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Adenovirus Specific T-Cell Responses in Humans Following Natural
Infection and Vaccination

Abstract
The adenovirus (Ad) vector is an attractive candidate for vaccines designed to elicit cellular immunity as
studies in animals and humans have proven Ad vectors are capable of inducing large transgene-specific T-cell
responses. However, given that natural infection by Ad is prevalent globally, pre-existing Ad immunity is a
major impediment to the use of recombinant Ad-based vaccines. Though the prevalence of pre-existing
neutralizing antibodies has been well characterized, there is a lack of information on the functionality and
phenotype of Ad-specific T-cell responses among heterogeneous human cohorts. The lack of protection and
possible increased risk of HIV infection in the Merck Ad5 HIV vaccine STEP trial further highlights the need
to understand vector-specific immunity in order to produce safe, effective Ad-based vaccines. We aimed to
characterize Ad-specific T-cell responses in humans following natural infection and vaccination. Ad-specific T-
cell responses were measured by stimulating peripheral blood mononuclear cells (PBMCs) with whole Ad
vector or overlapping Ad hexon peptide pools. PBMCs were obtained from 17 healthy adults to study natural
infection and longitudinally from 40 participants in Merck phase I Ad5 HIV vaccine studies, 10 of which were
enrolled in the STEP trial precursor study using the same vector, dosing, and schedule used for the STEP
study. T-cell phenotype and functionality were measured by polychromatic flow cytometry. We found that
both CD4+ and CD8+ Ad5-specific T-cells were universally present in subjects independent of their
serostatus. Ad5-specific CD8+ T-cells exhibited an effector phenotype and produced the effector functions
MIP1α and perforin whereas Ad5-specific CD4+ T-cells had an effector memory phenotype producing IL-2,
IFN-γ and TNFα. Ad5-specific T-cells recognized both conserved and variable hexon epitopes making them
highly cross-reactive with chimpanzee serotypes. Upon Ad5-based vaccination, Ad5-specific CD4+ T-cells
were only transiently expanded and there were no differences in activation or mucosal homing marker
expression between Ad5-seronegative and Ad5-seropositive subjects. These data suggest the increased risk of
HIV infection observed in the STEP trial was not a result of Ad5-specific CD4+ T-cells. Ad5-specific CD8+
T-cells were also transiently expanded by Ad5-based vaccination, however, there were no changes in
functionality. Together, these data suggest though pre-existing Ad-specific T-cells may reduce vaccine efficacy,
they should not represent a safety concern for the use of Ad-based vaccines.
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ABSTRACT  

  

ADENOVIRUS SPECIFIC T-CELL RESPONSES IN HUMANS 

FOLLOWING NATURAL INFECTION AND VACCINATION 

 

Natalie A. Hutnick 

Michael R. Betts 

  
The adenovirus (Ad) vector is an attractive candidate for vaccines 

designed to elicit cellular immunity as studies in animals and humans have 

proven Ad vectors are capable of inducing large transgene-specific  

T-cell responses. However, given that natural infection by Ad is prevalent 

globally, pre-existing Ad immunity is a major impediment to the use of 

recombinant Ad-based vaccines. Though the prevalence of pre-existing 

neutralizing antibodies has been well characterized, there is a lack of 

information on the functionality and phenotype of Ad-specific T-cell responses 

among heterogeneous human cohorts. The lack of protection and possible 

increased risk of HIV infection in the Merck Ad5 HIV vaccine STEP trial 

further highlights the need to understand vector-specific immunity in order to 

produce safe, effective Ad-based vaccines. We aimed to characterize Ad-

specific T-cell responses in humans following natural infection and 

vaccination. Ad-specific T-cell responses were measured by stimulating 

peripheral blood mononuclear cells (PBMCs) with whole Ad vector or 

overlapping Ad hexon peptide pools. PBMCs were obtained from 17 healthy 
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adults to study natural infection and longitudinally from 40 participants in 

Merck phase I Ad5 HIV vaccine studies, 10 of which were enrolled in the 

STEP trial precursor study using the same vector, dosing, and schedule used 

for the STEP study. T-cell phenotype and functionality were measured by 

polychromatic flow cytometry. We found that both CD4+ and CD8+ Ad5-

specific T-cells were universally present in subjects independent of their 

serostatus. Ad5-specific CD8+ T-cells exhibited an effector phenotype and 

produced the effector functions MIP1α and perforin whereas Ad5-specific 

CD4+ T-cells had an effector memory phenotype producing IL-2, IFN-γ and 

TNFα. Ad5-specific T-cells recognized both conserved and variable hexon 

epitopes making them highly cross-reactive with chimpanzee serotypes. Upon 

Ad5-based vaccination, Ad5-specific CD4+ T-cells were only transiently 

expanded and there were no differences in activation or mucosal homing 

marker expression between Ad5-seronegative and Ad5-seropositive subjects. 

These data suggest the increased risk of HIV infection observed in the STEP 

trial was not a result of Ad5-specific CD4+ T-cells. Ad5-specific CD8+ T-cells 

were also transiently expanded by Ad5-based vaccination, however, there 

were no changes in functionality. Together, these data suggest though pre-

existing Ad-specific T-cells may reduce vaccine efficacy, they should not 

represent a safety concern for the use of Ad-based vaccines.  

 



 iv 

Table of Contents 

ABSTRACT I 

CHAPTER 1: INTRODUCTION 9 

VACCINE HISTORY 1 
T-CELL BASED VACCINES 2 
ADENOVIRUS 6 
ADENOVIRUSES IN GENE THERAPY 13 
ADENOVIRUS VACCINES 14 
STEP TRIAL 16 
ALTERNATIVE SEROTYPE VACCINES 18 
ADENOVIRUS VECTOR DESIGN 10 
ADENOVIRUS IMMUNITY 19 
THESIS GOALS 26 

CHAPTER 2: MATERIALS AND METHODS 28 

SUBJECTS 28 
VECTOR 28 
NEUTRALIZING ANTIBODY TITER 29 
ANTIBODIES 29 
WHOLE VECTOR STIMULATION 30 
STAINING 31 
FLOW CYTOMETRY 34 
STATISTICS 35 
CFSE STAINING 36 

CHAPTER 3: ADENOVIRUS-SPECIFIC HUMAN T CELLS ARE 
PERVASIVE, POLYFUNCTIONAL, AND CROSS REACTIVE 37 

ABSTRACT 37 
INTRODUCTION 39 
RESULTS 41 
DISCUSSION 55 
MATERIAL AND METHODS 57 

CHAPTER 4: BASELINE AD5 SEROSTATUS DOES NOT PREDICT AD5-
HIV VACCINE-INDUCED EXPANSION OF AD-SPECIFIC CD4+ T-CELLS 59 

ABSTRACT 59 
INTRODUCTION 60 
RESULTS 61 
DISCUSSION 75 
MATERIALS AND METHODS 77 



 v 

CHAPTER 5: VACCINATION WITH ADENOVIRUS 5 HIV-1 VECTOR 
DIFFERENTIALLY EXPANDS AD5-SPECIFIC CD8+ T-CELLS IN 
SEROPOSITIVE AND SERONEGATIVE SUBJECTS 79 

ABSTRACT 79 
INTRODUCTION 81 
RESULTS 82 
DISCUSSION 94 
MATERIALS AND METHODS 96 

CHAPTER 6: DISCUSSION 98 

ADENOVIRUS IMMUNITY FROM NATURAL INFECTION 99 
EFFECT OF AD VECTOR VACCINATION ON AD-SPECIFIC CD4+

 T-CELLS 102 
EFFECT OF VACCINATION ON AD-SPECIFIC CTL 109 
FUTURE DIRECTIONS 111 

APPENDIX 116 

REFERENCES 119 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

 
List of Tables 

Table 1: Normal Donor Functionality Staining__________________________ 32 

Table 2: Vaccine Functionality Staining _______________________________ 33 

Table 3: Merck Ad5 HIV vaccine subject groups. _______________________ 62 

Table 4: Ad5 hexon peptide pools. __________________________________ 116 

Table 5: AdC6 Hexon Peptide Pools. ________________________________ 117 

Table 6: AdC7 hexon peptide pools._________________________________ 118 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

 

 

List of Figures 

Figure 1: Adenovirus structure. www.nobelprize.org ___________________ 4 

Figure 2: Adenovirus hexon protein trimmer._________________________ 5 

Figure 3: Adenovirus hexon sequence alignment._____________________ 7 

Figure 4: wild type adenovirus genome [44]. _________________________ 8 

Figure 5: Measuring Adenovirus Specific T-cell responses following whole 

vector stimulation. ____________________________________________ 42 

Figure 6: Gating strategy for measuring Ad-specific T-cell responses. ____ 44 

Figure 7: Adenovirus Particle Stimulation for Measuring Polyfunctional Ad-

specific T-cell Responses.______________________________________ 45 

Figure 8: Adenovirus 5 specific T-cell responses are common in humans. _ 47 

Figure 9: Memory penotype and proliferation of Adenovirus 5 specific T-cells.

__________________________________________________________ 48 

Figure 10: Ad5-specific T-cell recognize variable and conserved regions of 

the hexon. __________________________________________________ 50 

Figure 11: Polyfunctionality of Ad5-specific T-cells is similar to variable and 

conserved regions of the hexon. _________________________________ 52 

Figure 12: Ad-specific T-cells are cross reactive. ____________________ 54 

Figure 13: Ad5-specific CD4+ T-cell frequency does not correlate with Ad5 

neutralizing antibody titer. ______________________________________ 64 



 viii 

Figure 14: Ad5-specific T-cell responses following a single vaccination.___ 66 

Figure 15: Change in the percentage of Ad5-specific CD4+cytokine+ T-cells.

__________________________________________________________ 67 

Figure 16: CD4+ effector functions do not differ with baseline serostatus. _ 70 

Figure 17: Polyfunctionality of Ad5-specific CD4+ responses in vaccinated 

subjects. ___________________________________________________ 71 

Figure 18: Representative flow plots of Ki67 anda4/b7 staining. _________ 73 

Figure 19: Adenovirus-specific T-cells expanded by vaccination have an 

effector and central memory like phenotype.________________________ 74 

Figure 20: Baseline CD8+ T-cell responses. ________________________ 83 

Figure 21: Ad-specific CD8+ T-cells magnitude following vaccination. ____ 85 

Figure 22: Ad specific T-cell functionality following vaccination. _________ 87 

Figure 23: Polyfunctional Ad-specific CD8+ T-cell Responses.__________ 90 

Figure 24: Phenotype of Ad5-specific CD8+ T-cells. __________________ 93 

 

 

 

 
 
 
 
 
 
 
 
 



 ix 

 
 
 

List of Publications 
Hutnick NA, Carnathan DG, Dubey SA, Makedonas G, Cox KS, Kierstead L, 
Ratcliffe SJ, Robertson MN, Casimiro DR, Ertl HC, Betts MR. “Baseline Ad5 
serostatus does not predict Ad5 HIV vaccine-induced expansion of 
adenovirus-specific CD4+ T cells.” Nat Med. 2009 Aug;15(8):876-8 
 
O'Brien KL, Liu J, King SL, Sun YH, Schmitz JE, Lifton MA, Hutnick NA, Betts 
MR, Dubey SA, Goudsmit J, Shiver JW, Robertson MN, Casimiro DR, 
Barouch DH. “Adenovirus-specific immunity after immunization with an Ad5 
HIV-1 vaccine candidate in humans.” Nat Med. 2009 Aug;15(8):873-5 
 
Makedonas G, Hutnick N, Haney D, Amick A, Gardner J, Cosma G, 
Hersperger AR, Dolfi D, Wherry JE, Ferrari G, Betts MR. “Perforin and IL-2 
Upregulation Define Qualitative Differences Among Highly Functional Virus-
Specific Human CD8+ T cells.” Plos Pathogens. 2010 Mar 5; 6(3) 
 

Hutnick NA, Carnathan D, Demers K, Ertl HCJ, Betts MR. “Adenovirus-
Specific Human T cells are Pervasive, Polyfunctional, and Cross Reactive.” 
Vaccine. 2010 Feb 23; 28(8):1932-41 
 
Hutnick NA, Carnathan DG, Dubey SA, Cox K, Kierstead L, Ratcliffe SJ, 
Robertson MN, Casimiro DR, Ertl HCJ, Betts MR, “Vaccination with Adenovirus 
5 HIV-1 vector differentially expands Ad5-specific CD8+ T-cells in seropositive 
and seronegative subjects.” In submission 
 

 
 
 



 1 

Chapter 1: Introduction 

 

Vaccine History 

 The first vaccine was invented over 200 years ago in 1796 by Edward 

Jenner [1]. Prior to Jenner’s small pox vaccine, it was known that infection 

with small pox resulted in immunity from re-infection. As early as 430 BC 

women whom survived small pox infection would nurse children in order to 

transfer protection [2]. The practice of inoculation, or “to graft”, was also often 

practiced.  To inoculate, a pustule from an infected individual was sliced and 

the material subcutaneously introduced into an uninfected individual to induce 

immunity. This practice, however, had the risk of the inoculated subject 

developing systemic small pox or contracting other blood born diseases.  

Jenner developed his small pox vaccine after considering the stories of 

cow maids. Women believed that if they were infected with cow pox they 

would not become infected with small pox. Therefore, Jenner reasoned that 

the infecting agents must be similar enough so that infection with cow pox, 

which caused only mild local lesions, would protect from infection with the 

more devastating small pox. On May 14, 1796 Jenner inoculated 8-year-old 

James Phillips with material from a cow pox lesion on the hand of Sarah 

Nelms. When challenged with fresh small pox material a month later, Philips 

showed no signs of disease [1].  
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 It wasn’t until the late eighteen hundreds that a second vaccine was 

developed by Louis Pasteur to prevent rabies. The field of vaccinology was 

initially slow to develop but exploded in the 20th century. Since 1900, 21 

vaccines have been developed and there has been a 100% reduction in the 

morbidity of common childhood diseases including smallpox, diphtheria, polio 

and measles in the US [3]. Despite these great advances there are still 

several areas of infectious disease with an unmet need. 

 The World Health Organization (WHO) has identified tuberculosis, 

malaria, and HIV as diseases which should be targeted for accelerated 

vaccine development programs [4]. According to the WHO, approximately 33 

million people worldwide are infected with HIV/AIDS and 25 million people 

have died since the epidemic began in 1981 [5]. Although antiretroviral 

therapies (ART) are available to control HIV, only approximately 25% of HIV 

infected individuals in lower middle income countries who need ART qualify 

for it [6]. Additionally, only approximately 20% of individuals in sub-Sahara 

Africa who are HIV positive know they are infected [6]. With no cure for HIV, 

eliminating infection with the use of an effective HIV vaccine would have the 

largest impact on the global HIV pandemic. 

 

T-cell Vaccines 

 Traditional vaccine approaches utilized a killed or attenuated virus, 

protein, or toxin to induce neutralizing antibodies (nAb) that target the native 
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pathogen. The first HIV vaccine was designed as a traditional subunit vaccine 

utilizing a portion of the HIV envelope, gp160 [7].  Its study in humans began 

in 1987 and involved immunizing 138 subjects.  After ex-vivo studies showed 

a lack of broadly neutralizing HIV specific Abs, the HIV vaccine field turned to 

producing vaccines that induce cytotoxic T-cells (CTL) [8]. Researchers were 

further pushed towards a T-cell vaccine In 2003 when a Phase 3 trial of 

AIDSVAX, an HIV protein subunit vaccine designed to elicit neutralizing 

antibodies, proved ineffective at preventing HIV infection or lowering viremia 

in infected subjects [9,10]. 

T-cell vaccines for HIV have also been pursued because a number of 

studies have suggested CD8+ CTL are capable of controlling HIV infection. 

First, the generation of HIV specific CD8+ T-cells in infected subjects occurs 

at the same time as a decrease in acute viremia [11]. Second, depletion of 

CD8+ T-cells in SIV infected rhesus macaques resulted in an increase in 

viremia [12]. Third, several human class I MHC alleles are associated with 

control of virus and a slower progression to AIDS [13,14]. Finally, the 

immunological pressure exerted on HIV epitopes by CTL results in viral 

escape [15,16]. These findings indicate HIV specific CD8+ T-cells exert some 

control over viremia following infection. Therefore, a vaccine designed to elicit 

HIV-specific CTL given prior to HIV exposure may prevent the establishment 

of infection or more likely lower set point viremia, thus improving patient 

outcome and the transmission rates.  
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Figure 1: Adenovirus structure. www.nobelprize.org 
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Figure 2: Adenovirus hexon protein trimmer. Grey areas represent protein 

sequences conserved between diverse serotypes. Colored sequences represent the 7 loops 
that are hypervariable and define the 51 human serotypes. [17] 
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Adenovirus 

The primary platforms in development for generating CTL responses 

utilize viral vectors, the most potent among these appears to be recombinant 

adenoviruses (Ad). Ads are a group of icosahedral, non-enveloped viruses 

(Figure 1) [18]. There are currently 52 identified human Ad serotypes 

classified into 6 subgroups, A-F [19,20]. Subgroups are associated with 

specific tissue tropism in humans that are largely a result of individual 

subgroups utilizing unique cellular receptors differentially expressed 

throughout the body which are required for virus binding and entry [21]. The 

prevalent Ad5 serotype binds to the coxsackie adenovirus receptor (CAR) 

that is responsible for tight junctions between polarized epithelial cells [22].  

The CAR has been detected in human tissues including the heart, brain, 

pancreas, intestine, lung, liver, testis and prostate [22,23,24]. Virus binding 

requires the CAR to interact with the Ad fiber, one of the three major Ad 

capsid proteins [25]. The fiber protein is a long filament anchored by penton 

proteins [26,27]. The remainder and majority of the Ad capsid consists of 

trimmers of 240 hexon proteins [28,29].  Within the hexon protein there are 

seven hypervariable regions (Figure 2) [30,31]. The remaining ~80% of the 

hexon sequence are conserved between Ad serotypes (Figure 3) [32].   

The Ad capsid contains a double stranded, linear, DNA genome of 

approximately 34-43 kb (Figure 4). The genome contains two inverted 
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Figure 3: Adenovirus hexon sequence alignment. The Ad hexon amino acid 

sequence for human Ad5, chimpanzee Ad7 (Pan-7) and chimpanzee Ad6 (Pan-6). 
Hypervariable regions (HVR) are underlined. Sequences highlighted in grey are conserved 
among the three Ads[38]. 
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Figure 4: Wild type adenovirus genome [39].  
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terminal repeats (ITRs), and genes are grouped by early (E1A, E1B, E2, E3, 

E4, and E5) and late transcription (L1-L5) [33]. Upon infection, the early E1a 

gene is expressed first and acts as a promoter for the expression of the 

remaining early genes [34,35]. Therefore, deletion of the E1a gene results in 

a replication-incompetent virus [36,37]. The E1a gene is also responsible for 

promoting apoptosis, immune evasion, inducing host cell proliferation and 

blocking differentiation [40,41,42,43,44].  

Another critical Ad gene product is the E3 gene. E3 helps the host cell 

evade immune recognition through a number of mechanisms.  First, E3 

allows the virus to evade host immunity by preventing MHC class I transport 

to the cell surface where it can activate CD8+ T-cells [45,46,47].  Second, 

The E3 protein also interacts with the transporter associated with antigen 

processing (TAP) to prevent transport of viral peptides into the ER where they 

can bind MHC class I [48]. Third, E3 causes surface expression of the 

receptor internalization and degradation (RID) complex that blocks death 

receptor-induced apoptosis [49,50,51]. These critical immunomodulatory roles 

help Ad avoid recognition by CD8+ CTL and Ad-infected cell death, thereby 

ensuring production of new Ad virions. 

Ad infections generally occur during childhood and result in a range of 

acute symptoms depending on the infecting serotype [52]. For example, Ad5 

and other group C serotypes generally cause an acute respiratory infection 

resulting in symptoms such as a fever, headache and runny nose, whereas 
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infection with a group A or F virus results in gastrointestinal illness [53,54]. 

Rarely, Ad infection results in severe disease such as meningitis, though 

immunocompromised subjects are more susceptible to serious outcomes 

[55]. The prevalence of Ad infection varies by serotype and geographical 

region, with approximately 50% of US adults and 90% of African adults 

testing seropositive for Ad5 nAbs [56]. In contrast, only 5-15% of adults test 

seropositive for the rare serotype Ad35 [57]. Despite only acute symptoms, 

Ad maintains its genome in an episomal state in lymphoid tissues and has 

been detected in healthy adults years after infection [58,59,60]. 

 

Adenovirus Vector Design 

The potential of replication-defective Ad vectors for gene therapy and 

vaccine was recognized for several reasons. First, Ads have the ability to 

infect and persist in a wide variety of cells, including those that are not 

dividing [71,72]. Second, the transgene is expressed at a high level despite 

the observation that the viral genome does not integrate into the host 

genome. This eliminates a major regulatory concern as integration could 

result in insertional mutagenesis, increasing the patient’s risk of cancer 

[72,73]. Third, the virus is easily engineered replication-defective and grows 

well in large-scale cell culture. Finally, and perhaps most importantly, Ad 

vectors have been shown to induce potent and protective T-cell responses 

[74,75,76].  
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In order to design an appropriate and safe Ad vector for gene therapy 

or vaccines, several important considerations need to be made regarding 

vector serotype, Ad genome deletions and production. First generation Ad 

vectors based on Ad5 had the E1 gene deleted in order to render the vector 

replication-defective [96,97]. Molecular cloning is currently used to construct 

an E1-deleted vector by ligating the desired gene into a bacterial plasmid 

containing the entire Ad genome [98]. Successful recombinants can be 

selected by expression of herpes simplex virus thymidine kinase, green 

fluorescent protein or b-galactosidase [99,100,101]. After removing all 

bacterial sequences, vector can be grown in an appropriate production cell 

line [102,103,104]. There are a number of advantages to molecular cloning 

including the availability of commercially available kits for Ad5 vector 

production, ease in designing alternative serotype vectors, and the elimination 

of possible contaminants within primary Ad isolates used for vector 

construction through homologous recombination.  

For production of E1-deleted vector the E1 gene needs to be provided 

in trans. This can be accomplished by co-transfecting a vector which provides 

E1 or producing vector in human HEK 293 cells that contain the human Ad5 

E1 gene [102]. One regulatory concern with either method was the possibility 

for homologous recombination and the production of replication-competent Ad 

particles in a clinical product [105]. This can be overcome by using newer 

cells lines with truncated E1 sequences such as PER.C6 and N52/E6 or by 
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using an Ad vector based on non-human serotypes such as chimpanzee Ad 

[103,104]. Human Ad E1 will allow the production of non-human Ad vectors 

and the sequences differ enough to prevent homologous recombination in 

HEK 293 cells [103]. Importantly, some human Ad vectors such as Ad35 are 

not transcomplemented by Ad5 E1 and therefore require the modification of 

existing cell lines.  

Deleting the E1 gene allows for insertion of approximately 3.5 kb of 

transgene sequence [106,107,108]. In order to accommodate larger 

transgenes of up to 7.5 kb, E3 may also be removed [106,107]. Because E3 

is not required for Ad replication, E1- and E3-deleted vectors can be grown in 

cell lines containing E1. Further deletions include E2, E4 and a gutted vector 

containing only the Ad ITRs [109,110]. In addition to increasing the size of 

insert that can be used, deleting the E4 gene may reduce immunogenicity by 

eliminating expression of late gene products. To produce vectors with 

additional deletions in E2 or E4, cell lines must be created to provide the 

genes in trans [109,110]. Gutted vectors require use of a helper plasmid to 

produce vector in cell culture which increases the risk for homologous 

recombination and contamination with replication competent particles [111]. 

The vector serotype, deletions, and production method used should be 

carefully chosen to optimize gene therapy or vaccine efficacy and safety.  
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Adenoviruses in Gene Therapy 

Ads were first studied as a delivery vehicle for gene transfer starting in 

the early 1990s. Studies with several Ad constructs and inserts proved 

effective in animal models and were further studied in humans [61,62]. 

Among the most advanced testing of an Ad vector for gene therapy was for 

the correction of ornithine transcarbamylase (OTC) deficiency [63,64]. OTC 

disease is a single x-linked mutation that results in deficient urea synthesis 

[65]. Treatments for this disease are currently limited and there is a high 

morbidity and mortality associated with the disease, especially in 

homozygous males [66,67]. These characteristics make OTC deficiency an 

ideal candidate for gene therapy. 

Following successful and safe OTC gene therapy in mice and monkeys 

with an E1- and E4-deleted Ad vector, a pilot human study was initiated in 

1997 [63,68,69,70]. Seventeen subject with OTC mutations received 2x109 

viral particles (vp)/kg to 6x1011 vp/kg E1- and E4-deleted Ad5 expressing 

human OTC mRNA delivered via the hepatic artery [63]. Following gene 

transfer, less than 1% of hepatocytes were transduced and no significant 

improvements in ureagenesis were observed. Side effects included fever, 

fatigue, thrombocytopenia, anemia, decreased blood phosphate levels and 

acute biochemical liver damage.  

The outcome of the 18th subject was drastically different [64]. After 

receiving 6x1011 vp/kg vector he progressed to acute respiratory distress and 



 14

organ failure that ultimately lead to his death four days after treatment. It was 

later determined that Ad vector infusion had resulted in systemic immune 

activation which ultimately lead to the patients death. The demonstrated 

immunogenicity of Ad vectors made them a less desirable vector for gene 

therapy and the field has predominantly switched to the use of other vectors 

for gene correction purposes.  

 

Adenovirus Vaccines 

Although Ad were largely ineffective as vectors for gene therapy, their 

utility as vectors for CTL vaccines was quickly realized. Ad vaccine vectors 

have been tested most extensively in the setting of HIV. The validity of the 

Ad5 vector for an HIV-1 vaccine was supported by a large primate study 

comparing several prominent vaccine vectors that encoded SIV gag inserts. 

These were DNA, a modified vaccinia ankara virus vector, and a replication- 

incompetent Ad5 alone or in combination with the DNA vector [74]. Ad5 alone 

or Ad5 with a DNA prime produced the largest percentage of gag-specific 

CD8+ T-cells following vaccination. Following challenge with SHIV 89.6P, the 

DNA prime-Ad5 boost and Ad5 prime- boosted animals more effectively 

controlled set-point viral load reducing viruses to less than 103 vp/ml.  

In retrospect, this study was not stringently designed to test the 

efficacy of an Ad5 HIV-1 vaccine. First, only three monkeys were used in 

each vaccine group making it difficult to determine what was the average 
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response and what would be considered an outlier. Second, all Ad5- 

vaccinated monkeys had the Mamu*A01 MHC class I allele, which is naturally 

protective from SIV and SHIV infection [77,78]. Lastly, animals were 

challenged with SHIV 89.6P which appears to be more sensitive to T-cell 

based vaccine approaches [79].  

Following these results with Ad5-based vaccines in Rhesus Macaques; 

a Phase 1 human study was conducted. Starting May 1 2003, 259 subjects 

were enrolled in a dose-escalation safety and immunogenicity trial designated 

as the Merck 016 trial [80]. Subjects received 3x106 vp to 1x1011 vp Ad5 

expressing HIV-1 clade B gag, pol or nef at weeks 0, 4 and 26. There were no 

serious adverse events associated with vaccination. Subjects receiving 

3x1010 and 1x1011 vp had a similar immunogenicity with approximately 70% of 

subjects responding to an HIV insert 4 weeks after the last injection, and 

lasting up to week 78.  One concern raised by animal studies was that pre-

existing Ad5 nAb would limit vaccine efficacy, however this was not observed 

in seropositive subjects (nAb titer >200) in the 3x1010 vp dose group. 

Therefore, based on the immunogenicity and safety of a recombinant Ad5-

HIV-1 vaccine vector delivered by the IM route, it was decided to further test 

the vaccine in the phase IIb STEP trial with subjects at a high risk for HIV-1 

infection. 
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STEP trial 

The Phase IIb  trial was name STEP. It was a multi-center, 

randomized, double-blind and placebo-controlled trial aimed at establishing 

efficacy of the Ad5 HIV-1 gag/pol/nef vaccine.  All subjects were HIV-1 

negative but at a high risk for HIV infection. Half of the three-thousand 

enrolled subjects were Ad5 seronegative at baseline and half were 

seropositive. Subjects received three doses of 3x1010 vp at weeks 0, 4 and 

30. The trial was ended at a planned interim analysis by the data safety 

monitoring board on September 18th, 2007 because no efficacy was shown 

with the endpoints of either reduced rates of infection or reduced viral load in 

those infected as well as a possible increased risk of infection in vaccinated  

subjects. 

Analysis revealed the vaccine was immunogenic with 77% of subjects 

eliciting a T-cell response against at least one of the HIV insert antigens [81]. 

Immunogenicity, as measured by response rate, magnitude, or functionality of 

HIV-specific T-cells, was similar in cases (HIV infected during the trial) and 

non-cases (HIV-). If the vaccine was immunogenic why was it not effective at 

lowering viral load or preventing infection? One explanation might be that T-

cell responses were relatively modest with less than 1.0% of CD8+ T-cells 

responding to the vaccine antigens [82]. The quality of responding T-cells 

may also have been different than that required to prevent or modify HIV-1 

infection. Additionally, subjects recognized only three HIV antigens and it is 
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possible that the vaccine epitopes differed from the infecting virus sequence 

[81]. The final reason for why the Ad5 vaccine may not have been effective is 

CTL responses alone may not be sufficient to prevent HIV-1 infection.  

Subsequent analysis confirmed that there was an increased risk of 

infection in vaccinated subjects, however this was only seen in subjects who 

were Ad5 seropositive at baseline. In participants with no Ad5 pre-existing 

immunity (nAb titer <200 units) there was no difference in the level of HIV 

infection between placebos and vaccinees [82,83]. However, in participants 

with a pre-existing Ad5 nAb titer greater than 200 units, 21 cases of HIV 

infection were reported in those who received the vaccine versus only 9 

cases in those who received the placebo.  These results suggest that pre-

existing immunity to Ad5 as measured by nAb titers increased the risk of HIV 

infection following Ad5- based vaccination.  

One theory for the increased risk of infection in subjects with pre-

existing Ad5 immunity is that Ad5-specific CD4+ T-cells became activated 

upon vaccination. Activated CD4+ T-cells may then up-regulate the HIV-1 

receptor CCR5 or traffic to the gut mucosal tissue where they would be the 

primary targets for HIV infection and replication [84,85,86]. However, post-hoc 

analysis suggests Ad5-specific T-cell responses in Ad5-seropositive subjects 

were not the cause of the possible increased risk of HIV infection. The 

magnitude of Ad-specific CD4+ and CD8+ T-cell responses were actually 

lower in cases compared with non-cases and there were no differences in the 
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level of activation as measured by Ki67, Bcl-2 and CCR5. Unfortunately, 

samples from the STEP trial are limited by sparse peripheral blood 

mononuclear cells (PBMC) sampling and the lack of a baseline sample. The 

possibility that a vaccine may increase the risk of infection with the disease it 

was aimed at preventing highlights the need to understand T-cell specific 

responses not only to the transgene but also to the vector itself.  

 

Alternative Serotype Vaccines 

The efficacy of Ad-based vaccines is reduced by pre-existing Ad-

specific immunity. To avoid pre-existing immunity, vectors with a low 

seroprevalence are in development. These include human Ad26, 35 and 48, 

as well as chimpanzee AdC6, C7 and C68.  There are a number of 

differences between Ad5 and Ad35 that may affect vaccine efficacy. The 

worldwide seroprevalence of Ad5 is 40-90%, whereas Ad35 has a 

seroprevalence of only 2-16% [87]. However, due to a hexon sequence 

homology of close to 90% between Ad5 and Ad35, it is likely that pre-existing 

cross-reactive T-cells will recognize Ad35 even in seronegative subjects [38]. 

Unlike Ad5, Ad35 utilizes CD46 as a receptor for cellular entry [88]. CD46 is a 

complement regulatory protein expressed on all cell types including 

hematopoietic and dendritic cells that lack CAR expression. Despite different 

receptor usage, Ad35 and Ad5 both transduced muscle cells, showed limited 

biodistribution, were rapidly cleared, and showed similar toxicities when given 
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as an intramuscular injection [89]. This is in contrast to intravenous delivery in 

which Ad35 showed limited organ transduction and reduced toxicity 

compared with Ad5 [90]. 

Another approach to avoiding pre-existing immunity is the development 

of Ad vectors based on chimpanzee viruses such as AdC6 and AdC7. The 

seroprevalence of AdCs is less than 10%, which is even lower than the rare 

human serotypes [91]. AdCs are easily constructed by molecular cloning and 

can be grown in cell lines expressing Ad5 E1 without the risk of homologous 

recombination and the production of replication-competent vectors [92]. 

Based on E1 sequence homology, AdC6 and AdC7 are most closely related 

to the human Ad4, though sequence homology with Ad5 still high at 

approximately 90% [56,92]. Similar to Ad5, the chimp AdC6 and AdC7 utilize 

the CAR receptor, can be produced at high titers, and have similar levels of 

in-vivo infectivity [92,93]. Animal studies with AdCs have shown induction of 

potent insert-specific nabs and CD8+ T-cell responses prompting further 

development as vaccine vectors [94,95].  

 

 

Adenovirus Immunity 

Pre-existing Ad-specific immunity represents a major obstacle to the 

use of Ad vectors not only for gene therapy but also for Ad-based vaccines. 

Vaccination is less effective in animal models and humans if pre-existing Ad-
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specific nAbs are present [112,113]. In addition, nAbs can pose a problem for 

an Ad-based vaccine even in individuals without pre-existing immunity since 

an effective CTL vaccine will likely require at least one boost to generate 

sufficient levels of memory T-cells. The efficacy of a subsequent boosting 

injection may be limited by nAbs generated during the priming injection. It has 

been shown that significant levels of nAb result after a single Ad5 injection 

and can reduced transgene expression following a second injection [114]. 

Therefore, vaccination with an Ad-based vaccine for one infectious disease 

would also inhibit the efficacy of a subsequent Ad-based vaccine against 

heterologous pathogens.  

Ad-specific T-cells have also been shown to reduce the transgene- 

specific response to an Ad5-based vaccine [115]. Ad epitopes have been 

identified in humans for both CD4+ and CD8+ T-cells [116,117,118]. The 

conservation of these epitopes between the 52 serotypes suggests Ad-

specific T-cells will be highly cross-reactive [116,117,119,120].  This was 

partially confirmed in experiments in which human CTL cell lines created 

against an Ad5 vector were shown to kill target cells infected with diverse Ad 

serotypes [116,119]. CTL responses were targeted primarily against the 

hexon protein, which is the most abundant capsid protein delivered upon Ad 

vector administration [120]. 

Though nAb are serotype-specific, the cross-reactivity of Ad-specific T-

cells suggests they will be universally present in humans, as infection with at 
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least one Ad serotype occurs in most individuals. Indeed, several studies 

found Ad5-specific CD4+ and CD8+ T-cell responses irrelevant of 

seropositivity [59,82,121]. Additionally, T-cells that recognize simian Ad24 

were identified in 14 of 14 healthy subjects despite a seroprevalence of only 

10% in subjects from the same region [59]. Together, these data support 

some level of cross-reactivity in Ad-specific T-cells due to Ad sequence 

conservation among diverse serotypes.  

 

T-cells  

An important aspect of studying T-cells is characterizing their 

functionality and phenotype. The T-cell response to an infectious agent will 

generate a unique response consisting of cells making a variety of cytokines 

and expressing an assortment of surface receptors. By utilizing polychromatic 

flow cytometry, multiple T-cell functions can be measured including 

macrophage inflammatory protein 1 alpha (MIP1α), interferon gamma (IFN-γ), 

tumor necrosis factor alpha (TNFα), interleukin-2 (IL-2), perforin, and 

CD107a. These six functions are reliably assessed by flow cytometry and 

have unique immunological effects. MIP1α acts as a chemoattractant, 

recruiting inflammatory cells to the site of infection and mediating a TH1 

response [122,123]. IFN-γ and TNFα are both pro-inflammatory cytokines 

with several immunomodulatory and antiviral effects [124]. IL-2 is required for 

T-cell survival and the generation of memory responses [125]. Perforin is a 
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protein release by cytotoxic cells to mediate target cell killing [126]. CD107a is 

expressed in the membrane of secretory granules and is exposed upon 

degranulation. Staining for CD107a, therefore, serves as a surrogate for the 

release of cytotoxic granules from T-cells [127].  

To assess the magnitude of a T-cell response, IFN-γ as measured by 

ELISpot or flow cytometry is the gold standard assay often used 

[128,129,130]. However, by measuring IFN-γ alone, the total magnitude of the 

response may be underestimated, as not all responding cells produce IFN-γ, 

and IFN-γ alone is often not a correlate of the efficacy of a T-cell response 

[131,132]. A higher proportion of T-cells making both IFN-γ and IL-2 during 

HIV, hepatitis C virus, and M. tuberculosis infection correlated with better 

disease control than IFN-γ alone [133,134,135].  Furthermore, a more 

polyfunctional T-cell response consisting of IFN-γ, IL-2, TNFα, MIP1-β, and 

CD107a was associated with a slower progression to AIDS [136,137]. Lastly, 

a larger percentage of polyfunctional T-cells were observed following infection 

with viruses that are cleared or persist at a low level such as influenza, 

vaccinia virus, and cytomegalovirus, in contrast to chronic HIV infected 

patients where there is a high level of persistent antigen [138]. Though a 

highly functional T-cell response appears to be induced during natural viral 

infection, a highly functional Ad-specific T-cell response against a vaccine 

vector may be detrimental, since virally infected cells would be cleared before 
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transgene expression reaches a high enough level to stimulate a protective 

immune response. 

 

Memory Phenotype 

In addition to studying the functionality of T-cells, it is also critical to 

understand the memory phenotype of antigen-specific cells in order to better 

tailor an effective vaccine. T-cells newly differentiated from hematopoietic 

stem cells in the bone marrow travel to the thymus where they undergo 

positive and negative selection [139,140,141]. This process ensures cells are 

not reactive to self-proteins, are able to recognize peptides on self-MHC, and 

determines whether T-cells will be a CD4+ helper T-cell or CD8+ cytolytic T-

cell. Cells emerging from the thymus are considered naïve because they have 

yet to see their cognate antigen. Naïve T-cells can be distinguished because 

they express costimulatory receptors (CD27, CD28, CD45RA) which need to 

be engaged along with the T-cell receptor in order for cells to proliferate and 

differentiate into effector T-cells [142,143,144].  Naïve cells also express 

adhesion molecules such as CD62L and CCR7 that allow them to traffic 

through the lymph nodes where they may encounter their antigen [145,146]. 

Once T-cells encounter their antigen they become activated, 

proliferate, and can differentiate into an effector or memory cell. There are 

two theories for how memory cells develop [147]. One theory proposes that 

after an infection is cleared a subset of effector cells remain and mature into 
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memory cells, whereas the other theory proposes that when a naïve cell 

encounters antigen it proliferates and some progeny become effectors and 

some memory. Either way, memory and effector cells have unique 

characteristics and are both critical for an effective vaccine. 

Effector cells generated by vaccination are necessary to effectively 

fight off an infection by producing cytokines to activate innate immunity, 

providing B-cell help, and directly killing infected target cells.  These functions 

are mediated by the expression of cytokines such as IFN-γ, IL-17, and IL-2; 

chemokines such as MIP1α and rantes; and cytolytic proteins such as 

granzymes and perforin [148,149]. During an acute infection, effector cells 

proliferate to fight the pathogen and then undergo apoptosis once the 

infection is cleared [150,151]. In chronic infection they often become 

exhausted from constant antigen stimulation and gradually lose their effector 

functions [152,153]. Prolonged antigenic stimulation can also result in 

terminally differentiated cells that lose the ability to proliferate (CD57+) [154]. 

Once activated, cells down-regulate costimulatory surface proteins (CD27, 

CD62L) and up-regulate homing proteins (CCR5, α4β7) that allow them to 

enter the periphery and combat pathogens at the site of infection [155].  

In order for a vaccine to remain effective, long-lived memory cells must 

also be generated. Memory cells have a lower threshold for activation, create 

a larger pool of antigen specific T-cells, and produce different effector 

functions compared with naïve cells [156,157]. These characteristics allow for 
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the rapid production of effector cells and a quicker secondary response [158]. 

There are two subsets of memory cells which can be defined by the 

expression of CCR7 [156]. Central memory cells express CCR7 allowing them 

to circulate through the secondary lymphoid organs where they have a higher 

chance of encountering antigens and initiating an immune response.  Effector 

memory cells lacking CCR7 patrol areas of inflamed tissue and have 

immediate effector capabilities to eliminate pathogens.  

Though the phenotype of a vaccine-induced T-cell response is critical 

for efficacy and long-term protection, the quality of the response may be just 

as important. Studies of an Ad-based Leishmania major vaccine in mice 

showed a milder disease upon infection with L. major when a lower dose of 

the Ad vaccine was administered [159]. The degree of protection did not 

correlate with the magnitude of insert-specific IFNγ+ CD4+ T-cells but did 

correlate with the quality of the response. Mice given the low Ad dose had 

more polyfunctional CD4+ T-cells expressing IL-2, TNFα, and IFN-γ compared 

with mice given the high dose. Additionally, triple positive CD4+ T-cells 

produced more IFN-γ and TNFα on a per-cell basis compared with single and 

double positive cells, which may explain why having more triple positive cells 

correlated with better control. Though this model defined polyfunctional TH1 

CD4+ T-cells as a correlate of L. major control, no correlates of protection 

have been defined for vaccine induced CD8+ T-cell responses. 
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Thesis Goals 

The failure of Ad vectors in gene therapy and the STEP trial highlights 

the need to understand how pre-existing Ad-specific immunity affects the 

efficacy and safety of Ad vector-based gene delivery. We aimed to 

characterize the magnitude, phenotype, functionality, and cross reactivity of 

Ad-specific T-cells following natural infection and vaccination. We 

hypothesized that Ad-specific T-cells would be present in most donors and 

cross-react with diverse serotypes based on sequence homology between Ad 

serotypes. Ad-specific T-cells would have an effector and effector memory 

like phenotype due to continual stimulation by persistent Ad virus and repeat 

infection with any of the 52 human serotypes. Likewise, vaccination with Ad5 

vector would stimulate pre-existing Ad-specific CD4+ and CD8+ T-cells to a 

similar extent in baseline Ad5-seropositive and Ad5-seronegative subjects.  

There are several facets of this study that are critical to our 

understanding of Ad T-cell immunity. First, studying a heterologous human 

population is essential for understanding Ad-specific T-cells as animal models 

do not replicate the continual Ad re-stimulation human T-cells receive from 

persistent virus and periodic infection. Second, by using the most advanced 

flow cytometry techniques we can precisely characterize the detailed 

phenotype and functionality of Ad-specific T-cells. Third, we developed a 

novel stimulation assay that allows us to detect T-cell responses to the entire 

Ad vector directly ex-vivo with minimal cell manipulation, thereby reducing the 



 27

chance for responses that are an assay artifact. Lastly, we have access to 

very limited and extensive samples from the Merck phase I safety trial using 

the same vector, dose and schedule as used for the STEP trial.  These 

samples are critical for understanding the possible increased risk of infection 

in Ad5-seropositive patients as samples from the STEP trial are limited and 

lack a baseline time point. This work represents the most extensive 

characterization of human Ad-specific T-cell responses performed to date. 

The result of this analysis suggests important considerations for future T-cell 

based vaccine design. 
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Chapter 2: Materials and Methods 
 

Subjects 

 Peripheral blood mononuclear cells (PBMCs) were obtained by aphaeresis of 

HIV and HCV negative adult healthy donors by the University of Pennsylvania 

Center for AIDS Research Immunology Core, under the institutional 

guidelines required for conduct of experiments on human samples.  

 For studies involving Ad5 vaccination we obtained frozen PBMCs from 

various Merck phase I Ad5 HIV vaccine trials (Table 3). Written informed 

consent was obtained from participants. The vaccination dose and schedule 

for the seropositive and seronegative groups were identical to that used in the 

phase II STEP trial.  PBMCs were obtained from study weeks 0, 4, 8, 18, 26, 

30, 42, 52 and 78.  

 

Vector 

 Human adenovirus 5 (Ad5), chimpanzee adenovirus 6 (AdC6) and 

chimpanzee adenovirus (AdC7) vectors were prepared using previously 

described methods [160]. For cell stimulation we used an E1-deleted Ad5 

vector that expressed the rabies virus glycoprotein [32,161]. The Ad5 vector 

was grown on HEK293 cells in DMEM supplemented with 10% fetal calf 

serum, antibiotics and glutamine [162]. Vectors were purified by CsCl 
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gradients and quality controlled (infection unit to vp ratios, lack of replication 

competent Ad5 virus, genome integrity, lack of LPS contamination, sterility) 

 

Neutralizing Antibody Titer 

Ad5 neutralizing antibody titers were measured by Lisa Kierstead at 

Merck Research Laboratories as previously described [163]. Briefly, 2x104 

HEK293 cells per well in a 96 well plate were seeded for 2 days. Ad-secreted 

alkaline phosphatase (SEAP) was incubated for 1 hour at 37 °C either alone 

or with serial dilutions of serum then added to the 95-100% confluent 293 

cells and incubated for 1 hr at 37 °C. Supernatant was then removed and 

replaced with 10% fetal bovine serum (FBS) in Dulbecco’s Modified Eagle 

Medium (DMEM). SEAP expression was measured 24 ± 2 hrs later with the 

chemiluminescent substrate from the Phospha-Light™ kit. (Applied 

Biosystems).  

 

Antibodies 

We obtained directly conjugated antibodies from the following: BD 

Biosciences: TNFα (Pe-Cy7), IFN-γ (Alexa700); Caltag: CD14 (APC-

Alexa750), CD19 (APC-Alexa750), β7 Integrin (PeCy5), CD49d α4 (APC), 

Ki67 (Fitc), CD103 (FITC) and CD4 (Pe-Cy5.5); Beckman Coulter: CD8 
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(ECD), CD27 (Pe-Cy5); eBioscience CCR7 (APC-Alexa750) and R&D 

systems. 

 

Whole Vector Stimulation 

To measure responses to the Ad5, AdC6 and AdC7 vectors, 2x106 

PBMCs were incubated overnight with 1x1011 vp and costimulatory antibodies 

(αCD28 and 49d, 1 µg/ml; αCD28 alone for mucosal marker staining, BD 

Biosciences) at 37 °C and 5% CO2 in 1 ml R10 media (RMPI 1640 with 10% 

heat inactivated FBS, 100 U/ml Penicillin, 100 µg/ml streptomycin sulfate and 

1.7 mM sodium glutamate) in 5 ml BD Facs tubes.  We stimulated a positive 

control with Staphylococcus enterotoxin B (SEB, 1 mg/ml; Sigma-Aldrich) and 

a negative control received only costimulatory antibodies. The following 

morning we added Monensin (Golgi Stop, 0.7 µg/ml; BD Biosciences) and 

Brefeldin A (1 µg/ml; Sigma-Aldrich) to each sample and incubated the cells 

for six hr at 37 °C and 5% CO2 before staining.  

 

Peptide Stimulation    

Peptide libraries were stimulated for Ad5, AdC6 and AdC7 hexon 

sequence consisting of 15 amino acids peptides that overlap by 11 amino 

acids. Peptides were pooled into five groups of approximately 40 peptides 

each. One pool consisted of sequences in the variable regions of the hexon 
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and the other four pools were linear pools of the conserved regions 

(Appendix).  

 To stimulate cells, PBMCs were thawed or obtained from fresh 

aphaeresis and rested overnight at 2x106 cells/ml in R10 media (RMPI 1640 

with 10% heat inactivated FBS, 100 U/ml Penicillin, 100 mg/ml streptomycin 

sulfate and 1.7 mM sodium glutamate) in filter top T-flasks. The following 

morning, cells were counted and resuspended at 1-2x106 cells/ml in R10 

media. Costimulatory antibodies (αCD28 and 49d, 1 µg/ml) were added to 

cells and 1 ml cells were aliquoted to BD Facs Tubes containing 5 µl (2 µg/ml 

each peptide in DMSO) of a given peptide pool. A negative control received 

only co-stimulatory antibodies and a positive control was stimulated with 

Staphylococcus enterotoxin B (SEB, 1 µg/ml; Sigma-Aldrich).  

 

Staining 

Following vector or peptide stimulation samples were washed in 

phosphate buffered saline (PBS) and stained for viability (Aqua live/dead 

amine reactive dye; Invitrogen). To determine viability the aqua dye tube was 

reconstituted in 12.5 µl DMSO and stored at -20°C. This stock was then 

diluted 1:60 in PBS. PBS was decanted following the wash and cells in facs 

tubes were stained with 5 µl for 10 min at room temperature in the dark. 

Following live dead staining surface antibodies were added for 20 min at 

room temperature in the dark (Table 2-4). Surface stain mixes were made up  
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Target Color Clone Manufacturer Catalog 

Number 

Stain  

Aqua Live 

Dead 

Aqua NA Invitrogen L34597 Pre-stain 

CD3 QD585 OKT3 In Lab American 

Type Culture 

Collection 

intracellular 

CD4 PeCy5.5 S3.5 Caltag MHCD0418 surface 

CD8 Texas Red PE 3B5 Coulter 6604728 surface 

CD27 PeCy5 1A4LDG5 Coulter 6607107 surface 

CD45RO QD 705 UCHL1 In Lab AbD Serotech surface 

CD57 QD565 TB01 In Lab AbD Serotech surface 

CD14 APCAlexa750 TüK4 Caltag MHCD1427 surface 

CD19 APCAlexa750 SJ25-C1 Caltag MHCD1927 surface 

IL-2 APC MQ1-17H12 R&D 554567 intracellular 

IFN-g Alexa700 L11370 BD 557995 intracellular 

TNFa PeCy7 MAb11 BD 557647 intracellular 

Perforin PacBlue B-D48 In Lab Diaclone intracellular 

MIP1a PE 93342 R&D IC2701P intracellular 

CD107a FITC H4A3 BD 555800 Pre-stain 

Table 1: Normal Donor Functionality Staining 
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Target Color Clone Manufacturer Catalog 

Number 

Stain 

Aqua Live 

Dead 

Aqua NA Invitrogen L34597 Pre-stain 

CD3 QD585 OKT3 In Lab American 

Type Culture 

Collection 

intracellular 

CD4 PeCy5.5 S3.5 Caltag MHCD0418 surface 

CD8 Texas Red PE 3B5 Coulter 6604728 surface 

CD27 PeCy5 1A4LDG5 Coulter 6607107 surface 

CD45RO QD 705 UCHL1 In Lab AbD Serotech surface 

CD57 QD565 TB01 In Lab AbD Serotech surface 

CD14 APCAlexa750 TuK4 Caltag MHCD1427 surface 

CD19 APCAlexa750 SJ25-C1 Caltag MHCD1927 surface 

IL-2 APC MQ1-17H12 R&D 554567 intracellular 

IFN-g Alexa700 L11370 BD 557995 intracellular 

TNFa PeCy7 MAb11 BD 557647 intracellular 

Perforin PacBlue B-D48 In Lab Diaclone intracellular 

MIP1a PE 93342 R&D IC2701P intracellular 

Ki67 FITC 35 BD 612472 intracellular 

Table 2: Vaccine Functionality Staining 
 

 

 



 34

 

 

 

to 50 µl per tube in Facs Buffer (PBS with 1% fetal bovine serum and 0.1% 

sodium azide). Following surface staining cells were washed once in facs 

buffer then permeabilized and fixed by adding 250 µl Cytofix/Cytoperm (BD 

Biosciences) for seventeen min at room temperature in the dark followed by a 

wash with perm wash buffer (BD Biosciences). Cells were then stained with 

intracellular fluorochrome-labeled antibodies for 1 hour at room temperature 

in the dark. Intracellular staining antibodies were made up to a final volume of 

50 µL per tube in perm wash buffer. Following staining cells were washed 

with perm wash buffer, fixed (2% paraformaldehyde in PBS) and stored at  

4°C in the dark until analysis. All antibodies were titrated to determine the 

optimal staining. 

 

Flow Cytometry 

We analyzed cells on a modified LSR II flow cytometer (BD 

Immunocytometry Systems) with 200,000 to 1,000,000 events collected per 

sample. Data was analyzed using FlowJo 8.7 (TreeStar). Cells were initially 

gated to remove doublets followed by a lymphocytes gate on forward scatter 

area versus side scatter area. We removed dead cells by gating CD3 versus 

Aqua blue removing cells that are Aqua blue bright. Contaminating CD14+ 
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and CD19+ cells were also removed before gating sequentially on CD3+, and 

CD8+/CD4+ and CD4-/CD8- versus IFN-γ to account for receptor down-

regulation. We then made a gate for each respective function and the 

Boolean gating platform was used to create the array of possible functional 

combinations. Data are reported after background subtraction of the no 

stimulation condition.  

 

Statistics 

For normal donor samples, variability in the assay was tested using 

Levene’s robust variance test with Brown and Forsythe’s 10% trimmed mean 

alternative. This method is robust to non-normality in the data. Analyses were 

conducted using Stata MP 10.0.  The T-cell response to different vectors and 

peptide pools were compared using a Friedman Statistic. This method is 

similar to an ANOVA for non-parametric matched data. When two groups 

were compared, a Wilcoxon's sum rank test, which is similar to a t-test for 

non-parametric data, was used. These statistics were performed in Graphpad 

Prism. 

 For vaccine samples mixed effects models were performed to test for 

group differences over time. Mixed effects models were also used for 

comparisons between baseline and subsequent time points within each 

group. Time was considered to be a discrete variable, lessening the power of 
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these tests compared to tests where time is a continuous variable. Spearman 

correlations were used to test the relationship between Ad5 nAb titers and  

T-cell functions at baseline. Correlations over the entire time period were 

computed using partial correlation coefficients controlling for individual subject 

effects in the repeated measurements. All data was log transformed using 

base e. Vaccine statistics were performed by Sarah Ratcliffe from the 

University of Pennsylvania Center for Clinical Epidemiology and Biostatistics. 

 

CFSE Staining 

Fresh PBMCs obtained from aphaeresis were centrifuged at 1500 

RPM for six minutes and resuspended at 5x106 cells/ml in sterile PBS. A 

stock vial of CFSE was prepared by reconstituting a CFSE dye vial 

(Invitrogen) with 18 ml DMSO. CFSE stock (0.5 µl/ml) was added to cells for 

10 min at 37°C.  Cells were then quenched with 10 ml ice-cold R10 media 

and incubated on ice for 10 min before washing twice in R10 media. Cells 

were counted and resuspended at 2x106 cells/ml  in R10 media and 

stimulated with 1x1011 vp Ad5 or 2 µl Ad5 lysate for 6 days. On the 6th day 

cells were restimulated with Ad5 vp or lysate and 3 µl/ml αCD49/CD28d. After 

two hours, 1 µl/ml brefeldin A and 0.7 µl/ml monensin were added to each 

tube and the cells incubated at 37°C for an additional two hours before 

staining as indicated above.  
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Chapter 3: Adenovirus-Specific Human T-cells 
are Pervasive, Polyfunctional, and Cross 
Reactive 
 

Abstract 

Pre-existing immunity to adenovirus (Ad) reduces the efficacy of Ad-

based vaccines. The goal of this study was to define the prevalence, 

magnitude, functionality and phenotype of Ad-specific human T-cells directly 

ex vivo.  To study the magnitude of T-cell responses to Ad, we developed a 

highly reproducible whole Ad vector stimulation assay for use with 

polychromatic flow cytometry. Ad-specific CD4+ and CD8+ T-cells were 

detected in all 17 human subjects tested and were capable of proliferating 

upon restimulation. Ad-specific CD4+ T-cells were primarily monofunctional 

CD4+ T-cells that produced IL-2, IFN-γ or TNFα and expressed the memory 

markers CD27 and CD45RO. In contrast, Ad5-specific CD8+ T-cells were 

more polyfunctional, expressing effector-like combinations of IFN-γ, MIP1α 

and perforin, and generally lacked CD27 and CD45RO expression.  Ad-

specific CD4+ and CD8+ T-cell responses against chimpanzee-derived AdC6 

and AdC7 were found in all subjects, indicating the commonality of cross-

serotype reactivity of Ad-specific T-cells. This cross-reactivity is due in part to 

extensive CD4+ and CD8+ T-cell recognition of hexon regions conserved 

between multiple Ad serotypes.  The prevalence, cross-reactivity and effector- 



 38

like functions of Ad-specific T-cells in humans may affect the efficacy of Ad 

vector-based vaccines by eliminating vector infected cells even when rare 

serotype Ad vectors are employed. 

 



 39

Introduction 

Adenovirus (Ad) vectors are commonly used as vaccine carriers 

because of their ability to induce insert-specific CD8+ T-cell responses. 

However, pre-existing Ad-specific immunity represents a major obstacle for 

Ad-based vaccines [76,113]. In animal models and humans, vaccination is 

less effective in the presence of neutralizing antibodies (nAb) [80,112,113]. It 

has also been shown that significant levels of nAb are generated after a 

single Ad5 injection, thereby reducing the efficacy of a homologous vaccine 

boost [114]. The prevalence of nAb to the commonly used Ad5 varies 

worldwide, and was shown to be as high as 90% in Africa.  Seroprevalence of 

the other 52 identified human Ads also fluctuate globally with the occurrence 

of natural infection. To avoid the potential limitations imposed by pre-existing 

immunity, vectors based on alternative Ad serotypes are in development, 

including Ad26, 35, 48, and the chimpanzee-derived AdC6, C7, and C68.  

Neutralizing Ab titers to these various rare Ad serotypes are typically low in 

humans, with seroprevalence to AdC6 and AdC7 less than 5% of adults in the 

United States and less than 10% seropositive in equatorial Africa, the natural 

habitat for chimpanzees [91]. 

Although the prevalence and effects of Ad-specific nAb on vaccine 

efficacy have been studied, little work has been done to characterize the 

naturally occurring T-cell response to Ad, or the potential of Ad-specific  
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T-cells to influence Ad-based vaccine efficacy.  Ad-specific CD8+ T-cell 

responses can limit the effectiveness of Ad-vectored vaccines in animal 

models [31,114], presumably due to the direct elimination of vector-

transduced antigen presenting cells.  Such studies, however, have not been 

performed in the setting of natural Ad infection in humans.  Ad-specific T-cells 

have been detected ex vivo in humans, both before and after Ad vector 

vaccination, in peripheral blood and mucosal tissues [59,82,116,117,164].  

Several MHC class II-restricted CD4+ T-cell epitopes have been identified in 

the Ad5 hexon, residing primarily in regions conserved between disparate Ad 

serotypes, such as the HLA-DP4 restricted CD4+ T-cell epitope (hexon 910-

924) [117,118,165]. MHC class I restricted CD8+ T-cell epitopes have also 

been identified in the Ad hexon, penton, and fiber [117,120].  Responses to 

Ad appear to be almost ubiquitous in the human population [59,82]; however, 

beyond simple quantification, little is known regarding the functionality and 

phenotype of Ad-specific CD4+ and CD8+ T-cells in humans.  Moreover, while 

serotype cross-reactivity has been noted for both Ad-specific CD4+ and CD8+ 

T-cells, it is unclear whether Ad-specific T-cells cross-reacting with a 

disparate Ad serotype will function in a similar manner. 

 To address these issues, we have developed a highly reproducible 

polyfunctional flow cytometry-based assay to quantify and characterize Ad-

specific CD4+ and CD8+ T-cells directly ex vivo from human peripheral blood 

lymphocytes.  Herein, we describe the functional and phenotypic properties of 
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human Ad-specific T-cells against human Ad5 and cross-reactive responses 

against chimpanzee-derived AdC6 and AdC7. 

 

Results 

Optimization of Ad particle stimulation for Ad-specific T cell responses 

by intracellular cytokine staining  

Previous studies of Ad-specific T-cell responses have focused on 

examining Ad hexon protein-specific T-cell responses using ELISpot assays.  

However, by using only hexon peptides, T-cells specific for other Ad proteins 

are missed and the magnitude of Ad-specific T-cells are underestimated. To 

better quantify and characterize human Ad-specific T-cell responses, we 

developed a stimulation procedure using intact Ad particles, followed by a T-

cell flow analysis using standard intracellular cytokine-staining (ICS) assay.  

To begin, we determined the optimal concentration of intact Ad particles to 

maximize expression within peripheral blood mononuclear cells (PBMC) for 

presentation to T-cells.  We incubated an Ad5 vector expressing green 

fluorescent protein (GFP) at various concentrations ranging from 1x109 vp to 

1x1011 vp with PBMC for 18 hrs and assessed GFP expression in B cells 

(CD19+), monocytes (CD14+),  

T-cells (CD3+/CD4+/CD8+), or the remaining PBMCs negative for these 

markers. After an overnight incubation, GFP was detected in CD14+ 

monocytes and CD19+ B cells in a dose dependent manner (Figure 5A). No  
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Figure 5: Measuring adenovirus specific T-cell responses following 
whole vector stimulation. PBMCs from healthy adults were cultured overnight at 37°C 

in 5% CO2 with Ad5 vector and costimulatory antibodies αCD28 and αCD49d. The following 
morning golgi secretion inhibitors brefeldin A and monensin were added for 6 hours before 
standard intracellular cytokine staining. A) PBMCs were incubated with 1x10

9
-1x10

11
 vp Ad5 

expressing green fluorescent protein (GFP).  The upper graphs show GFP expression in 
CD14

+
 monocytes and CD19

+
 B-cells, and the lower graph shows expression in CD3

+
 T-cells. 

B) PBMCs were stimulated with 1x10
9
-1x10

11 
vp Ad5 vector and CD4

+
 and CD8

+
 T-cell 

responses were measured by IFN-γ production.  C) Ad-specific IFN- γ
 +

 CD4
+
 and CD8

1
 T-cell 

responses were measured in seven donors following stimulation with 1x10
9
-1x10

11 
vp Ad5. 
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GFP was expressed in other cell types.  Along with increasing vector 

concentration we also detected an increase in Ad-specific CD4+ and CD8+  

T-cell responses as measured by IFN-γ production (Figure 5B). To confirm 

the optimal vector dose for T-cell stimulation the vector titration was repeated  

using PBMC from 6 normal donors. Optimal IFN-γ expression was observed 

at the maximal dose of 1 x 1011 Ad particles/million PBMC (Figure 5C).  

 

Polyfunctional analysis of Ad-specific T-cell responses 

Having established the optimal conditions to detect IFN-γ producing 

Ad-specific T-cells using whole Ad particles, we next adapted the procedure 

to a polychromatic flow cytometry panel that simultaneously detects T-cell 

memory phenotype and 5 unique effector functions, i.e. IL-2, IFN-γ, TNFα, 

MIP1α, and perforin, along with standard T-cell lineage markers, and 

exclusion markers.  To ensure that we were detecting only Ad-specific T-cells 

and minimizing background, we followed a strict gating strategy that removes 

dead cells as well as CD14+ monocytes and CD19+ B cells.  We were able to 

detect Ad-specific CD4+ and CD8+ T-cells capable of eliciting multiple 

functions after stimulation (Figure 6).  We next re-evaluated our Ad vector 

titration to determine if there were differential functional responses based on 

vector dose. The Ad-specific T-cell response was similar at all vector 

concentrations for CD8+ T-cells, which produced a combination of IFN-γ,  
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Figure 6: Gating strategy for measuring Ad-specific T-cell responses. 
Gating strategy for determining Ad-specific CD4

+
 and CD8

+
 T-cells producing IL-2 IFN-γ 

MIP1α, Perforin and TNF α 
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Figure 7: Adenovirus particle stimulation for measuring polyfunctional 
Ad-specific T-cell responses. A) Polyfunctional CD4

+
 and CD8

+
 T-cell responses 

following stimulation with 1x10
9
-1x10

11 
vp Ad5. B) PBMCs from a single donor were 

stimulated with 1x10
11 

vp Ad5 on 7 different days to test the reproducibility of the whole vector 
stimulation assay. The percentage of CD4

+
 T-cells producing IL-2, IFN-γ and TNF α was 

compared following Ad vector and positive control streptococcus enterotoxin B (SEB) 
stimulation. The degree of variability was significantly less (p<0.05) following Ad stimulation 
compared with SEB. 
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TNFα and perforin with small amounts of IL-2. CD4+ T-cells predominantly 

produced IFN-γ, IL-2, and TNFα (Figure 7A, average of six subjects). At 

1x1011 vp Ad5 the percentage of CD4+ and CD8+ T-cell producing only IFN-γ 

was appreciably higher than the other functional combinations.  Finally, we 

examined the reproducibility of the assay system in the setting of 

simultaneous IL-2, IFN-γ, and TNFα production (Figure 7B).  Using 

cryopreserved samples, we measured the Ad-specific T-cell response at the 

1x1011 Ad particle dose with the same batch of PBMC obtained from a single 

donor on seven separate days. The variability in Ad-specific CD4+ and CD8+
 

cell frequency producing IL-2, TNFα, and IFN-γ was low, and  

significantly lower than the range of variability observed for the superantigen 

positive control (SEB, p<0.05).  

 

Ad5-specific CD4+ and CD8+ T cells are common in humans 

We next assessed the functionality and phenotype of Ad5-reactive  

T-cells in 17 healthy adults. CD4+ and CD8+ T-cell responses to Ad5 were 

detected in all subjects. Most subjects had primarily monofunctional CD4+  

T-cells that produced IL-2, IFN-γ or TNFα (Figures 8A, C). In contrast, Ad5-

specific CD8+ T-cells were more polyfunctional, expressing effector-like 

combinations of IFN-γ, MIP1α and perforin (Figures 8B, D). With the  
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Figure 8: Adenovirus 5 specific T-cell responses are common in 
humans. We assessed the functionality and phenotype of Ad5-specific T-cells in 17 healthy 

adults by stimulating PBMCs with whole Ad5 vector and performing intracellular cytokine 

staining. A) The percentage of Ad5-specific CD4
+
 T-cells producing IL-2, IFN-γ MIP1α, 

Perforin and TNFα. B) The percentage of Ad5-specific CD8
+
 T-cells producing IL-2, IFN- γ, 

MIP1α, perforin and TNFα.  C) The average polyfunctional Ad5-reactive CD4
+
 T-cell 

response from 17 donors. D) The average polyfunctional Ad5-reactive CD8
+
 T-cell response 

from 17 donors 
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Figure 9: Memory phenotype and proliferation of Ad5-specific T-cells. We 

assessed the phenotype, functionality and proliferation of Ad5-specific T-cells by stimulating 
PBMC with replication defective Ad5 vector. Proliferation was accessed by CFSE dilution 
after 6 days. A) Ad5-reactive CD4

+
 and CD8

+
 T-cells proliferate in response to Ad5 

stimulation. The percentage of CFSE low dividing cells is shown following no stimulation or 
stimulation with Ad5 vector. B) Memory phenotype of Ad5-specific CD4

+
 and CD8

+
 T-cells. 

Memory phenotype of all CD4
+ 

and CD8
+
 T-cells is shown in grey. Red dots represent Ad-

specific cells positive for IL-2, IFN-γ, MIP1α, Perforin and or TNFα. Ad5-specific CD4
+
 cells 

are primarily central memory-like (CD27
+
CD45RO

+
) and effector memory (CD27

-
CD45RO

+
) 

phenotypes. Ad5-specific CD8
+
 T-cells are primarily effector (CD27

-
CD45RO

-)
 and central 

memory like (CD27
+
CD45RO

+
) phenotypes.  C) Memory phenotype of proliferating Ad-

specific cells. Memory phenotype of all T-cells after a 5-day stimulation with Ad5 is shown in 
grey. CFSE low T-cells are shown in red. CD4

+
 T-cells are on the left and CD8

+
 T-cells are on 

the right. 
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exception of monofunctional responses, nearly all Ad5-specific CD8+ T-cells 

produced perforin together with at least one other function (Figure 8D).   

Ad5-specific CD4+ and CD8+ T-cells were also capable of proliferating 

upon stimulation (Figure 9A).  Ad-specific CD4+ T-cells generally exhibited a 

central memory-like phenotype (CD27+CD45RO+) with a small contribution of 

effector memory (CD27-CD45RO+) cells (Figure 9B, left panel).  In marked 

contrast, the majority of Ad-specific CD8+ T-cells displayed an effector-like 

phenotype (CD27-CD45RO-), with a smaller contribution of central memory-

like cells (Figure 9B, right panel). In contrast, proliferating Ad-specific CD4+  

and CD8+ T-cells had primarily a central memory-like phenotype after 6 days 

of stimulation (Figure 9C).  

 

Ad5 hexon-specific responses are commonly observed in humans and 

are directed against both conserved and variable regions 

 Next, we determined whether Ad5 hexon-specific responses were 

directed against conserved or variable hexon regions. We also assessed the 

functionality of responses to the different regions of hexon. The latter  

analysis was conducted to elucidate differences in responses to the constant 

regions that had presumably been recalled repeatedly due to infections with 

different Ad serotypes and those to the variable loops that presumably have a 

different stimulation history.   Starting with overlapping 15-mer peptides 

spanning the hexon amino acid sequence, we divided the conserved regions 
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Figure 10: Ad5-specific T-cells recognize variable and conserved 
regions of the hexon. We assessed the functionality and phenotype of Ad5-
specific T-cells in 17 healthy adults by stimulating PBMCs with overlapping 15mer 
Ad5 hexon peptides. Approximately 44 peptides were combined into each of 5 pools: 
1 for all sequences in the variable regions of the hexon, and 4 containing linear 
sequences within the conserved regions of the hexon. The percentage of CD4+ and 
CD8+ T-cells responding to the conserved 1 (C1), conserved 2 (C2), conserved 3 
(C3), conserved 4 (C4), and variable  (V) hexon pools are shown.  Cells staining 

positive for IL-2, IFN-γ, MIP1α, Perforin and or TNF α were summed to compute the 
total percentage of responding cells. CD4+ responses are depicted in white bars and 
CD8+ responses in grey. Center line represents the mean with whiskers depicting the 
standard error. 
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into 4 linear pools of ~ 44 peptides each (C1-C4), and made a single pool 

consisting of peptides from variable (V) regions.  We could readily detect 

CD4+ T-cell responses to all 5 pools (Figure 10, open bars), indicating that 

CD4+ T-cells can recognize epitopes spread throughout the hexon, with the 

largest responses in the C2, C3, and V pools. There was no significant 

difference in the summation of the total response between the C2 and C3 

pools compared with the V pool, while responses to the C1 (p<0.001) and C4 

(p<0.02) pools were significantly lower. CD8+ T-cells also responded potently 

to Ad hexon (Figure 10, grey bars).  The magnitude of responding CD8+ T-

cells was higher than that of CD4+ T-cells with the largest responses against  

the C3 and V pool.  

Both CD4+ and CD8+ T-cells had similar functionality following 

stimulation with conserved and variable Ad hexon pools (Figure 11). Ad-

specific CD4+ T-cells produced little perforin, while IL-2, IFN-γ, MIP1α, and 

TNFα dominated the responses.  While there were multifunctional responses 

(two or more functions simultaneously), the bulk of Ad-specific CD4+ T-cells 

were monofunctional (Figure 11A, top), producing either IFN-γ, IL-2, TNFα, or 

MIP1α only (Figure 11B, top).  The CD4+ T cell responses against the hexon 

peptide pools were similar in functionality compared to the whole Ad vector, 

with the exception that whole Ad vector responses were dominated by IFN-γ 

production, while responses elicited by hexon peptides tended to skew to  
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Figure 11: Polyfunctionality of Ad5-specific T-cells is similar to variable 
and conserved regions of the hexon. We assessed the functionality and phenotype 

of Ad5-specific T-cells in 17 healthy adults by stimulating PBMCs with overlapping 15mer 
Ad5 hexon peptides. Approximately 44 peptides were combined into 5 pools: 1 for all 
sequences in the variable regions (V) of the hexon, and 4 containing linear sequences (C1-
C4) within the conserved regions of the hexon A) Percentage of Ad-specific cells with a 

polyfunctional response. Pies represent all responding Ad-specific cells making IL-2, IFN- γ, 

MIP1a, Perforin and or TNFα following stimulation with Ad5 vector or Ad5 hexon pools C1, 
C2, C3, C4 or V. Each slice represents the proportion of the cells producing four of five 
cytokines (blue), three of five (green), two of five (yellow) and one of five (orange). B) 
Percentage of Ad-specific cells with a polyfunctional response. Bars represent the 
percentage of CD4

+
 (top) and CD8

+
  (bottom) T-cells making each combination of IL-2, IFN- 

γ, MIP1α, Perforin and or TNFα following stimulation with Ad5 vector (blue) or Ad5 hexon 
pools C1 (red), C2 (neon green), C3 (orange), C4 (pink) or V (dark green). Plus signs 
represent cells staining positive (+) for each cytokine. 
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TNFα production (Figure 11B, top).  This difference may be attributed to the 

different assay conditions used for testing whole vector (overnight) vs. hexon 

peptides (6 hrs), or could reflect different levels of antigenic stimulation. 

 In contrast to hexon-specific CD4+ T-cells, perforin, TNFα, and MIP1α 

dominated the hexon-specific CD8+ T-cell responses, and IL-2 and IFN-γ 

tended to be lower.  The overall level of functionality in the hexon-specific 

CD8+ T-cell response tended to be higher than the CD4+ hexon-specific 

response, with the majority of CD8+ T-cells responding with at least two 

functions (Figure 11A, bottom).  Similar to whole Ad vector responses, hexon-  

specific CD8+ T-cells were highly skewed towards effector like activity, with 

perforin clearly dominating the entire response.  With the exception of  

monofunctional responses, perforin was present in combination with another 

function in nearly every hexon-specific CD8+ T-cell (Figure 11B, bottom). 

There was no apparent difference in functionality between hexon-specific 

CD8+ T-cell responses directed against conserved or variable regions. 

 

Cross-serotype reactivity of Ad-specific T cells in humans 

 To test the ability of Ad-specific T-cells to cross-react with disparate Ad 

serotypes, we examined T-cell responses against the chimpanzee-derived 

adenoviruses AdC6 and AdC7, which humans are rarely seropositive for.  In 

all subjects examined CD4+ T-cells responded to Ad5, AdC,6 and AdC7, 

demonstrating a high level of cross-serotype reactivity.  The predominant  
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Figure 12: Ad-specific T-cells are cross reactive. Cross reactivity of Ad-specific 

T-cells was measured in seventeen healthy donors by stimulating PBMCs overnight with 
human adenovirus 5 (Ad5), chimpanzee 6 (AdC6) and chimpanzee 7 (AdC7) followed by 
intracellular cytokine staining. A) The total percentage of Ad5, AdC6 and AdC7 CD4

+
 (top 

row) and CD8
+
 (bottom row) T-cells. Ad-specific cells stained positive for IL-2, IFN-γ, MIP1α, 

Perforin and or TNF-α. B) Percentage of Ad-specific cells with a polyfunctional response. 

Pies represent all responding Ad-specific cells making IL-2, IFN-γ, MIP1α, Perforin and or 

TNFα following stimulation with Ad5, AdC6, or AdC7 vector. Each slice represents the 
proportion of the cells producing four of five cytokines (blue), three of five (green), two of five 
(yellow) and one of five (orange).  C) Percentage of Ad-specific cells with a polyfunctional 
response. Bars represent the percentage of CD4

+
 (top) and CD8

+
 (bottom) T-cells making 

each combination of IL-2, IFN- γ, MIP1α, Perforin and or TNFα following stimulation with Ad5 
(black) AdC6 (pink) and AdC7 (purple) vector. Plus signs represent cells staining positive (+) 
for each cytokine. 
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functional response differed between the vectors, with Ad5 and AdC7 

inducing mainly IFN-γ, while AdC6 induced primarily TNFα (Figure 12A). 

Despite these differences, the overall functionality of the Ad-specific CD4+  

T-cell response was quite similar between all three vectors (Figure 12B, C). 

The CD4+ T cell response to AdC6 was significantly larger than to Ad5 

(p<0.01). Cross-serotype reactive Ad-specific CD8+ T-cells were also present 

in every donor, with no differences in magnitude and a similar degree of 

functionality (Figure 12B, C). There was no significant difference in the total 

magnitude of the CD8+ T-cell response to Ad5, AdC6 and AdC7, and the 

functional profiles of cross-reactive Ad-specific CD8+ T-cells were also similar. 

Discussion 

 Ad vectors are commonly used to deliver transgenes in gene therapy 

and vaccination.  It is well known that Ad-specific neutralizing antibodies can 

limit the effectiveness of Ad-based vectors; however the potential role of Ad-

specific T-cells to further curtail Ad vector efficacy is unclear.  Here we 

provide a minimal estimate of the level of Ad-specific T-cell responses in 

humans.  We find that Ad-specific T-cell responses are universal, as every 

subject we tested had a detectable CD4+ and CD8+ T-cell response against 

Ad5, despite a seroprevalence of only 40% in the United States. 

 Our findings indicate that Ad-specific T-cells are readily detectable 

using replication defective Ad particles or Ad hexon peptides.  Although the 

response magnitude against each particular stimulant may vary between 
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subjects, both CD4+ and CD8+ T-cells responded in a similar fashion.  

Interestingly, Ad-specific T-cells appear to be maintained continually in an 

effector-like state, particularly Ad-specific CD8+ T-cells.  Unlike our 

observations for common human viral pathogens, including cytomegalovirus, 

Epstein-Barr virus, and Influenza, Ad-specific CD8+ T-cells are highly prone to 

effector function upon stimulation [166].  This is further manifested in the 

effector-like memory phenotype maintained by a substantial proportion of the 

Ad-specific CD8+ T-cell response.  Due to extensive sequence homology 

between various human Ad serotypes, Ad-specific T-cells in part cross-react 

and are likely repeatedly stimulated by periodic infections with different Ad 

serotypes [116,118,161].  As a result, human Ad-specific CD8+ T-cells are 

unlikely to be restricted specifically to a single Ad serotype, and able to 

recognize not only targets infected with virus homologous to the vector used 

for expansion but also heterologous virus from diverse serotypes. This high 

level of cross-reactivity very likely leads to the continual maintenance of Ad-

specific CD8+ T-cells in an effector-like state, as humans are expected to be 

repeatedly infected with different serotypes of Ad. Furthermore, Ad viruses 

persist in lymphatic tissues and if they remain transcriptionally active this 

would further maintain T-cells at an activated state [71].  

 One reason for the divergence between Ad serostatus and Ad 

responsive T-cells is the presence of common T-cell epitopes in conserved 

regions of the Ad hexon protein, which accounts for ~80% of the entire hexon 
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sequence.  Similar to previous findings obtained with CD4+ and CD8+ T-cell 

lines, we find that both CD4+ and CD8+ T-cell responses can be detected 

against the conserved and variable hexon peptide pools.  Conservation of  

T-cell epitopes in hexon leads to cross-reactivity even among divergent 

serotypes from chimpanzees, AdC6 and AdC7. Because of this high degree 

of cross-reactivity, it is impossible to know whether, for example, Ad5-reactive 

T-cells are truly Ad5-specific and generated from natural Ad5 infection, or 

simply cross-reacting with Ad5 following infection with another Ad serotype. 

Finally, due to this extensive cross-reactivity, it is likely that transgene 

product-specific immune responses induced by Ad vectors derived from rare 

human serotypes, which are currently under development, may still be 

affected by Ad-specific cytotoxic T-cells capable of recognizing Ad vector 

transduced cells.   

 

Material and Methods 

T-cell Responses 

 
Peripheral blood mononuclear cells (PBMCs) were obtained from 

aphaeresis of adult healthy donors by the University of Pennsylvania Center 

for AIDS Research Immunology Core. T-cell responses to Ad5, AdC6 and 

AdC7 were measured by flow cytometry following whole vector and peptide 

stimulation. Samples were analyzed on a modified LSR II flow cytometer (BD 
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Immunocytometry Systems, San Jose, CA). Data analysis was performed 

using FlowJo 8.7 (TreeStar, San Carlos, CA). 

 

Statistics 

Variability in the assays was tested using Levene’s robust variance test 

with Brown and Forsythe’s 10% trimmed mean alternative.. Analyses were 

conducted using Stata MP 10.0.  The T-cell response to different vectors and 

peptide pools were compared using a Friedman Statistic. When two groups 

were compared a Wilcoxon's sum rank test, a non-parametric t-test, was 

used.  

 
Portions of this work have been previously published: Hutnick NA, Carnathan 

DG, Demers K, Makedonas G, Ertl HC, Betts MR. “Adenovirus-Specific 

Human T cells are Pervasive, Polyfunctional, and Cross Reactive.” Vaccine. 

2010 Feb 23; 28(8):1932-41 
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Chapter 4: Baseline Ad5 serostatus does not 

predict Ad5-HIV vaccine-induced expansion of 

Ad-specific CD4
+
 T-cells 

 

Abstract 

The mechanisms underlying possible increased HIV-1 acquisition in 

adenovirus 5 (Ad5)-seropositive subjects vaccinated with Ad5-HIV-1 vectors 

in the Merck STEP trial remain unclear. One hypothesis for these results is 

pre-existing Ad5-specific CD4+ T-cells in Ad5-seropositive subjects became 

activated upon vaccination, making them the optimal targets for HIV infection 

and replication. To examine this hypothesis, we studied Ad5-specific CD4+  

T-cell responses in the Merck phase I Ad5 gag/pol/nef safety study testing the 

same vector, dosing and schedule used during the STEP study. We find Ad5 

serostatus does not predict Ad5-specific CD4+ T-cell frequency, and Ad5-

specific CD4+ T-cells were present in over 90% of subjects. No significant 

differences in the magnitude or functionality of Ad5-specific CD4+ T-cells 

between Ad5-seropositive and Ad5-seronegative subjects were observed 

following vaccination. Vaccination did not affect the activation or mucosal 

homing receptor expression of Ad5-specific CD4+ T-cells in either serogroups. 
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These findings indicate no causative role for Ad5-specific CD4+ T-cells in 

increasing HIV-1 susceptibility in Ad5-seropositive STEP trial subjects. 

Introduction 

Given the urgent need for an effective HIV vaccine, it is of paramount 

importance to gain further insight into the reasons underlying the failure of the 

Merck STEP HIV vaccine trial.  Post-hoc analysis of the STEP trial showed 

vaccination with an adenovirus 5 (Ad5) vector based HIV-1 vaccine increased 

HIV-1 acquisition rates in volunteers with an adenovirus 5 neutralizing 

antibody (nAb) titer greater than 200 [83]. It has been proposed that the Ad5 

vector caused activation and expansion of pre-existing Ad5-specific CD4+  

T-cells in vaccinees with high neutralizing antibody titers to Ad5 prior to 

vaccination.  Activated Ad5-specific CD4+ T-cells then served as  targets for 

HIV infection [167].  However, neither the prevalence of Ad5-specific CD4+  

T-cells in humans, nor their relationship with Ad5 neutralizing antibody titer 

has been characterized.  Moreover, it is unknown to what degree vaccination 

with Ad5 vectors stimulates pre-existing Ad5-specific CD4+ T cells in vivo .  It 

is not possible to adequately addressing these questions for the STEP trial as  

blood samples were not collected before vaccination and at only two time 

points, weeks 8 and 30, after vaccination [81]. 

To test if Ad5-specific CD4+ T-cells may have increased the vaccinee’s 

susceptibility to HIV-1 infection, we analyzed samples from subjects enrolled 

in Merck phase I HIV vaccine trials that utilized similar or identical Ad5 
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vectors to those used in the STEP trial at various dosing regimens.  As pre-

vaccination samples were available for each subject, we could precisely 

determine relationships between pre-existing Ad5-specific CD4+ T-cell 

responses and Ad5 nAb titers, and measure the longitudinal effect of 

vaccination on frequencies, phenotypes, and functionalities of Ad5-specific 

CD4+ T-cells.   Our results show that Ad5-specific CD4+ T-cells are nearly 

universally present in subjects and do not correlate with Ad5 nAb titer. Ad5-

specific CD4+ T-cells are only expanded following vaccination in subjects 

receiving the highest Ad5 vector dose, 3x1010 vp, the same dose used for the 

STEP trial. However, it is unlikely Ad5-specific CD4+ T-cells were responsible 

for the increased acquisition of HIV observed in the STEP trial, as there were 

no significant differences in the magnitude, activation, or mucosal homing of 

Ad5-specific CD4+ T-cells in Ad5-seronegative and Ad5-seropositive subjects.  

 

Results 

Ad5 nAb titers and T-cell responses were tested in samples from 

seven cohorts that received various Ad5 HIV vaccines in Merck phase I trials 

(Table 3).   To test for Ad-specific T-cell responses we developed a sensitive 

and reproducible polychromatic intracellular cytokine-staining assay using 

replication-defective Ad5 particles for stimulation (Chapter 3, Figure 1A, 1C).   

Stimulating cells with the entire Ad5 vector allows for the detection of T-cells  
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Table 3: Merck Ad5 Vaccine Subjects 

Group Number of 
Subjects 

Vaccine Schedule Baseline 
Neutralizing 
Antibody titer 

Placebo 5 Placebo (AIPO4) Weeks 0, 4, 26 18-2598 

A 6 Placebo (AIPO4) weeks 0,4,8, 
1x10

10
Ad5gag week 26 

≤18-58 

B 5 5mg gag DNA/AlPO4 weeks 0, 4, 8 
1x10

10
vp Ad5 gag week 26 

≤18-278 

C 5 Ad5 gag 1x10
10

,  weeks 0, 4, 26 ≤18-1047 

D 5 HIV-1 gag MRK Ad5 1x10
9
 vp at 

weeks 0, 4, 26 
≤18-1146 

Seronegative 
(016 trial) 

5 MRKAd5HIV-1gag/pol/nef, 3 x10
10

, at 
weeks 0 followed weeks 0-78  

≤18 

Seronegative 
(016 trial) 

5 MRKAd5HIV-1gag/pol/nef, 3 x10
10

, at 
WKS 0,4,26   

≤18 

Seropositive 
(016 trial) 

5 MRKAd5HIV-1gag/pol/nef, 3 x10
10

, at 
weeks 0, 4, 26   

203-442 

Table 3: Merck Ad5 HIV vaccine subject groups.  
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recognizing Ad5 epitopes from the entire vector as opposed to using 

overlapping peptides for a single protein such as hexon only.  

To characterize the relationship between Ad5 nAb titers and Ad5-

specific CD4+ T-cell responses, we analyzed samples from 40 subjects with 

varying Ad5 nAb titers who were enrolled in various Ad5 HIV vaccine trials. Of  

these subjects, 15 (five seronegative weeks 0-4, five seronegative weeks 0-

78, and five seropositive weeks 0-78) were enrolled in the Merck 016 phase I 

HIV-1 vaccine safety trial and received Ad5 vectors used in the STEP trial at 

weeks 0, 4, and 26 [80]. All subjects independent of vaccination group were 

combined at baseline based on Ad5 serostatus (seronegative Ad5 nAb ≤18, 

seropositive Ad5 nAb >18). We detected similar frequencies of Ad5-specific 

CD4+ T-cells with a frequency of 0.05% to 2.0% in > 80% of Ad5-seropositive 

and Ad5-seronegative subjects at baseline (Figure 13A). Within Ad5-

seropositive subjects, Ad5-specific CD4+ T-cell frequencies did not correlate 

with Ad5 nAb titers  (Figure 13B). Though nAbs are serogroup-specific, Ad -

reactive CD4+ T-cells cross-react due to extensive sequence homology 

between the 51 human serotypes, accounting for the universal presence of 

Ad5-reactive CD4+ T-cell despite a seroprevalence of only 40% 

[32,116,117,118,161].  

Following vaccination, there were no increases in the percentage of 

Ad5-specific CD4+ T-cells in groups A-D. Subjects in these groups received a 

lower dose of Ad5 vector, and in some cases only one vector injection in  
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Figure 13: Ad5-specific CD4+ T-cell frequency does not correlate with 
Ad5 neutralizing antibody titer. Forty total subjects with a range of Ad5 nAb titers 

were analyzed (A,B). Ten Ad5-seronegative (five assessed weeks 0-4, five assessed weeks 
0-78, gray symbols) and five Ad5-seropositive subjects (black symbols) received 3x10

10
 vp 

Merck Ad5 gag/pol/nef at weeks 0, 4 and 26 (C, D, E). Ad-specific CD4
+
 T-cells represents 

the percentage of cells producing IFN-γ, IL-2, MIP1α, TNFα, and/or perforin production in 
response to Ad5 virus particle stimulation. A) Similar Ad5-specific CD4

+
 T-cell magnitude 

regardless of baseline Ad5 serostatus. B) No correlation between total Ad5-specific CD4
+
 T-

cell magnitude and Ad5 nAb titer. C) Ad5 nAbs titers increase in Ad5-seronegative subjects 
after one vaccination (P  < 0.05). D) Ad5 nAb titers remain elevated in baseline Ad5-
seronegative subjects throughout the vaccine course (gray asterisk, P < 0.05, weeks 4-78). 
E) Ad5-specific CD4

+
 T-cell frequency increases after vaccination in Ad5-seropositive 

subjects (open boxes, black asterisk) at weeks 4 (P < 0.002) and 8 (P < 0.03) and Ad5-
seronegative subjects (grey boxes, gray asterisk) at week 4 (P < 0.02).  Plots depict the 
median, 25th and 75th percentile (box plots) and the minimum and maximum values 
(whiskers). Triangles indicate vaccination time points. 
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contrast to the three doses of 3x1010 vp used in the seropositive and 

seronegative 016 subjects and STEP trial. Though Ad5-specific CD4+ T-cells 

were prevalent, this data suggests they require a high dose of vector to 

become activated by vaccination. Because there were no significant 

differences in Ad5-specific CD4+ T-cells observed in groups A-D or the 

placebos, the remainder of our analysis will focus on the seronegative and 

seropositive 016 trial subjects only. 

Four weeks after the first Ad5-HIV-1 vector administration in the fifteen 

016 trial vaccinated subjects, Ad5 nAb titers in baseline Ad5-seronegative 

subjects (n = ten) increased (P < 0.05), becoming comparable to those seen 

in baseline Ad5-seropositive subjects (n = five) in all but one individual (Figure 

13c) who seroconverted by week 8 (Figure 13D). Ad5-specific CD4+ T-cells 

increased in both groups (P < 0.002, baseline seropositive; P < 0.03, baseline 

seronegative) after the initial vector dose (Figure 13E, Figure 14). Successive 

vaccinations further expanded Ad5-specific T-cells in some subjects, but 

these responses were transient in most individuals (Figure 13E, Figure 15).  

At no point was there a statistical difference between the serogroups. 

Having found no differences between the serogroups in the magnitude 

or expansion of total Ad5-specific CD4+ T-cells, we next examined the 

relationship between Ad5 serostatus and potential functional differences in 

Ad5-specific CD4+ T-cells before and after vaccination.  Ad5-specific CD4+ T-  
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Figure 14: Ad5-specific T-cell responses following a single vaccination. 
Ad5-seronegative subjects (n = ten, grey) and Ad5-seropositive subjects (n = five, black) 
received 3x10

10
 vp Merck Ad5 gag/pol/nef at week 0. We measured the percentage of 

cytokine
+
 CD4

+
 T-cells by intracellular flow cytometry and all results are background 

subtracted. In both groups, total responses were elevated at week 4 compared to baseline (P  
< 0.002, baseline seropositive; P < 0.03, baseline seronegative).  In Ad5-seropositive 

subjects the percentage of Ad-specific CD4
+
 T-cells expressing IFN-γ (P  < 0.002), IL-2 (P  < 

0.002), MIP1α (P < 0.03), and TNFα (P < 0.0001) were significantly increased at week 4, 

while the percentage of Ad-specific CD4
+
 T-cells expressing IFN-γ (P  < 0.03), MIP1α (P  < 

0.01), and perforin (P  < 0.001) were significantly increased above baseline in Ad5-
seronegative subjects at week 4. 
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Figure 15: Change in the percentage of Ad5-specific CD4+ T-cells. Ten 

Ad5-seronegative (Ad5 nAb titer ≤18, five subjects weeks 0-4 and five subjects weeks 0-78, 
grey) and five Ad5-seropositive subjects (Ad5 nAb titer > 18, weeks 0-78, black) received 
3x10

10
 vp Merck Ad5 gag/pol/nef at weeks 0, 4 and 26 with PBMCs collected at weeks 0, 4, 

8, 18, 26, 30, 42, 52 and 78. We measured the percentage of CD4
+
 IFN-γ IL-2, MIP1α, 

TNFαandperforin positive T-cells by intracellular flow cytometry. Ad5-specific CD4
+
IFN-γ


 T-

cell frequency increases after vaccination in Ad5-seropositive subjects at weeks 4 (black 
asterisks, P  < 0.005), 8 (P  < 0.05) and 30 (P  < 0.5) and Ad5-seronegative subjects at week 
4 (grey asterisks, P  < 0.03). In Ad5-seropositive subjects the percent of Ad-specific CD4

+
 T-

cells producing IL-2 increased above baseline at week 4 (P  < 0.03), MIP1α at week 4 (P  < 

0.03), and TNFα at weeks 4 (P  < 0.0001) and 8 (P  < 0.005); in Ad5-seronegative subjects 

the percent of Ad-specific CD4
+
 T-cells producing MIP1α increased above baseline at weeks 

4 (P  < 0.005) and 42 (P  < 0.001), and perforin at weeks 4 (P  < 0.001), 42 (P  < 0.0001), 52 
(P  < 0.05) and 78 (P  < 0.05). 
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cells that produced IFN-γ, IL-2, MIP-1α, TNF-α, and/or perforin were present 

at baseline in most individuals at similar frequency regardless of Ad5 

serostatus (Figure 16A).  There was no correlations between Ad5 nAb titer 

and the percentage of Ad5-specific CD4+ T-cells that produced any one or 

more functions (data not shown).  IFN-γ dominated the response in both 

serogroups, but accounted for only ~50% of the total response (Figure 16B). 

Measuring IFN-γ alone by intracellular staining or ELISpot would 

underestimate the magnitude of the response. Approximately 20% of 

responding CD4+ cells also produced the effector functions MIP1α and 

perforin regardless of serostatus. 

After the first vaccination Ad5-specific CD4+IFN-γ+ and MIP1α+ T-cells 

increased in both groups (P < 0.05), with no differences in the fold change 

between serogroups (Figure 14, Figure 16C). Seropositive subjects had an 

early expansion of memory-like cells. The frequency of Ad5-specific CD4+ T-

cell producing IL-2 (P < 0.03) and TNFα (P < 0.001) increased in Ad5-

seropositive subjects only and accounted for a higher proportion of the total 

response (P < 0.05) compared with seronegative subjects (Figure 14, Figure 

15, Figure 16C-D). In contrast to these early responses, Ad5-seronegative 

subjects had a later more effector-like expansion of Ad5-specific CD4+ T-

cells. In seronegative subjects, the effector functions perforin and MIP1α were 

increased above baseline following the third vector dose.  (Figure 15, Figure 

16D). Despite these transient increases in CD4+ T-cell functions within  
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Figure 16: CD4+ functionality does not differ with baseline serostatus. IL-

2 (2, downward triangle), IFN-γ (G, circle), MIP1α (M, diamond), perforin (P, square) and 

TNFα (T, upward triangle) production in response to Ad5 virus were measured by intracellular 
cytokine staining. For all panels, gray symbols, lines, or box plots depict baseline Ad5- 
seronegative subjects, and open black symbols, lines, or box plots depict baseline Ad5- 
seropositive subjects.  A) Percentage of baseline Ad5-specific CD4

+
 T-cells producing various 

responses separated by Ad5 serostatus. Bars represent the mean ± SEM. B) Percent 
contribution of Ad5-specific CD4

+
 T-cells making each respective function to the total Ad5-

specific CD4
+
 T-cell response at baseline. C) The fold change in each Ad-specific CD4

+
 T-cell 

function after a single vaccination. The fold change in IL-2 was significantly higher in Ad5- 
seropositive subjects at week 4 (P  < 0.02). D) Transient changes in Ad-specific CD4

+
 T-cell 

function after vaccination. In Ad5-seropositive subjects IFN-γ increased from baseline (black 
asterisk) at week 4 (P < 0.005), 8 (P < 0.05) and 30 (P < 0.5), IL-2 at week 4 (P  < 0.03), 

MIP1α at week 4 (P  < 0.03), and TNFα at weeks 4 (P  < 0.0001) and 8 (P  < 0.005); in Ad5-

seronegative subjects, IFN-γ increased (gray asterisk) above baseline at week 4 (P < 0.03), 
MIP1a at weeks 4 (P  < 0.005) and 42 (P  < 0.001), and perforin at weeks 4 (P  < 0.001), 42 
(P  < 0.0001), 52 (P  < 0.05) and 78 (P  < 0.05). Plots depict the median, 25th and 75th 
percentile (boxes) and the minimum and maximum values (whiskers). Triangles indicate 
vaccination time points. 
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Figure 17: Polyfunctionality of Ad5-specific CD4+ responses in 
vaccinated subjects. We stimulated PBMCs with whole Ad5 vector and cytokine 

responses were measured by intracellular cytokine staining.  The percentage of cells making 
each possible combination of cytokines was calculated using the Boolean function in FlowJo. 
Bars represent the average percentage of responding Ad5-specific CD4

+
 T-cells making each 

cytokine combination at each time point. Ad5-Seronegative subjects demonstrated similar 
polyfunctionality at all time points compared with Ad5-seropositive subjects. 
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serogroups, there was never a significant difference between the groups for 

the percentage of Ad5-specific CD4+ T-cells producing IFN-γ, IL-2, MIP1α, 

TNFα, or perforin. The degree of polyfunctionality of Ad5-specific CD4+ T-cells 

remained comparable between baseline Ad5-seronegative and Ad5-

seropositive subjects and vaccination did not alter the polyfunctional profile of 

the CD4+ T-cell response (Figure 17). No difference was found in Ki-67 

expression for total (data not shown) or Ad5-specific CD4+ T-cells (Figure 

18A-B) between the serogroups or compared to baseline.   

Expression of the mucosal trafficking-associated markers α4 and β7 did 

not differ significantly from baseline within either serogroup on total memory 

(TM: all CD45RO+ and CCR7-CD45RO–) and effector memory (TEM: CCR7–

CD45RO+) CD4+ T-cells (Figure 18D first graph) or Ad5-specific TM or TEM 

CD4+ T-cells (Figure 18C, Figure 18D second graph) after vaccination. 

Moreover, Ad5-specific CD4+ TM and TEM cells represented a small fraction of 

total circulating α4
+
 β7

+CD4+ T-cells, and did not change significantly after 

vaccination (Figure 18D third graph). Thus, while transient changes in the 

phenotype and magnitude of Ad5-specific CD4+ T-cell responses were 

detected within groups after vaccination, no significant differences between 

groups were observed.   

 

Ad-specific CD4+ T cells at baseline are capable of expressing markers 

indicative of central memory-like (CD27+CD45RO+CD57-), effector memory 

(CD27-CD45RO+CD57-), and effector cells (CD27+CD45RO+CD57+/-) 
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Figure 18: Representative flow plots of Ki67 and αααα4/ββββ7 staining.  Data 
shown have been gated on CD3

+
 CD4

+
 T-cells. Grey density plots represent total memory 

CD4
+
 T-cells.  Red dot overlays represent Ad-specific CD4

+
 T-cells as defined by production 

of one or more cytokine A) Ki67 staining in total (grey) and Ad-specific (red) CD4
+
 T-cells in a 

representative donor. B) Average percentage of Ad-specific Ki67
+ 

CD4
+
 T-cells. C) 

representative staining on α4 and β7 expression on total (grey) and Ad-specific (red) CD4
+
 T-

cells. D) Percentage of total (left) and Ad5-specific (center) α4
+
β7

+
CD4

+
T-cells. Percentage of 

α4
+
β7

+
CD4

+
T-cells that are Ad5-specific (right). 
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Figure 19: Ad-specific T-cells expanded by vaccination have an effector 
and central memory-like phenotype. Surface staining and analysis by flow 

cytometry was used to determine the phenotype of cytokine producing Ad-specific CD4
+
 T-

cells in previously described subjects. Effector cells are defined as CD27
-
CD45RO

-
, effector 

memory as CD27
-
CD45RO

+
 and central memory-like as CD27

+
CD45RO

+
. Cells making IFN-

γ, IL-2, TNFα, MIP1α and or perforin following vaccination are in red and all CD4
+
 T cells are 

in grey. A) The phenotype of Ad5-specific CD4
+
 T-cells at baseline in representative subjects. 

B) The phenotype of cytokine producing cells for a representative subject at week 4. C) The 
phenotype of ad-specific cells following vaccination in a representative subject.  
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(Figure 19A; CD57 data not shown).   The presence of each memory 

phenotype varies between subjects likely based on the frequency, time, and 

serotype of natural Ad exposure. Despite variations in the magnitude of a 

given phenotype, the functionality of a given phenotype remained relatively 

constant. For example, in the representative donor shown, week 4 effector 

cells made predominantly perforin, whereas central memory-like cells 

produced predominantly IL-2 and TNFa and effector memory cells produced 

all 5 cytokines (Figure 19B). Following vaccination, there was an expansion of 

Ad-specific cells with all phenotypes but no alterations in the percentage of 

the response with a given phenotype in either Ad5-seropositive or Ad5-

seronegative subjects (Figure 19C). 

Discussion 

Here, we examined Ad-specific CD4+ T-cell responses before and after 

vaccination to determine their potential role in enhancing susceptibility to  

HIV-1 acquisition.  We tested subjects from several Merck phase I trials that 

received Ad5 vectors, including subjects from the 016 trial, that used the 

same product, dosage, and regimen as was used in the STEP trial.  Most 

importantly, our studies include baseline samples for each subject, thus 

permitting precise characterization of changes in the Ad5-specific CD4+  

T-cell response to vaccination. Such samples were not collected in the STEP 

trial; which made it impossible to assess the actual effect of Ad5 vector 
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administration on Ad5-specific CD4+ T-cells and their potential role in 

enhancing susceptibility to HIV-1 acquisition.  

One hypothesis for why an increased risk of HIV infection occurred in 

vaccinated seropositive subjects was pre-existing Ad5-specific CD4+ T-cells 

were activated by vaccination making them the optimal targets for HIV 

infection. Our results indicate that Ad5-specific CD4+ T-cell responses 

induced by Ad5 vector administration likely did not play a role in increasing 

susceptibility to HIV infection.   Three findings support this conclusion:  first, 

we found no correlation between Ad5 nAb titers and the presence or 

magnitude of Ad5-specific CD4+ T-cell responses prior to vaccination.   Thus, 

high Ad5 nAb titers do not predict frequencies of Ad5-specific CD4+  

T-cells.  Second, Ad5-specific T-cells within subjects who are Ad5 nAb 

seronegative at baseline expand similarly to Ad5 nAb seropositive subjects in 

response to Ad5 vector administration.  There were also no differences 

between the serogroups in the level of activation as measured by Ki67, or 

mucosal homing as measured by α4β7.  However, enhanced susceptibility to 

infection was not found within STEP trial participants with low or absent Ad5 

nAb titers at baseline.  Third, after vaccination, Ad5 nAb seronegative 

subjects uniformly become Ad5 nAb seropositive, yet again no enhanced 

susceptibility was noted in baseline Ad5-seronegative STEP participants after 

receiving multiple doses of the Ad5 vector.  

Taken together, these data suggest that any linkage between Ad5- 
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serostatus and Ad5-specific T-cell-related increase in HIV-1 acquisition 

should only have been observed early after the first vaccine dose, for 

afterwards Ad5-specific T-cell responses in baseline Ad5-seronegative 

subjects appear immunologically equivalent to baseline Ad5-seropositive 

subjects. With the caveat that our analyses are restricted to circulating CD4+ 

T-cells and did not address potential differences in activated Ad5-specific 

CD4+ T-cells within mucosal tissues after vaccination, our results do not 

support the hypothesis that Ad5-specific CD4+ T-cells contributed to the 

potential increased HIV-1 acquisition in the STEP trial.  

 

Materials and Methods 

 
T-cell Responses 

Frozen PBMCs were obtained from participants in 5 Merck phase I HIV 

Ad5 trials (Table 3). The vaccination dose and schedule used for the 

seropositive and seronegative subjects was identical to that used in the phase 

II STEP trial. T-cell responses were by stimulating PBMCs over night with 

whole replication-defective Ad5 vector. Cells were analyzed on a modified 

LSR II flow cytometer (BD Immunocytometry Systems, San Jose, CA). Data 

analysis was performed using FlowJo 8.7 (TreeStar, San Carlos, CA). Ad5 

neutralizing antibody titers were measured as previously described [163]. 
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Statistics  

To test for group differences over time we performed mixed effects 

models. Mixed effects models are similar to regression models except they 

account for the inherent correlation between measurements from the same 

subject and allow us to use all available measurements over time. For 

comparisons between baseline and subsequent time points within each group 

we also used mixed effects models. Time was considered to be a discrete 

variable, lessening the power of these tests compared to tests where time is a 

continuous variable. Correlations between Ad5 nAb titers and T-cell functions 

were computed at baseline using Spearman correlations. Correlations over 

the entire time period were computed using partial correlation coefficients 

controlling for individual subject effects in the repeated measurements. All 

data was log-transformed using base e. 

 

Portions of this work have been previously published: Hutnick NA, Carnathan 

DG, Dubey SA, Makedonas G, Cox KS, Kierstead L, Ratcliffe SJ, Robertson 

MN, Casimiro DR, Ertl HC, Betts MR. “Baseline Ad5 serostatus does not 

predict Ad5 HIV vaccine-induced expansion of adenovirus-specific CD4+ T 

cells.” Nature Medicine. 2009. 15(8), 876. 
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Chapter 5: Vaccination with Adenovirus 5 HIV-1 

vector differentially expands Ad5-specific CD8
+
 

T-cells in seropositive and seronegative 

subjects 

 

Abstract 

Adenoviral (Ad) vaccine vectors represent both a vehicle to present a 

novel antigen to the immune system as well as restimulate immune 

responses against the Ad vector itself.  To what degree Ad-specific CD8+  

T-cells are restimulated by Ad-vector vaccination is unclear, although such 

knowledge would be important as vector-specific CD8+ T-cell expansion could 

potentially limit Ad vaccine efficacy further beyond Ad-specific nAb alone.  

Here we address this issue by measuring human Ad5-specific CD8+ T-cells in 

recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after 

vaccination by multicolor flow cytometry.  Ad5-specific CD8+ T-cells were 

detectable in 95% of subjects prior to vaccination, and displayed primarily an 

effector-type functional profile and phenotype.  Peripheral blood Ad5-specific 

CD8+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but 

differential expansion kinetics were noted in some baseline Ad5 nAb 
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seronegative subjects compared to baseline Ad5 nAb seropositive subjects. 

However, in neither group did vaccination alter polyfunctionality, mucosal 

targeting marker expression, or memory phenotype of Ad5-specific CD8+ T-

cells.  These data indicate that repeat Ad5-vector administration in humans 

expands Ad5-specific CD8+ T-cells without overtly affecting their functional 

capacity or phenotypic properties.  
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Introduction 

Vectors based on the human Ad5 are currently leading candidates for 

vaccines designed to elicit cellular immunity. Studies both in animals and 

humans have demonstrated that Ad5 vectors are capable of inducing potent 

and sustained transgene product-specific CD4+ and CD8+ T-cell responses 

[74,76,113]. Additionally, these vectors have been generally safe and well 

tolerated [80,170,171]. However, one major hurdle to Ad-vector based 

vaccines is the presence of pre-existing Ad-specific immunity. 

  Most studies of pre-existing Ad-specific immunity have focused on 

neutralizing antibodies (nAb). In animals and humans, Ad5 vaccination is less 

effective if there are pre-existing Ad5-specific nAbs [112,113]. Similarly, pre-

exposure to Ad5 vector reduces the efficacy of subsequent booster 

vaccinations, thereby limiting the ability for homologous vector boosting [115].  

The prevalence of nAbs to Ad5 varies worldwide, with up to 50% of adults in 

the United States and as many as 90% of adults in Africa testing seropositive 

[31]. To overcome this limitation, rare Ad serotypes with low seroprevalence 

have been developed as vaccine vectors [17,56,172].   

Ad-specific CD4+ and CD8+ T-cell responses have also been detected 

in humans [59,117]. However, their magnitude, functional properties, and 

phenotypic characterization directly ex vivo are not well described. Ad-specific 

T-cells are likely more prevalent in humans than Ad serotype-specific nAbs 

due to cross-reactivity of T-cells against conserved viral sequences, unlike 
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nAbs that are predominantly directed to the hypervariable outer loops of the 

Ad hexon. Indeed it has been demonstrated that ex vivo generated human 

CTL lines are capable of killing target cells infected with Ad serotypes from 

multiple subgroups [116].  Though Ad-specific T-cells have been identified 

following natural infection, it is unclear whether Ad-specific T-cells stimulated 

by vaccination are similar to those induced by natural infection.  Moreover, 

the effect of repeat homologous E1-deleted Ad5 vector administration upon 

pre-existing Ad5-specific CD8+ T cells has not been assessed in human 

vaccine recipients. 

 To assess the effect of Ad vector administration on the Ad-specific 

CD8+ T-cell response in humans, we analyzed peripheral blood mononuclear 

cells (PBMCs) from subjects enrolled in a Phase 1 Ad5-vector HIV vaccine 

trial. Using a whole Ad5 vector stimulation together with polyfunctional flow 

cytometry, we defined the prevalence, magnitude, functionality and 

phenotype of Ad5-specific CD8+ T-cells before and after Ad5 vector 

administration. Our results demonstrate that while Ad5-specific CD8+ T-cells 

are present in most humans and transiently expand after vaccination, they do 

not change in either phenotype or function.  

 

Results 

 To assess the total magnitude, functionality, and phenotypes of Ad5-

specific CD8+ T-cells, we stimulated human PBMCs with Ad5 vector and  
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Figure 20: Baseline CD8+ T-cell responses. Forty total subjects with a range of 

Ad5 nAb titers were analyzed. Five Ad5-seronegative (Ad5 nAb titer ≤18, gray symbols) and 
five Ad5-seropositive subjects (Ad5 nAb titer >18, black symbols and white boxes) received 
Merck Ad5 gag/pol/nef as described in Methods. Box plots represent 25

th
-75

th
 percentile with 

lines being the 10-90% range. outliers are shown as dots. CD8
+
 T-cell responses were 

measured by flow cytometry following whole Ad5 vector stimulation. A) Gating strategy for 
measuring Ad5-specific T-cells by intracellular cytokine staining. At least 100,000 PBMCs 
were collected on a modified LSR II.  Singlets were selected with a FSC-A and FSC-H, 
followed by a lymphocytes gate, dead cell exclusion, and exclusion of contaminating CD14

+
 

monocytes and CD19
+
 B-cells. CD3

+
 T-cells were selected and then CD8

+
 cells by 

CD8
+
CD4

+
. Central memory, effector memory and effector CD8

+
 T cells were selected before 

gating on each cytokine. Because cells can store perforin and these appear perforin
+
, Ad5-

specific CD8
+
perforin

+
 T cells must also be positive for another function to be considered as a 

responding event. B) Total Ad5-specific CD8
+
 response. The total Ad5-specific CD8

+
 

response was computed by summing cells making at least IL-2, IFN-γ, MIP1α, or TNFα as 
measured by flow cytometry. C) There was no difference in the magnitude of the Ad-specific 
CD8

+
 T-cell response between serogroups at baseline. D) There was no correlation between 

the magnitude of Ad5-specific CD8
+
 T-cell responses and nAb titer at baseline. E) There was 

a correlation between the magnitude of Ad5-specific CD4
+ 

and Ad5-specific CD8
+
 T-cell 

responses at baseline.  
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measured CD8+ T-cell responses by polychromatic flow cytometry (Figure 

20A).  We detected Ad5-specific CD8+ T-cell responses in 95% of all donors 

at the week 0 baseline (Figure 20B). There was no difference in frequencies 

of Ad5-specific CD8+ T-cells between baseline seropositive and seronegative 

subjects (Figure 20C, p>0.05).  Likewise, there was no correlation between 

frequencies of Ad5-specific CD8+ T-cells and the Ad5 nAb titer at baseline 

(Figure 20D, p>0.05). There was however a positive correlation between 

frequencies of baseline Ad5-specific CD4+ and CD8+ T-cells (Figure 20E).  

 

Vector induced CD8+ T-cell expansion 

 We next examined the effect of Ad5 vector administration on the pre-

existing Ad5-specific CD8+ T-cell response. After the initial vaccine 

administration, frequencies of Ad5-specific CD8+ T-cells in the blood 

increased significantly above pre-vaccination frequencies in baseline Ad5-

seropositive (p<0.0001) but not in baseline Ad5-seronegative subjects as a 

group (Figure 21A). On an individual basis, frequencies of Ad5-specific CD8+ 

T-cells increased in three of five seronegative subjects following the initial 

dose (data not shown). The remaining two seronegative subjects without Ad5-

specific CD8+ T-cell expansion had large baseline responses.   

 Four weeks after the first homologous Ad5 vector boost at week 4, 

Ad5-specific CD8+ T-cell frequencies were higher than baseline in both 

subject groups (p<0.03). Following this first boost, Ad5-specific CD8+ T-cell  



 85

 
Figure 21: Ad-specific CD8+ T-cells magnitude following vaccination. Five 

Ad5-seronegative (Ad5 nAb titer ≤18, gray boxes) and five Ad5-seropositive subjects (Ad5 
nAb titer >18, white boxes) received Merck Ad5 gag/pol/nef as described in Methods. CD8

+
 

T-cell responses were measured by flow cytometry following whole Ad5 vector stimulation. 
Box plots represent 25

th
-75

th
 percentile with lines being the 10-90% range. Outliers are shown 

as dots. Grey asterisk represent a significant increase from baseline in seronegative subjects 
and black asterisk represent a significant difference from baseline in seropositive subjects. 
Black bars represent a significant difference between the serogroups at that time point. A) 
Percentage of Ad5-specific CD8

+
 T-cells. Seronegative subjects were significantly increased 

above baseline at week 8 (p<0.03), 26 (p<0.03), 42 (p<0.001), 52 (p<0.01), and 78 
(p<0.001).  Total Ad-specific CD8

+
 T-cells were increased above baseline in seropositive 

subjects at week 4 (p<0.0001), 8 (p<0.03), 30 (p<0.02), and 42 (p<0.04). Serogroups 
significantly differed at week 42 (p<0.02), 52 (p<0.01), and 78 (p<0.003). B) Percentage of 
Ad5-specific Ki67

+
 CD8

+
 T-cells.  C) Percentage of Ki67

+
 total CD8

+ 
T-cells. There was a 

significant increase above baseline in seronegative subjects at week 4 (p<0.01) and 
seropositive subjects at week 52 (p<0.12). 

 

 

 

 

 

 

 

 

 

 

 

 



 86

responses returned to pre-vaccination levels in baseline Ad5 seropositive 

subjects, and were only briefly expanded again at weeks 30 and 42 following 

the 2nd boost at week 26 (p<0.04). In contrast, Ad5-specific CD8+ T-cell 

responses remained elevated above baseline in the seronegative cohort 

(p<0.03). The only time we observed a difference in Ad5-specific CD8+ T-cell 

expansion between the seronegative and seropositive groups was following 

the third vaccination (weeks 42, 52 and 78; p<0.03)(Figure 21A). 

 The observed increase in Ad5-specific CD8+ T-cell frequencies was 

not reflected by an increase in Ki67 on Ad5-specific CD8+ T-cells after either 

the primary vaccination or subsequent boosts in either serogroup (Figure 

21B, p=N.S.). Furthermore, we detected only transient differences in global 

Ki67 levels on total CD8+ T-cells (Figure 21C). Thus, while increases in Ad5-

specific CD8+ T-cell frequencies were observed in both baseline Ad5-

seronegative and Ad5-seropositive subjects following vaccination, sustained 

changes or global effects on the proliferative capacity of CD8+ T-cells were 

not found.  

 

Vector-induced changes in Ad5-specific CD8+ T-cell functionality 

 At baseline, the majority of Ad5-specific CD8+ T-cells produced 

predominantly the effector functions MIP1α and perforin in both seropositive 
and seronegative subjects (Figure 22A). The percentage of Ad5-specific 

CD8+ T-cells producing TNFα was significantly higher in baseline seropositive 
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Figure 22: Ad5-specific CD8
+
 T-cell functionality following vaccination. . Five Ad5-

seronegative (Ad5 nAb titer ≤18, gray boxes) and five Ad5-seropositive subjects (Ad5 nAb 
titer >18, white boxes) received Merck Ad5 gag/pol/nef as described in Methods. CD8

+
 T-cell 

responses were measured by flow cytometry following whole Ad5 vector stimulation. Box 
plots represent 25

th
-75

th
 percentile with lines being the 10-90% range. Outliers are shown as 

dots. Grey asterisk represent a significant increase from baseline in seronegative subjects 
and black asterisk represent a significant difference from baseline in seropositive subjects. 
Black bars represent a significant difference between the serogroups at that time point. A) 
Percent of the total Ad-specific response producing each cytokine. The total Ad-specific CD8

+
 

response was computed by summing cells making at least IL-2, IFN-g, MIP1a, or TNFa as 
measured by flow cytometry. The percentage of the total Ad-specific response was then 
computed for each cytokine. The percentage of the total response consisting of TNFa was 
significantly higher in seropositive subjects (p<0.0005) at baseline. B) Percentage of IL-2

+
 Ad-

specific CD8
+
 T-cells. There was a significant increase above baseline in seronegative 

subjects at week 42 (p<0.01) and seropositive subjects at week 4(p=0.015). C) Percentage of 
TNFa

+
 Ad-specific CD8

+
 T-cells. There was a significant increase above baseline in 

seropositive subjects at week 52 (p<0.01) and 78 (p<0.02) and seropositive subjects at week 
4 (p<0.01). There was a significant difference at baseline in the percentage of TNFa

+ 
CD8

+
 T-

cells between serogroups (p<0.05). D) Percentage of IFN-g

 Ad-specific CD8

+
 T-cells. The 

percentage of IFN-g
+
 CD8

+
T-cells was significantly increased above baseline in seronegative 

subjects at weeks 42 (p<0.004), 52 (p<0.003), and 78 (0.009) and in seropositive subjects at 
weeks (4 (p<0.0001), 8 (p<0.04), 30 (p<0.01) and 42 (p<0.04). There was a significant 
difference in the percentage of CD8

+
IFN-g

+
 CD8

+
 T-cells at week 78 between the serogroups 

(p<0.05). E) Percentage of MIP1a
+
 Ad-specific CD8

+
 T-cells. Seronegative subjects had a 

significantly increased percentage of MIP1a
+
 CD8

+
 T-cells above baseline at weeks 26 

(p<0.03), 42 (p<0.001), 52 (p<0.05) and 78 (p<0.004). Seropositive subjects had a 
significantly increased percentage of MIP1a

+
 CD8

+
 T-cells at week 4 (p<0.0005) compared 

with baseline There was a significant difference in the percentage of MIP1a
+
CD8

+
 T-cells 

between the serogroups at weeks 30 (p<0.04), 42 (p<0.012), 52 (p<0.005), and 78 (p<0.001). 
F) Percentage of perforin

+
 Ad-specific CD8

+
 T-cells. The percentage of perforin

+
CD8

+
 T-cells 

was significantly increased above baseline at weeks 26 (p<0.02), 42 (p<0.001) 52 (p<0.05) 
and 78 (p<0.004) in seronegative subjects and week 4 (p<0.0005) in seropositive subject. 
There was a significant difference in the percentage of MIP1a

+
CD8

+
 T-cells at weeks 30 

(p<0.04), 42 (p<0.012), 52 (p<0.005) and 78 (p<0.0013). 
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subjects prior to vaccination (p<0.001) but there were no differences between 

the groups for IL-2, IFN-γ, MIP1α or perforin.  

 Having observed increases in the total percentage of Ad5-specific 

CD8+ T-cells following vaccination we next determined whether vaccination 

affected the functionality of these cells. Consistent with the increase in Ad5-

specific CD8+ T-cell frequencies following the initial vector vaccination, 

baseline seropositive subjects showed a transient increase in the percentage 

of Ad5-specific CD8+ T-cells producing IL-2 (Figure 22B, p=0.015), TNFα 

(Figure 22C, p<0.01), and IFN-γ (Figure 22D, p<0.001) as well as the MIP1α 

(Figure 22E, p<0.0005), and perforin (Figure 22F, p< 0.0002). 

 The functionality of Ad5-specific CD8+ T-cells was similar in baseline 

seronegative and seropositive subjects, however in baseline seronegative 

subjects the expansion of Ad5-specific CD8+ T cells was delayed. Following 

the third vector dose baseline seronegative subjects had transiently elevated 

IL-2 producing CD8+ T-cells at week 42 (Figure 22B) and TNFα from weeks 

52-78 (Figure 22C).  CD8+ T cells that produced the effector functions IFN-γ, 

MIP1α and perforin were expanded for a more prolonged period of time 

(weeks 42-78) following the third vector dose.  This delayed expansion 

resulted in a higher percentage of Ad5-specific CD8+ T-cells in baseline 

seronegative subjects compared with baseline seropositive subjects following 

the third vector dose with MIP1α significantly elevated at weeks 30-78 and 

perforin at weeks 42-78.   



 89



 90

 
  
Figure 23: Polyfunctional Ad5-specific CD8+ T-cell Responses. Five 

seronegative (Ad5 nAb titer ≤18) and five seropositive subjects (Ad5 nAb titer >18) received 
Merck Ad5 gag/pol/nef as described in Methods. CD8

+
 T-cell responses were measured by 

flow cytometry following whole Ad5 vector stimulation. A) Percentage of CD8
+
 T-cells 

expressing IFN-γand MIP1α. B) Percentage of Ad-specific CD8
+
 T-cells producing all five 

(red) functions: IL-2, MIP1α, TNFα, IFN-γ and Perforin, four (blue), three (green), two 
(orange), or one (yellow) of the five functions at each time point. Pies represent an average of 
the two groups. C) Bars represent the percentage of Ad-specific CD8+ T-cells making a 

combination of IL-2, TNFα, MIP1α, Perforin and IFN- γ at each week. Positive symbols 
represent cells staining positive for a function, and minus symbols represent cells staining 
negative for a function.  

 

 

 

 

 

 

 



 91

Although we observed increases in the frequencies of Ad5-specific CD8+ T-

cells producing various functions, the overall polyfunctionality of Ad5-specific 

CD8+ T-cells remained similar to baseline after vaccination (Figure 23A, B) in 

both groups. Furthermore, there was no substantial difference between the 

groups in the functional combinations produced (Figure 23C). In both groups 

the major response consisted of cells producing MIP1α with perforin and 

MIP1α with IFN-γ.  

.  

 

Ad5Ad5Ad5Ad5----specific CD8specific CD8specific CD8specific CD8++++ Phenotype Phenotype Phenotype Phenotype    
 To investigate whether the effector-like functionality of Ad5-specific 

CD8+ T-cells corresponded to an effector phenotype, we assessed CD45RO 

and CD27 expression on Ad5-specific CD8+ T-cells. Ad5-specific cells that 

produced MIP1α, and perforin were primarily of an effector-like phenotype 

(CD27-CD45RO-) (Figure 24A), whereas more diverse memory subsets 

produced IFN-γ, TNFα, and IL-2. Approximately half of all Ad5-specific CD8+ 

T-cells had an effector-like phenotype at baseline in both seronegative and 

seropositive subjects (Figure 24B-C).  In baseline seropositive subjects, 

vaccination induced transient decreases in the percentage of Ad5-specific 

effector CD8+ T-cells (Figure 24C, p<0.05) that corresponded with an 

increase in the percentage of Ad5-specific effector memory cells (CD27-

CD45RO+; Figure 24D, p<0.05). In baseline seronegative subjects the 

effector phenotype observed at baseline remained stable following 
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vaccination with only a transient increase in the percentage of Ad5-specific 

memory cells observed at week 26 (Figure 24E). In the total CD8+ T-cell pool, 

the effector phenotype dominated in both serogroups at baseline. Following 

vaccination the percentage of total effector CD8+ T-cell  (Figure 24F) in 

seropositive subjects decreased, coinciding with an increase in total central 

memory-like CD8+ T-cells (CD27+CD45RO+; Figure 24H).  In seronegative 

subjects only transient changes in total CD8+ phenotype occurred (Figure 

24F-H).  Thus, while transient changes in memory phenotype were observed 

after vaccination, there were no sustained alterations in the memory 

phenotype of total or Ad5-specific CD8+ T-cells in either of the cohorts. These 

data suggest that Ad5-based vaccination does not induce global bystander 

CD8+ activation. 
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Figure 24: Phenotype of Ad5-specific CD8+ T-cells.  Five seronegative (Ad5 

nAb titer ≤18, gray boxes) and five seropositive subjects (Ad5 nAb titer >18, white boxes) 
received Merck Ad5 gag/pol/nef as described in Methods. Ad-specific CD8+ T-cell responses 
were measured by flow cytometry. Box plots represent 25

th
-75

th
 percentile with lines being the 

10-90% range. Outliers are shown as dots. Grey asterisk represent a significant increase 
from baseline in seronegative subjects (p<0.05) and black asterisk represent a significant 
difference from baseline in seropositive subjects (p<0.05). Black bars represent a significant 
difference between the serogroups at that time point. A) The phenotype of Ad-specific CD8

+
 

T-cells in a representative donor. Black areas represent total CD8
+ 

T-cells and red dots 

represent Ad-specific CD8
+
 T-cells expressing IFN-γ, IL-2, MIP1α, Perforin or TNFα. B) 

Phenotype of Ad-specific CD8
+
 T-cells following vaccination. Black areas represent total 

CD8
+ 

T-cells and red dots represent total Ad-specific CD8
+
 T-cells expressing IFN-γ, IL-2, 

MIP1α, Perforin or TNFα. C) Percentage of Ad-specific CD8
+
 T-cells with an effector 

phenotype (CD27
-
CD45RO

-
). D) Percentage of Ad-specific CD8

+
 T-cells with an effector 

memory phenotype (CD27
-
CD45RO

+
). E) Percentage of Ad-specific CD8

+
 T-cells with a 

central memory-like phenotype (CD27
+
CD45RO

+
). F) Percentage of total CD8

+
 T-cells with 

an effector phenotype (CD27
-
CD45RO

-
). G) Percentage of total CD8

+
 T-cells with an effector 

memory phenotype (CD27
-
CD45RO

+
). H) Percentage of total CD8

+
 T-cells with a central 

memory-like phenotype (CD27
+
CD45RO

+)
. 
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DiscussionDiscussionDiscussionDiscussion    

 Recombinant Ad vectors are one of the primary vaccine platforms that 

are being tested for a wide range of human pathogens including HIV, malaria, 

and tuberculosis [171,173,174]. While these studies primarily focus on the 

generation of immune responses against the recombinant insert, an often-

overlooked issue is the induction of vector-specific immunity. Here we have 

examined Ad5-specific CD8+ T-cell responses in recipients of an Ad5 HIV-1 

vaccine candidate. We find that regardless of baseline Ad5 nAb serostatus, 

Ad5 vector administration results in a potent restimulation and expansion of 

pre-existing Ad5-specific CD8+ T-cells. This finding by itself is curious. One 

would have expected that E1-deleted Ad vectors only produce trace amounts 

of structural Ad proteins, as the transcription of late genes is under the control 

of a gene product of the deleted E1 domain. Nevertheless, as has been 

shown by others, CD8+ T cell responses to Ad vector particle proteins can be 

induced efficiently by cross priming. This mechanism would circumvent the 

need for de novo synthesis of Ad structural proteins for induction or recall of 

Ad-specific CD8+ T cells [175]. 

 At baseline, Ad5-specific CD8+ T-cells were detectable in 38 of 40 

subjects, despite a seroprevalence in the US of up to only 50%.  This 

magnitude of Ad5-reactive CD8+ T-cells is consistent with smaller studies 

showing Ad5-specific CD8+ T-cell responses in greater than 80% of subjects 

[59,82,121]. The prevalence of Ad5-specific CD8+ T-cells is likely the result of 
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cross-reactive CD8+ T-cells generated from infection with alternate serotypes. 

Many Ad proteins have highly conserved regions between various Ad 

serotypes, likely resulting in conservation of T-cell epitopes and the 

generation of cross-serotype reactive Ad5-specific CD8+ T-cells. Although we 

were able to observe a high frequency of responders after stimulation with an 

Ad5 vector in vitro, it is unclear whether detected responses were induced by 

a natural infection with an Ad5 virus. 

 Although vaccination increased frequencies of Ad5-specific effector 

CD8+ T-cells in both serogroups, there were no significant changes either 

within or between the groups for the cell cycle marker Ki67. Though the 

PBMC sampling in this study was intensive, there was a four-week period 

between vaccination and PBMC collection. It is possible that expansion of 

Ad5-specific T-cells and expression of Ki67 occurred transiently during this 

period. Alternatively, Ki67+ Ad5-specific CD8+ T-cells may have trafficked out 

of the peripheral blood by this time.   

 Interestingly, we observed no changes in polyfunctionality of Ad5-

specific CD8+ T-cells compared to baseline following vaccination in either 

serogroup. As we have previously observed (Chapter 3), Ad5-specific CD8+ 

T-cells are continuously maintained with both an effector-like phenotype and 

functionality. This likely reflects continued or intermittent exposure to Ad 

viruses from repeat infection with different serotypes or virus persistence. Ad5 

vector administration did not alter the baseline functional response, but 
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instead further expanded it. The expansion and high frequency of Ad-specific 

effector-like CD8+ T-cells could reduce the efficacy of Ad-vaccine boosting 

with both homologous and heterologous vector by direct lysis through perforin 

release of vector-transduced cells.   

 

Materials and Methods 
 

T-cell Responses 

Frozen peripheral blood mononuclear cells (PBMCs) were obtained 

from unvaccinated subjects at week 0 baseline (n = 25), seronegative 

subjects receiving three doses 3x1010 vp Mrk Ad5 gag/pol/nef at weeks 0, 4 

and 26 (n = 5, Ad5 neutralizing antibody titer ≤18) and seropositive (n = 5, 

Ad5 neutralizing antibody titer > 18) subjects receiving three doses 3x1010 vp 

Mrk Ad5 gag/pol/nef at weeks 0, 4 and 26 (n = five) as part of the Merck 

phase I 016 trial.  Ad5-specific T-cell responses were measured by 

stimulating PBMCs overnight with whole E1-deleted Ad5 vector. Cells were 

analyzed on a modified LSR II flow cytometer (BD Immunocytometry 

Systems). Data was analyzed using FlowJo 8.7.1 (TreeStar). Adenovirus 5 

neutralizing antibody titers were measured as previously described[163].  

 

Statistics 
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        Linear mixed effects models were performed to test for group differences 

over time as well as comparisons between baseline and subsequent time 

points within each group. Time was considered to be a discrete variable, 

lessening the power of these tests compared to tests where time is a 

continuous variable. Spearman correlations were used to test the relationship 

between Ad5 nAb titers and T-cell functions at baseline. Correlations over the 

entire time period were computed using partial correlation coefficients 

controlling for individual subject effects in the repeated measurements. All 

data was transformed using base e. Analyses was performed using SAS 9.1. 

 

Portions of this work have been submitted for publication: Hutnick NA, 

Carnathan DG, Dubey S, Cox K, Kierstead L, Makedonas G, Ratcliffe S, 

Robertson MR, Casimiro D, Ertl HC, Betts MR. “Vaccination with Ad5 vectors 

expands Ad5-specific CD8+ T cells without altering memory phenotype or 

functionality” In submission. 
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Chapter 6: Discussion 
 

Modern vaccinology has had one of the largest impacts on human 

health with the elimination of smallpox and 100% reduction in the occurrence 

of several devastating childhood diseases including polio, measles and 

pertussis in the United States. However, there are still areas of unmet need 

that result in the suffering and death of millions of people worldwide. Ad-

based vaccines are currently being researched as a means of inducing CD8+ 

CTL to prevent or modify infection. Though insert-specific responses are often 

analyzed, until recently, little work has been done to characterize Ad-specific 

immune responses. As highlighted by the STEP trial, it is important to 

understand vector-specific immunity to ensure a safe, efficacious vaccine. 

Here, we have presented the most thorough characterization of human Ad-

specific T-cell immunity following both natural infection and immunization. We 

find that Ad-specific T-cells are universally present in humans with an effector 

and effector memory like phenotype and functionality. Following Ad5-based 

vaccination both CD4+ and CD8+ Ad-specific T-cells transiently expanded, 

however, there were no durable changes in polyfunctionality, phenotype or 

homing marker expression. Ad5-seropositive and Ad5-seronegative subjects 

had similar baseline and post-vaccination Ad5-specific CD4+ T-cell 

responses, suggesting Ad5-specific CD4+ T-cells were not the cause of an 

increased risk of HIV infection in Ad5-seropositive STEP trial subjects.  
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Adenovirus IAdenovirus IAdenovirus IAdenovirus Immunity from Natural Infectionmmunity from Natural Infectionmmunity from Natural Infectionmmunity from Natural Infection    

Ads have been developed as vectors for use in both gene therapy and 

vaccines. It is known that pre-existing Ad nAbs limit vaccine efficacy in 

humans, and animal studies suggest that CD8+ T-cells may also play a role. 

Seroprevalence has been used as a surrogate for pre-existing T-cell 

immunity, however, recent studies suggest that this may not be an accurate 

assumption.  Only 40% of US adults are seropositive to Ad5 yet studies have 

found T-cell responses to Ad5 to be almost universal [59,121]. To clarify Ad-

specific T-cell immunity we sought to further define the prevalence, 

functionality, phenotype and cross-reactivity of pre-existing Ad-specific T-cells 

in naturally infected humans.  

We studied Ad-specific T-cell responses in 17 healthy subjects by flow 

cytometry and found both CD4+ and CD8+ T-cell responses to replication- 

defective Ad5 vector in all subjects. This result is critical for vaccine design as 

seroprevalence cannot be used as a measure for pre-existing T-cell immunity. 

The universality of Ad5-specific T-cells despite a seroprevalence of only 40% 

suggests that Ad-specific T-cells are highly cross-reactive. To measure cross-

reactivity we stimulated PBMCs from the same 17 subjects with chimpanzee 

vectors (AdC) which have an exceptionally low seroprevalence in the United 

States [91]. One weakness of this study is the absence of nAb titers. Because 

PBMCs were obtained from aphaeresis, there was no plasma to determine 

nAb titers to Ad5, AdC6, and AdC7.  It is unlikely that subjects had been 
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exposed to AdC6 or AdC7, yet 16 of 17 subjects had both CD4+ and CD8+ T-

cells that responded to both AdC. Sequence homology within conserved 

regions of the major capsid protein, hexon, is over 90% between Ad5, AdC6 

and AdC7, and it is likely that T-cell epitopes are conserved between diverse 

Ad serotypes [176]. Indeed, we found that Ad reactive T-cells recognized 

epitopes within both the conserved and variable regions of Ad5, AdC6 and 

AdC7. The cross-reactivity of Ad-specific T-cells makes it difficult to define a 

truly Ad5-specific T-cell response.  

The cross-reactivity of Ad-specific T-cells may have important 

implications for Ad vector vaccines. To avoid the limitations of pre-existing 

immunity as measured by nAb, many researchers have developed vaccines 

based on rare serotypes with low seropositivity. However, these vectors will 

not avoid a reduction in vaccine efficacy by universally present Ad-specific 

CD8+ T-cells that may eliminate vector-transduced cells due to an at least 

90% homology between human serotypes. Likewise, using heterologous 

vectors in a prime boost schedule will also not avoid pre-existing Ad-reactive 

T-cells. The impact on efficacy from pre-existing Ad-specific CTLs in humans 

is not known, but based on the universality of Ad-reactive T-cells it will be a 

hurtle that needs to be overcome by all serotype vectors in order for an Ad-

based vaccine to succeed in the clinic.   

The cross reactivity of Ad-specific T-cells also suggests they may be 

continually restimulated when an individual is infected with any of the 52 
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serotypes throughout their life. In addition to constant restimulation by repeat 

infection, Ad has been shown to persist in the lymphatic tissue and could 

produce continual antigen presentation and T-cell stimulation [59,71]. 

Indeed we found that Ad-reactive T-cells display an effector and effector 

memory-like phenotype and produce predominantly effector functions such as 

MIP1α and perforin.  The effector functionality of Ad-specific CTL may make 

them efficient at eliminating vector-infected cells and reducing vaccine 

efficacy compared with other viral platforms. 

The effector-like characteristics of Ad-specific T-cells appears to be 

functionally unique, even among other human viruses. A recent study 

accessed the functionality of virus specific CD8+ T-cells to Epstein-Barr virus 

(EBV), cytomegalovirus (CMV), Ad, and influenza (Flu) [166]. Both CMV and 

EBV establish latency whereas Flu is an acute infection. Approximately 75% 

of Ad-specific CD8+ T-cells expressed perforin whereas only 25% of CMV -

specific and less than 5% of EBV- and Flu-specific CD8+ T-cells expressed 

perforin [166].  In contrast to the results for perforin, IL-2 production was high 

in EBV- and Flu-specific CD8+ T-cells, low in CMV-specific CD8+ T-cells and 

virtually undetectable in Ad-specific CD8+ T-cells. Perforin positive CD8+ T-

cells had a higher level of the T-cell transcription factor, T-bet. A large portion 

of Ad-specific T-cells express perforin, therefore it is possible Ad-specific T-

cell also express a high level of T-bet. However, the transcriptional profile of 

human Ad-specific T-cells has yet to be assessed.  
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Though Ad infection is considered acute clinically, the continual 

presentation of antigen may make it immunologically more similar to a chronic 

non-latent infection such as HIV or HCV. One hallmark of chronic infection is 

the eventual exhaustion of T-cells from continual antigen stimulation. T-cell 

exhaustion can be measured by the expression of surface inhibitory receptors 

such as PD-1, CTLA-4 and Lag3 [152]. Exhausted T-cells undergo a 

hierarchical loss of functions such as IL-2 and TNFα  with IFN-γ being the last 

function lost [177,178]. The effector-like functionality with perforin and MIP1α 

production in our cohort is not consistent with an exhausted phenotype.  We 

also observed Ad-specific CD4+ and CD8+ T-cells were capable of 

proliferating upon restimulation. Following the 5-day Ad stimulation CFSE low 

cells that had undergone proliferation had a central memory-like 

CD27+CD45RO+ phenotype. Together, these data suggest that although Ad 

antigens may be continually present, it does not appear that Ad-specific T-

cells undergo functional exhaustion. However, the expression of surface 

receptors associated with exhaustion has not been performed. 

 

Effect of Ad vector vaccination on AdEffect of Ad vector vaccination on AdEffect of Ad vector vaccination on AdEffect of Ad vector vaccination on Ad----specific CD4specific CD4specific CD4specific CD4++++ T T T T----cellscellscellscells    

 The Merck Ad5 HIV-1 vaccine trial showed a possible increased risk of 

infection in baseline Ad5-seropositive subjects. One hypothesis to explain this 

result was Ad5-seropositive subjects would have higher levels of baseline 

Ad5-specific CD4+ memory T-cells. Upon vaccination, these cells would 
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become activated, proliferate, and up regulate expression of the HIV-1 entry 

co-receptor CCR5. It is also proposed that activated Ad5-specific memory 

CD4+ T-cells may traffic to the initial site of Ad infection in mucosal tissues 

such as the gut, which is also a preliminary site for HIV-1 replication. 

Therefore, vaccinating an Ad5-seropositive subject would result in the 

enrichment of CD4+ T-cells that are optimal targets for HIV-1 infection. 

Our study of Ad5-specific CD4+ T-cells in subjects from the phase I 

STEP precursor study indicates that the pre-existing Ad5-specific CD4+ T-cell 

hypothesis does not explain the STEP trial results. First, prior to vaccination 

Ad5-seropositive and Ad5-seronegative subjects had similar levels of Ad5-

specific CD4+ T-cells. Therefore, pre-existing CD4+ T-cells were not present 

in Ad5-seropositive subjects only. Similar results were observed by other 

groups [121,179,180] with only one study suggesting a correlation between 

Ad-specific T-cell responses and Ad5 nAb [181]. Second, following 

vaccination, Ad5-specific CD4+ T-cells were transiently expanded to an equal 

degree in both Ad5-seropositive and Ad5-seronegative subjects. This 

suggests Ad5-seropositive subjects do not generate more Ad5-specific CD4+ 

T-cell following vaccination. Additionally, the expansion in both groups was 

only transient and the increased infection rate in Ad5-seropositive subjects 

occurred up to 52 weeks following vaccination.  

In addition to there being no difference in the presence or expansion of 

Ad5-specific CD4+ T-cells between Ad5-seronegative and Ad5-seropositive 
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subjects, we also saw no increase or difference between serogroups in the 

activation of Ad5-specific CD4+ T-cells as measured by Ki67. One 

shortcoming of our study was not measuring the expression level of CCR5 on 

Ad5-specific CD4+ T-cells.  Whether activated Ad5-specific CD4+ T-cells 

express more CCR5 and are more susceptible to HIV-1 infection has recently 

been debated. In STEP study participants there was no difference in the level 

of CCR5 expression in HIV-1 infected cases and non-cases [82]. Also, the 

level of CCR5 expression in other studies was found to be similar between 

baseline Ad5-seropositive and Ad5-seronegative subjects and did not 

increase with vaccination [121,182]. However, two opposing studies suggest 

that culturing Ad5-specific CD4+ T-cells with Ad5 vector-infected dendritic 

cells resulted in proliferation, CCR5 upregulation, and increased HIV-1 

infection [181,183]. It is possible the differences in results between the 

various studies were due to the use of a short-term versus long-term 

stimulation of PBMCs. We are planning on further studying the effect of the 

two stimulation assays on activation and homing marker expression.  

One caveat to our findings is that all responses were measured only in 

T-cells from the blood. It is hypothesized that Ad5-specific CD4+ memory T-

cells may traffic to the gut mucosal upon activation by vaccination. Currently, 

there have been no reported gut biopsies performed on Ad5 vaccinated 

humans however studies are planned by the HIV vaccine trials network 

(HVTN). As a surrogate for measuring the magnitude and phenotype of Ad5 
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specific CD4+ T cells in the gut mucosa, we measured the expression of gut 

homing markers on Ad5-specific peripheral blood T-cells. The α4β7 integrin 

heterodimer is expressed on T-cells and binds to MAdCAM-1 on venule 

epithelial cells allowing T-cells to migrate into gut mucosal tissue. The α4β7 

heterodimer may also be a co-receptor for HIV-1 entry, therefore an increase 

in heterodimer receptor expression on Ad5-specific CD4+ T-cells could also 

make them more susceptible to HIV-1 infection [184,185]. It is unlikely this 

hypothesis is correct as T-cells appear to down regular α4β7 upon entering gut 

mucosal tissue. Preliminary data of gut biopsies from non-vaccinated humans 

shows little total or Ad5-specific α4β7 expression on CD4+ T-cells. 

We observed no increase in the expression of the mucosal homing 

integrins α4 and β7 on peripheral blood CD4+ T-cells following vaccination in 

either serogroup. However, recent studies have seen contradictory results 

[181,183]. The study by Benlahrech et al. found that memory CD4+ T-cells 

from Ad5-seropositive subjects cultured for 5 days with Ad5 pulsed dendritic 

cells proliferated and upregulated the expression of CCR5 and α4β7. The 

stimulation method used and functionality results differed from our study and 

may account for the differences in α4β7 expression observed.  There were 

also a number of caveats that may impact the interpretation of data. First, the 

study only included normal subjects and did not examine whether post 

vaccination responses differed from baseline or were altered in baseline Ad5-

seronegative subjects after the first dose when they became Ad5-
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seropositive. Second, T-cells stimulated with tetanus toxoid as a control had a 

similar level of proliferation and α4β7 upregulation as Ad5 stimulated CD4+ T-

cells. The correlation for tetanus toxoid-specific CD4+ T-cell responses and 

tetanus toxoid nAb titer was not shown and would be a more appropriate 

control to determine if Ad5-specific CD4+ T-cell responses are unique in Ad5- 

seropositive subjects or if the responses observed are simply a characteristic 

of a virus-specific memory T-cell response. 

The study by Chakupurakal et al. also saw an increase in α4β7 when 

CD4+ T-cell were cultured with replication defective E1- and E3- deleted Ad5 

vector for 7 days. The group observed an approximately 40% increase in the 

percentage of CD4+ α4β7
+ T-cells compared with our results. This is likely a 

result of the extended in vitro assay but could also suggest a large degree of 

variability in study populations, or a difference in cytometry procedures. We 

have plans to perform a similar assay on Merck phase I vaccinated subjects 

to determine how α4β7 differs in a 6 hour Ad stimulation compared with a 6 

day stimulation and the effect vaccination has on α4β7 expression. 

T-cell trafficking in humans is not well understood but is important for 

the field of vaccinology. We measured gut mucosal homing markers in the 

blood as a surrogate for the gut population of Ad5-specific CD4+ T-cells. 

However, the origin and fate of Ad-specific CD4+ T-cells in the blood is 

unclear. 90% of all CD4+ T-cells reside in the gut mucosa. It is unclear 

whether cells in the blood expressing gut homing markers are recently 
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activated naïve cells trafficking to the mucosa where they will stay, or whether 

effector and memory cells in the mucosa can traffic between the gut and the 

blood. Another question is what induce a naïve cell to express α4β7 and traffic 

into the gut, and does stimulating naïve Ad-specific CD4+ T-cells result in the 

same homing patterns as stimulating effector or memory Ad-specific CD4+ T-

cells? Being able to manipulate the homing properties of antigen specific T-

cells would increase the efficacy of vaccines designed to prevent mucosal 

infections such as HIV. Studying T-cell responses to replicating Ad infection in 

animal models may help us to better understand what shapes the natural T-

cell response to Ad and how Ad-based vaccines alter this immunity.  

 It has been two years since the STEP trial was halted and the debate 

over whether Ad5 vaccination increased the risk of HIV-1 infection in Ad5-

seropositive subjects continues. Our results suggest that Ad5-specific CD4+ 

T-cells were not the cause of an increased risk. However, it is possible that 

there are differences in the magnitude or activation of Ad5-specific CD4+ T-

cells in the mucosal tissue of Ad5-seropositive vs. Ad5-seronegative subjects 

that were not observed in the blood. Indeed, Ad-specific CD4+ T-cells have 

been readily detected in the gut mucosal tissue of healthy adults [59].  

 Another limitation of our study is the timeline of subject sampling. One 

weakness of analyzing STEP trial samples was the absence of baseline 

PBMCs collected prior to vaccination. Though our study consisted of 

extensive sampling every four weeks after vaccination as well as long-term 
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follow-up, it is possible that Ad5-reactive CD4+ T-cells were activated or 

expanded in seropositive subjects following vaccination but this was not 

observed by 4 weeks after vaccination. For example, Ki67 is expressed when 

a cell enters the cell cycle but not when a cell is in a resting state [186]. 

Another possibility is that there was an increase in activated cells, but by 4 

weeks after vaccination they had contracted to baseline levels or left the 

blood to enter the lymphatic system or peripheral tissues. Following 

vaccination with the yellow fever 17D virus or vaccinia virus, the magnitude of 

activated (Ki67+, Bcl-2low; CD38+, HLA-DR+) CD8+ T-cells peaked at day 15 

and had returned to baseline by day 30 [187]. 

 One debate in the area of HIV vaccines is what is the best animal 

model to replicate human infection. The same question needs to be asked for 

Ad vaccine candidates. Pre-exposing mice or monkeys to a replication- 

defective Ad vector does not mimic pre-existing immunity to natural infection 

in humans where there is repeat exposure to multiple Ad serotypes over the 

lifetime of an individual and persistence in lymphatic tissue. Simian Ad have 

been identified, and Rhesus macaques infected with replication competent 

simian Ad may provide an effective model for human pre-existing immunity 

[188]. However, the persistence of Rhesus Ad will need to be studied as well 

as the phenotype and functionality of the T-cell response. If the natural Ad-

specific T-cell response resembles humans, Rhesus macaques infected with 

Rhesus Ad may provide a good model to study T-cell activation and trafficking 
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following Ad vaccination and Ad vaccine efficacy. An accurate animal model 

may also clarify the debate about whether Ad-specific CD4+ T-cells were 

responsible for the increased susceptibility observed in the STEP trial. 

 

Effect of Vaccination Effect of Vaccination Effect of Vaccination Effect of Vaccination on on on on AdAdAdAd----specific CTLspecific CTLspecific CTLspecific CTL    

 Both Ad-specific nAb and CTL may limit vaccine efficacy by reducing 

vector-transduced cells before the insert gene is expressed. We found that 

Ad5-specific CD8+ T-cells were detectable at baseline in 38 of 40 subjects 

despite an Ad5 seroprevalence of only 40% in the US. This CD8+ T-cell 

prevalence is similar to that detected for Ad5-specific CD4+ T-cells, and is 

likely due to cross-reactivity between multiple serotypes. Also similar to Ad5-

specific CD4+ T-cells, Ad5-specific CD8+ T-cells were effector-like even at 

baseline. Periodic restimulation by infection with multiple serotypes may be 

the reason why Ad5-specific CD8+ T-cells are maintained in an effector state.  

 Vector induced expansion of Ad5-specific CD8+ T-cells occurred 

following the first vaccine dose in Ad5-seropositive subjects and the third 

vaccine dose in Ad5-seronegative subjects. The reason behind this 

differential CD8+ T-cell expansion between the serogroups is unclear, but 

may have been caused by Ad5-specific nAb. Ad5 nAb levels increased in 

baseline Ad5-seronegative and Ad5-seropositive subjects following 

vaccination but remained higher in Ad5-seropositive subjects throughout the 

study. Ad5 nAb binding to vector could facilitate vector uptake by antigen-
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presenting cells, cross presentation and expansion of Ad-specific CD8+ T 

cells [189]. Alternatively, late responses in Ad5-seropositive subjects could 

have been dampened by high nAb titers binding to vector and preventing 

infection, thereby reducing the effective vector dose and CD8+ T-cell 

response.  

The high percentage of perforin expressing Ad5-specific effector CD8+ 

T-cells should efficiently eliminate vector-transduced cells as perforin 

expressing CD8+ T-cells have been shown to effectively lyse target cells 

[190]. Studies in mice have shown transgene expression decreases by 98%  

20 days after vaccination in immune competent mice but persists for over 110 

days at post-vaccination levels in immune compromised nude mice. This data 

suggests the reduction in transgene expression is likely due to immune 

destruction of transduced cells [191]. The destruction of transduced cells and 

limited insert expression may result in the need for booster vaccinations to 

maintain effective lifelong immunity. 

 Repeat homologous vaccination resulted in the expansion of Ad-

specific CD8+ T-cells in both Ad5-serogroups, however, we observed no 

changes in the polyfunctionality of Ad5-specific CD8+ T-cells compared to 

baseline in either serogroup. This is a classic example of original antigenic 

sin, where the quality of the response induced by the primary antigen 

exposure is not altered by subsequent antigen exposure, even if the antigen 

is slightly altered as may occur by infection with a heterologous serotype. Our 
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findings have important implication for the field of therapeutic vaccination. The 

goal of a therapeutic vaccine is to boost anti-viral immunity after infection to 

control viremia and disease progression. Though therapeutic vaccines for HIV 

have succeeded in boosting anti-HIV CD8+ T-cell responses, they have been 

ineffective at controlling viremia [192]. Without therapy, HIV-specific CD8+ T-

cell responses are unable to control and clear the virus following natural 

infection. Our data suggests the ineffective naturally induced HIV-specific 

CD8+ response would be expanded by therapeutic vaccination with HIV 

antigens but the ineffective functionality would not be altered. In order for 

therapeutic vaccination to be effective, we need to understand what an 

effective HIV-specific CD8+ T-cell response is and how we can modify the 

naturally induced response to one that is capable of controlling or clearing 

virus. Unpublished work from our lab suggests a CD8+ HIV-specific response 

with the ability to upregulate perforin may be protective. Further work is being 

performed to identify transcription factors associated with perforin production 

and may provide insights into how the immune system could be manipulated 

to produce and effective anti-HIV CD8+ T-cell response.  

Future directionsFuture directionsFuture directionsFuture directions        

 This work was initiated as part of a larger project to develop rare 

serotype Ad vaccines to prevent HIV infection. By studying human Ad-specific 

T-cell responses this work has provided some important insights and 
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questions about the efficacy and outcome of Ad vaccines. Our results have 

also raise some critical questions for further research. 

 By studying Ad-specific T-cell immunity to human and chimpanzee 

serotypes we confirmed that Ad-specific T-cells are highly pervasive and 

cross-reactive. One limitation of our study is the assumption that subjects 

were seronegative to the chimpanzee vectors based on studies showing low 

seropositivity in healthy US adults. To truly demonstrate cross-reactivity future 

studies will perform the same studies outlined in Chapter 3 using subjects 

from South Africa, Uganda and Botswana. Serum from these subjects will be 

available so the nAb titer to AdC6, AdC7 and Ad5 can be measured in 

addition to T-cell responses.  

 Studying Ad-specific immunity in African subjects will also help to 

define the utility of rare serotype vaccines. Though an Ad serotype may be 

rare in developed nations, prevalence is often high in third world countries 

where water, sewage, and sanitation systems are not as consistent, allowing 

for the spread of Ad. There have been few studies demonstrating pre-existing 

T-cells to rare Ad serotypes. Future studies will be examining the T-cell 

response and nAb levels to one rare human serotype in development, Ad26, 

in both US and African subjects [193]. Preliminary results suggest the 

magnitude and prevalence of Ad26-reactive T-cells is similar to Ad5-reactive 

T-cell in the US.  This study will help define the utility of Ad26 as a vector 

compared with the extensively tested Ad5.  
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Another important question is whether vector-specific T-cell responses 

influence insert-specific response. The effector-like qualities of Ad-specific 

CD8+ T-cells would be desirable as insert-specific responses for a T-cell 

vaccine. CMV infection is similar to Ad as both viruses persist and are known 

to induce potent effector responses in humans [166]. Recent work has shown 

induction of effector memory cells and protection from SIV infection in CMV 

vaccinated monkeys [194], however the risks for a CMV vector are higher 

than other viral vectors, limiting their clinical development. Therefore, being 

able to induce effector like immunity through adjuvants and cytokines to alter 

the functionality of T-cell responses in other viral vectors may be critical to the 

development of an effective CTL vaccine.  

Future studies are also planned to examine the transcriptional profile of 

Ad-specific CD8+ T-cells. By understanding the molecular mechanism behind 

effector CTL development and perforin production we may be better prepared 

to design successful vaccines capable of eliciting insert specific CTL. Studies 

in our lab suggest the transcription factor T-bet is expressed at a higher level 

in perforin producing CTL. By understanding what induces T-bet expression 

we may be able to increase perforin production in activated T-cells and viral 

elimination.  

Large Ad specific effector CD8+ T-cell responses may alternatively 

result in a diminished CD8+ T-cell response to the insert. The average 

response to HIV insert proteins in the STEP trial was 0.4-1.0% whereas the 



 114

average response to Ad in our studies following vaccination was 2.7% and as 

high as 8% [180]. There are a number of reasons why this may occur. The 

response to Ad may be larger because Ad transfected cells are eliminated 

before the insert is expressed, cells are transduced and survive but 

expression of the insert is low, or Ad epitopes more efficiently bind MHC class 

I, thereby skewing the immune response towards Ad. A possible strategy for 

reducing Ad vector immunity would be to delete more of the vector genome to 

reduce wild type Ad gene expression. Another method would be to improve 

the efficacy of transgene expression so a lower dose of Ad-vector could be 

delivered, thereby reducing Ad capsid protein levels. 

To address whether insert-specific responses positively or negatively 

correlate with vector-specific responses, we plan on comparing the phenotype 

and functionality of Ad-specific and HIV-specific T-cell responses in Merck 

phase 1 016 trial participants.  We have obtained PBMCs from over 50 

subjects with a range of Ad5 nAb titers allowing for the comparison of how 

nAbs and Ad-specific CD8+ T-cells may affect insert specific responses. This 

would be a novel study in humans as vector- specific immunity including nAbs 

and T-cells before and after vaccination has not be extensively studied.  

In addition to increasing efficacy of Ad-based vaccines, a major 

concern following the STEP trial is whether Ad-based vaccines can be safely 

used in high-risk HIV populations. To further address whether Ad-specific T-

cells may have been responsible for the increased risk of infection observed 
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in Ad5-seropositive STEP trial participants we are planning an extensive 

analysis of phase I Merck Ad5 trial participants. In addition to examining α4β7 

expression, future studies will measure the gut associated homing receptors 

CD161, and CCR10 to better define the trafficking and phenotype of Ad-

specific CD4+ T-cells before and after Ad5 vaccination.  

This thesis comprises the largest body of work to date studying human 

Ad-specific T-cell responses following natural infection and vaccination. I 

have shown that Ad-specific T-cells are prevalent, effector-like, and cross-

reactive. Vaccination only transiently expanded Ad-specific T-cells 

irrespective of Ad5-serostatus and was unlikely to have been the cause of the 

increased risk of HIV infection in seropositive STEP trial participants. These 

studies have provided us with a good understanding of Ad-specific T-cell 

responses, as well as highlighted areas of further study where we may be 

able to improve Ad-based vaccine efficacy and safety.  
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Table 4: Ad5 hexon peptide pools. 
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Table 5: AdC6 Hexon Peptide Pools. 
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Table6: AdC7 hexon peptide pools. 
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