circuit measurement

interval is longer (100 ns instead of 50 ns), but any concerns with drift between the two clocks

is eliminated. The 10 MHz sine wave from the delay generator must be converted to very short

duration 10 MHz negative pulses in order to mimic a typical sync signal from a photomultiplier

tube. This conversion was accomplished in a custom built external circuit before passing the

sync signal into the SPC circuit (Fig. 5.8).

5.3 Myosin V experiments

Single molecule processivity experiments were performed on recombinant mouse myosin V

with the cargo-binding tail domain removed. The myosin is visualized by labeling one of

the 12 calmodulins with a bifunctional rhodamine that crosslinks two specific sites on the

calmodulin, see Fig. 5.1. During the processivity assay, the orientation of the bifunctional

rhodamine is measured using polarized TIRF as the myosin translocates along actin in the
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presence of Mg·ATP. Protocols for the purification of myosin V, exchanging a BR-CaM onto

its lever arm, and performing a processivity assay are discussed in Appendix 5.7 since they

have been discussed elsewhere in the literature [2, 61, 63, 186, 187].

The most relevant details of the processivity assay are briefly summarized. Low concen-

trations of BR-CaM myosin V present in solution such that single molecules were observed to

occasionally land and translocate on actin filaments. Phalloidin-stabilized actin filaments were

polymerized in a ratio of 1:5:20 monomers of biotin-actin : Alexa-647 actin : unlabeled actin,

and attached to a PMMA-coated quartz slide using either the biotin-BSA/streptaividn system

or NEM-myosin. BSA was used to block myosin V molecules from non-specifically sticking

to the surface. Imaging buffer contained 100 mM DTT, 5-40 µM Mg·ATP, and sometimes 100

mM BDM, a myosin II inhibitor. See Appendix 5.7.3 for further details. Next, novel details of

a modified polTIRF analysis are described.
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5.3.1 Data collection and calibration

Polarization data is collected similar to the twirling experiments, except that the images of

a moving rhodamine molecule (i.e., BR-CaM attached to myosin V) are superimposed on a

background image of the stationary Alexa-647 labeled actin filament. Only molecules moving

along an actin filament are selected for polarization recording. The data collected for each

molecule consists of three CCD images of the sample plane (one of the stationary Alexa-

647 actin filaments and two of the moving rhodamine molecules), the pixel coordinates of

the selected molecule so that it can be located during analysis, and a text file containing the

photon arrival times and corresponding polarization tags. The tags indicate the detector and

polarization state of the excitation laser.

Calibration and alignment is performed as discussed for the twirling experiments (Ap-

pendix 3.5.2), except that the rhodamine B calibration solution adheres to the PMMA so a

separate calibration sample without PMMA is required.

5.3.2 Data analysis

In general, the determination of fluorophore orientation and wobble from the measured polar-

ized fluorescence intensities (PFIs) using the dipole model is very similar to the procedure in

the twirling experiments (Appendix 3.5.3), however some differences arise due to the format

of the SPC data and the discontinuous angle changes of a tilting myosin V compared to a

smoothly twirling actin filament. Intensity traces of the binned data are calculated for visual-

ization purposes and are not used in the main analysis. Instead, the MICP analysis developed

in Sect. 4 is used to find change points in the unbinned SPC data, and then intensities are
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defined during each interval between adjacent change points for input to the dipole model.

Another difference is that in order to consistently choose a hemisphere for representing the

dipole orientation, a new approach based on defining the principle axis of the distribution of

orientations (i.e., the director) is developed.

After data collection is complete, the raw SPC data for each photon must be converted to

arrival time and assigned to the proper PFI. Conversion of the macrotime from units of sync

pulse to units of seconds requires a scale factor, in this case 100 ns per sync pulse. With

4 input polarizations (8 PFIs), identifying the proper PFI is trivial since there are an equal

number of tags, however, in the event of 8 input polarizations (16 PFIs) an additional step is

required. The polarization tags in Fig. 5.6A are represented in chronological order to give the

staircase shape, but in the raw data the tags are assigned according to Table 5.1. For data with

16 PFIs, there are not enough tags to uniquely identify each one, so every other half-cycle of 8

polarizations (corresponding to the off-axis polarizations L1, R1, L2 and R2) must be assigned

to tags 8-15. Since the trigger starts the experiment at the beginning of the polarization cycle,

the macrotime can be used to shift the polarization tag by 8 after every other half cycle (one

half-cycle equals 4000 sync pulses, see Fig. 5.5B). The time for one complete cycle of the 16

PFIs is 0.8 ms.

After converting the raw SPC data to arrival times and the proper PFIs, the total intensity

during the recording in 10 ms bins is determined so that molecules emitting for at least ∼

0.5 s before photo-bleaching could be manually selected for further analysis. Occasionally,

the intensity indicates either rapid blinking events or slow variations, presumably due to a

contaminant entering the recording volume; both of these types of recordings were omitted
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SPC tag PFI SPC tag PFI

0 s2 Ix 4 p2 Ix

1 s2 Iy 5 p2 Iy

2 p1 Ix 6 s1 Ix

3 p1 Iy 7 s1 Iy

Table 5.1: Conversion between 8 SPC tags and 8 polarized fluorescence intensities, 16 PFIs requires additional
modification (see text for details).

from further consideration. Each recording was analyzed using the MICP algorithm developed

in Sect. 4 to locate the statistically significant change points and their uncertainty (with 5%

false positive error rate). Afterwards, a region of the recording containing the fluorescence

emission prior to photo-bleaching (i.e., the ‘signal’) and a region afterwards that is free of

large fluctuations (i.e., the ’background’) are chosen manually for further orientation analysis.

The dipole model used to determine the maximum likelihood orientation and wobble of

the probe from the measured PFIs is the same as for twirling (see Sect. 3.2.4). The magnitude

of the PFIs input into the model, however, are calculated from the number of photons that

arrive between two adjacent change points, thereby determining the most likely orientation

and wobble of the probe during the entire interval. One detail is that the dipole model assumes

Poisson statistics so that the input is actually the number of photon counts for each PFI, not

its intensity (i.e., counts/time). This distinction allows the proper weighting between the PFIs

with different numbers of photons; however, the number of background counts, which is also

an input for the model, must be separately assigned for each dwell. To accomplish this, the

average background intensity for each PFI is determined from a region of the recording after

165



the bleach. For a given interval, the number of background counts in each PFI is calculated by

multiplying the dwell duration by the average background intensity of each PFI.

The uncertainty in the orientation and wobble during each dwell is estimated from the

uncertainty in the precise location of each change point. By varying the beginning and ending

time of each dwell consistent with the high and low confidence intervals of the two change

points, the uncertainty in the PFIs during each dwell can be estimated (see Sect. 4.2.3 for

details). As a result, five estimates of the probe’s orientation (θ and φ in the microscope

reference frame), wobble δ, and intensity κ are determined for each dwell. For comparison

purposes, the dipole model is also used to analyze the data binned with 8 ms bins per cycle,

analogous to the twirling analysis but with 10× smaller bins. Of course, many more estimates

of the orientation and wobble are obtained for the binned PFIs, but each one is noisier due to

the relatively low number of photons that arrive within each 8 ms bin.

Director-defined hemisphere

The dipole model determines the maximum likelihood orientation (θ, φ) of the probe, but

the vector pointing in the opposite direction (180◦ − θ, φ + 180◦) is equally valid due to its

dipole symmetry. Unambiguously distinguishing between these two is impossible, however it

is convenient to represent the orientation of the probe by referring to one of the two ends in

a consistent manner. When the opposite end of the dipole is reported, spurious 180◦ jumps

in orientation appear to occur, even for a stationary dipole. Thus, it is desirable to define a

hemisphere and refer to only the end of the dipole contained within it. As long as the change

in angle between the different orientations is less than 90◦, a single hemisphere can contain
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the same end of the dipole, however if the angle changes are greater than 90◦, then reporting

the opposite end of the dipole will occur. This procedure is relatively straightforward for

molecules attached to twirling actin filaments since the motion was continuous with no large

angle changes. For a translocating myosin V, however, the issue is more complex due to the

large, discontinuous angle changes that accompany each step.

In order to choose a hemisphere that is optimum for each molecule, the polar axis of a

hemisphere is calculated from the set of dipole orientations for that molecule. This axis is

defined as the director of the nematic liquid crystal order parameter Ξ [188]:

Ξi,j =
1

nD

nD

∑
k=1

(
Ok,iOk,j − 1

3
δ̂i,j

)
(5.3.1)

where nD is the total number of dwells in the recording,
−→O k = 〈sin(θk) cos(φk),

sin(θk) sin(φk), cos(θk)〉 is the kth orientation of either end of the dipole represented as a

unit vector in cartesian coordinates; i, j = {1, 2, 3} are indices representing the x, y and z

coordinates; and δ̂i,j is the Kronecker delta equal to 1 when i = j and zero otherwise. Note

that regardless of whether 〈Ok,x,Ok,y,Ok,z〉 or its dipole symmetry 〈−Ok,x,−Ok,y,−Ok,z〉

is used in Eq. (5.3.1), the directions of the eigenvectors are unchanged since the matrix is

symmetric. Since Ξ is a 3× 3 matrix, there are 3 orthogonal eigenvectors, and the polar axis

of the hemisphere is assigned to be the dominant eigenvector (i.e., the eigenvector with the

largest eigenvalue).

The advantage of this approach is that the director can point in any direction, and a hemi-

sphere that is aligned along it will contain only one end of the probe dipole for each estimate

of the orientation during the recording. One still has to choose which end of the director axis
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to align with the hemisphere; here the end closest to the direction of motion of the molecule is

chosen arbitrarily and termed n̂. In motility experiments the direction of motion is along the

actin filament, where the angle φactin is determined from the molecule’s location in the CCD

images that were obtained prior to the polarization recording (see Appendix 3.5.3 for details).

After defining the director and restricting the orientation of the probe to be in a hemisphere

centered about n̂, the orientation in the microscope frame (θ, φ) is rotated into the actin frame

(β, α), where β is the polar angle with respect to the actin filament and α is the azimuthal angle

around the filament, as was described in Sect. 3.

The dipole symmetry for the set of orientations determined for the binned data calcu-

lations {θB, φB} is resolved by choosing whichever end of the dipole has the smaller po-

lar angle, i.e., if (θB − θ) < (180◦ − θB − θ) then {θB, φB} is chosen but if not then

{180◦− θB, 180◦ + φB}. This definition forces most of the discrepancies between the change

point and binned results into the azimuthal coordinate φ, where they can be compared more

easily. In the microscope frame, the analogous algorithm for distinguishing between (βB, αB)

and (180◦− βB, 180◦ + αB) was less successful so the end of the dipole which minimized the

total deviation with (β, α) was chosen.

Lastly, the absolute angular displacement between adjacent dwells (which includes con-

tributions from both α and β) is defined as ζ = arccos
(−→O k ·

−→O k+1

)
. ζ can be used to

gauge the size of an angle change independent of a particular reference frame, however, it still

depends on the choice of hemisphere used to describe the dipole.
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5.3.3 Analysis assumptions

The MICP algorithm assumes that the fluorescence emission from the probe can be divided

into regions where each PFI is described by a constant rate Poisson process, and that the tran-

sitions between regions are abrupt. The algorithm locates change points at each statistically

significant transition and different states of the molecule are represented during the intervals

between adjacent change points. Each state is characterized by the magnitude of the PFIs

using the dipole model to determine the maximum likelihood orientation and wobble of the

probe during the interval.

Specific assumptions for the dipole model are described in Appendix 3.5.3, but the wobble

parameter requires further consideration as it assumes that the probe has had sufficient time

to explore the available orientations during the time of the measurement. Despite increasing

the polarization cycle 100-fold such that each polarized illumination excites the sample for

100 µs, this short duration is still relatively long compared to the rotational diffusion time.

For example, the rotational correlation time measured by fluorescence anisotropy experiments

for a large protein such as the 840 kDa chaperonin protein GroEL is ∼ 350 ns [43], almost

300 times faster than the polarization time scale in polTIRF. The detached myosin V head

including the 6 calmodulins is over 3 times smaller than this. Thus, the variability of the probe

orientation on the microsecond time scale can still be represented as rapid wobble in a cone of

half angle δ centered along the orientation (θ, φ).

It is assumed that the orientation of the probe during each interval reports on the orientation

of the lever arm since the calmodulins are firmly attached under the low calcium conditions

used during the motility assay. A crystal structure of calmodulin bound to a region of the
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lever arm containing the first IQ motif (pdb 1aji, [189]) suggests that the BR-CaM attached

between residues 66 and 73 makes a 40◦ angle with the lever arm [61]. The exact angle of the

fluorophore around the lever arm is unknown because there are 6 different calmodulin binding

sites, although it seems that only a subset of 3-4 are readily exchanged [47, 109]. Because of

this uncertainty in orientation between the lever arm and the probe, the measured rotation of

the probe (∆β, ∆α) does not directly describe the power stroke. As an extreme example, if

the probe is aligned in the same direction as the axis of the lever arm rotation, then the probe

orientation will not appear to change at all. Empirically this is not the case as orientations are

clearly visible in most of the traces.

In the simplest interpretation of the power stroke, where the myosin translocates along the

actin filament [115], the lever arm can be considered to swing mostly along the direction of the

actin filament with a smaller component around the actin filament (i.e., ∆βL > ∆αL, where the

‘L’ denotes angles of the lever arm with respect to the actin filament, which are not directly

measured, but are related to the (β, α) by a fixed angle). Angle changes corresponding to

twisting of the lever arm would also cause the probe angle to change, and further complicate

the interpretation of (β, α). Twisting motions do not seem necessary for the typical 36 nm

(13 actin monomer) step, but myosin V is known to also step to monomer-11 and -15 [127],

which would result in additional azimuthal rotation in α of −28◦ and +28◦, respectively, and

possibly a twisting component due to the helical geometry of the filament.

The hemisphere assumption can also introduce angular ambiguity when the angle between

the two orientations is greater than 90◦ (i.e., arccos
(−→O k ·

−→O k+1

)
> 90◦). In this case the

hemisphere contains opposite ends of the dipole and the reported angle changes will not reflect
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the physical angle change of the lever arm. Not only does ζ appear to be smaller than it should

be, but the relative magnitudes of β and α will each be shifted to (180◦ − β, 180◦ + β).

5.4 Results

Using the high time resolution polTIRF setup, single molecules of BR-CaM labeled myosin

V translocating along actin were measured over a range of Mg·ATP and BDM concentrations.

Changes in intensity, primarily due to molecular reorientations (e.g., steps and substeps) but

also bleaching events, are visible in raw PFIs, but were rigorously located–without binning the

data –using the Multiple Intensity Change Point (MICP) algorithm (see Sect. 4 for details).

Each molecule exhibits distinct features making it difficult to choose a single representative

molecule for discussion here. Instead, a candidate molecule is chosen which illustrates several

key features that are seen throughout a sub-population of molecules, but not typically seen in

the same molecule. The orientation and wobble during the intervals between change points

are determined using the dipole model, and used to confirm a physically meaningful change

in the molecule.

396 of the molecules recorded were manually chosen for change point and orientation

analysis based on the duration (> 0.5 s) and quality of the molecule’s fluorescence before

photo-bleaching to background. Due to the high laser power, many recordings showed either

no bleach or only a very brief recording prior to photobleaching. 53 of these “good bleaches”

were performed with zero Mg·ATP in solution. Other molecules were recorded under a range

of Mg·ATP and BDM concentrations (see Table 5.2 for details). Of the remaining molecules

with Mg·ATP present, 149 were manually selected that showed at least 4 clear changes in
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All analyzed molecules (N=396)

BDM, mM Mg·ATP, µM

0 5 10 20 40

0 31 17 124 24 18

100 22 3 150 7 0

Subset of molecules (N=149)

0 0 9 49 14 13

100 0 3 57 4 0

Table 5.2: Breakdown of the number of analyzed molecules at different Mg·ATP and BDM concentrations for
the entire set of analyzed molecules and the subset of molecules that show at least 4 changes in orientation and/or
wobble (see text for details).

orientation and/or wobble, and were chosen as a subset of molecules most likely to represent

the distribution of a translocating myosin V.

5.4.1 Translocating myosin V

Modifications to the polTIRF setup in Sect. 3, including single photon counting of the fluores-

cence emission and faster cycling of the excitation polarizations, increased the time resolution

100 fold. Since each polarization illuminates the sample for 0.1 ms and most experiments

were performed with 8 polarizations, the maximum time resolution is 0.8 ms. At the fastest

time resolution (first column in Fig. 5.9) only a few photons are measured in each PFI per

cycle, resulting in a signal that is difficult to interpret visually since it is dominated by Pois-

son noise. Increasing the bin size 10 and 100 fold (middle and last column, respectively, in
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Figure 5.9: Binned polarized fluorescence intensities (PFIs). 4 of the 16 PFIs are shown binned at 0.1,
1 and 10 ms time resolution for a single BR-CaM myosin V processing along actin for ∼ 1.2 s. The
0.1 ms bin corresponds to the photons recorded during a single gate and the 10 ms corresponds to the
time resolution of the twirling experiments in Sect. 3. Changes in intensity are most evident with the
largest bin size, but at the expense of lower time resolution. Choosing an optimum bin size is useful for
visualizing the intensities, however, it is irrelevant for the automated change point analysis, see Sect. 4.

Fig. 5.9) improves the signal to noise ratio, but reduces the time resolution commensurately.

In the presence of Mg·ATP, changes in orientation of the probe with each step of a BR-CaM

labeled myosin V molecule [61, 109, 124] are clearly seen as alternating intensities in the dif-

ferent PFIs. The same trend occurs at high time resolutions, although the signal can be less

obvious due to the low photon counts. For visualization purposes, the PFIs are typically rep-

resented by averaging the counts in 10 consecutive cycles, i.e., 8 ms. Note that each PFI is

only active for 1/8 of the cycle time (see Fig. 5.5).

The entire 5 s recording for the candidate molecule indicates a double bleach event in
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the total intensity trace, which is binned at the cycle time (gray) and 10-point mean filtered

(black Fig. 5.10A). Presumably, this is due to a myosin V molecule that happened to have

two exchanged BR-CaM molecules attached. Only the region containing one molecule is

considered for orientation analysis (blue Fig. 5.10A). An estimate of the background intensity

after the second bleach (black horizontal line Fig. 5.10A) is chosen during a region of constant

intensity with no sustained increases in intensity. The total intensity of the PFIs during the

period between the two bleaching events (Fig. 5.10B) is constant with magnitude 15 counts per

0.8 ms cycle (∼19 counts/ms) despite the large undulations of the underlying PFIs (Fig. 5.10C-

J). There are obvious changes in intensity that occur simultaneously across several PFIs, for

example at 0.2, 0.4, 0.65 and 1.1 s, potentially corresponding to orientation changes as the

myosin steps along actin in the presence of 5 µM Mg·ATP. The precise location of these

change points and any others is statistically determined using the un-binned photon data with

the MICP algorithm (see Sect. 4 for details).

During the region between photo-bleaching events for the molecule in Fig. 5.10A, the

MICP algorithm finds 8 statistically significant change points, each corresponding to a peak

in the log-likelihood function that exceed the threshold for 5% false positives (colored lines

Fig. 5.11). As expected, the last peak at ∼1.1 s is the largest since it corresponds to the time

when all of the PFIs decrease due to photo-bleaching. Other peaks are smaller; in part because

shorter duration events have fewer photons, but also because some polarization changes are

larger than others. For example, the likelihood of change point (CP) #4, which is flanked

by almost 3400 photons, is approximately 90 log units larger than CP#7, which contains a

comparable number of photons (∼3200), due in part to the large polarization changes in s1 Ix
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Figure 5.10: Total intensity and individual PFIs for a translocating BR-CaM myosin V in the presence
of Mg·ATP. (A) Total intensity for the entire 5 s recording for the molecule shown in Fig. 5.9 summed
over each complete cycle of the 16 PFIs with 0.8 ms time resolution (gray) and averaged over 10
cycles (black). The single fluorophore region (blue) is selected for analysis. (B) Zoomed-in view of the
average intensity from A. (C-J) Large alternating intensities in the different PFIs (binned at 0.1 ms and
averaged over 10 bins) with constant total intensity suggests titling motion of the probe. The velocity
for this myosin V molecule (see text) is estimated to be 250 nm/s in the presence of 5 µM Mg·ATP
along an actin filament oriented at φactin = 20.6◦ with respect to the x-axis.

and R2 Ix at CP#4. The 95% confidence interval (CI) for each change point is determined by

those photons with likelihoods that are within 2 log-units of the peak. The arrival time and

index of the photon closest to the change point, its confidence interval and the duration of the

dwell are summarized in Table 5.3 for all of the change points .

Superimposing the MICP change points and confidence intervals (dotted black lines and

shaded gray rectangles, respectively in Fig. 5.12) on the binned PFI data confirms the changes
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Figure 5.11: Results of the Multiple Intensity Change Point (MICP) algorithm. Peaks (vertical dashed
line) in the likelihood surfaces (colored) above the threshold (horizontal line) indicate the location of
statistically significant (i.e., 5% false positive error rate) intensity change points for the data shown in
Fig. 5.10. For comparison purposes, the likelihood surfaces were shifted so that their false-positive
thresholds all coincided with zero.

13 186 14 298 15 701 16 234 20 223 23 622 24 588 27 811 32 676

0 305 338 98 49 416 177 243 28

64.022 145.936 177.822 407.23 593.829 651.359 837.149 1127.36

0

0

19.2381 17.7005 5.0539 2.2789 22.8257 11.3408 12.3041 2.1702

1112 1403 533 3989 3399 966 3223 4865

64.0221 81.8963 31.9032 229.408 186.598 57.5344 185.79 290.209

Summary of change points and 95% confidence intervals

Index

CP (ph)

CI (ph)

CP (ms)

Interval

dwell (ph)

dwell (ms)

CI (ms)

{0,1} {1,2} {2,3} {3,4} {4,5} {5,6} {6,7} {7,8}

0 1 2 3 4 5 6 7 8

Table 5.3: Change point parameters corresponding to the molecule in Fig. 5.12 indicating the location of the
change point (CP) and its 95% confidence interval (CI) either by the photon index (ph) or its arrival time (ms).
The initial time has been shifted to the beginning of the analyzed region (blue in Fig. 5.10).

in intensity that are expected by eye at ∼0.2, 0.4, 0.65 and 1.1 s. The longer duration dwells

between change points: 3-4, 4-5, and 6-7 of 229.4, 186.6 and 185.8 ms, respectively, are

in agreement with the average stepping interval of 200 ms, estimated from the second order

ATP binding rate ∼ 1 µM−1s−1 [156] and the 5 µM concentration of Mg·ATP. In order to

confirm that the change points correspond to meaningful orientation and/or wobble changes,

the intensities between adjacent change points, including an estimate of their uncertainty from

the confidence intervals (see Sect. 5.3.2), is determined and used as input for the dipole model
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Figure 5.12: Intensity change points for a translocating BR-CaM myosin V in the presence of Mg·ATP.
The change points from Fig. 5.11 are superimposed on the data from Fig. 5.10 to indicate the location
of the change points (dashed) and their 95% confidence interval (gray). A horizontal line between
adjacent change points with a small dot in the center of the line indicates the most likely intensity
during the interval. Four additional estimates (horizontal lines with no dot) are determined from the
intervals defined by the different combinations of the adjacent confidence intervals (see Sect. 4.2.3 for
details). Typically the confidence intervals are relatively narrow so that the 5 lines appear to overlap
completely.

(horizontal lines in Fig. 5.12). Two putative substeps at CP#2 and CP#5 do not correspond to

intensity changes in some of the PFIs (e.g., s2 Ix and s2 Iy), but there are changes in others

that clearly precede the larger changes at CP#3 and CP#6 (e.g., L2 Ix for CP#2 and p2 Ix for

CP#5). Furthermore, theses putative substeps do not correspond to changes in total intensity,

which is relatively constant for each dwell (Fig. 5.12B).

The orientation analysis is performed on both the change point intensities and the binned

177



intensities for each 8 ms cycle. The fit parameters (θ, φ, δ, κ) for each interval/bin are shown

in Fig. 5.13. The scale factor κ indicates that the signal to background ratio (SBR) is ∼

2.25× above background (Fig. 5.13A), which is typical for the molecules analyzed under

these illumination conditions. χ2
ν is defined as χ2/(ν− 1), where the number of degrees of

freedom equals ν = 16− 5− 1 = 10, and is ∼1 for the results corresponding to the binned

intensities, but varies above and below unity for the results evaluated during the change point

intervals (Fig. 5.13B). While not the case for this molecule, many of the other molecules that

were analyzed show a strong correlation between dwell duration and χ2
ν, see Fig. 5.19.

The probe changes between two relatively well-defined orientations. In the microscope

frame, θ for the binned data is in good agreement with the change point data, and many but

not all of the φ values are in good agreement (Fig. 5.13C,D). The large fluctuations in φ for the

binned data often occur between symmetry points that are not robustly broken by the L and

R polarizations, either due to the low number of photon counts or due to a probe orientation

that is parallel to the x-y plane (i.e., when θ = 90◦). The reason for this breakdown is that

effective excitation by L and R polarizations (and thus effective symmetry breaking) requires

the probe to have a z component of its dipole, which is missing when it is oriented parallel to

the x-y plane. During the dwell between CP#3 and #4, most of the changes in φ occur across

φ = 180◦ (the y-z plane), and would be removed by replacing φ with 180◦ − φ. Orientations

based on the change point intervals are less sensitive to this symmetry hopping because of the

larger number of photons used in the estimate.

In the actin frame of reference, β predominately changes between 85◦ and 125◦ and α

changes between −20◦ and 65◦ (Fig. 5.13E,F). The fluctuations in orientation seen in (θ, φ)
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Figure 5.13: Fit parameters from the dipole model for a translocating BR-CaM myosin V in the
presence of 10 µM Mg·ATP. The binned (lines) and MICP intensities (horizontal lines) from Fig. 5.12
were input to the dipole model to determine the orientation and wobble of the probe during translocation
of the myosin on actin. (A) Signal to background ratio. (B) Reduced χ2. (C) θ and (D) φ for the
orientation in the microscope frame of reference. φactin for this molecule is 20.6◦(solid line). (E) The
change in absolute angular displacement ζ (×’s), and the polar angle β and (F) azimuthal angle α for
the orientation in the actin frame of reference. (G) Slow wobble cone δ. Large changes in angle for the
1 ms binned data typically occur between angles related by symmetries in the setup (e.g., φ and −φ,
see text for details). The hemisphere for these molecules is centered about the director axis pointing in
the direction {β, α} = {85.8◦, 53.5◦} or equivalently {θ, φ} = {36.7◦, 83.0◦}.

are present in (β, α), but can be more or less pronounced depending on where the symmetry

points lie relative the actin filament.

Another source of large angle fluctuations occurs when either polar angle (β or θ) is close

to zero. For example, small changes in orientation of a probe about an actin filament the is

aligned along the x-axis corresponds to small variations in (θ, φ, and β), but a large change

in α since it is defined around the x-axis. Similar fluctuations occur in φ when θ is close to

0◦. Another caveat is that the probe orientation is not well-defined during the periods of large
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wobble. When δ = 90◦, the orientation from the dipole model arises entirely from fluctuations

and can randomly appear to favor certain directions.

The absolute angular displacement ζ between each dwell is independent of the reference

frame and contains contributions from both β and α (×, Fig. 5.13E). ζ changes by∼ 90◦ prior

to the longer dwells and less (20◦ − 30◦) between the shorter dwells.

The reported orientations are confined to a hemisphere centered about the director axis in

the direction {β, α} = {85.8◦, 53.5◦} or equivalently {θ, φ} = {36.7◦, 83.0◦}. The choice of

hemisphere determines which end of the dipole is reported, so that any pair of angles (θ, φ) or

(β, α) that have been discussed could be replaced by its symmetric pair (180◦ − θ, φ + 180◦)

or (180◦ − β, α + 180◦).

The wobble for this molecule (Fig. 5.13G) is perhaps the most interesting. Prior to 0.8 s, it

is restricted to relatively low values (∼ 35◦) during the longer dwells and increases to ∼ 65◦

during the putative substeps at 0.15 and 0.6 s. During the last dwell after 0.8 s, the wobble

also increases to ∼ 65◦ before photo-bleaching or dissociating from actin.

The orientation and wobble parameters in Fig. 5.13C-G, correspond to a set of predicted

PFIs in the dipole model (dashed lines Fig. 5.14), and are in good agreement with the data

(solid lines) despite the increase in χ2
ν for some of the dwells (Fig. 5.13B). There is no obvious

correlation between χ2
ν and the dwell duration for the molecule in Fig. 5.13 (black points in

Fig. 5.19A), although several estimates of χ2
ν are significantly larger than for the binned data

(gray point in Fig. 5.19A).
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Figure 5.14: Comparison of measured intensities (solid horizontal lines) with those predicted by the
orientation model (dashed horizontal lines) using the parameters from Fig. 5.13. In general, the agree-
ment between the model and the data is good, although small differences can lead to large differences
in χ2 for long duration intervals, see Fig. 5.19.

5.4.2 Myosin V translocation in the presence of BDM

The velocity of BR-CaM myosin V translocating along actin is determined by tracking several

translocating molecules during a 60-100 s recording (see Sect. 3.2.3). At 10 µM Mg·ATP the

average velocity is 206 nm/s and is slowed to 136 nm/s in the presence of 100 mM BDM.

Assuming 36 nm steps, these velocities correspond to an average stepping interval of 175 ms

and 265 ms, respectively, indicating that BDM increases the dwell interval by ∼50%.

An alternate estimate of the stepping rate can be obtained from the intervals between

change points in the polarization recordings. These intervals are collected for all molecules in

the presence of 10 µM Mg·ATP (black dots Fig. 5.15) and with additional 100 mM BDM in so-
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Figure 5.15: Histogram and single exponential fits to dwell times with and without BDM. Single
exponential fits to the intervals between change points of BR-CaM myosin V translocating on actin
in the presence of 10 µM Mg·ATP (black) and with additional 100 mM BDM (gray) results in time
constants of 116 ms and 174 ms, respectively, indicating that BDM increases the dwell by ∼50%.
These fit parameters were sensitive to the bin size and the number of photons in the first bin (open
circles), yet fits with two exponentials did not describe the data better (data not shown). Average
velocities determined from 60-90 s recordings result in velocities of 206 and 136 nm/s without and
with BDM. Assuming 36 nm steps, these velocities correspond to 175 and 265 ms between steps, also
indicating that BDM slows the dwell duration by ∼ 50%. Fits to the dwells between intensity change
points, however are ∼ 35% shorter than expected from the velocity measurement. 478 and 499 dwells
without and with BDM were restricted between 0.05 and 0.8 s and histogrammed with bin size = 50
ms omitting the first bin from the fit (open circles).

lution (gray dots), histogrammed, and fit with single exponentials. The mean dwell times from

the fits are 116 ms and 174 ms without and with BDM, respectively. BDM increases the dwell

duration in nearly the same ratio as predicted by the velocities; however, the magnitudes of

the fit parameters are faster suggesting additional changes in dipole orientation/wobble beyond

what is expected for a single angle change with each step of the myosin molecule. Further in-

dication of a substeps in the polarization data, is that the exponential fits to the histogram

are sensitive to bin size and also whether or not the first bin is included in the fit. Despite

this apparent instability in the single exponential fits, two exponential fits did not support the

existence of a second population of dwell events.
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Orientation and wobble distributions for translocating molecules in the presence of 10

µM Mg·ATP (black curves Fig. 5.16A-C) are similar to the distributions with additional 100

mM BDM present in solution (gray curves). The polar angle β is predominately between 0◦

and 100◦ with or without BDM, with a slight increase at β ≈ 20◦ in the presence of BDM

(Fig. 5.16A). The distribution of azimuthal angles α are also similar (Fig. 5.16B), with a slight

preference for the fluorophore to be oriented parallel to the x-y plane (i.e., α = 0◦ and±180◦).

Both of these distributions are influenced by the choice of hemisphere used to represent the

dipole. Probe wobble δ is distributed about 45◦ nearly identically for both sets of molecules

(Fig. 5.16C).

In order to investigate the change in angle at each potential step/substep in the record-

ing, estimates of probe orientation and wobble in adjacent intervals are subtracted and his-

togrammed. As with the distributions of orientation/wobble, the distributions of the change

in orientation/wobble (i.e., ∆β, ∆α, and ∆δ) for translocating molecules are similar with and

without BDM (Fig. 5.17A-C). Without BDM, the change in polar angle β has 3 peaks at 0◦ and

±50◦, two of which are maintained in the presence of BDM whereas the third peak at +50◦

is less pronounced, if not eliminated (Fig. 5.17A). The distribution of change in azimuthal

angles around the actin filament are nearly identical in the two cases. The average values of

both are within 3◦ of zero indicating little average rotation of the molecule about the actin

filament, even though some individual azimuthal changes can be relatively large (Fig. 5.17B).

The change in wobble during an event is centered at zero with most of the changes in wobble

falling within ±20◦ (Fig. 5.17C). In the presence of BDM the distributions of ζ are similar

except for a small, but statistically significant, increase in the number of small angle changes
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Figure 5.16: Distributions of orientation and wobble determined between adjacent change points for
translocating BR-CaM myosin V in the presence of 10 µM Mg·ATP (black) and with additional 100
mM BDM (gray). (A) In both distributions β is predominately less than 90◦ and neither illustrate tilting
between two peaks that is typically seen in individual traces. The broad range of β is partly attributed to
the choice of hemisphere which may represent a fraction of the β ∼ 130◦ dwells as β ∼ 50◦, and vice
versa. (B) Azimuthal orientations α are distributed between -180◦ and 180◦, with a slight preference
to be oriented parallel to the x-y plane (α = 0◦ and ±180◦). (C) Wobble parameters δ are peaked
at ∼ 45◦. Note that the orientation distributions (β, α) also contain the poorly-defined angles at large
wobble, but they do not change appreciably when these values are omitted.

at ζ ≈ 20◦(Fig. 5.17D).

The peak at ∼ 90◦ and shoulder at small ζ is consistent with the tendency of small in-

creases in ζ to precede big changes (e.g., Fig. 5.13). Correlations between changes in ζ and
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Figure 5.17: Distribution of changes in orientation and wobble for translocating BR-CaM myosin V in
the presence of 10 µM Mg·ATP (black) and with additional 100 mM BDM (gray). (A) Without BDM,
the changes in polar angle (∆β) are peaked at 0◦ and ±50◦. With BDM, the peak at +50◦ is reduced,
but otherwise the distributions are similar. (B) The distribution of changes in azimuthal angle (∆α)
are similar with and without BDM present in solution. Despite the presence of some large azimuthal
changes around the actin filament, the average of either distribution is within 3◦ indicating relatively
little net motion around the actin filament. (C) The distribution of changes in wobble parameter (∆δ)
with and without BDM is peaked at zero with no significant side lobes. (D) The distribution of total
orientation changes (ζ) is similar with and without BDM, except for a noticeable peak at small ζ in the
presence of BDM. Except for ζ, which is calculated as described in the text, the changes in orientation
are determined by subtracting values in successive intervals in each recording and combining the results
for multiple molecules.

the duration of the dwell before and after the change were explored, but no clear trends were

observed (e.g., in a scatter plot of the two parameters, data not shown). Instead, all dwells after

a large change in orientation, (i.e., ζ > 50◦, Fig. 5.18A) were histogrammed and compared to

the dwells after a small change in orientation (i.e., ζ < 50◦, Fig. 5.18B). Single exponential

fits to the histograms indicate that the dwells after small ζ are approximately 25% shorter than

those after large ζ. In both cases the molecules translocating in the presence of 100 mM BDM
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Figure 5.18: Distribution of dwells and single exponential fits for small and large ζ for for translocat-
ing BR-CaM myosin V in the presence of 10 µM Mg·ATP (black) and with additional 100 mM BDM
(gray). (A) The dwell following a large change in total angle (ζ > 50◦, chosen to separate the peaks in
Fig. 5.17D) for all molecules without and with BDM were combined, histogrammed and fit to single
exponentials with time constants of 128 ms (n = 403) and 178 ms (n = 387), respectively. (B)
Similarly, dwells following a small change in total angle (ζ < 50◦) for all molecules without and with
BDM were fit to single exponentials with time constants of 94 ms (n = 223) and 127 ms (n = 263),
respectively. In both cases BDM increases the dwell duration by ∼ 35%, but the dwells for small ζ are
40% shorter than for large ζ. The trend of these results does not depend on the value of the cutoff or
bin size used in the histogram, but the magnitudes of the time constants vary by ∼ 20%. Results for a
similar analysis for dwells preceding the change in ζ varied widely with no clear pattern, and depended
on the choice of cutoff and bin size (data not shown). For comparison purposes, the distributions were
normalized by the total number of counts in each. The fit was restricted to dwells in the range of 0.05
and 0.8 s and histogrammed with bin size = 50 ms omitting the first bin from the fit (open circles).

(gray curves in Fig. 5.18) result in 35-40% longer dwells.

5.4.3 χ2
ν of all translocating molecules

The subset of myosin V molecules with at least 4 state changes (Table 5.2), shows a strong

correlation between dwell duration and χ2
ν. If all of the dwells and their respective χ2

ν are

pooled together (black dots Fig. 5.19B), then the correlation is clear from the large value of the

slope in the fit line (gray line Fig. 5.19B), as well as its moderately high correlation coefficient

of ∼ 0.505. The correlation between χ2
ν and dwell duration is also determined separately

for each molecule. The fraction of molecules with correlation coefficients greater than 0.8 is

∼ 50% (Fig. 5.19C) indicating the correlation is very strong for some molecules although no
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Figure 5.19: χ2
ν depends on dwell duration. (A) For the molecule shown in Fig. 5.12, χ2

ν calculated
from the change point intervals (black) are similar to those for the binned data (mean±S.D., gray),
and unlike in other molecules does not depend strongly on the dwell duration ∆t. (B) If all of the
dwells from the subset of 149 translocating molecules (Table 5.2) are combined then the total number
of dwells is 2000 (black dots). The correlation between χ2

ν and the dwell duration results in the average
χ2

ν increasing by over an order of magnitude when the dwell increases from 0.1 to 1 s (gray fit line).
(C) If the correlation of each of the 149 molecules is considered separately, over 80% of the molecules
show a strong correlation (r > 0.5) between χ2

ν and the dwell duration.

other distinguishing characteristic for such molecules could be determined.
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5.4.4 Rigor myosin V

In the absence of Mg·ATP, single-headed myosin V molecules bind tightly to actin with their

lever arm titled forward in the post power stroke (rigor) state, but EM images of myosin V

dimers in the absence of Mg·ATP indicate that both heads do not usually bind simultaneously

[127]. In order to investigate the occurrence of singly bound heads, BR-CaM labeled myosin

V is attached to actin and the proportion of molecules with large and small wobble parameter

were compared.

The PFIs for BR-CaM myosin V’s attached to actin in the absence of Mg·ATP generally

show few, if any, abrupt intensity changes. For the molecule shown in Fig. 5.20, the total

intensity indicates a single bleaching event at 2.5 s (Fig. 5.20A) with a relatively constant in-

tensity (Fig. 5.20B). By eye, the individual PFIs (Fig. 5.20C-J) suggest a change point at∼0.5

s, that is confirmed by the MICP analysis in addition to a second change point corresponding

to the bleaching event.

As before, both the binned and change point intensities are input into the dipole model

in order to determine the probe’s orientation and wobble during the recording. The signal to

background ratio of ∼3 is quite high, and is the upper limit of what is typically measured

under these conditions (Fig. 5.21A). The χ2
ν values for the change point intensities are more

than an order of magnitude greater than those for the binned intensities (Fig. 5.21B), despite

good agreement between the measured intensities and those predicted by the model (data not

shown). The large χ2
ν is common in other molecules and is correlated with very long duration

dwells (Fig. 5.19B,C). The wobble parameter increases from a moderate value of∼ 40◦ during

the first 0.5 s to a large value ∼ 70◦ for the remaining 2 s (Fig. 5.21G). θ = 90◦ during the
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Figure 5.20: Total intensity, individual PFIs and change points for a BR-CaM myosin V molecule
bound to actin in absence of Mg·ATP. (A) Total intensity of the BR-CaM, binned after each complete
0.8 ms cycle of the polarizations (gray, blue) and averaged over 10 cycles (black), photo-bleaches to
background in a single step at∼2.5 s. (B) Zoomed-in view of the region to be analyzed has a relatively
constant intensity. (C-J) Individual PFIs including the superimposed change points (dotted vertical
line) with their confidence interval (gray shaded box) on the intensities of data binned at 8 ms for
APDx (blue) and APDy (red). Estimates of the intensities between adjacent change points are shown
as horizontal lines. Aside from the photobleaching event, there is only one other change point at ∼0.5
ms.

initial interval indicates that the probe is oriented parallel the x-y plane (Fig. 5.21C) and is

thus likely to be measured at symmetric orientations obtained by reflection about the x-z and

y-z planes, as indicated by the large fluctuations in φ (Fig. 5.21D). The orientations identified

in the second dwell are unreliable since orientation is not well-defined during periods of large

δ. β and α orientations in the actin frame are similarly noisy (Fig. 5.21E,F) during the period

of large wobble.
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Figure 5.21: Orientation and wobble parameters for a BR-CaM myosin V molecule bound to actin
in the absence of Mg·ATP. The binned and MICP intensities from Fig. 5.20 were input to the dipole
model to determine the orientation and wobble of the probe. (A) The signal to background ratio is
relatively large at∼3. (B) Large values for the reduced χ2 are probably influenced by the long duration
dwells (see Fig. 5.19) (C) θ and (D) φ for the orientation in the microscope frame. The angle of the
actin filament equals −37◦ (horizontal line), and is determined from the CCD image of the Alexa-647
labeled actin filaments. (E) The change in absolute angular displacement ζ (×’s), and the polar angle β
and (F) azimuthal angle α for the orientation in the actin frame of reference. Angles in the second dwell
are not reliable due to large wobble parameter (G) Slow wobble cone δ is large for most of the recording
suggesting the BR-CaM is labeled near the detached head. Large changes in angle for the binned data
typically occur between angles related by symmetries in the setup (see text). The hemisphere for
these molecules is centered about the director axis pointing in the direction {β, α} = {48.8◦, 5.9◦} or
equivalently {θ, φ} = {85.6◦, 48.6◦}.

Two populations of molecules are expected in the data since BR-CaM bound near a head

that is attached to actin would presumably have a well-defined orientation and lower wobble

than a BR-CaM bound near the highly mobile detached head. In order to separate these two

kinds of molecules, the fraction of the recording time that δ > 75◦ is calculated. Sorting

these values from lowest to highest separates the number of molecules that rarely experience

very large wobble from those that often experience large wobble. In the absence of Mg·ATP,
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Figure 5.22: Fraction of molecules with periods of large wobble. (A) The fraction of the recording that
each molecule has wobble greater than 75◦ is calculated and plotted in increasing order for molecules
with (black) and without Mg·ATP (gray) present. (B) Same data as in A, but histogrammed according
to the fraction of molecules with low and high wobble. 55-60% of the molecules in both cases have
a relatively low fraction of their recording in a high wobble state (peak at 0.05). In the absence of
Mg·ATP, ∼30% of molecules experience large wobble for over 80% of the recording, whereas less
than 10% of molecules in the presence of 5-40 µM Mg·ATP experience this degree of wobble (peak at
0.9 in gray only).
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Figure 5.23: Wobble cone distribution. (A) The wobble parameter during the first (solid) and last
(dashed) dwell for myosin V molecules in the presence of Mg·ATP shifts to larger values later in the
recording, suggesting that the molecule bleaches or dissociates from a one-head bound state. The peak
at ∼ 40◦ may indicate the wobble of the two-head bound state. (B) Molecules attached to actin in the
absence of Mg·ATP have a similar distribution of wobble parameters during the first and last dwells
with two peaks, suggesting two populations of BR-CaM: one attached near a bound myosin head with
wobble ∼ 55-60◦and the other attached near a free head with wobble 80-85◦.

∼55% of the molecules never experience large wobble events, but the wobble fraction for the

remaining molecules increases sharply such that ∼20% experience periods of large wobble

for greater than ∼90% of the recording (gray line Fig. 5.22A). ∼ 60% of the molecules in the

presence of Mg·ATP also rarely experience large wobble events (black line Fig. 5.22A), and
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the remaining 40% experience some amount of large wobble, but with no apparent preference

in how long the wobble persists (black line Fig. 5.22B). Similarly, a histogram of the data in

Fig. 5.22A results in a peak at zero with and without Mg·ATP, but only data without Mg·ATP

indicates a peak at large wobble δ = 80− 90◦ (Fig. 5.22B).

The fraction of translocating molecules with some amount of large wobble (∼ 40% in

Fig. 5.22) is consistent with the raw data of many molecules that show a long duration dwell

with high wobble near the end of the trace. In order to explore this trend, the magnitude of the

wobble parameter during the first and last dwell are compared for molecules in the presence

(Fig. 5.23A) and absence (Fig. 5.23B) of Mg·ATP. With Mg·ATP present in solution, there is

a large shift in the distribution of wobble parameter from δ ∼ 40◦ during the first dwell (solid

line Fig. 5.23A) to a large fraction with δ > 60◦ during the last dwell (dashed line Fig. 5.23A).

As a control, the wobble during the first and last dwells of molecules without Mg·ATP present

in solution were also compared (Fig. 5.23B); both distributions are similar with two peaks at

δ = 55◦ and 80◦.

5.5 Discussion

5.5.1 Increased polTIRF time resolution

The maximum time resolution of a polarized TIRF setup was improved 100 fold by increasing

the polarization cycle frequency from 100 to 10 000 Hz (Fig. 5.9) and tagging each photon with

its arrival time and polarization state using a time-correlated single photon counting device

(Fig. 5.5). Additional hardware circuits were built to filter out photons detected during the
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brief period (∼1 µs) when the polarizations change due to the finite time response of the

Pockels cell high voltage amplifier (Fig. 5.6 and Fig. 5.7). A second circuit establishes a

10 MHz oscillator as the master clock for the experiment by converting the sine wave clock

output from the delay generator to a short duration, negative sync pulse that is input into

the SPC circuit and used as the macrotime clock (Fig. 5.8). A third circuit combines the

polarization signal from the Pockels cell driver circuit with the SPC routing bits in order to

encode the polarization state of the excitation laser (not shown). A more sensitive EM-CCD

camera replaced the intensified CCD camera, necessitating new software for controlling the

experiment, which was written in LabView.

Fast time resolution is critical for detection of short-lived substeps in the myosin ATPase

cycle. Previous polTIRF measurements were typically conducted with gate intervals of 10

ms, which correspond to cycle times of 40 ms for the 4 polarization case [61, 62, 65] and

80 ms for the 8 polarization case [2, 123, 124]. Despite decreasing the time resolution, most

experiments were conducted with 8 input polarizations (i.e., 16 PFIs) instead of half that

number, in order to better characterize the orientation of the probe. As shown in in Fig. 4.9B,E,

the wobble is also better characterized with 16 PFIs due to a symmetry between δ = 90◦ and

(θ, φ) = (54.7◦, 45◦) in the 8 PFI case. Because these polTIRF experiments are restricted

to measuring orientation, individual substeps must be distinguished from steps by a distinct

wobble state, e.g., the high wobble state during the diffusive search. Absent this feature,

substeps can be distinguished by their kinetics, assuming they are substantially different from

the stepping kinetics.

The laser intensity is increased ∼3 fold compared with the twirling experiments (Sect. 3)
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in order to maximize the number of photons detected during the short duration substeps in the

myosin ATPase cycle. The rate of photon emission from the BR-CaM fluorophore at these

laser intensities is ∼ 30/ms and provided a limit on the achievable time resolution. The

simulations in Sect. 4 indicate that for an SBR of 3, approximately 800 photons are required

to detect 50% of diffusive search type substeps in myosin V [98, 160, 173]. At these photon

rates, 800 photons would be recorded in ∼25 ms, which serves as a more practical estimate of

the time resolution than the 0.8 ms cycle time. Considering this detection efficiency and the

expected distribution of event durations, only a fraction of the number of substeps are likely

to be detected, even if they occur with every cycle of the motor.

Faster emission rates would result in a higher fraction of detected substeps, and are pos-

sible at higher laser powers; however, this would increase the rate of photobleaching, thus

minimizing the number of events measured per molecule. This tradeoff can be mitigated by

increasing the Mg·ATP concentration and thus the number of steps, but recording quickly

moving molecules is a challenge due to the ∼ 1 s latency currently required to center the

stage above the APDs and change the optics from imaging at the microscope’s camera port to

imaging at the APD port.

polTIRF experiments using a CCD camera instead of APDs measured position and ori-

entation simultaneously [109] with 150-500 ms exposure times using two input polariza-

tions. Alternating between focused and defocused imaging of BR-CaM myosin V [111]

and VI [190], also allows simultaneous position and orientation at 500-1000 ms exposure

times. Detecting short-lived substeps is not feasible with these relatively slow experiments,

however longer-lived states between angle changes that were not correlated with a stepping
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event were detected [109]. The polTIRF experiments described here have a faster time time

resolution and larger angular range than these previous efforts. Substeps detected via opti-

cal traps [170, 171, 173] or high speed tracking of non-fluorescence particles [98] have sub-

millisecond time resolution, but also a relatively large particle attached to the myosin which

may slow down or interfere with rebinding. The polTIRF experiments described here do not

match the speed of these measurements, but the small fluorescence probe is unlikely to inter-

fere with rebinding of the free head.

In principle, polTIRF experiments would be sensitive to both the diffusive search and

substeps that consist of a kink forming in the lead head lever arm prior to a step (i.e., the

telemark state). The highly mobile diffusive state would be represented as brief, large wobble

event with a poorly defined orientation, flanked on either side by low wobble states with well-

defined orientations in the trailing- and leading- head configurations.

5.5.2 Myosin V translocating along actin

The orientation and wobble of BR-CaM myosin V molecules translocating along actin in

the presence of Mg·ATP were measured with the high time resolution polTIRF setup. Abrupt

changes in the magnitude of individual PFIs occurred simultaneously (Fig. 5.10C-J) with some

increasing and other decreasing such that total intensity was constant (Fig. 5.10B), indicative

of orientation changes of a single molecule [61, 63, 123]. The intensity changes are visible by

eye in the binned intensity traces and only occur when Mg·ATP is present in solution. Other

work has shown that the frequency of orientation changes are correlated with the concentration

of Mg·ATP [61,124] and often accompany a myosin step [109,111]. Substeps are not typically
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evident by eye in the binned data, but statistically significant ones were identified using the

multiple intensity change point (MICP) algorithm.

MICP algorithm

Single photon counting data does not impose a bin size on the recorded photons. After the

experiment, the data can be binned with arbitrary time resolution and analyzed in the con-

ventional manner. Alternatively, a change point analysis [100] can be performed on the raw

photon arrival times to determine if there is a change in intensity, and if so, its location in time.

For example, Hanson et al. [191] use a similar change point analysis on FRET data to study the

dynamics of adenylate kinase with 2 ms time resolution. In Sect. 4, the change point analysis

was extended to also detect changes in individual polarized fluorescence intensities that can

occur even when the total photon detection rate is constant (Fig. 5.12). The magnitude of the

PFIs between adjacent change points are then input to a model of the dipole orientation [63]

to characterize the state of the molecule during the entire interval instead of in constant width

bins as was done previously [2, 61–63, 123, 124].

A major advantage of the change point approach is that it reduces the Poisson shot noise

by maximizing the number of photons used to estimate the state of the molecule. In contrast,

binning the data fixes the shot noise at the mean number of photons per bin. Smoothing

the data by averaging successive bins improves the signal to noise ratio, but at the expense

of a loss of time resolution. This filtering approach is especially deleterious for detecting

substeps in myosin V polarization data because as the filter sweeps across an abrupt intensity

change point, it blurs the boundary, effectively introducing an artificial state with intensities
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that are the average of the two on either side. Importantly, these average intensities are often

comparable to the intensities that would be expected for a high wobble state, resulting in a

high incidence of false positive change points and parameters that are misleadingly reported

by the dipole model. The MICP algorithm avoids this, by decoupling the time resolution used

to detect events from the time resolution used to characterize the state of the molecule.

Improving the signal to background ratio (SBR) of each PFI using the MICP algorithm

has the additional benefit of minimizing fluctuations between spatial orientations that are far

apart but have closely related PFIs. This scenario corresponds to the orientation of a probe and

its reflection about the cartesian planes, e.g., (θ, φ) and (θ,−φ) which are resolved by the L1

and R1 polarizations. Low photon counts and random fluctuations in these PFIs, however, can

cause the apparent orientation of the probe to hop between these two symmetric orientations.

Similar symmetry points occur across the x-z plane.

The rapid cycling of the polarizations also minimizes the impact of an angle change oc-

curring in the middle of a cycle. With the slower cycle frequencies used in earlier work

[2, 61, 62, 65, 123, 124], if the probe’s orientation or wobble changed during the course of the

cycle, then the resulting parameters from the dipole model would not be meaningful for that

cycle. Faster cycling of the polarizations combined with the flexible location of the change

point using the MICP algorithm eliminates this issue. The drawback to faster cycle frequen-

cies are the greater fraction of photons that are rejected during each change of voltage on the

Pockels cell. Here the fraction of rejected photons was 3% whereas for the slower cycling

frequency it was 1%.

The MICP algorithm for the molecule in Fig. 5.10, finds 9 significant peaks in the like-
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lihood functions (Fig. 5.11), some of which correspond to the long-lived change points that

were obvious by eye in the binned data and some that correspond to short-lived states that

seem to indicate substeps in myosin V cycle (Fig. 5.12C-J). The change points and substeps

determined by the MICP algorithm are the result of the raw photon data and do not depend

on an underlying model. In order to verify that they correspond to rotational motions of the

myosin, the PFIs during each interval are used as input to the dipole model and the probe’s ori-

entation and wobble are determined. The model therefore acts as an independent verification

on the validity of the detected change points.

Orientation and wobble

Because of the probe’s dipole symmetry, two equivalent orientations, related by a 180◦ end-

on rotation, can be used to describe its 3D direction in space. This ambiguity complicates

interpretation of the data since rotation of the protein by ζ could also be interpreted as a

rotation by 180◦ − ζ in the opposite direction. Definitively choosing one end of the dipole is

impossible, but the issue can be mitigated by a wise choice for the range of θ and φ that is

likely to contain the same end of the dipole for the entire recording. For myosin VI, Sun et

al. [124] reported the orientation for the end of the dipole that was contained in a hemisphere,

which was rotated around the actin filament by 60◦ in a direction opposite to its helical twist.

In this work, a hemisphere was defined separately for each molecule by aligning its polar

axis along a direction that minimized the variance amongst the different dipole orientations

estimated during its recording (i.e., the director).

A caveat to this approach is that if the protein is known to rotate by more than 90◦ in a
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single step then the reported change in angle will be less than 90◦. For example, a probe that

rotates from (β, α) = (20◦, 20◦) to (140◦, 40◦) would instead be reported as the opposite end

of the dipole at (40◦,−140◦), and the large change in β would become a large change in α.

EM images of myosin V indicate that the lever arm in the trailing head makes an angle of

∼40◦with the barbed (‘+’) end of the actin filament [127], and an angle of 90◦ to 150◦ with

the leading head (with an average of 115◦). The corresponding lever arm swing would be

50-110◦, but as discussed in Sect. 5.3.3, the lever arm swing is not necessarily equal to the

change in orientation of the probe, which is estimated to be tilted away from the lever arm

axis by 40◦. Using polTIRF with angles restricted to 1/8 of a hemisphere Forkey et al., [61]

measured the probe angles for BR-CaM myosin V and found two peaks for β at 30◦ and 75◦,

but the latter was interpreted as 105◦ due to symmetries in the setup. β = 30◦ was assigned to

the trailing head because a similar peak was also detected for myosin molecules bound in the

rigor state in the absence of Mg·ATP. The resulting 65◦ change in angle of the probe would

likely remain within the chosen hemisphere.

For the molecule in Fig. 5.12, the orientations in either the microscope (Fig. 5.13C,D) or

actin frames (Fig. 5.13E,F) appear to alternate between two well-defined values and the orien-

tations determined between change points are in reasonable agreement with the orientations

determined from the binned data. The absolute angular displacement ζ, which includes both

azimuthal and polar angle changes independent of the reference frame, shows large changes

of∼ 90◦ during the supposed steps, which are preceded by small changes for the two putative

substeps (ζ Fig. 5.13E). ζ is larger than β here due to the large contribution in the angle change

from α.

199



The wobble parameter for this molecule showed alternating low and high wobble events.

Interestingly, the low wobble events (δ ∼ 30◦) corresponded to the long dwells after large

changes in β, whereas the high wobble events occur during the putative substeps when β

changes from 85◦ to 125◦ at 0.15 and 0.6 s. If these large wobble events corresponded to the

free head’s diffusive search for the next actin binding site then β = 85◦ would correspond to

the probe on the trailing head and β = 125◦ to the probe on the leading head. The molecule

also terminates in a high wobble state, which will be discussed below.

Even though this pattern for increasing wobble is consistent with expectations for the dif-

fusive search, it was only occasionally detected. Of the subset of 149 molecules with at least

4 angle changes, 18 potential diffusive search events in 12 different molecules were manu-

ally identified if the wobble parameter increased by at least 20◦ compared to the neighboring

dwells. The average dwell of these events was 36 ms and ranged from 7.5 to 80 ms. De-

tecting the diffusive search substep is at the limits of detection due to its short duration and

insufficient photon counts under these experimental conditions. Conversely, the dwells for

the high-wobble substeps measured for the molecule considered here are long compared to

other measurements (10 ms [98, 173]) and theoretical estimates of the diffusive search (∼1

ms [174, 175]). A distribution of dwell times for the diffusive search is expected, but if the

results reported for this molecule were from the tail of a distribution, then one would ex-

pect many more 10-20 ms substeps, which were not observed. Possible explanations for the

extended diffusive search experienced by this and other molecules are an obstacle along the

actin filament such as a streptavidin molecule, a damaged section of the actin filament with

compromised myosin binding, or interaction of the myosin with the surface of the slide.
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5.5.3 Myosin translocation in the presence of BDM

Numerous groups [98, 109, 171] have determined that the myosin II inhibitor BDM slows the

rate of myosin V translocation on actin. There are some differences, however, as to its role

in prolonging substeps in the myosin V ATPase cycle. Uemura et al. [171] determined that

100 mM BDM stabilizes the ADP bound-head state on both the trailing and the lead head,

where it also delays the power stroke. Dunn et al. [98] found that BDM slows the rate at

which the free head re-binds actin, but it did not affect their measurement of the power stroke.

Syed et al. [109] found that BDM increased the fraction of ‘extra’ re-orientations that occurred

accompanied by a small ±5 nm step.

Distribution of dwell times

Histograms of all the intervals between change points of BR-CaM myosin translocating along

actin in the presence of 10 µM Mg·ATP includes both steps and substeps. If the kinetics of

these states are sufficiently different, then the histograms should be better described with a

2-exponential fit than with a 1-exponential fit, but this is not the case. Instead, the distribution

is well fit by a single exponential (Fig. 5.15) with time constant τ− = 116 ms (where the ‘−’

indicates no BDM). Including 100 mM BDM in solution increased the duration of the dwells

so that the single exponential fit resulted in τ+ = 174 ms (where the ’+’ indicates the presence

of BDM in solution), consistent with a slower velocity.

The ratio of the time constants for the data with and without BDM (τ+/τ− = 1.5) is

in excellent agreement with the increase in dwell time in the velocity measurements. The

corresponding time constants for the velocity data, assuming constant 36 nm steps, however,
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are ∼ 33% slower indicating that there are more dwells than steps in the polarization data,

which is indirect evidence of the existence of substeps in the polTIRF data. Distinguishing

between substeps and steps by their potentially different kinetics by using a two-exponential

function was not successful as the fit was no better than a single exponential.

Distribution of orientations

The distribution of orientation and wobble for molecules with and without BDM were very

similar (Fig. 5.16). In either case, the distribution of the polar angle β (Fig. 5.16A) did not

indicate two peaks as would be expected from the tilting motion seen in the raw data and

as reported previously [61, 124]. One possible explanation is that during the periods of large

probe wobble, which were better estimated in this work, the probe orientation would be poorly

defined and result in random β values that would obscure any potential peaks. Filtering out

high wobble events and weighting orientations by their dwell duration, however, did not affect

the shape of the distributions (data not shown) suggesting that this is not the explanation.

Another possible reason for the lack of expected peaks in the β distribution is that if the

probe changed by an angle greater than 90◦ then restricting it’s orientation to a single hemi-

sphere would resulted in a smaller reported angle. This seemed to be the case in certain

molecules that exhibited large orientation changes that were consistently more prominent in

α than β. In principle this could be true, however if the dipole was not restricted to a hemi-

sphere, then it would likely have resulted in large tilting motions in β, more consistent with

a molecule translocating along actin. A higher incidence of substeps in β may also explain

the lack of a two-peak distribution, since substeps consisting of intermediate β angle could
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obscure the peaks.

The distribution of orientations around the actin filament (α) is relatively constant, as

expected for molecules that can land on actin at any azimuth due to the helical distribution

of binding sites (Fig. 5.16B). Both distributions show a small tendency for probes to orient

parallel to the x-y plane (i.e., α = 0◦ and ±180◦). The origin of this preference in angle is

not clear, however it could arise from the geometry of the BR-Cam labeled myosin, such as

if translocation was preferred on the actin binding sites oriented away from the quartz slide.

If these binding sites corresponded to α = 0◦ and ±180◦ then these values would be over-

represented in the distribution.

The wobble parameter is distributed about δ = 45◦ similarly for molecules with and

without BDM (Fig. 5.16C). If BDM increased the occurrence of high wobble events, even if

they were short in duration, then they would be represented by a peak near δ ∼ 90◦, which

was not observed. However, if BDM lengthens the duration of large wobble events, then this

effect would not be represented in the distributions. There is a shoulder to the right side of the

central peak at δ ∼ 70◦ indicating that high wobble events are present, but their probability

does not seem to increase with BDM.

Distribution of angle changes

Changes in orientation (∆β, ∆α) and wobble ∆δ between successive dwells are similar for

molecules with and without BDM. The 3 peaks in the ∆β distribution for molecules without

BDM in solution (Fig. 5.17A) indicate that when tilting events occur they are often ±50◦.

The peak at zero indicates a large fraction of events with little or no change in β, such as
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when other parameters (e.g., wobble) change. Large changes in β may be under-represented

since the automated choice of hemisphere suppresses angle changes greater than 90◦. When

BDM is present, the peak at +50◦ is reduced and the peak at zero is slightly broadened,

possibly indicating that substeps are more likely to break up the +50◦ angle change into

smaller changes.

The distributions of the change in azimuths ∆α are similar, but there is a slight preference

for large ∆α with BDM present in solution (Fig. 5.17B). Large ∆α may correspond to non-

36 nm steps, which would include an additional rotational component when the head binds

to an actin monomer that is rotated around the actin filament. As discussed in Sect. 3.4.4,

the difference in azimuthal angle of monomer 11 or 15 compared to monomer 13 is ∼ 28◦

for a 13/6 actin helix. Alternatively, the large ∆α might be explained by the probe tilting

out of the hemisphere and the opposite end being reported. The mean of either distribution

is within 3◦ of zero indicating that even though large angle changes are possible, the net

rotation around the actin filament is small. These results do not contradict the numerous

studies [115, 116, 192, 193], which show myosin following a long ∼micron pitch helical path

along actin filaments suspended above the surface, because the long pitch of these motions

only requires a small shift in the average azimuthal angle (e.g., 10◦-15◦).

The distribution of changes in wobble (∆δ) are nearly identical with and without BDM.

The absolute angular displacement ζ indicates a large fraction of∼ 90◦ changes for molecules

with and without BDM, indicative of the large tilting events accompanying the lever arm

swing. The molecules with BDM, however, also have a significant peak at ζ = 20◦. This

second peak might represent the re-orientations measured by Syed et al. [109] that increased
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in frequency in the presence of 100 mM BDM.

In order to explore the significance of these steps further, the dwell immediately following

a ‘large’ angle change (here ζ > 50◦, Fig. 5.18A) was histogrammed separately from the

‘small’ angle changes (here ζ < 50◦, Fig. 5.18B). Single exponential fits to the ‘large’ ζ his-

togram result in time constants that are within 10% of the time constants discussed previously

in Fig. 5.15, whereas fits to the ‘small’ ζ histogram are ∼ 25% faster. The time constants for

the fits to the dwells when BDM is present are ∼ 30% longer than the data when no BDM

is present. If the dwells corresponding to large ζ changes are productive steps then at these

low Mg·ATP concentrations they would be predicted to depend proportionally on Mg·ATP

concentration. If the population of dwells corresponding to small ζ are substeps when the rear

head detaches from actin before the power stroke occurs on the lead head then they would be

predicted to not depend on Mg·ATP concentration [171].

Dependence of χ2
ν on dwell interval

The χ2
ν for this molecule fluctuates about unity for the binned intensities (Fig. 5.13B) indi-

cating that the number of unknown parameters estimated from the data (5) is adequate for the

number of measured PFIs (16) given the noise in the signal [88]. For the molecule shown in

Fig. 5.13, the correlation between χ2
ν and the dwell duration (∆t) is not strong (Fig. 5.19A).

However, when all of the dwells and their respective χ2
ν for the set of molecules are con-

sidered together, there is a trend between large χ2
ν and long duration dwells (Fig. 5.19B).

Similarly, when the correlation is calculated for each molecule, ∼80% of the molecules have

a very strong correlation (> 0.8) between these two parameters. In principle there could be a
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physical phenomena missing from the model that only becomes apparent with the larger signal

to noise ratio achieved in the longer duration dwells. A more likely explanation, perhaps, is

that small errors in estimating the calibration factors or subtracting the background become

more obvious during the longer dwells and result in a higher χ2
ν.

5.5.4 Myosin bound to actin in rigor

Molecules of myosin V, in the absence of Mg·ATP, bind to actin with the lever arm tilted

forward in the post power stroke (i.e., rigor) state [127,194]. These molecules do not move on

actin, but they do colocalize with it so distinguishing them from background contaminants is

not an issue. Typically, polarization recordings show very few changes in the PFIs, although

1 or 2 are not uncommon (Fig. 5.20). The orientation and wobble for these molecules is

characterized by either a well-defined orientation with moderate wobble or a large wobble

state with poorly-defined orientation. The molecule shown in Fig. 5.20 illustrates both of

these states with a low wobble (δ ∼ 40◦) and well-defined orientation (β, α) = (50◦, 0◦)

during the initial 400 ms followed by a large wobble (δ ∼ 70◦) for the remaining 2 s until

photo-bleaching.

Two distributions of molecules are expected since the intermolecular strain is too large for

both heads of myosin V to bind actin in the rigor configuration, unless the lead head lever arm

is kinked, as proposed in the telemark state. Consequently, many molecules are attached to

actin in the one-head bound state [127], therefore a BR-CaM near the attached head would

have a well-defined orientation whereas a BR-CaM near the free head would have a large

wobble and poorly defined orientation.
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The fraction of each molecule’s recording where the wobble parameter is large (i.e., δ >

75◦) is calculated for all the analyzed molecules to illustrate the fraction that rarely or fre-

quently experience high wobble. In the absence of Mg·ATP (Fig. 5.22A,B), two distributions

of wobble states is clear from the peak at 0.1, which indicates that ∼ 65% of the molecules

experience high wobble for only 10% of the recording, and the peak at 0.85, which indicates

that > 20% of the molecules experience high wobble for nearly the entire recording (> 85%).

This is in contrast to molecules in the presence of Mg·ATP(Fig. 5.22A,B), which mostly show

no high wobble events.

This result is consistent with the data presented in reference [61] which showed two dis-

tributions of molecules when no Mg·ATP was present. The smaller peak was identified as

the trailing head with δ = 36◦ and the larger peak as the detached head with δ = 46◦.

Symmetries in the setup prevented δ = 90◦ from being measured; instead the orientation

(θ, φ) = (54.7◦, 45◦), which has an equivalent distribution of PFIs as δ = 90◦, was usually

returned by the fitting procedure (see Sect. 4.3.4 for details).

The tail of the Mg·ATP wobble distribution (Fig. 5.22B) indicates that 40% of translocat-

ing molecules experience high wobble for 10-100% of their recording. This result is evident

in the molecule shown in Fig. 5.12, which indicates an interval with large wobble before pho-

tobleaching or dissociating from actin (Fig. 5.13G). In order to investigate this trend further,

the distribution of wobble during the first and last dwell of a recording were compared for

myosin with and without Mg·ATP present in solution (Fig. 5.23A,B). With Mg·ATP present,

the first dwell is likely to be in the ATP-waiting state with two heads bound and has a relatively

low wobble of ∼ 40◦ (solid line Fig. 5.23A). At the end of the recording, the probability that
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the last dwell contains a high wobble event is considerably more likely (dashed line). In the

absence of ATP, the distribution of the first and last dwell are nearly identical with two peaks,

one at δ = 55◦ and the other at δ = 80◦. Presumably, the 85◦ peak is the detached head,

whereas the 55◦ peak is the attached head, which has a slightly higher wobble than in the two

head bound state.

Thus, it seems that a myosin run is likely to terminate in a one head bound state before

either photobleaching or dissociating from actin. Often these terminal dwells are much longer

in duration than the previous dwells, assumed to be due to stepping (data not shown). If the

abrupt reduction in fluorescence was due to the molecule dissociating from actin then this

would likely occur from a singly bound state, however the duration of the final dwell would

not be significantly different than the others unless it encountered an obstacle or the end of

the actin filament. An alternate hypothesis is that that translocation is being impaired as the

molecule is illuminated, for example photodamage of Alexa-647 actin may prevent binding by

myosin. The high intensity laser seems like a likely culprit since it is continuously illuminating

the sample during a polarization measurement. This is in contrast to short exposure movies,

where each frame is exposed for only a fraction of the frame rate, and the myosin is observed

to translocating over many microns for 10’s of seconds.

5.6 Conclusions

The maximum time resolution of a polarized TIRF setup was increased 100× by increasing

the frequency that different polarizations illuminate the sample and incorporating a modified

TCSPC device that records the arrival times of individual photons and their polarization state.
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The maximum time resolution is limited by the response of the high-voltage amplifiers to the

Pockels cells that modulate the laser polarizations. Currently, 3% of the detected photons

are rejected due to the 2-3 µs required to change the polarization state after each 100 µs

illumination interval. In practice however, the time resolution is limited by the number of

photons emitted (∼ 30/ms) from a single fluorescence molecule, here bifunctional rhodamine

attached to calmodulin.

The multiple intensity change point algorithm developed in Sect. 4 was applied to translo-

cating myosin V molecules to detect changes automatically in the polarized fluorescence in-

tensities with the only user defined parameters being the rates of false positive and negative

events. Longer duration dwells, presumably corresponding to the ATP-waiting state before the

next step occurs, and shorter duration dwells, which sometimes corresponded to discernable

substeps in the myosin ATP cycle, were detected. Some of these substeps corresponded to the

proposed diffusive search of the free myosin head for the next actin binding site, but they were

rarely observed, probably due to the insufficient number of photons detected during the short

events.

Future experiments varying the concentration of ADP and phosphate may slow down the

substeps and make them easier to detect. Also simultaneous position and orientation measure-

ments would help distinguish substeps from actual steps that produce forward motion.

5.7 Biological assays

Protocols for expressing the myosin, labeling the myosin, and conducting the processivity

experiment are described in the following sections. When possible, all solutions were prepared
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using 0.2 µm filtered de-ionized water in a clean hood while wearing gloves to prevent sample

contamination.

5.7.1 Protocol for myosin V expression and purification

The myosin V construct, kindly provided by M. Ikebe (University of Massachusetts), con-

tains amino acids 1-1105 of the native mouse myosin V as well as a C-terminal His tag and

N-terminal His, FLAG and TEV protease sites. The heavy chain molecular weight is 137

kDa (240.3 kDa including the 6 calmodulins). Myosin with bound calmodulin was purified

from SF9 cells that were coinfected with baculovirus (pFast HT FLAG) containing the myosin

construct [187] and a separate virus containing a calmodulin expression plasmid. After incu-

bating 2 L of cells for 60 h at 27 ◦C, cells were harvested by centrifugation at low speed and

the myosin purified according to El Mezgueldi et al. [186].

Briefly, the cells were suspended in lysis buffer (10 mM Tris pH 7.5, 200 mM NaCl, 2

mM ATP, 4 mM MgCl2, 5 mM DTT, 1 mM EGTA, 0.5% Igepal, 1 mM BME, 0.01 mg/ml

protease inhibitor) and homogenized 5 times with a Dounce homogenizer. The cell contents

were removed by centrifugation at 100 000× g for 1 h at 4 ◦C, and the supernatant containing

the myosin retained (Fig. 5.24, lanes S, S/10, P/10, P/100 indicate the supernatant and pellet

at 10 and 100× dilution). Two columns (each 120 mm × 8 mm) containing 2 ml of FLAG

resin (A2220 Sigma) are cleaned by washing with 3 × 1.5 ml of 100 mM Glycine, pH 3.5

and equilibrated with 3×10 ml of wash buffer (lysis buffer without Igepal). The columns are

loaded with the myosin containing supernatant (Fig. 5.24, lane LT) and washed with 5×5 ml

of wash buffer to remove unwanted protein (Fig. 5.24, lane WT). The myosin is competed off
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the resin with excess FLAG peptide by rinsing with 2 ml of elution buffer (100 mM NaCl,

10 mM Tris pH 8.0, 1 mM EGTA 1 mM DTT, 5 µM calmodulin, 0.2 mg/ml FLAG peptide),

incubated for 1 h and the effluent collected. This elution step is repeated three times to collect

all of the myosin ∼14 ml total, (Fig. 5.24, lanes E1 to E1+E2+E3), .

Half of the eluted myosin is dialyzed into storage buffer and the other half is further puri-

fied on a Mono Q column using fast protein liquid chromatography (FPLC). Before dialysis

(Fig. 5.24, lane Dia-PreC), the first half is concentrated from 7 to 1.5 ml using a centrifugal

filter (Amicon Ultracel-10k, Millipore) with 5 spins at 2 500×g for 5 min each. After concen-

trating, the myosin is dialyzed overnight (Slide-A-Lyzer Dialysis cassette, Thermo Scientific

10 0000 MWCO) with 3 buffer exchanges into storage buffer (200 mM NaCl, 20 mM MOPS

pH 7.0, 1 mM EGTA-K (Fluka stock), 1 mM DTT) to remove excess FLAG antibody and free

nucleotide (Fig. 5.24, lanes Dia-PreC). The last dialysis contains 10% sucrose (Fig. 5.24, lane

Dia-PostC).

The other half of the eluted protein is loaded onto a Mono-Q column (8 ml, Amersham

Biosciences), equilibrated in column buffer (10 mM Tris, pH 8.0, 25 mM KCl, 1 mM DTT) and

eluted with a linear 25 mM − 1 M KCl gradient. The Mono-Q column separates the myosin

from free FLAG peptide, nucleotides, free CaM and a ∼42 kDa protein that is presumably

actin (Fig. 5.24, lane Dia-PostC). Fractions containing myosin were pooled (Fig. 5.24, lane

MQ-PreC), concentrated from 8 to 0.2 ml using a centrifugal filter as before(Fig. 5.24, lane

MQ-PostC), and dialyzed into storage buffer containing 10% sucrose (Slide-A-Lyzer mini

dialysis unit, 10 000 MWCO, Pierce).

Western blots using antibodies to the FLAG sequence and to the Dil 2-123 sequence in
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Figure 5.24: Recombinant myosin V purification. Sypro-Red stained SDS-PAGE gel of various steps
in the myosin V purification: S1, supernatant; P1, pellet; LT, load through the FLAG column; WT, wash
through the FLAG column; E1,E2,E3, elutions from the FLAG column, Dia-PreC/PostC, dialyzed
myosin before and after concentrating; MQ-PreC/PostC, Mono-Q purified myosin before and after
concentration; M, Marker, in kDa (see text for details). The final myosin V product (MV-HMM) is
either concentrated and dialyzed myosin V (lane Dia-PostC) or concentrated and Mono-Q purified
myosin V (lane MQ PostC). There appears to be a proteolytic myosin fragment at ∼ 97 kDa that was
not removed by dialysis, but was largely removed by the Mono-Q column.

the first section of the coiled-coil of Myosin V (generously provided by John Hammer, NIH)

indicate dominant bands for the full-length myosin. The myosin V antibody, but not the FLAG

antibody, also detects a much lower weight proteolytic fragments for both the Mono-Q and

dialyzed purification schemes (Fig. 5.25).

The concentration of the myosin dimers obtained via the two purification schemes was

determined by a Bradford assay with a BSA standard to be∼ 2.5 mg/ml (≈ 5 µM) with a total

volume of 0.35 and 0.54 ml for the dialyzed and Mono-Q purified myosins, respectively. Both

sets of myosin were divided into aliquots and snap frozen in liquid nitrogen for storage at -80

◦C.
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Figure 5.25: Western blot of dialyzed (Dia) and Mono-Q (MQ) purified myosin using antibodies to
FLAG or myosin V. The myosin V antibody (a generous gift from John Hammer, NIH) is to an ∼ 300
amino acid region of coiled-coil from rabbit (see text for details). The MV-HMM band is likely full
length myosin V since the FLAG/Myosin-V antibodies are to the N- and C- terminus, respectively.
The lower band myosin-V antibody lanes may be a proteolytic fragment that was not separated by the
Mono-Q column.

5.7.2 Protocol for myosin V exchange

Bisiodoacetamidorhodamine (bifunctional rhodamine, BR), which has two iodoacetamide link-

ers flanking the chromophore, is cross-linked to a calmodulin (CaM) containing only two

Cystines at amino acids P66C and A73C, see Fig. 5.1. The BR-CaM is attached to the myosin

V lever arm by exchanging the wild type calmodulin (WT-CaM) for the BR-CaM. Briefly, ∼

100 nM myosin V is incubated at room temperature with an exogenous calmodulin mixture of

1 BR-CaM to 10 WT-CaM in exchange buffer (20 mM Imidazole pH 7.6, 25 mM KCl, 2 mM

MgCl2, 1.000 mM EGTA (accurate concentration is important, Fluka 03778), 5 mM DTT).

The calmodulin affinity to the lever arm is reduced by adding calcium to a final concentration

of 1.001 mM. After a 10 min incubation, the concentration of calcium is reduced by adding

a high concentration of EGTA forcing the free calmodulins to rebind to the lever arm. The
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BR-CaM is exchanged at low stoichiometry (∼0.4 BR-CaM per double-headed myosin V)

to obtain myosin V molecules with one BR-CaM and to minimize the proportion of myosins

with two or more probes. Note that the exchange stoichiometry is very sensitive to the cal-

cium concentration during the exchange reaction [195]. After exchanging the myosin, the free

BR-CaM remaining in solution is removed by using a 100 kDa centrifugal filter (Pall Corpo-

ration, Nanosep OD100C33) at 2 000 ×g for 2-3 min, which passes the low molecular weight

calmodulin and retains the high molecular weight myosin. Approximately a half to a third

of the solution is spun through the filter, discarded and replaced with the exchange solution

containing 10% sucrose. After 4-5 iterations, the retentate is predominately BR-CaM labeled

myosin V in the sucrose storage solution, which is then divided into aliquots and stored at

−80◦. The final concentration of BR-CaM myosin V is ∼ 10-50 nM.

5.7.3 Protocol for single molecule processivity assay

Single molecule processivity experiments of myosin V translocating along fixed actin fila-

ments are performed in a flow cell consisting of a PMMA-coated quartz slide and glass cover

slip (Fisher, No 1.) held together by pieces of double–sided tape (Scotch, Cat. No. 665). Typ-

ically, four ∼1 mm wide pieces of tape are spaced to create three 10 µl individual flow cells

on one slide. An equal volume of solution is flowed through the chamber using a pipette while

wicking out the previous contents with filter paper. The flow rate can be controlled roughly by

adjusting the contact area between the filter paper and the solution.

First, quartz slides (Quartz Scientific, HPFS grade quartz, 212000-001) are cleaned by

sonication (Branson 3510) at 40◦C in 3 steps: Acetone for 10 min, 200 mM KOH for 20
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min, and 10 min Ethanol. Slides are rinsed 3 times in deionized water between the first two

steps and allowed to air dry after the ethanol wash in a clean hood. Immediately before

use, a prepared slide is plasma-cleaned (Harrick, PDC-32G) for 2 min on hi power. 20 µl

PMMA (∼ 2 mg/ml PMMA (Aldrich Chemical, secondary standard grade 37 003-7) dissolved

in methylene chloride) is spin-coated (Laurell WS-400A-6NPP/Lite) at 5 000 rev/min onto

the clean slide and transferred immediately into sealed container for transport to a clean hood

where the flow cell is constructed.

After constructing the flow cells, 1 mg/ml biotinylated BSA (Sigma, A8549) is flowed

in to one of the lanes using filter paper to wick out any excess liquid. After incubating for

5 min the flow cell is rinsed with myosin V buffer (M5B, 25 mM KCl, 20 mM Hepes pH

= 7.6, 2 mM MgCl2, and 1 mM EGTA-K in filtered deionized water) and then 0.5 mg/ml

streptavidin (Sigma, S-4762) is flowed in and incubated for 2 min. After rinsing out the excess

streptavidin with MVB, a 0.25 µM solution of biotin-Alexa 647-actin filaments (filaments

polymerized in the ratio 1 biotin actin monomer (Cytoskeleton, Inc., AB07) to 5 Alexa-647

labeled actin (prepared by labeling G-actin with Alexa Fluor 647 as described for AEDANS

actin in reference [61]) monomers to 20 unlabeled actin monomers) are flowed into the cell and

quickly rinsed to achieve filaments that are well aligned with the direction of flow. Blocking

of the surface is achieved by an additional 2 min incubation with 1 mg/ml unlabeled BSA

(Sigma A0281). Finally, motility assay buffer containing labeled myosin V, excess calmodulin

and Mg·ATP is flowed into the cell (MAB, 0.01-1 nM BR-CaM Myosin V, 100 mM DTT, 0.1

mg/ml WT-CaM, 1-40 µM ATP dissolved in M5B). The Alexa actin and BR-CaM myosin

V can be imaged independently but displayed on the monitor simultaneously so that spots of
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myosin moving along actin filaments can be clearly identified and recorded for polarization

analysis. All solutions are prepared fresh monthly, except for DTT and the PMMA solution

which are prepared daily from powder.

Slight variations in the protocol were also implemented, including substituting the biotin-

BSA, streptavidin and biotin-Alexa 647-actin filaments with NEM (N-Ethylmaleimide) treated

myosin II and 1:5 Alexa 647-actin filaments (one Alexa-647 labeled actin monomer to five un-

labeled monomers). The advantage of NEM myosin is that the long, highly-charged tail binds

to the PMMA-coated quartz slide while the head attaches but does not release actin. Myosin

V can translocate along actin filaments and never encounter biotin-streptavidin obstacles that

can act as an impediment if too many are incorporated into the filament. In order to slow down

the rebinding rate of the free myosin V head to the next actin binding site, 100 mM BDM is

sometimes included in the final motility assay buffer.
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Chapter 6

Conclusions

In this work two biological systems were studied at the single molecule level: DNA looping

in tethered particle experiments and translocation between myosin and actin using polarized

TIRF microscopy. In the DNA looping system, a new analysis tool was developed to de-

termine the kinetics of loop formation and breakdown without filtering the raw data. In the

acto-myosin work, modifications to a polarized TIRF setup were described that increased the

range of detectable orientations 4-fold and increased the maximum time resolution 50-fold,

in part by measuring the arrival time of each detected photon. A new analysis tool was also

developed for these higher time resolution experiments that avoided binning of the raw photon

data. Experiments using single molecule polTIRF determined the handedness of actin filament

twirling as it translocated on myosin in a gliding assay and substeps in myosin V molecules

as they translocated along a stationary actin filament.

Aside from very general similarities, i.e., both projects investigated single molecules using

light microscopy, these two areas of research were quite distinct; however, the analysis tools
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that were developed for each provide a common link. Both methods use the data in its raw

form with no filtering or binning, common practices that are often used to improve the signal

to noise ratio at the expense of lower time resolution. Avoiding these post-processing steps

entirely removes any concerns that the conclusions may depend on them. Rigorous analyses

like these are especially useful in single molecule experiments because the data are inherently

statistical. Objectively identifying events minimizes selection bias from skewing the results.

6.1 Tethered particle experiments

In the DNA work discussed here, kinetics of protein-DNA interactions were investigated using

the tethered particle method (TPM); a technique in which protein binding and dissociating

to specific sites on the DNA induces loops to form and break, thereby abruptly changing

the motion of the tethered particle. The kinetics of these loops provides information on the

chemical affinity of protein binding as well as on the physical properties of the DNA such as

its elasticity and geometry. Determining the effect of these and other variables on the kinetic

rates is one of the main objectives of TPM. Thus reliable methods that do this, such as the

Diffusive Hidden Markov Method (DHMM) developed here, are useful.

The DHMM method relies on the large amount of data that can be collected using single

particle tracking techniques on images of the tethered microspheres that are recorded for 30-60

min. The resulting data consists of the (x, y) position of the particle every 30-100 ms. These

high speeds allow the diffusive motion of the tethered particle to be accurately modeled in the

looped and unlooped states of the DNA, which can then be used in the analysis of experimental

data to predict the state of a tether that is dynamically switching between these configurations.
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No binning or filtering of the raw data is required and the underlying kinetic scheme of the

hidden Markov model can be as simple or complex as required to describe the protein-DNA

kinetics and determine the desired rates.

Potential avenues for future TPM work will likely include broadening into other biolog-

ically interesting proteins that bind to nucleic acids besides repressor proteins, for example

References [83, 84, 101], studying the physical properties of DNA to form loops at short

length scales [28], and expanding the complexity of the kinetic looping scheme to include

multiple looped states and binding sites [72]. 3D tracking of the particle has already been

implemented [85] and could be incorporated into future DHMM models. Smaller particles

such as quantum dots or tiny particles of gold would have a faster diffusive time scale and yet

still be bright enough for rapid imaging so that new kinetic regimes might become available.

Interesting physics might also be revealed, such as hydrodynamic coupling between the bead

and the wall, or conformational dynamics of the tether. Combining TPM with other single

molecule techniques such as fluorescence imaging or FRET could provide direct information

on the protein-DNA interactions that are inferred from the particle.

6.1.1 Polarized-TIRF experiments on acto-myosin

In the polTIRF work, interactions between myosin and actin were studied to better understand

the molecular mechanisms underlying translocation. The polTIRF assay determines the orien-

tation and wobble of a single fluorophore, independent of its spatial position. For myosin and

other molecular motors this is a particularly useful assay because the lever arm of the molecule

undergoes a large rotation as it produces force during a forward step. A fluorophore rigidly
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attached to the lever arm at two points reports these angle rotations via the magnitude of the

polarized fluorescence emission. The 3D orientation of the probe can be inferred if multiple

polarized illuminations are used to excite the fluorophore [61, 63].

One improvement to the polTIRF setup made here was to increase the number of input

polarization states of the laser illumination. Light polarized in the two beams at ∼ 45◦ to the

cartesian axes breaks the reflection symmetries in the setup and allows the orientation of the

probe to be measured within a hemisphere [123]. This is the largest range that can be achieved

since the probe has an intrinsic dipole symmetry that cannot be resolved. Using this expanded

range of angles, the handedness of an actin filament translocating on skeletal myosin II in

a gliding assay was determined to be left-handed [123], opposite to the intrinsic actin helix.

Twirling of actin by myosins V [123] and VI [124] were also determined using this assay and

found to be left- and right- handed, respectively.

The second major improvement was the increase in time resolution that was achieved by

faster cycling of the input polarizations and tagging each photon with its arrival time and

polarization state using a modified time-correlated single photon counting circuit. The raw

data for these experiments consists of a list of photon arrival times and tag numbers. A new

analysis, the Multiple Intensity Change Point algorithm, was developed to detect intensity

change points [100] from the polarization information of individual photons, without requiring

any binning of the raw data. The increased time resolution allowed substeps within the myosin

V ATPase cycle to be measured. Due to the limited number of photons emitted during these

rapid events, substeps consistent with the diffusive search of the free myosin head for the next

actin binding site were only occasionally detected. Short duration angular states, possibly
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corresponding to a molecule transiently bending its leading lever arm as a precursor to a step

(i.e., the telemark state), were detected before and after long duration dwells, which were

shown to correlate with stepping in other work [61].

A key development for future polTIRF experiments will be to combine position and orien-

tation, as has been accomplished in other similar assays albeit at lower time resolution [111]

and limited angular resolution [109]. More widely applicable bifunctional labeling schemes,

e.g., the ReAsH molecule, which binds to two pairs of Cysteines in the motif (C-C-P-G-C-

C), could greatly expand the usefulness of polTIRF in other biological systems. Currently,

most of the polarized TIRF experiments have utilized BR-CaM with various myosin iso-

forms [61, 62, 124] and kinesin with bifunctional sulforhodamine [177]. The third classical

motor, dynein, may also undergo interesting rotational motions as part of its movement on

microtubules and would be a good candidate for polTIRF experiments. Another avenue of

future research is simultaneous measurement of the orientation of two probes attached to the

same molecule, as is done with position by using two different color fluorophores and orthog-

onal labeling schemes. This would allow domain rotations within a molecule to be determined

independent of the molecule’s overall orientation in space.

In general, measuring the orientation of single molecules is much less common than mea-

suring their position, although many macromolecules are known to exhibit essential rotational

motions [2]. There remains much unexplored territory with exciting discoveries waiting to be

made. Novel analysis tools based on statistical models of a single molecule’s dynamics or its

fluorescence properties can aid in this search by quantify the large amount of data generated

in single molecule biophysics experiments. These tools are especially advantageous if they
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minimizing the number of user defined parameters such as bin sizes and thresholds that can

lead to different conclusions from the same set of data.
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[132] K. A. Taylor, M. C. Reedy, L. Cordóva, and M. K. Reedy. Three-dimensional recon-

struction of rigor insect flight muscle from tilted thin sections. Nature, 310:285–91,

1984.

[133] S. C. Hopkins, C. Sabido-David, U. A. van der Heide, R. E. Ferguson, B. D. Brand-

meier, R. E. Dale, J. Kendrick-Jones, J. E. T. Corrie, D. R. Trentham, M. Irving, and

Y. E. Goldman. Orientation changes of the myosin light chain domain during filament

sliding in active and rigor muscle. Journal of Molecular Biology, 18(5):1275–91, 2002.

[134] L. P. Watkins and H. Yang. Quantitative single-molecule conformational distributions: a

case study with poly-(L-proline). The Journal of Physical Chemistry A, 110(15):5191–

203, 2006.

[135] C.S. Xu, H. Kim, C.C. Hayden, and H. Yang. Joint statistical analysis of multichan-

nel time series from single quantum dot-(Cy5)n constructs. The Journal of Physical

Chemistry. B, 112(19):5917–23, 2008.

240



[136] B. C. Carter, M. Vershinin, and S. P. Gross. A comparison of step-detection methods:

How well can you do? Biophysical Journal, 94(1):306–19, 2008.

[137] J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and

M. Dogterom. Assembly dynamics of microtubules at molecular resolution. Nature,

442:709–12, 2006.

[138] M. Andrec, R. M. Levy, and D. S. Talaga. Direct determination of kinetic rates from

single-molecule photon arrival trajectories using hidden Markov models. Journal of

Physical Chemistry A, 107(38):7454–64, 2003.

[139] D. S. Talaga. Information theoretical approach to single-molecule experimental design

and interpretation. Journal of Physical Chemistry A, 110:9743–57, 2006.

[140] A.W.F. Edwards. Likelihood. Cambridge University Press, London, 1st edition, 1972.
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Glossary

ADC Analog to digital converter

AFM Atomic Force Microscope,

APD Avalanche photodiode

BDM 2,3-butanedione monoxime, a myosin inhibitor

BR-CaM Bifunctional rhodamine labeled calmodulin

CaM Calmodulin

CCD Charge coupled device

CFD Constant fraction discriminator

cI lambda repressor protein

DHMM Diffusive hidden Markov method

FCS Fluorescence Correlation Spectroscopy,
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FIFO First in-First out mode for operating the TCSPC

circuit

FIONA Fluorescence imaging at one nanometer accuracy

FLAG Polypeptide sequence DYKDDDDK used in pro-

tein purification

FLIM Fluorescence lifetime imaging

FPLC fast protein liquid chromatography

FRET Förster resonance energy transfer

GFP Green Fluorescent Protein

HMM Hidden Markov method, or Heavy meromysoin

depending on the context

IQ motif A short peptide sequence that binds calmodulin

that sometimes begins with an Isoleucine(I) and

Glutamine(Q)

M5B Myosin V buffer

MICP Multiple intensity change point
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NSOM Near-Field Scanning Optical Microscopy,

pdf probability distribution function

PEG polyethylene glycol,

PFI Polarized fluorescence intensity

polTIRF Polarized total internal reflection fluorescence

microscopy

SBR Signal to background ratio

SPC Single photon counting

TAC Time-to-amplitude converter

TCSPC Time-correlated single photon counting

TEV protease site Sequence from the Tobacco etch virus used to

cleave off portions of a protein after it has been

expressed.

TIR Total Internal Reflection,

TIRF Total internal reflection fluorescence microscopy

TPM Tethered particle method

WT-CaM Wild-type calmodulin
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