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Evaluating Risks from Antibacterial Medication Therapy

Abstract

ABSTRACT EVALUATING RISKS FROM ANTIBACTERIAL MEDICATION THERAPY USING AN
OBSERVATIONAL PRIMARY CARE DATABASE Sharon B. Meropol Joshua P. Metlay Virtually everyone
in the U.S. is exposed to antibacterial drugs at some point in their lives. It is important to understand the
benefits and risks related to these medications with nearly universal public exposure. Most information on
antibacterial drug-associated adverse events comes from spontaneous reports. Without an unexposed control
group, it is impossible to know the real risks for treated vs. untreated patients. We used an electronic medical
record database to select a cohort of office visits for non-bacterial acute respiratory tract infections (excluding
patients with pneumonia, sinusitis, or acute exacerbations of chronic bronchitis), and compared outcomes of
antibacterial drug-exposed vs. -unexposed patients. By limiting our assessment to visits with acute nonspecific
respiratory infections, we promoted comparability between exposed and unexposed patients. To further
control for confounding by indication and practice, we explored methods to promote further comparability
between exposure groups. Our rare outcome presented an additional analytic challenge. Antibacterial drug
prescribing for acute nonspecific respiratory infections decreased over the study period, but, in contrast to the
U.S., broad spectrum antibacterial prescribing remained low. Conditional fixed effects linear regression
provided stable estimates of exposure effects on rare outcomes; results were similar to those using more
traditional methods for binary outcomes. Patients with acute nonspecific respiratory infections treated with
antibacterial drugs were not at increased risk of severe adverse events compared to untreated patients. Patients
with acute nonspecific respiratory infections exposed to antibacterials had a small decreased risk of
pneumonia hospitalizations vs. unexposed patients. This very small measurable benefit of antibacterial drug
therapy for acute nonspecific respiratory infections at the patient level must be weighed against the public
health risk of emerging antibacterial resistance. Our data provide valuable point estimates of risks and benefits
that can be used to inform future decision analysis and guideline recommendations for patients with acute
nonspecific respiratory infections. Ultimately, improved point-of-care diagnostic testing may help direct
antibacterial drugs to the subset of patients most likely to derive benefit.
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ABSTRACT
EVALUATING RISKS FROM ANTIBACTERIAL MEDICATION THERAPY
USING AN OBSERVATIONAL PRIMARY CARE DATABASE
Sharon B. Meropol
Joshua P. Metlay
Virtually everyone in the U.S. is exposed to antibacterial drugs at some point in their lives. Itis
important to understand the benefits and risks related to these medications with nearly universal
public exposure. Most information on antibacterial drug-associated adverse events comes from
spontaneous reports. Without an unexposed control group, it is impossible to know the real risks
for treated vs. untreated patients. We used an electronic medical record database to select a
cohort of office visits for non-bacterial acute respiratory tract infections (excluding patients with
pneumonia, sinusitis, or acute exacerbations of chronic bronchitis), and compared outcomes of
antibacterial drug-exposed vs. -unexposed patients. By limiting our assessment to visits with
acute nonspecific respiratory infections, we promoted comparability between exposed and
unexposed patients. To further control for confounding by indication and practice, we explored
methods to promote further comparability between exposure groups. Our rare outcome
presented an additional analytic challenge. Antibacterial drug prescribing for acute nonspecific
respiratory infections decreased over the study period, but, in contrast to the U.S., broad
spectrum antibacterial prescribing remained low. Conditional fixed effects linear regression
provided stable estimates of exposure effects on rare outcomes; results were similar to those
using more traditional methods for binary outcomes. Patients with acute nonspecific respiratory
infections treated with antibacterial drugs were not at increased risk of severe adverse events
compared to untreated patients. Patients with acute nonspecific respiratory infections exposed to
antibacterials had a small decreased risk of pneumonia hospitalizations vs. unexposed patients.
This very small measurable benefit of antibacterial drug therapy for acute nonspecific respiratory
infections at the patient level must be weighed against the public health risk of emerging
antibacterial resistance. Our data provide valuable point estimates of risks and benefits that can

be used to inform future decision analysis and guideline recommendations for patients with acute
Vi



nonspecific respiratory infections. Ultimately, improved point-of-care diagnostic testing may help

direct antibacterial drugs to the subset of patients most likely to derive benefit.
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Chapter 1
Chapter 1. Background: assessing drug safety using observational data

A. ANTIBIOTIC USE IN THE UNITED STATES

Virtually everyone in the U.S. will be exposed to at least one course of antibacterial
medications during his/her lifetime. In the year 2000, persons >age 15 received a total of
68,481,645 antibacterial prescriptions, averaging 0.31 prescriptions per person per year.[1-4] Itis
doubtful that the U.S. population has such an extraordinarily high exposure to any other class of
medications.

Antibacterials are often prescribed for acute nonspecific respiratory tract infections,
despite the fact that they are unlikely to be of benefit; adults at approximately half of U.S. office
visits for acute nonspecific respiratory infections receive antibacterial prescriptions.[5, 6] At the
level of the physician-patient encounter, each decision to prescribe an antibacterial medication
weighs the potential benefits from the medication vs. the potential risks. For example, the risk of
a mild, severe, and fatal adverse drug event from amoxicillin is estimated to be approximately
.056-0.07, 0.0057, and 0.000006 respectively. [7-12] For acute nonspecific respiratory infections,
the risk of an adverse drug event from a single extra antibacterial drug prescription must often be
perceived as low, at least lower than the perceived benefit. Although the perceived risk of an
adverse event related to antibacterial use may be low, with such a high level of prescribing, the
population-attributable risk of serious adverse drug events due to this medication class could be
quite high.

There are several reasons why this is a particularly timely issue.

B. Trends in Antibacterial Drug Risk Exposure
1. Rising antibacterial drug resistance: Antimicrobial resistance is growing. Up to 30%
of U.S. Streptococcus pneumoniae isolates are penicillin resistant, pneumococcal
resistance to penicillin is associated with multi-drug resistance,[13-15] pneumococcal
macrolide and fluoroquinolone resistance are spreading,[14, 16] and resistance is
associated with worse clinical outcomes.[17-19] Most U.S. Staphylococcus aureus is
now penicillin resistant, and methicillin and vancomycin resistance are increasing.[15]

1



Chapter 1

For most pathogens, the spread of antibacterial drug resistance is influenced by
selective forces related to the volume and types of community antibacterial drug
use.[20, 21] Outpatient antibacterial drug use is the most important driver of this
escalating resistance, [22]. Our ability to treat patients’ bacterial infections continues
to erode as the development of new effective antibacterial medications has not kept
pace with this pattern of increasing antibacterial resistance; our options for treating
antibacterial infections are shrinking over time.[23-25] There is increasing urgency
for new antibacterial drugs to combat this resistance,[23-25] Concomitantly, improved
methods are needed for utilizing population-based data to detect relatively rare
adverse event risks in any new medications after drug approval when the volume and
complexity of exposure to the new drug rapidly increases, discussed further
below.[26]

Antibacterial drug overuse: Antibacterial drugs, increasingly broad-spectrum
antibacterials, are often used to treat conditions for which they would be unlikely to
be of benefit, such as viral acute respiratory ilinesses.[5, 6] Programs targeting
providers, patients, and the public can significantly decrease unnecessary
antibacterial prescribing.[27] Interventions in Finland[28] and Iceland[29] during the
1980’s and1990’s, led to decreases in both macrolide-resistant streptococcus in
Finland, and carriage of resistant pneumococcus in daycare children in Iceland and
demonstrated that it is possible to reverse the trend toward increasing antibacterial
resistance.

Studies in the U. S. have also demonstrated that multifaceted programs can
significantly decrease antibacterial drug prescribing, and recent efforts in this country
to curtail unnecessary antibacterial use have met with some success.[30-36] During
the 1990’s, adult antibacterial drug use fell by 23% for upper respiratory infections in
the U.S., but broad spectrum antibacterial use doubled. By 2001-2002, 49% of adult
outpatient visits for conditions for which an antibacterial drug is rarely indicated still

2
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received an antibacterial prescription, and 77% of these were for a broad spectrum
antibacterial drug, an increase of 87% over six years.[6] More recent data show that
while antibacterial drug use for acute nonspecific respiratory infections continued to
fall, by the 2005-2006, about half of U.S. patients over 5 years of age, diagnosed with
a nonspecific respiratory infection received an antibacterial drug prescription, and
broad spectrum antibacterial use for acute nonspecific respiratory infections
continues to rapidly increase.[37]

Antibacterial drugs to treat infections in the elderly: As the U.S. population ages,
there will be increasing incidence of conditions that are more common in the older
age groups; this may influence antibacterial drug use and associated adverse events
in this particularly vulnerable population.[38] Takahashi et.al. found that when
urinary tract infections were treated in the elderly, nursing home residents were more
likely than nonresidents to experience antibacterial drug-related adverse drug
events.[39] Juurlink et.al. showed that elderly patients hospitalized for drug toxicity
were more than six times as likely to have been treated with trimethoprim
sulfamethosazole, and those admitted with digoxin toxicity were about twelve times
more likely to have been treated with clarithromycin.[40] Gurwitz found that
antibacterials was the second most frequent class of drugs associated with adverse
drug events in elderly persons treated in the ambulatory setting, [38] and Budnitz
et.al. found that trimethoprim-sulfamethoxazole was among the most common
medications implicated in adverse drug events among elderly patients treated in U.S.

emergency departments.[41]

C. Adverse Events Related to Antibacterial Drug Use

After U.S. FDA approval, drugs are used for many more patients, for a wider variety of

indications, and for a more heterogeneous patient population than in pre-approval trials. The

importance of post-marketing drug safely surveillance is increasingly recognized.[42]
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In the U.S., we have virtually universal exposure to antibacterial medications; on average,

each adult receives 0.3 antibacterial prescriptions per year. Antibacterials are also among the
most common drugs implicated in adverse events.[41, 43, 44] Many adverse events have been
reported following antibacterial drug use. Certain antibacterial classes are believed to be
associated with certain types of adverse events. For example, antibacterial drugs account for
55% of reported cutaneous drug eruptions; penicillins and trimethoprim-sulfamethoxazole have
been most frequently implicated.[45, 46] The tetracyclines, amoxicillin-clavulanic acid,
erythromycin, clindamycin, sulfonamides, and trimethoprim sulfamethoxazole are most commonly
associated with liver injury.[47] Several cephalosporins and most of the penems are considered
nephrotoxic. Clostridia difficile colitis has been associated with cephalosporins, clindamycin, and
during a recent Canadian epidemic, with flouroquinolones.[48] The most common agents
associated with photosensitivity are the tetracyclines and sulfonamides.[49] Beta-lactams,
imipenum and quinolones have been associated with seizures,[50] and erythromycin and
clarithromycin with digoxin toxicity, prolonged QT syndrome and Torsades de Pointes.[51-55]

Of particular recent interest are drugs that are suspected of increasing the risk of cardiac
arrhythmia by prolonging the QT. interval and/or directly causing Torsades de Pointes;
macrolides and some fluoroquinolones are frequently implicated in adverse events through this
mechanism.[56] Also of recent interest are drugs with suspected adverse events related to their
relationship with the hepatic CYP3A4 pathway. For example, macrolides are metabolized by the
CP3A4 pathway and both macrolides and fluoroquinolones are inhibitors of the CYP3A4 pathway
and thus their interaction with other drugs could heighten the risk of associated adverse
events.[57, 58]

It is notable that most of these associations have been described with case reports and
cases series; they almost never include a control group measuring adverse events in unexposed
patients and thus the true absolute and relative risks of adverse events associated with these

agents remain unknown.
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Antibacterials are often prescribed for acute nonspecific respiratory tract infections,

despite the fact that they are unlikely to be of benefit; adults at about half of U.S. office visits for
acute nonspecific respiratory tract infections receive antibacterial prescriptions.[5, 37] As a
result, using observational data, we can compare adverse event rates between patients treated
vs. not treated with antibacterial medications for similar conditions.
D. Data Sources For Estimating Adverse Drug Event Risks

There are limited premarketing data regarding population-based antibacterial drug ADE
risks. Most premarketing studies include only ~3000 subjects, and are not designed to reveal
risks <1/1,000 exposed individuals.[26, 59] There are many examples of antibacterial drug-
associated adverse event risks that became apparent, usually with population-based post-
marketing studies, when more and increasingly medically complex patients experienced drug
exposure. For example, erythromycin was shown to be associated with sudden death[60]and
infantile pyloric stenosis,[61, 62] amoxicillin-clavulanic acid and telithromycin with severe
hepatotoxicity,[47, 63, 64] and gatifloxacin with dysglycemia.[65] However, after drug approval,
there are limited systematic reviews of antibacterial drug risks. The U.S. Food and Drug
Administration’s Adverse Event Reporting System database and the U.K’s Drug Safety Research
Unit’s Prescription-Event Monitoring contain spontaneous reports of adverse drug reactions.[66,
67] Without an unexposed control group, it is not possible to distinguish what portion of these
reported adverse events[68-72] is due to antibacterial drug exposure vs. other risk factors. In
2005, Brennan made this critique of his own iatrogenic death estimates in the 1991 Harvard
Medical Practice Study: “Researchers questioned the real effect on mortality...given the absence
of control groups to test the counterfactual situation.”[73, 74] Ecologic data, such as from large
prescription databases,[75] can examine associations between medication use and other
parameters, but cannot define individual-level factors related to outcomes from antibacterial drug
use, or address confounding by health status and other important covariates.[26, 76]

The growing availability and comprehensiveness of vast ambulatory electronic medical
records such as the General Practice Research Database (GPRD), and its newer cousin, The

5
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Health Improvement Network (THIN), (CDC EPIC, London U.K.),[77-80] linked

inpatient/outpatient electronic medical records such as those provided by the U.S. EPIC Systems
Corporation and Eclipsys Corporation, and linked administrative datasets[31, 81, 82] (Kaiser,
Medicare), are adding breadth and depth to our ability to explore treatment-outcome relationships
at the individual level with improved ability to adjust for confounders.[26, 83, 84] Currently,
approximately 17% of U.S. ambulatory care practices have adopted electronic medical
records,[85, 86] and the availability of electronic medical record data is likely to increase rapidly
over the near future. The American Recovery and Reinvestment Act of 2009 and recent
Medicare and Medicaid legislation provides over $20 billion in funding and incentives for
development and adoption of health information technology by health care providers,[87] some
hospitals are offering further large incentives for practices to computerize and share data,[86]
while physician practices may forfeit up to 3% of their Medicare reimbursements if they have not
adopted an electronic medical record by the year 2014.[88] Concurrently, the importance of

enhanced post-marketing drug safety surveillance, is increasingly recognized.[42]

E. Advantages and challenges of using observational data

A randomized clinical trial is considered the best way to control confounding, by ensuring
balance of both measured and unmeasured confounding variables between exposed and
unexposed subjects,[89] however opportunities and resources to perform large prospective
randomized trials are limited. Randomized trials to investigate subtle, rare, or complex effects
would need to be quite large, would be infeasible to perform for every important research
question, and are not always ethical.[83] Observational data, available from a growing number of
clinical databases, can be used to help ascertain risks of antibacterial medication exposure.
Longitudinal observational data with individual-level links have the potential to help shed light on
the outcomes of antibacterial drug use. However, while observational data can helpfully address

many of these issues, they do present certain other challenges. Efficient and resourceful ways of
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addressing some of these issues would help us use observational data to yield helpful

information.

1. Adjustment for confounding

Ideally, to estimate the causal effect of antibacterial drug treatment we would want to
compare the effect of treatment and non-treatment on the same set of subjects at the same time;
but we cannot.[67, 90] Randomization balances on unobserved as well as observed covariates
and thus attempts to select a control group that is the same as the treated (exchangeable). In
non-experimental studies, we still seek to find an exchangeable control group but with much
difficulty because exposures are not randomly assigned.[91]

Our goal is to estimate the effects of antibacterial drug treatment by comparing treated
and untreated patients.[67, 92] In a randomized study, the treatment groups are considered
comparable prior to treatment. In non-experimental observational studies, since exposures are
not randomly assigned patients with different exposures are likely to have other underlying
differences, measured or unmeasured, Systematic differences between antibacterial drug-users
and the comparison group, especially confounding by indication, can limit the conclusions.[26, 92,
93] With observational data, any apparent temporal relationship between an episode of
antibacterial drug use and an adverse event may be confounded by patients’ demographic,
clinical, and prescribing physician characteristics. Schneeweiss suggested that longitudinal
observational studies can provide information regarding causal inferences between exposure and
effect, but potential biases due to differences between subgroups must be explored.[94]

a) Adjustment for measured confounding

Visible, recorded pretreatment differences (also called overt bias), can be removed by
adjustment, exclusion, stratification, matching, and by using propensity scores, most commonly
by utilizing combinations of some or all of these methods.[91] For example, comorbidity
adjustment has been used in the past to help address confounding by indication, most commonly
to study chronic diseases, [95] and less commonly in the study of acute conditions.[96] Hunter
noted that databases with clinical data regarding patients’ co-existing illnesses can be used to

7
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address confounding using multivariate techniques and propensity scores.[83] Chan and

Shaw[89] advised that evidence from observational data is stronger if any risk persists after
adjustment for subject demographic characteristics, baseline health status, co-morbid conditions,
the tendency to be exposed to medical care, and other medication use. There are many possible
ways to attempt to adjust for co-morbidity and other patient-related factors; for studies of rare
outcomes, power becomes problematic when we start adding additional variables. Using a
propensity score is a way of efficiently modeling rare outcomes and common treatments.
Outcomes for treated and untreated patients are compared within strata of patients with a similar
propensity to have received treatment, or propensity score matching is performed; this maximizes
the balance of measured covariates between treatment and control groups.[97-99]

b) Adjustment for unmeasured confounding

While adjustment for a history of known, measured, and recorded comorbidities can be
useful, of course it does not adjust for unmeasured confounders.[100] Unobserved, or
unmeasured, pretreatment differences (also called hidden bias) must be estimated using other
methods.[67, 92] There are several ways to address unmeasured confounding that have been
used in the past, but experience is limited with their use in GPRD or THIN.
Studies vary in their degree of sensitivity to unmeasured factors.[90, 92] A sensitivity analysis
asks how hidden biases of various magnitudes might alter conclusions, [92] in other words, how
sensitive are the results are to unmeasured factors? [101, 102] Models for sensitivity analysis
can be expressed in terms of assignment probabilities: how large in magnitude would differences
in the probability of receiving treatment depending on hidden biases need to be to alter the
quantitative conclusions of a study? Alternatively, models for sensitivity analysis can be
expressed in terms of unobserved covariates: how large in magnitude would confounding due to
unobserved covariates need to be to alter the quantitative conclusions of a study?
Mathematically, these two types of models are equivalent.[90]

ii. Known Effects
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A sensitivity analysis shows how biases of different magnitudes might change

conclusions, but it does not determine if biases are present, and their possible extent.[90] An
additional method to address hidden bias involves measuring an additional outcome for which
there is no logical causal relationship with the studied treatment, or exposure.[90] If a systematic
difference in this outcome is detected between treated and untreated subjects, this cannot be an
effect of the treatment and must be evidence of a hidden bias. The use of multiple control groups
in a case-control study is a related method.
iii. Instrumental variables

Instrumental variables, observable factors related to treatment choice but unrelated to
characteristics of patients or to outcomes, can help adjust for unmeasured confounders.[101, 102]
A major potential limitation of the instrumental approach is that it is often difficult to find a suitable
instrument.

iv. Case-crossover studies

Case-crossover and crossover-cohort studies can also help minimize inter-individual
differences in indication for receiving antibacterials.[103, 104] In this analysis, only data from
patients experiencing adverse events are used. A window of case exposure time is defined
related to the adverse event occurrence, and exposure during this case-time is compared with
exposure during either all control time (crossover-cohort studies) or exposure during a portion of
the subjects’ control time (case crossover studies). In sensitivity analysis, we can determine how
much unmeasured confounding would be needed to change the odds ratio for serious adverse
events for antibacterial drug-exposed vs. unexposed patients.[97]

Utilizing these analytic methods with THIN data will support these research projects
regarding antibacterial drug use as well as inform future THIN research projects and other studies

using observational data where randomized clinical trials are not immediately feasible.

c) Measurement error/misclassification
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Electronic medical record data tend to have rich longitudinal clinical information

at the individual patient level. Most pharmacoepidemiology techniques for utilizing observational
data have come from studies of long-term drug use to treat chronic diseases and may not be as
appropriate for studying more short-term drug exposures for acute conditions, for example acute
infectious illnesses. For acute conditions, even modest errors in measuring the onset or duration
of acute conditions and/or exposures could bias the results. We need to develop or adapt, and
validate techniques developed using observational data to study chronic treatments and
outcomes of chronic diseases to study acute conditions and/or exposures

i. Misclassified outcome

Hospitalization outcomes in electronic medical record data.

Manually-entered outcomes may be particularly subject to error; for example hospitalizations,
which are important markers of severe adverse events. If hospitalization dates are incorrectly
recorded outside of a specified exposure window that is overly-narrow, we may systematically
miss important outcomes; using an unnecessarily long window risks introducing noise, thus errors
in either direction can reduce our power to reveal true relationships between drugs and adverse
events.

Data regarding hospitalizations often are not directly linked to the outpatient record but
instead need to be entered manually. THIN hospitalization data are entered manually by patients’
general practitioners after they review patients’ hospital discharge summaries.

There are four main areas of uncertainty to be addressed if electronic medical record
hospitalization data are to be useful for drug safety surveillance. First, when hospitalization
codes indicate a patient was hospitalized, did the patient truly have an overnight hospitalization,
or, what is the positive predictive value of the electronic medical record hospitalization codes for
identifying a hospitalization? Second, if the patient was indeed hospitalized, is the discharge
diagnosis recorded the true primary discharge diagnosis from the hospitalization? Third, and
important for studying acute exposures, what is the relationship between the recorded hospital
admission date and the true hospital admission date? If a hospitalization is recorded after receipt
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of the discharge summary, it may be recorded with a later date than the true admission date.

Even if the hospitalization date falls within the exposure window of interest, if the recorded date
erroneously falls outside the window, the adverse hospitalization event might be missed. Fourth,
what is the sensitivity of the electronic medical record for detecting adverse event
hospitalizations? The first three of these areas of uncertainty will be addressed with the current
projects within the U.K. electronic medical record The Health Improvement Network (THIN); the
fourth is beyond the scope of presently-available resources.
ii. Misclassified covariates/exposure

Electronic medical record prescription data are generally considered to be highly valid, as
data entry usually generates the prescription of interest, and prescriptions are usually linked to
their corresponding diagnostic indications.[105, 106] Prescriptions in THIN are generated with
data entry this way, and linked to a diagnosis at the time of entry; studies have supported good
concordance with other prescribing measures, for example, THIN prescribing rates for asthma
medication were similar to UK asthma prescribing rates using other national measures.[105]
However, there remain several routes of potential exposure misclassification. First, medications
not associated with a medical record entry may be missed, such as medications from emergency
department visits, administered in the hospital, or administered over the telephone without written
record. Second, these data describe what was prescribed, but not necessarily what medication
was obtained and/or ingested by the patient of interest; data on which prescriptions were filled are
not available in THIN. Previous studies have shown that approximately 2% of prescriptions
remain unfilled, and approximately 70% of these are for new prescriptions.[107] Medications may
be prescribed but not obtained, obtained but not ingested as directed, or, alternatively,
medications may be ingested by patients that are unrecorded in the medical record, for example,
given by medical provider as samples but not recorded, obtained from family members or friends,
or purchased over-the-counter or otherwise without a prescription. Third, exposure status will
depend on the definitions used for that study, for example, how encounters are included and/or
grouped, and how exposures are otherwise defined for that particular study. Medication
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adherence rates are typically higher in patients with acute vs. chronic conditions,[108, 109] and,

unlike for many U.S. patients,[110] payment for medications should not be a barrier in THIN as
antibiotic prescriptions should be covered by the U.K.’s National Health Service. In this study, we
used a dichotomous exposure, exposed vs. unexposed. THIN does have medication dose and
days supplied fields, but due to the extra potential for misclassification with these further variables
described above, a dichotomous exposure was considered more useful for this study. In addition,
as the severe adverse events we were studying would mostly be considered Type B, or
idiosyncratic adverse drug events, less likely dose related than the more common Type A

adverse drug events,[111] the dose would not necessarily be as clinically relevant for this study.

F. Preliminary Data

1. Adverse events related to antibacterial drug use in the GPRD: In a preliminary study, a

50% sample of 2% years of the GPRD was used to compare the incidence of adverse events for
patients on short term (<28 days) vs. prolonged (>28 days) therapy with one of the seven oral
antibacterial drugs: amoxicillin, amoxicillin-clavulanate, clarithromycin, azithromycin, ciprofloxacin,
levofloxacin, and doxycycline.[112] Serious adverse events resulting in hospitalization were
identified including: nephrotoxicity, hepatotoxicity, anaphylaxis, infectious colitis, phototoxicity,
seizures, and ventricular arrhythmias. No analysis of unexposed patients was performed, and
there was no adjustment for potential confounders. Overall, 24% of patients were exposed to an
antibacterial drugs of interest, including 542,817 person-years of observation. Overall adverse
event rates were highest for ciprofloxacin (24 events per 100,000 person days exposure)
amoxicillin-clavulanate (15 events per 100,000 person days exposure) and amoxicillin (6 events
per 100,000 person days exposure). For most events, the incidence rate ratio, comparing >28
vs. 0-28 person-days of antibacterial drug exposure was <1, showing limited evidence for
cumulative dose-related adverse events from long-term exposure. Limitations of this preliminary
study include its relatively smaller sample size than this current study, no control group of patients
not exposed to antibacterials, and no adjustment for potential confounders
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2. The Health Improvement Network (THIN): THIN is a large longitudinal observational

database of anonymized computerized primary care medical records. The GPRD was originally
established by EPIC, London, U.K. in 1987 for research purposes; participating general
practitioners received practice computers and Vision clinical practice management software in
return for undertaking data quality training and submitting anonymized patient data. Beginning in
2002, a more formal collaboration of CDC EPIC with InPS, supplier of the Vision software, paved
the way for the introduction of THIN. THIN collects anonymised patient data records from general
practices throughout the UK using the Vision software to create a medical research database.
Within the UK, approximately 98% of the population is registered with general practitioner
physician who is responsible for almost the entirety of the patient’s medical care. THIN contains
primary care records including demographics, provider information, medical diagnoses that are
part of routine care or result from hospitalization, visits for acute conditions and diagnoses,
consultations, hospital referrals, new and repeat prescriptions with indications for all new
prescriptions (cross-referenced to medical events on the same date) and events leading to
withdrawal of a drug or treatment, preventive care, hospital admissions, mortality and cause of
death, lifestyle factors, and free text.[113] The most current THIN data used in this study include
information on 32.6 million person-years regarding 4.85 million patients from 326 practices.
These data are completely de-identified; there is no way for investigators to link THIN records
with any individual patient. Diagnoses are recorded with Read diagnostic codes, using a
comprehensive hierarchical nosologic system to group and define specific illnesses.
Prescriptions are recorded using codes issued by the Prescription Pricing Authority (PPA) of the
National Health Service in the UK. Practitioners are trained in data entry and their data are
reviewed on an ongoing basis for quality and completeness.[114, 115] THIN helps GPs improve
their data quality by offering training and analysis of the practice’s anonymised patient
information, and reports back to practices on a regular basis. Studies have confirmed very good
validity of general practitioners’ documented diagnoses,[105] prescription information,[105] and
capture of information from specialists.[116] THIN also offers the option of obtaining additional
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data from GPs if needed, while maintaining complete anonymization of data; this can be

especially helpful for data validation. All studies using THIN data must be approved by the local
University of Pennsylvania THIN user committee, the local institution’s Institutional Review Board,

and EPIC in the UK, to ensure scientific and ethical standards for THIN data utilization.

G. Summary of background and relation to objectives of proposed study

Every individual in the U.S. is prescribed a short-term course of systemic antibacterial
drugs once every three years to almost twice per year, on average, resulting from a visit to an
ambulatory health care provider.[3, 4, 6, 37, 117, 118] This extraordinarily high exposure to
antibacterial medicines should command careful vigilance to the consequences. Much U.S.
antibacterial use is unnecessary, and contributes to rising antibacterial resistance. Yet the factors
that inform patient and provider expectations and decisions regarding antibacterial drug
prescribing at the individual encounter level are influenced less by societal issues and more by
prescriber and patient perceptions of patient-level attributes regarding individual benefit and
risk.[119] It is important to have a comprehensive understanding of the risk of adverse events
related to this class of medication to which the U.S. public has virtually universal exposure.

Several recent trends that are likely to influence antibacterial drug use make it even more
important to accurately assess risk. As we face increasingly resistant organisms, and our
antibacterial drug stewardship becomes ever more vital, providers are being urged to further
decrease the rate of unnecessary antibacterial drug use. However, an increasing prevalence of
relatively frail and medically complex elderly members of the U.S. population works against our
ability to use fewer antibacterial drugs. Advances in personalized medicine and more complex
decision modeling[120] require more precise information available regarding risk, adjusted for
individual characteristics.

Many adverse events associated with antibacterial drug use have been documented in
the past, those related to cardiac arrhythmia and CYP3A4 metabolism are of particular recent
interest, however the causal relationship between antibacterial drug exposure and the adverse
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event is not always evident, and risk models do not always address complex confounding issues,

especially confounding by indication.

More information about individual patient outcomes of antibacterial drug use might help
us learn how to better address antibacterial use and overuse at the individual level. While large
prospective randomized studies would be ideal to explore antibacterial drug outcomes, they are
not immediately feasible for every research question.

THIN offers unique access to individual patients’ longitudinal demographic, clinical,
pharmaceutical, and outcome data, and the opportunity for data validation. Although these
observational cohort data are more accessible than are the resources for performing a very large
randomized clinical trial, great care needs to be taken to assure that the antibacterial drug -
exposed and -unexposed groups are as comparable as possible. Methods to control confounding,
especially confounding by indication, and confounding by practice in observational studies can be
used to enhance THIN studies regarding outcomes of medication use.

These studies expand on the preliminary study in that we use a subset of the entire THIN
cohort with an office visit for acute nonspecific respiratory infection, and compare adverse event
rates of antibacterial drug-exposed and antibacterial drug-unexposed patients. By limiting the
comparison to patients with visits for acute nonspecific respiratory infection, we promote
comparability between exposed and unexposed patients in the cohort. In addition, we explore a
set of secondary adverse event endpoints of less serious events resulting in outpatient office
visits. We also comprehensively address confounding issues by utilizing different ways to adjust
for practice-level confounding as well as patient-related covariates such as demographic
variables, underlying health status and intensity of exposure to the medical care system. The
rarity of our outcome presents an additional analytic challenge. To further assess our methods,
and put our results in perspective, we also consider other outcomes, both benefits and adverse
outcomes.

With its wealth of longitudinal clinical information, THIN is the most logical database
choice for this project, giving the best chance of teasing out antibacterial drug-related adverse
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events from the confounding factors. We also validate THIN hospitalization dates, which is

pertinent for this study as well as for future studies of acute drug exposures using THIN data.

This study provides the opportunity to learn about important antibacterial drug risks, as

well as gain experience with methodologies that can be applied to future THIN studies to address

issues inherent in using observational data. As The Health Improvement Network (THIN) as well

as other electronic medical record databases continue to grow in number and size, experience

with effective and efficient methodologies will help us to exploit their potential.
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Chapter 2. Specific Aims

The increasing availability of observational data from large electronic medical record
databases provides opportunities to enhance our understanding regarding drug safety. Most
pharmacoepidemiology techniques for utilizing these data have come from studies of long-term
drug use to treat chronic diseases and may not be as appropriate for studying more short-term
drug exposures for acute conditions. For example, there are limited data validating correct time
windows for ascertaining acute medication exposures and the outcomes of cute conditions.

The first study will describe patterns of antibacterial drug use associated with outpatient
visits for acute nonspecific respiratory tract infections in the THIN database. The second study is
a validation study addressing the accuracy of hospitalization dates in The Health Improvement
Network (THIN), an electronic medical record database. First, we will measure the positive
predictive value of hospitalization codes in the database. Next, for validated hospitalizations, we
will explore the relationship between the recorded and true hospitalization dates. Evidence either
for or against the null hypothesis that the recorded dates are true dates, and resulting insight
regarding a useful antibiotic exposure window will be essential for the subsequent studies
assessing hospitalizations related to acute exposures.

Most adverse event reports regarding antibacterial drugs do not contain a control group
of unexposed patients. The third study in this thesis will use the knowledge acquired from the
validation project regarding THIN hospitalization dates and appropriate drug exposure windows to
study risks and benefits related to antibacterial drug use for acute nonspecific respiratory tract
infections. Antibacterial drugs are often prescribed for acute nonspecific respiratory infections,
although they are unlikely to provide clinical benefit. This scenario provides the opportunity to
compare outcomes for exposed vs. for unexposed patients with similar conditions. We will take
advantage of THIN’s rich clinical data by applying several techniques to control for confounding
by indication.

The goals of this dissertation are to address the unique methodological challenges of
applying pharmacoepidemiologic techniques developed to study drug use for chronic diseases to
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study more acute conditions, exposures, and outcomes, and specifically to validate

hospitalization dates in THIN and to assess the relationship between acute antibacterial drug use

and adverse events.

Specific Aims:

1. Describing antibacterial drug use for nonspecific acute respiratory illnesses in the U.K.

The objective of this study was to describe antibacterial drug use associated with a
primary care visit for nonspecific acute respiratory illnesses in the U.K.’s The Health Improvement
Network primary care database. Specific aims were to:

Primary aim:
1. Describe overall antibacterial drug use for acute nonspecific respiratory tract infections in

the U.K.

2. Describe broad spectrum antibacterial drug use for acute nonspecific respiratory

infections in the U.K.

Hypothesis 1: Overall antibacterial drug prescribing for acute nonspecific respiratory infections is
decreasing, similar to U.S. trends.
Hypothesis 2: Broad spectrum antibacterial drug prescribing for acute nonspecific respiratory

infections is rapidly increasing, also similar to U.S. trends.

2. Assessing misclassification and validation of hospitalization dates and diagnoses in

The Health Improvement Network (THIN) database

The objective of this study was to validate hospitalizations for community acquired
pneumonia in the THIN database. Specific aims were to:
Primary aims:
1. Assess the positive predictive value (PPV) of a hospitalization for pneumonia identified

using THIN hospitalization codes
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2. Assess the relationship between THIN hospital admission date and true hospital

admission date.
Hypothesis: 100% of THIN hospitalizations are recorded as occurring within a 14-day window

of the true hospitalization date.

Hypothesis 1: : The PPV of a pneumonia hospitalization is 100%.

Hypothesis 2: 100% of THIN hospitalizations are recorded as occurring within a 14-day

window of the true hospitalization date

3. Assessing methods for controlling bias and confounding while using observational

clustered data to study rare outcomes.

The objective of this study was to compare various potential methods to control bias and
confounding while using a primary care observational database to study rare acute outcomes.
Primary aim:

1. Compare methods for controlling bias and confounding caused by measured

variables.
Secondary aim:
1. Compare methods to evaluate the impact of unmeasured variables, including

instrumental variable analysis and sensitivity analysis

4. Potential Risks of Antibacterial Drug Use: Adverse Events Associated with Adult

Antibacterial Treatment

The objective of this study was to compare the risk of a serious adverse event between
patients prescribed antibacterial medications vs. the risk for those not prescribed antibacterials,
conditional on a primary care visit for acute nonspecific respiratory tract infection. Specific aims
were:

Primary Aim:
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1. To compare the risk of hospitalization with a severe adverse event between

patients prescribed antibacterial medications vs. the risk for patients unexposed
to antibacterials, conditional on a primary care visit for an acute nonspecific
respiratory infection.

Hypothesis:
Patients with visits for acute nonspecific respiratory infections with exposure to
antibacterial medications have an increased risk of adverse event
hospitalizations compared with antibacterial-unexposed patients with visits for

acute nonspecific respiratory infections.

5. Potential Benefits of Antibacterial Drug Use: Pneumonia hospitalization outcomes after

acute nonspecific respiratory infection; assessing the influence of antibacterial treatment

The objective of this study was to compare the risk of a hospital admission for community
acquired pneumonia between patients prescribed antibacterial medications vs. the risk for those
not prescribed antibacterials, conditional on a primary care visit for acute nonspecific respiratory
infection.

Primary aim:

1. To compare the risk of hospital admission with community acquired
pneumonia between patients prescribed antibacterial medications vs. the risk
for patients unexposed to antibacterials, conditional on a primary care visit
for an acute nonspecific respiratory infection.

Hypothesis:

Patients with visits for acute nonspecific respiratory infections with exposure to

antibacterial medications have a decreased risk of pneumonia hospitalizations compared

with antibacterial-unexposed patients with acute nonspecific respiratory infections.
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Chapter 3. Describing antibacterial drug use for nonspecific acute respiratory illnesses in

the U.K.
Meropol SB, Chen Z, Metlay JP. Reduced antibiotic prescribing for acute respiratory infections for
adults and children. Br J Gen Pract. 2009;59(56):€321-328. DOI: 10.3399/bjgp09X472610

Resistance to antibacterial medications among community-acquired pathogens is a
growing public health threat.[1-5] Key drivers are the volume and type of antibacterials used in
ambulatory settings.[6-8] Antibacterials are often prescribed for acute nonspecific respiratory
infections which they are unlikely to benefit..[9, 10] Reducing such use can slow, or even reverse
resistance rates.[11, 12] U.S. and U.K campaigns have discouraged unnecessary antibacterial
use.[2, 13-16] Recent U.S. data have demonstrated decreased unnecessary adult and child use,
but U.S. broad spectrum antibacterial use for adult and child acute nonspecific respiratory
infections more than doubled during the 1990s, and have continued to rapidly increase through
2006. [17-23] U.K. studies have similarly shown decreased diagnoses of acute nonspecific
respiratory tract infection and related and overall antibacterial use for all ages, [24-28], but they
provided limited information regarding trends in adult and child antibacterial and broad-spectrum
antibacterial use for this diagnosis.

The objective of this study was to assess recent U.K. trends in overall and broad
spectrum antibacterial drug use for adult and child acute nonspecific respiratory tract infections.
We hypothesized that overall use declined, that this decline varied by age and, like recent U.S.

patterns, that there was a concomitant increase in broad spectrum drug utilization.

Methods

Study Design: This retrospective cohort study utilized de-identified data from a large U.K.
primary care electronic medical record database, The Health Improvement Network (THIN).[29]
Data collection commenced in 1985 through the General Practice Research Database (GPRD);
THIN, introduced in 2002, includes data from many original GPRD practices and continues to
enroll additional practices with ongoing data collection.
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THIN includes demographics, visits, diagnoses, and prescriptions. Prescriptions are

generated by data entry, and general practitioners are responsible for most prescribing, with
virtually 100% capture of prescription data. Data quality is reviewed on an ongoing basis.[29]
Studies have confirmed good validity regarding documented diagnoses,[30, 31] prescriptions,[31]
and specialists’ information.[32]

Study Population: The population of interest included permanently registered members of

computerized THIN practices, utilizing THIN data as of September, 2007 describing 4.85 million
patients from 326 practices, including >32 million person-years. We used valid available data
from January 1, 1990 or the date of practice computerization, if later, through December 31, 2004
or the latest date of data collection for that practice.

THIN records birth year for all patients and birth month for children <15 years of age. We
defined adults as individuals >=18 years of age on the day of the acute nonspecific respiratory
tract infection visit and children as being <18 years of age, according to THIN recorded
birthdates.

We selected a cohort of visits from January 1, 1990 through December 31, 2004 using
Read diagnostic codes for acute non-specific respiratory infections, chosen to represent
conditions that are typically viral in origin and unlikely to respond to antibacterials (Table 1). We
excluded conditions for which some guidelines recommend antibacterials, such as otitis media
and sinusitis. Because data from multiple visits within the same illness episode may be highly
correlated, we grouped adjacent visits within a two-week window for our primary analysis;
sensitivity analysis explored the impact of considering adjacent visits independently. As results of
the sensitivity analysis were identical to the primary analysis, we only present results of the

grouped approach.
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Table 1. Acute Nonspecific Respiratory Tract Infection Diagnostic Codes

THIN Read Code Description

Other acute upper respiratory infections

IAcute upper respiratory tract infection
Upper respiratory infection NOS
Upper respiratory tract infection NOS
lAcute nasopharyngitis

Acute pharyngitis

Throat infection — pharyngitis
Acute pharyngitis NOS

Sore throat NOS

IAcute bronchitis

[Bronchitis unspecified

Outcome Classification: The outcome of interest was receiving any antibacterial

medication prescription within one day of an acute nonspecific respiratory tract infection visit.
Drugs of interest included oral antibacterials typically used for respiratory infections. We
excluded topical, vaginal, ophthalmologic, otic, and parenteral antibacterials, and those typically
used for tuberculosis, fungal and parasitic infections. We classified amoxicillin/clavulanate,
azithromycin, clarithromycin, fosfomycin, second- and third-generation cephalosporins and
quinolones as broad spectrum, and all others as narrow-spectrum medications.[22]

Exposure Classification: The main exposure was visit year, considered individually for all

analyses.

Covariates: For children, age was stratified as 0-<5 and >=5 years of age. For adults,
age was stratified as 18-<65 and >=65 years. These age categories are clinically relevant (i.e.
pre-school vs. school-aged), are in line with those used by the U.S. National Center for Health
Statistics,[33] and can facilitate comparisons with U.S. Medicare data for adults >=age 65. Other
covariates included sex, the number of comorbidities by the day of the ARI visit, and the number
of different classes of prescribed medications and the number of visits within the year before the
visit.[34-36] As changes in drug use could vary by age, we also tested for an interaction between

year and age category.
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Analysis: We first described trends in visit rates and antimicrobial prescribing rates for

acute nonspecific respiratory tract infections over the study period using Cuzick’s nonparametric
test for trend across ordered groups by individual visit year. Person time was calculated using
each patient’s THIN birthdate, practice enrollment date, date of transfer out of practice, and/or
date of death, and each practice’s computerization and/or last data collection date, as
appropriate.

Next, we used generalized linear models to model the probability of an antibacterial
prescription, conditional on a visit for acute nonspecific respiratory tract infection. To predict
probabilities, we used a Poisson distribution and logarithm link function in the generalized linear
models, with robust variance estimates [37]. Separate adult and pediatric models adjusted for
clustering by patient and practice using Generalized Estimating Equations,[38, 39]. We modeled
the probability that an antibacterial was prescribed, first using models adjusted only for year. We
report probabilities of antibacterial use for each year, and report trend across year using Cusik’s
test. We then modeled the probability of antibacterial prescribing using fully-adjusted models,
with year as a linear term, including all covariates described above, to report adjusted trend
across year, described as an incidence rate ratio (IRR) for each successive year. We also
explored the age-year interaction using the fully adjusted model including the interaction between
age category and categorical year and tested whether interaction terms were significant using the
deviance difference test.[40] If interaction terms were statistically significant, we report IRRs for
each successive year stratified by age category.

We performed a parallel set of analyses for broad spectrum antibacterial drugs, including
trends in prescribing rates and the probability of antibiotic prescriptions conditional on a visit for
acute nonspecific respiratory tract infection.

Analyses were performed using Stata version 9, StataCorp LP.

This study was granted exempt status by the University of Pennsylvania Institutional
Review Board, and approval by the University of Pennsylvania THIN User Committee and the
U.K.EPIC Database Research Company.
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Results
ARl visit rate

We identified 1,342,365 visits for acute nonspecific respiratory tract infection diagnoses in
745,044 adults followed for 22,741,927 person-years and 1,117,596 visits for acute nonspecific
respiratory tract infection diagnoses in 453,584 children followed for 5,831,438 person-years. For
adults, the visit rate during 1990 was 74.5 visits per 1000 person-years and by 2004 was 50.2
visits per 1000 person-years (Figure 1). For children, the visit rate during 1990 was 247.9 per
1000 person-years and by 2004 was 154.5 per 1000 person-years (Figure 1). Visit rates
decreased over the study period for adults and children (both p for trend=0.001).

Figure 1, Adult and Child Visit Rates for Acute Nonspecific Respiratory Tract Infections
per 1000 Person-years
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For adults, in 1990, the antibacterial prescription rate for acute nonspecific respiratory
tract infection visits was 55.0 per 1000 person-years, and by 2004 it was 30.3 per 1000 person-
years (p=0.001 for trend) (Figure 2). For children, in 1990, the antibacterial prescription rate was

124.8 per 1000 person-years, and by 2004 it was 46.3 per 1000 person-years (p=0.001 for trend).
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Figure 2, Adult and Child Antibacterial Drug Prescribing Rates for Acute Nonspecific

Respiratory Tract Infections per 1000 Person-years
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For adults, during 1990, 71% of visits were associated with an antibacterial prescription,

and by 2004, 59% of visits were associated with antibacterials (p=0.003 for trend) (Figure 3).
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Figure 3, Probability of Antibacterial Drug Prescribing after Acute Nonspecific Respiratory

Tract Infection Visit.
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Using the fully-adjusted model for adults, adjusting for sex, age category, year,
comorbidities, number of medications and number of visits, there was a significant decrease in
the probability of antibacterial prescribing for each successive year, with an IRR of 0.979 (95%
c.i. 0.979-0.980, p<0.001).

Using the fully-adjusted model for adults, and including the year-age category interaction,
older adults were initially less likely to receive antibacterials ( p<0.001 comparing older and
younger adults in every year) until 1998; when older and younger adults were equally likely to
receive antibacterials (p=0.93 older vs. younger adults); after 1998, older adults were more likely
to receive antibacterials (p<0.001 comparing older and younger adults in every year after 1998).
Both age categories experienced significant declines in the probability of antibacterial prescribing
over the study period; the IRR for year for ages 18-<65 years was 0.977 (95% c.i. 0.977-0.978)
and for >=65 years was 0.988 (0.987-0.988). The age-year interaction was significant (p<0.001)
indicating that over time, antibacterial prescribing declined more steeply for younger than for older

adults.
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For children, during 1990, 46% of acute nonspecific respiratory tract infection visits were

associated with antibacterial prescriptions, and by 2004, 31% of visits were associated with
antibacterials (p=0.007 for trend) (Figure 3).

Using the fully-adjusted model for children, there was a significant decrease in the
probability of antibacterial prescribing for each successive year, with an IRR of 0.959 (95% c.i.
0.959-0.960, p<0.001).

Using the fully adjusted model for children, and including the year-age category
interaction, older children were 30%-40% more likely than younger children to receive
antibacterial prescriptions in every study year (p <0.001 comparing older vs. younger children in
each study year). Both age categories experienced significant declines in antibacterial drug
prescribing over the study period; the IRR for year for ages 0-<5 years was 0.959 (95% c.i. 0.958-
0.959) and for >=5 years was 0.962 (0.961-0.963) indicating the rate of decline was similar in
both age groups. While the age-year interaction term was statistically significant, the effect of
year, and thus its public health relevance, was essentially the same in both age groups.

Broad spectrum antibacterial prescribing rate for acute nonspecific respiratory tract
infections

For adults, the broad spectrum antibacterial drug prescription rate during 1990 was 3.8
prescriptions per 1000 person-years, and by 2004, was 2.9 prescriptions per 1000 person-years
(p=0.005 for trend) (Figure 4). For children, the broad spectrum antibacterial prescription rate
during 1990 was 5.2 prescriptions per 1000 person-years, and by 2004 was 2.2 prescriptions per

1000 person-years (p=0.003 for trend) (Figure 4).
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Figure 4. Broad Spectrum Antibacterial Drugs .for Acute Nonspecific Respiratory Tract

Infections per 1000 Person-years, Adults and Children
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For adults, during 1990, 4.4% of visits for acute nonspecific respiratory tract infection
were associated with broad spectrum antibacterials, this portion peaked at 7.8% by 1996 and
then decreased to 5.6% by 2004 (p=0.16 for linear trend over study period) (Figure 5).

Using the fully adjusted model for adults, there was a small decline in the probability of
broad spectrum antibacterial prescribing for each successive year, with an IRR of 0.96 (95% c.i.
0.96-0.97, p<0.001).

For children, during 1990, 2.0% of visits were associated with broad spectrum
antibacterial prescriptions, (Figure 5); this percentage peaked at 2.8% in 1995 and then
decreased to 1.4% by 2004 (p=0.01 for trend).

Using the fully adjusted model for children, there was a small decline in the probability of
broad spectrum antibacterial prescribing for each successive year, with an IRR of 0.95 (95% c.i.

0.94-0.95, p<0.001).
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Figure 5. Probability of Broad Spectrum Antibacterial Drug Prescribing after Acute Nonspecific
Respiratory Tract Infection Visit
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Discussion
Summary of main findings

Our study demonstrated that antibacterial drug prescribing for acute nonspecific
respiratory tract infections decreased in the U.K. for adults and children from 1990-2004. The
decline in antibacterial use was faster for both older and younger children than for adults,
although use in younger adult declined faster than for older adults. Possible reasons for these
differences include the influence of the pneumococcal conjugate vaccine on the perceived risk of
child bacterial iliness,[41-43] and on parents’ health through herd effects,[43, 44] a potentially
initially wider pool of unneeded antibacterial use in younger individuals, and a possible differential
effect of public educational efforts regarding antibacterial use for young adults, influencing their
own use and that of their children. The relative contributions of each of these or other factors to

our results are unknown.
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Despite decreasing antibacterial use for acute nonspecific respiratory tract infections, we

did not observe a concomitant increase in broad spectrum antibacterial prescribing. In fact, we
found encouraging evidence for low and recently decreasing broad spectrum antibacterial use
associated with this diagnosis for U.K. adults and children.

Strengths and limitations of the study

Strengths of this study relate to the use of THIN data. Advantages of THIN vs. claims
data are THIN’s direct links to longitudinal clinical data and that THIN does not depend on billing
or insurance status. Advantages of THIN vs. survey data are that THIN is a 100% sample of
practice patients and that the medical record itself is the data collection form.

Potential limitations of this study include that some antibacterials may have been missed,
for example, telephoned prescriptions without an associated visit. Second, we have no data
regarding whether prescribed drugs were ingested. Third, visit grouping may have misclassified
some unexposed visits as exposed and falsely inflated our antibacterial use estimates, however
our sensitivity analysis considering ungrouped visits showed similar results. Next, our
observational study does not allow us to address which policies or clinical trends caused the
observed changes. Finally, our study did not address outcomes of antibacterial use and could
not directly assess prescriptions’ appropriateness.

Comparisons with existing literature

The population rates of visits for acute nonspecific respiratory tract infections we
observed are similar to those previously reported for U.S.adults and children.[19, 21, 45]

The trends in overall antibacterial use we observed are comparable to U.S. trends. Using
National Ambulatory Medical Care Survey (NAMCS) data, Roumie et al, reported that
antibacterial prescribing for adult acute nonspecific respiratory respiratory tract infections declined
from 60% in 1995-1997 to 43% in 1999-2000.[19] Steinman et al. also used NAMCS data to
report decreased antibacterial prescribing for adult acute nonspecific respiratory tract infections
from 56% in 1991 to 43% in 1999.[20] Similarly, Steinman et.al. reported declining antibacterial
use for child acute nonspecific respiratory tract infections, from 41% in 1991 to 21% in 1999.[20]
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Grijalva and colleagues used NAMCS data to show that U.S. use of antibacterials to treat adult

and child acute nonspecific respiratory tract infections continued to decrease during the early
2000s, and that broad spectrum antibacterial drug use for this diagnosis continued to increase in
adults and children.[23]

Our demonstrated decline in U.K. antibacterial drug prescribing for adult acute
nonspecific respiratory tract infections, from 71% in 1990 to 59% in 2004, is similar to these U.S.
reports. In our cohort, child antibacterial use for acute nonspecific respiratory tract infections
decreased from 46% in 1990 to 31% in 2004.

Our low and recently decreasing use of broad spectrum antibacterials for adults and
children in the U.K. are quite different from U.S. trends, evidence that recent U.K. campaigns to
enhance judicious antibacterial use may be paying off.[14-16]

Implications for further research or clinical practice

Reasons for the large discrepancies in trends in broad spectrum antibacterial use
between the U.K. and U.S. are unknown, but could relate, at least in part, to differences in health
care delivery. U.S. health care is managed by a mix of privately- and publicly-financed
mechanisms, emphasizing a competitive business model. Prescribing is influenced by separate
formularies for each of thousands of individual health plans, and pharmaceutical industry
promotion to physicians and the public. The U.S. CDC’s “Get Smart” campaign targeted parents
with the message that using antibacterials for acute nonspecific respiratory tract infections put
their children at greater risk of a future resistant infection. U.K. health care is managed by a
government-financed national system which sets explicit priorities to enhance public health
through specific incentives. Medications are managed through national formularies with
performance monitoring of antibacterial drug prescribing. The U.K.’s campaign, “Antibiotics:
Don’t Wear Me Out,” targeted the general public with the message that controlling antibacterial
drug resistance benefits everyone.

Successful strategies to further reduce antibacterial drug overuse are likely to have
strong central leadership, with explicit priorities emphasizing societal benefit, and be supported by
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robust financial and regulatory incentives. Professional and public education, while necessary,

are usually not sufficient to change behavior; successful strategies for improving antibacterial use

are usually multifaceted. More data are needed regarding outcomes of strategies to reduce

antibacterial use and whether decreasing use may be affecting trends in antimicrobial resistance.
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Chapter 4. Methods I: Misclassification and validation of pneumonia hospitalizations in a

primary care electronic medical record database

To take advantage of the increasingly available observational electronic medical record
data to support post-marketing drug effectiveness and drug safety surveillance, it is important to
validate the outcomes that will be used in such studies. In particular, hospitalization diagnoses
are important markers of adverse event severity. To be able to identify adverse events within a
specified exposure time window, it is also important to able to ascertain the precision of
hospitalization dates. Validation of The Health Improvement Network (THIN) adverse events and
hospitalization dates in this study can thus inform many important future observational THIN
studies of the outcomes of medication use, for antibacterial drugs as well as for other types of
medications. The hypothesis is that hospitalization diagnoses and dates will be valid within
clinically important limits.

After U.S. FDA approval, drugs are used for many more patients, for a wider variety of
indications, and for a more heterogeneous patient population than in pre-approval trials. The
importance of post-marketing drug safely surveillance is increasingly recognized. Observational
studies can take advantage of accumulating electronic medical record data to enhance post-
marketing outcome studies. Electronic data come in two basic flavors, with some overlap.
Because they are used for billing, administrative data tend to have information on drugs
dispensed, and relatively precise hospital admission dates and discharge diagnoses. Electronic
medical records on the other hand tend to have rich longitudinal clinical data at the individual
patient level, however inpatient data regarding hospitalizations often are not directly linked to the
outpatient record and instead need to be entered manually.

The projects in this dissertation used data from The Health Improvement Network (THIN).
THIN is an electronic medical record database containing longitudinal primary care data from
patients in the United Kingdom including demographics, visits, diagnoses, prescription
medications, laboratory testing, mortality, cause of death, and hospital admissions. However, as
indicated above, the software used for THIN was developed as an ambulatory medical record
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system; inpatient and ambulatory medical records are not yet integrated in the U.K., and

hospitalization data are entered manually by patients’ general practitioners after they review
patients’ hospital discharge summaries.
There are three main areas of uncertainties to be addressed if THIN hospitalization data
are to be useful for drug outcome research. First, when THIN hospital admission codes indicate a
patient was hospitalized, did the patient truly have an admission to a hospital, or what is the
positive predictive value of the THIN hospitalization coded for identifying a hospitalization?
Second, if the patient was indeed hospitalized, is the primary discharge diagnosis recorded in
THIN the true primary discharge diagnosis from the hospitalization? Third, what is the relationship
between the recorded hospital admission date and the true hospital admission date? If the
hospitalization is recorded after receipt of the discharge summary, it may be recorded with a later
date than the true admission date. Even if the true hospitalization date falls within the exposure
window of interest, if the recorded date erroneously falls outside the exposure window of interest,
the hospitalization event might be missed.
The objective of this study is to validate hospitalizations in the THIN database. The
specific aims were to:
1. Assess the positive predictive value (PPV) of a hospital admission for community
acquired pneumonia identified using THIN hospitalization codes. Our hypothesis was
that the PPV of a pneumonia hospitalization is 100%.
2. Assess the relationship between THIN hospital admission date and true hospital
admission date. Our hypothesis was that 100% of THIN hospitalizations will be

recorded as occurring within a 14-day window of the true hospitalization date.

Methods
This study design was a retrospective cohort study. Adults with ambulatory primary care

visits for acute nonspecific respiratory tract infections in the THIN database from June, 1985
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through August, 2006 were identified using Read diagnostic codes. (Table 1) These visits are

hereafter referred to as our cohort of ARI visits.
Study Outcome

Adults with overnight hospital admissions for community acquired pneumonia within 30
days of an ambulatory encounter for acute respiratory tract infection in the THIN database were
identified using Read diagnostic codes for pneumonia and THIN hospitalization codes. Of these
adults with hospital admissions for pneumonia, sixty were randomly selected for validation.
Validation of 60 hospital admissions for pneumonia was feasible given available resources, and
would give us the power to test both of our hypotheses within clinically significant limits (see
below).

We focused on hospitalizations for community acquired pneumonia for this aim for
several reasons. First, hospital admission for community acquired pneumonia is a relatively
common event following ARI, giving us a robust sample of reasonably similar outcomes to be
able to correctly estimate the measurement error. Additionally, we had a separate clinical
research interest in whether risk of hospitalization for community acquired pneumonia is elevated
after an ARI visit, and whether antibiotic treatment reduces this risk. We pursued this related
question in Chapter 7 of this dissertation.

Gold Standard Outcome

Each subject’s de-identified THIN patient and practice identification codes, and a date
window including 90 days before and following the ARI visit were forwarded to the subject’s
general practitioner (GP) through EPIC Database Research Company. The GPs identified
records from their patients’ charts that are supplementary to the electronic THIN data. For the
specified patients, GPs returned de-identified photocopies of all hospitalization discharge
summaries, consultants’ letters, and any additional material related to any overnight
hospitalizations within the specified date window.

EPIC checked the data to ensure complete anonymization prior to forwarding them to

investigators. We then examined patient records for the following information:
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a) Did the subject have an overnight hospitalization within the window?
b) What was the hospital admission date?
c) What were the primary and additional discharge diagnoses?

This study was approved by the University of Pennsylvania Institutional Review Board and the
Medical Research Ethics Committee, National Research Ethics Service of the U.K. National
Health Service.

Analysis

For our first aim, the PPV of a THIN hospital admission for community acquired
pneumonia during the 30 days following the ARI visit was calculated as the number of patients
with GP-validated hospital admissions divided by the total number of THIN hospitalizations, with
exact binomial confidence intervals. The PPV of the specific pneumonia THIN adverse event
hospitalization diagnosis was calculated as the number of patients with confirmed GP-validated
pneumonia diagnoses divided by the total number of confirmed hospitalizations, with exact 95%
binomial confidence intervals. Two-sided two-sample t-tests were used to compare means of
characteristics between admitted and nonadmitted patients, assuming unequal variances
between groups.

For our second aim, analysis included data only for those patients with confirmed
overnight hospital admissions. The mean and median absolute difference in dates between the
THIN and the actual hospital admission date were defined. Stata, versions 9.2 and 10.0, were
used for all analyses (StataCorp College Station TX, 29-Jan 2007 and 1 Oct 2009).

Power
PPV of a hospital admission for community acquired pneumonia

We included 60 patients in this validation study. Lewis and colleagues, using the General
Practice Research Database, a precursor to THIN, found the PPV for identifying inflammatory
bowel disease hospitalizations was only near 50%.[1] With a 2-sided a=0.05, and N=60,
examples of confidence intervals predicted for a widely representative range of PPVs are shown

in Table 2.
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Table 2. Positive Predictive Value (PPV) of a THIN-coded Hospital Admission for

Community Acquired Pneumonia after a Ambulatory THIN ARI Visit

PPV |[95% confidence interval
N=30 N=60
0.50| 0.31-0.69 | 0.37-0.63
0.75] 0.57-0.90 | 0.62-0.85
0.80| 0.61-0.92 | 0.68-0.89
0.85]| 0.69-0.96 | 0.73-0.93
0.90| 0.73-0.98 | 0.79-0.96
0.95| 0.78-0.99 | 0.86-0.99

The better the PPV (closer to 100%) the narrower the 95% confidence limits. As shown
above, with 60 patients, even with a low PPV, we should have the power to estimate the PPV of a

THIN pneumonia hospitalization within clinically significant limits.

Difference, THIN hospitalization date vs. true hospitalization date

Our power to detect a difference in days between the THIN hospitalization date and the
true hospitalization date is most dependent on the PPV and the standard deviation of the
distribution of differences. Lewis and colleagues compared the first mention of inflammatory
bowel disease diagnoses with the diagnosis dates confirmed by GP survey; these date
differences showed a highly skewed distribution with an estimated standard deviation
approximately twice the mean days difference.[1] For our patients with documented
hospitalizations within the date window, the differences between the true and documented
hospitalization dates are constrained by our date window 30 days following the ARI visit and thus
are unlikely to be as skewed. McPhee and colleagues validated mammogram and PAP smear
recall dates and analyzed mean date differences.[2] They found standard deviations (SDs) equal
to the mean days difference.

Using a 2-sided a=0.05, with N=60, with our estimated standard deviation equal to the

mean days difference, even with a PPV as low as 50%, we would have 99% power to detect an
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absolute difference as small as 1-2 days. As differences smaller than this would not be clinically

significant, and time of hospitalization is not recorded in THIN, the analysis does not need to be
sensitive down to the level of hours, or fraction of a day. With a PPV of 75%, even if our standard
deviation is twice the mean days difference, we would still have 92% power to detect a clinically
important difference in days. In Table 3, we present power estimates based on a targeted
collection of 60 hospitalization records and a conservative collection of 30 hospitalization records,

based on PPV for hospitalization, missing records or physician non-participation.

Table 3. Power, Difference, THIN Hospitalization Date vs. True Hospitalization Date,

a, 2-sided = 0.05,

Days SD (days) | PPV Power
N=30 | N=60

30 60 |0.50 |0.78 0.49
30 30 |0.50 |0.99 0.97
30 leo |0.75 |0.92 0.65
30 30 0.75 |0.99 0.99
14 28 |0.50 |0.78 0.49
14 28 |0.75 |0.92 0.65
14 14 |0.50 |0.99 0.97
7 14 |0.50 |0.78 0.49
7 14 10.75 [0.92 0.65
7 7 |0.50 |0.99 0.97
2 4 |0.50 |0.78 0.49
2 4 10.75 [0.92 0.65
2 2 0.50 |0.99 0.97
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Results

Predictive value of a THIN pneumonia hospitalization

Out of 60 patients with THIN pneumonia hospitalizations randomly selected and sent to
EPIC for validation, 59 chart records were received from GPs (one GP did not respond to the
inquiry). Fifty two of these 59 patients were admitted to the hospital for an overnight stay within
the 90-day window on each side of the ARI index visit date, giving a PPV of a THIN hospital
admission of 88% (95% confidence interval 77% to 95%). There was no difference in gender or
age between the admitted vs. the unadmitted patients. Twenty-three of 53 (43%) admitted
patients and 3 of 7 (43%) unadmitted patients were male, Fisher’s exact test p=0.99. The mean
age of admitted patients was 52 years vs. 44 years for unadmitted patients, (p=0.33). One of
these admissions did not have a discharge diagnosis of pneumonia according to the GPs chart
records, giving a PPV for THIN pneumonia admission of 51/59 or 86% (95% c.i. 75% to 94%);.
All of these admissions had pneumonia as the primary admission diagnosis.
Difference between THIN hospitalization date and true hospital admission date

Of the 52 patients with valid THIN hospitalizations, 50 were actually admitted within 14
days of the date recorded in THIN, with a range of -2 to +18 days. The absolute median
difference between the THIN and validated admission dates was 1 day and the absolute mean
difference was 3.1 days.

In 16 of the 52 admitted patients, the THIN admission date was the discharge date listed

on the GP hospital discharge notes.

Discussion

Electronic medical records are a potentially enormous and rich source of data to
examine, evaluate, and compare clinical outcomes. Such large datasets can provide impressive
results, however, size is of little value here if the data are of poor quality, and proceeding to

analysis without validating important study parameters can corrupt the value of any results and

48



Chapter 4
lead us to erroneous conclusions. To take advantage of the increasingly available observational

electronic medical record data to support post-marketing drug safety surveillance, it is important
to validate the outcomes that will be used in such studies.[1, 3] Hospitalization diagnoses are
particularly important markers of adverse event severity. To be able to identify acute events
within a specified time window related to acute exposure, it is also important to able to ascertain
the precision and accuracy of hospitalization dates. This study had the power to validate THIN
hospitalization dates within clinically important limits.

Our PPV for THIN pneumonia hospitalization was as good or better than the PPV for
acute care date estimation methods described in other studies.[1, 2, 4-7] There were no obvious
differences between the patient admissions that were validated and those that were not. Our
finding that 16 of the 52 admitted patients had the true hospital discharge date as the recorded
THIN admission date implies that the accuracy of admission dates might be better for conditions
that are associated with shorter vs. longer hospitalizations,.

Virtually all (50/52 or 96.1%) of the recorded hospital admission dates were accurate
within a 14-day window, providing support for our ability to identify adverse events resulting in

hospitalizations related to acute drug exposures within THIN.

Limitations

Bias: Limitations of this study include that we were limited by the validity of our presumed
gold standard data from the GP charts. The GPs were highly unlikely to find discharge
summaries when a hospitalization did not actually take place, however, if the charts were missing
discharge summaries from true hospitalizations, or if the GPs were unable to find them, then we
may have misclassified some hospitalization diagnoses as false positives. This information bias
would tend to bias us away from the null hypothesis of 100% specificity. This project is
strengthened by the fact that THIN GPs are not just recruited for this study, but have a

longitudinal relationship with EPIC Database Research Company. Responding to research
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queries is part of this relationship and they are financially compensated for their time and effort.

EPIC thus has a track record of successful validation efforts similar to this study.[1, 8-10]

Generalizability: PPV and date differences may vary with patient age. PPV and date
differences may vary with diagnosis type; one potential source of this variation is the association
of discharge date with THIN recorded admission date found in our study. We had limited power
to detect differences in PPV and date differences between hospitalization diagnoses included in
this study, and did not address outcomes in addition to the included pneumonia hospitalization
diagnoses in adults. The validity of other outcomes, for example, death, was not addressed, nor
were adverse events for children; our results are not necessarily generalizable to patients with
different ages and different hospitalization diagnoses than included in this study. We had more
power to validate the PPV of any hospitalization than we did to validate diagnosis-specific
hospitalization. The validity of medication exposure was not addressed. The validity of THIN for
identifying prescriptions is usually considered good, as the electronic medical record entry
actually generates the patient’s prescription. There are data from early adoption of the computer
system that support this validity. [9, 10]

Pharmacoepidemiologic studies using electronic medical record data regarding outcomes
related to acute outpatient exposures depend on the ability to accurately and precisely identify the
timing of valid outcomes. THIN hospitalization codes performed well in identifying the timing of
hospitalization events of interest. This study supports observational THIN studies regarding
additional medication use outcomes, especially outcomes related to acute conditions and acute
exposures to antibiotics as well as other medications. Future studies should also pursue
validating additional THIN outcomes, including those for children, further increasing the
generalizability of our findings.

It is likely that electronic medical records will become increasing complex, potentially
integrating patients’ ambulatory and inpatient data. While this may improve the precision of

admission diagnoses and dates, it could also introduce additional misclassification. We will need
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to continue to consider the precision of these clinical measures as we look forward to using these

increasingly available data to help improve health outcomes,.
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Chapter 5. Methods II: Using observational clustered data to study rare outcomes,

controlling bias and confounding

Drug benefits are established in pre-marketing clinical trials. These randomized clinical
trials are designed to be conservative in demonstrating drug efficacy and liberal in measuring
drug safety;they assess whether the drug produces benefit when users are perfectly compliant
under otherwise ideal circumstances, and are typically evaluated using intention to treat (ITT)
analyses.[1] However this type of trial, may not be the best way to study risks under conditions of
less-than-complete adherence in real-world practice settings where it's not always straightforward
to determine who is taking the drug in question. In addition, small pre-marketing clinical trials are
usually too small to evaluate even moderately common drug risks.[2, 3] Large prospective
randomized trials are not feasible for many research questions regarding moderate to small drug
risks. Most warnings of drug-related adverse event risks come from case reports, which, usually
lacking an exposed denominator, and subject to under- and biased reporting, do not establish the
true relative risk of adverse event risks related to drug exposure vs. non-exposure.[3] Studies of
exposures and outcomes using large administrative datasets without clinical data often do not
address complex confounding issues, especially confounding by indication.[4] For these reasons,
studies utilizing large databases are often better-suited to help us understand drugs’
effectiveness and risks in the real-world practice setting.

The growing availability of electronic medical records can provide databases containing
large scale observational data. The U.K.’s The Health Improvement Network (THIN) electronic
medical record database offers access to individual patients’ longitudinal demographic, clinical,
pharmaceutical, and outcome data. These data are often more accessible than are the resources
for performing very large randomized clinical trials, however if observational data are used to
assess drug use outcomes, great care needs to be taken to assure that the drug -exposed and -
unexposed groups are as comparable as possible.[5].

We used a subset of the entire THIN cohort with an office visit for acute nonspecific

respiratory infection (ARI), and compared adverse event rates of antibacterial drug-exposed vs.
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antibacterial-unexposed patients. By limiting the comparison to patients with ARI visits, we

promoted comparability between exposed and unexposed patients in this cohort of otherwise
similar patients.

We sought an unbiased estimate for the association between antibacterial drug exposure
for ARIs and our adverse event outcome. Ideally, we would want to know, for the same patient
with the same ARI visit, what is the relative risk of an adverse event if he/she receives a
prescription for antibiotics at that ARI visit vs. if he/she doesn’t receive antibacterial drugs at that
visit, or the ‘counterfactual’ estimate.[6] Of course, there is no way to compare outcomes of
antibacterial drug treatment vs. non-treatment for the same patient at the same visit. A
randomized clinical trial is the best way to approximate this counterfactual approach; successful
randomization would ensure that exposures are balanced in terms of covariates at all levels. As
discussed above, randomized trials to explore the risks of potential rare events are not always
feasible for every clinical question. Using observational data, we aimed to estimate this
counterfactual effect by obtaining the relative risk (or odds ratio or risk difference) of similar
patients exposed vs. unexposed to antibacterial drugs. To the extent that antibacterial
prescribing was random among patients with ARI visits, and that all exposed and unexposed
patients were otherwise at equal risk of an adverse event outcome, this estimate would provide
an unbiased estimate of this counterfactual effect.

However, our research problem presented three major challenges to obtaining this
unbiased estimate of adverse event risks related to antibacterial drug use. First, preliminary data
showed that there was likely to be significant clustering by practice; exposure, outcomes, and
covariates within practices will likely be much more similar than exposure, outcomes and
covariates across (or between) practices. As a result, an additional subject within a cluster adds
less information than would an additional subject from a different cluster. This effect on the
variance, and resultant loss of power by the use of cluster sampling instead of simple random
sampling is termed the design effect, and needed to be accounted for in the analysis.

Second, antibacterial drug prescribing and baseline adverse event risk may both vary
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widely between (across) practices, and this may result in a large degree of confounding by

practice. Some practices may be more likely than others to prescribe antibacterials as they might
have sicker or more demanding patients and/or physicians with higher tendency to use
antibacterials, thus there may be different ratios of untreated vs. treated patient visits between
practices. Preliminary data showed that antibacterial drug exposure is indeed highly variable and
highly related to practice. Even within practice, treatment allocation may not be random but
instead may be associated with many measured and unmeasured practice- and patient-level
covariates. Practices may also vary in their patients’ baseline risk of adverse events; some
practices may be more likely than others to experience severe adverse events due to observed
and unobserved factors; for example, they may include more medically fragile patients. Because
of this potentially intense clustering and confounding by practice, involving both exposure and
outcome, we needed to stratify our analysis by practice. We sought the counterfactual effect of
antibacterial drug exposure, specifically the relative risk of adverse event for a patient in a
particular practice at a particular time exposed to antibacterials vs. that same patient in that same
practice at that same time unexposed to antibacterials. To minimize, as much as possible, the
confounding by practice, our analysis needed to decompose overall antibiotic effects into the
between- practice effects and the within-practice effects, because we were really interested in
only these within-practice estimates of antibacterial drug risks.

Our third major analytic challenge was that our outcome was exceedingly rare. As we
stratified on practice to consider these within-practice estimates, there woud be many practices
expected to have zero outcomes. In this situation, conventional methods of regression
conditional on practice may not have been successful because of sparse data; we would lose all
information from the practices with zero outcomes. These zero-event practice sites added to the
denominator of total exposure to antibacterial drugs. There is reason to believe that adverse
events would not be distributed randomly across practices, but instead that practices with zero
outcomes may be different, in both measured and unmeasured ways, than practices with adverse

event outcomes. To maximize the knowledge we could gain from this study, we wanted our
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analytic methods to allow us to make use of the information from practices with zero outcomes.

We explored this problem using methods to adjust for confounding with different types of
multivariable regression techniques. These different multivariable methods utilized different
assumptions, and may provide different, complementary, estimates, giving us a multifaceted
picture of the relationship between exposure and outcome. .We needed to consider analytic
methods suitable for trials of very rare outcomes; in some ways, this problem was similar to
performing meta-analyses of studies of rare events.[7]

The objective of this study was to compare various potential methods to control bias and
confounding while using a primary care observational database to study rare acute outcomes.
The primary aim was to compare methods for controlling bias and confounding caused by
measured variables. Our secondary aim was to compare methods to evaluate the impact of
unmeasured variables, including instrumental variable analysis. We hypothesized that standard
methods for controlling bias and confounding by measured and unmeasured variables can be
adapted for observational studies of clustered rare outcomes.

Methods
A. Description of the cohort

The data source for this retrospective cohort study was the September 2007 dataset from
The Health Improvement Network (THIN). A cohort of adult THIN primary care visits for
nonspecific ARIs between January 1, 1985 and December 31, 2006 was selected from for THIN
continuously-enrolled valid patients >18 years of age in THIN practices with valid data using the
Read diagnostic codes for nonspecific respiratory infections listed in Chapter 3, Table 1. Codes
for respiratory infections were excluded if some guidelines recommend antibacterial treatment,
such as streptococcal pharyngitis, otitis media and sinusitis. Because data from multiple visits
within the same ARI episode may tend to be highly correlated, visits were grouped if they
occurred within a two-week period. The outcome of interest for this study was severe adverse
event, defined as hospitalization within 14 days following the index ARI visit with, cardiac

arrhythmia, diarrhea, hepatic toxicity, hypersensitivity, photo-toxicity, renal toxicity, or seizure.
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Exposure of interest was antibiotic prescription within one day of the index ARI visit; antibacterial

drugs of interest included oral antibacterials typically used for respiratory infections. We excluded
topical, vaginal, ophthalmologic, otic, and parenteral antibacterials, and those typically used for
tuberculosis, fungal and parasitic infections. Covariates included patient age at time of visit, sex,
visit year, Townsend score (a measure of neighborhood material deprivation), neighborhood
racial mix, and patient comorbidity history, with comorbiditites grouped into the categories shown
in Table 4 (Lewis, J.D., unpublished data). Considering what clinical data might be relevant from
a clinical aspect to help predict indication for antibacterial treatment of ARIs, we also included
alternative summary measures of the intensity of medical care use, including the number of THIN
recorded comorbidities,[8] and the number of different classes of medications[8, 9] and number of
visits within the year prior to the index ARI visit.

Table 4. Comorbidity Categories

Comorbidity Categories

Congestive heart failure |Ma|ignancy

Lung disease |Metastatic malignancy
Rheumatologic disease |Mi|d liver disease
Cerebrovascular disease |Moderate/severe liver disease
Dementia |Myocardia| infarction
Diabetes |Peptic ulcer disease
\Weakness |Periphera| vascular disease
HIV |Kidney disease

B. Methods to model conditional rare outcomes
We compared several different multivariable methods to model hospitalization within 14 days of
the ARI visit for any severe adverse event, Table 5. As described above, we are really interested
in the counterfactual difference in risk of an extremely rare adverse event for an ARI patient in a
particular practice exposed to an antibacterial drug vs. the risk for that same patient visiting the
same practice for that same ARI at the same time, not exposed to an antibacterial. To estimate

the counterfactual within-practice outcome of interest, we explored several ways to decompose

56



Chapter 5
within- vs. among-practice effects of antibacterial I[drug exposure, thus minimizing confounding by

practice, in the setting of our extraordinarily rare outcomes and extreme imbalance of exposure
and, potentially, outcomes across groups. We also sought methods that could minimize the bias
in the estimates for our very rare outcome by using data from practices with no adverse events
1. Marginal Models (GEE method): We first considered implementing
Generalized Estimating Equations (GEE), using Stata’s xtgee command. GEE, a marginal model,
can be used to adjust for clustering[10] and is typically not difficult to implement with a relatively
large number of cluster groups (such as the number of patients and practices in this study). GEE
could potentially help us decompose the within- and between-practice effects to focus on the
within-practice association between antibacterial drugs and adverse events, our contrast of
interest. However there are several reasons why GEE might not be an ideal method for this study.
First, using GEE requires us to specify a correlation structure, although GEE is relatively robust to
misspecification in this regard. Second, it may be difficult to address multiple levels of clustering in
GEE. Third, GEE derives population-averaged outcomes. With normally-distributed outcomes and
a linear model, the marginal effects derived from GEE, or the average differences for subject strata
defined for different covariate values, can be expected to be the same as the subject-specific
effects, or expected difference for individual subjects with different covariate values. However, this
may not hold true for dichotomous outcome measures where the link function between predictors
and the probability of an outcome is nonlinear.[11] Fourth, since GEE is not based upon maximum
likelihood theory, we could not utilize standard methods used with maximum likelihood-based
regression to test model fit and compare models.[12]
2. Subject-specific methods
a. Random effects methods: Logistic regression models would be the most
conventional approach for studying our dichotomous yes/no outcome. We used Stata’s logistic
function to model adverse event risk on antibacterial drug use. , We decomposed antibacterial
drug exposure into between practice and within practice exposures; and we used robust variance

estimators to adjust standard errors for clustering by practice.
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A potential limitation of these methods is that logistic models cannot make use of data

from practices with zero outcomes. If the risk of an adverse event without antibacterial drug
exposure is zero, the odds of an adverse event without antibacterial exposure is also zero. No
matter what the odds of an adverse event with antibacterial exposure, the denominator of the
odds ratio will be zero, and thus there will be no odds ratio result for this practice. This will also be
a problem with some practices with non-zero outcomes if the outcomes are all in the exposed
group, giving a non-zero odds in the numerator, but the odds for the unexposed would still be
zero. We would thus lose all information from these practices with zero odds in the unexposed.
As discussed above, there is reason to believe that practices with zero odds in the unexposed
may be different from practices with more adverse event outcomes, and, this method could
provide biased estimates of our true conditional within-practice effect of interest.

b. Mixed effects methods: Mixed effects conditional regression models
could provide estimates of both fixed and random effects. This could be accomplished with Stata’s
xtmelogit, or Stata’s xtlogit and xtreg, using the mle option. However, we were not necessarily
interested in modeling the random effect of practice in the association of the antibacterial drug and
adverse events, we were interested in the within-practice effects, as explained above. In addition,
random effects models can be very slow and cumbersome and would not be the most efficient for
our research problem.

C. Fixed effects (stratified) methods: Fixed effects logistic or linear models
can allow random intercepts for the individual practices, allowing us to estimate within-practice
effects of interest.

i. Conditional fixed effects logistic regression models: Conditional
fixed effects logistic models could decompose within- and among- practice associations between
antibacterial drug use and adverse events. Using Stata’s clogit and xtlogit functions, we modeled
adverse event risk on antibacterial drug use, conditioning on practice. As discussed above, a
potential limitation of these logistic methods is that logistic models cannot make use of data from

practices with zero outcomes.
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ii. Conditional fixed-effects linear regression models: Similar to

conditional logistic regression models, linear conditional models could provide fixed effects
estimates, conditioning on practice. This model would be inappropriate with a non-rare
dichotomous outcome. However, our outcome was sufficiently rare that all estimated outcomes
would be <1. As our anticipated effect size (risk) is small, there should not be an important
difference using an additive instead of a multiplicative model. Using linear regression we could
operate on the risk-difference scale; this allowed us to make use of information from practices with
zero outcomes, similar to what can be done with meta-analysis of very rare outcomes.[13, 14]
Conditional linear regression, using Stata’s xtreg, can fit fixed effects longitudinal models with linear
outcomes.Using Stata’s xtreg, we again decomposed within- and among-practice effects, This
result should be similar to using area average as an instrumental variable in helping to control for
confounding by cluster.[14]

As these methods are based upon maximum likelihood theory, we used standard
methods to test model fit and compare models, including the likelihood ratio test and Akaike’s

Information Criterion (AIC).

C. Methods to adjust for confounding
1. Confounding by measured variables
a. Propensity Score analysis:
Propensity scores can be useful for modeling rare outcomes with common treatments.[5,
15-17] They have been used in observational studies to assure that potential confounders are
balanced within the treatment and control groups being compared. In propensity score analysis,
the risk of outcome is estimated for treated vs. untreated patients within strata of patients with the
same propensity for being treated, based on their other measured covariates. However, standard
propensity score analysis is far from ideal for this study. We are concerned with two different
levels of confounding: within-practice confounders and between practice confounders. If, as
expected, antibiotic exposure is heavily related to practice, we could need a separate propensity
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score model within each practice. This need might arise if, for example, for a given patient

indication, clinicians at two different practices might prescribe antibacterial medications at
different rates. A propensity score developed with patient-level factors but across all practices
might balance poorly within practices. Thus, to achieve covariate balance might require inclusion
of different important variables and their interactions in different practices, as well as variable-by-
practice interaction terms, which could be quite cumbersome, if not impossible. Then, we would
also need to adjust further for between-practice confounders. As we don’t have adequate
physician-level data here, we were missing that dimension, and our models’ performance were be
handicapped by this limitation.

We determined the probability of antibacterial drug exposure within each practice,
defined as the propensity score for each practice, using the same covariates for each propensity
score. We performed multivariable analysis, considering several options for utilizing the
propensity score: Additional covariates could be added to models in addition to the propensity
score as needed.

1. Matching by propensity score [18-20]: This was not a good option for our
study as exposure is extremely unbalanced between practices; matching would be difficult, and
many visits would likely be unmatched, and thus not included in the analysis.

2. Stratifying by propensity score: We stratified the propensity score for
each practice into quantiles and then compared outcomes for treated vs. untreated visits within
each propensity score stratum. [15, 20]

3. Using the propensity score directly in the model as a covariate[20]. This
should result in estimates similar to those using xtlogit above, decomposing estimates into
within- and among- practice effects.

4. Using a weighted propensity score with inverse probability of treatment
weighting,[21] assigning a [pw=weight] for each ARI visit equal to 1/propensity score for that
practice if an antibacterial drug was received, and equal to 1/(1-propensity score) if an

antibacterial drug was not received. We explored using this propensity score method within our
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conditional fixed effects model.

The purpose of pursuing these methods was to allow us to simultaneously control for
patient-level and practice-level factors, to have strata that reflected groups of practices with similar
propensity to prescribe antibiotics, and to have sufficient numbers of adverse events within strata to
avoid zero-cell problems.

2. Confounding by unmeasured variables

a. Instrumental variable analysis::

The analyses described above could help control for measured confounders but would
not address confounders that are unmeasured.[5] An instrumental variable (IV) is an observable
factor related to treatment choice but that is not related to study outcomes either directly or
indirectly through pathways through unmeasured variables, except through its effect on
treatment. Thus, an IV can be considered a variable that induces, or simulates, random variation
in the study treatment assignment.[22] If a suitable instrument can be found, it can help adjust for
unmeasured confounders.[23-25] An IV relies on the following assumptions: First, an IV should
affect treatment, or be associated with the treatment through their mutual association with a
common cause. Second, an IV should be unrelated (or randomly associated with) patient
characteristics. An third, an IV should be related to the outcome only through its association with
the treatment. If an adequate instrumental variable (IV) can be identified, an IV technique can
help control for unmeasured confounding.

Visit provider prescribing history was likely to be associated with the probability of
exposure and unlikely to be associated with adverse event outcome, except through the exposure
of interest, antibacterial medications; provider prescribing history was thus a candidate for
instrumental variable. Ideally, we could perform an instrumental variable analysis, using the past
prescribing history of the visit provider as the instrument, including the other covariates. We
could consider that provider's most recent previous ARI treatment as an instrument (antibacterial
treatment vs. none)[23, 24], that clinician’s antibacterial prescribing rate,[14] and/or whether that
clinician is a high vs. low antibacterial prescriber.[18] However, unfortunately, prescriber is not a
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reliable field in THIN (Bhuller, H, personal communication, October 6, 2008). Alternatively,

practice could be used as an instrument; as we expect that practice may be highly correlated with
exposure. We explored whether IV methods can provide estimates of fixed effects results,

conditional on practice.

b. Randomization-test based inference

In randomization inference, each subject has two potential responses, the response
observed if the subject was assigned to treatment, and the alternative response observed if that
same subject were assigned to control, or no treatment. The treatment effect tau is defined as
the difference in outcome between a treated individual and the alternative potential outcome if
that same individual was untreated. If we assume no hidden bias, and an additive treatment
effect, there is a constant treatment effect tau such that every subject would have the same tau if
treated with antibacterial drugs vs. if that subject was untreated. Control responses might vary
from subject to subject, but treatment should change the outcome by the same amount. Our null
hypothesis was that, adjusted for covariates, if there was no hidden bias, treatment status was
distributed randomly with respect to outcome. The alternative hypothesis is that there was a
significant relationship between outcome and treatment status.[5, 26]

The potential benefit of randomization-test-based methods is that they are assumption
free, i.e., they do not rely on the assumptions behind any model. Nor do they rely on large
sample theory as a basis for variance estimates [27, 28] But these methods are not without
challenges.

First, in the application of interest, the outcomes across multiple clinical practices,
randomization-test-based methods must consider the possibility of confounding by practice. We
would need to consider the choice of a test statistic with this potential for confounding in mind.
Second, the outcomes in this study were rare. Care must be taken that the method chosen does
not unintentionally drop practices because no events occur. Third, although randomization-test-
based methods control for Type | error, the study of adverse events demands special attention to
power (or Type Il error).
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Several alternative methods for implementing randomization-test-based methods could

be compared with model-based methods. An initial issue is whether the effect of exposure is to
be expressed on a multiplicative score (as with an odds ratio) or on an additive scale (as with a
risk difference). A key exposition on the use of randomization-test-based methods for multicenter
data with binary outcomes,[27] assumes that the effect should be measured on an additive scale.
But the methods should not be confined to additive estimates.

Stratified rank based methods as described by Rosenbaum [26] (section 7) and Small,
[29] rely less on statistical models to obtain a test statistic, while they allow use of regression
methods to adjust for covariates. However, these methods would not be straightforward to
implement for this study as they rely on grid searches and inverting test-statistics[30] (section 9.2)
to obtain point estimates and confidence bounds, would have had to be adapted for binary
outcomes, and would need to address confounding by practice. Thus, we do not include these
methods in our analysis but plan to address this topic in a future project.

We compared our results obtained using the methods described above.

C. Simulations:

When we use simulated data, in contrast to when we use real data, we know the
underlying true parameter values and have complete control over the data structure. A simulated
dataset is relatively easy to construct, and, while simplistic, can be structured to reflect almost
any type of underlying data values and distribution. We can examine the effect of varying one
parameter at a time, or multiple parameters in combination, holding everything else constant.
Simulations can help us explore what happens to our expected bias and power as we vary our
data structure and model assumptions throughout an endless variety of possible variations, and
how robust our coverage and power are to our model assumptions.. We generated simulated
datasets using known distributions for patient-level parameters of interest to reflect conditions
similar to our data: large (~2 million visits relevant to the study of antibacterial drug use) highly
hierarchical (200 practices), extremely unbalanced exposure across clusters (practices), and rare
outcomes with lots of zero-outcome cells. We compared the performance of the different types of
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models described above in describing the stipulated values in terms of bias and power with very

rare events and highly clustered data. We also used these simulations to explore the effect of
different levels of data clustering, the influence of parameter variability between clusters, and how
robust our results were to confounding due to unmeasured variables.

Each practice was stipulated to have a different baseline rate of antibacterial drug use,
with a mean risk of antibacterial drug exposure of 0.60 (60%), and a standard deviation of 0.2
(20%) across practices. Each practice was stipulated to have a different baseline risk of an
adverse event, with a mean of 0.0000866 and a standard deviation of £ 0.00005 on the additive
scale. Based upon preliminary data (Chapter 6), the parameter for the difference in rare severe
adverse event risk for those exposed to antibacterial drugs vs. for those not exposed was
stipulated at -0.0000411 (a protective effect of 4.11 per 100,000 exposures). Each practice was
stipulated to have a different baseline risk of the continuous covariate (for example, centered
weight, with a mean of 0 and a standard deviation of 15 kg.). This covariate was modeled both
as a true confounder, associated with both exposure and outcome (beta=25 and beta =
0.0000045871, respectively), and a noise covariate, not associated with exposure but included in
the model for the outcome (same beta = 0.0000045871).

Using the simulated datasets, we implemented Stata’s xtreg to develop a conditional
fixed effects linear model, modeling the risk of severe adverse event on antibacterial drug
exposure using 200 simulations and an alpha of 0.05. For each run, we report the mean of the
regression slopes from the simulation model, which is the risk difference for adverse event
comparing antibacterial exposed vs. unexposed visits, to compare with the stipulated slope used
to generate the data. We also report the number of zero-event practices, and the estimated
power of the model to show a difference in adverse event risks between antibacterial-treated and
untreated visits.

Our primary analysis used 200 practices (clusters) with 10,000 patient visits each,
variable antibacterial drug exposure and adverse event risk between practices, and no

unmeasured covariates. For subsequent analyses, we varied the number of practices from 50
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practices with 40,000 visits per practice up to 400,000 practices with 5 visits per practice, holding

the total number of visits constant at 2,000,000. We also explored the effect on the parameter

estimate and power of eliminating the variability in exposure and/or outcome risk, and using a

multiplicative conditional fixed effects logit model (Stata’s xtlogit) for simulation estimates instead

of an additive model (Stata’s xtreg).

Table 5 Summary of Methods

Summary of Methods

Method

Potential Advantages

Potential Disadvantages

Methods to model conditional
rare outcomes

1. Marginal models (GEE)

Adjusts for clustering
Tolerates high numbers
of groups

Requires correlation structure
specificiation

Difficult to address multiple
cluster levels
Population-averaged result
Not based on maximum
likelihood theory

2. Subject-specific methods

a. Random-effects
methods

Can decompose within-
and between practice
effects

Does not use data from clusters
with zero outcomes

b. Mixed-effects methods

Can provide estimates
of both fixed and
random effects

Random effects not of interest
Slow, cumbersome

c. Fixed-effects (stratified)
methods

i. Conditional fixed
effects logistic
regression

Does not use data from clusters
with zero outcomes

ii. Conditional fixed
effects linear
regression

Can estimate fixed-
effects, or within
practice effects
Can use data from
practices with zero
outcomes

Based on maximum
likelihood theory

Cannot be used with a non-rare
dichotomous outcome

Methods to adjust for
confounding
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1. Confounding by measured

variables
a. Propensity score Useful with common With varying exposure by cluster,
analysis exposure and rare need a separate propensity score

outcome

for each cluster
Hard to fit a propensity score
with highly unbalanced exposure

2. Confounding by
unmeasured variables

a. Instrumental variable
analysis

Simulates random
treatment assignment

Difficult to find a suitable
instrument

b. Randomization test
based inference

Assumption-free

May be difficult to adjust for
confounding by practice

May not be able to use practices
with zero outcomes

May not have sufficient power
Complex to implement

Would need to be adpted for
binary outcomes

c. Simulations

Can easily vary
parameters and
assumptions

Can test sensitivity of
results to unmeasured
variables

Complexity more limited than
real data
Relies on model assumptions

Results

A. Description of the cohort

Our cohort contained 1,646,229 total visits and 1,531,019 grouped visits by 814,283

patients. The mean number of grouped visits per patient was 1.9 (median 1, range 1 to 88 visits).

There were 495,129, 164,447, 70,145, 34,373, 18,466 and 748,479 patients with 1,2,3,4,5, and

>5 visits, respectively (Table 6, Figure 6).
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Table 6 Visits for Acute Nonspecific Respiratory Infections, By Patient

Visits Per Subject | Frequency
1 495129

2 164447

3 70145

4 34373

5 18466

6 10919

7 6713

8 4171

9 2849
10 1914
11 1316
12 919
13 632
14 510
15 362
16 293
17 197
18 163
19 145
20 93
>20 620
TOTAL 814,283

Figure 6. Visits for Acute Nonspecific Respiratory Infections, by Patient

Visits for Nonspecific Acute Respiratory Tract Infections
By Patient
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There were 326 practices included in the cohort. The mean number of grouped visits per practice

was 4696.4 (median 3232.5, range 24 to 27,190, Table 7 and Figure 7)

Table 7. Visits for Acute Nonspecific Respiratory Infections per Practice

Visits for Acute Nonspecific Respiratory Infections, per Practice
Visit category Number of practices

0<1000 visits 59
1000-<2000 visits 59
2000-<3000 visits 38
3000-<4000 visits 32
4000-<5000 visits 22
5000-<6000 visits 27
6000-<7000 visits 10
7000-<8000 visits 11
8000-<9000 visits 15
9000-<10,000 visits 14
10,000-<11,000 visits 8

11,000-<30,000 visits 31
TOTAL 326

Figure 7. Visits for Acute Nonspecific Respiratory Infections, by Practice
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By Practice
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Antibacterial Drugs

Overall, patients at 65.4% of ARI visits received antibacterial drug prescriptions. As
expected, antibacterial prescribing varied widely between practices, from a low of 3.1% to a high

of 94.7% of grouped visits receiving antibacterial drug prescriptions (Figure 8).

Figure 8. Antibacterial Drugs for Acute Nonspecific Respiratory Infections, by Practice

Antibacter ial Drug Use for Acute Nonspecific Respiratory Tract Infections
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This extreme imbalance of antibacterial drug prescribing across practices provided strong
evidence that we needed to address any clustering and confounding by practice. There was not
a strong association between the number of visits and antibacterial drug use by practice (r=0.227,

Figure 9).
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Figure 9. Antibacterial Drug Use for Acute Nonspecific Respiratory Tract Infections vs.

Number of Visits, by Practice
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The outcome was extremely rare with a mean incidence rate of 7.71 per 100,000
grouped visits (8.87 ungrouped, Figure 10). There were 244 practices with zero severe adverse
event outcomes within 14 days of grouped visits and 58, 16, 5, 2, and 1 practices with 1, 2, 3, 4,

and 5 severe adverse event outcomes, respectively, Table 8.
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Figure 10. Severe Adverse Events after Acute Nonspecific Respiratory Infections, by

Practice
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Figure 11. Severe Adverse Events after Acute Nonspecific Respiratory Infections, by
Practice, excluding zero-event practices
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Table 8. Severe Adverse Events within 14 Days of Visit for Acute Nonspecific Respiratory

Tract Infection, Grouped Visits

Severe Adverse Events within 14 Days of Acute Nonspecific
Respiratory Tract Infection Visit,
Grouped Visits
Severe adverse Number of practices
events
0 244
1 58
2 16
3 5
4 2
5 1
TOTAL
118 326

This extreme imbalance of outcome by practice, particularly with many practices (74.8%)
experiencing zero outcomes, provided support that we were most likely to achieve unbiased

results if we could include information from practices with zero outcomes in the analysis.

B. Methods to model conditional rare outcomes
1. Marginal Models

Generalized estimating equations

Using GEE, with the panel variable specified as patient, the time variable specified as
patient’s visit number during the cohort, and an exchangeable correlation structure, the
unadjusted odds ratio of a severe adverse event within 14 days of the index visit was 1.07 (95%
confidence interval 0.73 to 1.57, p=0.73), Table 9, for patients prescribed vs. for those not
prescribed antibacterial drugs; as described above, this is a marginal, or population-averaged

result and does not adjust for confounding by practice. Adjusted for year, the number of
comorbidities, the number of different classes of drugs within the previous year, Townsend
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score, and neighborhood racial mix, the covariates, aside from practice, found to be confounders

in this model, the OR was 0.82 (95% c.i. 0.55 to 1.23, p=0.34), Table 9 . Substituting an
independent correlation structure, the OR was unchanged. However, we found that GEE
required too large a memory size to allow us to specify practice as the panel variable. An
alternative approach would be to adjust for practice as a categorical variable, however this model
would not converge with our data, even without any additional covariates. GEE apparently did
not allow us to adjust for confounding by practice, and thus cannot be relied upon to provide an
unbiased estimate of the true relationship between antibacterial drug use and adverse events.
However, despite this limitation, for our problem, GEE provided similar results to the potentially

more robust methods described below.

2. Subject-specific methods
Random effects methods:
Logistic regression: Using logistic regression we began to decompose the effects of within-
practice vs. across- (or among) practice antibacterial drug exposure. We modeled adverse event
risk on antibacterial drug use, using robust variance estimators to adjust for clustering by practice,
and decomposing antibacterial exposure into between-practice and within-practice exposure.
The unadjusted odds ratio of a severe adverse event within 14 days of the index visit for visits
exposed vs. those not exposed to antibacterial drugs was 1.07 (95% c.i. 0.72 to 1.58, p=0.74),
Table 9. Adjusted for centered year, the number of different classes of drugs used in the
preceding year, the number of visits during the preceding year, and neighborhood racial mix, the
conditional within-practice odds ratio of a severe adverse event within 14 days of the index visit
for visits exposed vs. those not exposed to antibacterial drugs was 0.79 (95% c.i. 0.51 to 1.22,

p=0.29), Table 9.

Fixed effects (stratified) methods: conditional regression
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Conditional logistic regression: Implementing conditional logistic regression using Stata’s clogit

command, with practice as the group variable, the unadjusted odds ratio of a severe adverse
event within 14 days of the index visit for visits exposed vs. those not exposed to antibacterial
drugs was 0.92 (95% c.i. 0.61 to 1.38, p=0.67), Table 9. Adjusted for the number of different
classes of drugs used in the preceding year, the odds ratio was 0.81 (95% confidence interval
0.54 to 1.22, p=0.32). However, data from 244 zero-outcome practices out of 326 total practices,
including 842,712 out of 1,531,019 total visits were dropped. There is strong reason to suspect
that practices with zero outcomes may differ in important ways from practices without zero
outcomes; to the extent that these differences were unmeasured, we cannot adjust for them, and
thus these very limited results, only including data from practices with positive outcomes, are at
risk of being significantly biased. Thus, in our effort to estimate the within-practice effect of
antibiotic exposure, here we are inherently constrained to use only those practices with both
events and with some variation at the patient level in the use of anbiotics.

We next used Stata’s xtlogit to fit multiplicative logit conditional fixed effects models,
decomposing antibacterial drug exposure to examine within- rather than between-practice effects.
The unadjusted OR for a severe adverse event for patients exposed vs. unexposed to an
antibacterial drugs was 0.92 (95% c.i. 0.61 to 1.38, p=0.67, identical to the results using the clogit
command, above). Adjusted for the number of different drug classes prescribed during the past
year and Townsend score, the OR was 0.77 (0.50 to 1.17, p=0.22), Table 9. Similar to
conditional logistic regression using clogit, a limitation of this method is that xtlogit could not make
use of data from practices with zero outcomes (giving an odds of zero for severe adverse events
without antibacterial drugs, and a zero denominator for the odds ratio), and thus lost all
information from 780,333 visits (55% of the visits!) from these 238 practices with this method;
again, the data from the practices with zero events are likely to be different in many respects from
data from practices with non-zero events; to the extent that these events are not distributed

randomly across practices, losing this information in the analysis risks obtaining biased results..
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Conditional linear regression

Stata’s xtreg was used to fit additive linear conditional fixed effects models. As xtreg is
estimating risk differences, unlike estimating odds ratios using xtlogit's multiplicative model where
zero-event practices drop out because of unusable zero denominators, information from zero-
event practices is used in the xtreg estimates’ additive model. Thus, with xtreg, we could take a
more comprehensive look at the influence of potential clustering and confounding by practice
using all of the data. First using subject as the panel variable, and using the mle option, our
random effects estimate for the unadjusted risk difference for a severe adverse event for patients
exposed vs. those unexposed to antibiotics was 0.511 per 100,000 visits (95% c.i. -2.41 to +3.44,
p=0.73), Table 9, note that the point estimate was positive. Using the fe option, again
decomposing antibacterial drug exposure to examine within-patient vs. between-patient exposure
effects , our unadjusted conditional (on patient) fixed effects estimate for the risk difference for a
severe adverse event for patient visits exposed vs. unexposed to antibacterials was -0.145 per
100,000 visits (-5.03 to +4.74, p=0.954), note the point estimate, conditioning on patient, was
negative.

Using practice as the panel variable, with the mle option, our random effects estimate for
the unadjusted risk difference for a severe adverse event for patients exposed vs. those
unexposed to antibacterial drugs was the same, of course, as with patient as the panel variable:
0.511 per 100,000 visits (95% c.i. -2.41 to +3.44, p=0.73), Table 9. Using the fe option, the
unadjusted conditional (on practice) fixed effects estimate of the risk difference for a severe
adverse event for patients exposed vs. those unexposed to antibacterials, was -0.6777 per
100,000 visits (95% c.i. -3.83 to +2.47, p=0.67). Thus, using the mle random effects model,
ignoring potential confounding by patient or practice, antibacterials appeared to increase the point
estimate for the risk of adverse events, while, using the model conditional on practice or patient,
antibacterials appeared protective! This is evidence that confounding by patient and practice is

very important here!
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This confounding may not have been a serious problem at the patient level, as we had

many potential measured patient-level covariates to include in the model. However, at the
practice level, there were fewer options for covariate adjustment. Unfortunately, prescriber is not
a reliable field in THIN (Bhuller, H, personal communication, October 6, 2008). The practice-level
variables available in THIN, such as the Townsend score (missing for 8.2% of our visits), and the
racial/ethnic mix of the population served (missing for 4.4% of our visits), are somewhat
inconsistently available, and less directly related to the encounter between the patient and
physician during the visit than individual characteristics of the specific patient and physician
involved. With prescribing extremely unbalanced across practices, as discussed above and
shown in Figure 6, confounding by practice appeared to be of extreme importance and our
models needed to adjust for this to obtain unbiased estimates for our outcome of interest.

Using xtreg with the fe option, and practice as the panel variable, adjusted for age, year,
the number of different classes of drugs and the number of office visits within the year prior to the
visit, and the Townsend score, the conditional fixed effects estimate for the risk difference for
severe adverse event for patients exposed vs. those unexposed to antibacterial drugs was -1.42
per 100,000 (95% c.i. -4.75 to +1.91, p=0.40) Table 9. We found an interaction between
antibacterial exposure and the number of different classes of medications used in the previous
year, expressed as quintiles. Adjusted for age, year, the number of different classes of drugs and
the number of office visits within the year prior to the visit, and the Townsend score, the risk
difference for severe adverse event for patients exposed vs. those unexposed to antibacterials
was significant only for the highest quintile of drug use during the previous year: -29.14 per

100,000 visits (95% c.i. -44.98 to -13.29, p<0.001).

C. Methods to adjust for confounding
Propensity score analysis
Using a propensity score presents a particularly interesting challenge for this problem. If

we generated a propensity score in the typical fashion, we would have used a common
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propensity score model across each of our 326 practices. However, this type of model would

have been wildly inappropriate here, as we know that the propensity for antibacterial exposure
varies so extremely between practices (Figure 8). In order to develop a propensity score that is
actually helpful in modeling the propensity for antibacterial drug exposure, we needed, as noted
previously, to model a separate propensity score for each practice. A separate propensity score
for antibacterial drug exposure for each practice was modeled using Stata’s pscore command
with the following covariates: sex, age, visit year, the number of comorbidities at the time of the
visit, the number of different classes of medications prescribed and the number of office visits
during the year prior to the index visit, and patient smoking history. In order to get the propensity
score models to successfully converge, we needed to dichotomize our continuous covariates, and
we were still not able to generate propensisty scores for eleven of the 326 practices (including
90,885 of 1,531,019 visits). In theory, it might have been difficult to generate pscores for
practices with very low use of antibacterial medications, however that did not seem to fully explain
the problem here. Mean use of antibacterials among omitted practices was 68.2% (range 50.6%
to 83.1%) compared with 65.4% for all practices, using grouped visits.

Because our propensity score analysis was limited to visits from practices with propensity
scores, for comparison, we fitted the xtreg model adjusted for age, year, number of drugs and
number of visits during the past year, and Townsend score, as above, but only included visits
from practices with fitted propensity scores, eliminating those 90,885 visits without propensity
scores. The adjusted conditional fixed effects estimate for severe adverse event for patients
exposed vs. those unexposed to antibacterial drugs was again significant only for the highest
quintile of drug use during the previous year, when antibacterial use was again protective with a
risk difference for those exposed vs. unexposed of -30.56 per 100,000 visits (-47.17 to 113.96,
p<0.001) (this estimate was slightly farther away from the null than the point estimate of -29.14
per 100,000 visits, using data from all of the practices described above), Table 9.

Using the propensity score as a continuous variable, the risk difference for

adverse event for exposed vs. for unexposed patients was again significant only in the highest
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drug use quintile, with a risk difference of -32.62 per 100,000 visits (95% c.i. -49.21 to -16.03,

p<0.001), very similar to the comparison point estimate, above, without the propensity score of --
30.56 per 100,000 visits. However, this model assumed a linear relationship between our severe
adverse event outcome and our propensity score. A model stratified by propensity score will
make fewer assumptions in this regard.

Dividing our propensity score across quintiles, we used the propensity score quintile as a
categorical variable, essentially stratifying (subclassifying) by propensity score, comparing the
risk of an adverse event for exposed vs. for unexposed patients within quintiles of the propensity
to have been prescribed an antibacterial drug, and conditional on practice. Using xtreg, the fixed
effects estimate of the risk difference for severe adverse event for exposed vs. unexposed
patients, conditional on practice, and adjusting for Townsend score was again significant only for
the stratum of patients who are in the highest quintile of medication use, and antibacterials were
again protective with an estimated risk difference of -32.62 per 100,000 visits (95% c.i. -49.22 to -
16.03, p<0.001), very close to our estimate of -30.56 obtained without the propensity score,
Table 9.

Because our panel variable was practice, we were unable to utilize the propensity score
with an inverse probability of treatment weighting approach, as our treatment weights could not

be constant within practice. This was a limitation of this method for our type of analytic problem.

Instrumental variable analysis
As discussed above, if a strong instrumental variable can be identified, an instrumental
variable technique can help control for unmeasured confounding. However, unfortunately, our
best candidate for a strong instrumental variable, visit provider prescribing history, is not reliable
field in THIN, as discussed above. Alternatively, practice could be used as an instrument; as we
have shown that practice is highly correlated with exposure.
Using Stata’s ivregress function, we performed 2-stage least squares regression,

modeling practice on Townsend score, racial/ethnic mix, and visit year, and then using practice as
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an instrument in a linear regression modeling severe adverse event on antibacterial drug

exposure, adjusting for age, visit year, number of different classes of medications used in the past
year, and number of office visits in the past year. Again, the risk difference for antibiotic exposed
vs. for unexposed visits was significant only in the highest quintile of medication use, and was
again protective here in the IV model, with a point estimate of -28.11 per 100,000 visits (98% ci. -
43.93 to -12.29, p<0.1001), Table 9. This is similar to the type of result Stukel et. al. obtained,
using instrumental variable regression, with Stata’s ivregress to examine the effects of invasive
cardiac management on survival after acute myocardial infarction.[14] They used regional cardiac
catheterization rate as an instrumental variable, as it is thought to be highly correlated with
treatment but not to effect the outcome independently of the exposure of interest. Their result
estimates the treatment effect on the marginal subjects, or those who would receive treatment in
high-prescribing but not low-prescribing regions. Thus, their result describes between- region, and
not within-region risks. The counterfactual contrast of interest would be what would be the effect
of catheterizing vs. not catherizing on the same patient at the same time, in the same region, or
the within-region contrast.

Our fixed effects model using xtreg conditional on practice should provide less biased
estimates compared with this instrumental variable method, by helping to control for confounding
by practice.[14] That model’s risk difference estimates were similar to the methods obtained using

IV methods.
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Table 9. Regression Results Summary

Regression Results Summary

Unadjusted Adjusted
Method Point 95% c.i. P Point 95% c.i. P
estimate Value estimate value
GEE
Patient = group 1.07 0.73 to 0.73 0.82 0.55t0 1.23 0.34
1.57
Practice=group X X X X X X
Logistic regression 1.07 0.72 to 0.74 0.79 0.51t01.22 0.29
1.58
Clogit 0.92 0.61to 0.67 0.81 0.54 to 1.22 0.32
1.38
Xtlogit 0.92 0.61to 0.67 0.77 0.50 to 1.17 0.22
1.38
Xtreg
Panel = subject
Not conditional on subject 0.511 per .-2.41to 0.73
100,000 +3.44
visits
Conditional on subject -0.145 per | -5.03to p=0.954
100,000 +4.74
visits
Panel = practice : 0.511 per | -2.41 to 0.73
Not conditional on practice 100,000 +3.44,
visits
Conditional on practice (no interaction) | -0.6777 per | -3.83 to 0.67 -1.42 per 100,000 | -4.75to 0.40
100,000 +2.47 visits +1.91
visits
Conditional on practice, interaction For highest quintile of drugs within past year
-29.14 per .-44.98 to - p<0.001
100,000 visits 13.29
Conditional on practice but only visits | -1.45 -4.96 to 0.419 For highest quintile of drugs within past year
with propensity scores +2.06 -30.56 per 4717 to <0.001
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100,000 visits 113.96

Propensity score as continuous

For highest quintile of drugs within

past year

variable for visits with propensity scores -32.62 per .49.22 to - <0.001
100,000 visits 16.03
Propensity score as quintiles for visits | -2.53 -6.09 to 0.163 For highest quintile of drugs within past year
with propensity scores +1.03 -32.62 per -.0004922 to | P<0.001
100,000 visits -.0001603
Instrumental variable -0.290 -3.54 to 0.861 -28.11 per -43.93 to - <0.001
+2.96 100,000 visits 12.29
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Simulations

As described above, our dataset was large (1,646,229 visits) highly hierarchical (326
practices) with a relatively common and variable exposure across practices (patients at 65.4% of
visits received antibacterial drugs, ranging from 3.1% to 94.7% depending on practice), and a very
rare and variable outcome across practices (severe adverse event risk of 7.71 per 100,000 visits,
ranging from 0 to 280.9 depending on practice). We compared the performance of our conditional
fixed effects linear model (using xtreg) under varying conditions and assumptions, and compared
these results with those using a conditional fixed effects logistic model (using xtlogit) conditional
fixed effects logit model, using simulated datasets, generated to reflect conditions similar to our
data: large (2 million visits), highly hierarchical (ranging from 50 to 400,000 practices with 5 to
40,000 visits per practice), a relatively common and variable exposure across practices, and a rare
outcome (specified to be 8.66 per 100,000 visits, with a risk difference of -0.0000411 (-4.11 per
100,000 visits) for the protective effect for exposed vs. unexposed visits); many practices thus
included zero outcomes. We explored the effect of increasing the number of practices on expected
power, holding the total sample size constant; with an extremely rare outcome, as the number of
practices increases we would expect an increase in power due to the design effect, but may see a
decrease due to an increased number of zero-event practices. We also used these simulations to
explore how robust our results and our power were to ignoring or mis-specifying the variability in the
models’ estimated parameters, and confounding due to unmeasured variables.

For a baseline analysis, with our primary seed, using 200 practice with 10,000 visits per
practice, the mean regression slope from the simulated data was -3.72 per 100,000 visits,
compared with the true value of -4.11 used to generate the data, or a 9.5% bias toward the null
value of the slope =0, Table 10. The power to find this difference in slope using this model was
estimated at .81, and there were 112.93 practices with zero adverse events (zero-event practices).
Using a different seed, this same model yielded an estimated mean regression slope of -3.817 per
100,000 visits, or a 7.1% bias toward the null, with a power of 0.885, with 87.68 zero-event
practices.
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Decreasing the number of practices from 200 to 100, we found an estimated mean

regression slope of -3.86 per 100,000 visits, or a 6.1% bias toward the null, with a power of .875.
Decreasing the number of practices still further to 50, the estimated mean regression slope was -
3.814 per 100,000 visits, a 7.2% bias toward the null, with a power of 0.82 (Figure 12 and Table
10). Power and bias estimations using additional practice sizes are shown in Table 10 and Figure
12. As shown, we did not see the increase in power to detect our very small risk difference that we
would expect from the design effect with increasing numbers of practices, in fact, power stayed
about the same despite large increases in the number of practices in the model. The power
suffered from the progressively increasing numbers of zero-event practices seen, as the number of
visits per practice decreased with increasing practice size, holding total visits constant,
demonstrated in Table 10. With increasing numbers of zero-event practices, it gets progressively
more difficult to show significant differences between antibacterial-exposed and —unexposed visits

within each practice.

Figure 12. Simulated Practice Size vs. Estimated Slope and Power using xtreg

Simulated Practice Size vs. estimated slope and power
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When we eliminated the baseline variability of antibiotic prescribing between practices,
the mean estimated slope was -3.741 per 100,000 visits with a bias of 9.0% toward the null, and
a power of 0.875 (Table 10). When we eliminated the baseline variability of adverse event risk
between practices, the mean estimated slope was -4.063 per 100,000 visits, with a bias of 1.1%
toward the null and a power of 0.92. When we eliminated both the baseline variability of
antibacterial drug prescribing and the baseline variability of adverse event risk between practices,
the mean estimated slope was -4.089 per 100,000 visits with a bias of only 0.5% toward the null
and a power of 0.935. This implies that, if baseline variability between cluster groups is ignored
for power estimation, we risk potentially grossly overestimating our power to detect a difference
between groups, especially when we ignore potential variability in rare outcome risk between
clusters. This effect also makes us vulnerable to quite biased results from errors in measurement
of exposure or outcome.

When we consider the impact of unmeasured covariates, adding a confounder as
described above, and ignoring this (unmeasured) confounder in the analysis, resulted in an
estimated mean slope of +4.741 per 100,000 visits, an over 200% bias and a point estimate for
the risk difference in the opposite direction, indicating a risk from antibacterial drug exposure
rather than the stipulated true protective effect, with a power of 0.71. (Table 10) If the same
unmeasured covariate is not a confounder but merely a noise variable, associated with the
outcome but not with the exposure, the estimated mean slope was -3.998 per 100,000 visits, a
2.7% bias toward the null, and a power of .72 (Table 10). Thus, an unmeasured covariate will
obviously effect powers; if the covariate is a noise variable, our point estimate will be relatively
unbiased, but we would have less power to show a difference, but if the unmeasured covariate is
a confounder, there is a risk of obtaining an extremely biased result!

Finally, given the stipulated simulated data, our stipulated risk difference for severe

adverse event of -4.11 per 100,000 visits in antibacterial drug exposed vs. unexposed visits
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should correspond to an odds ratio of 0.5357. Using xtreg instead of xtlogit, we found an odds

ratio of 0.574, biased 7.1% toward the null, similar to our xtreg results, with a power of 0.80.

Table 10. Simulation Results

Simulation Results
200 reps, 2,000,000 total patient visits, a = 0.05, Risk difference specified at -0.0000411 or -
4.11 per 100,000 visits with antibacterial drug exposure
Comments | Number of Visits per Mean regression | Power | Number of
Practices practice slope from zero-event
simulated data, practices
per 100,000 visits
Linear regression, conditional on practice
Variable antibacterial drug exposure and adverse event risk between practices
No
unmeasured
covariates 50 40,000 -3.814 0.82
1
100 20,000 -3.86 | 0.875
1 112.93
200 10,000 -3.72 0.81
| 293.26
400 5000 -3.623 | 0.795
I 387.29
500 4000 -3.983 | 0.865
! 550.74
667 3000 -3.661 0.79
! 679.72
800 2500 -3.92 | 0.855
! 1871.18
2000 1000 -3.612 0.8
! 3869.355
4000 500 -3.761 0.83
! 7866.1899
8000 250 -3.864 | 0.855
1 62500 32 -3.555 .795 | 62364.578
! 399858.28
400000 5 -3.658 | 0.785
Unmeasured 51.73
confounder 200 10,000 +4.741 0.71
Unmeasured
noise 86.25
covariate 200 10,000 -3.998 72
Variable antibiotic exposure but NOT variable adverse event risk between
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practices
No 200 10,000 -4.063 .92
unmeasured
covariates

Variable adverse event risk but NOT variable antibacterial drug exposure between

practices
No 200 10,000 -3.741 .875
unmeasured
covariates

NOT variable antibacterial drug exposure or adverse event risk between practices

No 200 10,000 -4.089 935
unmeasured
covariates

Logistic regression, conditional on practice
Risk difference = -0.0000411 or 4.11 per 100,000 visits, odds ratio = 0.535

Variable antibacterial drug exposure and adverse event risk between practices

No 200 10,000 | Odds ratio = 0.574 0.80 | 112.93
unmeasured
covariates

Discussion

Our data presented at least three major analytic challenges. First, exposure, outcomes,
and covariates were extremely clustered by practice. Second, antibacterial drug prescribing and
outcomes were extremely unbalanced among practices. Third, our outcome was exceedingly
rare, resulting in many practices with zero outcomes. Overall, despite the method used, as long
as we decomposed within- from between-practice results, we obtained similar results for our
outcome of interest, the within-practice estimates.

GEE had a large memory requirement which made it cumbersome to perform complex
analysis, even without additional covariates.

Conventional and conditional logistic regression did not allow us to make use of groups
with zero events; given our many practices and extremely rare outcomes, we would end up losing
information from most of our data with logistic regression analysis, and to the extent that adverse
outcomes were not distributed randomly across practices, risk obtaining biased outcomes. On

the other hand, logistic regression would appear the right choice based on theory; a multiplicative
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model could be a more reasonable choice for our dichotomous outcome rather than an additive

model.

Conditional fixed effects linear regression models converged easily, and were able to
make use of all of our data, even data from practices with zero outcomes. As discussed above,
this problem is similar to using meta-analysis to study data regarding rare events. [13] Results
using this method for our rare binary outcome appeared relatively unbiased and stable using
simulated datasets with known parameter estimates.

Our results from the random effects conventional and conditional logistic regression
models were quite similar to those from the linear regression models; as long as we focused on
within-practice estimates; the bias and power of the logistic and linear models were virtually
identical. Somewhat counter-intuitively, although logistic regression was not able to make use of
data from practices with zero outcomes, our power was essentially no different with linear
regression as with logistic regression. Thus, for the research question addressed in this study,
the conditional logistic regression results were robust to losing data from zero-event practices. It
is unknown whether this is specific to our particular question, or generalizable to other very large
datasets with common exposures and rare outcomes. Other investigators have shown with
simulations that conditional logistic regression does not always give the best results, in terms of
bias, coverage,and power, under conditions of rare dichotomous events.[7]

The propensity score analysis was quite cumbersome; as propensity for antibacterial
drug prescribing was so unbalanced between practices, we needed to model a separate
propensity score for each practice. Covariates for some practices were too unbalanced for the
propensity score models to converge, and thus we were not able to use data from those practices
in the propensity score analysis. We were not able to utilize inverse probability of treatment
weighting in Stata with our data clustered by practice. However we used the propensity score,
our point estimates for the effect of antibacterial drug exposure were similar to our estimates
obtained using our other models. Although the estimates using the propensity score models are
close, they do not seem to provide much advantage to the non propensity score models, and do
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not fully utilize all available information (for example, we had to dichotomize continuous variables

and omit data).

Unfortunately, we were not able to use provider prescribing history as an instrumental
variable; practice seemed to be the strongest available potential instrument, and our results using
other methods seem to adequately adjust for practice; IV methods did not seem to add any
advantage to our other more straightforward methods yielding similar results. IV methods may
suffer from some of the same limitations of propensity score analysis, in that some variables may
be extremely unbalanced across the dataset, in a nonrandom manner. Additionally, care must
be taken when using IV methods that the analysis can decompose the effects to provide the
contrast of interest; plugging data into an IV program may miss important effects, for example
those due to clustering and confounding by site. This is similar to the problem experienced by
Stukel et. al, when they used Stata’s previous generation instrumental variable command to
model mortality rates on cardiac catheterization, using regional cardiac catheterization rates as
an instrumental variable.[20] We obtain the between-practice (or between-region) rather than the
within-practice estimates of interest using these instrumental variable methods.

When planning a trial with clustered data. other parameters being equal, it should always
improve our power to show a difference if we can include more patients in the study. Adding
more practices should further increase the power due to the design effect. However, sometimes
trade-offs need to be made between the number of practices included in the study, and the
number of patients per practice. We showed that, with our rare outcome, comparing many
smaller practices with fewer larger practices, the usual advantage of having many practices for
increasing power due to the design effect is at least partially outweighed by the increased number
of practices with zero events, giving less power to make within-practice estimates. In planning a
study of rare outcomes, the advantages of using many practices with fewer patients each to
maximize the design effect has to be weighed against the advantages of more patients, and thus

more events, per practice using fewer practices with more patients each.
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For reliable power calculations, we need good data on baseline risks, and good estimates

of baseline variability between clusters, or practices, especially variability in rare outcomes
between practices. With baseline variability in exposure and outcome risk between practices, we
need more data to show an effect, even if we are already adjusting for confounding by practice.
We showed that ignoring baseline variability in exposure or outcome in power calculations can
lead to extremely biased power estimates. We also showed that omitting consideration of the
effects of confounding variables from power calculations can have drastic consequences,
resulting in loss of power and potential biased results.

In summary, we showed that conditional fixed effects linear regression provided stable
and relatively estimates of common exposure treatment effects on rare outcomes. Although they
were able to utilize all available information, even from groups with zero events, results using these
models were quite similar to results obtained using more traditional methods for binary outcomes,.
It is unclear that there is an obvious ‘best’ method for modeling rare events such as those modeled
here, although it is reassuring that the different methods used yielded such similar results.
Comparing the risk of very rare events between very unbalanced groups presents real challenges
to power, even with very large datasets. Additionally, if power estimations for observational studies
of rare events ignore potential baseline variability between groups, and potential confounding
covariates, results could be quite biased and power estimates may be grossly inflated.

As The Health Improvement Network (THIN) as well as other electronic medical record
databases continue to grow in number and size, experience and insights with effective and efficient

methodologies for using observational data to explore rare outcomes will help us to exploit their

potential.
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Chapter 6.0utcomes I, Potential Risks of Antibacterial Drug Use: Adverse events

associated with adult antibacterial drug use

In the U.S., we have virtually universal exposure to antibacterial medications; in the year
2000, persons >age 15 received a total of 68,481,645 antibacterial drug prescriptions. Every
individual in the U.S. is prescribed a short-term course of systemic antibacterials once every three
years to almost twice per year, on average, resulting from a visit to an ambulatory health care
provider.[1-6] Virtually everyone will be exposed to at least one course of antibacterial drugs
during his/her lifetime. It is doubtful that the U.S. population has such a high exposure to any
other class of medications. This extraordinarily high exposure to antibacterials should command
careful vigilance to the consequences. Although the perceived risk of an adverse event related to
antibacterial drug use may be low, with such a high level of prescribing, the population-
attributable risk of serious adverse drug events due to this medication class could be quite high.

Antibacterial drugs are also among the most common drugs implicated in adverse
events.[7-9]. Of particular recent interest are drugs that are suspected of increasing the risk of
cardiac arrhythmia by prolonging the QT interval and/or directly causing Torsades de Pointes;
macrolides and fluorquinolones are frequently implicated in adverse events through this
mechanism.[10] Also of recent interest are drugs with suspected adverse events related to their
relationship with the hepatic CYP3A4 pathway. For example, macrolides are metabolized by the
CP3A4 pathway and both macrolides and fluoroquinolones are inhibitors of the CYP3A4 pathway;
this could heighten the risk of associated adverse events.[11, 12]

Most of these associations have been described with case reports and cases series; they
almost never include a control group measuring adverse events in unexposed patients and thus
the true absolute and relative risks of adverse events associated with these agents remain
unknown. A randomized clinical trial is considered the gold standard to best ensure comparability
of measured and unmeasured confounding variables between exposed and unexposed
subjects,[13] however opportunities and resources to perform large prospective randomized trials
are limited. Randomized trials to investigate subtle, rare, or complex effects would need to be
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quite large, would be infeasible to perform for every important research question, and are not

always ethical.[14] Longitudinal observational data with individual-level links have the potential to
help shed light on the outcomes of antibacterial drug use.

Antibacterial drugs are often prescribed for acute nonspecific respiratory infections,
despite the fact that they are unlikely to be of benefit; adults at about half of U.S. office visits for
acute nonspecific respiratory infections receive antibacterial drug prescriptions.[3, 4, 15] The
UK’s The Health Improvement Network (THIN) primary care electronic medical record database
contains large amounts of linked longitudinal clinical prescription and outcome data. The
objective of this study is to use a subset of the entire THIN cohort with an office visit for acute
nonspecific respiratory infections to compare adverse event rates of antibacterial drug-exposed
vs. antibacterial-unexposed patients. By limiting the comparison to patients with acute
nonspecific respiratory infection visits, we promote comparability between exposed and
unexposed patients in the cohort. However, in these analyses, we need to address three key
methodological issues. First, our outcome is extraordinarily rare. Second, our exposure, while
common, is not randomized, and thus is likely to be confounded by many patient- and practice-
related covariates, especially confounding by practice and by indication. Third, exposure and
outcome will both likely be clustered by patient and practice. We use different methods to
address these methodological challenges. To the extent that our results from these various
methods agree, this supports our results; to the extent that they disagree, they can give us further

insights into the relationship between antibacterial drug exposure and adverse events.

Methods

We conducted a retrospective cohort study using data accessed from THIN in September
2007. Data were restricted to practices meeting acceptable standards set by EPIC for research
data collection. We identified all adult primary care visits for acute nonspecific respiratory
infections between January 1, 1985 and December 31, 2006 among all continuously-enrolled
patients >18 years of age. Visits were identified based on Read diagnostic codes for acute
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nonspecific respiratory infections. (Chapter 3, Table 1). We excluded codes for diagnoses often

attributed to a focus of bacterial origin for which guidelines recommend antibacterial therapy such
as streptococcal pharyngitis, otitis media, sinusitis, and pneumonia. Because data from multiple
visits within the same illness episode may tend to be highly correlated, visits were grouped if they
occurred within a two-week period; grouped visits are defined as acute nonspecific respiratory
infection encounters. For sensitivity analysis, we eliminated the visit grouping.

Exposure: Exposure of interest was antibacterial drug prescription within one day of the
index acute nonspecific respiratory infection visit; antibacterial drugs of interest included oral
antibacterials typically used for respiratory infections. We excluded topical, vaginal,
ophthalmologic, otic, and parenteral antibacterials, and those typically used for tuberculosis,
fungal and parasitic infections. The primary exposure window was within 14 days of the index
visit. Fourteen days was chosen as the primary exposure of interest as we have demonstrated
that for most antibacterials commonly used for acute nonspecific respiratory infections, most

exposure is completed within 14 days, as shown for the two examples in Figure 13.[16]

Figure 13. Antibacterial Exposure after Visit for Acute Nonspecific Respiratory Infection [16]
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Outcome: The primary outcome for this study was a severe adverse event within a 14
day window following the index acute nonspecific respiratory infection encounter, defined as

overnight hospital admission with one of the following acute diagnoses: cardiac arrhythmia,
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diarrhea, hepatic toxicity, hypersensitivity, photo-toxicity, renal toxicity, or seizure (Appendix).

Hospitalizations were identified using the THIN Source codes suggested by EPIC to detect an
overnight hospital admission. (Bhullar, H, personal communication March 1, 2007). We previously
showed that these same THIN hospitalization codes had a good positive predictive value for
identifying valid overnight hospital admissions for community acquired pneumonia, another acute
diagnosis (Chapter 4), and that, of the identified hospitalizations, almost all (>96%) were
identified within a 14-day window after the acute nonspecific respiratory infection index visit.
However, if an adverse event occurred within the 14 day window but was recorded late, after the
14 day window, we would miss the outcome of interest. For this reason, our sensitivity analysis
extended the window out to 30-days exposures to address how robust our results are to
misclassification of hospitalization dates. Additional sensitivity analyses include eliminating the
visit grouping, and utilizing propensity score analysis, described in more detail below. We explore
our ability to control for unmeasured variables by performing instrumental variable analysis and a
case-cohort study, also decribed further below.

By confining our primary outcome to the more severe adverse events, defined as
overnight hospital admissions, we minimized misclassification bias due to misidentification of
outcome. ltis less likely that an adverse event was not recorded in THIN, and thus missed, if it
resulted in a hospital admission and thus generated at least a hospital discharge report and
perhaps an office and/or emergency department visit. It is likely that if a hospitalization was
recorded, an adverse event actually took place; this assumption was confirmed with our validation
project. Thus, using hospitalizations as our primary outcome, we may have missed some
exposure-associated adverse events, but the adverse events we identified will likely be valid.

Secondary outcomes included less serious adverse events, events resulting in a primary
care encounter but not resulting in hospital admission. We chose to make these secondary
outcomes, first because of concern that the less severe events might not be recorded in the
medical record and second, we were focusing our primary analysis on more clinically severe, and
thus perhaps more clinically relevant, adverse events. We also included automobile crash
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hospital admissions as an additional secondary outcome, as a control outcome. This explored the

possibility that our antibacterial drug exposure measure was a marker for certain patient
characteristics which made it more likely a patient would be hospitalized, rather than a marker of
a causal relationship between our antibacterial drug exposure and the hospitalization outcome.

Exploratory analyses included modeling each individual adverse event category as a
separate outcome , and modeling severe adverse event hospital admissions on antibacterial drug
class specific exposure, focusing on beta-lactams, macrolides, and flouroquinolones, first as
class-specific antibacterial drug vs. no antibacterial exposure, and second as class-specific
antibacterial drug vs other antibacterial exposure. Although we had less power to detect this
outcome than our primary outcomes, the risk of certain adverse events may vary with exposure to
specific antibacterial drug class, for example, beta-lactam antibacterials may increase the risk of
seizures,[17] and macrolides and fluoroquinolones may increase the risk of cardiac
arrhythmias.[18] As it is possible that some severe adverse events could result in death without
recording an overnight hospitalization; to explore the possibility that severe adverse events might
be missed in this way, we also modeled death as an exploratory outcome.

Covariates: Covariates included patient age at visit, sex, visit year, and patient co-
morbidity history, with co-morbiditites grouped into the categories shown in Chapter 5, Table 4
(Lewis, JD,unpublished data). Considering what clinical data might be relevant from a clinical
aspect to help predict indication for antibacterial treatment of acute nonspecific respiratory
infections, we also included alternative summary measures of the intensity of medical care use,
including the number of THIN recorded co-morbidities,[8] and the number of different classes of
medications that the patient was prescribed[8, 19] and the number of THIN visits recorded for that
patient within the year prior to the patient’s index acute nonspecific respiratory infection visit.
Although it would have been ideal to include them in the analysis, THIN does not include direct
measures of patients’ socioeconomic, racial and ethnic characteristics. THIN does include other
variables based on the patient’s post code that were used as proxies of these characteristics;
these variables include the Townsend score, a five-quintile measure of neighborhood deprivation,
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and a five-quintile variable describing the proportion of the patient’s neighborhood who define

themselves as “Black” or “Black British.”

Analysis: We first summarized acute nonspecific respiratory infection encounters and
antibacterial drug exposure, overall and by specific antibacterial class defined by British National
Formulary (BNF) class, [20] and we summarized the frequency and type of adverse events
outcomes.

As described in Chapter 5, antibacterial drug prescribing was profoundly unbalanced
between practices, and there was enormous confounding by practice in the relationship between
severe adverse events and antibacterial drug exposure. For multivariable analysis, we performed
fixed effects conditional linear regression using Stata’s xtreg command, described in further detail
in Chapter 5. We modeled hospitalization for any severe adverse event, using practice as the
grouping variable. The primary independent variable was antibacterial drug exposure modeled
as: any antibacterial exposure vs. no antibacterial exposure. Covariates included those listed
above. Model covariates were included using a two-step process. First, we initially included all
covariates that were associated with the outcome, conditional on the exposure of interest. Then,
we retained each covariate in the final model if removing it caused a change of >=10% in the risk
difference for antibacterial drug use. Akaike’s Information Criterion (AIC) was used to help
assess model fit, and Cuzick’s nonparametric test for trend across ordered groups was used to
test for trend (Stata’s nptrend).

For sensitivity analysis, we eliminated the visit grouping, and examined results at 30
days, as described above. In addition, we explored the impact of using a propensity score in the
regression models. Because our analysis was conditional on practice, and because we expected
extremely unbalanced antibacterial drug prescribing by practice (propensity for antibacterial drug
exposure based on other covariates varied widely between practice), a propensity score was
calculated separately for each practice, using the same covariates in each practice’s model, as

described in Chapter 5. Within each practice, propensity scores were divided into quintiles, and
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then these quintiles of the propensity score for each practice, across all practices were used in

the conditional linear regression, replacing their included covariates.

We also considered less severe adverse events, not resulting in hospital admission. We
used the same THIN adverse event diagnosis codes for this analysis, but excluded those cases
associated with THIN hospital admission codes.

As mentioned above, we modeled a control outcome, overnight hospital admission for
automobile crash within 15 days of the acute nonspecific respiratory infection visit, which should
not be related to antibacterial exposure; if a systematic difference is shown in the risk of
hospitalization for automobile crashes between antibacterial drug-exposed and —unexposed
patients, this would not plausibly be an effect of exposure and would be evidence of a hidden bias
due to unmeasured confounding.[21]

Because of the concern that some severe adverse events may present with death without
hospitalization, we also modeled death as exploratory outcomes.

Additionally, to further explore the influence of unmeasured variables on inter-individual
confounding by indication, we performed a crossover cohort study.[22] A crossover cohort study
eliminates inter-individual differences in indication for receiving antibacterials.[22, 23] In this
analysis, patients with adverse event hospitalizations and >1 visit for acute nonspecific
respiratory infection were included in the study population. Case time was defined as the 14 days
following a severe adverse event index acute nonspecific respiratory infection grouped visit. A
history of severe adverse event after antibacterial drug use would have been a contraindication
for future use of this antibacterial drug. To minimize bias from confounding due to depletion by
susceptibles, control time was defined as the 14 days following the previous[22] non-index visit;
control time after the index acute nonspecific respiratory infection visit was not included. Chi-
square testing was used to calculate the odds ratio comparing adverse event for antibacterial

drug-exposed vs. unexposed visits for each patient.

Power

Primary analysis: Power calculations were performed conservatively, using PS Power and
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Sample Size Calculations, Version 2.1.30, 2003.[24] THIN covers 32.6 million person-years,[25] and

using the 2001-2002 U.S. outpatient visit rate of 1985.7 visits per 1000 adults,[3] predicts an
estimated 64,733,820 THIN outpatient visits, assuming the U.K. outpatient visit rate is similar to that
of the U.S. Approximately 11% of adult outpatient visits are for acute respiratory infections other
than pneumonia;[3, 26, 27] assuming a similar rate for the U.K., we estimated a total of 7,120,720
outpatient acute nonspecific respiratory infection visits covered in THIN. In the U.S., 61.8% of adults
diagnosed with acute nonspecific respiratory infection in the outpatient setting are prescribed
antibacterial medications,[3] and our power calculations conservatively assumed that the U.K.
antibacterial prescribing rate could be only %z of the U.S., or 30.9% of acute nonspecific respiratory
infection visits. The preliminary study found an adverse event rate of 0.207 serious adverse events
per 1000 antibacterial drug-prescribing visits.[28]

With these assumptions, assuming data are independent, using the U.S. antibacterial
drug prescribing rate of 61.8%, even if our sample size is half that estimated above, or 3,500,000,
we would have 95% power to detect a relative risk of 1.20 for a serious adverse event for a
patient exposed to antibacterials compared with an unexposed patient, or a 20% increased risk
from antibacterial exposure. The clustered nature of our data means that data within practices
are likely to be more similar than data across, or between practices; this imparts variance
inflation. With visits clustered by practice, assuming a mean of 10,700 visits per practice, with an
intracluster correlation coefficient as high as 0.2, we would still have over 95% power to detect
this difference with this expected sample size. [29] f the U.K. antibacterial drug prescribing rate
was only 30.9% of acute nonspecific respiratory infection visits, we would have 90% power to
detect this same difference (Table 11). These results indicate that we would have the power to
detect a clinically significant increased risk of a serious adverse event associated with
antibacterial drug exposure. While these relative increases in risks are large, the associated
absolute increases in risk are small but clinically meaningful, particularly given the limited clinical

efficacy of the treatment under consideration.
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Table 11. Power, Relative Risk of Severe Adverse Event, Exposed vs. Unexposed Visits

Power, Relative Risk of Severe Adverse Event
Exposed vs. Unexposed Visits

Power |Acute Nonspsecific Respiratory Infection Detectable Relative Risk
Antibacterial Prescription Rate exposed/unexposed
.95 0.618 1.20
(U.S. rate)
.90 0.309 1.20

Crossover cohort study

For the crossover-cohort study, preliminary data show that 136 adults had a severe
adverse event after >1% acute nonspecific respiratory infection visit. Using the methods of Julious
et. al., we should have at least 80% power to detect an OR of ~2.5 for antibacterial-exposed vs.—

unexposed patients.[23]

Results
Description of the cohort
Visits

Our cohort contained 1,646,229 total visits and 1,531,019 grouped encounters by
814,283 patients. The mean number of grouped encounters per patient was 1.9 (median 1,
range 1 to 88 visits, Chapter 5, Figure 6). There were 495,129, 164,447, 70,145, 34,373, 18,466
and 748,479 patients with 1,2,3,4,5, and >5 visits, respectively (Chapter 5, Table 6, Figure 6).
There were 326 practices included in the cohort. The mean number of grouped visits per practice
was 4696.4 (median 3232.5, range 24 to 27,190, Chapter 5, Table 7 and Figure 7)
Antibacterial drugs

Overall, patients at 65.4% of acute nonspecific respiratory infection visits received
antibacterial drug prescriptions. As expected, antibacterial drug prescribing varied widely
between practices, from a low of 3.1% to a high of 94.7% of grouped visits receiving antibacterial

prescriptions (Chapter 5, Figure 8). As described in more detail in Chapter 5, this extreme
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unbalance of antibacterial drug prescribing across practices provided strong evidence that we

needed to address any clustering and confounding by practice.
The most frequent antibacterial drug prescribed was amoxicillin followed by penicillin and
then erythromycin for 51.2%, 17.0%, and 12.7%, respectively of encounters prescribed

antibacterial drugs (Table 12).

Table 12. Antibacterial Drugs Prescribed

Antibacterial Drugs Prescribed

BNF Code Generic Name Grouped encounters
05.01.01.03 Amoxicillin 512,934
Co-amoxiclav
Amoxicillin S/F

Flocloxacillin and Ampicillin
Amoxicillin/Clavulanic Acid

05.01.01.01 Penicillin V 170,440
Phenoxymethylpenicillin
Benzathine penicillin
Benzylpenicillin
Penicillin

05.01.05.00 Erythromycin 126,934
Erythromycin ethylsuccinate
Erythromycin ethylsuccinate S/F
Erythromycin ethylsuccinate coated
Erythromycin sachet S/F
Clarithromycin

Azithromycin

Erythromycin stearate
Erythromycin sprinkle

05.01.02.00 Cefalexin 71,646
Cefalexinpaed
Cefaclor
Cefaclor M/R
Cefadroxyl
Cefuroximeaxetil
Cefpodoxime
Cefalexinpaed
Cefixime
Cefradine
Cephradine
Ceftibuten
Cephalexin
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05.01.03.00

Tetracycline+chlortet+demeclocyc
Oxytetracycline

Tetracycline

Minocycline

Doxycycline (as hyclate)
Chlortetracycline

Demeclocycline

Doxycycline

Doxycycline HC

Doxycycline monohydrate
Lymecycline

Minocycline
Tetracycline+tamphoteracin
Tetracycline+nystatin

Tetracycline + pancreatic enzymes
Tetracycline+chortet&democlocyc

70,554

05.01.08.00

Trimethoprim & Co-trimoxazole
Co-trimoxazolepaed

Co-trifamole
(sulphamoxole/trimethoprim)

Co-
trimazine/sulphadiazine&trimethop
rim

Co-
trimoxazole(sulphameth/trimeth160
Co-
trimoxazole(sulphamethox/trimeth)
paed

Co-
trimoxazole/trimethoprim&sulpham
ethaz

Co-
trimoxazole/trimethoprim&sulpham
ethox

Co-trimoxazoleadult
Cotrimoxazolepaed

34,629

05.01.12.00

Ciprofloxacin

Levofloxacin

Moxifloxacin

Nalidixic acid

Nalidixic acid + sodium citrate
Norfloxacin

Ofloxacin

Temafloxacin

12,203

05.01.01.02

Flucloxacillin
Ampicillin + cloxacillin
Cloxacillin
Flucloxacillin

1,891

05.01.11.00

Metronidazole

609

05.01.13.00

Methenamine hippurate

119
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Nitrofurantoin
Fosfomycin
01.03.05.00 Amox/clarithro/lansop 55
Clarithromycin + lansop and amox
05.01.06.00 Clindamycin hydrochloride 25
05.01.07.00 Colistimethatesodium 11
Colistinsulphate
Chloramphenicol palmitate
Chloramphenicol
Sodium fusidate
1,002,050 grouped
encounters with
antibacterials
Covariates

In general, subjects with visits where antibacterial drugs were prescribed had more pre-

existing health conditions, for most of our co-morbidity measures for example they were older

(mean age for those receiving antibacterials vs. for those not receiving antibacterials was 47.9 vs.

44.0 years), had a more frequent history of any co-morbidities (34.9% vs. 30.6%), more different

types of co-morbidities (mean 0.48 v. 0.41), and more classes of drugs (mean 6.0 v. 4.3) within

the year prior to the acute nonspecific respiratory infection visit, although the number of primary

care visits within the previous year was similar between the two exposure groups (Table 13).

Table 13. Characteristics of Patients with Antibacterial Drug-exposed vs.Antibacterial-

unexposed Encounters

Characteristics of Patients with Antibacterial-exposed vs. Antibacterial-unexposed

Encounters

Adults With Antibacterials Without antibacterials
1,531,019 encounters 1,002,050 encounters | 528,969 encounters
(65.4%)
Age, years
Median 46 40
Mean 47.91 43.98
Male (%) 385,712 (38.5) 184,720 (35)

Congestive heart failure

26,692 (2.66%)

10,352 (1.96%)

Lung disease

195,831 (19.54%)

90,894 (17.18%)

Rheumatologic disease

29,607 (2.95%)

14,251 (2.69%)
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Cerebrovascular disease 35,224 (3.52%) 16,073

(3.04%)
Dementia 3,216 (0.32%) 2,425 (0.46%)
Diabetes 43,785 (4.37%) 18,682 (3.53%)
Weakness 6,436 (0.64%) 2,849 (0.54%)

Human Immunodeficiency
virus infection

296 (0.03%)

178 (0.03%)

Malignancy

43,816 (4.37%)

18,723 (3.54%)

Metastatic malignancy

1,345 (0.13%)

565 (0.11%)

Mild liver disease

6,777 (0.68%)

3,052 (0.58%)

Moderate-severe liver disease

708 (0.07%)

341 (0.06%)

Myocardial infarction

26,192 (2.61%)

9,959 (1.88%)

Peptic ulcer disease

35,105 (3.50%)

14,385 (2.72%)

Peripheral vascular disease

21,982 (2.19%)

8,963 (1.69%)

Renal disease

6,571 (0.66%)

2,982 (0.56%)

Any comorbidity 350,078 (34.94%) 161,607 (30.55%)
Number of comorbidities
Mean 0.48 0.41
Median 0 0
Number of different classes of
drugs used in previous year
Mean 5.98 4.25
Median 5 3
Number of visits made in
previous year
Mean 8.94 8.87
Median 6 6

Adverse Events

Severe adverse event hospitalizations

The incidence rate of severe adverse events within 14 days of encounters was

0.0000771 events per encounter, or 7.71 events per 100,000 encounters, shown in Figures 10

and 11 and Table 14. The unadjusted incidence rate was 7.88 per 100,000 encounters with

antibacterial drug exposure, and 7.37 per 100,000 encounters without antibacterial exposure.
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Table 14. Severe Adverse Events

Adverse Events

1,531,019 With antibacterial Without antibacterial drugs | TOTAL
encounters drugs 528,969 encounters
1,002,050 encounters
Severe ADE 14 day 79 39 118
7.88/100,000 visits 7.37/100,000 visits
32 hypersensitivity 11 hypersensitivity
10 diarrhea 7 diarrhea
6 liver toxicity 5 liver toxicity
13 renal toxicity 6 renal toxicity
6 arrythmia 0 arrhythmia
12 seizure 9 seizure
Severe ADE 30 day 148 80 228
14.77/100,000 visits 15.12/100,000 visits
54 hypersensitivity 25 hypersensitivity
13 diarrhea 12 diarrhea
20 liver toxicity 8 liver toxicity
25 renal toxicity 14 renal toxicity
8 arrythmia 3 arrythmia
28 seizure 18 seizure

Multivariable Analysis

Primary outcome

Any antibacterial drug exposure vs. no antibacterial drug exposure

Severe adverse event hospitalization

Using practice as the cluster variable, the unadjusted conditional fixed-effects within-
practice estimate for the risk difference for severe adverse event for patients exposed vs. those
unexposed to antibacterial drugs was -0.00000677 (95% c.i. -0.0000383 to +0.0000247); this
crude result implies that antibacterial drugs decrease the risk of severe adverse events with a risk
of -0.677 per 100,000 visits.

The variables found to be confounders when considered individually (age as a four-knot
spline, number of comorbidities, number of different classes of drugs used and the number of
recorded visits in the previous year, Townsend score, and racial distribution) and centered year
were used for the initial multivariable model. Variables were eliminated individually, and remained
out of the model if their elimination resulted in a <10% in the coefficient of interest, the risk of

severe adverse event. Ultimately, the final model included age, year, the number of drugs,
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number of visits, and the Townsend score, with a risk difference of -1.42 per 100,000 visits (95%

c.i. -4.75 to +1.91, p=0.40) comparing antibacterial drug-exposed vs. unexposed visits, Table 15.
Sensitivity analysis

Eliminating visit grouping: Eliminating visit grouping, results were the same, with a risk
difference of -1.42 (95% c.i. -4.75 to +1.91, p=0.403) comparing exposed vs. unexposed visits.
Results for 30 days demonstrated even greater risk reduction for antibacterial drug exposure vs.
unexposed patients, although still not statistally significant, with a point estimate for the risk
difference of -3.79 (95% c.i. -8.38 to +0.802, p=0.106) .

Propensity score analysis: In order to get the propensity score models to successfully
converge, we needed to dichotomize our continuous predictors of exposure, and we were still not
able to generate pscores for eleven of the 326 practices (including 90,885 of 1,531,019 visits in
the cohort) (Chapter 5). Including encounters from only the 311 practices with propensity scores,
the risk difference for severe adverse event was .-1.45 (95% c.i. -4.96 to +2.06, p=0.419)
comparing exposed vs. unexposed encounters, similar to the risk difference estimate using all of
the data (Table 15). We then fitted the same model, substituting categorical propensity score for
the included covariates. Risk difference for severe adverse event, stratified by propensity score
category, was -1.87 (-5.43 to +1.68, p=0.301), comparing antibacterial drug-exposed vs.
unexposed visits, with the point estimate slightly farther from the null, but with overlapping
confidence intervals compared with the estimate using the model without the propensity score
(Table 16). We also examined what happened to the risk difference estimate when the model
was used for only one propensity score category at a time; there did not appear to be a trend in

these risk difference estimates over propensity score categories (Table 15).
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Table 15. Adverse Event Outcomes

Adverse Event Outcomes
Per 100,00 encounters
All antibacterial drugs, at 14 days, Risk difference for antibacterial use
| grouped encounters
Point 95% c.i. p-value
Estimate
SEVERE ADVERSE EVENTS
Model without propensity score
Including all encounters -1.42 -4.75 to +1.91 0.403
Including only encounters with a -1.45 -4.96 to +2.06 0.419
propensity score
Model with propensity score
All propensity score quintiles -1.87 -5.43 to +1.68 0.301
1°" propensity score quintile +3.07 3.58 to +9.72 0.365
2" propensity score quintile -4.93 -12.41 to +2.56 0.197
3" propensity score quintile -4.55 -12.42 to +3.32 0.257
4™ propensity score quintile -0.366 -9.88 to +9.14 0.940
5" propensity score quintile -2.56 -11.72 to +6.60 0.584
Crossover cohort analysis -0.99 -4.15 to +5.61 .66
LESS SEVERE ADVERSE EVENTS +55.58 +28.00 to +83.18 <0.001
HOSPITALIZATION FOR MOTOR -0.78 -1.70 to +0.13 0.093
VEHICLE CRASHES

Less severe adverse events

For less adverse events that did not result in hospitalization, the risk difference for mild
adverse event for antibacterial drug-exposed vs. antibacterial-unexposed visits was +55.58 per
100,000 visits (95% c.i. +28 to +83.18, p<0.001), Table 19, implying a significant increased risk
for adverse events, rather than the null effect seen for the more severe adverse events (Table

15).

Control outcome: Hospitalization for motor vehicle crashes

We modeled a control outcome, hospitalization for motor vehicle crash, which should not
be related to antibacterial exposure. Using the multivariable model, the risk difference for
hospitalization for antibacterial drug-exposed vs. unexposed visits was -0.783 per 100,000 visits

(95% c.i. -1.7 to +0.131, p=0.093), Table 15.

Crossover cohort study
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Sixty-one case visits were matched with 173 control visits by the case patients. All

control visits occurred prior to the case visit for each patient. Odds ratio for antibacterial drug-

exposed vs. unexposed visits was 0.87 (95% c.i. 0.44 to 1.76, p=0.66), Table 15. Using the

value for risk of severe adverse event for patients with baseline covariates from the conditional
linear regression results above, this implies a risk difference of - 0.9927, compared with -1.42
from the conditional linear regression results. The crossover cohort results were thus closer to
the null result of no risk difference than the point estimate of the risk difference from the

conditional linear regression results.

Exploratory Analyses
Individual adverse event category:

Individual adverse event category and all antibacterial drugs

Considering individual adverse event categories, risk difference point estimates ranged
from -1.42 per 100,000 visits up to +0.556 per 100,000 visits but only one, for diarrhea, was

statistically significant, an unremarkable result considering the multiple comparisons. (Table 16).

Table 16. Regression Results for Individual Adverse Event Types

Regression Results for Individual Adverse Event Types
Per 100,00 visits
Risk difference for antibacterial drug use

All antibacterial drugs, at 14 Point estimate 95% c.i. p-value

days, grouped encounters

Severe adverse events -1.42 -4.75 to +1.91 0.403
Hypersensitivity +0.464 -1.58 to +2.51 0.656
Diarrhea -1.25 -2.46 to -.0407 0.043
Hepatic toxicity -0.518 -1.49 to +0.452 0.295
Renal toxicity +0.820 -0.588 to +2.33 0.254
Arrhythmia +0.556 -0.166 to +1.28 0.131
Seizure -1,18 -2,55 to +0.189 0.091

Class-specific antibacterial drug exposure

Class-specific antibacterial drug exposure vs. no antibacterial exposure
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When assessing class-specific antibacterial drug exposure vs. no exposure, we were

faced with sparse data and multiple comparisons (Table 17). Point estimates of the risk
difference for severe adverse events for beta lactams and macrolides were negative, and for
flouroquinolone was positive, but none of these differences were statistically significant.
Class-specific antibacterial exposure vs. other-antibacterial exposure
When assessing class-specific antibacterial drug exposure vs. other antibacterial
exposure, point estimates of the risk difference for severe adverse events for beta lactams was
negative, and for macrolides and flouroquinolones was positive, but again, none of these

estimates were statistically significant (Table 17).

Table 17. Regression Results by Antibacterial Drug Class: Severe Adverse Events

Severe Adverse Events Per 100,00 visits
Grouped encounters Risk difference for antibacterial drug use
Point estimate | 95% c.i. | p-value

All antibacterial drugs
Antibacterial drug use vs. none -1.42 -4.75 to +1.91 0.403
Ungrouped -1.42 -4.75 to +1.91 0.403

Specific antibacterial class vs. none
Beta-lactams -1.70 -5.15t0 +1.76 0.335
Macrolides -0.10 -6.29 to +6.09 0.975
Flouroquinolones +1.43 -16.21 to +19.06 0.874
Specific antibacterial class vs. other antibacterial class
Beta lactams -1.35 -5.59 to +2.88 0.531
Macrolides +2.10 -3.34 to +7.53 0.450
Flouroquinolones +10.39 -6.15 to +26.92 0.218
Deaths

Deaths within 14 days of encounters were rare, with a mean incidence rate of 87.9 per
100,000 encounters. The unadjusted rate was 70.66 per 100,000 encounters with antibacterial
drug exposure and 120.61 deaths per 100,000 acute nonspecific respiratory infection encounters
without antibacterial exposure. There were 102 practices with zero death outcomes within 14
days of grouped visits, and 46, 32, 29, 19, 18, and 80 practices with 1,2,3,4,5, and >5 death

outcomes, respectively.
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Using practice as the panel variable, the unadjusted conditional fixed-effects within-

practice estimate for the risk difference for death for patients exposed vs. those unexposed to
antibacterial drug was -0.0006239 (95% c.i. -0.0007302 to -0.0005175, p<0.001); this unadjusted
result implies that antibacterial drugs decrease the risk of death by 62.39 per 100,000 visits.

The variables found to be confounders when considered individually analysis (age as a
five-knot spline, number of co-morbidities, and the number of different classes of drugs used) and
centered year were retained for consideration in the multivariable model. Adjusting for age and
the number of comorbidies and different types of drugs used in the previous year, the risk
difference was -84.26 (95% c.i. -95.00 to -73.53, p<0.001, comparing antibacterial exposed vs.
unexposed visits (Table 16,18). Eliminating visit grouping, results were the same, an estimated
risk difference of -84.26 per 100,000 visits (95% c.i. 95.0 to -73.53, p<0.001). Results at 30 days,
similar to adverse event results, were away from the null at -99.70 per 100,000 visits (95% c.i. -
113.93 to -85.47, p<0.001). In propensity score analysis, risk difference for death, stratified by
propensity score category, was -92.52 (-104.01 to -81.03, p<0.001), comparing antibacterial

exposed vs. unexposed visits.

Discussion

Antibacterial drug use is very common, and patients sometimes experience severe
adverse events that are temporally related to taking these medications. Certain adverse events,
particularly the conditions included in this study, are often believed to have a causal relationship
with patients’ antibacterial drug use; most of these associations have been established using
case reports, but case reports of adverse events do not include an unexposed comparison group,
and are thus ill-suited for establishing a causal association.

Approximately half of patients with primary care visits for acute nonspecific respiratory
tract infections receive treatment with antibacterial drugs. In this study, we compared the risk of a
severe adverse event or death for antibacterial exposed vs. unexposed patients who were similar
otherwise in that they experienced a primary care visit for nonspecific respiratory tract infection.
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Methods outlined in Chapter 5 were used to model our extremely rare outcome, and help control

for clustering and confounding by practice and confounding by indication. In addition, sensitivity
analyses explored how robust our results were to our primary model assumptions. We also
explored some secondary and exploratory outcomes of interest.

Patients with acute nonspecific respiratory infections treated with antibacterial drugs were
not at increased risk of severe adverse events, with a point estimate for the risk difference of -
1.42 per 100,000 visits with a confidence interval that included zero.

The results were robust to eliminating the visit grouping. Extending the exposure window
from 14 to 30 days after the index visit moved both the adverse event and death estimates
somewhat away from the null, most likely from including more events less related to the index
visit, and more related to patients’ underlying condition, but did not alter the general conclusions.

Results using a propensity score analysis were slightly farther from the null, in the
direction of protection against adverse events, although still did not reach statistical significance.
In theory, the propensity score is well suited to increase our power to show a risk difference, with
our rare outcome and common exposure, However, many practices had to be dropped from the
our propensity score analysis because the propensity score models would not converge, due to
covariate imbalance. There is reason to believe that practices with missing propensity scores
may be different in systematic ways from practices with more covariate balance between
exposure groups. Further information was lost when some continuous variables needed to be
dichotomized to reach propensity score convergence. For these reasons, the model without the
propensity score most likely provided less biased estimates than the propensity score model.

Antibacterial drug class-specific analyses were limited by sparse data and multiple
comparisons. When compared to no antibacterial drug use, none of the antibacterial classes

seemed to definitively increase the risk of an adverse event. As we were underpowered to

assess these subgroup effects, while our composite result provides overall reassurance about
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the safety of these drugs in this setting, it does not eliminate very small increased risk for

specific outcomes due to specific drug classes.

Considering less severe adverse events, those resulting in a subsequent primary care
visit within the 14-day exposure window, but not resulting in hospitalization, there was an
apparent increased risk of less severe events with antibacterial drug exposure of +55.58 per
100,000 visits. Given that this effect was not seen with the severe events, it is possible that this
result is secondary to misclassification, in that minor adverse events after antibacterial exposure
might be more likely to be reported and recorded than similar events without antibacterial
exposure, while hospitalizations are more likely to be reported and recorded whether or not the
patient is on antibacterial drug treatment. This is the reason we chose the much rarer but more
specific severe event category for our primary outcome, and our results seem to support this
choice. Alternative possibilities are that antibacterial drugs increase the risk of minor but not
severe adverse events, and/or that our hospital admission outcomes suffer from additional
misclassification and/or bias compared with the outpatient outcomes.

If a systematic difference was shown in the risk of a known, control outcome, such as
hospitalization for automobile crashes, between antibacterial drug-exposed and —unexposed
patients, this would not plausibly be an effect of exposure and would be evidence of a hidden bias
due to unmeasured confounding.[21] In this study, patients with antibacterial drug exposure were
not more likely than unexposed patients to be hospitalized with a diagnosis of motor vehicle
crash; this result is expected and reassuring that our methods yielded these expected results.
The two types of outcomes may not be directly comparable however. Our study did not address
the issue of disparities in health care access, which might differentially affect different outcomes,
for example automobile crash outcomes may be more or less likely to be related to patient
characteristics that could be correlated with access to health care. This is less likely to be an
issue in the U.K., with their National Health Service, than in the U.S.

The instrumental variable analysis seemed to look somewhat different from results from

the other models, closer to the null. However, as described in Chapter 5, the IV results really
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describe between-practice estimates of the risk difference, when our estimate of interest was the

within-practice risk differences.

Results from the crossover cohort study further support the null results of the primary
analysis, in that results are even closer to the null when antibacterial drug-exposed time is
compared to antibacterial-unexposed time within the same patient; this may reflect a true control
of some inter- patient confounding by indication. However crossover cohort methods are less
suitable for some outcomes, like deaths, where it’s difficult to find suitable control time.

Crossover cohort methods in this study are somewhat limited by the difficulty of using control time
sampled after the adverse event, Patient's comorbidities change with time, (usually they tend to
get sicker with time), and thus their indication for treatment tends to change with time in a positive
fashion. Because many studies, like this one, have difficulty making use of control time after the
case event (most phyisicns would be less likely to prescribe an antibacterial drug if the patient
has previously had a severe adverse event associated with one. thus, we still have to deal with
the possibility of within patient confounding by indication; despite having some temporal
information in our visit date variable, we were probably not completely able to deal with the fact

that our patients have different indications at different times.

Limitations:

Misclassification: Limitations of this study include that we were limited by the potential
inaccuracy of THIN data. For example, there may have been exposure misclassification
(antibacterial use with acute nonspecific respiratory infections). Drug prescriptions are generated
by data entry into the electronic medical record, and primary care general practitioners are
responsible for most medication prescribing, so capture of drug prescription information in THIN
is virtually 100%.[30, 31] However, some antibacterial drugs used to treat patients may be
missed, for example, telephoned prescriptions not associated with an coded visit, and some more
recent urgent care visits, would not be included in our data. Also, we have no data regarding
whether the prescriptions were filled or ingested. Our visit grouping classified the encounter as
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antibacterial drug-exposed if any of the visits within the included two-week window included an

antibacterial prescription , and thus may have misclassified in favor of antibacterial use, however
our results were virtually identical with ungrouped analysis.

We also need to consider outcome misclassification (adverse events after the visit). As
the outcome is entered after exposure, it is possible that there will be differential ascertainment of
outcome based on antibacterial drug exposure, for example, patients exposed to antibacterial
drugs who experience an adverse event may be more likely to come to medical attention than
unexposed patients. Differential ascertainment of outcome may be less likely for our primary
outcome of severe adverse events resulting in hospitalization than for less severe events,
however it is possible that adverse events may be more likely to be identified and diagnosed as
such for patients who are hospitalized. People who get admitted to the hospital for any reason
may be more likely than people who do not get admitted to receive an adverse event diagnosis. If
people who do not receive antibacterial drugs are more likely to be admitted to the hospital, they
may be more likely to receive a severe adverse event diagnosis; this would have biased our
results toward the null.

We addressed the specificity of our hospitalization diagnosis with the validation study
described in Chapter 4, which supported the validity of our hospitalization outcome, however we
did not address diagnosis sensitivity; some of our outcome diagnoses may have been missed,
however there is no reason to suspect that hospitalization diagnoses would be more or less likely
to be recorded in antibacterial drug-exposed vs. unexposed patients, as discussed above.

Confounding: Confounding, especially confounding by indication is another potential
limitation of this study. We addressed measured confounders using the methods described
above; a strong instrumental variable would have been helpful to address unmeasured
confounders; future studies including validated data on prescriber within practice may be able to
further address this issue.

Generalizability: THIN data come from the U.K., however there is no reason to think that
individuals in the U.K. have different risks related to antibacterial drug exposure than individuals
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living elsewhere. Results from this study are not necessarily be generalizable to patients with

illnesses other than acute nonspecific respiratory infections, other types of hospitalization
outcomes than those specifically measured here, or in other very different populations, for
example, for children.

In conclusion, case reports of adverse events temporally associated with antibacterial
drug use have traditionally been used as evidence of a causal relationship between use of that
drug and the adverse event. This anecdotal evidence does not provide strong support for a
causal association, in particular because such analyses lack a control group and do not control
for confounding by indication, the fact that patients who are more likely to be at baseline risk of
adverse event are also more likely to be prescribed the medication in question. This very large
study included a control group of similar patients without antibacterial drug exposure, and took
advantage of linked clinical and demographic data to minimize confounding by indication, and
analytic techniques to minimize confounding by practice. Patients with acute nonspecific
respiratory tract infection treated with antibacterial drugs were not at increased risk of severe
adverse event or death within 14 days of exposure compared with antibacterial-unexposed
patients. Adverse event reporting without data on unexposed patients may not reflect a true
causal relationship between the drug and the adverse event. While there are other compelling
reasons to not treat patients with acute nonspecific respiratory infections with antibacterial drugs
(e.g., drug costs, contribution to emerging drug resistance), the use of antibacterial drugs in these

settings is not associated with increased risk of serious adverse drug events.
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Chapter 7. Outcomes II: Potential Benefits of Antibacterial Drug Use: Pneumonia

hospitalization outcomes after acute nonspecific respiratory infection; assessing the
influence of antibacterial drug treatment

Every individual in the U.S. is prescribed a short-term course of systemic antibacterial
drugs once every three years to almost twice per year, on average, resulting from a visit to an
ambulatory health care provider.[1-6] Acute respiratory tract infections account for approximately
10% of the 6.2 billion annual U.S. outpatient visits.[4] Approximately half of these diagnoses are
for acute nonspecific respiratory tract infections. Unlike conditions with a defined presumed
bacterial focus, such as pneumonia, bacterial sinusitis, and acute exacerbations of chronic
bronchitis, for which antibacterial drugs have demonstrated benefit, multiple randomized clinical
trials have failed to demonstrate a clear benefit from the use of antibacterial drugs to treat acute
nonspecific respiratory infections, such as nasopharyngitis, acute bronchitis, and acute rhinitis,
usually of viral etiology.[4, 7]

In Chapter 6, we showed that serious risks related to antibacterial drug use for
acute nonspecific respiratory infections are very low; in this chapter, we explore potential benefits
of antibacterial drug use. Numerous practice guidelines[8-12] recommend against antibacterial
drug treatment of acute nonspecific respiratory infections, but antibacterials are often prescribed;
adults at about half of U.S. office visits for acute nonspecific respiratory infections receive
antibacterial prescriptions.[3, 4, 13] Many of the randomized clinical trials that failed to measure a
significant benefit to antibacterial drugs for acute nonspecific respiratory infections were relatively
small and potentially underpowered to detect small but clinically significant benefits. [7, 9, 14, 15]
These benefits could include faster disease resolution or prevention of progression to more
serious bacterial infections. Given the large number of acute nonspecific respiratory infections
per year, even a small relative benefit might translate into a large public health effect.

The objective of this study is to compare the risk of a hospitalization for pneumonia
between THIN patients prescribed antibacterial drugs vs. the risk for those not prescribed
antibacterial drugs, conditional on a primary care visit for acute nonspecific respiratory infection.
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Our hypothesis is that patients with acute nonspecific respiratory infections with exposure to

antibacterial drugs have a decreased risk of pneumonia hospitalizations compared with
antibacterial-unexposed patients with acute nonspecific respiratory infection. We used methods
discussed in Chapters 5 and 6 to address analytic issues related to rare outcomes, clustering and

confounding by practice, and confounding by indication.

Methods

The data source for this retrospective cohort study was again the September 2007
dataset from The Health Improvement Network (THIN). We used the same cohort of adult THIN
primary care visits for acute nonspecific respiratory infection used for the study of adverse events
described in Chapter 6. Because data from multiple visits within the same iliness episode may
tend to be highly correlated, visits were again grouped if they occurred within a two-week period;
grouped visits were defined as encounters. For sensitivity analysis, we eliminated the visit
grouping.

Exposure: Exposure of interest was antibacterial drug prescription within one day of the
index visit for acute nonspecific respiratory infection; antibacterials of interest included oral
antibacterials typically used for respiratory infections. We excluded topical, vaginal,
ophthalmologic, otic, and parenteral antibacterials, and those typically used for tuberculosis,
fungal and parasitic infections. Primary exposure window was within 14 days of the index
encounter as most antibacterial exposure associated with treatment of acute nonspecific
respiratory infection is completed within 15 days (Figure 13).[16]

Outcome: The primary outcome for this study was hospitalization for pneumonia
within a 0-15 day window following the index encounter for acute nonspecific respiratory infection,
defined using Read diagnostic codes for pneumonia (Table 21) and THIN hospitalization Source
codes (Bhullar, H, personal communication March 1, 2007). We previously showed that these
same THIN pneumonia and hospitalization codes had a good positive predictive value for
identifying valid hospitalizations for pneumonia, (Chapter 4), and that, of the identified
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hospitalizations, almost all (>96%) were identified within two weeks after the acute index visit. In

sensitivity analysis , we extended the window out to 30-days exposures to address how robust
our results are to misclassification of hospitalization dates. We also modeled admission between
2 and 15 days after the index encounter, to see how robust our results were to eliminating
relatively immediate hospitalizations occurring within one day of the visit for acute nonspecific
respiratory infection, which may be more related to the patient’s original condition than to the
physician’s antibacterial drug treatment decision. Also, for comparison, we modeled hospital
admissions in general for all diagnoses other than the severe adverse event diagnoses

considered in Chapter 6.

Table 18. Pneumonia Diagnostic Codes

THIN Read Code Description

Mycoplasma pneumoniae [PPLO] cause/dis classifd/oth chaptr

Klebsiella pneumoniae/cause/disease classifd/oth chapters

[X]Mycoplasma pneumoniae [PPLO]cause/dis classifd/oth chaptr

Acute bronchitis due to mycoplasma pneumonia

Pneumonia and influenza

Viral pneumonia

Pneumonia due to adenovirus

Pneumonia due to respiratory syncytial virus

Pneumonia due to parainfluenza virus

Viral pneumonia NEC

Viral pneumonia NOS

Lobar (pneumococcal) pneumonia

Other bacterial pneumonia

Pneumonia due to haemophilus influenza

Pneumonia due to haemophilus influenza

Pneumonia due to streptococcus

Pneumonia due to streptococcus, group B

Pneumonia due to staphylococcus

Pneumonia due to other specified bacteria

Pneumonia due to other aerobic gram-negative bacteria

120



Chapter 7

Pneumonia due to bacteria NOS

Bacterial pneumonia NOS

Pneumonia due to other specified organisms

Pneumonia due to mycoplasma pneumonia

Pneumonia due to pleuropneumonia like organisms

Chlamydial pneumonia

Pneumonia due to specified organism NOS

Pneumonia with infectious diseases EC

Pneumonia with whooping cough

Pneumonia with pertussis

Pneumonia with other infectious diseases EC

Pneumonia with varicella

Pneumonia with other infectious diseases EC NOS

Pneumonia with infectious diseases EC NOS

Bronchopneumonia due to unspecified organism

Pneumonia due to unspecified organism

Lobar pneumonia due to unspecified organism

Basal pneumonia due to unspecified organism

Postoperative pneumonia

Influenza with pneumonia

Influenza with bronchopneumonia

Influenza with pneumonia, influenza virus identified

Influenza with pneumonia NOS

Atypical pneumonia

Other specified pneumonia or influenza

Pneumonia or influenza NOS

Aspiration pneumonia due to vomit

Abscess of lung with pneumonia

Bronchiolitis obliterans organising pneumonia

Interstitial pneumonia

Other viral pneumonia

Pneumonia due to other aerobic gram-negative bacteria

Other bacterial pneumonia

Pneumonia due to other specified infectious organisms

Pneumonia in bacterial diseases classified elsewhere

Pneumonia in viral diseases classified elsewhere
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Pneumonia in other diseases classified elsewhere

Other pneumonia, organism unspecified

Other aspiration pneumonia as a complication of care

Covariates: Covariates included patient age at visit, sex, and visit year. Although it would
have been ideal to include them in the analysis, THIN does not include direct measures of
patients’ socioeconomic, racial and ethnic characteristics. THIN does include other variables
based on the patient’s post code that were used as proxies of these characteristics; these
variables include the Townsend score, a five-quintile measure of neighborhood deprivation, and a
five-quintile variable describing the proportion of the patient’s neighborhood who define
themselves as “Black” or “Black British.”. As above for the severe adverse event outcome
(Chapter 6) .considering what clinical data might be relevant from a clinical aspect to help predict
indication for antibacterial treatment of acute nonspecific respiratory infections, we also included
alternative summary measures of the intensity of medical care use, including including the
number of THIN recorded co-morbidities, with co-morbiditites grouped into the categories shown
in Chapter 5, Table 4 (Lewis, JD,unpublished data),[17] and the number of different classes of
medications that the patient was prescribed[17, 18] and the number of THIN visits recorded for
that patient within the year prior to the patient’s index encounter.

Analysis: We calculated descriptive statistics for exposures and outcomes separately.
For the primary multivariable analysis our previous studies, above, showed that antibacterial drug
prescribing was profoundly unbalanced between practices, and that there was enormous
confounding by practice in the relationship between our rare outcome and antibacterial exposure,
that practice level covariable data were limited, and covariable adjustment was unlikely to be able
to adjust for this confounding by practice. Thus, to obtain unbiased estimates for our outcome of
interest, hospitalization for any pneumonia diagnosis, our models needed to condition on practice,
and our models used practice as the grouping variable; Confounding by patient was more likely to
be well-controlled using available patient-level covariates. For consistency and comparison with

the other studies described above, and to control for clustering and confounding by practice, and
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to provide within-practice risk difference estimates, we performed fixed effects conditional linear

regression using Stata’s xtreg function, described in further detail in Chapter 5.

Model covariates were included using the two-step process described in Chapter 6. First,
we initially included all covariates that were associated with the outcome, conditional on the
exposure of interest. Then, we retained each covariate in the final model if removing it caused a
change of >=10% in the risk difference for antibacterial drug use.

For sensitivity analysis, we eliminated the visit grouping, and examined results at
30 days, as described above. As described above, we also modeled admission between 2 and
15 days after the index encounter for acute nonspecific respiratory infection, to see how robust
our results were to eliminating relatively early hospitalizations within one day of the encounter.

We also explore the possibility that bronchitis encounters might behave differently than
acute nonspecific respiratory infections with comparatively more upper respiratory symptoms,
modeling pneumonia hospitalization outcomes in two additional ways, first eliminating encounters
with a bronchitis acute nonspecific respiratory infection diagnosis, and second, including only
encounters with a bronchitis diagnosis.

Power
Power calculations were performed conservatively, using Stata version 10.1, StataCorp LP. Asin
Chapter 6, we estimated a cohort of 3.5 million ARI visits In the U.S., 61.8% of adults diagnosed
with acute nonspecific respiratory infection in the outpatient setting are prescribed antibacterial
drugs,[3] and our power calculations conservatively assumed that the U.K. antibacterial prescribing
rate could be only 2 of the U.S., or 30.9% of index encounters.

With these assumptions, with visits clustered by practice, assuming a mean of 10,700
visits per practice, with an intracluster correlation coefficient (ICC) of 0.15, using the U.S.
antibacterial drug prescribing rate, a conservative alpha of 0.025, allowing for covariate
adjustment, and a baseline pneumonia rate without antibacterials of 0.017, or 17 in 1000 visits,
we would have 90% power to detect a risk difference of 0.0017, or a relative risk of 0.90
comparing antibacterial drug exposed vs. exposed visits, and we would have 80% power to
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detect this risk difference with a ICC as high as 0.2. With only half the U.S. antibacterial drug

prescribing rate for ARIs, or 30.9%, we would have 90% power to detect this risk difference with
an ICC of 0.15, and 80% power to detect this risk difference with an ICC as high as 0.20. A study
by Petersen et.al. showed that the risk of an outpatient consultation for ‘chest infection’ during the
month after an outpatient consultation for upper respiratory infection was 17 per 1000 in those not
treated with antibacterial drugs and 11 per 1000 in those treated with antibacterials, giving a risk
difference of 6 in 1000 visits, or a 35% decrease in risk.[19] These results indicate that we would
have the power to detect any expected, and certainly any clinically significant change in

pneumonia risk associated with antibacterial drug exposure.

Results

Description of the cohort

Visits

The cohort was described in greater detail in Chapter 6; it contained 1,646,229 total visits
and 1,531,019 grouped acute nonspecific respiratory infection encounters by 814283 patients in
326 practices. 361,553 of these encounters were for bronchitis diagnoses.
Antibacterial drugs

Overall, patients at 65.4% of encounters for acute nonspecific respiratory infections
received antibacterial drug prescriptions. As expected, antibacterial drug prescribing varied
widely between practices, from a low of 3.1% to a high of 94.7% of grouped visits receiving
antibacterial prescriptions (Chapter 5, Figure 8). As described in more detail in Chapters 5 and 6,
this extreme unbalance of antibacterial drug prescribing across practices provided strong
evidence that analytic methods needed to adjust for clustering and confounding by practice.

For the 361,553 encounters with bronchitis acute nonspecific respiratory infection
diagnoses from all 326 practices, 303,631 (84.0%) received antibacterial drugs.

Covariates
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In general, as described in Chapter 6, subjects with encounters where antibacterial drugs

were prescribed generally had more pre-existing health conditions (Table 12).
Pneumonia Outcomes

There were 296 pneumonia hospitalizations within 15 days of encounters for
acute nonspecific respiratory infections, 180 in patients who received antibacterial drugs and 116
in patients without antibacterial exposure. The unadjusted mean incidence rate of pneumonia
hospitalization was 0.0001933, or 19.33 per 100,000 encounters; 21.93 in patients without
antibacterial drug exposure, and 17.96 in patients with antibacterial exposure, giving a crude risk
difference of 3.97 per 100,000 encounters and relative risk of 0.82. There were 211 practices
with zero pneumonia hospitalizations within 15 days of index encounters for acute nonspecific
respiratory infections.

Using conditional fixed effects linear regression, with practice as the grouping variable,
the unadjusted within-practice risk difference was a protective effect of antibacterial drug use of -
4.53 per 100,000 encounters for antibacterial exposed vs. unexposed encounters. The final
model adjusted for age, year, the number of comorbidities and, and the number of different
classes of drugs used by the patient within the year prior to the index ARI encounter; there was a
risk difference of -8.16 per 100,000 encounters (-13.24 to -3.08, p=0.002), comparing
antibacterial-exposed to antibacterial unexposed encounters.

Results from ungrouped analysis were unchanged. There were 396 pneumonia
hospitalizations at 30 days after the index encounter for acute nonspecific respiratory infection,
248 after receiving antibacterial drugs and 148 without antibacterials. Using the conditional fixed
effects linear regression model, adjusted for the same covariates, age, year, number of
comorbidities and number of drugs used in the previous year, the protective effect of antibacterial
drug use was 14.6% farther from the null, with a risk difference of -9.35 per 100,000 encounters

for antibacterial exposed vs. unexposed encounters (95% c.i. -15.22 to -3.47, p=0.002).
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Results with the 2-15 day window yielded a risk difference of -4.38 pneumonia

hospitalizations per 100,000 visits (-9.08 to +0.331, p=0.068), comparing antibiotic exposed vs.
unexposed encounters

Eliminating the 361,553 patients with bronchitis, the risk difference for antibacterial drug-
exposed vs. unexposed encounters was farther away from the null, at -9.01 per 100,000
encounters (-13.43 to -4.58, p<0.001). Considering only the 361,553 bronchitis encounters, the
within-practice risk difference for pneumonia admission at 15 days was -37.26 per 100,000
encounters (-59.71 to -14.81 per 100,000 encounters, p=0.001).

Hospitalization for other diagnoses:

We also modeled hospitalizations in general for all diagnoses, to consider outcomes not
thought to be related to antibacterial drugs. The risk difference for hospitalization with any
diagnosis other than the previously-described severe adverse events (hypersensitivity, diarrhea,
hepatic toxicity, renal toxicity, arrhythmia, or seizure), describing antibacterial-exposed vs. —
unexposed encounters, was -202 per 100,000 visits (-227 to -176, p<0.001)

Discussion

Antibacterial drugs are often prescribed for acute nonspecific respiratory infections, over
half of patients at U.S. visits for acute nonspecific respiratory infections receive antibacterial drug
prescriptions,[3] despite numerous practice guidelines[9-12] and public health campaigns[20-22]
urging otherwise. Individual decisions regarding antibacterial prescribing are made, not at the
public policy level, but at the level of each individual physician-patient relationship, where patient-
level risk/benefit considerations are likely to take precedence over societal considerations.[23]

By limiting our comparison of pneumonia hospitalizations to patients with acute
nonspecific respiratory infection visits, we simulated a randomized clinical trial by promoting
comparability between exposed and unexposed patients. We addressed remaining confounding
by practice, and confounding by indication with the analytic techniques explored in Chapter 6.

We found that the crude risk of pneumonia hospitalization after a visit for acute
nonspecific respiratory infection was small, at 19.33 per 100,000 visits. The adjusted within-
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practice risk difference, comparing antibacterial exposed vs. unexposed visits of -4.53 per

100,000 visits was of larger magnitude than that for avoiding severe adverse events( -1.42 per
100,000 visits, p=0.40). This corresponds to a number needed to treat of 22,075 to prevent one
hospital admission for community acquired pneumonia Results were robust to eliminating our
visit grouping and to extending the window of exposure. The risk difference was attenuated
toward the null when not considering pneumonia hospitalizations during the first day after the
acute nonspecific respiratory infection encounter. This could potentially reflect that antibacterial
drugs would have their greatest effect on the acute exacerbation of a rapidly evolving bacterial
illness.

Although practice guidelines recommend that antibacterial drugs not be prescribed for
both acute nonspecific upper respiratory infections,[7, 9, 10, 24, 25] and bronchitis illnesses,[26]
some clinicians may treat patients with predominantly upper respiratory symptoms differently than
patients with predominant cough symptoms. The similar findings when bronchitis visits were
eliminated was reassuring. The protective effect of antibacterial drugs for patients with bronchitis
diagnoses was further from the null; this deserves further study.

Patients given antibacterial drugs were at significantly lower risk of being hospitalized
with any other diagnosis. Speculating on the reasons for this unexpected result, confounding by
indication does not adequately explain it, unless patients given antibacterials were likely to be
healthier such that antibacterials were selectively given to healthier patients and selectively
withheld from patients with more baseline health problems, which doesn’t make clinical sense. It
is possible that there is an underlying reason for this result other than bias; for example
antibacterial drugs could be protective due to their anti-inflammatory effect, or their effect on
bacterial colonization. Further studies are needed to explore the reasons behind this outcome.

Ecologic studies from the U.S. and the U.K. have examined the relationship between
antibacterial drug use and hospital admissions. Majeed et. al. used U.K. National Health Service
primary care prescribing data and hospital admission data to show that, between 1996 and 2002,
the overall antibacterial drug prescribing rate decreased by 23%, while hospital admissions for
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respiratory tract infections increased by 15%.[27] Mainous et. al. used U.S. population-based

survey data to conclude that trends in decreasing antibacterial drug prescribing for acute
bronchitis and cough illnesses between 1996 and 2003 were associated with increasing
hospitalizations for respiratory infections during that same time period.[28] Petersen
et.al.,performed a cohort study more similar to ours, using another U.K. primary care electronic
medical record database, the General Practice Research Database (GPRD) to look at
hospitalization for pneumonia within one month of outpatient treatment for “upper respiratory tract
infection” and “chest infection.”[19] They found an odds ratiofor “chest infection” in the month
after a visit for upper respiratory infection of 0.64 for patients treated vs. those untreated with
antibacterial drugs. They found that the risk of pneumonia within one month of chest infection
was high, and substantially reduced by initial antibacterial drug treatment, with odds ratios
comparing treated to untreated visits ranging from 0.22 to 0.35, depending on patient age.
However, bronchitis codes were included among the codes used to identify “chest infections”, and
“bronchopneumonia” codes were included among codes used to identify pneumonia outcomes,
and hospitalization status was not specified, so it is difficult to directly compare their results to
those of our study. A key issue relates to misclassification of diagnosis at the initial visit; if early
bacterial pneumonia is misclassified as chest infection or bronchitis, the absence of antibacterial
drug treatment is more likely to be associated with failure to improve and an increased risk of
hospitalization for pneumonia.

Limitations:

Misclassification: Limitations of this study are similar to those in Chapter 6, and include
that we were limited by the potential inaccuracy of THIN data. For example, there may have
been exposure misclassification (antibacterial use with acute nonspecific respiratory infections).
Drug prescriptions are generated by data entry into the electronic medical record, and primary
care general practitioners are responsible for most medication prescribing, so capture of drug
prescription information in THIN is virtually 100%.[29, 30] However, some antibacterial drugs
used to treat patients may be missed, for example, telephoned prescriptions not associated with
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an coded visit, and some more recent urgent care visits, would not be included in our data. Also,

we have no data regarding whether the prescriptions were filled or ingested. As with the previous
study, our visit grouping classified the encounter as antibacterial drug-exposed if any of the visits
within the included two-week window included an antibacterial prescription; this may have
misclassified in favor of antibacterial use, and thus may have caused differential misclassification
of exposure, however our results were virtually identical with ungrouped analysis. We also need
to consider outcome misclassification (adverse events after the visit), however we demonstrated
in Chapter 4 that pneumonia and hospitalization codes had good specificity for identifying
pneumonia hospitalizations in THIN. Even so, there could have been differential ascertainment of
outcome such that pneumonias may have been more likely to be identified and diagnosed as
such for patients who are hospitalized; and our finding that patients have increased risk of
admission for any diagnosis after antibacterial use for acute nonspecific respiratory infections is
pertinent here, however this should not have been related to antibacterial drug exposure and
would have tended to bias our results toward the null. However, if the decisison to admit for
pneumonia treatment was more likely if the patient had not been previously prescribed antibiotics,
this could have biased our results away from the null. From a clinical standpoint, it might be just
as likely that a history of previously not receiving antibiotics would have instead triggered an
outpatient antibiotic prescription instead of a hospital admission.

Another relevant area of potential misclassification is that of visit diagnosis
misclassification. It is unclear why physicians code for nonspecific respiratory illnesses despite
their decision to treat with antibacterial drugs. Physicians seem to persistently prescribe
antibacterials while coding for nonspecific acute respiratory infection diagnoses (nasopharyngitis,
acute bronchitis, acute rhinitis), supporting the apparent purposeful classification of these
illnesses as nonspecific vs. coding instead for diagnoses implying a focal bacterial source, such
as acute sinusitis, pneumonia, etc. which would better support their decision for antibacterial drug
treatment.. However, perhaps some of the THIN coded acute nonspecific respiratory tract
infections were really ilinesses with an apparent bacterial focus. To the extent that this
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misclassification was non-differential, it would have biased our results toward the null. If

misclassification was differential, if conditions coded as acute nonspecific bacterial infections with
bacterial focus were more likely to be prescribed antibacterial drugs than similarly-coded illnesses
without a bacterial focus, this would have biased our results toward the null, in that patients given
antibacterial drugs may have been more likely, and certainly not less likely, to end up hospitalized
with bacterial illness. It would be less plausible that patients with an apparent bacterial focus
would be less likely to be prescribed antibacterial drugs than patients without a bacterial focus.

Confounding: Similar to Chapter 6, confounding, especially confounding by indication is
another potential limitation of this study. We addressed measured confounders using the
methods described above.; If patients prescribed antibacterial drugs were sicker, as indicated by
unmeasured counfounders not included in this study but considered by treating physicians, the
sicker patients receiving antibacterial drugs would have been more likely to experience
subsequent pneumonia hospitalizations, the opposite result to that found in our study..A strong
instrumental variable would have been helpful to address unmeasured confounders; future
studies including validated data on prescriber within practice may be able to further address this
issue.

Generalizability: THIN data come from the U.K., however there is no reason to think that
individuals in the U.K. have different risks related to antibacterial drug exposure than individuals
living elsewhere. Results from this study are not necessarily be generalizable to patients with
illnesses other than acute nonspecific respiratory infections, other types of hospitalization
outcomes than those specifically measured here, or in other very different populations, for
example, for children.

In conclusion, patients with acute nonspecific respiratory infections with exposure to
antibacterial drugs do seem to have a small decreased risk of pneumonia hospitalizations
compared with antibacterial-unexposed patients with acute nonspecific respiratory infections. At
the societal level, we are very interested in eliminating unnecessary antibacterial drug prescribing
to help slow the spread of antibacterial resistance, and the need to treat 22,000 patients with
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antibiotics to avoid one hospital admission might seem excessive. At the level of the physician-

patient encounter, we are most interested in providing the treatment that will best balance
benefits and risks for that particular patient; the apparent best decision at the patient level is not
always the ideal decision at the societal level. Even with a very small likelihood of patient benefit
from antibacterial drug use, given how common acute nonspecific respiratory infections and
antibacterial drug treatment are in our society, this dilemma creates an enormous challenge. One
solution is to create more practice guidelines, and continue to educate physicians and the public
regarding more responsible antibacterial drug use, from a societal perspective. Another solution,
not mutually exclusive, is to continue to develop win-win solutions, so the interests of the
individual patient and society can be served together.[31] For example, improvement of point of
service rapid diagnostic techniques and biochemical markers of disease severity[32] can help us
target antibacterial drugs to those patients most likely to benefit These services are quite costly,
however scaling up their use would decrease marginal costs considerably, and, from a societal
standpoint, this investment in decreasing antibacterial drug use may be considered cost effective.

Expanding the use of influenza vaccine would also be helpful in this regard.
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Chapter 8. Conclusions/ Future Directions

To help slow the development of resistance to antibacterial drug, physicians are urged to
decrease unnecessary antibacterial use, but their patients are increasingly elderly and vulnerable,
making treatment decisions seem more complex than addressed by current treatment guidelines.
Antibacterial drug prescribing decisions are made within the context of the physician-patient
encounter, where the perceived benefit/risk ratio for that patient’s present condition is likely to
take top priority over other competing interests. It is important to have a comprehensive
understanding of the pertinent patient-specific benefits and risks related to this class of
medication to which the U.S. public has virtually universal exposure. The move toward
increasingly more personalized medicine calls for a more sophisticated understanding of how to
use patient- and environmental characteristics to help target antibacterial drug treatment to those
most likely to benefit.

Most information on adverse events associated with antibacterial drug use come from
spontaneous reports, which suffer from under- and to a lesser extent, over-reporting of events. .
Without an unexposed control group, it is impossible to know the real risks for treated relative to
untreated patients, however large prospective randomized studies are not feasible for every
research question. Large observational electronic medical record databases contain longitudinal
data regarding drug utilization from a real-world setting, linked to covariates and outcomes.
Improving methods to utilize these rich but complex data might help us learn how to better
address antibacterial drug misuse and overuse at the individual level.

We used a subset of the entire THIN cohort with an office visit for acute nonspecific
respiratory infection, to consider antibacterial drug prescribing for acute nonspecific respiratory
infections and compare outcomes of antibacterial-exposed and antibacterial-unexposed patients.

We found that antibacterial drug prescribing for acute nonspecific respiratory infections
decreased over the study period in the U.K., but, in contrast to antibacterial drug use in the U.S.,

broad spectrum antibacterial prescribing remained quite low, and even most recently, appeared
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to be decreasing. More data are needed regarding whether decreasing use may be affecting

patient outcomes and trends in antimicrobial resistance.

We found that THIN hospitalization codes performed well in identifying the timing of
hospitalization events of interest. This work supports observational THIN studies regarding
additional medication use outcomes, especially outcomes related to acute conditions and acute
exposures to antibacterial drugs as well as other medications.

By limiting our comparison of outcomes to antibacterial drug exposed vs. unexposed
patients with visits for acute nonspecific respiratory infections, we promoted comparability
between exposed and unexposed patients in the cohort. To further control for confounding by
indication and confounding by practice, we explored methods to assure that the antibacterial -
exposed and -unexposed groups were as comparable as possible. The rarity of our outcome
presented an additional analytic challenge.

We showed that conditional fixed effects linear regression provided stable estimates of
common exposure treatment effects on rare outcomes. Results using these models were quite
similar to results obtained using more traditional methods for binary outcomes, but could utilize all
available information, even from groups with zero events. However, comparing the risk of very rare
events between quite unbalanced groups presents real challenges to power, even with very large
datasets. Additionally, if power estimations for observational studies of rare events ignore potential
baseline variability between groups, and potential confounding covariates, results could be quite
biased and power estimates may be grossly inflated.

In our cohort, patients with acute nonspecific respiratory tract infections treated with
antibacterial drug were not at increased risk of severe adverse events compared to antibacterial-
untreated patients. It is clear that adverse event reporting without data on unexposed patients
may not reflect a true causal relationship between the drug and the adverse event.

Patients with acute nonspecific respiratory infectionswith exposure to antibacterials had a
small decreased risk of pneumonia hospitalizations compared with antibacterial drug-unexposed
patients with acute nonspecific respiratory infections. At the societal level, we are very interested
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in eliminating unnecessary antibacterial drug prescribing to help slow the spread of antibacterial

resistance. At the level of the physician-patient encounter, we are most interested in providing
the treatment that will best balance benefits and risks for that particular patient; the apparent best
decision at the patient level is not always the ideal decision at the societal level. Even with a very
small likelihood of patient benefit from antibacterial drug use, given how common acute
nonspecific respiratory infections and antibacterial drug treatment are in our society, balancing
very small potential risks of benefit from antibacterial drug treatment of acute nonspecific
respiratory infections vs. societal benefits of reducing overall antibacterial drug use creates
persistent tension. Win-win solutions include expanding the use of influenza vaccination, and
improving point of service rapid diagnostic testing and biochemical markers of disease severity[1]
to help us target antibacterial drugs to those patients most likely to benefit.

Our work supports future observational studies regarding additional medication use
outcomes, especially rare outcomes related to acute conditions and acute exposures to
antibacterial drugs as well as other medications. Improving methods for utilizing observational

data will help us learn how to use the rich and growing electronic medical record data to their full

potential.
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Adverse Event Read Codes

THIN Read Code Description

Hypersensitivity

Dermatitis allergic

Skin allergic reaction

Dermatitis nummular

Erythema multiforme exudativum

Syndrome Stevens-Johnson

Toxic epidermal necrolysis

Acne cachecticorum (Hebra)

Oedema angioneurotic

Urticaria giant

Syndrome scalded skin

Allergy penicillin

Chloromycetin allergy

Allergy cephalosporin

Suphonamides allergy

Septrin allergy

Drug allergy

Reaction anaphylactic drug

Erythema due medicine ingested

Adverse reaction drug ingested

Allergy drug by mouth

Shock reaction anaphylactic

Medical care adverse effects

Antibodies anaphylactic present

Lyell?s disease

Epidermal necrolysis

Diarrhea

Diarrhoea

Diarrheoea cause not determined

Bloody diarrhoea

Hepatic toxicity

Hepatic function abnormal

Liver enzymes abnormal
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Liver function test abnormal

Necrosis massive hepatic acute

Acute hepatitis

Subacute massive hepatic necrosis

Hepatic coma

Hepatic failure

Liver disease

Hepatitis

Toxic hepatitis due drug sensitivity

Jaudice cholestatic

Jaundice drug induced

Serum jaundice

Renal toxicity

Nephritis acute

Membranous glomerulonephritis

Nephrosis

Nephritis

Glomerulonephitis antiglomerular basement membrane

Nephritis glomerulonephritis

Nephritis interstitial diffuse

Glomerulonephritis acute

Glomerulonephritis subacute

Mesangiocapillary glomerulonephritis

Glomerulonephritis membranous

Membranoproliferative glomerulonephritis

Proliferative glomerulonephritis

Rapidly progressive glomerulonephritis

Necrosis kidney acute tubular

Renal failure

Renal medullary necrosis

Renal papillary necrosis

Necrosis renal cortical bilateral

Uraemia

Cardiac arrhythmia

Cardiac arrest

Rhythm ventricular conduction aberrant
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Tachycardia paroxysmal

Arrhythmia ectopic

Ventricular fibrillation

Heartbeats ectopic

Ventricular ectopic beats

Heartbeat extrasystoles

Cardiac arrhythmia

Fibrillation/flutter

Ventricular flutter

Ventricular tachycardia paroxysmal

Premature heartbeats

Premature contractions heart

Premature beats junctional

Supraventricular ectopic beats

Seizure

Epilepsy nonconvulsive generalized

Petit mal

Grand mal epilepsy

Epilepsy convulsions

Idiopathic epilepsy

Convulsion

Seizure

Convulsion nonepileptic

Infantile spasm

Photodermatotosis

Dermatitis sunlight

Photosensitivity

Patient died

ENT drug side effect

Rep.presc. drug side effect

Dr stopped drugs - side effect

Drug declined by patient - side effects

Drug side effect - acceptable to patient

Adverse drug reaction notif

Yellow card drug react notif

Anaphylactoid purpura
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Phacoanaphylactic endophthalmitis

Upper respiratory tract hypersensitivity reaction NOS

Drug-induced interstitial lung disorders

Acute drug-induced interstitial lung disorders

Anaphylactoid glomerulonephritis

Ingestion dermatitis due to drugs

Generalized skin eruption due to drugs and medicaments

Localized skin eruption due to drugs and medicaments

Drug-induced erythroderma

Drug-induced pemphigus

Lichenoid drug reaction

Drug-induced androgenic alopecia

Drug induced urticaria

Drug-induced systemic lupus erythematosus

Systemic sclerosis induced by drugs and chemicals

Arthropathy due to hypersensitivity reaction

Newborn drug reaction and intoxication

Newborn drug reaction or intoxication NOS

Late effect of poison drug/medicament/biological substance

Drug poisoning

Overdose of drug

Poisoning by drug and biological substances

ENT drug poisoning

Ear nose and throat drug poisoning NEC

Other and unspecified drug and medicament poisoning

Other drug and medicament poisoning OS

Other drug and medicament poisoning NOS

Drug and medicament poisoning NOS

Drug medicament or biological substance poisoning NOS

Adverse drug reaction NOS

Drug idiosyncrasy NOS

Allergic reaction

Unspecified adverse effect of drug or medicament

Accidental poisoning by drugs medicines and biologicals

Accidental poisoning by other drugs

Accidental poisoning by other drugs OS
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Accidental poisoning by other drugs NOS

Accidental poisoning by unspecified drugs

Accidental poisoning by drugs NOS

Adverse reaction to antibiotics

Adverse reaction to natural penicillins

Adverse reaction to cloxacillin

Adverse reaction to flucloxacillin

Adverse reaction to amoxycillin

Adverse reaction to amoxicillin

Adverse reaction to ampicillin

Adverse reaction to bacampicillin

Adverse reaction to ciclacillin

Adverse reaction to mezlocillin

Adverse reaction to pivampicillin

Adverse reaction to talampicillin

Adverse reaction to azlocillin

Adverse reaction to carbenicillin

Adverse reaction to carfecillin sodium

Adverse reaction to piperacillin

Adverse reaction to ticarcillin

Adverse reaction to mecillinam

Adverse reaction to pivmecillinam

Adverse reaction to penicillin NOS

Adverse reaction to chloramphenicol group

Adverse reaction to thiamphenicol

Adverse reaction to chloramphenicol group NOS

Adverse reaction to erythromycin and other macrolides

Adverse reaction to erythromycin

Adverse reaction to oleandomycin

Adverse reaction to spiramycin

Adverse reaction to macrolide NOS

Adverse reaction to tetracycline group

Adverse reaction to tetracycline

Adverse reaction to chlortetracycline hydrochloride

Adverse reaction to clomocycline sodium

Adverse reaction to demeclocycline hydrochloride
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Adverse reaction to doxycycline

Adverse reaction to