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Morphology of Ion-Containing Polymers: Correlations Between
Structure, Dynamics, and Ion Conduction

Abstract

Ion-containing polymers are of intense interest for applications in energy storage and conversion devices. The
conductivities of these polymers are determined by both the ion mobility and the total number of mobile
charge carriers, which in turn depend on the chemical structure and morphology. To rationally design ion-
containing polymers with high conductivity, a comprehensive understanding of their multi-scale structure is
essential.

The morphologies of several ion-containing polymers have been explored as a function of material chemistry
and external stimuli by X-ray scattering, scanning transmission electron microscopy, and various types of
spectroscopy. The fundamental structure-property relationships in ion-containing polymers are discussed.
Two classes of ion-containing polymers with very different aggregation behaviors have been studied. The first
class is the polystyrene-based ionomers, where there are unfavorable interactions between the polymer matrix
and ionic groups. The ionic functional groups in these hydrocarbon-based ionomers self-assemble into ionic
aggregates, due to the strong electrostatic interactions in the low dielectric constant matrix and the lack of any
solvation interactions between ions and hydrocarbons. The effects of acid content, neutralization level, and
cation type on the size, number density, and composition of ionic aggregates were explored. The
morphological findings provide a framework for interpreting the dielectric relaxation behaviors of the same
ionomers, so as to establish correlations between structure and dynamics.

The second class is poly(alkyl oxide)-based ionomers. The ionic groups have favorable interactions with the
polymer matrix in poly(ethylene oxide) (PEO)-based polyester ionomers or urethane groups in
poly(tetramethylene oxide)-based polyurethane ionomers. The states of ions are highly dependent on the
PEO length, cation size and temperature in PEO-based ionomers. Decreasing cation size from Cs to Li results
in a transition of ionic states from isolated ion pairs to aggregated ion pairs. As the temperature increases,
these ionomers exhibit greater microphase separation of the ionic groups due to the decreased ability of PEO
to solvate the ions. These findings combine to greatly advance our understanding of the interplay between
morphology and ion conduction in single-ion conductors.
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ABSTRACT

MORPHOLOGY OF ION-CONTAINING POLYMERS: CORRELATIONS
BETWEEN STRUCTURE, DYNAMICS, AND ION CONDUCTION
Wenqgin Wang

Supervisor: Karen I. Winey

Ion-containing polymers are of intense interest for applications in energy storage
and conversion devices. The conductivities of these polymers are determined by both the
ion mobility and the total number of mobile charge carriers, which in turn depend on the
chemical structure and morphology. To rationally design ion-containing polymers with
high conductivity, a comprehensive understanding of their multi-scale structure is
essential.

The morphologies of several ion-containing polymers have been explored as a
function of material chemistry and external stimuli by X-ray scattering, scanning
transmission electron microscopy, and various types of spectroscopy. The fundamental
structure-property relationships in ion-containing polymers are discussed. Two classes of
ion-containing polymers with very different aggregation behaviors have been studied.
The first class is the polystyrene-based ionomers, where there are unfavorable
interactions between the polymer matrix and ionic groups. The ionic functional groups in
these hydrocarbon-based ionomers self-assemble into ionic aggregates, due to the strong
electrostatic interactions in the low dielectric constant matrix and the lack of any
solvation interactions between ions and hydrocarbons. The effects of acid content,

neutralization level, and cation type on the size, number density, and composition of ionic
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aggregates were explored. The morphological findings provide a framework for
interpreting the dielectric relaxation behaviors of the same ionomers, so as to establish
correlations between structure and dynamics.

The second class is poly(alkyl oxide)-based ionomers. The ionic groups have
favorable interactions with the polymer matrix in poly(ethylene oxide) (PEO)-based
polyester ionomers or urethane groups in poly(tetramethylene oxide)-based polyurethane
ionomers. The states of ions are highly dependent on the PEO length, cation size and
temperature in PEO-based ionomers. Decreasing cation size from Cs to Li results in a
transition of ionic states from isolated ion pairs to aggregated ion pairs. As the
temperature increases, these ionomers exhibit greater microphase separation of the ionic
groups due to the decreased ability of PEO to solvate the ions. These findings combine
to greatly advance our understanding of the interplay between morphology and ion

conduction in single-ion conductors.
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Chapter 1

Introduction

1.1 Background of lonomer Morphology

Ionomers are a unique class of copolymers containing a small fraction of ionic
functional groups, which are typically pendant to a hydrophobic polymer backbone.' The
strong electrostatic interactions between the ionic groups in the low-dielectric matrix
drive the self-assembly of ionic groups into aggregates. These nanoscale aggregates act
as physical crosslinks to enable remarkable improvement in the chemical and physical
properties of ionomers relative to traditional homopolymers. As a result, ionomers have
found application in a variety of industrially important applications ranging from
chemical resistant coatings and high performance thermoplastics to selectively permeable
ion-transport membranes.

In order to realize rational design and engineering of ionomers for specific
applications, a comprehensive understanding of the multi-scale morphology is essential.
Various spectroscopic techniques, including Fourier transform infrared (FTIR),”® nuclear

10-12

magnetic resonance (NMR),”” electron spin resonance (ESR), and extended X-ray

absorption fine structure (EXAFS),"”"'” have been employed to probe the structure of

8

ionomers on sub-nanometer length scales.'”® While these studies have provided detailed

information regarding the local chemical environment, they cannot provide an adequate

description of the robust macroscopic properties. X-ray scattering is a powerful tool for

19-22

investigating the nanoscale morphology of ionomers. The formation of ionic



aggregates manifests itself in the appearance of a broad, isotropic scattering peak in the
angular region between 1-5 nm™, which is typically accompanied by a small-angle
upturn.l’23

Several models have been proposed that provide reasonable fitting and

226 The most widely accepted scattering model is

interpretation of the scattering data.
the modified hard-sphere scattering model proposed by Yarusso and Cooper.”® This
model suggests that the ionomer peak arises from the interparticle scattering between
monodisperse, spherical ionic aggregates arranged with liquid-like order in the polymer
matrix of lower electron density. Ding et al.*’ later proposed a modified version of

1,°% % wherein the Percus-Yevick

Yarusso-Cooper model, a.k.a. Kinning-Thomas mode
total correlation function® that accounts for correlations between all particles in the
system was incorporated into the structural factor instead of the Fournet three-body
interference function.”’ While both models fit the jonomer peak equally well, Percus-
Yevick total correlation function was shown to be more suitable for systems of high
packing fraction.®® However, neither model interprets the low-angle intensity upturn,
which is attributed to larger scale inhomogeneities resulting from parasitic scattering due
to voids or un-reacted neutralizing agent.*®

The modified hard-sphere scattering model has been used to interpret the ionomer
peak in a wide array of scattering data and has determined the sizes and spacing between
ionic aggregates for a variety of systems including poly(styrene-ran-methacrylic acid)

(SMAA) ionomers,** sulfonated polystyrene (SPS) ionomers,**

and poly(ethylene-ran-
methacrylic acid) (EMAA)) jonomers.”> The model has shown that the size of the ionic
aggregates from ~ 1.0 nm in diameter for EMAA and SMAA ionomers to ~ 2.0 nm in
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diameter for the P(S-SS) ionomers. However, none of these studies employ a second
model-independent technique, such as direct imaging, to verify the validity of the model.
Our group has devoted significant effort toward imaging the nanoscale
morphology of ionomers by employing scanning transmission electron microscopy
(STEM). STEM provides the capability of high resolution imaging as well as chemical
and structural characterization of nanometer domains though evaluation of electron
energy loss spectra (EELS), X-ray spectra, and electron diffraction patterns.”* More
importantly, high angle annular dark field (HAADF) STEM imaging mode has the
advantage that the intensity is roughly proportional to the square of the atomic number, Z,
of the scattering atom, which greatly enhances contrast between the cation-rich ionic
aggregates and polymer matrix, and avoids chemical staining. HAADF STEM has been
applied to ionomers with different polymer backbone structures, acid types, cations types,
and sample preparation conditions.”™* HAADF STEM images reveal that the
morphologies of ion-containing polymers on the nanoscale are much more complicated
than previously anticipated from a single, broad scattering peak, and are highly dependent

on the sample preparation methods, Table 1.1.



Table 1.1 Materials, Preparation Methods, and Morphologies Observed in STEM Studies

of Ion-Containing Polymers.

Material " Neutralization Isolation Aggregate | Aggregate Spatial
Method Method Shape Size Distribution
Melt Extruded Spheres ~2nm Uniform
35, 44
EMAA-Zn Melt Extruded a}nd Spheres ~2nm Uniform
re-crystallized
75%, 100%, Precipitated i}l)(}ileres Varied Uniform
125% in Solution | and molded .
SPS-Zn% Vesicles
. . Precipitated
o -
25% in Solution and molded Spheres 4-10 nm Heterogeneous
SMAA-Cs™ Solution Freeze dried Vesicles 5-20 nm Uniform
and molded
Spheres ~4 nm
Solution Precipitated and Uniform
PDMS—ZII41 Rods ~4 %11 nm
Precipitated
Solution and Spheres ~4nm Uniform
annealed
S&Iileres ~4 nm Uniform
Solution Precipitated Bundles of | ~ 4 x 60-100 .
Uniform
PDMS-Ba"! Rods o
. Spheres .
Precipitated and ~4 nm Uniform
Solution and Bundles of
annealed | ~20-30nm | Uniform
Rods
Melt Extruded N/A N/A Featureless
EMAA-Na®’ Extruded and . Mult.lp l.e
Melt . Spheres Varied coexisting
re-crystallized 4
morpholgies
Solution Solvent cast Spheres ~3 nm Uniform
Precipitated,
SMAA-Zn* Solution annealed, and | Spheres ~4 nm Uniform
molded
Melt Extruded and Spheres ~3 nm Uniform
annealed
Solution Solvent cast Spheres ~ 1 nm Uniform
SMAA-Cu*> "% . Precipitated Varied size
Solution and molded Spheres and shape Heterogeneous
SPS-Zn or Ba” Solution Solvent cast Spheres ~1-2 nm Uniform
SPS'ZZE » Ba, Cs, Solution Spin coat Spheres ~1-2 nm Uniform
or Cu
PTMO-P" * Direct Synthesis | Solvent cast Spheres ~30-60 nm | Uniform




1.2 Quantitative Reconciliation of HAADF STEM and X-ray Scattering Data

The study of ionomers using STEM as a direct imaging method has revealed
diverse morphologies of ionomers, which cannot be explained by X-ray scattering data
alone. Using a combination of X-ray scattering and HAADF STEM to study the exact
same materials provides the potential to verify the applicability of X-ray scattering model
and to establish the domain over which the X-ray scattering model provides an accurate
description of the system. Using this powerful combination along with the real-space
image modeling, our group has achieved quantitative reconciliation of STEM and X-ray
scattering data in SMAA ionomers and SPS ionomers.*” *%-47

The combination of STEM and X-ray scattering was first applied to monodisperse
gold nanoparticles (1-2 nm in diameter) supported on polystyrene films of varying
thickness (20-90 nm).** The radius of gold nanoparticles was measured by fitting a
Gaussian function to the intensity profile across the feature in the STEM image. The
form-factor scattering model was used to interpret the X-ray scattering data from a dilute
solution of the exact same gold nanoparticles. The diameter determined from STEM
imaging and X-ray scattering are in excellent agreement, thereby demonstrating that
STEM methods can be used to provide quantitative information of nanoscale objects in
the presence of amorphous polymer.

Our group then applied these STEM methods to examine the nanoscale
morphology of SMA A ¢7,-Cu ionomers (7.2 mol% acid).* The ionomers were prepared
by solution neutralization with copper acetate and followed by solvent casting and
vacuum drying. Figure 1.1a shows the HAADF STEM image of a SMAA( 7,-Cu thin
section microtomed from a bulk material. The image shows a dense, uniform distribution
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of spherical bright features, corresponding to the Cu-rich ionic aggregates. The size of
these ionic aggregates was determined by the same method described previously for gold
nanoparticles. X-ray scattering intensity as a function of scattering vector (q) shows three
peaks within q =1.6-16 nm’, corresponding to the “ionomer peak” (3.7 nm™),
polystyrene “polymerization” (7 nm™) and “amorphous” peaks (13 nm™), respectively,
Figure 1.16.*  With confidence in the presence of spherical ionic aggregates, the
scattering data were concurrently fit with Yarusso-Cooper model* for the ionomer peak,
two Lorentzian functions for the polystyrene peaks, and a constant to account for
instrumental background scattering. There are four fitting parameters for the Yarusso-
Cooper model: the ionic aggregate radius R;, the radius of closest approach R4 that
limits the spatial correlation between two aggregates, the average sample volume per
aggregate V), and the peak amplitude 4. Note that V), is the inverse number density of the
ionic aggregates (¥, = 1/N,). The size of the ionic aggregates obtained from STEM and

X-ray scattering is in quantitative agreement.
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Figure 1.1 (a) HAADF STEM image of SMAA-Cu shows a dense, uniform distribution
of Cu-rich features. (b) Scattering intensity as a function of scattering vector, ¢, for
SMAA-Cu along with the best-fit model (solid). The model includes the Yarusso-Cooper
model for interparticle scattering from spherical ionic aggregates (grey), two Lorentzian

functions (dotted), and an additive constant. (Modified from reference 46).

However, the number density of the ionic aggregates (,) obtained from X-ray
scattering data is much larger than that directly observed in the HAADF STEM image."’
The size of the ionic aggregates is on the order of 1 nm, whereas the typical thickness of
specimen for STEM imaging is between 50-100 nm, thus the extensive overlap in the 2D
projection of 3D specimen could significantly reduce the actual number of aggregates
shown in the STEM image. In order to obtain a better interpretation of the morphology
observed in the STEM image, 3D real-space structural models were constructed based on
the parameters from scattering data and subsequently used to simulate the 2D
projections.*” Figure 1.2a illustrates a 3-D real-space volume of 25 x 25 x 25 nm’
randomly populated with hard spheres (R; = 0.5 nm, Rcy = 0.75 nm, and V, = 5

nm’/particle). The projected intensity map of the 3D volume shows the particle overlap
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with intensities corresponding to numbers of aggregates overlapping (Figure 1.2b). The
regions of highest cumulative overlap are shown as brightest red and represent > 8
overlapping spheres. The scale of intensity was adjusted to be as close to the
experimental HAADF STEM situation as possible. During STEM imaging, the
adjustment of brightness and contrast will typically acce