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An an Vitro and in Silico Investigation of the Role of Nmda Receptor
Subtypes Following Mechanical injury

Abstract
The N-methyl D-aspartate receptor (NMDAR), a common glutamate receptor found throughout the brain,
has long been implicated as the major mediator of the pathology seen after traumatic brain injury (TBI).
However, given their critical role in physiologic function of neural networks, complete inhibition of these
receptors is an unsuitable therapeutic strategy. Thus, further investigation into how these receptors respond to
injury is required to identify more directed therapeutic targets. Here, we aimed to use two unique
experimental models to further investigate the role of NMDARs in the neuronal response to TBI, with
specific emphasis on the contribution of different NMDAR subtypes. TBI produces a unique disease
paradigm containing mechanical and biochemical components, which can both affect NMDAR activity. We
sought to isolate the effects of both these components and then to examine how they combine to create a
unique injury response.

We utilized a recombinant system expressing known NMDAR subtypes to first examine the action of
mechanical stretch on specific subtypes. We demonstrated that mechanosensitivity of the NMDAR is indeed
dependent on its subunit composition, with the NR2B subunit conferring stretch sensitivity. Further, we were
able to investigate the regulation of NR2B mechanosensitivity and found that a single PKC phosphorylation
site on the NR2B C-terminal tail can critically control stretch sensitivity.

We next developed a computational model of a single dendritic spine to evaluate the patterns of activation
among NMDAR subtypes in both physiologic and pathologic glutamatergic signaling. We demonstrate that
the presence of multiple NMDAR subtypes on the dendritic spine enables the ability for a single synapse to
produce unique responses to different glutamate inputs. Importantly, we discovered that injury induced
release of synaptic glutamate vesicles results in enhanced contribution of NR2B containing receptors. Finally,
we have shown that the collective effects of TBI can drastically enhance the calcium influx from synaptic and
extrasynaptic NR1/NR2B-NMDARs, an NMDAR subtype known to mediate pro-death signaling. Together,
our data demonstrates that the NR2B subunit represents a unique pathologic sensor for TBI, and could
represent an intriguing target of manipulation in the development of improved TBI therapeutics.
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ABSTRACT 

 

AN IN VITRO AND IN SILICO INVESTIGATION OF THE ROLE OF NMDAR 

SUBTYPES FOLLOWING MECHANICAL INJURY 

 

Pallab Singh 

David F. Meaney 

 

The N-methyl D-aspartate receptor (NMDAR), a common glutamate receptor 

found throughout the brain, has long been implicated as the major mediator of the 

pathology seen after traumatic brain injury (TBI).  However, given their critical role in 

physiologic function of neural networks, complete inhibition of these receptors is an 

unsuitable therapeutic strategy.  Thus, further investigation into how these receptors 

respond to injury is required to identify more directed therapeutic targets.  Here, we 

aimed to use two unique experimental models to further investigate the role of NMDARs 

in the neuronal response to TBI, with specific emphasis on the contribution of different 

NMDAR subtypes.  TBI produces a unique disease paradigm containing mechanical and 

biochemical components, which can both affect NMDAR activity.  We sought to isolate 

the effects of both these components and then to examine how they combine to create a 

unique injury response.   

We utilized a recombinant system expressing known NMDAR subtypes to first 

examine the action of mechanical stretch on specific subtypes.  We demonstrated that 

mechanosensitivity of the NMDAR is indeed dependent on its subunit composition, with 



vi 

 

the NR2B subunit conferring stretch sensitivity.  Further, we were able to investigate the 

regulation of NR2B mechanosensitivity and found that a single PKC phosphorylation site 

on the NR2B C-terminal tail can critically control stretch sensitivity.   

We next developed a computational model of a single dendritic spine to evaluate 

the patterns of activation among NMDAR subtypes in both physiologic and pathologic 

glutamatergic signaling.  We demonstrate that the presence of multiple NMDAR 

subtypes on the dendritic spine enables the ability for a single synapse to produce unique 

responses to different glutamate inputs.  Importantly, we discovered that injury induced 

release of synaptic glutamate vesicles results in enhanced contribution of NR2B 

containing receptors.  Finally, we have shown that the collective effects of TBI can 

drastically enhance the calcium influx from synaptic and extrasynaptic NR1/NR2B-

NMDARs, an NMDAR subtype known to mediate pro-death signaling.  Together, our 

data demonstrates that the NR2B subunit represents a unique pathologic sensor for TBI, 

and could represent an intriguing target of manipulation in the development of improved 

TBI therapeutics.   
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INTRODUCTION 

Traumatic brain injury (TBI) is a major source of death and disability, estimated 

to inflict 1.7 million Americans annually (www.cdc.gov).  This, however, is likely to 

underestimate the actual prevalence of TBI as many injuries are considered to be mild 

TBI, many of which are not reported or treated.  There has been increased awareness that 

even mild TBI, such as concussion, can lead to long term neurological, motor, and 

cognitive deficits (Anderson et al 2006, Hoge et al 2008).  Recent attention to TBI in 

sports and in the military has led to increased funding and research into the mechanisms 

and potential treatments of TBI.  However, to date there remain very few clinical 

treatment options that exist following injury.  The NMDA receptor (NMDAR), an 

integral glutamate receptor found throughout the central nervous system, has long been 

implicated in neuronal dysfunction following injury (Faden et al 1989, McIntosh et al 

1990, Smith et al 1993, Arundine and Tymianski 2004).  In spite of their observed 

pathologic role in injury, the importance of NMDARs in physiologic neurological 

function has limited their ability to be targeted in potential treatments for TBI and other 

neurological disorders (Morris et al 1999, Ikonomidou and Turski 2002).  Our work uses 

several new models to further investigate how injury impacts the activity of NMDARs, 

with specific emphasis on the role of specific NMDAR subtypes that exist within the 

brain.  This knowledge can aid in the understanding of the molecular consequences of 

TBI and can be exploited in the search for more directed therapeutic strategies.   
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TRAUMATIC BRAIN INJURY  

Traumatic brain injury has numerous causes including falls, motor vehicle 

accidents, and assault.  These injuries lead to a variety of short term and long term 

consequences which can severely impact psychological, motor, and cognitive function.  

The pathology seen after TBI is often broken into the primary injury, including the 

damage done at the moment of initial insult, and secondary injury, which includes the 

subsequent damage to the brain seen in the hours to days after initial injury (Werner and 

Engelhard, 2007).  Primary injury, particularly injuries involving impact, can result in 

lesions, bleeding within the brain, and subdural hematoma outside the brain.  These 

injuries can typically be detected through CT scan but unless treated can all result in an 

increase in pressure within the skull that can cause further neuronal damage (Ghajar 

2000).  Additionally, deformation of brain tissue through rapid acceleration and 

deceleration can also cause diffuse regions of injury that may not be detected through 

current means.  While the primary injury may be impossible to treat, the delayed 

secondary injuries caused by the numerous changes in neurological signaling at the 

cellular and molecular levels remain to be areas of intense research.  

Among the first observations of the consequences of injury on the sub-tissue level 

was an increase in the extracellular concentration of excitatory amino acids, specifically 

glutamate (Faden et al 1989, Nilsson et al 1994).  Glutamate is the most common 

neurotransmitter, responsible for a majority of the physiologic excitatory synaptic 

communication throughout the brain.  However, excessive glutamate results in the over-

excitation of neurons, leading to activation of harmful enzymes and eventual cell death 
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(Olney 1969, Choi et al 1987, Lipton and Rosenberg 1994).  This injury induced damage 

seen after TBI has largely been attributed to the over activation of the NMDAR (Faden et 

al 1989, McIntosh et al 1990, Smith et al 1993, Rao et al 2001, Geddes-Klein et al 2006, 

Deridder et al 2006), a calcium permeable glutamate receptor with physiologic roles in 

development, learning, and memory (Morris et al 1986, Sakimura et al 1995, Shi et al 

1999, Huerta et al 2000).  However, NMDARs also mediate pathologic signaling, where 

excessive activation leads to neuronal death (Choi et al 1987, Arundine and Tymianski 

2004).  Additionally, a unique aspect of TBI is the mechanical perturbation of the 

neuronal network, which has direct impact on NMDAR activity.  NMDARs are 

mechanosensitive, where stretch results in a unique mechano-regulation of the receptor 

that allows for the stretch injured NMDAR to more easily conduct calcium, potentially 

exacerbating the injury response (Zhang et al 1996).  Antagonism of NMDARs, during 

and after injury, results in decreased cell death and improved cognitive function 

following models of injury in rodents (Faden et al 1989, Mcintosh et al 1990, Hicks et al 

1994).  These studies led to clinical trials with the hopes of finding an effective treatment 

options for mitigating secondary injury following TBI.  However, clinical trials using 

NMDAR antagonists have failed due to the presence of prohibitive psychological side 

effects (Morris et al 1999).  NMDARs have a vital role in the physiological function of 

neurons, and thus the complete blockade of NMDAR mediated signaling has proven to be 

an unacceptable strategy for treating TBI in the clinical population (Ikonomidou and 

Turski 2002).  Thus, despite being the primary mediator of dysfunction after TBI, much 

of the research has shifted to investigate alternative strategies.  However, there are 
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several types of NMDAR subtypes, and it has become increasingly apparent that these 

subtypes can have differing roles in both physiologic and pathologic NMDAR function 

(Cull-Candy et al 2001, Waxman and Lynch 2005, Liu et al 2007).  This has led to 

further studies from our lab and others demonstrating that NMDAR subtypes have 

differential roles in mediating the neuronal response to TBI (DeRidder et al 2006).  We 

build on these studies to investigate how two different mechanisms of injury, NMDAR 

mechanosensitivity and excessive glutamate release, can differentially affect NMDAR 

subtypes.   

 

THE NMDA RECEPTOR 

Glutamatergic signaling occurs between neurons at synapses where glutamate is 

released from the presynaptic cell and activates glutamate receptors at specialized 

compartments called dendritic spines.  AMPA receptors (AMPARs) and NMDARs are 

the most prevalent and the most studied of the glutamate receptors.  These receptors are 

ionotropic in which they allow for ionic flux through a pore when activated.  Whereas 

AMPARs typically conduct only sodium, NMDARs conduct sodium as well as calcium.  

NMDARs are activated through simultaneous binding of glutamate and glycine, allowing 

for the influx of sodium and calcium as well as the efflux of potassium.  NMDARs also 

contain a voltage dependent magnesium block, and thus depolarization is also required 

for ionic flux through the receptor (Dingledine et al 1999). NMDAR activation mediates 

several important neuronal processes including synaptic plasticity, the underlying 

mechanism behind memory formation (Liu et al 2004, Massey et al 2004, Barria and 
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Malinow 2005, Bartlett et al 2007).  However, an overactivation of NMDARs causes 

sustained levels of intracellular calcium, leading to excitotoxicity and cell death (Choi et 

al 1987, Arundine and Tymianski 2004).  NMDAR activation must, therefore, be under 

precise control to promote neuronal growth and survival without inducing excitotoxicity 

(Hardingham and Bading 2003).  It has become increasingly apparent that the complexity 

of NMDAR function stems from the multiple subpopulations of receptors that exist.  

Distinguishing between the specific functions of each subpopulation is necessary to fully 

understand the role of NMDARs in injury or disease.   

The NMDAR is a tetramer composed of two NR1 subunits, and two subunits 

from the NR2 family.  There are four members of the NR2 family (NR2A, NR2B, NR2C, 

and NR2D).  The NR2 subunits in a functional receptor are of one or a combination of 

two members of the family (Dingledine et al 1999, Cull-Candy and Leszkiewicz 2004).  

The identity of the NR2 subunit governs functional properties of the receptor including 

conductance and deactivation kinetics (Cull-Candy et al 2001).  Furthermore, NR2 

subunits are localized differently throughout the brain with NR2A and NR2B subunits 

predominating in most regions including the cortex and hippocampus, the brain regions 

where we apply most of our focus (Monyer et al 1994).  Thus, in these regions NMDARs 

can be diheteromeric, containing either 2 NR2A (NR1/NR2A-NMDARs) or 2 NR2B 

(NR1/NR2B-NMDARs), or they can be triheteromeric, containing one of each NR2 

subunit (NR1/NR2A/NR2B-NMDAR).  NR2 subunits are also developmentally 

regulated, with NR2B subunits predominant during development.  As the brain matures, 

the number of NR2A subunits steadily increases and replaces NR2B subunits at most 
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synaptic sites, while NR2B remains prevalent at extrasynaptic sites (Williams et al 1993, 

Monyer et al 1994, Liu et al 2004).  NR1 splice variants and NR2 subunits create distinct 

NMDAR subpopulations, whose functional properties allow them to mediate different 

cellular functions.  Given emerging evidence for specific NMDAR subtypes to have 

different and opposing roles in the determination of cell fate during disease (Hardingham 

and Bading 2003, Waxman and Lynch 2005, Liu et al 2007), it is vital to recognize the 

specific patterns of NMDAR subtype activation during injury.   

The development of NMDAR subtype specific antagonists has allowed the study 

of subtype specific functions in both physiological and pathological conditions.  

Ifenprodil and the related compound, Ro 25-6981, specifically block NR2B-NMDARs 

(Williams 1993, Gallagher et al 1996), whereas NVP-AAM077 is more specific for 

NR2A-NMDARs (Auberson et al 2002).  These pharmacological manipulations have led 

to the observation that NR2B containing receptors are responsible for cell death 

following stretch injury, while NR2A containing receptors mediate pro-survival signaling 

after injury (DeRidder et al 2006).  While these specific antagonists have aided in the 

study of NMDAR subtype specific functions, their use has become recently scrutinized, 

as the specificity of NVP-AAM077 has now been called into question (Neyton and 

Paoletti 2006).  Thus, alternative models are necessary to better study NMDAR subtypes.   

 

RESEARCH GOALS 

Despite the recent advances made in investigating the role of NMDARs in 

mediating the neuronal response to TBI, questions remain as to how these receptors, and 
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more specifically how subtypes of these receptors, mediate the initial response to an 

injury event.  NMDAR sourced calcium influx during injury can be affected by two 

distinct mechanisms: (1) NMDAR mechanosensitivity and (2) excessive extracellular 

glutamate concentration.   Here, we aimed to use new models to study the role of 

NMDAR subunit composition in each of these mechanisms independently and to 

examine how these mechanisms work in concert to result in excessive calcium influx 

(Figure 1).   

NMDARs have been shown to be mechanosensitive (Zhang et al 1996), but the 

subtype dependence and regulation of this unique characteristic has yet to be determined.  

We sought to investigate its regulation by using a recombinant system which allows for 

complete control over the identity of expressed receptor subtypes.  Further, this model 

system allows for the expression of mutant receptors, which allows for the examination 

of the roles of particular domains or residues in receptor mechanosensitivity.   In order to 

better understand how injury induced increases in glutamate can alter NMDAR activity, 

we aimed to develop a computational model that could be used to quantitatively examine 

differences in NMDAR subtype activation at time and length scales not possible with 

current experimental methods.  We first sought to explore how patterns of activation 

differ among NMDAR subtypes in the physiological regimes of glutamate stimuli.  Next, 

we aimed to further use this model to examine how injury induced glutamate alone, and 

then in concert with NMDAR mechanosensitivity, affects the extent and source of 

calcium entry during injury conditions.  Thus, these unique models were used to enable 
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us to further explore how injury  may differentially affect the activities of specific 

receptor subtypes.   

Traumatic Brain Injury 

Loss of Mg2+ block 

in NMDARs

Increased extracellular 

glutamate

• Subtype Dependence?

• Regulation?

• Patterns of NMDAR 

subtype activation?

Immediate Ca2+ influx

Neuronal Response  

Figure 1: TBI has two unique consequences impacting NMDAR activity.   

 

SUMMARY OF CHAPTERS 

These studies were conducted to build upon work from our lab and others on the 

role of NMDAR subtypes in the injury induced calcium influx.  We utilized an in vitro 

stretch injury model and an in silico computational model of glutamatergic signaling to 

specifically demonstrate that NMDAR subtypes have a differential role in mediating the 

injury response and that the NR2B subunit remains an intriguing target for manipulation 

in the development of prophylactic or treatment options.   
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In chapter 2, we utilized a recombinant system of human embryonic kidney 293 

cells (HEK-293s) that were transfected with known combinations of NMDAR subunits.  

This model gives us complete control over the identity of NMDAR subtypes expressed 

and also eliminates the synaptic geometry of neurons which can complicate the ability to 

observe a direct mechano-response.  NMDARs have previously been shown to be 

mechanosensitive (Zhang et al 1996), with stretched cultures losing their native Mg2+ 

block.  However, the role of subunit composition in this mechanosensitivity has yet to be 

elucidated.  Using this system we show that NR2B-NMDARs are more sensitive to 

stretch than NR2A-NMDARs.  Additionally, with the use of truncation and point 

mutations, we isolated the Ser-1323 residue of NR2B as an integral mediator of NR2B 

mechanosensitivity.  With the knowledge that this residue is a known phosphorylation 

site for PKC, we showed that inhibition of PKC eliminated the stretch induced calcium 

influx in both neurons and NR1/NR2B transfected HEKs.  These findings demonstrate 

that NR2B is a critical mediator of injury induced calcium influx and suggests that 

specific antagonism of NR2B containing NMDARs, while leaving NR2A-NMDARs 

unblocked, may represent a potential strategy to mitigate excitotoxic calcium influx 

during injury. 

In chapter 3, we describe the development of a new stochastic computational 

model of glutamatergic signaling using Smoldyn, a stochastic simulator of biochemical 

reactions.  While several computational models have been used to examine NMDAR 

activation, until recently the ability to discriminate between NMDAR subtypes in these 

models was not possible.  The development of subtype specific activation schemes by 
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Erreger et al (2005) has allowed us to further investigate subtype specific activation with 

the temporal and spatial resolution not afforded to us by conventional experimental 

models.  Using this model, we show that NMDAR subtypes have different dynamic 

ranges, with NR2A-NMDARs displaying scalability in its activation at lower levels of 

released glutamate while NR2B-NMDARs and NR2A/NR2B-NMDARs scale in 

activation at much higher glutamate levels.  We also demonstrate that a physiological 

representation of mixed NMDAR subtypes along the dendritic spine allow for unique 

patterns of subtype activation in response to glutamate release of varied frequencies, with 

implications in how different subtypes are involved in mediating modes of synaptic 

plasticity.  Finally, we show that changes in the relative subtype content of the dendritic 

spine significantly alter the extent and reliability of observed NMDAR activation.  These 

findings demonstrate the utility of computational models while enhancing our 

understanding of how NMDAR subtypes can differentially transmit a variety of 

physiological glutamate signals into functional outcomes. 

In chapter 4, we continue our use of our in silico model of glutamatergic signaling 

to investigate the changing patterns of NMDAR subtype activation in injury induced 

excessive glutamate release.  With a physiological representation of the numbers and 

locations of receptor subtypes, we demonstrated that an injury induced simultaneous 

release of numerous glutamate vesicles significantly altered both the extent of total 

NMDAR activation and the relative contribution of different subtypes.  We show that 

NR2B containing receptors, including extrasynaptic NR2B-NMDARs, contribute 

significantly more under injury conditions than they do after physiological univesicular 
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glutamate release.  Finally, we demonstrate that a loss of Mg2+ block in NR2B-NMDARs 

drastically increases the extent of observed calcium influx in response to both injury 

mediated glutamate release and also physiological spontaneous single vesicle release.  As 

it has been shown that the loss of Mg2+ block can last several hours, and we have now 

shown that this may be restricted to the NR2B subunit, our findings suggest that injury 

results in enhanced calcium influx through these receptors which can alter the normal 

balance of signaling.  NR2B-NMDARs and extrasynaptically located NMDARs have 

both been shown to mediate pro-death signaling and thus injury can cause a sustained 

shift toward the activation of these pathways which can influence the extent of secondary 

injury.   

Finally, in chapter 5, we summarize our data and highlight the significance of this 

work in furthering our understanding of the differential roles of NMDAR subtypes in 

TBI.  We will provide our overall conclusions while suggesting how our new findings 

can lead to some exciting future research with the eventual hopes of developing more 

effective treatment options for TBI.   
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ABSTRACT 

 N-methyl-D-aspartate receptors (NMDARs), critical mediators of both 

physiologic and pathologic neurological signaling, have previously been shown to be 

sensitive to mechanical stretch through the loss of its native Mg2+ block.  However, the 

regulation of this mechanosensitivity has yet to be further explored.  Furthermore, as it 

has become apparent that NMDAR mediated signaling is dependent on specific NMDAR 

subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question 

is the role of subunit composition in observed NMDAR mechanosensitivity.  Here, we 

used a recombinant system to assess the mechanosensitivity of specific subtypes and 

demonstrate that the mechanosensitive property is uniquely governed by the NR2B 

subunit.  NR1/NR2B-NMDARs displayed significant stretch sensitivity, while 

NR1/NR2A-NMDARs did not respond to stretch.  Furthermore, NR2B 

mechanosensitivity was regulated by PKC activity, as PKC inhibition reduced stretch 

responses in transfected HEK 293 cells and primary cortical neurons.  Finally, using 

NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as 

a unique critical regulator of stretch sensitivity.  This data suggests that the selective 

mechanosensitivity of NR2B can significantly impact neuronal response to traumatic 

brain injury, and illustrates that the mechanical tone of the neuron can be dynamically 

regulated by PKC activity.   
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INTRODUCTION 

N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors whose 

activation is important for the proper health and maintenance of neurons and neuronal 

networks (Ikonomidou et al 1999, Hardingham 2006, Hetman and Kharebava 2006).  

Functional NMDARs are usually comprised of 2 NR1 subunits and 2 subunits from the 

NR2 family (NR2A, NR2B, NR2C, and NR2D) (Dingledine et al 1999, Cull-Candy and 

Leszkiewicz 2004).  The relative composition of expressed NMDARs varies throughout 

brain regions (Monyer et al 1994), changes over neural development (Williams et al 

1993, Monyer et al 1994, Liu et al 2004), and directs the activation of selective signaling 

networks through the unique coupling of proteins to the C terminus of each NR2 subunit 

(Kohr et al 2003, Kim et al 2005, Li et al 2006, Jin and Feig 2010).  Proper regulation of 

receptor activity is vital, as excessive activation of NMDARs is the primary mediator of 

excitotoxic cell death in numerous disease states (Lynch and Guttmann 2002, Arundine 

and Tymianski 2004, Waxman and Lynch 2005, Hardingham and Bading 2010), while 

the tonic synaptic activation of the receptor can stimulate key neuronal survival programs 

(Ikonomidou et al 1999, Ikonomidou et al 2000).  Although the competing roles of the 

NMDAR lead to a more complex view of how NMDAR stimulation directs physiological 

processes including synaptic plasticity (Liu et al 2004, Massey et al 2004), dendritic 

growth (Espinosa et al 2008, Ewald et al 2008), and recovery from injury (Hardingham et 

al 2002, DeRidder et al 2006), this more complete view provides new opportunities for 

developing directed NMDAR-targeted therapies.  Several recent papers show that it is 
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possible to use the molecular diversity of the NMDAR, including the selective action or 

blockade of specific receptor subpopulations, to promote necessary maintenance of 

neural circuits (Kinney et al 2006), minimize the over-activation of pathological 

pathways (Waxman and Lynch 2005, Zhou and Baudry 2006), and effectively treat 

neurological disease (Okiyama et al 1997, Gogas 2006, von Engelhardt et al 2007, Chen 

et al 2008). 

 The NMDAR is considered by many as one of the common mediators for the 

acute and progressive events that occur following traumatic brain injury (TBI) (Faden et 

al 1989, McIntosh et al 1990, Shapira et al 1990, Smith et al 1993, Deridder et al 2006, 

Geddes-Klein et al 2006).  Based partly on studies showing an increased glutamate 

concentration in the extracellular space (Faden et al 1989, Palmer et al 1993, Nilsson et al 

1994, Bullock et al 1995), many consider TBI an extension of glutamate excitotoxicity.  

However, TBI has an important and unique mechanical etiology that can contribute to the 

heterogeneity of the disease in the clinical population.  Moreover, the mechanical 

causality of TBI appears at the molecular level of the NMDAR.  The NMDAR is 

mechanosensitive, and expresses a unique switch in behavior following mechanical 

stimulation.  Specifically, rapid neuronal stretch induces a persisting loss in the voltage 

dependent Mg2+ block of NMDARs (Zhang et al 1996).  Similar to a phosphorylation 

event or proteolysis, the mechanical event can function as a distinct regulator of NMDAR 

function.  However, no data exists that describes how this mechanically initiated switch 

in NMDAR behavior is regulated among its receptor subunits.  The diversity in the 

dynamic mechanosensing properties of NMDAR subtypes may prove important in 
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understanding the post-acute regulation of neuronal homeostasis after traumatic 

mechanical injury, similar to how the diversity in NMDAR composition has led to a more 

complete understanding of signaling occurring after excitoxicity (Lynch and Guttmann 

2002, Liu et al 2007, von Engelhardt et al 2007).   Finally, identifying the potential 

domains of regulation across NMDAR subunits or, alternatively, within individual 

subunits will inform how normal physiological signaling acting upon the receptor can 

potentially augment the mechanical tone of NMDARs.   

 In this report, we systematically characterize the direct effects of mechanical 

stretch on calcium influx through the NMDAR.  To distinguish between changes in 

calcium influx occurring from increased extracellular glutamate versus stretch induced 

mechanosensitivity of the NMDAR, we expressed recombinant receptors in HEK 293 

cells using a minimal representation of the postsynaptic structure that included the 

subunits and an anchoring protein (PSD-95).  A secondary advantage of this approach 

was eliminating the need for subtype specific antagonists needed for testing in dissociated 

neuronal cultures, as the specificity of some antagonists is currently under debate 

(Neyton and Paoletti 2006).  We examine key regulatory mechanisms of 

mechanosensitivity and test if there are crucial domains on subunits that control this 

sensitivity to stretch.   Together, our data reveals that dynamic mechanosensitivity of 

NMDARs is controlled by the intracellular domain of the NR2B subunit, in which a PKC 

mediated phosphorylation site, Ser-1323, is critical for NR2B stretch sensitivity. Given 

the prominent role of NR1/NR2B NMDARs controlling neuronal fate in models of 

neurological disease, this points to a likely pathway whereby mechanical force is 
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transferred into subunit-specific signaling cascades after mechanical trauma and 

influences cell fate after injury. 

 
 
METHODS 

Cell culture:  HEK 293T cells (ATCC) were cultured and maintained with Dulbecco’s 

Modified Eagle Medium (DMEM) with L-glutamine, supplemented with 5% fetal bovine 

serum in a humidified incubator at 37°C and 5% CO2.  For experimentation, HEK 293 

cells were plated onto a transparent, silicone substrate (Sylgard 184 + 186 mix).  These 

membranes were attached to stainless steel wells, leaving an exposed area (area – size of 

a single well from a 24well plate) of membrane for plating.  Following sterilization, 

membranes were coated with poly-D-lysine (0.01mg/mL) for 1hr, rinsed with sterile 

water, and coated with laminin (10µg/mL) for 1hr.  After membranes were rinsed again, 

HEK 293 cells were plated at 1:20 dilution from a fully confluent flask.   

For primary cortical cultures, cortical neurons were isolated from E18 embryonic rats and 

plated on poly-D-lysine coated silicone membranes at a density of 0.3 million/mL.  

Cultures were plated in Minimum Essential Medium (MEM) with glutamax + 10% horse 

serum which was removed at 24hrs and replaced with Neurobasal (Gibco) + B-27 

supplement (Invitrogen).  At 24 hours post plating, cells were treated with AraC (1µM) to 

prevent the growth of astrocytes.  AraC was removed at 3 DIV and cells were cultured in 

a humidified incubator at 37°C and 5% CO2.  Primary cortical cultures were used at 12-

15 DIV, an age which contains a diverse content of NMDAR subtypes.   
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Plasmids:  NR1a, NR2A, and NR2B cDNA plasmids have been obtained and subcloned 

from rat brain library as previously described (Boeckman and Aizenman 1994, 

Boeckman and Aizenman 1996, Gallagher et al 1996 ).  The NR2B-1036X and NR2B-

1433X truncation mutants were generated by replacing fragments of wildtype NR2B and 

introducing a stop codon at amino acid 1037 (Wu et al 2007) and 1434 respectively by 

PCR.   Using wildtype NR2B in the PRK7 vector as a template, the NR2B point mutants 

S1303A and S1323A were made using the PCR-based site directed mutagenesis kit by 

Stratagene (Agilent Technologies). The mutations were verified by DNA sequencing 

through the Nucleic Acid/Protein Research Core at Children’s’ Hospital of Philadelphia. 

The plasmid encoding GFP-PSD95 was a generous gift supplied by Dr. David Bredt.   

 

Transfection:  HEK 293 cells were transfected 24 hours after plating with Lipofectamine 

2000 according to product instructions.  All cultures were transfected with GFP tagged 

PSD95 to provide a visual marker of successful transfection.  The total amount of DNA 

transfected per well was held constant over all conditions (0.8µg/well).  Due to the tonic 

vesicular release of glutamate in HEK 293 cells, cells were transfected in the presence of 

the NMDA antagonist APV (Sigma-Aldrich, 100µM) throughout the transfection period 

and until the time of plating.  For cultures transfected with NR1 and NR2 subunits, the 

ratio of transfected DNA was 2:1:1 (GFP-PSD95:NR1:NR2).  This ratio did not vary for 

any of the mutant NR2 subunits. 
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Figure 1: In vitro stretch injury device.  (A) Schematic of the in vitro injury device in which cells plated 
on stainless steel wells are placed upon a microscope stage and sealed into the pressure chamber.  A 
defined air pulse is applied to the chamber deflecting the membrane. (B) The 6mm slit in the stainless steel 
plate allows a uniform membrane stretch in the defined stretched region. 

In vitro stretch injury:  Transfected HEK 293 cells were used 16-20 hours after 

transfection.  Cultures were incubated with the fluorescent calcium indicator, Fura 2-AM 

(5µM, Invitrogen), in controlled saline solution (126mM NaCl, 5.4mM KCl, 2mM 

MgCl2, 1.8mM CaCl2, 10mM HEPES, 25mM glucose) supplemented with 100µM APV 

for 40 minutes at 25°C.  Cultures were placed in an apparatus that would apply a brief 

pressure to the exposed culture, producing a uniaxial stretch which deforms the 

membrane in proportion to the applied pressure (Lusardi et al 2004) (Fig 1).  We used the 

amount of membrane deformation (40%) as a measure of the mechanical input delivered 

to the HEK 293 cells.  In a separate group of cultures, we used a 100µM NMDA 
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application to evaluate the response of transfected cells to agonist.  All cultures were 

imaged continuously before and after the mechanical or chemical insult, collecting 

images at the emission fluorescence of 510nm that appeared when cultures were 

alternately excited at 340nm and 380nm every 3 seconds.  A pair of emission images 

from each wavelength was used to generate a Fura ratio (340nm/380nm) image at each 

time point.  Cultures were imaged for 30 seconds before stimulation and up to 3 minutes 

following stimulation.  Following Fura imaging, cells were excited at 488nm to detect the 

presence of GFP within the cells.  The GFP signal was not detected during the 340nm or 

380nm excitation during Fura imaging.   

For testing stretch sensitivity of primary cortical neurons, the test protocol 

remains the same, with one primary difference.  Cortical neurons were incubated with 

Fura 2-AM prior to stimulation for 40 minutes at 37C in saline solution (51.3mM NaCl, 

5.4mM KCl, 2mM MgCl2, 1.8mM CaCl2, 26mM NaHCO3, 0.9M NaH2PO4, 10mM 

HEPES, 25mM glucose) without the addition of APV.   

 

Data Analysis:  Stimulation of HEK 293 cells was analyzed using MetaMorph to 

quantify the extent of calcium influx following injury or NMDA stimulation.  Traces of 

Fura ratio (F340/F380) over time were collected for all GFP-positive cells.  Cells with a 

baseline Fura ratio of greater than 0.95, indicating an elevated initial calcium level, were 

excluded from analysis. The response was quantified for each individual cell by 

calculating the peak fractional change in Fura ratio post stimulation over the average 
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baseline ratio pre stimulation (
baseline

baselinepeak

F

FF −
).  To normalize data, the peak response for 

each cell was normalized by the peak response for the NR1/NR2B group for the given 

stimulation, either stretch or NMDA.   Significance between groups was determined with 

a one-way ANOVA and post hoc Tukey’s test.  

 

 

RESULTS 

Subunit composition of the NMDAR influences mechanosensitivity 

Following dynamic 40% stretch of NMDAR transfected HEK 293 cells, we 

observed two different calcium responses: 1.) a significant and gradual rise in cytosolic 

calcium, indicated by a relative increase in the Fura-2 fluorescence ratio, which occurred 

and plateaued within the first two minutes post stretch, and 2.) no significant increase in 

the relative Fura-2 ratio.  We did not observe any stretch induced calcium increase in 

nontransfected cells, indicating the stretch level was not sufficient to cause the formation 

of nonspecific, transient pores in the plasma membrane (data not shown).  Moreover, 

cells transfected with only GFP-PSD95 showed little to no change in intracellular 

calcium, indicating that a functional NMDAR was necessary to elicit a response 

following mechanical stimulation.   
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Figure 2: NR1/NR2B-NMDARs are more sensitive to stretch than NR1/NR2A.  HEK 293 cells, plated 
on flexible membranes, were transfected with GFP-PSD95 alone, or along with NR1 and either NR2A or 
NR2B.  (A) Representative images of transfected cells, pre and post stimulation, that were stimulated by 
either 40% stretch (left) or 100uM NMDA (right).  Average fura ratio, representing intracellular calcium, 
following (B) stretch or (C) NMDA stimulation, demonstrates that while NR1/NR2B and NR1/NR2A 
expressing cells have a similar response to NMDA, stretch induced calcium influx is greater in NR1/NR2B 
expressing cells.  (D) The average peak fractional change in fura ratio, normalized to the NR1/NR2B 
response, following stretch demonstrates significant stretch sensitivity in NR1/NR2B transfected cells (* p 
< 0.05 compared to GFP-PSD95), while NR1/NR2A stretch responses are not different from control GFP-
PSD95 responses.  (E) Normalized response to NMDA stimulation was similar among NR1/NR2A and 
NR1/NR2B transfected cells (*p < 0.05 compared to GFP-PSD95). 
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Cells were transfected with GFP-PSD95 alone or along with NR1 and NR2A 

(NR1/NR2A) or with NR1 and NR2B (NR1/NR2B).  NR1/NR2B NMDARs expressing 

cells respond to the stretch stimulus with an immediate rise in intracellular calcium while 

cells expressing NR1/NR2A do not show a stretch induced calcium rise (Fig 2).  

Quantified, the normalized peak percent change in the calcium signal was significantly 

greater in NR1/NR2B transfected cells compared to GFP-PSD95 control (p < 0.05), 

while transfection of NR1/NR2A was not different from control (Fig 2D) (mean +/- 

standard error; NR1/NR2B, 1.0 +/- 0.03; NR1/NR2A, 0.14 +/- 0.01; GFP-PSD95, 0.19 

+/-0.02). Although NR1/NR2A and NR1/NR2B transfected cells display differential 

response to stretch, cells transfected with the different subunits respond similarly to the 

application of 100µM NMDA (Fig 2E) (NR1/NR2B, 1.0 +/- 0.03; NR1/NR2A, 0.90 +/- 

0.03; GFP-PSD95, 0.01 +/-0.01).  This data suggests that, among the common 

diheteromeric forms of the NMDAR expressed in the cortex and hippocampus, the 

NR1/NR2B NMDARs are significantly more sensitive to mechanical stretch than 

NR1/NR2A NMDARs.   
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Figure 3: Intermediate mechanosensitivity in triheteromeric NR1/NR2A/NR2B receptors.  Cells were 
transfected with GFP-PSD95 and with either, NR1 and NR2B, or with NR1, NR2A and NR2B.  Cells 
transfected with all subunits were either left untreated, or treated with NR1/NR2B specific antagonist, Ro 
25-6981.  (A) Normalized response to stretch was significantly decreased, but not eliminated, in cells 
expressing NR1, NR2A, and NR2B, demonstrating that these cells exhibit intermediate mechanosensitivity 
(* p < 0.05 compared to NR1/NR2B).  (B) Response to 100uM NMDA application was not different.  
Treatment with Ro 25-6981 did not alter the response of NR1/NR2A/NR2B transfected cells, suggesting 
that expressed NMDARs in these cells are primarily triheteromeric.   

To assess the mechanosensitivity of triheteromeric NR1/NR2A/NR2B NMDARs, 

HEK 293 cells were transfected with plasmids for GFP-PSD95, NR1, NR2A, and NR2B.  

Interestingly, the stretch response of cells expressing the combination of both the NR2A 
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and NR2B subunits was significantly decreased from those expressing NR1/NR2B 

(NR1/NR2A/NR2B,  0.70 +/- 0.03; NR1/NR2B, 1.0 +/- 0.06; p < 0.05), but was not 

diminished to levels seen for NR1/NR2A (Fig 3A).  The response to mechanical stretch 

was distinct from the chemical agonist response, as 100µM NMDA stimulation produced 

a calcium response in triheteromeric NMDARs that was not different from the 

NR1/NR2B receptor combination (Fig 3B).   One possibility that could lead to an 

uncertain interpretation of triheteromeric receptor experiments was that functional 

receptors in these transfected cultures could be composed of mixture of diheteromeric 

and triheteromeric receptor combinations.  To address this uncertainty, we treated 

NR1/NR2A/NR2B transfected cultures with Ro25-6981 (20µM), an antagonist which 

blocks NR1/NR2B receptors but has minimal effect on triheteromeric receptors (Hatton 

and Paoletti, 2005).  In both mechanical and chemical stimulation experiments, 

pretreatment with Ro25-6981 produced no significant differences in comparison to 

untreated triheteromeric cultures.  Thus, we can conclude that NR1/NR2A/NR2B 

NMDARs display an intermediate form of mechanosensitivity, between that of 

NR1/NR2A and NR1/NR2B receptors. 
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Figure 4: NR1/NR2B stretch response is dependent on glutamate activity.  Cells transfected with GFP-
PSD95, NR1, and NR2B were left untreated or pretreated with NMDAR competitive antagonist, APV, or 
NMDAR pore blocker, MK801.  (A) Normalized peak change in fura ratio after stretch shows that 
treatment with either antagonist significantly reduced stretch response (* p < 0.05 compared to 
NR1/NR2B).   
 

We next tested if the stretch sensitivity of NR1/NR2B-NMDARs can be 

modulated by alternatively blocking two modes of receptor activity: glutamate binding or 

ionic flux through the channel pore.  NR1/NR2B transfected cultures were stimulated 

with or without the pretreatment of NMDAR antagonists, APV (200µM) and 

MK801(50µM).  Pretreatment of cultures with APV, a competitive NMDAR antagonist 

that inhibits glutamate binding on the NR2 subunit, led to no significant stretch response.  

In comparison, pretreatment of cultures with MK801, which binds to and blocks the 
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channel pore, resulted in a significant decrease in calcium response compared to 

untreated NR1/NR2B transfected cells (Fig 4A).  Further, significant differences among 

the cumulative distributions of individual responses demonstrated that antagonism 

increases the amount of “non-responding” cells after stretch (Fig 4B).  In comparison, 

APV pretreatment decreased the stretch response significantly more than MK801 

(NR1/NR2B + APV, 0.07 +/- 0.02; NR1/NR2B + MK801, 0.27 +/- 0.04; p < 0.05) and 

further reduced the number of responding cells, as measured by the differential response 

distributions among antagonists.  Both APV and MK801 completely eliminated the 

NMDA response to levels not different from responses from cells transfected with only 

GFP-PSD95 (Fig 4C,D). 
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Figure 5 NR2B C-terminal tail confers mechanosensitivity.  Cells were transfected with NR2B or with 
truncation mutants of NR2B, NR2B-1036X or NR1433X, which truncate the c-terminal tail distal to amino 
acid 1036 and 1433 respectively.  (A) Normalized stretch response was significantly decreased in cells 
expressing NR2B-1036X, while (B) response to 100uM was not different.  (C) Response to stretch was 
slightly increased in cells expressing NR2B-1433X, while (D) response to NMDA stimulation was not 
different among NR2B and NR2B-1433X.  This suggests that NR2B mechanosensitivity is conferred by the 
intracellular domain within amino acids 1036-1433. (* p < 0.05 compared to NR1/NR2B response) 

NR2B C-terminal tail confers mechanosensitivity  

The NR2A and NR2B subunits share approximately 70% homology (Monyer et al 

1992), but contain important differences in the sequence and structure of their C-terminal 

tails.  These differences are important in dictating subunit specific functions of receptors, 

leading to differential cytoskeletal anchoring, protein binding, and association in 

signaling complexes (Wyszynski et al 1997, Wechsler and Teichberg 1998, Kohr et al 
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2003, Krapivinsky et al 2003, Kim et al 2005, Li et al 2006, Foster et al 2010).  We 

examined if the C-terminal tail of the NR1/NR2B receptor confers the observed 

mechanosensitivity of the receptor by studying the response of recombinant receptors 

composed of NR2B truncation mutants.  One key regulatory domain is the distal region 

of the C-terminal tail, which contains the binding domain for PSD95.  However, cells 

expressing NR2B-1433X, an NR2B truncation mutant which eliminates only the distal 

portion of the C-terminal tail, did not display any difference in mechanosensitivity 

compared to wildtype NR2B (Fig 5A).  Cells that express NR2B-1036X, which 

eliminates the majority of the C-terminus including numerous cytoskeletal binding sites 

and phosphorylation sites, displayed a significantly reduced level of mechanosensitivity 

(NR1/NR2B, 1 +/- 0.08; NR1/NR2B-1036X, 0.43 +/- 0.05, p < 0.05) (Fig 5C). Neither 

mutant displayed a difference in the chemical agonist response (100µM NMDA) when 

compared with the NR1/NR2B wildtype. (Fig 5B,D).  This data suggests that the 

intermediate region of the NR2B C-terminus between amino acids 1036-1433 confers 

NR2B mechanosensitivity, but does not affect the normal agonist response of the 

receptor.   
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Figure 6: PKC inhibition in recombinant NMDARs and primary neurons reduces receptor 
mechanosensitivity. HEK 293 cells were transfected with GFP-PSD95, NR1, and NR2B were left 
untreated or treated with PKC inhibitor, tamoxifen, or PKC activator, PMA.  (A) Tamoxifen treatment 
significantly decreased stretch response, while PMA had no effect (* p < 0.05 compared to NR1/NR2B). 
(B) Neither treatment produced significant change following NMDA stimulation in transfected HEKs.  
Primary cortical cultures (DIV 15) were treated left untreated, or treated with tamoxifen or PMA. (C) 
Stretch response, normalized to response of untreated cultures, was significantly reduced in tamoxifen 
treated cultures, while PMA had no effect (* p < 0.05 compared to untreated).  (D) Response to 100uM 
NMDA stimulation was unchanged in tamoxifen treated cells, but increased in PMA treated cells (* p < 
0.05 compared to untreated).   

Regulation of NR2B mechanosensitivity by PKC phosphorylation site on NR2B 

The identified mechanoregulatory domain of the NMDAR (a.a.1036-a.a.1433) 

contains numerous phosphorylation sites that can influence receptor function (Waxman 

and Lynch 2005, Chen and Roche 2007).  Among these phosphorylation sites are Ser-

1303 and Ser-1323, which are phosphorylated by protein kinase C (PKC).  PKC has been 

shown in previous studies of NMDAR mechanoactivation to partially restore the injury-
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induced loss of Mg2+ block observed after injury (Zhang et al 1996).  Thus, we examined 

the role of PKC activity in both primary cortical cultures and NR1/NR2B transfected 

HEKs.  In primary cortical neurons pretreated with 20µM tamoxifen citrate, an inhibitor 

for PKC binding to its substrates, the response to mechanical stretch was nearly 

eliminated (Fig 6A), while the response of the neurons to 100µM NMDA was not 

significantly changed.  Pretreatment with a PKC activator, PMA (500nM), did not change 

the injury mediated response in primary neurons.  In response to 100µM NMDA, PMA 

treatment slightly enhanced the calcium response, in agreement with previous reports, 

while PKC inhibition had no effect (Fig 6B).  Similar results were seen when PKC 

activity was modulated in NR1/NR2B transfected HEKs.  Tamoxifen citrate pretreatment 

significantly decreased the stretch response when compared to untreated cells (tamoxifen, 

0.13 +/- 0.01; untreated, 1 +/- 0.04, p < 0.05), while pretreatment with PMA had no effect 

(Fig 6C).  In response to 100µM NMDA in transfected HEKs, PMA treated cells 

displayed a slightly reduced response, while tamoxifen produced no change (Fig 6D).  It 

is important to note that neither PKC activation nor inhibition significantly altered 

baseline calcium levels in transfected HEKs or cultured neurons.  Thus, in agreement 

with previous reports of NMDAR mechanoactivation, PKC activity is observed to be 

crucial for the mechanical stimulation of NR1/NR2B NMDARs.   
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Figure 7: NR2B mechanosensitivity is critically regulated by a single PKC phosphorylation site. Cells 
were transfected with NR2B or with NR2B point mutations, NR2B-S1303A or NR2B-S1323A, which 
contain serine to alanine point mutations at PKC phosphorylation sites Ser-1303 or Ser-1323, respectively.  
(A) Normalized stretch response and (B) NMDA response was unchanged with the expression of NR2B-
S1303A. (C) Response to stretch was significantly decreased in cells expressing NR2B-1433X, while (D) 
response to NMDA stimulation was not different among NR2B and NR2B-S1323A.  This suggests that 
NR2B mechanosensitivity is regulated by the PKC phosphorylation site, Ser-1323, on the NR2B c-terminal 
tail. (* p < 0.05 compared to NR1/NR2B response) 

To examine if the observed PKC dependence of NR2B mechanoactivation was 

mediated through the PKC phosphorylation sites, two plasmids encoding NR2B point 

mutations were generated where each contains a serine to alanine point mutation at these 

residues.  Expression of NR2B-S1303A in HEK cells produced no change in observed 

calcium influx, compared to cells expressing wildtype NR2B, after stimulation with 
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stretch or 100µM NMDA (Fig 7A,B).  However, expression of NR2B-S1323A 

significantly decreases the stretch response compared to wildtype NR2B (Fig 7C) 

(NR1/NR2B, 1 +/- 0.04; NR1/NR2B-S1323A, 0.42 +/- 0.03, p < 0.05).  Response to 

100µM NMDA, however, was not different with the NR2B-S1323A recombinant 

receptor (Fig 7D).  These results establish that Ser-1323 on NR2B is a necessary 

determinant for NR2B mechanosensitivity, providing an intriguing mechanism for 

potentially augmenting the mechanical tone of NMDARs.   

 

DISCUSSION 

In this report, we examine the mechanisms regulating the dynamic 

mechanosensitivity of the NMDAR.  Using a recombinant system, we showed that the 

mechanosensitivity of the NMDAR is prominently regulated by the NR2B subunit.  

Furthermore, we identified that the NR2B C-terminal tail and a known PKC 

phosphorylation site significantly controls mechanosensitivity.  This suggests that PKC 

mediated phosphorylation of NR2B can influence mechanical tone of the NMDAR, 

similar to how post-translation modifications can alter receptor activity. 

 

Models used to evaluate NMDAR mechanosensitivity 

These data build on previous studies of the mechanical responsiveness of the 

NMDAR conducted by Paoletti, Casado, and Ascher (Paoletti and Ascher 1994, Casado 

and Ascher 1998), and are linked to studies conducted by Zhang et al (1996) in the same 

time period.  Using a series of isolated membrane patch samples from mouse cortical 
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neurons or recombinant receptors expressed in HEK 293 cells, Ascher and colleagues 

showed that the membrane tension is a primary factor that influences NMDAR 

mechanosensitivity.  Partly because the mechanical input in these past experiments was 

transferred through the plasma membrane by applying positive or negative pressures to 

the isolated patch, these past studies showed little role for the intracellular domains of 

either the NR2A or NR2B subunits in modulating the measured mechanosensitivity 

(Casado and Ascher 1998).  Moreover, any effect of slowly applied membrane tension 

was reversible when the mechanical perturbation was removed.  Rather than using slowly 

applied membrane expansion or contraction of membrane patch samples, our studies 

more closely resemble the work by Zhang et al. who exposed cells adhered to a flexible 

membrane to a single dynamic stretch.  In the Zhang studies, the mechanical perturbation 

was temporary and the cells were returned to their pre-stretch state within 100 

milliseconds.  We estimate that our model, along with that used by Zhang and colleagues, 

is different from the Ascher model as mechanical forces are exerted on NMDARs 

through both the plasma membrane and indirectly through the intracellular domains 

coupled to the cytoskeleton.  Unlike the Ascher studies, this dynamic perturbation causes 

an irreversible change in the physiological properties of the NMDAR, leading to a 

persisting calcium increase and, in primary neurons, an altered response to NMDA 

(Zhang et al 1996).   

Our studies extend this past work by evaluating subunit specificity and regulation 

of NMDAR mechanosensitivity.  We eliminated the potential complicating factors 

caused by studying mechanical stretch in cortical neurons by investigating 
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mechanosensitivity on recombinant receptors in a well characterized expression system 

(Kendrick et al 1996, Grant et al 1998, Guttmann et al 2001, Lynch and Guttmann 2001, 

Wu et al 2007).  Potential confounding factors in cortical neurons include the enhanced 

or rapid release of glutamate vesicles in the presynaptic bouton after stretch, the transient 

impairment of glutamate uptake by astrocytes, or the physical widening of the synaptic 

cleft caused by mechanical stretch – all of which can mask the observation of the direct 

stretch effect on the NMDAR.  Our recombinant receptor approach also avoids the 

complications from blocking different receptor populations in primary neurons with 

antagonists, some of which are known to have only modestly higher affinity for different 

subunits (Neyton and Paoletti, 2006).  We minimized or eliminated these confounding 

factors in our system, and used the recombinant receptor approach to study how the 

receptor subunit composition and domains of individual receptors control this dynamic 

mechanosensitivity and identified, for the first time, a specific site on the NR2B subunit 

which provides significant control of NMDAR mechanosensitivity. 

 

NR2B mechanosensitivity regulated by intracellular C-terminal tail 

These data show that the NR2B intracellular domain is a critical regulator of 

mechanosensitivity.  One mechanism that can regulate this differential effect is the 

physical coupling of the NMDAR subunits to the structural elements of the neuronal 

cytoskeleton.  Past work demonstrates that cytoskeletal destabilization in cultured 

neurons significantly reduces the stretch response (Geddes-Klein et al 2006).  Although 

both NR2A and NR2B have identified cytoskeletal binding sites, NR2B is thought to be 
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more strongly tethered through its binding of alpha-actinin (Wyszynski et al 1997) and 

spectrin (Wechsler and Teichberg 1998).  Indeed, much of this tethering of NR2B occurs 

within the intracellular domain (aa 1036-1433) of NR2B that we have identified as a 

critical region in defining NR2B mechanosensitivity.  However, the loss of stretch 

sensitivity in truncated NR2B expressing receptors was not complete and suggests that 

residual stretch sensitivity may be due to force transfer through the remaining C-terminal 

tail or through the plasma membrane.  This coupling to the cytoskeleton may be 

modulated by the distal C-terminus as well, where we found evidence suggesting that the 

mechanosensitivity is slightly enhanced when this region is deleted.  One possibility is 

that proteins binding to this domain, including PSD-95, may serve as a mechanical clutch 

by instituting a mechanical compliance to the stretch sensitivity of the receptor.  

Furthermore, as the postsynaptic density of a dendritic spine contains numerous and 

diverse set of proteins, the entire macromolecule structure may serve to potentially 

mitigate force transfer from the cytoskeleton to the receptor.  One intriguing possibility, 

for further study, is the potential regulation of mechanosensitivity by alternatively spliced 

cassettes in NR1.  We utilized NR1a in our studies, which contains all alternatively 

spliced regions, but there is evidence that alternatively spliced cytoplasmic regions of 

NR1 are responsible for tethering to neurofilament (Ehlers et al 1998) and microtubule 

filaments (Matsuda and Hirai 1999), providing a mechanism for different NR1 splice 

variants to exhibit differential stretch sensitivity.  Unfortunately, our attempts to further 

examine the cytoskeletal role in mechanosensitivity were hampered by the inability to 
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sufficiently destabilize the cytoskeleton network in HEK 293s without adversely 

affecting cell health.  

Although the C-terminus of the NR2B subunit is crucial for stretch sensitivity of 

the NMDAR, the mechanism that regulates the change in NMDAR physiology after 

stretch appears linked to the pore region of the NR2 subunit.  Past work showed that 

dynamic stretch directly changes the efficiency of the magnesium block at normal resting 

membrane potential (Zhang et al 1996).  We observed that MK801 pretreatment reduced, 

but did not eliminate, the proportion of cells responding to stretch, unlike its complete 

inhibitory effect in NMDA stimulated cultures.  MK801 and Mg2+ both block 

conductance through binding of a well defined region of the NMDAR pore (Kashiwagi et 

al 2002), and thus stretch may induce a change in the pore region that could alter both the 

inherent Mg2+ block as well as MK801 effectiveness.  This change in the pore region 

appears to persist, as others note the stretch-induced relief of the magnesium block can 

persist for at least 6 hours after the initial, single stretch.  It is important to note, that 

glutamate binding is still necessary for the mechanosensitivity of NMDARs, as treatment 

with the competitive antagonist APV completely eliminated the stretch response.  We 

have no data measuring any potential change in affinity for either glutamate or NMDA to 

activate these recombinant receptors after stretch, which may be key information to 

collect in the future to understand if stretch will also selectively alter this physiological 

feature of the receptor.  In many ways, these studies point to the possibility that 

mechanical force can selectively modulate the physiology of the NMDAR by enhancing 

currents, differentially controlling activation of different subtypes, and altering the 
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affinities of agonists and modulatory agents.  Thus, stretch induced receptor modulation 

can potentially act as a post-translational modification, similar to phosphorylation events 

which are known to significantly alter receptor activity (Chen and Roche 2007).   

 

PKC regulation of NMDAR mechanosensitivity 

Pinpointing a single residue on NR2B that controls a majority of the NMDAR 

mechanosensitivity is potentially important in the regulation of neuronal injury.  Both 

serine/threonine and tyrosine phorphorylation sites on NR2 subunits are well known 

regulatory mechanisms that can augment NMDAR current (Lynch and Guttmann 2001, 

Salter and Kalia 2004, Jones and Leonard 2005, Chen and Roche 2007).  PKC has 

phosphorylation sites on both NR2A and NR2B and its activity is known to both directly 

and indirectly potentiate NMDAR current (Liao et al 2001, Lynch and Guttmann 2001, 

Salter and Kalia 2004, Jones and Leonard 2005).  The specific site that we found to 

regulate mechanosensitivity of NR2B, Ser-1323, is one of two PKC phosphorylation sites 

known to be directly linked to PKC and insulin mediated enhancement of NMDAR 

currents (Liao et al 2001).  Although it is unknown how this site functionally relates to 

changes in NR1/NR2B-NMDAR activity, PKC potentiation of NMDAR current mediates 

a reduction in the normal magnesium block of the receptor (Chen and Huang 1992).  The 

role of PKC in NMDAR mechanosensitivity is less clear.  In their observation of stretch 

induced loss in Mg2+ block, Zhang et al (1996) showed that PKC inhibition partially 

restored the block.  However, results from our own lab have showed that PKC activity, 

acting upon the NR1 subunit, can reduce NMDAR cytoskeletal anchoring and decrease 
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stretch induced calcium influx (Geddes-Klein et al 2006).  Here, we demonstrate that 

mutation of Ser-1323 and PKC inhibition through tamoxifen treatment significantly 

reduced stretch sensitivity of NR2B.  As PKC stimulation was not required for 

mechanosensitivity, it suggests that some basal level of PKC activity is sufficient to 

induce stretch sensitivity.  There is only a slight overlap, though, among the PKC 

regulation sites influencing NMDAR current regulation and the sites regulating the 

mechanosensitivity of the receptor.  The Ser-1303 site on the NR2B subunit, also known 

to potentiate NMDAR current, does not have an effect on NR2B mechanosensitivity.  

Furthermore, the NR2A subunit has two analogous PKC phosphorylation sites at Ser-

1291 and Ser-1312, and we found that the NR2A subunit does not confer 

mechanosensitive properties to the receptor.  It thus remains an interesting question as to 

why one, but not all, of these similar sites has a role in NMDAR mechanosensitivity.  

Our data adds to the debate over how PKC and its targets play a role in traumatic brain 

injury, where PKC inhibition can reduce mechanosensitivity (Zhang et al 1996) but PKC 

activation has recently been reported to improve learning and memory after mild TBI 

(Zohar et al 2011).  Certainly, much of these disparate findings stem from the 

promiscuous actions of PKC, which have multiple direct and indirect roles in cellular 

signaling (Nelson et al 2008).  Systematically introduced mutations in NR2B now 

identify a specific region of the NR2B subunit which regulates mechanosensitivity and 

now provide a template for future studies to test how the control of this 

mechanosensitivity can affect the post-traumatic consequences of mechanical injury to 

primary neurons in networks.  
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Implications of selective NR2B mechanosensitivity 

Robust NR2B-based mechanosensitivity, coupled with the absence of sensitivity 

for NR1/NR2A diheteromeric receptors, is in direct contrast with traditional chemical 

agonist activation of the NMDAR, where NR1/NR2A-NMDARs are more readily 

activated than NR1/NR2B-NMDARs (Erreger et al 2005, Santucci and Raghavachari 

2008).  Interpreted strictly, this would suggest that stretch will preferentially activate 

NR1/NR2B NMDARs.  Importantly, extrasynaptically located NMDARs, which are 

primarily of the NR1/NR2B subtype are linked to pro-death signaling in models of 

excitoxicity through its actions on nitric oxide production (Sattler et al 1999), 

mitochondrial dysfunction (Hardingham et al 2002), and inhibition of pro-survival 

transcription (Hardingham et al 2002, Hardingham and Bading 2010).   Certainly, 

NMDARs are well established as mediators of the pathology seen after TBI (Rao et al 

2001, Arundine and Tymianksi 2004, Spaethling et al 2007).  The rapid blockade of 

NR1/NR2B NMDARs appears an especially attractive option for treating the 

consequences of TBI, as it would aid in mitigating calcium influx and resultant signaling 

from NR2B-NMDARs altered by injury, and this approach is supported by past studies 

(Okiyama et al 1997, Dempsey et al 2000, DeRidder et al 2006).  Additionally, glutamate 

spillover and glutamate release from glia may provide a means to enhance the activation 

of nonsynaptic (NR1/NR2B) NMDARs on mechanically injured neurons, pointing to glia 

as a second potential therapeutic target for controlling the effects of mechanical injury on 

neurons in vivo.  However, triheteromeric NMDARs also display mechanosensitive 
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behavior.  There remains some debate within the literature on the timing and relative 

distribution of triheteromeric NMDARs, with some suggesting that these receptors 

comprise a significant fraction of only synaptic NMDARs, while others suggest that these 

receptors also extend into extrasynaptic locations (Tovar and Westbrook 1999, Al-Hallaq 

et al 2007, Rauner and Kohr 2010).  Our past work shows that synaptic NMDARs 

represent a majority of the immediate stretch induced calcium flux in primary cortical 

neurons, (Geddes-Klein et al 2006).  These past data, when combined with our current 

results, suggest that synaptic triheteromeric NMDARs could represent a significant 

fraction of the calcium influx in primary neurons after stretch.  Synaptic signaling 

through NMDARs is receiving attention for its ability to stimulate prosurvival programs, 

suggesting that mechanoactivation of NR1/NR2B and triheteromeric NMDARs may 

provide competing signals for neuronal survival.  Determining how these two primary 

signaling pathways contribute across the mechanical injury spectrum, and how these 

signaling sources are influenced by nonmechanical factors that include enhanced 

presynaptic glutamate release, alterations in glutamate uptake and recycling, and glial-

based glutamate release, are key factors in understanding how mechanical injury may be 

distinct from excitotoxic neuronal injury.  Given our results, it is likely that mechanical 

activation of the receptor will lead to biochemical signaling profiles that are distinct from 

chemical NMDA activation profiles.  Future work in this area can help elucidate distinct 

injury consequences that may prove to be better therapeutic targets and therefore warrant 

new treatment strategies. 
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ABSTRACT 

NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during 

synaptic neurotransmission.  The diversity of roles for NMDARs in influencing synaptic 

plasticity and neuronal survival is often linked to selective activation of multiple 

NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric 

NR1/NR2A/NR2B-NMDARs).  However, the lack of available pharmacological tools to 

block specific NMDAR populations leads to debates on the potential role for each 

NMDAR subtype in physiological signaling, including different models of synaptic 

plasticity.  Here, we developed a computational model of glutamatergic signaling at a 

prototypical dendritic spine to examine the patterns of NMDAR subtype activation at 

temporal and spatial resolutions that are difficult to obtain experimentally.  We 

demonstrate that NMDAR subtypes have different dynamic ranges of activation, with 

NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, 

and NR2B containing NMDARs contributing at conditions of multivesicular release.  We 

further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating 

long-term depression (LTD), while the contribution of NR2B containing NMDAR 

significantly increases for stimulation frequencies that approximate long-term 

potentiation (LTP).  Finally, we show that NR1/NR2A-NMDAR content significantly 

enhances response magnitude and fidelity at single synapses during chemical LTP and 

spike timed dependent plasticity induction, pointing out an important developmental 
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switch in synaptic maturation.  Together, our model suggests that NMDAR subtypes are 

differentially activated during different types of physiological glutamatergic signaling, 

enhancing the ability for individual spines to produce unique responses to these different 

inputs.   

 

INTRODUCTION  

Synaptic neurotransmission in excitatory neural circuits is governed primarily by 

the activation of AMPA receptors (AMPARs) and NMDA receptors (NMDARs), two 

types of ionotropic glutamate receptors located on dendritic spines.  Although AMPARs 

are critical in mediating action potential firing through neuronal networks, NMDARs are 

often more critical in adaptation of the network during neuronal development (Shi et al. 

1999, Adesnik et al. 2008), learning, and memory(Morris et al. 1986, Sakimura et al. 

1995, Tsien et al. 1996, Huerta et al. 2000).  Moreover, recent evidence shows activation 

of synaptic NMDA receptors is essential for proper health and maintenance of the 

neuronal network (Ikonomidou et al. 1999, Hardingham 2006, Hetman and Kharebava 

2006).  In contrast, persisting high levels of NMDAR activation leads to the induction of 

numerous signaling pathways that contribute to neuronal death and loss of network 

function (Dugan et al. 1995, Hardingham et al. 2002, Lynch and Guttmann 2002, 

Arundine et al. 2003).  Therefore, activation of NMDARs is a precise balancing act that 

can control the function and integrity of in vivo and in vitro neural circuits.   

 Recent evidence points to the molecular composition of the NMDAR as a 

possible critical point for regulating the influence of NMDAR activation in networks.  
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Functional NMDARs are expressed on the neuronal surface as a tetramer, comprised of 2 

NR1 subunits and 2 subunits from the NR2 family (NR2A, NR2B, NR2C, and NR2D) 

(Dingledine et al. 1999, Cull-Candy and Leszkiewicz 2004).  The NR2A and NR2B 

subunit expression dominates in the cortex and hippocampus, with past work showing 

functional NMDARs are expressed either in a diheteromeric (NR1/NR2A, NR1/NR2B) 

or triheteromeric form (NR1/NR2A/NR2B) (Monyer et al. 1994, Cull-Candy and 

Leszkiewicz 2004).  Moreover, the NMDAR composition changes through development, 

with one diheteromeric form (NR1/NR2B) dominating in immature neurons, eventually 

augmented by NR2A-containing NMDARs at synaptic sites (Williams et al. 1993, 

Monyer et al. 1994, Liu et al. 2004a).  The molecular composition of the receptor, as well 

as its location, can regulate synaptic plasticity (Liu et al. 2004b, Massey et al. 2004, 

Foster et al. 2010), receptor trafficking (Kim et al. 2005), and the activation of specific 

synaptic signaling networks (Waxman and Lynch 2005a, Jin and Feig 2010).  More 

recent reports show that regulation of synaptic changes can be confined to one or a few 

individual spines, suggesting a need to understand the broad diversity in glutamate 

receptor signaling that occurs in individual spines (Fedulov et al. 2007, Lee et al. 2009).  

However, developing a more precise relationship between presynaptic glutamate release 

and the activation of specific NMDAR subtypes on individual synapses is difficult and 

technically demanding. Ongoing discussions in the literature and the considerable 

limitations and caveats of current pharmacological manipulations of individual subtypes 

(Neyton and Paoletti 2006) have created the need for alternative methods to better 

examine the activity of specific NMDAR subtypes.  
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 Computational modeling offers an alternative approach for examining the relative 

balance of NMDAR activation in single spines, with past simulations of glutamatergic 

signaling used to investigate synaptic communication at temporal and spatial resolutions 

that are difficult or impossible to study experimentally.  The stochastic nature of 

glutamate receptor activation (Franks et al. 2002, Franks et al. 2003) and their 

contribution to the quantal properties of synaptic transmission (Franks et al. 2003, 

Raghavachari and Lisman 2004) reveal the conditions necessary for receptor saturation 

and explain variation in postsynaptic response.  Further investigation into the role of 

glutamate uptake (Holmes 1995, Rusakov and Kullmann 1998) and spillover (Ruskov 

and Kullmann 1998, Pankratov and Krishtal 2003, Mitchell et al. 2007) identify their 

critical roles in modulating the activation profiles at neighboring synapses. The 

development of NMDAR subtype specific reaction schemes (Erreger et al. 2005) extend 

the utility of computational models to investigate the differences in activation of different 

NMDAR subtypes, with a recent study demonstrating the greater probability of activation 

of NR1/NR2A-NMDARs compared to NR1/NR2B-NMDARs and the role of different 

subtypes in mediating downstream signaling (Santucci and Raghavachari 2008).  Less 

well described, though, is how synaptic signaling through NMDARs may provide a 

mechanism to scale synaptic inputs over the physiological range, and how the relative 

composition of NMDARs on the postsynaptic surface may shape the scaling of the 

NMDAR response over conditions that span long-term depression (LTD) and long-term 

potentiation (LTP).  Moreover, little is known about how neuronal development 



Chapter 3                                            Modeling physiological NMDAR subtype activation 
 

45 
 

influences NMDAR signaling, and if these changes in neuronal development will shift 

the NMDAR-based signaling from one receptor subpopulation to another.  

In this report, we use computational simulations to examine how NMDAR 

subtype and overall NMDAR content of the dendritic spine can impact the extent and 

reliability of synaptic transmission.  Further, we determine how the unique properties of 

activation among NMDAR subtypes create distinct activation patterns among synapses 

with differing compositions.  We show that NR2A-containing NMDARs provide the 

most dynamic range across univesicular and, to a lesser extent, multivesicular release 

conditions.  Alternatively, the NR2B-containing NMDARs play a larger role in simulated 

multivesicular release conditions, and contribute more significantly to the NMDAR input 

during high frequency stimulation.  These data are supported by past studies in the 

literature, and illustrate how the existence of multiple NMDAR subpopulations at 

individual spines enables the efficient transduction of a wide variety of glutamate signals 

into unique postsynaptic responses.  

 

METHODS  

Geometry and receptor content:  We modeled spine geometry as a typical thin spine with 

an octagonal-shaped spine head (500nm diameter) and long spine neck.  We represented 

the postsynaptic face as a 300nm x 300nm square, separated by 20nm from an identically 

shaped presynaptic face (Harris et al. 1992).  A membrane surrounded the entire 

presynaptic bouton and postsynaptic spine head, also separated by a 20nm distance from 

the apposing surfaces.  Glutamate receptors randomly decorated the postsynaptic surface 
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using previous estimates of NMDA and AMPA receptor density along the postsynaptic 

surface for CA1 neurons (80 AMPARs, 20 NMDARs) (Racca et al. 2000, Sheng and 

Hoogenraad 2007).  To examine differences in activation parameters among NMDAR 

subtypes, simulations used a uniform composition of receptors along the postsynaptic 

face, represented with either 20 NR1/NR2A-NMDARs, 20 NR1/NR2B-NMDARs, or 20 

NR1/NR2A/NR2B-NMDARs.    Based on the relative amounts of NR2A and NR2B 

shown to be localized within the postsynaptic density (PSD) (Cheng et al. 2006), we 

developed another distribution for some simulations, where the 20 synaptic NMDARs 

were divided into 8 NR1/NR2A-NMDARs, 8 NR1/NR2A/NR2B-NMDARs and 4 

NR1/NR2B-NMDARs.  As previous reports show that approximately 30% of all 

NMDARs are located extrasynaptically (Harris and Pettit 2007), we placed 10 

extrasynaptic NR1/NR2B-NMDARs randomly along the sides of the spine head.  

 

Glutamate release:  Glutamate was released in the synaptic cleft as a point source near 

the center of the face of the presynaptic bouton.  Both univesicular and multivesciular 

release profiles were simulated.  Single vesicles of glutamate ranged from 500-1,500 

molecules, as defined by previous reports (Burger et al. 1989, Schikorski and Stevens 

1997).  We modeled multivesicular release using the simultaneous release of a larger 

number of glutamate molecules (2,500-10,000) in the cleft, assuming an available 

releasable pool of 5-20 vesicles in the hippocampal synapse (Schikorski and Stevens 

2001).  A limited set of simulations showed that the release of a large number of 
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glutamate molecules from the center of the cleft did not produce results significantly 

different from simulations using multiple release of individual vesicles (data not shown).   

 In simulations of varied frequency stimulus trains, presynaptic stimulation (5-

100Hz for 1 second) was modeled to generate random glutamate vesicle release profiles, 

defined by the calculation of frequency dependent release probabilities (Pr) 

(Kandaswamy et al. 2010).  Briefly, this model utilizes stimulus trains to calculate 

presynaptic facilitation and augmentation, two calcium dependent components which 

influence the probability of vesicle release.  Additionally, the state and recovery of two 

glutamate vesicle pools, the readily releasable pool and recycling pool, are observed to 

account for vesicle rundown during the stimulus.  Frequency dependent parameters 

(personal communication, V. Klyachko) were thus used to generate Pr at each individual 

spike which, along with the state of the readily releasable pool, was used to determine if 

each spike resulted in a released vesicle.  Distinct vesicle release profiles were generated 

for 100 simulations per frequency, each of which was applied to our dendritic spine 

model with a physiologic representation of NMDAR subtypes.    

 

Glutamate receptor state modeling:  Glutamate binding and activation of AMPARs and 

NMDAR subtypes was modeled by implementing previously published reaction schemes 

(Fig 1).  The AMPAR activation model of Jonas et al. includes the binding of two 

glutamate molecules and three receptor desensitized states (Jonas et al. 1993).  NMDAR 

activation was modeled using the reaction scheme of Erreger et al. (2005), which 

contains specific reaction rates for both NR2A-NMDARs and NR2B-NMDARs (Table 
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1).  This scheme includes the binding of two glutamate molecules as well as a dual stage 

activation and two desensitized states which occur after glutamate binding.  The reaction 

scheme for triheteromeric NMDARs was developed by modeling glutamate binding to 

both a NR2A and a NR2B subunit and using reaction rates that were averages of the rates 

for NR2A and NR2B (personal communication – K. Erreger, Santucci and Raghavachari 

2008).   

Dglut 0.2µm2ms-1 (unless otherwise noted) 
(Saftenku 2005) 

Number of AMPARs 80  (Keller et al.2008) 
Total number of synaptic NMDARs 20   

(Racca et al. 2000,  Sheng and Hoogenraad 2007) 
Number of extrasynaptic NMDARs 10  (Harris and Pettit 2007) 
Synaptic cleft width 20nm (Harris et al.1992) 
Glutamate molecules per vesicle 1,500 (unless otherwise noted)   

(Burger et al.1989, Schikorski and Stevens 1997) 
 
Table 1: Model parameters 
 

Model parameters: The parameters used in the model are summarized in Table 1. Unless 

otherwise noted, our models used a glutamate diffusion constant of 0.2µm2/ ms-1 

(Saftenku 2005), which is on the lower end of the range of estimated glutamate diffusion 

constants that have been reported in the literature.  All surface boundaries of the spine, 

presynaptic membrane, and surrounding neuropil membrane reflected glutamate 

molecules.  Table 2 summarizes the rate constants used to describe receptor kinetics for 

AMPARs  and NMDAR subtypes.   

 

Analysis:  Simulations were carried out using Smoldyn 1.84, a spatial stochastic 

simulator for biochemical reaction networks (Andrews and Bray 2004, Andrews 2009).  
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Smoldyn models biomolecular reactions by using reaction rates to compute binding radii 

and diffusion rates to determine spatial position of potential reactants.  All simulations 

had time steps of 0.01ms, based on a numerical convergence study showing that the 

simulations results did not differ between time steps of either 0.01ms or 0.001ms.  Unless 

otherwise noted, simulations were terminated when the solution reached 1 second.  The 

state of all available receptors (glutamate bound, open, glutamate unbound, etc), the 

number of receptors in each state, the location of all receptors, and the position of 

released glutamate molecules was tracked for all simulations.  Post-processing of model 

results was performed with user-generated scripts developed in MATLAB (Mathworks, 

Natick, MA).  Statistical significance among multiple group comparisons was found 

using ANOVA and posthoc Tukey’s analysis.  Analyzing receptor opening distribution 

profiles was accomplished using two-sample Kolmogorov-Smirnov tests to determine 

significance between cumulative frequency distributions.   

 

Calcium entry:  Calcium entry into the spine was computed by using an iterative process 

to calculate change in membrane voltage potential (Vm) and the probability for open 

NMDARs to be blocked by magnesium (Mg2+).  We used the relationship established by 

Jahr and Stevens (1990) to calculate the probability of each receptor to be blocked by 

magnesium at each time step, defined as  
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We assumed a magnesium concentration of 0.8mM, and calculated Vm at each time step 

by finding the incremental change in Vm dictated by total ionic flux through AMPARs 

and NMDARs by 

t
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where IAMPA, INMDA, and Ileak are calculated using 

AMPAAMPAmAMPAAMPA NEVgI )( −=  

NMDANMDAmNMDANMDA NEVgI )( −=  

)( leakmleakleak EVgI −=  

NAMPA and NNMDA are the number of open receptors of each receptor type.  It was assumed 

that gAMPA and gNMDA, the single channel conductance for each receptor, was 12pS and 

45pS respectively.  The reversal potentials, EAMPA and ENMDA, for both AMPARs and 

NMDARs were assumed to be 0mV.  In computing a generalized leak current, a leak 

conductance, gleak, was assumed to be 10nS, with a reversal potential of -60mV.  Finally, 

the membrane capacitance (Cm) of the spine was found using a reported capacitance 

density of 1µF/cm2  (Dolowy 1984).  The probability for a receptor to be unblocked by 

magnesium (Punblocked) was then used to determine if each individual activated NMDAR, 

as defined by Smoldyn simulations, was able to conduct calcium in that time step.  The 

number of calcium ions entered per open NMDAR per time step was calculated using a 

probability distribution of ions entered given by 
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Here, NCa is the average number of calcium ions entered and is computed by 

t
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where the single channel calcium conductance for NMDARs, γNMDA,Ca, is assumed to be 

4.5pS, ZCa is the valence for Ca2+ (z  = 2), and ec is the elementary charge (1.6 x 10-19C). 
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Figure 1: Dendritic spine model geometry and receptor activation schemes.  (A) Representation of the 
computational model of the dendritic spine, which includes a 20nm synaptic cleft.  The postsynaptic 
compartment contains synaptic AMPARs and NMDARs and extrasynaptic NMDARs.  Activation of 
glutamate receptors were determined using previously established reaction schemes for (B) AMPARs, (C) 
NR2A-NMDARs and NR2B-NMDARs, and (D) triheteromeric NR2A/NR2B-NMDARs.  Constants used 
in the reaction schemes are provided in Table 2.  Simulations tracked all receptor states, and reported the 
fraction of open receptors. 
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  NR2A-
NMDAR 

(Erreger et 
al 2005) 

NR2B-
NMDAR 

(Erreger et 
al 2005) 

NR2A/NR2B-
NMDAR 

(Santucci and 
Raghavachari 

2008) 

AMPAR 
(Jonas et 
al 1993) 

kon (nm3 ms-1) 52,456  4,698    
kon-A (nm3 ms-1)   52,456   
kon-B (nm3 ms-1)   4,698   
koff (ms-1) 1.010  0.0381    

koff-A (ms-1)   1.010   
koff-B (ms-1)   0.0381   
ks+ (ms-1) 0.230  0.048  0.139   
ks- (ms-1) 0.178  0.230  0.204   
kf+ (ms-1) 3.140  2.836 2.988   
kf- (ms-1) 0.174  0.175  0.1745   

kd1+ (ms-1) 0.0851  0.550  0.318   
kd1- (ms-1) 0.0297  0.0814  0.0556   
kd2+ (ms-1) 0.230  0.112  0.171   
kd2- (ms-1) 0.00101  0.00091  0.00096   

kR-RA (nm3 ms-1)    7619.4  
kRA-R (ms-1)    4.260  

kRA-RA2 (nm3 ms-1)    47,144  
kRA2-RA (ms-1)    3.260  
kRA2-O (ms-1)    4.240  
kO-RA2 (ms-1)    0.900  
kRA-D1 (ms-1)    2.890  
kD1-RA (ms-1)    0.0392  
kRA2-D2 (ms-1)    0.172  
kD2-RA2 (ms-1)    0.000727  
kO-D3 (ms-1)    0.0177  
kD3-O (ms-1)    0.004  
kD1-D2 (nm3 ms-1)    2,108.2  
kD2-D1 (ms-1)    0.0457  
kD2-D3 (ms-1)    0.0168  
kD3-D2 (ms-1)    0.1904  

 
Table 2: Reaction rates used for AMPAR and NMDAR subtype activation. 
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RESULTS  

We created a stochastic model of glutamatergic signaling at the dendritic spine to 

study the differences in NMDAR subtype activation among several physiological 

conditions.  We used Smoldyn (Version 1.84) (Andrews and Bray 2004, Andrews 2009), 

a spatial stochastic simulator for biochemical reaction networks, and developed a model 

using the typical dimensions of a mature, thin spine (Harris et al. 1992) (Fig 1A).  With 

the understanding that activity across multiple types of synapses throughout the brain can 

vary significantly, in these studies we intended to examine receptor activation at a 

prototypical synapse to broaden the applicability of our results.  We utilized previously 

published reaction schemes (Fig 1B,C,D) for the activation of specific NMDAR subtypes 

(Erreger et al. 2005) and AMPARs (Jonas et al. 1993) (see methods for more details).  

We restricted nearly all of our analysis to the open state for each receptor, defined when 

glutamate is bound to receptor subunits and has transitioned into an activated state.  We 

studied three primary aspects of synaptic signaling with this model: the scaling and 

relative activation of different synaptic glutamate receptors across conditions of 

univesicular and multivesicular release, the transition in signaling that occurs for 

physiological conditions that span LTP and LTD, and the relative change in NMDAR-

based synaptic signaling that occurs during synaptic maturation, when synapses shift 

from containing nearly all NR1/NR2B-NMDARs to a mix of either NR1/NR2A or 

NR2A/NR2B-NMDARs.   
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Sensitivity to glutamate diffusion rate  

 We first sought to examine the sensitivity of receptor activation to the glutamate 

diffusion rate (Dglu).  Published estimates on the effective glutamate diffusion rate have 

varied from 0.2 to 0.76 µm2ms-1 (Mitchell et al. 2007) and it is likely that this variation 

can affect the extent of activation among AMPARs and NMDAR subtypes.  Similar to 

previous models (Franks et al. 2002, Keller et al. 2008) we populated the postsynaptic 

face of the spine with 80 AMPARs and 20 NMDARs of a single type - NR1/NR2A-

NMDARs, NR1/NR2B-NMDARs, or triheteromeric NR1/NR2A/NR2B-NMDARs.  

Activation was observed after a point release of 3000 glutamate molecules with varied 

Dglu, 0.2 – 0.4 µm2ms-1, a range of commonly used rates in recent models (Rusakov 2001, 

Franks et al. 2002, Saftenku 2005, Mitchell et al. 2007).  Predictably, the general trend 

for all receptors was increased numbers of activated receptors for the slower diffusion 

rates (Fig 2A). Quantified, the peak percent of activated receptors after glutamate release 

was significantly greater at Dglu = 0.2 µm2ms-1, for AMPARs and all NMDAR subtypes 

(p < 0.05 compared to 0.4 µm2ms-1) (Fig 2B).  Interestingly, AMPAR activation was the 

most sensitive to Dglu, producing the largest percent change among receptors, while all 

NMDAR subtypes had similar sensitivities.  This suggests that while Dglu may effectively 

scale NMDAR activation, the relative patterns of activation among subtypes is 

unaffected.  Thus, with the understanding that Dglu can impact receptor activation, all 

subsequent simulations were conducted with a rate of 0.2 µm2ms-1, a rate which is 

reported to account for molecular obstacles and overcrowding (Saftenku 2005).  To 

provide a direct comparison between the subsequent simulations and earlier studies of 
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AMPAR and NMDAR activation (Jonas et al. 1993, Franks et al. 2002, Erreger et al. 

2005, Santucci and Raghavachari 2008), we used the same kinetic parameters for the 

receptor activation scheme as used in these previous studies. 

 

Figure 2: Differential sensitivity to diffusion rate among glutamate receptors. (A) Activation of 
synaptically localized 80 AMPARs and 20 NMDARs of single subtype was observed in response to a 
release of 3000 glutamate molecules with differing glutamate diffusion rates (0.2µm2ms-1, black; 
0.3µm2ms-1, red; 0.4 µm2ms-1, blue).  (B)The peak percent of open receptors was predictably decreased for 
all receptors at higher glutamate diffusion rates.  AMPARs displayed the most sensitivity of diffusion rate 
between 0.2 and 0.4 µm2ms-1, while NMDAR subtypes all behaved similarly. (* p < 0.05 compared to 0.4 
µm2ms-1) 
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Dynamic range of activation for synaptic glutamate receptors  

Our next objective was to define how either a single or near simultaneous release 

of multiple glutamate vesicles from the presynaptic bouton would activate AMPARs and 

NMDARs on the postsynaptic surface.  Again, the postsynaptic face of the spine with 80 

AMPARs and 20 NMDARs of a single type - NR1/NR2A-NMDARs, NR1/NR2B-

NMDARs, or triheteromeric NR1/NR2A/NR2B-NMDARs.  Physiologically, the size and 

glutamate concentration of synaptic glutamate vesicles can vary, with approximate 

glutamate content of 500 – 1,500 molecules (Burger et al. 1989, Schikorski and Stevens 

1997). Across this entire range of glutamate release conditions, the concentration of 

glutamate in the synaptic cleft decayed rapidly to less than 10% of its peak value within 

3-5 milliseconds.  AMPAR peak activation significantly increased throughout the entire 

range of released glutamate (Fig 3D), ranging from 0.8% +/- 0.1% (mean +/- standard 

error) at 500 molecules to 42.1% +/- 0.4% at 10,000 molecules.  The AMPA response 

showed no noticeable saturation across the range of glutamate release conditions tested, 

indicating this receptor population will show a dynamic scaling across the entire range of 

simulated conditions. 
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Figure 3: NMDAR subtype specific dynamic range. Activation or opening of each receptor subtype was 
observed in response to varied levels of glutamate release (500 – 10,000 molecules, number denoted above 
graphs in A).  Number of activated (A) NMDA receptors over time is shown for NR2A (red), NR2B (blue), 
and NR2A/NR2B (black) and (B) AMPA receptors in response to 500, 1,500, 3,000, and 10,000 molecules.  
(C) NR2A-NMDARs show a significantly higher fraction activation compared to the other subtypes.  
NR2A-NMDAR activation increases (p < 0.05) over the physiological range of univesicular glutamate 
release (500-1,500 molecules), but saturates at larger glutamate levels (shaded in gray), while activation of 
NR2B-containing NMDARs significantly increases only in the range of multivesicular glutamate release 
(2,000-10,000) (p < 0.05).  Colored segments represent regimes of increased activation compared to 
preceding release amount (p < 0.05) (D) Peak percent of AMPARs significantly increases over the entire 
range of modeled glutamate release (p < 0.05). (n = 40 simulations per condition) 
 

In contrast to AMPAR response, the activation of different NMDAR subtypes 

was influenced strongly by the amount of initial glutamate release.  The peak percent of 

activated receptors increased most rapidly with NR1/NR2A-NMDARs, in agreement 

with results from Santucci and Raghavachari (2008).  Across conditions modeling 
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univesicular release, a scaled NMDAR response occurred only with NR1/NR2A-

NMDARs.  After a release of 500 molecules, mean peak percent of activated receptors 

was 12.1% +/-  1.1% for NR1/NR2A-NMDARs, 1.3% +/- 0.4% for triheteromeric 

NMDARs, and 0.4% +/- 0.2% for NR1/NR2B-NMDARs, compared to 30.6% +/- 1.4%, 

5.1% +/- 0.8%, and 1.8% +/-0.5%, respectively, after release of 1,500 molecules (Fig 

3C).  In conditions approximating multi-vesicular release, NR1/NR2A-NMDAR 

activation saturates, with no additional significant increase after 4,000 molecules.  In 

comparison, activation significantly increases for both NR1/NR2B-NMDARs and 

triheteromeric NMDARs; from 1,500 to 10,000 molecules, the activation of NR1/NR2B-

NMDARs steadily increases from 1.9% +/- 0.5% to 17.9% +/- 0.9%, while the 

NR1/NR2A/NR2B-NMDARs increase from 5.1% +/- 0.8% to 29% +/- 1.3%.  Together, 

these simulation results show three behavior regimes for NMDARs – an initial phase 

dominated by NR1/NR2A-NMDAR activation, followed by a second phase that includes 

contribution of all NMDAR subtypes, and a third phase where scaling of the synaptic 

NMDAR response is prominently driven by the NR1/NR2B-NMDARs.   
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Figure 4: Subtype activation scalability to physiological synapse.  Average response of an individual 
receptor for each subtype can be used to estimate the total synaptic response of a mixed population of 
receptor subtypes (8 NR2A, 8 NR2A/NR2B, and 4 NR2B) that is not different from responses observed 
when the activation of this mixed population is indeed simulated. (n = 40 simulations per condition)   
 

Although these results illustrate the behavior of subtypes in isolation, they do not 

provide a realistic picture of the synaptic composition that appears over time in cultured 

neurons, or in different brain regions.  Rather than using a large number of simulations to 

examine all possible combinations of NR2A, NR2A/NR2B, and NR2B NMDARs at a 

physiological synapse, we tested if predictions from a proportional scaling of the 

response from individual receptor subtypes would match simulations of synapse 

populated with a mixture of different NMDAR subtypes.  We computed the average 

activation time for an individual receptor for each subtype, scaled this proportionally for 

the number of these receptors appearing at a ‘mixed’ synapse, and produced estimates of 

the total synaptic activation time from a single, glutamate release event. Our ‘mixed’ 

synapse included 8 NR1/NR2A-NMDARs, 8 NR1/NR2A/NR2B-NMDARs, 4 and 

NR1/NR2B-NMDARs.  Proportional scaling estimates of the total activation time for a 
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release of 1500 and 7500 glutamate molecules were not statistically different from 

stochastic simulation of the same ‘mixed’ synaptic formulation (Fig 4).  These results 

indicate that it is possible to use the response of individual subtypes to correctly predict 

the synaptic response to a diverse set of receptors.   

 

Figure 5: Fidelity of subtype activation.  The stochastic variation in response, reflected in the coefficient 
of variance calculated for receptor opening, is greatest for NR2B-containing NMDARs at low levels of 
glutamate release, but variation is decreased for each glutamate receptor subtype at large numbers of 
released glutamate. 
 

Fidelity of the synaptic response is receptor dependent 

These simulations also provide information on the consistency or fidelity of the 

synaptic response.  We define the fidelity of the response as the variance in the numbers 

of receptors activated for a specified number of glutamate molecules released from the 

presynaptic bouton.  As expected, an increase in the amount of glutamate released leads 

to a decrease in the calculated coefficient of variance (CV) for the postsynaptic AMPAR 

response.  In general, the CV for all receptors asymptotically decreased at larger levels of 

released glutamate (Fig 5), and the range of the predicted stabilized CV is within the 
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range of similar measures reported for dissociated hippocampal neurons and slice 

cultures (0.2-0.6) (Lisman et al. 2007).  Each receptor type showed a different transition 

point for achieving a stable synaptic signal response.  For simulations releasing more than 

5,000 glutamate molecules, there was no significant reduction in the CV for the AMPAR 

response.  Similarly, the CV of the NR1/NR2A-NMDAR did not change significantly 

when more that 3,000 molecules were released.  The NR1/NR2B-NMDARs produced the 

most variable response, with a relatively large CV calculated for the univesicular release 

conditions and stable CV achieved for simulations releasing more than 5,000 glutamate 

molecules.  Together, these simulations show that NR1/NR2A-NMDARs provide the 

largest dynamic range and highest signaling fidelity under conditions of univesicular 

release, and AMPARs provide a somewhat smaller dynamic range and more variability 

across the same conditions.  At higher levels of glutamate release, the AMPARs retain 

their dynamic range and improve their fidelity of signaling.  Conversely, the NR1/NR2B-

containing NMDARs show a more usable dynamic range and improvement in signaling 

fidelity under multivesicular release conditions.   

 

NMDAR subtypes show distinct temporal activation receptor ‘flickering’ behavior 

Both the magnitude and timing of glutamate receptor activation are key 

parameters that contribute to the type and extent of resultant signaling.  The time to the 

peak activation of AMPARs following the initial release of glutamate was shortest among 

the studied glutamate receptors, indicating these receptors are well suited as rapid event 

detectors for glutamate release.  Interestingly, the rise time was not significantly different 
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between NR1/NR2A-NMDARs and NR1/NR2A/NR2B-NMDARs (mean +/- SE; 7.37 

+/- 0.30 ms (NR1/NR2A) vs. 12.07 +/- 1.66 ms (NR1/NR2A/NR2B)).  Based partly on 

the affinity of glutamate for the NR2B subunit, the time to peak activation of the 

NR1/NR2B-NMDARs is significantly slower than all other glutamate receptor types 

(49.9 +/- 7.2 ms; p< 0.01; Fig 6A).  Once opened, the NR1/NR2A-NMDARs remained 

open longer than either the NR1/NR2A/NR2B or NR1/NR2B-NMDARs before 

transitioning to a bound, closed state (Fig 6B,C) (Kolmogorov–Smirnov test, p<0.01).   

All NMDARs showed a significantly longer initial activation period than AMPARs 

(p<0.01). 
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Figure 6: Slower kinetics and increased receptor flickering prolong NR2B activation.  The activation 
events for all NMDARs were analyzed to discern differences in the temporal activation patterns among 
subtypes.  (A) NR2B-NMDARs reach peak activation significantly slower than NR2A-NMDARs and 
NR2A/NR2B-NMDARs (* p <0.05 NR2B vs NR2A and NR2B vs NR2A/NR2B). (B) Receptor 
“flickering”, defined by the ability for a receptor to have multiple activation events without glutamate 
unbinding was analyzed using cumulative distributions to (C) demonstrate that NR2A-NMDARs (red) have 
significantly longer durations of individual events compared to NR2B-NMDARs (blue), triheteromeric 
NMDARs (black) and AMPARs (green) (KS test - p < 0.01).  (D) However, NR2B-NMDARs have 
significantly more distinct events per binding compared to other subtypes (KS test - p < 0.01). 
 

Following the initial activation and opening of each glutamate receptor subtype, 

all studied receptors showed a stochastic switching between the bound/open and 

bound/closed state or ‘flickering’ of the receptor (Fig 6D) before dissociation of 

glutamate from the receptor subunit.  Simulations show that NR1/NR2B-NMDARs have 

more flickering events per glutamate binding than NR1/NR2A-NMDARs and 

NR1/NR2A/NR2B-NMDARs (Fig 6E,F).  For the NR1/NR2B-NMDARs, these results 

explain why, despite the shorter receptor activated time, NR1/NR2B mediated calcium 
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currents typically have a slower decay than NR1/NR2A mediated currents (Monyer et al. 

1994, Vicini et al. 1998).   Again, the diverse responses of these subtypes better allow for 

unique postsynaptic currents at synapses populated with a diverse set of receptors.  

 

 
A shift in the pattern of NMDAR subtype activation occurs with stimulation 

frequency 

Activation of NMDARs is a major mediator in several models of synaptic plasticity, 

including LTP and LTD.  Recently, conflicting evidence has emerged on the specific role 

of distinct NMDAR subtypes for certain types of plasticity (Liu et al. 2004b, Massey et 

al. 2004, Barria and Malinow 2005, Bartlett et al. 2007).  We used our simulations to 

evaluate glutamatergic signaling and observed the activation patterns of NMDAR 

subtypes in response to various frequencies of presynaptic stimulation.  For these 

simulations, the spine model was populated with physiologically relevant numbers and 

localizations of NMDAR subtypes: 8 synaptic NR1/NR2A-NMDARs, 8 synaptic 

triheteromeric NMDARs, 4 synaptic NR1/NR2B-NMDARs, and 10 extrasynaptic 

NR1/NR2B-NMDARs.  Using common stimulation protocols in the literature (Bear and 

Malenka 1994) presynaptic stimulation was varied from 5Hz-100Hz and lasted for 1 

second.  Presynaptic glutamate release was stochastically determined using a recent 

model of presynaptic vesicular release dynamics (Kandaswamy et al. 2010).  All 

simulations were performed with a uniform synaptic vesicle content (1,500 glutamate 
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molecules).  

 

Figure 7: Frequency mediated shifts in NMDAR subtype activation patterns.  The dendritic spine 
model (80 AMPARs, 8 NR1/NR2A NMDARs, 4 NR1/NR2B NMDARs, 4 NR1/NR2A/NR2B, and 10 
extrasynaptic NR1/NR2B NMDARs) was subjected to presynaptic stimulation of various frequencies (5Hz 
– 100Hz), and the stochastic release of glutamate vesicles was simulated using an approach developed for 
hippocampal synapses [Kandaswamy et al, 2010].  Total activated time increases for (A) all NMDARs and 
(B) for each NMDAR subtype individually as the stimulation frequency is increased (* p < 0.05 significant 
increase from previous frequency).  (C) Relative contribution for each subtype to the total receptor open 
time shows the changing patterns of NMDAR subtype activation during frequency stimulation, with 
NR2A-NMDAR contributing less and NR2B containing NMDARs contributing more at high frequency 
stimulations. (* p < 0.05 compared to contribution at 5Hz, # p < 0.05 compared to 50Hz) (n = 100 
simulations per condition). 

 

The period of NMDAR activation increased significantly across most of the 

stimulation frequency range, showing saturation above 80 Hz.  Activation of the 

NR1/NR2A-NMDARs at the synapse increased most rapidly at low stimulation 

frequencies (< 25Hz), tapering slightly beyond 5Hz.  In comparison, synaptic 
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NR1/NR2B-NMDARs, synaptic NR1/NR2A/NR2B-NMDARs, and extrasynaptic 

NR1/NR2B-NMDARs showed a linear increase in activation over nearly the entire 

stimulation range.  Although the total activation time is dominated by NR1/NR2A-

NMDARs at all frequencies, its contribution significantly decreased while the 

contribution of other subtypes, including NR1/NR2A/NR2B-NMDARs and extrasynaptic 

NR1/NR2B-NMDARs, significantly increased at higher stimulation frequencies (Fig 7C).  

This finding demonstrates that the activation patterns of NMDARs differ across 

stimulation frequencies, suggesting potential NMDAR subtype dependent mechanisms 

for different modes of synaptic plasticity.   As NMDAR subtypes are known to activate 

different signaling pathways, increasing contribution of NR2B containing NMDARs at 

higher frequency stimulation may alter the balance of subtype specific signaling, 

inducing long term synaptic changes.   
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Figure 8: NR2A-NMDARs desensitize and recover faster than other subtypes. The fraction of 
receptors that are desensitized over a one second stimulation, and one second post stimulation, were 
recorded for each NMDAR subtype.  (A) At 5Hz, only a small portion of NMDARs is desensitized, these 
are primarily NR2A-NMDARs.  At (B) 50Hz and (C) 100Hz, NR2A-NMDARs have a significantly greater 
fraction of desensitized receptors compared to all other subtypes, while synaptic NR2B-NMDARs show a 
significantly greater fraction of desensitized receptors compared to triheteromeric NMDARs (p < 0.05).    

 

To investigate why NR1/NR2A-NMDAR contribution decreases at higher 

frequencies, we examined the extent of receptor desensitization for each receptor subtype 
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both during and after the presynaptic stimulation.  Following a 5Hz presynaptic 

stimulation, only a small fraction of receptors desensitized, and most of these 

desensitized receptors are NR1/NR2A-NMDARs (Fig 8A).  After a 50Hz and 100Hz 

stimulation (Fig 8B,C), a significantly larger fraction of NR1/NR2A-NMDARs become 

desensitized compared to other subtypes, primarily due to their higher probability of 

glutamate binding.  Moreover, synaptic NR1/NR2B-NMDARs exhibit a significantly 

larger fraction of desensitized receptors compared to triheteromeric NR1/NR2A/NR2B-

NMDARs and extrasynaptic NR1/NR2B-NMDARs at higher stimulation frequencies, 

indicating the triheteromeric and extrasynaptic NMDARs may play an important role in 

sensing a sustained, bursting behavior in networks.  In contrast, the NR1/NR2A-

NMDARs and NR1/NR2A/NR2B-NMDARs recover faster from receptor desensitization 

compared to other subtypes (recovery at 1 sec post 100Hz stimulation- NR1/NR2A-

NMDARs: 58.5%, NR1/NR2A/NR2B-NMDARs: 56.0%, synaptic NR1/NR2B-

NMDARs: 26.5%, extrasynaptic NMDARs: 15.9%), suggesting these receptor 

subpopulations may provide a mechanism to detect repeated interval bursts in a network. 

 

Developmental changes in synaptic NMDAR content alters synaptic calcium influx 

Given the diversity of the postsynaptic response over both stimulation frequency 

and receptor composition, we sought to explore the potential differences in NMDAR 

synaptic signaling that can occur over development, as well as in disease states.  The 

content of NMDARs at synaptic sites is highly dependent on neuronal age, with a 

developmental switch from predominantly NR2B expression early to increased NR2A 



Chapter 3                                            Modeling physiological NMDAR subtype activation 
 

70 
 

expression later in development (Williams et al. 1993, Monyer et al. 1994, Liu et al. 

2004a).  Moreover, brain injury may cause a change in the balance of NMDAR 

composition (Giza et al. 2006), yet the effect of this change on synaptic signaling is 

largely unknown.  To this end, we used the flexibility of these computational simulations 

to explore the potential diversity in synaptic signaling that can occur during synaptic 

maturation.   

Several experimental models of LTP appear in the literature.  In the previous 

section (Fig 7), we simulated the most well established protocol for LTP induction 

(100Hz, 1 sec duration) (Sarvey et al. 1989).  In comparison, other common models 

include chemically-induced LTP and spike timing dependent plasticity (STDP).  To 

extend our findings and develop testable predictions for in vitro studies, we used our 

computational model to examine the role of subtype content in simulated chemically-

induced LTP.  

To examine how the identity of synaptic NMDAR subtypes can influence overall 

receptor activation, we simulated several possible configurations of synaptic NMDAR 

content.  We compared activation across spines populated with different mixtures of 

NMDAR subtypes - from synaptic NMDARs consisting of only NR1/NR2B-NMDARs, 

to simulate a spine in early development before NR2A expression, up to and including 

synaptic NMDAR content of only NR1/NR2A-NMDARs as a representation of the 

canonical ‘mature spine’.  In all cases, the number of synaptic NMDARs was kept at 20, 

and the number and identity of AMPARs and extrasynaptic NR1/NR2B-NMDARs were 

constant.  Finally, we computed the net calcium influx that occurred during each 
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simulation, using techniques to account for the magnesium block of the receptor and 

AMPAR-induced depolarization of the spine (see Methods for more details).   

 

Figure 9: Increasing synaptic NR2A content during development enhances response and improves 
fidelity.   Induction of chemically induced late phase LTP was simulated with a 5Hz frequency of glutamate 
release on three different representations of synaptic NMDAR content; ‘young’ (20 NR2B-NMDARs), 
‘intermediate’ (8 NR2A-NMDARs, 8-NR2A/NR2B-NMDARs, 4 NR2B-NMDARs), and ‘mature’ (20 
NR2A-NMDARs).  (A) Traces of the average number of activated synaptic NMDARs over all simulations 
and (B) cumulative calcium entry (blue: individual simulations, red: averaged over all simulations) 
demonstrate that younger cultures, dominated by NR2B, result in less predicted calcium influx. (C) 
Quantification of total activated time and (D) its coefficient of variance show that changes in relative 
synaptic NMDAR subtype content occurring through development result in significantly greater activation 
and less variance, suggesting that NR2A content is a major driving force in the reliability and magnitude of 
downstream signaling (* p < 0.05 compared to other distributions, n =40 simulations per condition).   

 

Chemically induced LTP relies on a sustained period of action potential bursts 

that propagate through the network, where the duration of each burst can last for 1-3 

seconds and the frequency of measured synaptic responses within each burst is 

approximately 5Hz (Arnold et al. 2005, Wiegert et al. 2009).  Our simulation results 

show that 5Hz glutamate release results in significant differences that occur in the 

NMDAR-mediated signaling in the spine across these different NMDAR subtype 
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configurations.  As expected, observed synaptic NMDAR activation was significantly 

reduced in a model representation of the immature spine (i.e., 100% NR1/NR2B-

NMDARs) when compared to spines with a physiological mix of NMDAR subtypes and 

with more mature representations (Fig 9A,C).  Increasing the fraction of NR1/NR2A and 

NR1/NR2A/NR2B NMDARs increased significantly the ability to elicit a defined 

synaptic NMDAR activation during simulated chemical LTP induction.  Furthermore, 

predicted calcium influx through the NMDAR was significantly different in all three 

configurations suggesting that synaptic content can significantly impact the resultant 

signaling from this stimulation (Fig 9B).  Additionally, we found the reliability of 

synaptic NMDAR activation is increased through maturation, as measured by the 

observed decrease in coefficient of variance of synaptic NMDAR activation (Fig 9D).  

Our data suggests that the NR2A content of the synapse is the major driving force in both 

the reliability and extent of the NMDAR response and provides a potential mechanism to 

age dependent functional outcomes.     
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Figure 10: Changing subtype content during development improves calcium potentiation during 
paired stimulations. (A) Spike time dependent plasticity (STDP) was simulated by pairing presynaptic 
glutamate release with postsynaptic depolarization at different time intervals.  (B) Calcium influx was 
greatest in the mature subtype content and was increased by paired stimulation when pre and post spikes 
were given simultaneously (∆t = 0). (C) The variance in the fold increase of calcium influx generated by 
paired depolarization was greatest for young cultures, again demonstrating that NR2A content significantly 
improves the extent and reliability of signaling during this model of plasticity (* p < 0.05 compared to other 
distributions).   
 

STDP relies on the precise timing of presynaptic and postsynaptic stimulation, 

with the time interval between stimulation defining the potential for long term synaptic 

changes (Buchanan and Mellor 2010, Shouval et al. 2010).  Thus, we computed calcium 

influx at the different developmental NMDAR subtype content configurations at distinct 

time intervals (∆t) between presynaptic glutamate release and postsynaptic 

depolarization.  Depolarization, modeled as an immediate increase in membrane potential 

with a slow hyperpolarizing tail (Shouval et al. 2002), induces a transient relief of the 

Mg2+ block which, dependent on receptor activity during depolarization, can potentiate 

calcium influx caused by the presynaptic spike (Fig 10A).  We demonstrate that 
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postsynaptic spikes significantly potentiates influx in our model of the intermediate and 

mature spine, with greatest increase at ∆t = 0, whereas influx was not significantly 

potentiated at young configurations. As demonstrated previously, activation of synaptic 

receptors is significantly decreased at NR2B dominated young configurations, and thus 

calcium influx increases as NR2A content increases (Fig 10B).  Interestingly, the 

maximal fold increase of calcium entry, compared to conditions without a postsynaptic 

spike, was similar for both intermediate and mature spine configurations at approximately 

1.7, suggesting that the ability for spike timing to potentiate initial calcium influx holds 

for varying subtype content.  However, the variance in the fold increase is significantly 

smaller in mature conditions (Fig 10C), again demonstrating that NR2A content improves 

the fidelity of NMDAR signaling.  

 

 



Chapter 3                                            Modeling physiological NMDAR subtype activation 
 

75 
 

 

Figure 11: Presence of NR1/NR2A-NMDAR in the ‘mature’ subtype preferentially enhances calcium 
influx at low frequency stimulation.  Synaptic responses were calculated from changing configurations of 
synaptic content simulating spine maturation, where the ratio of NMDARs was alternatively adjusted from 
(immature) all NR2B to (mature) either all NR2A or NR2A/NR2B.  (A) Distribution of responses 
demonstrates that transitioning to a triheteromeric ‘mature’ state provides more stability in synaptic 
response through maturation process, particularly at lower stimulation frequencies. (B) Activation of the 
mature states compared to synaptic mix of subtypes, as defined by reported PSD content [100] demonstrate 
how subtype content influence overall activation. The enhancement in activation time was especially 
evident at low stimulation frequencies (C), where the relative increase in NR2A-NMDAR synapses was 
almost ten times the response of synapses containing only triheteromeric NMDARs. 
 

Finally, we estimated the synaptic NMDAR response to glutamate release at 

different frequencies for two alternative views of NMDAR content at a mature spine.  

Some have suggested that in the mature brain, NMDARs are dominated by the 

triheteromeric NR1/NR2A/NR2B-NMDAR subtype (Tovar and Westbrook 1999, Rauner 

and Khor 2010).  Others suggest a mixture of NR1/NR2A and triheteromeric NMDARs 

(Al-Hallaq et al. 2007).  To study the possible range of responses, we used average 

frequency dependent responses per receptor to calculate the total synaptic NMDAR 

activated time at spines in which the ratio of synaptic NMDARs was alternatively 

adjusted between NR1/NR2B-NMDARs and NR1/NR2A-NMDARs or, alternatively, 



Chapter 3                                            Modeling physiological NMDAR subtype activation 
 

76 
 

between NR1/NR2B-NMDARs and triheteromeric NMDARs.  We found that the 

developmental transition to a triheteromeric mature state provides more stability in the 

postsynaptic responses through the spine maturation process (Fig 11A). Moreover, the 

most dramatic difference between the two views of the mature spine appears at low 

frequency stimulation, where the activation at the NR2A mature spine was approximately 

10 times greater compared to the triheteromeric mature spine (Fig 11C). This suggests 

that calcium-sensitive processes are likely particularly sensitive to the identity of the 

‘mature’ subtype in low frequency conditions, and NR1/NR2A-NMDAR content at a 

mature synapse enhances the ability to distinguish between different types of low 

frequency glutamate signals.  Interestingly, the relative difference between the two views 

of the mature spine is less significant at higher stimulation frequencies (Fig 11B) where 

the proportional change in activation between higher frequency stimulation is not 

different between the two synaptic representations.  

 

DISCUSSION  

In this report, we utilize a computational model of glutamatergic signaling at a 

single excitatory synapse to study activation patterns of specific NMDAR subtypes 

during spontaneous and coordinated neurotransmission.  The importance of NMDAR 

subtype in neuronal signaling is widely recognized, with differences in kinetics, 

localization, and developmental regulation among NMDAR subtypes shaping the 

influence and timing of signals to promote survival, programmed cell death, and even the 

local activation of signaling networks within individual spines (Cull-Candy et al. 2001, 
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Waxman and Lynch 2005b, Hardingham and Bading 2010).  Our current work builds 

upon previous computational models of glutamatergic signaling by investigating the role 

that NMDAR subunit composition plays in synaptic transmission across a broad 

physiological range including univesicular, multivesicular, and repeated glutamate 

release events that occur when a burst of action potentials arrive at the presynaptic 

bouton. Three new aspects emerge from our current work.  First, each NMDAR subtype 

shows a distinct dynamic range before saturation, highlighting how the varied 

composition of the individual NMDAR subtypes at single spines can significantly shape 

the postsynaptic response.  Second, the relative contribution of each NMDAR subtype 

changes across different input stimulation frequencies, with an increased diversity of 

receptor activation occurring at higher stimulation frequencies.  Finally, the 

developmental expression of NMDARs impacts signaling through NMDARs across all 

physiological conditions, with immature synapses showing relatively modest activation 

compared to more mature synapses.  Coupled with the knowledge that NMDAR 

composition can vary over development, these simulations suggest that a single 

physiological process, such as either LTD or LTP, may have distinct regulating 

mechanisms that change throughout development and partly explain the existing 

confusion surrounding the role of NMDAR subtypes on single neuron, as well as 

neuronal network, function.   
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Subunit-specific dynamic range of NMDAR activation 

 Our data illustrates that NR1/NR2A-NMDARs are robustly activated when single 

vesicles within the physiological range of glutamate content (500-1,500 molecules) 

(Burger et al. 1989, Schikorski and Stevens 1997) are released.  For the geometry we 

studied, the NR1/NR2A-NMDARs represent the only significant and reliable component 

of the NMDAR population activated across this physiological range of glutamate 

vesicles.  Past reports suggest that variability among individual vesicles can represent an 

important source of variation in postsynaptic responses of AMPARs (Hanse and 

Gustafsson 2001, Franks et al. 2003, Ventriglia and DiMaio 2003).  Our work shows that 

NR1/NR2A-NMDARs share a similar ability to vary the postsynaptic response, also in 

direct proportion to the number of glutamate molecules in the vesicle.  Moreover, this 

variation in response occurs with relatively high fidelity; the coefficient of variance for 

NR1/NR2A-NMDAR activation across the univesicular range is approximately 4-6 times 

less than either the NR1/NR2A/NR2B or NR1/NR2B receptors.  Therefore, among the 

NMDARs at the synapse, the NR1/NR2A-NMDARs appear ideally suited to detect a 

vesicular release event, and to scale this detector response in proportion to the amount of 

glutamate released from the vesicle.  The consistency of NR1/NR2A-NMDAR activation 

under spontaneous release conditions – i.e., its ability to detect discrete, synaptic release 

events - may facilitate the pro-survival role of synaptic NMDARs, the preferential 

location for NR1/NR2A-NMDARs (Hardingham 2009, Hardingham and Bading 2010).  

Indeed, a smaller number of studies highlight the specific and important role of 

NR1/NR2A-NMDARs in mediating pro-survival signaling (DeRidder et al. 2006, Liu et 
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al. 2007), in pathological conditions.  Therefore, maintaining the activation of synaptic 

NMDARs across a broad range of conditions appears to be an ideal advantage of NR2A-

containing NMDARs.  The unique advantage of NR1/NR2A-NMDARs to ‘detect’ and 

‘scale’ their response during univesicular release (UVR) is less clear.  Graded responses 

in NMDAR activation will naturally produce proportional graded responses in secondary 

messengers including calcium, calcium bound calmodulin, and enzymes such as calpain, 

a protease directly activated by calcium binding.  However, many intracellular signaling 

networks, including MAP kinase activation (Huang and Ferrell 1996) and CaMKII 

phosphorylation (Okamato and Ichikawa 2000, Bradshaw et al. 2003), function to convert 

graded signals into strong switch like signals.  Thus, the graded response of NMDAR 

activation can produce similarly graded outcomes in some signaling pathways while also 

being used by other pathways to simply approach a critical threshold.   

 A notable shift in the dynamic range of NMDAR populations occurs with 

multivesicular release (MVR) conditions; the relative activation of NR1/NR2A-

NMDARs saturates and the proportional activation property shifts to NR1/NR2B-

NMDARs and NR1/NR2A/NR2B-NMDARs receptors.  Similar to NR1/NR2A-

NMDARs functioning as detectors during UVR conditions, this shift in the NMDAR 

activation pattern suggests NR2B-containing NMDARs are the primary detectors of 

MVR.  It is important to note that MVR occurs at some, but not all types of synapses, 

with notable absence of MVR at mossy fiber – granule cell (Gulyas et al. 1993) and CA3 

– interneuron connections (Silver et al. 1996, Lawrence et al. 2004).  Furthermore, there 

has been great controversy on the presence of MVR at Schaffer collateral – CA1 
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synapses (Hanse and Gustafsson 2001a, Hanse and Gustafsson 2001b, Christie and Jahr 

2006).  This variability indicates that, in the absence of other compensatory mechanisms, 

the role of NR2B in physiological signaling may be somewhat limited in MVR lacking 

synapses. Interestingly, our observed shift in the scaling of the NMDAR populations also 

occurs simultaneously with an improvement in the consistency or fidelity of signaling 

mediated through NR2B-containing NMDARs, as indicated by the lowered coefficient of 

variance (CV) predicted from the MVR simulations.  This improvement in signaling 

fidelity may seem inconsistent with published reports, as multivesicular release is often 

reported with high values of CV calculated from miniature excitatory postsynaptic 

currents (mEPSCs) (Umemiya et al. 1999, Conti and Lisman 2003, Ricci-Tersenghi et al. 

2006).  Our simulations indicate that in response to large, nonvariable numbers of 

glutamate molecules, the stochastic nature of NMDAR activation contributes little to the 

variability observed at high CV synapses.  The high CV observed experimentally during 

MVR is instead likely mediated by presynaptic mechanisms, including vesicular 

glutamate content (Wilson et al. 2005, Wu et al. 2007) and number of vesicles released 

(Conti and Lisman 2003, Raghavachari and Lisman 2004, Ricci-Tersenghi et al. 2006).   

Perhaps most interesting is the transition or shift in the activation of different 

NMDAR populations at the synapse for MVR (also reported in Santucci and 

Ragavachari, 2008) that can significantly impact the type and extent of downstream 

signaling.  More emphasis is placed in recent studies to discriminate among NMDARs, as 

specific NMDAR subtypes are tied to different and often opposing pathways (Cull-Candy 

and Leszkiewicz 2004, Kim et al. 2005, Waxman and Lynch 2005a).  For a synapse 
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dominated by NR1/NR2B-NMDARs, our simulations suggest that MVR, or other 

compensatory mechanisms, is necessary to improve the consistency of the signaling 

mediated through the synaptic NMDARs.  It is interesting to note that several studies cite 

the increased frequency of MVR in immature neuronal cultures, where the expression of 

NR1/NR2B-NMDARs dominates (Iwasaki and Takahashi 2001, Ricci-Tersenghi et al. 

2006).  Alternatively, if a synapse contains a majority of triheteromeric NMDARs, the 

synapse would have a broadened ability to respond more consistently to both UVR and 

MVR, although this synapse would still have limited ability to reliably detect NMDAR 

signaling for small, single vesicles containing less than approximately 1,000 molecules.  

In this synaptic configuration, commonly described for mature synapses, the synapse 

would show the broadest operating range for NMDAR signaling.  Moreover, the insertion 

of NR1/NR2A-NMDARs into a synapse clearly provides ability to detect even more 

subtle single vesicle release events, and offers a dramatic improvement in the fidelity of 

signaling compared to either the NR1/NR2B or NR1/NR2A/NR2B-NMDARs 

(approximately 4:1) over the range of single vesicles containing 500-1,500 glutamate 

molecules.  To this end, past work shows that NMDAR trafficking will show a preference 

for inserting NR2A-containing NMDARs when the NMDAR activity is suppressed for a 

significant period of time, or when the selective activity of synaptic NMDARs is 

suppressed (Aoki et al. 2003, von Engelhardt et al. 2009).  

An equally important consideration for NMDAR-mediated signaling is the 

gradual activation of extrasynaptic NR1/NR2B-NMDARs, an event that is unlikely for 

the release of single vesicles or low frequency stimulation, but is more probable for MVR 
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and high frequency stimulation.  A number of studies now show the relative balance 

between synaptic and extrasynaptic NMDARs is important for determining the net 

resultant role for NMDARs, e.g., the sustained activation of NR2B-containing NMDARs 

are linked to activation of p38 MAPK (Poddar et al. 2010), inhibition of pro-survival 

transcription, and swelling of neuronal mitochondria (Hardingham et al. 2002), all of 

which and contribute to neuronal death.  Among the receptor populations analyzed, the 

extrasynaptic NR1/NR2B-NMDAR exhibits the lowest probability of activation, and 

their relatively sparse number indicates they will not significantly contribute to the 

predicted overall NMDAR current.  This does not exclude the possibility that these 

receptors can contribute meaningfully to the response across the physiological range, as 

only the brief activation of extrasynaptic NMDARs has been reported to alter PKC 

activation and AMPAR subunit composition (Sun and  June Liu 2007) as well as having 

a role in LTD induction (Massey et al. 2004).  However, the kinetics and localization of 

extrasynaptic NMDARs make it well suited for the transduction of excitotoxic signals in 

pathological conditions.  Together, these simulations suggest a tight regulation of 

synaptic transmission is necessary to ensure the proper health of the neuronal network.  

In addition, the multiple subtypes of NMDARs and their differential dynamic ranges 

allows for a single mature synapse to be able to receive and transmit various types of 

physiological glutamate signals into appropriate intracellular signaling pathways.  
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The role of NMDAR subtypes in synaptic plasticity are influenced by synaptic 

content  

Experimentally, Liu et al. and others (Liu et al. 2004b, Massey et al. 2004, Yang 

et al. 2005) show that low frequency stimulation (5Hz) mediates a long-term synaptic 

depression dependent on NR2B-containing NMDARs, and not on the activation of 

NR1/NR2A-NMDARs.  However, others report that NR2B is not essential for LTD 

(Morishita et al. 2007).  Our simulations show that neither synaptic nor extrasynaptic 

NR1/NR2B-NMDARs contribute significantly to the total NMDAR activation observed 

under low frequency stimulation, seemingly in agreement with NR2B playing no role in 

LTD.  However, as the low frequency stimulation for LTD is applied over several 

minutes (typical duration 10-15 minutes) (Bear and Malenka 1994), one clear possibility 

is that the modest and sustained activation of the NR1/NR2B-NMDAR over several 

minutes will integrate to activate the signaling necessary to trigger LTD.  An alternative 

possibility is if elements of the LTD signaling pathway were localized to the 

macromolecule signaling domains of the NR1/NR2B-NMDAR, where even low levels of 

NMDAR activation would produce sufficient calcium influx to activate molecules within 

a highly localized signaling complex near individual NMDARs.  In this condition, the 

local activation of the NR1/NR2B-NMDAR would be relatively insensitive to the more 

robust activation of the NR1/NR2A-NMDAR.  Nanodomain-mediated signaling for 

NMDARs is receiving more attention lately, as this local activation is capable of 

changing synaptic AMPAR number (Kim et al. 2005), composition, and the relative 

activation of MAPK signaling modules in the spine (Kim et al. 2005, Li et al. 2006).  One 
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intriguing possibility is the direct physical interaction of NR2B with Ras-GRF1 and 

SynGAP, required for the successful activation of p38 MAPK (Li et al. 2006) and 

inhibition of ERK  (Kim et al. 2005), respectively.  Both pathways result in reduced 

AMPAR surface expression and LTD induction - therefore raising the possibility that 

LTD may be partly influenced by nanodomain-signaling mediated by NR1/NR2B-

NMDAR activation.  

 The role of the NMDAR subtype on the induction of LTP is widely debated, with 

several reports suggesting that it is dependent on NR2A (Liu et al. 2004b, Massey et al. 

2004), on NR2B (Barria and Malinow 2005, Foster et al. 2010), or that both subunits are 

involved (Zhou et al. 2005, Bartlett et al. 2007, Jin and Feig 2010).  Our simulations 

show that there is a distinct shift in the patterns of NMDAR subtype activation for higher 

frequency stimulations; the contribution of NR1/NR2A-NMDARs is significantly 

decreased, while the contribution of synaptic NR1/NR2A/NR2B-NMDARs and 

extrasynaptic NR1/NR2B-NMDARs is significantly increased.  Certainly, one 

straightforward explanation for the NMDAR-dependent threshold of LTP is that higher 

frequency stimulation simply activates more NDMARs, and this more significant 

activation of the NMDARs will lead to a shift in the intracellular signaling that favors 

LTP.  This argument suggests that the induction of LTP is dependent on overall global 

increase in calcium, a commonly cited mechanism for regulating LTP (Yang et al. 1999, 

Berberich et al. 2007). An alternative explanation, though, is that the LTP is triggered by 

a transition in the activation of more NR2B-containing NMDARs for higher frequency 

stimulations (Barria and Malinow 2005, Zhou et al. 2007), a prediction borne out in our 
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simulations.  There is support for both possibilities in the literature.  Several reports 

demonstrate that LTP induction is mediated by an overall calcium load (Berberich et al. 

2005, Bartlett et al. 2007, Muller et al. 2009), while others have identified specific 

NMDAR subtype specific signaling complexes that can control LTP (Kohr et al. 2003, Li 

et al. 2006). Furthermore, a recent report shows that both NR2A and NR2B containing 

NMDARs can induce LTP, but use distinct signaling pathways (Jin and Feig 2010).  Our 

simulations suggest that the composition of the NMDARs at the synapse is a key factor 

that can influence the relative likelihood for each proposed mechanism.  For example, a 

synapse dominated by NR1/NR2B-NMDARs will produce relatively modest calcium 

influx and therefore increase the importance of physically localized signaling complexes.  

Alternatively, mechanisms relying more on global increases in calcium would apply more 

prominently in a maturing synapse containing a higher fraction of NR2A-containing 

NMDARs.  A key experimental tool needed to test these possibilities is specific 

inhibition of each NMDAR pool, a tool that remains elusive (Neyton and Paoletti 2006).  

Once such a tool is available, our simulation studies of different stimulation protocols and 

receptor content will provide guidance in investigating exactly how NMDAR subtypes 

and overall calcium load influence activation of intracellular signaling pathways and 

initiation of long term synaptic changes associated with synaptic plasticity.   

 Together, our data demonstrates the unique properties of NMDAR subtype 

specific activation, and shows how subtypes may be suited for specific roles in NMDAR 

signaling.  Further, we illustrate the patterns of NMDAR activation can change under 

different glutamate release conditions, during different developmental states, and that 



Chapter 3                                            Modeling physiological NMDAR subtype activation 
 

86 
 

receptor content is an important factor in the reliability of NMDAR signaling.  The 

unique properties of these subtypes provides flexibility to synaptic transmission allowing 

efficient transfer of different types of glutamate signals into distinct patterns of NMDAR 

subtype activation.  Future simulations in concert with experimental investigations will 

be vital in the understanding of regulatory mechanisms at the synapse and how they 

impact observed diversity in NMDAR function. 
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ABSTRACT 

Traumatic brain injury has two distinct components which can influence the 

activity of NMDA receptors (NMDARs) during the neuronal response to injury: (1) 

excessive extracellular glutamate and (2) NMDAR mechanosensitivity.  These two 

components combine to produce a unique paradigm that distinguishes TBI from other 

neurological disorders.   In this report we use a computational model of glutamatergic 

signaling to examine how injury induced glutamate release and NMDAR stretch 

sensitivity influence the activation patterns of NMDAR subtypes as well as resultant 

calcium entry and calmodulin activation.  We demonstrate that injury induced glutamate 

release significantly shifts the patterns of NMDAR subtype activation, with enhanced 

contribution from synaptic and extrasynaptic NR2B containing receptors.  Further, 

mechanosensitivity, modeled as a loss of the inherent Mg2+ block in NR2B containing 

NMDARs, significantly increases calcium entry and calmodulin activation at the time of 

injury.  We demonstrate that the extrasynaptic contribution to the total NMDAR response 

in our injury simulations is consistent with measurements of the extrasynaptic 

contribution following in vitro stretch injury.  Finally, we use our computational model to 

predict that mechanical sensitivity of the NR2B subunit can result in prolonged 

dysfunction in synaptic signaling, a potential factor in secondary cell death and disrupted 

network communication.  Collectively this data points to an increased role of NR2B 
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during the acute and post-acute periods after injury, highlighting the potential for 

NMDAR subtype specific influences on the functional outcome of TBI. 

 

INTRODUCTION 

Traumatic brain injury (TBI) produces a unique environment among neurological 

diseases, as it includes both biochemical and mechanical components that can contribute 

to progressive cell death and dysfunction after the initial injury (Fig 1).  Several past 

studies show the central role of the NMDA receptor (NMDAR) in mediating molecular 

consequences of TBI, beginning with the initial calcium influx (Geddes-Klein et al 2006) 

at the moment of injury and including the reshaping of synaptic signaling days to weeks 

following injury (Weber et al 1999, Giza et al 2006, Goforth et al 2011).  Although 

antagonism of NMDARs provides neuroprotection in experimental models of TBI (Faden 

et al 1989, McIntosh et al 1990b, Shapira et al 1990, Smith et al 1993), this protection has 

a short therapeutic window.  Moreover, evidence now shows a delayed therapeutic 

window where NMDA stimulation can improve outcome after TBI (Biegon et al 2004).  

This dual role for the NMDAR in the traumatically injured brain is likely due to the 

unique roles of NMDAR subtypes in activating neuronal survival programs or, 

alternatively, controlling neuronal fate through apoptosis or autophagy (Waxman and 

Lynch 2005, Liu et al 2007, Bigford et al 2009, Hardingham and Bading 2010).  Given 

the diverse roles of NMDAR subtypes in neuronal signaling, understanding both the 

acute and post-acute changes in NMDAR-mediated signaling will provide a more 
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informed approach for alternative and potentially more effective strategies to improve 

outcome after TBI.  

 

Figure 1:  TBI has two distinct consequences influencing NMDAR activity.  TBI distinguishes itself 
from other neurological disease states as it has two unique components that combine to influence neuronal 
dysfunction.  Both of these components, (1) increased glutamate release and (2) mechanosensitivity, 
converge on the activity of NMDARs, enabling these receptors to be the primary initiator of the neuronal 
response to injury.   

An early biochemical component of TBI is the immediate increase in levels of 

extracellular glutamate within the brain.  Although glutamate is the primary excitatory 

neurotransmitter necessary for physiological neurotransmission, excessive glutamate can 

lead to over excitation of the neural network, initiation of pro-death signaling, and 

eventual neuronal loss (Choi 1988, Arundine and Tymianski 2004).  Intracerebral 

microdialysis after TBI shows a large increase in the extracellular glutamate that 

dissipates within hours after injury (Faden et al 1989, Nilsson et al 1994).  Several 

sources can account for this elevation in extracellular glutamate, including excessive 

presynaptic glutamate release, astrocytic glutamate release, cytoplasmic glutamate release 

through shearing of plasma membranes, and disruption of the blood brain barrier (Yi and 
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Hazell 2006).  Cultured cortical neurons exposed to traumatic mechanical injury in vitro 

show an immediate increase in cytosolic calcium dependent on glutamate binding to 

NMDARs, suggesting that the glutamate-based biochemical component of TBI will begin 

immediately after injury (Geddes-Klein et al 2006).  This early, immediate event at the 

synapse could represent an important first step in defining the response and fate of a 

mechanically injured neuron, as a shift in the activation of NMDAR subtypes can thus 

alter the balance of intracellular signaling and influence the determination of cell fate.  

Despite this importance, there is little evidence documenting the mechanisms that 

regulate the immediate calcium influx following mechanical injury, and how this initial 

injury response differs from the normal patterns of NMDAR mediated signaling that 

occurs during physiologic neurotransmission.  

A unique mechanical component of TBI also acts upon the NMDAR, as 

mechanical stretch induces the loss of the NMDAR voltage dependent Mg2+ block 

(Zhang et al 1996).   The Mg2+ block of the NMDAR is an important regulatory 

mechanism that provides tight control over NMDAR induced calcium influx (Dingledine 

et al 1999, Cull-Candy et al 2001).  A partial loss in the Mg2+ block in mechanically 

injured neurons leads to a significant increase in calcium influx after a brief application 

of agonist (Zhang et al 1996), and will substantially enhance NMDAR signaling in both 

physiological and pathophysiological releases of glutamate.  Interestingly, our past work 

has demonstrated subunit dependence in this mechanosensitive property, where stretch 

sensitivity is critically linked to the NR2B subunit (Chapter 2).  However, it is still 

unknown how this selective loss in Mg2+ block can affect the calcium entry patterns from 
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NMDAR subtypes both during and following the primary injury insult.  With a shift 

towards enhancing the calcium flux through NR2B-containing NMDARs, it is possible 

that even normal neurotransmission may adversely affect neuronal survival by promoting 

NR2B mediated pro-death signaling.   

Determination of cell fate, as well as changes in synaptic strength and network 

communication, is critically linked to intracellular signaling pathways, many of which 

originate within the synaptic environment.   One of the most common early signaling 

proteins which link calcium from NMDARs to numerous pathways is calmodulin (CaM), 

an abundant regulatory protein found throughout the CNS.  CaM progressively binds 

calcium ions, which enhances its affinity to numerous CaM regulated enzymes, including 

cyclic AMP, CaMKII, calcineurin, and nitric oxide synthase (Xia and Storm 2005).  

Through the modulation of these proteins, CaM plays a major role in the induction of 

both long term depression (Mulkey et al 1993) and long term potentiaton (Malenka et al 

1989, Storm et al 1998).  Further, recent reports have alternatively shown the necessary 

role of CaM in directing both neuronal death (Cohen et al 1997, Shirasaki et al 2006) and 

survival (Cheng et al 2003, Papadia et al 2005).  Thus, given the abundance and 

importance of CaM mediated pathways, assessing the activation of CaM is the first key 

step in understanding how TBI influences intracellular signaling and functional outcomes 

during the initial insult and in the critical post-acute period following injury.   

Here, we examined how injury mediated glutamate release and NMDAR 

mechanosensitivity influence the patterns of NMDAR subtype activation and resultant 

calcium entry after injury, linking these events to the activation of calmodulin.  We study 
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both acute and persisting changes in signaling that can occur through the NMDAR after 

injury. Given the difficulty in obtaining both the spatial and temporal resolutions 

necessary to discriminate between NMDAR subtypes with conventional experimental 

methods, we utilize a computational model of glutamatergic signaling at the dendritic 

spine (Chapter 3) to define the difference in activation and calcium influx for specific 

NMDAR subtypes during and following primary injury.  Our experiments show that the 

initial calcium influx following mechanical injury requires glutamate release from the 

presynaptic bouton, and our simulations show that this acute event will shift the initial 

activation profile of NMDARs to include more NR1/NR2B-NMDARs.  Moreover, the 

computational model predicts the loss of the magnesium block from NR2B-containing 

NMDARs creates an infrequent, yet significant, calcium influx through NR2B-NMDARs 

that can significantly shift the balance of glutamatergic signaling during physiologic 

signaling.  We find these predictions from the computational model match measurements 

from mechanically injured cortical neurons.  Together, this works shows that selective 

mechanosensitivity of NR2B containing receptors significantly alters the source 

specificity of calcium influx both during and after injury, providing a potential 

pathological switch in the postsynaptic response of the injured synapse.  

 

METHODS 

Primary cell culture and in vitro stretch injury:  Primary cortical cultures were isolated 

from E18 embryonic rats as described previously (Geddes-Klein et al 2006).  Dissociated 

cells were plated on silicone substrates that were pretreated with PDL (0.01mg/mL) and 
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laminin (1µg/mL).  Cells were plated in Minimum Essential Media (MEM) with 

glutamax + 10% horse serum, and replaced 24 hours after plating with Neurobasal + B27 

Supplement.  Further, cultures were incubated with 1µM AraC from DIV2-4 to prevent 

astrocytic growth.  Cultures were incubated at 37°C and 5% CO2 until used for 

experimentation at DIV 15-18, an age in which cultures contain a diverse set of NMDAR 

subtypes.   

 Prior to mechanical stimulation, cultures were loaded with calcium indicator, Fura 

2-AM or Fluo4, as indicated.  During loading, cultures were pretreated with TTX (1µM) 

to prevent network oscillations, known to influence stretch induced calcium influx 

(Geddes-Klein et al 2006).  Cultures were alternatively left untreated or treated with APV 

(25µM) to block all NMDARs, Ro-256981 (1µM) or with Bafilomycin A1 (500nM) to 

block glutamate loading into vesicles.  To block only synaptic NMDARs, cultures were 

treated with bicuculline and MK801 as previously described (Hardingham et al 2002, 

Geddes-Klein et al 2006).   

 Cultures were injured using our custom built in vitro stretch injury device, which 

utilizes a defined air pulse to provide a controlled stretch of specific rate and magnitude 

to plated neurons (Smith et al 1999, Wolf et al 2001, Lusardi et al 2004).  Intracellular 

calcium was monitored for 30 seconds prior to stretch to provide a baseline, and up to 3 

minutes post stretch.  For Fura-2AM loaded cultures, cells were alternatively excited at 

340nm and 380nm every 3 seconds, while Fluo4 loaded cells were continuously excited 

at 488nm.   All emission data for cells in the field of view were post processed to 

calculate the change for each cell, normalized to its baseline.  Responses across 
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conditions were then normalized to the average response for untreated cells, to obtain the 

relative stretch response for drug treated cells.  Reporting of relative responses minimizes 

the impact of the buffering capability of calcium indicators, assuming that buffering 

capabilities of the calcium indicator across drug treated and untreated conditions are 

similar.   

 

Geometry and content of modeled dendritic spine:  We used a previously developed 

model of the spine geometry: an octagonal-shaped spine head (500nm diameter) and long 

spine neck as described previously (Chapter 3).  A mix of AMPA and NMDA receptors 

were randomly placed along the postsynaptic surface (80:20 AMPA:NMDAR ratio; 100 

total receptors) and an additional 10 NR2B-NMDARs were placed randomly along the 

extrasynaptic surface (Racca et al. 2000, Sheng and Hoogenraad 2007).  The synaptic 

NMDARs were divided among the three subtypes as defined by the relative amount of 

NR2 protein found within the PSD (Cheng et al 2006): 8 NR1/NR2A-NMDARs, 8 

NR1/NR2A/NR2B-NMDARs, and 4 NR1/NR2B-NMDARs.  A membrane representing 

an ensheathing adjacent cell was separated by 20nm distance from the apposing 

extrasynaptic surfaces.   

 

Glutamate release and glutamate receptor activation parameters:  Vesicular content was 

assumed to be 1500 glutamate molecules per vesicle, within the range associated with 

vesicles in a CA1 hippocampal presynaptic terminal (Burger et al 1989, Schikorski and 

Stevens 1997).  Based on in vitro stretch data which demonstrates a role for synaptically 
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released glutamate in stretch induced calcium increases (Fig 2), injury was simulated as 

the immediate release of multiple synaptic glutamate vesicles.  Simulations assumed two 

different types of presynaptic release profiles at the moment of injury: (1) the release of 5 

vesicles from the readily releasable pool, and (2) the release of the entire pool of vesicles 

docked and available for release, assumed to be 15 vesicles.  These injury simulations 

were compared to physiologic release profiles that consistent of a release of a single 

vesicle (univesicular release). Diffusion rate for glutamate was held at 0.2µm2ms-1, a 

commonly used diffusion rate that accounts for molecular obstacles and molecular 

overcrowding (Saftenku 2005).  As described previously, activation of AMPARs and 

NMDARs was modeled with previously reported reaction schemes and reaction rates 

(Jonas et al 2003, Erreger et al 2005). 

    

Calcium entry:  Calcium entry was computed after simulations of glutamate receptor 

activation by utilizing model results to iteratively calculate change in membrane voltage 

potential (Vm) and the probability for open NMDARs to be blocked by magnesium 

(Mg2+).  Using a relationship established by Jahr and Stevens (1990), we calculated the 

probability of each receptor to be blocked by magnesium at each time step, defined as  
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As mechanical stretch is known to reduce the Mg2+ block in injured cultures, we modeled 

mechanosensitivity by varying the effective Mg2+ concentration in the determination of 

Punblocked.  We have shown that NR1/NR2B-NMDARs are the most mechanosensitive, 
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with triheteromeric NMDARs having intermediate sensitivity, and NR1/NR2A-

NMDARs having very limited sensitivity (Chapter 2).  Based on these findings and past 

work showing the stretch-induced loss of the magnesium block, we modeled the effect of 

mechanical injury by using a Mg2+ concentration of 0mM for NR1/NR2B-NMDARs, 

0.1mM for triheteromeric NMDARs, and 0.8mM for NR1/NR2A-NMDARs (Zhang et al 

1996).  We compared these conditions to simulations of synapses not mechanically 

injured, where we used a Mg2+ concentration of 0.8mM was used for all subtypes.  

Membrane potential (Vm) was calculated at each time step by finding the incremental 

change in Vm dictated by total ionic flux through AMPARs and NMDARs by 
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where IAMPA, INMDA, and Ileak are calculated using 
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NAMPA and NNMDA are the number of open receptors of each receptor type.  It was assumed 

that gAMPA and gNMDA, the single channel conductance for each receptor, was 12pS and 

45pS respectively.  The reversal potentials, EAMPA and ENMDA, for both AMPARs and 

NMDARs were assumed to be 0mV.  In computing a generalized leak current, a leak 

conductance, gleak, was assumed to be 10nS, with a reversal potential of -60mV which 

establishes equilibrium Vm at -60mV.  Finally, the membrane capacitance (Cm) of the 
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spine was found using a reported capacitance density of 1µF/cm2 (Dolowy 1984).  The 

probability for a receptor to be unblocked by magnesium (Punblocked) was then used to 

determine if each individual activated NMDAR, as defined by Smoldyn simulations, was 

able to conduct calcium in that time step.  The number of calcium ions entered per open 

NMDAR per time step was calculated using a probability distribution of ions entered 

given by 
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Here, NCa is the average number of calcium ions entered during this time step and is 

computed by 
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where the single channel calcium conductance for NMDARs, γNMDA,Ca, is assumed to be 

4.5pS, ZCa is the valence for Ca2+ (z  = 2), and ec is the elementary charge (1.6 x 10-19C). 

To match with stochastic simulations, a time step of 0.01ms was used.  In our 

examination of calcium entry with and without the added effect of mechanosensitivity, 

identical glutamate receptor activation profiles, for each glutamate release profile, were 

analyzed allowing for direct comparison between groups.  

 

Calmodulin activation model:  Calmodulin (CaM) activation was modeled using a 

reaction scheme accounting for the binding of calcium ions to four independent binding 

sites, 2 on the N lobe and 2 on the C lobe (Keller et al 2008).  Calcium influx (see above 
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section) appeared at discrete receptor locations along the presynaptic face, and the 

calcium was allowed to diffuse freely throughout the spine.  Precise quantity and 

localization of CaM within the dendritic spine is not yet understood.  Estimates place 

neuronal CaM concentration in the range of 10-100 uM (Xia and Storm 2005).  Here, we 

placed 1200 CaM molecules, equivalent to 20µM, within the spine head.  Molecules were 

allowed to freely diffuse, with a diffusion constant of 0.01µm2ms-1 (Sanabria et al 2008).  

Calcium binding to the four sites was defined using a previously described reaction 

scheme (Keller et al 2008).  Consistent with the Keller model, additional calcium 

buffering proteins (CBPs) were placed within the spine head, including 45µM Calbindin-

D28k, which binds calcium at two high affinity and two medium affinity sites, and 5µM 

of endogenous CBP with fast kinetics.  All the reaction rates for these proteins are given 

in Table 1.   

 

Simulations and analysis:  All stochastic models were run in Smoldyn 1.84, a stochastic 

simulator for biomolecular reaction networks (Andrews and Bray 2004, Andrews 2009).  

Based on convergence studies, a time step of 0.01ms was used for all simulations.  Unless 

otherwise noted, simulations were terminated at 1 second.   Total amounts of activated 

species were tracked throughout the entire timecourse of the simulation.  Numbers of 

entered calcium ions and calcium flux were found using a user created MATLAB script.  

Significance between multiple conditions was detected through either ANOVA, and post 

hoc Tukey’s Test, or with student’s t-test.   
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Parameter Value 
Calcium diffusion rate 0.22µm2ms-1 
CaM concentration 20µM 
CaM diffusion rate (Sanabria et al 2008) 0.01µm2ms-1 
CaM C-lobe first association rate 11,288 nm3ms-1 
CaM C-lobe first dissociation rate 0.068 ms-1 
CaM C-lobe second association rate 11,288 nm3ms-1 
CaM C-lobe second dissociation rate 0.010 ms-1 
CaM N-lobe first association rate 179,280 nm3ms-1 
CaM N-lobe first dissociation  rate 4.150 ms-1 
CaM N-lobe second association rate 179,280 nm3ms-1 
CaM  N-lobe second dissociation rate 0.8 ms-1 
Calbindin concentration  45µM 
Calbindin diffusion rate 0.028µm2ms-1 
Calbindin medium affinity association rate 72210nm3ms-1 
Calbindin medium affinity dissociation rate 0.0358 ms-1 
Calbindin high affinity association rate 9130 nm3ms-1 
Calbindin high affinity dissociation rate 0.0026ms-1 
Fast calcium-binding protein concentration 5µM 
Fast calcium-binding protein diffusion rate 0 µm2ms-1 
Fast calcium- binding protein association rate 99600nm3ms-1 
Fast calcium-binding protein dissociation rate 1.2ms-1 
 

Table 1: Reaction rates and other model parameters for simulations of intracellular CaM activation. 
Taken from Keller et al (2008) unless otherwise noted. 
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RESULTS 

 

Mechanical injury to cultured cortical neurons shows a strong association with 

NMDAR activation and requires presynaptic glutamate release 

We first focused on developing the necessary experimental data to frame any 

subsequent simulations of the immediate and delayed synaptic response to mechanical 

injury.  We mechanically injured cortical neurons at one of two different peak stretch 

injury levels (50%, 80% peak), based on previous studies that showed 50% peak stretch 

did not cause cell death 24 h after traumatic injury, while 80% peak stretch caused a 

significant increase in cell death at the same time point (Spaethling et al 2008).  Using a 

calcium indicator dye to measure the immediate response after mechanical injury, we 

observed the initial peak calcium transient significantly differed between these two injury 

levels.  Moreover, activation of the NMDA receptor was critical in this immediate 

response after injury for both stretch injury conditions, as inhibiting the activation of 

NMDARs with APV pretreatment reduced the peak calcium increase by 90-95%, to a 

level only slightly higher than control, uninjured cultures (Fig 2A).  We used an 

experimental protocol to isolate extraysnaptic NMDARs, and found that the highest 

stretch injury level studied produced a relatively large fraction of calcium influx through 

extrasynaptic NMDARs.  Alternatively, the same pretreatment protocol showed only a 

modest contribution by extrasynaptic NMDARs to the resulting peak calcium increase 

after 50% stretch injury.   We used a second experimental approach – blocking 

NR1/NR2B NMDARs with the highly selective antagonist Ro 25-6981 – to show that the 
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activation of these NMDAR subtypes contributes little after 50% stretch but has a more 

prominent role after 80% stretch (Fig 2A).  Together, these data show that the NMDARs 

are critical mediators of the initial response to traumatic mechanical injury across the 

spectrum of injury, and that the relative activation of receptors expands to include 

extrasynaptic NMDARs at higher injury levels. 
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Figure 2:  Injury induced calcium influx dependent on NMDAR activation and glutamate vesicle 
release.  (A) Immediate calcium influx following in vitro stretch is significantly reduced by alternatively 
blocking NR1/NR2B-NMDARs or the extrasynaptic pool of NMDARs.  APV treatment demonstrates that 
stretch induced calcium is almost completely eliminated by blocking glutamate binding to NMDARs. (B) 
Primary cortical neurons, loaded with calcium sensitive dye Fluo-4, were stretch injured with or without 
pre-treatment with Bafilomycin A1, a compound that inhibits the transport of glutamate into vesicles.  
Bafilomycin A1 treated cells do not experience a visible calcium rise following stretch (scale bar = 50µm). 
(C) Quantified, Bafilomycin A1 significantly reduces the peak increase in calcium after in vitro stretch 
injury. (* p < 0.05 compared to untreated) 
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Although these data demonstrate the importance of the NMDAR in the response 

of primary neurons to mechanical injury, they do not directly indicate the how these 

glutamate receptors are activated from stretch.  Some stretch activated channels do not 

require the action of an agonist to exhibit stretch sensitivity (Kung 2005), but our data 

with APV pretreatment show that the agonist binding is necessary for neurons to respond 

following mechanical injury.  The most likely mechanism is that the mechanical stretch 

event triggers the release of glutamate from the readily releasable pool of vesicles in the 

presynaptic bouton.  We incubated primary cortical neurons with bafilomycin A to 

prevent glutamate loading into presynaptic vesicles, as a means to test the relative role 

that presynaptic vesicular release has on the primary response to mechanical injury (Fig 

2B).  Following stretch, there was a significant reduction in the primary calcium influx 

with bafilomycin treatment, with a minimal observed rise in intracellular calcium 

following stretch (Fig 2C).  Therefore, presynaptic release of glutamate is a critical 

component of the immediate response to mechanical injury, and represents an essential 

component of the model we developed to study synaptic receptor activation profiles 

following mechanical injury. 

 

Presynaptic release caused by mechanical injury causes a significant shift in the 

profile of NMDAR activation 

Although our experimental data showed that mechanical injury activated both 

synaptic and extrasynaptic NMDAR populations, it was not possible to estimate the 

relative fraction of triheteromeric and diheteromeric receptors activated with a single 



Chapter 4                                                           Modeling NMDAR activity following TBI 
 

104 

 

stretch event.  It is increasingly clear that NMDAR subtypes will preferentially activate 

different signaling pathways (Waxman and Lynch 2005, Liu et al 2007), but the 

pharmacological control of these receptor subpopulations remains difficult (Neyton and 

Paoletti 2006).  As an alternative to pharmacology, we utilized our computational model 

of glutamatergic receptor activation at a single dendritic spine to examine how injury 

induced glutamate release results in differential patterns of NMDAR subtype activation.  

We simulated injury in our computational model as a simultaneous release of single or 

multiple vesicles – 1, 5 or 15 vesicles - to span the range reported for the size of the 

readily releasable pool of vesicle in the presynaptic bouton (Schikorski and Stevens 

2001).  Each single vesicle contained 1500 glutamate molecules, and the postsynaptic 

receptor face was populated with a physiological representation of synaptic NMDAR 

content – 8 NR2A-NMDARs, 8 NR2A/NR2B-NMDARs, and 4 NR2B-NMDARs – and 

10 extrasynaptic NR2B-NMDARs (see methods).  Single vesicle release resulted in the 

activation of primarily synaptically located NMDARs, and synaptic NR2A-NMDARs 

showed significantly higher activation than synaptically located triheteromeric NMDARs 

and NR2B-NMDARs (Fig 3A).    The simultaneous release of more than one vesicle 

significantly enhanced receptor activation of all receptor subtypes (Fig 3B), with the total 

receptor activated time for all NMDARs increased nearly fourfold, for a release of 15 

vesicles compared to a single vesicular release event.  Interestingly, the most dramatic 

difference is predicted in the extrasynaptic NR2B-NMDAR population.  Although almost 

no activation was predicted after release of a single vesicle, there was significant 

activation of extrasynaptic receptors following the release of either 5 or 15 vesicles (Fig 
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3A), with total receptor activated time increasing from 0.355ms after physiologic release 

to 106.1ms after release of 15 vesicles (Fig 3B).  Across the same range of vesicular 

release conditions, NR2A-NMDAR activation was not significantly different.  As a 

result, the relative contribution of NR2A-NMDARs significantly decreased from 91.6% 

during univesicular release to 36.3% following the release of 15 vesicles, while the 

contribution of all other subtypes increased after injury (Fig 3C).  Intriguingly, 

extrasynaptic NR2B-NMDARs contributed only 0.2% during physiologic release, but 

rose to 23% when 15 vesicles were released.  
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Figure 3:  Injury mediated glutamate release alters both the extent and patterns of NMDAR subtype 
activation.  The biochemical component of injury was simulated as an instantaneous release of 5 or 15  
glutamate vesicles onto a dendritic spine containing 80 AMPARs, a physiological mix of 20 synaptic 
NMDARs (8 NR1/NR2A-NMDARs, 8 NR1/NR2A/NR2B-NMDARs, 4 NR1/NR2B-NMDARs), and 10 
NR1/NR2B extrasynaptic NMDARs. (A) The average traces of activated AMPARs and synaptically and 
extrasynaptically located NMDAR subtypes demonstrate that activation of all receptors increases in injury 
conditions. (B) The average activated time for NMDAR subtypes again shows injury mediated increases in 
activation. (C) The relative contribution of each subtype to the total NMDAR response demonstrates that 
the overall pattern of NMDAR subtype activation is significantly altered after injury, with increased in 
contribution of NR2B containing NMDARs and decreased contribution of synaptic NR1/NR2A-NMDARs. 
(n = 40 simulations, * p < 0.05 compared to release of 1 vesicle, # p < 0.05 compared to release of 5 
vesicles) 
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Although our simulations predict the total time of receptor activation for a given 

NMDAR subtype, calcium influx through activated receptors is frequently cited as a 

necessary proximal event for triggering the activation of signaling systems within the 

spine.  Calcium influx through NMDARs is dependent upon the Mg2+ block of the pore, 

relieved when the membrane is sufficiently depolarized (Dingledine et al 1999).  We 

iteratively calculated membrane potential based on the NMDAR and AMPAR activation 

profiles, calculated the corresponding Mg2+ block at this membrane potential, and 

computed calcium influx through distinct NMDARs on the postsynaptic surface.  As 

expected, cumulative calcium entry and calcium flux significantly increased as the 

number of released vesicles was increased (Fig 4A).  Furthermore, we observed large 

increases in calcium entry and calcium flux among the NR2B containing NMDAR 

subtypes, particularly the extrasynaptic NR2B-NMDARs (Fig 4B), with increasing levels 

of glutamate release.  A similar injury induced shift in contribution of subtypes to 

calcium influx occurred, with decreased contribution of NR2A-NMDARs and increased 

contribution of NR2B containing NMDARs (data not shown).  The relative amount of 

calcium influx through extrasynaptic NMDARs following 50% injury best matched our 

simulations releasing 5 vesicles from the presynaptic bouton.  In comparison, we did not 

match the more enhanced influx from extrasynaptic NMDARs following 80% peak 

stretch injury, even if we compared the measurements with predicted the release of 15 

vesicles (Fig 4C). 



Chapter 4                                                           Modeling NMDAR activity following TBI 
 

108 

 

 

Figure 4: Injury induced glutamate release enhances calcium entry through NMDAR subtypes. (A) 
Overall calcium entry and (B) )calcium entry through specific NMDAR subtypes is significantly increased 
after injury mediated release of 15 vesicles (pink-individual simulations, red-average), compared to release 
of a single vesicle (light blue-individual simulations, blue-average) (* p < 0.01 compared to single vesicle 
release). The estimated normalized calcium entry in which certain NMDAR populations were “blocked” 
simulating pharmacological manipulations of (C) Synaptic NMDAR block and (D) Ro 25-6981 treatment, 
compared to responses measured following in vitro stretch injury. 

 

Stretch-induced loss of the Mg2+ block significantly enhances calcium influx 

Following mechanical injury, published reports show a sustained loss of the 

magnesium block (Zhang et al 1996) that can alter the post acute calcium homeostasis 

(Fig 5A).  Our past work (see Chapter 3) shows the importance of the NR2B subunit in 

conferring mechanosensitivity to the NMDAR.  To examine how both glutamate release 

and NMDAR mechanosensitivity work in concert, we modulated the probability of Mg2+ 

block for each receptor subtype during simulations of NMDAR activation following 
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injury mediated glutamate release.  Probability of the magnesium block for the NMDAR 

depends upon both the membrane potential and Mg2+ concentration (Jahr and Stevens 

1990).  We simulated a complete loss of the magnesium block for NR1/NR2B-NMDARs 

(simulated with 0 mM magnesium concentration), and a partial loss of the block for 

NR1/NR2A/NR2B-NMDARs (0.1 mM) to match the response from stretched neurons.  

With a simulated loss in the magnesium block for all NR2B-containing NMDARs, the 

number of entered calcium ions was nearly two orders of magnitude larger than in 

simulations without a selective loss in Mg2+ block (Fig 5B).  Predictably, the increase 

was due to enhanced calcium through NR2B-NMDARs and NR2A/NR2B-NMDARs 

(Fig 5D).     In conditions of injury with a loss in Mg2+ block in NR2B-NMDARs, 

extrasynaptic NR2B-NMDARs account for approximately 55% of the total calcium 

influx, compared to 25% when Mg2+ block is intact (Fig 5E).  The release of 5 or 15 

vesicles did not significantly change the expected contribution of extrasynaptic NMDARs 

to the initial calcium influx following injury (Fig 5F).  Both release conditions were 

similar to the measured contribution of extrasynaptic NMDARs after 80% peak stretch 

injury, but was not similar to the measured response after 50% stretch injury. 
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Figure 5: Selective mechanosensitivity and loss of Mg2+ block in NR2B containing NMDARs greatly 
enhances injury induced calcium influx.  (A) Schematic describing the stretch induced observed loss of 
the typical “J-shaped” curve, depicting native voltage dependent Mg2+ block (Zhang et al 1996).  (B) The 
total number of entered calcium ions and (C) calcium flux was increased in conditions of injury glutamate 
release with NR2B mechanosensitivity  (gray – individual simulations, black – average), compared to 
injury release of 15 vesicles alone (pink – individual simulations, red – average).  (D) The number of 
calcium ions through each subtype is increased for NR2B containing NMDARs, but not different for 
NR1/NR2A, in conditions of combined 15 vesicle injury release and mechanosensitivity.  (E) The relative 
contribution of each subtype to the total calcium is significantly altered by the institution of NR2B 
mechanosensitivity, with extrasynaptic NMDAR – sourced calcium accounting for more than half of the 
total calcium entry.   The estimated normalized calcium entry in which certain NMDAR populations were 
“blocked” simulating pharmacological manipulations of (F) Synaptic NMDAR block and (G) Ro 25-6981 
treatment, compared to responses measured following in vitro stretch injury. 



Chapter 4                                                           Modeling NMDAR activity following TBI 
 

111 

 

 

Injury mediated calcium influx controls the activation of calmodulin 

These simulations, supported by our measurements of the response in cortical 

neurons, indicate that both the release of glutamate and partial loss of the magnesium 

block of the NMDAR are critical aspects of the post acute calcium response following 

traumatic mechanical injury.  To gauge the extent of synaptic signaling under these 

possible conditions, we developed a model of calmodulin (CaM) activation within the 

spine (Fig 6A).  Calcium bound CaM binding is the major precursor which links calcium 

entry to the initiation of numerous signaling pathways within the spine (Xia and Storm 

2005).  Activation of CaM effectors, such as CaMKII and calcineurin, is dependent on its 

binding with CaM, where the binding rates increase as the calcium occupancy of CaM 

increases.  For this reason, we monitored the various calcium occupancy states of CaM 

(CaM-Ca1, CaM-Ca2, CaM-Ca3, and CaM-Ca4) following univesicular and 

multivesicular (15 vesicles) release, in combination with the loss of magnesium block for 

NR2B-containing NMDARs.  Univesicular release produced a brief calcium influx that 

led to little binding of calmodulin, whereas injury induced glutamate release led to only a 

modest increase in the number of single and double calcium bound calmodulin 

molecules. Neither release paradigm resulted in significant activation of CaM-Ca3 and 

CaM-Ca4, the states with greatest ability to bind and activate CaM effectors (Fig 6B).  In 

comparison, the combined effects of injury induced glutamate release and selective loss 

in Mg2+ block resulted in a peak number of CaM-Ca4 that was nearly 95% of total CaM 

species, representing a significant increase in the extent of signaling that would be 
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observed after injury with a loss in Mg2+ block (Fig 6B).  This initial response to injury 

highlights a key role of injury induced loss in the magnesium block in altering 

postsynaptic signaling, providing a much stronger stimulus for altering signaling when 

compared to the enhanced release of glutamate from the presynaptic bouton. 



Chapter 4                                                           Modeling NMDAR activity following TBI 
 

113 

 

 

Figure 6: CaM activation is potentiated by injury release with a concurrent loss of Mg2+ block in 
NR2B.  (A) Calmodulin (CaM) activation was modeled through calcium binding to two sites on the N-lobe 
and two sites on the C-lobe.  Total numbers of CaM bound to specific numbers of calcium ions (CaM-Ca1 
through CaM-Ca4) were observed for (B) three calcium entry conditions:  release of a single vesicle, injury 
induced release of 15 vesicles, and release of 15 vesicles with NR2B mechanosensitivity.  Neither release 
of 1 nor 15 vesicles alone produces fully bound CaM, although 15 vesicle release slightly enhances levels 
of Cam-Ca1 (see insets) compared to single vesicular release.   Peak numbers of calcium bound species 
demonstrates that the added mechanical effect of a loss of Mg2+ block in NR2B significantly increases CaM 
activation. 
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Prolonged loss of Mg2+ block alters NMDAR signaling in the post acute period after 

injury 

TBI results in both primary cell death, initiated at the initial time of injury, and 

secondary cell death, a progressive death in the time periods following injury.  Thus, the 

hours immediately after injury are a critical time period in the determination of the 

overall health of neuronal circuits.  The observed loss of Mg2+ block in stretched cultures 

is seen to persist for up to 6 hours (Zhang et al 1996).  This suggests that altered calcium 

entry, particularly from NR2B containing receptors, exists well past the initial injury 

insult which can significantly influence postsynaptic responses in this critical period.  

Using the identical glutamate receptor activation patterns from stochastic simulations of 

univesicular release, we evaluated how sustained relief of the Mg2+ block in NR2B 

containing NMDARs in an injured spine affects the resultant calcium entry.  We quickly 

noticed that a sustained loss in Mg2+ block in the “injured” spine resulted in two types of 

calcium entry phenotypes (Fig 7A).  A majority of simulations resulted in calcium entry 

that was not different from “pre-injury” simulations in which the Mg2+ block was intact.  

However, in several (4 out of 40) simulations, calcium entry was drastically enhanced in 

the “injured” spine.  These two unique subsets of responses suggest a reduction in the 

fidelity of signaling following injury, which may contribute to long lasting network 

dysfunction.  Interestingly, the subset of enhanced calcium correlated with the rare 

simulations which resulted in NR1/NR2B-NMDAR activation (6 out of 40) (Fig 7C).  
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Not surprisingly, all 4 cases of enhanced calcium entry resulted from a receptor activation 

pattern that included NR1/NR2B-NMDAR activation.    

 

Figure 7: Persistent loss of Mg2+ block in the post acute period results in two distinct phenotypes of 
calcium response to univesicular release in injured spines.  Physiological signaling in the post-acute 
period following injury was modeled by calculating calcium entry following univesicular release in spines 
in which there is a persistent loss of Mg2+ block in NR2B containing NMDARs.  (A) Calcium ions (green) 
present at distinct time points following univesicular release shows that two distinct calcium phenotypes 
exist in the simulation of calcium entry at an injured spine: one subset of simulations in which calcium 
dynamics is  similar to that seen pre-injury (with an intact Mg2+ block) and another subset of drastically 
enhanced calcium entry.  (B)  The cumulative number of calcium ions entering the spine for the two post-
injury calcium entry patterns shown in A (grey dashed lines) illustrates the separation of these two 
phenotypes (blue – average of cumulative calcium entry following single vesicle release in all injured 
spines, n = 40). (C) Paired calcium entry for identical NMDAR subtype activation patterns, pre-injury 
(intact Mg2+ block) and post-injury (loss of block in NR2B), where a small subset (4 out of 40) experience 
enhanced calcium entry.  Simulations in which at least one synaptic or extrasynaptic NR1/NR2B-NMDAR 
is activated (6 out of 40 - green) account for all of simulations within the enhanced calcium entry subset.   
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Given the correlation of enhanced calcium entry and NR2B activation, we 

separately analyzed the “post injury” postsynaptic responses and resultant signaling for 

the two receptor activation subsets: (1) responses with no NR1/NR2B-NMDAR 

activation (34 out of 40) and (2) responses with at least one NR1/NR2B-NMDAR 

activated (6 out of 40).  Calcium entry through NR1/NR2A-NMDARs was not different 

among the “pre-injury” and two “post-injury” subsets, while entry through triheteromeric 

NMDARs was slightly increased in the post injury subsets due to a partial sustained loss 

in the Mg2+ block for these receptors (Fig 8A).  Further, calcium entry through synaptic 

and extrasynaptic NR1/NR2B-NMDARs was significantly increased in the post injury 

subset that included NR1/NR2B-NMDAR activation.  The enhancement of NR2B 

mediated calcium entry significantly shifts the relative contributions of subtypes to the 

total calcium response (Fig 8B), with NR1/NR2B-NMDARs, when activated, 

contributing to over half of the calcium influx.  This suggests that the extent and fidelity 

of subtype specific signaling may be altered in a subset of responses.  Intracellular 

signaling in this post acute period is also predicted to be altered, as CaM activation is 

significantly increased in the “post-injury” spine when NR1/NR2B-NMDARs are 

activated (Fig 8C).  Together this data shows that the mechanical sensitivity of NR2B, 

through its loss of Mg2+ block, can significantly alter the postsynaptic responses and 

intracellular signaling in the post acute period.  These changes can influence network 

dysfunction and ultimately secondary cell death following mechanical injury.    
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Figure 8: Persistent loss of Mg2+ block increases calcium entry and CaM activation in the subset of 
physiologic postsynaptic responses that result in NR1/NR2B activation.  Responses to univesicular 
release in the post-acute period after injury, with a persistent loss of Mg2+ block in NR2B containing 
NMDARs, were separated by whether release resulted in NR1/NR2B activation.  (A) Calcium entry 
through specific NMDAR subtypes show that, when NR1/NR2B is activated by a single glutamate vesicle 
post-injury, significantly more calcium enters through NR2B containing subtypes, with no difference in 
calcium entry in NR1/NR2A-NMDARs.  (B) The relative contribution of subtypes to the total calcium 
influx is significantly shifted by persistent loss of block, particularly when NR1/NR2B-NMDARs are 
activated. (C)  CaM-calcium binding is enhanced when NR1/NR2B-NMDARs are activated post-injury 
suggesting that a persistent change in Mg2+ block in the post acute period after injury can significantly 
influence intracellular signaling mediated by physiologic glutamate stimuli. (* p < 0.05 compared to “pre-
injury”)  
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DISCUSSION 

In this chapter, we used a computational model and investigated the patterns of 

NMDAR activation, calcium entry, and calmodulin (CaM) activation following traumatic 

mechanical injury in a single dendritic spine.  Traumatic mechanical injury is a unique 

disease paradigm with two distinct mechanisms that contribute to NMDAR mediated 

neuronal dysfunction – excessive glutamate release and stretch-induced loss of the 

NMDAR Mg2+ block.  The use of an in silico model provides insight not currently 

possible using traditional experimental models.  The initial calcium influx predicted from 

our model, confirmed with experiments on cultured neurons, shows that both glutamate 

release and selective mechanosensitivity of the NMDARs are necessary components of 

the response following mechanical injury.  The combined response of chemical activation 

and mechanically-induced augmentation of the receptor yields a unique postsynaptic 

response with a more significant contribution of synaptic and extrasynaptic NR2B 

containing NMDARs.   One consequence of this altered receptor activation profile after 

injury is a shift in the activation of CaM, which is a key calcium-binding protein involved 

in many enzymes regulating synaptic plasticity.  We find that the stretch-induced loss of 

the NMDAR Mg2+ block is a critical factor in activating CaM.  Further, we illustrate that 

persisting loss of Mg2+ block in the post acute period following injury can enhance 

calcium entry and CaM activation, but only in a subset of spines.  Together, these results 

highlight how the mechanical injury yields a diverse response in single spines, and this 

diversity extends into activation of important signaling networks within some, but not all, 

spines. 
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The primary effect of mechanical injury occurring at the time of insult is 

remarkably difficult to examine experimentally, especially in single spines, given the 

spatial and temporal resolutions necessary to visualize the immediate injury effect.  We 

used our simulations to examine the possible circumstances that drive the immediate 

response after mechanical injury, and to infer the relative role of glutamate vesicular 

release and alterations in the NMDAR physiology across the spectrum of injury.  Our 

results suggest at least two phases form the spectrum of the response: a phase involving 

the release of presynaptic glutamate vesicles that appears to closely match the response 

measured in cortical neurons after moderate (50% stretch) mechanical injury, and a 

second phase at more severe injury (80% stretch) that includes a more prominent 

contribution from extrasynaptic NMDARs, primarily from the loss of the Mg2+ block in 

this receptor subpopulation.  Although we do not know the precise number of vesicles 

released from the presynaptic bouton during injury, the relative role of the extrasynaptic 

NMDARs in contributing to the calcium influx appears relatively insensitive to the 

number of glutamate vesicles released when a loss in the Mg2+ block of the NMDAR is 

modeled after injury (Fig 5).  Therefore, at severe injury levels, the number of released 

vesicles appears lees critical.  The number of glutamate vesicles released appears more 

important in modeling the response of synaptic NMDARs to injury when no loss in Mg2+ 

block occurs, as this response will scale in proportion to the glutamate released from the 

presynaptic face. 

One feature of the model that will likely influence subsequent signaling through 

any of the spine signaling networks is the relative composition of the NMDAR subtypes 
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along the postsynaptic face.  In our current work, we assumed the subtype content of the 

synaptic NMDARs to contain all three subtypes (8 NR2A-NMDARs, 8 NR2A/NR2B-

NMDARs, and 4 NR2B-NMDARs), based on reported relative amounts of NR2 protein 

within the postsynaptic density (Cheng et al 2006).  However, there continues to be 

considerable debate as to the subtype content of receptors at synaptic sites.  Although 

NR2A replaces NR2B at synaptic sites during maturation, there are several reports that 

demonstrate that a majority of receptors are of the triheteromeric subtype (Tovar and 

Westbrook 1999, Rauner and Kohr 2010), while other reports suggest a mixture of 

NR1/NR2A and triheteromeric receptors.  Our data shows that the content of receptors at 

these sites is particularly important in cases of injury, where mechanosensitivity is 

restricted to NR2B containing receptors.   In spines where NR1/NR2A-NMDARs 

dominate, overall calcium load would be significantly less than spines containing 

significant NR1/NR2B receptors.  In contrast, a spine dominated by NR1/NR2B-

NMDARs would show a more pronounced change in calcium influx relative to spines 

with triheteromeric NMDARs.  Thus, subtype content at individual spines is an important 

variable that can impact the postsynaptic response and resultant signaling during injury.  

Further investigation into the regulatory mechanisms to direct subtype content at the 

synapse would provide some insight into how development, as well as alterations at the 

synapse after injury, would play a role in mediating both physiological and pathological 

signaling after injury. Thus, while this model represents an accurate starting point in 

simulating the postsynaptic response to injury, future investigations are necessary to 

assess the dynamic range of the synapse to better replicate primary injury.  
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Injury induced activation patterns of NMDAR subtypes 

While there is substantial evidence of multiple sources of injury induced increases 

in extracellular glutamate in vivo, we show that glutamate release via synaptic vesicular 

release represents the primary source that initiates immediate calcium influx in our in 

vitro model of injury.  Further, as the observed glutamate increase in experimental 

models is correlated with injury severity (Faden et al 1989, Palmer et al 1993), we 

modulated simulated injury with the release of different numbers of vesicles.  Our results 

show that the activation patterns of NMDAR subtypes is significantly altered during 

injury mediated glutamate release.  While univesicular release primarily activates 

synaptic NR1/NR2A-NMDARs and rarely activates extrasynaptic NR1/NR2B-

NMDARs, injury induced glutamate release produced significant synaptic and 

extrasynaptic NR1/ NR2B-NMDAR activation.  These predictions, supported by 

experimental data collected in mechanically injured primary neurons, show that 

NR1/NR2B-NMDARs are uniquely suited to transmit the excitotoxic glutamate stimuli 

during injury.  The implications of this alteration in NMDAR subtype activation are 

important, as several studies show that activating this extrasynaptic receptor pool is 

linked to pro-death signaling seen during models of excitotoxicity (Hardingham et al 

2002, Zhang et al 2007, Xu et al 2009, Hardingham and Bading 2010).   The activation of 

extrasynaptic NMDARs after mechanical injury is critical for determining cell fate, as 

blocking this specific receptor subpopulation will protect against neuronal death caused 

by mechanical injury (DeRidder et al 2006).  In combination with past studies showing 

the importance of activating specific synaptic receptor subpopulations to trigger either 
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long-term potentiation or long-term depression, these results reveal that the use of 

computational simulations to reveal the precise “fingerprint” of the postsynaptic response 

is valuable for precisely understanding the similarities and differences among the extent 

and temporal dynamics of NMDAR activation for stimuli that range from physiologic to 

pathophysiological.  

 

Selective NR2B mechanosensitivity functions as a pathological sensor switch 

Mechanical injury produces a unique change in the physiology of the NMDAR, 

with the physical stretching of the neuron leading to a loss of Mg2+ block, significantly 

potentiating NMDAR mediated calcium influx at resting membrane potential (Zhang et al 

1996).  This loss in the Mg2+ block is one part of the mechanosensitivity reported for the 

NMDAR (Paoletti and Ascher 1994, Casado and Ascher 1998), and our past work 

showed that this stretch sensitivity is restricted to the NR2B subunit (Chapter 2).  

Understanding the specific role of this stretch-induced change in the physiology of the 

NMDAR is not straightforward experimentally, as distinguishing between the effects of 

injury mediated glutamate release and mechanosensitivity is difficult to discern as they 

occur simultaneously.  Computationally, we showed that injury induced glutamate release 

resulted in enhanced calcium on its own, but incorporating a loss in the Mg2+ block 

greatly increased the extent of calcium entry and further altered the balance of signaling 

toward NR2B containing NMDARs.  Our data suggests that mechanical sensitivity 

results in calcium influx that is two orders larger than what would be seen during 

excitotoxic NMDAR activation alone.  As calcium overload is commonly attributed to 
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neuronal damage in numerous models of disease through the activation of proteases, 

phospholipases, and other harmful enzymes (Choi 1988), we propose that these 

simulations show the combined effects of injury induced glutamate and selective loss of 

Mg2+ block in NR2B containing receptors flip a pathological ‘switch’.  There is mounting 

evidence that this switch may play a role in neuronal outcome, as several studies 

demonstrate that extrasynaptic NMDAR activation – primarily NR2B-NMDARs – is 

responsible for mitochondrial dysfunction, calpain activation, and inhibition of pro-

survival transcription (Hardingham et al 2002, Zhang et al 2007, Xu et al 2009).  

Furthermore, disruption of the NR2B subunit from its signaling complexes eliminates 

elements of pro-death signaling, suggesting that NR2B mediated nanodomain signaling 

strongly influences cell death (Soriano et al 2008).  This is the first evidence at the 

synaptic scale which supports experimental studies showing NR2B specific antagonists 

significantly reduce damage after both in vivo (Okiyama et al 1997, Dempsey et al 2000, 

Yurkewicz et al 2005) and in vitro models of traumatic brain injury (DeRidder et al 

2006).   Thus, the specific targeting of NR2B-NMDARs and NR2B mediated signaling 

remain intriguing options for the development of potential therapeutic strategies for TBI.   

One consideration in these therapeutic approaches should be the consequence of this 

altered activation scheme on synaptic signaling, and whether this change in synaptic 

signaling produces new therapeutic targets.  In our simulations, we predict that stretch-

induced changes in the NMDAR will produce robust changes in activated CaM, and this 

activation was critically dependent upon the loss in the Mg2+ block of the receptor.  The 

strong association of CaM with the selective change in the physiology of the NMDAR 
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means that this activated molecule may be the important proximal synaptic sensor which, 

in turn, will activate signaling networks within either nanodomains surrounding the 

receptor or within the spine.  Although not explicitly examined in detail for this study, 

future simulations will include more defined NMDAR signaling domains to determine 

how injury induced NMDAR activity directs the specificity of signaling.   

 

Stretch-induced changes in NMDAR alter physiological synaptic signaling and 

enhance synaptic ‘noise’ 

TBI can significantly impact glutamatergic signaling at the synapse in the periods 

following injury, with reported injury induced effects on both AMPARs and NMDARs.  

Stretch injury removes AMPAR desensitization (Goforth et al 1999, Goforth et al 2004) 

and modifies the subunit composition of AMPARs, promoting the aberrant surface 

expression of calcium permeable AMPARs (Spaethling et al 2008).  Along with a loss in 

Mg2+ block (Zhang et al 1996) NMDAR subtype content at the synapse is altered by 

injury, with a reported increase in the ratio of NR2B:NR2A expressed subunits (Giza et 

al 2006).  These changes, coupled with injury mediated impairment of glutamate 

transporters on nearby astrocytes (Rao et al 1998, Yi and Hazell 2006), significantly 

influence the postsynaptic responses at single synapses, potentially leading to network 

dysfunction and secondary cell death.  Among the most intriguing aspects of this work is 

the effect of persistent loss of Mg2+ block to normal glutamatergic transmission.   Zhang 

et al. demonstrate that their observed loss in Mg2+ block can last for up to 6 hours post 

stretch.   This implies that once the initial calcium transient associated with mechanical 
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injury subsides (Lusardi et al 2004, Spaethling et al 2008), physiologic glutamatergic 

signaling following injury could augment the primary injury mechanisms and influence 

secondary cell death.  Secondary cell death, which we define as all the injury induced 

damage not caused by the primary insult, is a major source of the continuing neurological 

defects of the injured patient and represents the pathology that can be targeted by 

potential therapeutic interventions (McIntosh et al 1998, Kochanek et al 2000, Loane and 

Faden 2010).  Our data shows that a persisting loss of Mg2+ block in the NR2B 

containing receptors causes reduced fidelity in synaptic communication, by producing a 

subset of responses to univesicular release that far exceed the “normal” response.  This 

instability or ‘noise’ in the synaptic response leads to a corresponding division in 

intracellular signaling, as measured by CaM activation, potentially contributing to 

abnormal network behavior.  It is not clear, though, if this induced noise in the synaptic 

signaling reaches a threshold to affect neuronal fate or alter normal synaptic signaling.  

The relative infrequency of this predicted behavior – occurring in approximately 10% of 

the univesicular release simulations – will undoubtedly be influenced by the rate of 

vesicular release.  Our past work shows a more consistent activation of NR2B-containing 

NMDARs when presynaptic stimulation frequencies exceed 5-10 Hz (Chapter 3).  This 

suggests that this pathological change in synaptic signaling will be activated more 

robustly and consistently across spines in physiological stimulations, perhaps altering 

either the threshold of LTP and LTD in mechanically injured cultures or, alternatively, 

converting a physiological stimulation into a pathological stimulation.  Moreover, we do 

not consider the potential regulation on the presynaptic neuron, where injury mediated 
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modulation of vesicular release may directly impact post injury network excitability.  Our 

computational model was used to investigate one of these injury induced modifications in 

the post acute period – selective mechanosensitivity – but provides a unique model 

system to examine the individual and collective effects of all potential injury induced 

changes at the synapse.   

In this chapter, we used our computational model of a single dendritic spine to 

examine how the specific paradigm of TBI affects glutamatergic signaling during and 

post injury.  The unique injury effect of mechanosensitivity and resultant loss of Mg2+ 

block distinguishes injury from other models of excitotoxicity by further altering the 

balance of source specific calcium entry towards NR2B containing NMDARs.  

Furthermore, as this effect can persist into the post acute period after injury, we predict 

that postsynaptic responses and neuronal network behavior is significantly disrupted by 

injury leading to potential secondary damage.  Finally, our model represents a unique 

system to examine injury mediated modifications at scales which are currently difficult to 

obtain experimentally, and will aid in future identification of potential therapeutic targets 

which can best restore healthy synaptic communication.    
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The goal of this work was to further examine how NMDAR subtypes contribute 

to the neuronal response to TBI.  Our lab has previously demonstrated that NMDARs are 

responsible for the immediate calcium influx seen after stretch injury (Geddes-Klein et al 

2006), and that activity of specific subtypes can dictate differential functional outcomes 

post injury (DeRidder et al 2006).   Here, we built upon these studies to examine how two 

unique aspects of TBI, (1) NMDAR stretch sensitivity and (2) increased extracellular 

glutamate concentration, differentially modulate the activity of specific NMDAR 

subtypes.  We were able to utilize both in vitro and in silico models to demonstrate that 

TBI preferentially acts upon NR2B containing NMDARs, producing an effective 

pathological switch in NMDAR mediated signaling. 

Despite the wealth of evidence pointing to NMDARs as a critical mediator of TBI 

induced pathology (Faden et al 1989, McIntosh et al 1990, Smith et al 1993, Rao et al 

2001), it has remained difficult to evaluate the roles of specific NMDAR subtypes.  Here, 

we have used two unique model systems that have enabled us to effectively discriminate 

the actions of specific subtypes.  Through the expression of recombinant NMDARs in 

HEK 293 cells, we demonstrated that NMDAR mechanosensitivity is dependent on 

NMDAR subtype, and that this property is regulated at specific C-terminal domains.  

Additionally, we developed a novel stochastic model of glutamatergic signaling at a 

single dendritic spine in which we were able to model the activation of AMPARs and 

NMDAR subtypes in response to unique signaling paradigms.  This model has proved 

useful in determining distinct activation patterns among subtypes during both physiologic 
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and pathologic signaling.  Again, NR2B acted as a unique switch whose activation was 

particularly enhanced following simulated injury mediated glutamate release and its 

differential signaling is predicted to last long after the acute injury.  Together, our data 

has demonstrated that injury produces a unique microenvironment which is particularly 

suited for the activation of NR2B containing NMDARs – a class of receptors whose 

activation has been linked to pro-death signaling (Liu et al 2007, Poddar et al 2010).   

Given the knowledge that these NMDAR subtypes can mediate different, and often 

opposing, signaling pathways, the ability for injury to differentially impact specific 

subtypes is an intriguing discovery that may direct the identification of novel therapeutic 

options.   

 

SUMMARY OF FINDINGS 

Selective mechanosensitivity of NR2B containing NMDARs 

NMDARs have been previously shown to be sensitive to stretch through a 

persistent loss of its native voltage dependent Mg2+ block (Zhang et al 1996).  However, 

until now, the subtype dependence of this mechanosensitive property had not been 

studied.  Using a recombinant system of transfected NMDAR subunits expressed in HEK 

293 cells, we created the dual benefit of eliminating the need for unreliable antagonists 

and removing the receptor from the synaptic architecture.  This allowed us to evaluate the 

mechanosensitivity of expressed receptors without the confounding factors of injury 

induced glutamate release from presynaptic sites.  We demonstrated that NMDAR 
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mechanosensitivity was primarily directed by the NR2B subunit.  While NR1/NR2B 

expressing cells responded with an immediate stretch induced rise in intracellular 

calcium, NR1/NR2A expressing cells produced no such response.  Additionally, we 

provided evidence that triheteromeric NR1/NR2A/NR2B-NMDARs display an 

intermediate level of stretch sensitivity.   Strikingly, this is opposite of the NMDAR 

activation profiles of subtypes following agonist stimulation, where NR1/NR2A-

NMDARs are more readily activated than trihteromeric and NR1/NR2B-NMDARs.  This 

selective mechanosensitivity has significant potential implications in both the extent and 

type of TBI induced signaling.  Recently, numerous studies have demonstrated that 

extrasynaptic NMDARs, which are primarily of the NR1/NR2B subtype, are 

preferentially linked to pro-death signaling pathways (Hardingham et al 2002, Zhang et al 

2007, Xu et al 2009), whereas synaptic NMDARs are linked to pro-survival signaling 

(Hardingham et al 2002, Zhang et al 2007).  Further, a recent report suggests that NR2B 

containing NMDARs, regardless of localization, can induce pro-death signaling (Liu et al 

2007).  These studies highlight the importance of the precise balance of signaling 

between NMDAR subtypes in the determination of cell fate, and together with our data 

suggest that selective mechanosensitivity can have significant influence on injury induced 

intracellular signaling.   

 Selective mechanosensitivity may also play a role in dendritic sprouting and 

neurite outgrowth which has recently been shown to be dependent on the mechanical 

properties of the substrate (Jiang et al 2008, Jiang et al 2010).  Furthermore, the activity 
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of NR2B containing receptors is crucial for outgrowth (Georgiev et al 2008, Espinosa et 

al 2009).  Thus the mechanosensitivity of NR2B may be of particular advantage during 

development and repair, two conditions in which NR2B expression is known to 

dominate.   

Differential effectiveness of NMDAR antagonists in mitigating NR2B 

mechanosensitivity 

In our observation of NR2B mechanosensitivity, we also evaluated the ability for 

traditional NMDAR antagonists, APV and MK801 to mitigate stretch induced calcium 

influx.  These two antagonists have no subunit specificity but have very different and 

important modes of action.  APV competitively binds the glutamate binding site, 

preventing glutamate binding to the receptor, while MK801 is a high affinity blocker of 

the receptor pore, physically blocking ionic flux.  We found that while both antagonists 

decreased the stretch response, APV was more effective in completely eliminating the 

observed rise in calcium.  This provides the important observation that glutamate binding 

is still needed for observed stretch response.  Thus, our data taken with the observed loss 

of Mg2+ block reported by Zhang et al (1996), suggests that stretch in neuronal culture 

induces a selective loss in Mg2+ block in NR2B containing receptors allowing for 

enhanced calcium entry when bound and activated by glutamate.  Supporting this thought 

is the fact that MK801 is not as effective as APV in mitigating the NR1/NR2B stretch 

response.  MK801 and Mg2+ both block conductance through binding of a well defined 

region of the NMDAR pore (Kashiwagi et al 2002), and thus stretch may induce a change 
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in the pore region that could alter both the inherent Mg2+ block as well as MK801 

effectiveness. It is also important to point out that this does not suggest that NR1/NR2A-

NMDARs have no role in the neuronal response to injury.  Although insensitive to a loss 

in Mg2+ block, they can still be activated by synaptically released glutamate and 

contribute to the overall signaling seen after injury.  

Influence of C-terminal NR2B in its mechanosensitivity 

 With the expression of NR2B truncation mutants, we were able to demonstrate 

that the cytoplasmic C-terminal tail of NR2B is integral in NR2B mechanosensitivity.  

Elimination of the region distal to amino acid 1036 significantly reduced observed NR2B 

mechanosensitivity at 40% stretch.  This region is rich with phosphorylation sites, protein 

binding sites, and anchoring sites for cytoskeletal elements.  While we were unable to 

investigate the role of cytoskeletal anchoring in this model, it remains an intriguing 

potential mediator of NMDAR mechanosensitivity.  Our lab has previously demonstrated 

that primary cortical cultures display an almost complete elimination of immediate 

stretch response when pretreated with latrunculin A, to destabilize the cytoskeleton 

(Geddes-Klein et al 2006).  However, it remains unknown whether the mechanism of this 

reduction acts on the postsynaptic receptors, or at presynaptic sites of glutamate release.  

NR2B has a stronger linkage to the actin cytoskeleton than NR2A, primarily through 

binding sites of spectrin and α-actinin-2 located in the distal region of the NR2B C-

terminus.  Thus, force transfer through the cytoskeleton to the NR2B subunit may play an 

important role in its mechanosensitivity.  Interestingly, elimination of the C-terminal tail 
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distal to amino acid 1433 produced no difference in stretch response.  This region notably 

contains a binding site for PSD95, suggesting that NR2B association with this essential 

scaffolding protein does not play a large role in mechanosensitivity.  This highlights the 

potential for synaptic and extrasynaptic NR2B containing receptors to have similar 

mechanosensitivity, although more experiments would be necessary to fully examine this 

point.   

PKC activity and Ser-1323 on NR2B regulates NR2B mechanosensitivity 

Consistent with the previously reported role of PKC activity in loss of Mg2+ block 

in stretched neurons (Zhang et al 1996), we demonstrate that PKC inhibition significantly 

attenuates stretch induced calcium influx in NR1/NR2B transfected HEKs and primary 

cortical cultures.  Further, by utilizing NR2B point mutations, mutated at known PKC 

phosphorylation sites, we have shown that NR2B mechanosensitivity is regulated by a 

single critical residue, Ser-1323.  Expression of NR2B-S1323A significantly reduced 

NR2B mechanosensitivity, while not affecting response to NMDA stimulation.  

Together, this suggests that PKC activity upon this residue on NR2B can dynamically 

control receptor mechanosensitivity.  This provides an intriguing mechanism in which the 

mechanical tone of a given neuron can be manipulated.  While the precise mechanism of 

how this residue can control mechanosensitivity remains unknown, there is past evidence 

that PKC activity can influence the state of the Mg2+ block (Chen and Huang 1992).  

Together, this data suggests that the intricate interplay between PKC activity and stretch 
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can influence the extent of neuronal calcium entry during TBI, potentially impacting both 

primary and secondary cell death. 

   

Development of computational model of stochastic glutamatergic signaling at a 

single dendritic spine 

Investigations of NMDAR subtype specific roles in both physiological and 

pathologic function has primarily relied upon the use of subtype specific antagonists.  

However, there has recently been considerable debate on the specificity of these tools, 

which has made these particular studies difficult to interpret (Neyton and Paoletti 2006).  

Thus, we have developed a new stochastic model of glutamatergic signaling at a single 

dendritic spine in which we were able to better examine differences in activation patterns 

between NMDAR subtypes.  While past computational models have been able to 

examine NMDAR saturation (Franks et al 2003, Raghavachari and Lisman 2004) and the 

effect of glutamate spillover (Ruskov and Kullmann 1998, Pankratov and Krishtal 2003, 

Mitchell et al. 2007), the recent discovery of subtype specific reaction rates has only now 

allowed for the examination of specific subtypes.  Using this model, we have made three 

major conclusions about subtype activation during physiological neurotransmission: (1) 

Differential dynamic range among subtypes, (2) Frequency dependent shifts in the pattern 

of NMDAR subtype activation, and (3) Synaptic subtype content influences extent and 

fidelity of NMDAR activation. 
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Differential dynamic ranges of activation among NMDAR subtypes 

We have shown that the different NMDAR subtypes display unique ranges in 

activation to varied amounts of glutamate release.  At low levels of presynaptic glutamate 

release (500-1500 molecules), the range seen during release of a single vesicle, 

NR1/NR2A-NMDARs are primarily activated, while there is little to no activation of 

triheteromeric or NR1/NR2B-NMDARs.  Furthermore, the activation of NR1/NR2A-

NMDARs significantly increases throughout this range, but saturates at releases of 

greater than 3000 molecules.  In contrast, activation of triheteromeric and NR1/NR2B-

NMDARs scales within the larger levels of glutamate release.  This data suggests that 

NR1/NR2A-NMDARs are the primary mediator of univesicular release, while NR2B-

containing NMDARs are more suited to discriminate between signals at multivesicular 

release.  There have recently been extensive investigations on the preponderance of 

univesicular or multivesicular release at specific synapses, with evidence demonstrating 

that both types of glutamate release occur throughout the CNS (Gulyas et al 1993, Hanse 

and Gustafsson 2001a, Hanse and Gustafsson 2001b, Christie and Jahr 2006).  Here we 

show that differences in the activation kinetics of NMDAR subtypes allow for the ability 

for synapses to generate unique postsynaptic responses to these different presynaptic 

glutamate signals 
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Frequency of presynaptic stimulation alters patterns of NMDAR subtype activation 

Presynaptic stimulation, at varied frequencies, is traditionally the most common 

model to induce different forms of synaptic plasticity including LTD and LTP.  There is 

currently considerable debate within the literature regarding the role of subtypes in 

governing both LTD and LTP induction (Liu et al 2004, Massey et al 2004, Barria and 

Malinow 2005, Bartlett et al 2007).  Using our computational model, we showed that 

frequency of stimulation significantly impacts the pattern of NMDAR subtype activation. 

Most functional synapses contain a diverse set of NMDAR subtypes at defined synaptic 

and extrasynaptic sites.  Using an idealized population of NMDAR subtypes, we 

observed that increasing frequency significantly increases the contribution of NR2B 

containing NMDARs to the total postsynaptic response with a concurrent decrease in the 

contribution of NR1/NR2A-NMDARs.  Thus, while increased frequency also increases 

the overall NMDAR activation, changes in the balance of subtype specific signaling are 

likely to impact long term changes at the synapse.  Our finding supports both major 

hypotheses of synaptic plasticity that alternatively argue that either overall calcium load 

or subtype specific activation directs plasticity.  However, we feel that our model 

provides an additional tool in future examinations of how specific subtypes respond to 

different models of plasticity induction.   
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Synaptic subtype content influences extent and fidelity of signaling 

The identity of synaptic NMDARs changes through development, with 

NR1/NR2B-NMDARs being replaced by NR2A.  However, there has yet to be a 

consensus on the relative content synaptic NMDAR subtypes at mature spines (Tovar and 

Westbrook 1999, Al-Hallaq et al 2007, Rauner and Kohr 2010).  By using two additional 

models of synaptic plasticity induction, chemical LTP and spike-timing dependent 

plasticity, we demonstrated that particular content of these synaptic NMDARs drastically 

impacts both the overall extent as well as the fidelity of postsynaptic responses.  Both a 

5Hz release of glutamate, as seen during chemical LTP, and spike-timed postsynaptic 

depolarization fail to generate consistent calcium entry in immature, NR1/NR2B-

NMDAR dominated synapses.  However, recent evidence suggests that NR2B in 

immature cultures retain the ability to transmit a number of LTD and LTP inducing 

pathways (Martel et al 2009).  This suggests that other compensatory mechanisms, 

including increased receptor number or multivesicular release, may be necessary for 

proper signaling at younger spines.  Furthermore, we showed that postsynaptic responses 

produced by spines with 100% NR1/NR2A-NMDARs at synaptic sites, a configuration 

that is often thought of as the prototypical mature spine, are significantly enhanced and 

more consistent than spines with a reported “physiological” mix of subtypes.  Together, 

this data demonstrates that increased NR2A content significantly improves the extent and 

fidelity of postsynaptic responses to glutamate stimuli.   
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Simulated injury mediated glutamate release enhances contribution of NR2B 

containing NMDARs 

A hallmark of TBI has been the observation of increased extracellular glutamate, 

which can lead to over-activation of glutamate receptors, including NMDARs, and 

eventually to cell death and network dysfunction (Faden et al 1989, Nilsson et al 1994).  

While it is expected that excessive glutamate will potentiate the activation of all 

NMDARs, we used our computational model to examine if the patterns of subtype 

activation are significantly altered by the immediate glutamate release seen during injury.  

Indeed, we demonstrated that simulated injury, modeled as the release of 5 or 15 synaptic 

glutamate vesicles, significantly increases NMDAR activation and the contribution of 

NR2B containing NMDARs, compared to univesicular release.  Strikingly, the largest 

increase was seen in the contribution of extrasynaptic NR1/NR2B-NMDARs, whose 

activation is extremely rare during univesicular release.  This data suggests that the 

activation of this pool of receptors during injury may represent a unique pathologic 

switch. 

 

Combined effects of injury mediated glutamate release and selective 

mechanosensitivity  

We have argued that TBI represents a unique disease state as it contains the dual 

effects of injury mediated glutamate release combined with NMDAR mechanosensitivity.  

We used our computational model to examine calcium influx during simulated injury, 
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with or without the added effect of selective NR2B mechanosensitivity.  As expected, the 

modeled loss or reduction of Mg2+ block in NR2B containing NMDARs drastically 

increased the extent of the immediate calcium influx and resultant calmodulin activation 

occurring at the time of injury.   However, potentially more importantly, the contribution 

of extrasynaptic NR1/NR2B-NMDARs is significantly greater in conditions of selective 

mechanosensitivity.  Interestingly, the contribution of extrasynaptic NMDARs to the 

overall calcium load in the injury mediated glutamate + mechanosensitivity simulations is 

in agreement with the observed contribution of extrasynaptic NMDARs to calcium influx 

following in vitro stretch injury of primary cortical neurons.  Our simulations showed that 

the added effect of mechanosensitivity during the mechanical insult potentiates overall 

calcium load and shifts the balance of NMDAR source specific signaling towards that 

mediated by extrasynaptic NMDARs.  Both of these consequences will exacerbate pro-

death signaling stemming from the injury, and thus have major influence on the extent of 

primary damage seen after injury.   

 

Persistent loss of Mg2+ block can alter fidelity of network signaling 

Among the most intriguing observations made through these studies is the 

potential for persistent dysfunction in the activity of postsynaptic spines caused by NR2B 

mechanosensitivity.  Zhang et al (1996) has shown that the loss of Mg2+ block lasts up to 

6 hours post stretch injury.  This suggests that responses to physiological levels of 

glutamate signaling in this post acute period following injury may be significantly 
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altered.  Using our model, we demonstrated that calcium influx following a physiological 

univesicular release at “injured” spines produces two unique phenotypes, with most 

simulations exhibiting calcium influx that is not different from the uninjured case while 

several simulations result in significantly enhanced calcium.  Not surprisingly, increased 

calcium was found in simulations with NR1/NR2B-NMDAR activation.  Given that the 

kinetics of NR1/NR2B-NMDAR activation make activation of this subtype rare during 

single vesicle release, our model predicted that persistent loss of Mg2+ block in NR2B 

containing receptors results in enhanced calcium in only a small subset of univesicular 

release simulations. However, enhanced calcium entry, specifically through NR2B 

containing receptors, has the potential to aberrantly activate pro-death signaling pathways 

and thus contribute to secondary cell death.  Furthermore, the observation of 

inconsistency or reduction of fidelity in physiological glutamatergic signaling has the 

potential to disrupt network communication.  It should be noted that while NR2B 

activation is rare following single vesicle release, it is predicted to be more predominant 

in coordinated network communication, thus allowing NR2B dysfunction to have a larger 

influence in aberrant signaling following these stimulation paradigms.  Network 

dysfunction following injury has been recently reported (Goforth et al 2011), and is 

currently being explored in our lab.  It remains an open question as to the particular 

consequences of this observed network dysfunction as to a role in secondary cell death or 

behavioral deficits.  However, the manipulation and potential restoration of proper 

network communication in the post acute therapeutic window represents an intriguing 
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therapeutic strategy in mitigating secondary damage following TBI.    Here, our data 

suggest that the selective and persistent loss of Mg2+ block in NR2B containing 

NMDARs represents a mechanism for sustained network dysfunction, and thus the NR2B 

subunit may be an intriguing therapeutic target.   

 

LIMITATIONS AND FUTURE DIRECTIONS 

 In our studies, we used two alternative models to examine the role of NMDAR 

subtypes in TBI, partly due to the drawbacks and limitations of currently used 

experimental tools.  While we believe that using these models has enabled us to ask and 

answer questions that would be otherwise difficult or impossible to study, they come with 

their own set of inherent limitations that could require further study.  In spite of these 

potential caveats, our data has revealed several key features of NMDAR subtype function 

which can lead to some intriguing future research, with the eventual goal of directing the 

strategy of TBI therapeutics.  

In evaluating NMDAR mechanosensitivity, we were eager to isolate the receptor 

from the synaptic architecture so that receptor activity would not be greatly influenced 

from glutamate release from nearby sites.  While we believe that this technique allowed 

us to demonstrate the selective mechanosensitivity of NR2B containing NMDARs, it is 

possible that other components of the synapse can influence receptor mechanosensitivity.  

While we expressed the most common scaffolding protein, PSD95, along with NMDAR 

subunits, it is likely that it does not completely replicate the intracellular scaffolding 
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network seen in neurons.  The environment within a dendritic spine is rich with 

scaffolding proteins, aside from PSD95, which include the MAGUKs PSD93, SAP97, 

and SAP102 (Montgomery et al 2004).  These scaffolds and associated protein 

complexes may play a role in the transfer of force to surface NMDARs, and thus 

mechanosensitivity is likely to be more complex in the neuronal architecture compared to 

that observed in HEKs.  Thus, while using a recombinant system allows for unique 

manipulation and interpretation, the inherent drawback of a lack of physiological 

complexity necessitates the validation in higher order models.   

We are currently working towards creating AAV-plasmids which encode 

truncation and point mutations of NR2B.  These plasmids will provide increased 

transfection efficiency in neuronal culture, and thus we can effectively investigate the 

role of Ser-1323 in the stretch response in primary neurons.  Expression of mutant and 

potentially stretch resistant NR2B can thus be used to evaluate changes in cell viability as 

well as network dysfunction following in vitro stretch.  Additionally, we have engaged in 

preliminary studies that examined the potential beneficial effects of tamoxifen 

pretreatment in in vivo injury.  One of the primary reasons for choosing tamoxifen as the 

PKC antagonist in our studies to was that it is a compound already used clinically, for its 

therapeutic effects in treating cancer.  Thus, if shown effective in treating TBI in animal 

models, it would provide a relatively quick route to clinical use.   With this in mind, 

future studies are planned to evaluate if tamoxifen treatment can improve learning and 
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memory, as measured by Morris water maze, following cortical impact or fluid 

percussion injuries in mice.   

In our investigation of mechanosensitivity, we evaluated the stretch response only 

at 40% stretch, as stretch at higher levels was seen to cause calcium influx in non 

NMDAR transfected HEKs, presumably through shearing of the plasma membrane.  

Thus, it is quite possible that the stretch sensitivity of NR2A may not be observed until 

higher levels of mechanical stretch.  Indeed NR2A contains two PKC phosphorylation 

sites, at Ser-1291and Ser-1312, analogous to Ser-1303 and Ser-1323 on NR2B, and thus a 

similar PKC regulated mechanosensitivity of NR2A is quite possible.  The precise level 

of stretch is of importance in the determination of cell fate, where cell death 24 hours 

post stretch in dissociated cortical cultures is only apparent above 80% stretch 

(Spaethling et al 2008).  Thus, if we assume that stretch levels scale between HEKs and 

dissociated neurons, selective NR2B mechanosensitivity may not play a large role in the 

amount of cell death seen during TBI.  However, there has been increasing importance 

paid to the effects of mild injury, where cell death may not be as evident.  Thus, NR2B 

mechanosensitivity may play a larger role in the aberrant postsynaptic signaling in 

surviving neurons, a prediction also made by our injury simulations.  Given this 

possibility, potential changes in the neural network dynamics of stretch injured cultures is 

currently being explored by our lab and others.  Together, our data suggests that NR2B 

may play a larger role in signaling seen after injury – potentially competing with NR2A 

mediated signaling.  Further, there is debate as to whether synaptic NR2B mediates pro-
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survival (Martel et al 2009) or pro-death (Liu et al 2007) signaling.  Further clarification 

on the role of this subtype will help elucidate whether enhanced calcium entry through 

these receptors can potentially compete with pro-death signaling from extrasynaptic 

receptors or alternatively simply add to the calcium overload.  Thus, data from both our 

in vitro and in silico models leads to several more additional questions regarding how 

NMDAR subtypes, and their resultant signaling, impact network behavior and neuronal 

damage in the critical post acute period after injury.   

As with most computational models, specific parameters must be assumed from 

published data in order to simulate the best possible representation of the physiological 

system.  In this work, we used prior work to guide our decisions on the number and 

localization of AMPARs and NMDAR subtypes.  With the knowledge that these 

parameters are likely to vary from region to region within the brain, and even from spine 

to spine on a single dendrite, we kept these values constant for better comparison 

between the activities of NMDAR subtypes.  Given our observed scalability of the 

activation of individual receptors to predict the total activation of a population of 

receptors, it is possible to use distributions of receptor number to simulate the activation 

profiles among a variety of spines with different NMDAR subtype content.  Using this 

technique will enable future work in which we can use the stochastic model of signaling 

at a single spine as a basis for simulating the activity of all spines on a cell, and 

eventually scaling to the entire neural network.   
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 Again, similar to the drawback of limited complexity in HEKs, model simulations 

are limited by the presence of only a portion of the elements seen physiologically.  Here, 

we focused our simulations on the activity of AMPARs and NMDARs.  Future work may 

include the activation of metabatropic glutamate receptors, and include calcium entry 

from voltage dependent sources.  Similarly, when simulating CaM activation we 

attempted to make our simulations more realistic by including other potential calcium 

buffering proteins.  However, realistically, the spine is rich numerous buffers, proteins, 

and protein complexes, all of which can impact diffusion rates, calcium dynamics, and 

CaM activation.  With this in mind, we hope that our model represents a framework in 

which future elements or conditions can be easily added and evaluated.  For instance, we 

demonstrate that loss of Mg2+ block in the NR2B containing receptors in the post acute 

period results in reduced fidelity of the postsynaptic response by creating a subset of 

responses with greatly enhanced calcium entry.  However, we are aware that TBI has 

numerous consequences which can also impact glutamatergic signaling at the synapse.  

Work in our lab and others has shown that AMPAR activity is significantly altered after 

injury, with a reported loss of desensitization (Goforth et al 1999, Goforth et al 2004) and 

increased expression of aberrant calcium permeable AMPARs (Spaethling et al 2008).  

NMDAR expression is also known to be altered, with reported preferential decreases in 

NR2A expression (Giza et al 2006).  Astrocytic function may also be compromised, with 

actions on glutamate transporter activity (Yi and Hazell 2006), and potentially the release 

of astrocytic glutamate directly onto extrasynaptic NMDARs.  Finally, we have 
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preliminary evidence that spine shape may be transiently altered by stretch.  All of these 

additional characteristics of the injured spine in the post acute period can be added to our 

model to determine their influence on the extent and reliability of postsynaptic signaling.   

In this way, our model can be used in concert with traditional experimental methods for 

more complete investigations of activity in the injured neuron.   

 

CONCLUSION 

 TBI is a devastating injury which can have detrimental short term and long term 

effects on the neurologic function and quality of life for many patients.  Despite the 

recent advances made in the understanding of the neuronal response to injury, and the 

increased attention to TBI in the past several years, an effective therapeutic strategy is 

lacking.  The NMDAR is now well established to be the primary mediator of cell death 

and dysfunction following injury, but the lack of success in clinical trials may have taken 

the attention away from NMDAR-centric strategies for TBI intervention.  The observed 

diversity in NMDAR function has led to considerable confusion within the field on how 

the activity of these receptors can be manipulated to best treat pathological conditions 

while promoting physiological function.  In this report we used unique models to provide 

additional information on how the multiple subtypes of NMDARs are uniquely suited to 

transmit different stimuli, and are differentially impacted by injury.  Collectively, our 

data demonstrates that the NR2B subunit can act as an effective pathological switch, 

whose activation is preferentially influenced by the biomechanical components of TBI.  
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Finally, this work provides a new model system for the future investigation of injury 

induced modifications of synaptic communication, and further argues for a stronger look 

at targeting the NR2B subunit, and associated signaling, in strategies for protection and 

treatment for brain injuries. 
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## EXAMPLE SMOLDYN CODE FOR ACTIVATION OF AMPARS AND NMDAR 
##SUBTYPES 
 
graphics none 
graphic_iter 10 
dim 3 
 
#Define each molecule species 
names gl AR ARA ARA2 ARA2F ARA2S ARA2FS AD1 AD2 BR BRA BRA2 BRA2F 
BRA2S BRA2FS BD1 BD2 R S T open Sdes Tdes opendes trans GT GT2 ABR ABRAA 
ABRAB ABRA2 ABRA2F ABRA2S ABRA2FS ABD1 ABD2                           
 
#cmd b pause 
max_mol 2000000 
 
#Define color and size for defined molecules 
color gl(all) 1 0 0 #red 
color AR(all) 0.6 0 0.6  #purple 
color ARA(all) 0 0 1  #blue 
color ARA2(all) 0 0 1  #blue 
color ARA2F(all) 0 0 1 
color ARA2S(all) 0 0 1 
color ARA2FS(all) 0 1 0   #green 
color AD1(all) 0 0 0   #black 
color AD2(all) 0 0 0  
color BR(all) 0.8 0.9 0 #yellow 
color BRA(all) 0 0 1  #blue 
color BRA2(all) 0 0 1  #blue 
color BRA2F(all) 0 0 1 
color BRA2S(all) 0 0 1 
color BRA2FS(all) 0 1 0   #green 
color BD1(all) 0 0 0   #black 
color BD2(all) 0 0 0  
color ABR(all) 0 0.6 0.5 #blue-green 
color ABRAA(all) 0 0 1  #blue 
color ABRAB(all) 0 0 1  #blue 
color ABRA2(all) 0 0 1  #blue 
color ABRA2F(all) 0 0 1 
color ABRA2S(all) 0 0 1 
color ABRA2FS(all) 0 1 0   #green 
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color ABD1(all) 0 0 0   #black 
color ABD2(all) 0 0 0  
color R(all) 1 0 0  #red 
color S(all) 1 0.4 0  #redorange 
color T(all) 1 0.7 0  #orange 
color open(all) 0.8 0.9 0   #yellow 
color Sdes(all) 0.7 0.7 0.7   #lightgrey 
color Tdes(all) 0.4 0.4 0.4 #grey 
color opendes(all) 0 0 0 #black 
color trans(all) 0 1 0 
color GT(all)    0 0 1 
color GT2(all)   1 0 0 
 
display_size gl(all) 2 
display_size AR(all) 10 
display_size ARA(all) 10 
display_size ARA2(all) 10 
display_size ARA2F(all) 10 
display_size ARA2S(all) 10 
display_size ARA2FS(all) 10 
display_size AD1(all) 10 
display_size AD2(all) 10 
display_size BR(all) 10 
display_size BRA(all) 10 
display_size BRA2(all) 10 
display_size BRA2F(all) 10 
display_size BRA2S(all) 10 
display_size BRA2FS(all) 10 
display_size BD1(all) 10 
display_size BD2(all) 10 
display_size ABR(all) 10 
display_size ABRAA(all) 10 
display_size ABRAB(all) 10 
display_size ABRA2(all) 10 
display_size ABRA2F(all) 10 
display_size ABRA2S(all) 10 
display_size ABRA2FS(all) 10 
display_size ABD1(all) 10 
display_size ABD2(all) 10 
display_size R(all) 10 
display_size S(all) 10 
display_size T(all) 10 
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display_size open(all) 10 
display_size Sdes(all) 10 
display_size Tdes(all) 10 
display_size opendes(all) 10 
display_size trans(all) 10 
display_size GT(all) 10 
display_size GT2(all) 10 
 
low_wall 0 -2000 r 
high_wall 0 2000 r 
low_wall 1 -2000 r 
high_wall 1 2000 r 
low_wall 2 -2000 r 
high_wall 2 2000 r 
 
 
#set start time, end time, and time steps 
time_start 0 
time_stop 1000 
time_step 0.01 
 
# Define glutamate release and diffusion  
mol 1500 gl 0 265 0 
difc gl(all) 200000 
 
 
##DEFINE SURFACES 
 
max_surface 20 
start_surface 
name synapticface 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
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action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r  
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
#color all 1 0 0 0.5 
max_panels r 30 
max_panels tri 50  
polygon both edge  
panel r +1 -150 250 -150 300 300 synapticface 
end_surface 
 
start_surface 
name perisynaptic 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
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action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r  
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
#color all 1 0 0 0.5 
max_panels r 30 
max_panels tri 50  
polygon both edge 
panel tri -150 250 150 -250 150 150 -250 150 -150 peri1 
panel tri -150 250 150 -250 150 -150 -150 250 -150 peri2 
panel tri -150 250 150 -150 150 250 -250 150 150 peri3 
panel tri -150 250 150 -150 150 250 150 150 250 peri4 
panel tri -150 250 150 150 250 150 150 150 250 peri5 
panel tri 150 250 150 150 150 250 250 150 150 peri6 
panel tri 150 250 150 250 150 150 250 150 -150 peri7 
panel tri 150 250 150 150 250 -150 250 150 -150 peri8 
panel tri 150 250 -150 250 150 -150 150 150 -250 peri9 
panel tri 150 250 -150 150 150 -250 -150 150 -250 peri10 
panel tri 150 250 -150 -150 250 -150 -150 150 -250 peri11 
panel tri -150 250 -150 -150 150 -250 -250 150 -150 peri12 
end_surface 
 
start_surface 
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name extrasynaptic 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r  
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
#color all 0 1 0 0.5 
max_panels r 30 
max_panels tri 50 
polygon both edge 
panel r -0 -250 150 -150 -300 300 extra1 
panel r +0 250 150 -150 -300 300 extra2 
panel r +2 -150 -150 -250 300 300 extra3 
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panel r +2 -150 -150 250 300 300 extra4 
panel tri -150 150 250 -250 150 150 -250 -150 150 extra5 
panel tri -150 150 250 -150 -150 250 -250 -150 150 extra6 
panel tri 150 150 250 250 150 150 250 -150 150 extra7 
panel tri 150 150 250 150 -150 250 250 -150 150 extra8 
panel tri 250 150 -150 150 150 -250 150 -150 -250 extra9 
panel tri 250 150 -150 250 -150 -150 150 -150 -250 extra10 
panel tri -150 150 -250 -250 150 -150 -250 -150 -150 extra11 
panel tri -150 150 -250 -150 -150 -250 -250 -150 -150 extra12 
end_surface 
 
start_surface 
name spinebottom 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r  
action both R r 
action both S r 
action both T r 
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action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
#color all 1 0 0 0.5 
max_panels r 30 
max_panels tri 50 
polygon both edge 
panel tri -250 -150 150 -250 -150 -150 -150 -250 150 
panel tri -150 -250 150 -150 -250 -150 -250 -150 -150  
panel tri -250 -150 150 -150 -150 250 -150 -250 150 
panel tri -150 -250 150 -150 -150 250 150 -150 250 
panel tri -150 -250 150 150 -250 150 150 -150 250 
panel tri 150 -250 150 150 -150 250 250 -150 150 
panel tri 250 -150 150 150 -250 150 150 -250 -150 
panel tri 250 -150 150 250 -150 -150 150 -250 -150 
panel tri 150 -250 -150 250 -150 -150 150 -150 -250 
panel tri 150 -150 -250 -150 -150 -250 -150 -250 -150 
panel tri 150 -150 -250 150 -250 -150 -150 -250 -150 
panel tri -150 -250 -150 -250 -150 -150 -150 -150 -250 
panel r +1 -150 -250 -150 50 300 
panel r +1 100 -250 -150 50 300 
panel r +1 -100 -250 -150 200 50 
panel r +1 -100 -250 100 200 50 
panel tri -100 -250 -100 -50 -250 -100 -100 -250 -50 
panel tri 50 -250 -100 100 -250 -100 100 -250 -50 
panel tri -100 -250 50 -100 -250 100 -50 -250 100 
panel tri 50 -250 100 100 -250 100 100 -250 50 
panel r +0 -100 -250 -50 -500 100 
panel r -0 100 -250 -50 -500 100 
panel r -2 -50 -750 -100 100 500 
panel r -2 -50 -750 100 100 500 
panel tri -50 -250 100 -50 -750 100 -100 -750 50 
panel tri -50 -250 100 -100 -250 50 -100 -750 50 
panel tri 50 -250 100 50 -750 100 100 -750 50 
panel tri 50 -250 100 100 -250 50 100 -750 50 
panel tri -50 -250 -100 -50 -750 -100 -100 -750 -50 
panel tri -50 -250 -100 -100 -250 -50 -100 -750 -50 
panel tri 50 -250 -100 50 -750 -100 100 -750 -50 
panel tri 50 -250 -100 100 -250 -50 100 -750 -50 
end_surface 
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start_surface 
name presynaptic 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r  
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
#color all 0.8 0.9 0 
 max_panels r 30 
max_panels tri 50 
polygon both edge 
panel tri -250 370 150 -250 370 -150 -150 270 150 
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panel tri -150 270 150 -150 270 -150 -250 370 -150  
panel tri -250 370 150 -150 370 250 -150 270 150 
panel tri -150 270 150 -150 370 250 150 370 250 
panel tri -150 270 150 150 270 150 150 370 250 
panel tri 150 270 150 150 370 250 250 370 150 
panel tri 250 370 150 150 270 150 150 270 -150 
panel tri 250 370 150 250 370 -150 150 270 -150 
panel tri 150 270 -150 250 370 -150 150 370 -250 
panel tri 150 370 -250 -150 370 -250 -150 270 -150 
panel tri 150 370 -250 150 270 -150 -150 270 -150 
panel tri -150 270 -150 -250 370 -150 -150 370 -250 
panel tri -150 670 250 -250 670 150 -250 370 150 
panel tri -150 670 250 -150 370 250 -250 370 150  
panel tri 150 670 250 250 670 150 250 370 150  
panel tri 150 670 250 150 370 250 250 370 150  
panel tri 250 670 -150 150 670 -250 150 370 -250  
panel tri 250 670 -150 250 370 -150 150 370 -250  
panel tri -150 670 -250 -250 670 -150 -250 370 -150  
panel tri -150 670 -250 -150 370 -250 -250 370 -150  
panel r +0 -250 670 -150 -300 300  
panel r -0 250 670 -150 -300 300  
panel r -1 -150 770 -150 300 300  
panel r +1 -150 270 -150 300 300  
panel r -2 -150 370 -250 300 300  
panel r -2 -150 370 250 300 300  
panel tri -150 770 150 -250 670 150 -250 670 -150  
panel tri -150 770 150 -250 670 -150 -150 770 -150  
panel tri -150 770 150 -150 670 250 -250 670 150  
panel tri -150 770 150 -150 670 250 150 670 250  
panel tri -150 770 150 150 770 150 150 670 250  
panel tri 150 770 150 150 670 250 250 670 150  
panel tri 150 770 150 250 670 150 250 670 -150  
panel tri 150 770 150 150 770 -150 250 670 -150  
panel tri 150 770 -150 250 670 -150 150 670 -250  
panel tri 150 770 -150 150 670 -250 -150 670 -250  
panel tri 150 770 -150 -150 770 -150 -150 670 -250  
panel tri -150 770 -150 -150 670 -250 -250 670 -150  
end_surface 
 
start_surface 
name leftbackast 
action both gl r 
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action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r 
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
color all 0 1 0 0.5 
max_panels r 100 
max_panels tri 100 
polygon both edge 
panel r +0 -270 150 -150 -300 300 
panel r -2 -150 -150 -270 300 300 
panel tri -160 260 150 -270 150 150 -270 150 -150 
panel tri -160 260 150 -270 150 -150 -160 260 -150 
panel tri -160 260 150 -150 150 270 -270 150 150 
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panel tri 150 260 -160 150 150 -270 -150 150 -270 
panel tri 150 260 -160 -160 260 -150 -150 150 -270 
panel tri -160 260 -150 -150 150 -270 -270 150 -150 
panel tri -150 150 270 -270 150 150 -270 -150 150 
panel tri -150 150 270 -150 -150 270 -270 -150 150 
panel tri -150 150 -270 -270 150 -150 -270 -150 -150 
panel tri -150 150 -270 -150 -150 -270 -270 -150 -150 
panel tri -270 -150 150 -270 -150 -150 -150 -270 150 
panel tri -150 -270 150 -150 -270 -150 -270 -150 -150 
panel tri -270 -150 150 -150 -150 270 -150 -270 150 
panel tri 150 -150 -270 -150 -150 -270 -150 -270 -150 
panel tri 150 -150 -270 150 -270 -150 -150 -270 -150 
panel tri -150 -270 -150 -270 -150 -150 -150 -150 -270 
panel r +0 -270 670 -150 -300 300 
panel r -2 -150 370 -270 300 300 
panel tri -270 370 150 -270 370 -150 -160 260 150 
panel tri -160 260 150 -160 260 -150 -270 370 -150 
panel tri -270 370 150 -150 370 250 -160 260 150 
panel tri 150 370 -270 -150 370 -270 -160 260 -150 
panel tri 150 370 -270 150 260 -160 -160 260 -150 
panel tri -160 260 -150 -270 370 -150 -150 370 -270 
panel tri -150 670 250 -270 670 150 -270 370 150 
panel tri -150 670 250 -150 370 250 -270 370 150 
panel tri -150 670 -270 -270 670 -150 -270 370 -150 
panel tri -150 670 -270 -150 370 -270 -270 370 -150 
panel tri -150 790 150 -270 670 150 -270 670 -150 
panel tri -150 790 150 -270 670 -150 -150 790 -150 
panel tri -150 790 150 -150 670 250 -270 670 150 
panel tri 150 790 -150 150 670 -270 -150 670 -270 
panel tri 150 790 -150 -150 790 -150 -150 670 -270 
panel tri -150 790 -150 -150 670 -270 -270 670 -150 
end_surface 
 
start_surface 
name frontrightast 
action both gl r 
action both AR r 
action both ARA r 
action both ARA2 r 
action both ARA2F r 
action both ARA2S r 
action both ARA2FS r 
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action both AD1 r 
action both AD2 r 
action both BR r 
action both BRA r 
action both BRA2 r 
action both BRA2F r 
action both BRA2S r 
action both BRA2FS r 
action both BD1 r 
action both BD2 r 
action both ABR r 
action both ABRAA r 
action both ABRAB r 
action both ABRA2 r 
action both ABRA2F r 
action both ABRA2S r 
action both ABRA2FS r 
action both ABD1 r 
action both ABD2 r 
action both R r 
action both S r 
action both T r 
action both open r 
action both Sdes r 
action both Tdes r 
action both opendes r 
 
color all 0 0 1 0.5 
max_panels r 100 
max_panels tri 100 
polygon both edge 
panel r -0 270 150 -150 -300 300 
panel r -2 -150 -150 270 300 300 
panel tri -150 260 160 -150 150 270 150 150 270 
panel tri -150 260 160 160 260 150 150 150 270 
panel tri 160 260 150 150 150 270 270 150 150 
panel tri 160 260 150 270 150 150 270 150 -150 
panel tri 160 260 150 160 260 -150 270 150 -150 
panel tri 160 260 -150 270 150 -150 150 150 -270 
panel tri 150 150 270 270 150 150 270 -150 150 
panel tri 150 150 270 150 -150 270 270 -150 150 
panel tri 270 150 -150 150 150 -270 150 -150 -270 
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panel tri 270 150 -150 270 -150 -150 150 -150 -270 
panel tri -150 -270 150 -150 -150 270 150 -150 270 
panel tri -150 -270 150 150 -270 150 150 -150 270 
panel tri 150 -270 150 150 -150 270 270 -150 150 
panel tri 270 -150 150 150 -270 150 150 -270 -150 
panel tri 270 -150 150 270 -150 -150 150 -270 -150 
panel tri 150 -270 -150 270 -150 -150 150 -150 -270 
panel tri -150 260 160 -150 370 270 150 370 270 
panel tri -150 260 160 160 260 150 150 370 270 
panel tri 160 260 150 150 370 270 270 370 150 
panel tri 270 370 150 160 260 150 160 260 -150 
panel tri 270 370 150 270 370 -150 160 260 -150 
panel tri 160 260 -150 270 370 -150 150 370 -270 
panel tri 150 670 270 270 670 150 270 370 150 
panel tri 150 670 270 150 370 270 270 370 150 
panel tri 270 670 -150 150 670 -270 150 370 -270 
panel tri 270 670 -150 270 370 -150 150 370 -270 
panel r -0 270 670 -150 -300 300 
panel r -2 -150 370 270 300 300 
panel tri -150 790 150 -150 670 270 150 670 270 
panel tri -150 790 150 150 790 150 150 670 270 
panel tri 150 790 150 150 670 270 270 670 150 
panel tri 150 790 150 270 670 150 270 670 -150 
panel tri 150 790 150 150 790 -150 270 670 -150 
panel tri 150 790 -150 270 670 -150 150 670 -270 
end_surface  
 
start_surface 
name square 
action both all absorb 
max_panels r 6 
polygon both edge 
panel r +0 -400 +1000 -500 -2000 1000 
panel r +0 +400 +1000 -500 -2000 1000 
panel r +1 +400 -1000 -500 -800 1000 
panel r +1 +400 +1000 -500 -800 1000 
panel r +2 +400 -1000 -500 -800 2000 
panel r +2 +400 -1000 +500 -800 2000 
end_surface 
 
#Define the number and localization of receptors R=AMPAR, AR=NR2A, BR=NR2B, 
#ABR=NR2A/NR2B 
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surface_mol 80 R(up) synapticface all all 
surface_mol 8 AR(up) synapticface all all 
surface_mol 8 ABR(up) synapticface all all 
surface_mol 4 BR(up) synapticface all all 
surface_mol 10 BR(up) extrasynaptic all all 
#surface_mol 9900 trans(up) leftbackast all all  
#surface_mol 9900 trans(up) frontrightast all all 
 
 
#DEFINE ALL REACTION:    REACTANTS -> PRODUCTS RATE 
reaction 2Bfirstdebind BRA2(all) -> BRA(up) + gl(fsoln) 0.0762 
reaction 2Bseconddebind BRA(all) -> BR(up) + gl(fsoln) 0.0381 
reaction 2Bopenslow BRA2(all) -> BRA2S(up) 0.048 
reaction 2Bopenfast BRA2(all) -> BRA2F(up) 2.836 
reaction 2Bopen2ndfast BRA2S(all) -> BRA2FS(up) 2.836 
reaction 2Bopen2ndslow BRA2F(all) -> BRA2FS(up) 0.048 
reaction 2Bclose2ndslow BRA2FS(all) -> BRA2F(up) 0.230 
reaction 2Bclose2ndfast BRA2FS(all) -> BRA2S(up) 0.175 
reaction 2Bclosefast BRA2F(all) -> BRA2(up) 0.175 
reaction 2Bcloseslow BRA2S(all) -> BRA2(up) 0.230 
reaction 2Bdesens1 BRA2(all) -> BD1(up) 0.550 
reaction 2Bdesens2 BRA2(all) -> BD2(up) 0.112 
reaction 2Bresens1 BD1(all) -> BRA2(up) 0.0814 
reaction 2Bresens2 BD2(all) -> BRA2(up) 0.00091 
reaction ABfirstBdebind ABRA2(all) -> ABRAA(up) 0.0381 
reaction ABsecondBdebind ABRAB(all) -> ABR(up) + gl(fsoln) 0.0381 
reaction ABfirstAdebind ABRA2(all) -> ABRAB(up) + gl(fsoln) 1.010 
reaction ABsecondAdebind ABRAA(all) -> ABR(up) + gl(fsoln) 1.01 
reaction ABopenslow ABRA2(all) -> ABRA2S(up) 0.139 
reaction ABopenfast ABRA2(all) -> ABRA2F(up) 2.988 
reaction ABopen2ndfast ABRA2S(all) -> ABRA2FS(up) 2.988 
reaction ABopen2ndslow ABRA2F(all) -> ABRA2FS(up) 0.139 
reaction ABclose2ndslow ABRA2FS(all) -> ABRA2F(up) 0.204 
reaction ABclose2ndfast ABRA2FS(all) -> ABRA2S(up) 0.1745 
reaction ABclosefast ABRA2F(all) -> ABRA2(up) 0.1745 
reaction ABcloseslow ABRA2S(all) -> ABRA2(up) 0.204 
reaction ABdesens1 ABRA2(all) -> ABD1(up) 0.3175 
reaction ABdesens2 ABRA2(all) -> ABD2(up) 0.171 
reaction ABresens1 ABD1(all) -> ABRA2(up) 0.05555 
reaction ABresens2 ABD2(all) -> ABRA2(up) 0.00096 
reaction 2Afirstdebind ARA2(all) -> ARA(up) + gl(fsoln) 2.02 
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reaction 2Aseconddebind ARA(all) -> AR(up) + gl(fsoln) 1.01 
reaction 2Aopenslow ARA2(all) -> ARA2S(up) 0.230 
reaction 2Aopenfast ARA2(all) -> ARA2F(up) 3.140 
reaction 2Aopen2ndfast ARA2S(all) -> ARA2FS(up) 3.140 
reaction 2Aopen2ndslow ARA2F(all) -> ARA2FS(up) 0.230 
reaction 2Aclose2ndslow ARA2FS(all) -> ARA2F(up) 0.178 
reaction 2Aclose2ndfast ARA2FS(all) -> ARA2S(up) 0.174 
reaction 2Aclosefast ARA2F(all) -> ARA2(up) 0.174 
reaction 2Acloseslow ARA2S(all) -> ARA2(up) 0.178 
reaction 2Adesens1 ARA2(all) -> AD1(up) 0.0851 
reaction 2Adesens2 ARA2(all) -> AD2(up) 0.230 
reaction 2Aresens1 AD1(all) -> ARA2(up) 0.0297 
reaction 2Aresens2 AD2(all) -> ARA2(up) 0.00101 
reaction Aseconddebind S(all) -> R(up) + gl(fsoln) 4.26 
reaction Afirstdebind T(all) -> S(up) + gl(fsoln) 3.26 
reaction Aopening T(all) -> open(up) 4.24 
reaction Aclosing open(all) -> T(up) 0.9 
reaction opendesens open(all) -> opendes(up) 0.0177 
reaction openresens opendes(all) -> open(up) 0.004 
reaction Tdesens T(all) -> Tdes(up) 0.172 
reaction Tresens Tdes(all) -> T(up) 0.000727 
reaction Sdesens S(all) -> Sdes(up) 2.89 
reaction Sresens Sdes(all) -> S(up) 0.0392 
reaction TdestoSdes Tdes(all) -> Sdes(up) + gl(fsoln) 0.0457 
reaction Tdestoopendes Tdes(all) -> opendes(up) 0.0168 
reaction opendestoTdes opendes(all) -> Tdes(up) 0.1904 
reaction Transcont GT(all) -> GT2(up) 0.180 
reaction Transdebind GT(all) -> trans(up) + gl(bsoln) 
reaction Transport GT2(all) -> trans(up) 0.0257 
reaction ABfirstAbind gl + ABR(all) -> ABRAA(up) 52456 
reaction ABfirstBbind gl + ABR(all) -> ABRAB(up) 4698 
reaction ABsecondAbind ABRAB(all) + gl -> ABRA2(up) 52456 
reaction ABsecondBbind ABRAA(all) + gl -> ABRA2(up) 4698 
reaction 2Bfirstbind gl + BR(all) -> BRA(up) 9396 
reaction 2Bsecondbind gl + BRA(all) -> BRA2(up) 4698 
reaction 2Afistbind gl + AR(all) -> ARA(up) 104912 
reaction 2Asecondbind gl + ARA(all) -> ARA2(up) 52446 
reaction Afirstbind gl + R(all) -> S(up) 7619 
reaction Asecondbind gl + S(all) -> T(up) 47144 
reaction Adesbind gl + Sdes(all) -> Tdes(up) 2108 
reaction Transbind trans(all) + gl -> GT(up) 29880 
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output_files example_syn example_ex example_sg example_g example_box 
example_2Bo example_2Ao example_2A2Bo example_AMPAo  
 
#Define output files 
output_file_number example_syn i 
output_file_number example_ex i 
output_file_number example_sg i  
output_file_number example_g i 
output_file_number example_box i 
output_file_number example_2Bo i  
output_file_number example_2Ao i  
output_file_number example_2A2Bo i 
output_file_number example_AMPAo i 
 
#Define writing of output files 
cmd e molcountonsurf synapticface example_syn 
cmd e molcountonsurf extrasynaptic example_ex 
cmd e molcount example_g 
cmd e molcountinbox -150 150 250 270 -150 150 example_box 
cmd e molpos BRA2FS(all) example_2Bo 
cmd e molpos ARA2FS(all) example_2Ao 
cmd e molpos ABRA2FS(all) example_2A2Bo 
cmd e molpos open(all) example_AMPAo 
 
end_file 
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%Extracts activation time periods for distinct rece ptors, as defined by  
%smoldyn simulations. Calculates calcium entry (Jah r et al 1990) by  
%iteratively calculating AMPAR and NMDAR current an d membrane 
potential.  
%Calcium entry dependent on Punblocked, as determin ed by the Mg  
%concentration.  The effect of selective mechanosen sitivity can be 
built  
%into this calculation by reducing the effective Mg  concentration for 
the  
%calculation of Punblocked for NR2Bs and Tris (trih eteromeric)  
  
clear all  
  
tic;  
allVmem=zeros(1,(100000*10));  
allP=zeros(1,(100000*10));  
timeforplot=zeros(1,(100000*10));  
allIampa=zeros(1,(100000*10));  
allInmda=zeros(1,(100000*10));  
allInmda_mg=zeros(1,(100000*10));  
allItwoA=zeros(1,(100000*10));  
allItri=zeros(1,(100000*10));  
allIsyn_twoB=zeros(1,(100000*10));  
allIex_twoB=zeros(1,(100000*10));  
allItwoA_mg=zeros(1,(100000*10));  
allItri_mg=zeros(1,(100000*10));  
allIsyn_twoB_mg=zeros(1,(100000*10));  
allIex_twoB_mg=zeros(1,(100000*10));  
  
avg_all_twoAca=0;  
avg_all_trica=0;  
avg_all_ex_twoBca=0;  
avg_all_syn_twoBca=0;  
avg_all_ca=0;  
avg_Inmda=0;  
avg_allVmem=0;  
for  n=1:40  
     
    n  
    clear ampasets  ampaopens  trisets  triopens  twoAsets  twoAopen  
twoBsets  twoBopens  
filename=[ 'example' ];  
  
%Calls functions which extract the coordinates and activation times for  
%activated receptors for AMPARs and NMDAR subtypes  
[ampasets,ampaopens]=ampaopen(filename,n);  
[trisets,triopens]=triopen(filename,n);  
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[twoAsets,twoAopens]=twoAopen(filename,n);  
[twoBsets,twoBopens]=twoBopen(filename,n);  
  
  
[row,column]=size(ampaopens);  
ampaopens=ampaopens((2:row),:);  
  
[row,column]=size(ampasets);  
ampasets=ampasets((2:row),:);  
  
[row,column]=size(twoAopens);  
twoAopens=twoAopens((2:row),:);  
twoAopentime=sum(sum(twoAopens));  
twoArand=rand(row-1,column).*twoAopens;  
twoAca=zeros(row-1,column);  
twoAca_cumulative=zeros(row-1,column);  
twoAca_rand=zeros(row-1,column);  
twoAca_rand_cumulative=zeros(row-1,column);  
  
[row,column]=size(twoAsets);  
twoAsets=twoAsets((2:row),:);  
%alters coordinates of receptor to ensure it is ins ide the spine 
surface.  
twoAsets=twoAsets-0.1.*(twoAsets./abs(twoAsets));  
  
[row,column]=size(twoBsets);  
[row,column]=size(twoBopens);  
  
%Separates NR2B open sets into synaptic NR2Bs and e xtrasynatpic NR2Bs  
  
syn_twoBsets=[0,0,0];  
syn_twoBopens=zeros(1,column);  
ex_twoBsets=[];  
ex_twoBopens=[];  
for  x=1:row  
    if  twoBsets(x,2)==250  
        syn_twoBsets=[syn_twoBsets;twoBsets(x,:)];  
        syn_twoBopens=[syn_twoBopens;twoBopens(x,:) ];  
    else  
        ex_twoBsets=[ex_twoBsets;twoBsets(x,:)];  
        ex_twoBopens=[ex_twoBopens;twoBopens(x,:)];  
    end  
end  
[row,column]=size(syn_twoBopens);  
syn_twoBopens=syn_twoBopens((2:row),:);  
syn_twoBopentime=sum(sum(syn_twoBopens));  
syn_twoBrand=rand(row-1,column).*syn_twoBopens;  
syn_twoBca=zeros(row-1,column);  
syn_twoBca_cumulative=zeros(row-1,column);  
syn_twoBca_rand=zeros(row-1,column);  
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syn_twoBca_rand_cumulative=zeros(row-1,column);  
  
[row,column]=size(syn_twoBsets);  
syn_twoBsets=syn_twoBsets((2:row),:);  
syn_twoBsets=syn_twoBsets-0.1.*(syn_twoBsets./abs(s yn_twoBsets)); 
%alters coordinates of receptor to ensure it is ins ide the spine 
surface.  
  
[row,column]=size(ex_twoBopens);  
ex_twoBopens=ex_twoBopens((2:row),:);  
ex_twoBopentime=sum(sum(ex_twoBopens));  
ex_twoBrand=rand(row-1,column).*ex_twoBopens;  
ex_twoBca=zeros(row-1,column);  
ex_twoBca_cumulative=zeros(row-1,column);  
ex_twoBca_rand=zeros(row-1,column);  
ex_twoBca_rand_cumulative=zeros(row-1,column);  
  
[row,column]=size(ex_twoBsets);  
ex_twoBsets=ex_twoBsets((2:row),:);  
ex_twoBsets=ex_twoBsets-0.1.*(ex_twoBsets./abs(ex_t woBsets)); %alters 
coordinates of receptor to ensure it is inside the spine surface.  
 
[row,column]=size(triopens);  
triopens=triopens((2:row),:);  
triopentime=sum(sum(triopens));  
trirand=rand(row-1,column).*triopens;  
trica=zeros(row-1,column);  
trica_cumulative=zeros(row-1,column);  
trica_rand=zeros(row-1,column);  
trica_rand_cumulative=zeros(row-1,column);  
  
[row,column]=size(trisets);  
trisets=trisets((2:row),:);  
trisets=trisets-0.1.*(trisets./abs(trisets)); %alters coordinates of 
receptor to ensure it is inside the spine surface.  
  
Vmem=-60e-3;  
gampa=-12e-12; %single channel conductance (AMPA)  
gnmda=-45e-12; %single channel conductance (NMDA)  
  
[numberofopenampars,totaltime]=size(ampaopens);  
Cmem=1e-6*(4*pi*(500e-7)^2); %Membrane capacitance  
  
gleak=10e-9; %leak conductance  
timestep=0.001e-3;  
smoldtime=0.01e-3*(1:1:totaltime);  
time=0;  
s=1;  
iter=1;  
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%Start iterative calculations 
while  time <1000e-3  
     
    time=time+timestep;  
    if  time > smoldtime(s)  
        s=s+1;  
    end  
        ampas=sum(ampaopens(:,s));  
         
         
        if  size(triopens,1)>0  
            for  q=1:size(triopens,1)  
                if  s>1  
  
                    if   trirand(q,s)>Punblocked_tri  
                        triopens(q,s)=0;  
                    end  
                     
  
                    trica(q,s)=triopens(q,s)*((4.5e -12*Vmem)/(2*-1.6e-
19))*0.01e-3;  
                    if  trica(q,s)>0.5  
                        possible=1:1:(5*round(trica (q,s)));  
                        prob=poisscdf(possible,tric a(q,s));  
                        random=rand(1);  
                        if  random > prob(length(prob))  
                            trica_rand(q,s)=length( prob)+1;  
                        else  
                        trica_rand(q,s)=find(random <=prob,1);  
                        end  
                    end                      
                    
trica_cumulative(q,s)=trica(q,s)+trica_cumulative(q ,s-1);  
                    
trica_rand_cumulative(q,s)=trica_rand(q,s)+trica_ra nd_cumulative(q,s-
1);  
                end  
            end  
        end  
        tris=sum(triopens(:,s));  
         
       if  size(syn_twoBopens,1)>0  
            for  q=1:size(syn_twoBopens,1)  
                if  s>1  
  
                    if   syn_twoBrand(q,s)>Punblocked_twoB  
                        syn_twoBopens(q,s)=0;  
                    end  
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                    syn_twoBca(q,s)=syn_twoBopens(q ,s)*((4.5e-
12*Vmem)/(2*-1.6e-19))*0.01e-3;  
                    if  syn_twoBca(q,s)>0.5  
                        possible=1:1:(5*round(syn_t woBca(q,s)));  
                        prob=poisscdf(possible,syn_ twoBca(q,s));  
                        random=rand(1);  
                        if  random > prob(length(prob))  
                            syn_twoBca_rand(q,s)=le ngth(prob)+1;  
                        else  
                        syn_twoBca_rand(q,s)=find(r andom<=prob,1);  
                        end  
                    end   
                    
syn_twoBca_cumulative(q,s)=syn_twoBca(q,s)+syn_twoB ca_cumulative(q,s-
1);  
                    
syn_twoBca_rand_cumulative(q,s)=syn_twoBca_rand(q,s )+syn_twoBca_rand_cu
mulative(q,s-1);  
  
                end  
            end  
        end  
        syn_twoBs=sum(syn_twoBopens(:,s));  
  
       if  size(ex_twoBopens,1)>0  
            for  q=1:size(ex_twoBopens,1)  
                if  s>1  
  
                    if   ex_twoBrand(q,s)>Punblocked_twoB  
                        ex_twoBopens(q,s)=0;  
                    end  
                     
  
                    ex_twoBca(q,s)=ex_twoBopens(q,s )*((4.5e-
12*Vmem)/(2*-1.6e-19))*0.01e-3;  
                    if  ex_twoBca(q,s)>0.5  
                        possible=1:1:(5*round(ex_tw oBca(q,s)));  
                        prob=poisscdf(possible,ex_t woBca(q,s));  
                        random=rand(1);  
                        if  random > prob(length(prob))  
                            ex_twoBca_rand(q,s)=len gth(prob)+1;  
                        else  
                        ex_twoBca_rand(q,s)=find(ra ndom<=prob,1);  
                        end  
                    end   
                    
ex_twoBca_cumulative(q,s)=ex_twoBca(q,s)+ex_twoBca_ cumulative(q,s-1);  
                    
ex_twoBca_rand_cumulative(q,s)=ex_twoBca_rand(q,s)+ ex_twoBca_rand_cumul
ative(q,s-1);  
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                end  
            end  
        end  
        ex_twoBs=sum(ex_twoBopens(:,s));  
         
        if  size(twoAopens,1)>0  
            for  q=1:size(twoAopens,1)  
                if  s>1  
  
                    if   twoArand(q,s)>Punblocked  
                        twoAopens(q,s)=0;  
                    end  
                     
  
                    twoAca(q,s)=twoAopens(q,s)*((4. 5e-12*Vmem)/(2*-
1.6e-19))*0.01e-3;  
                    if  twoAca(q,s)>0.5  
                        possible=1:1:(5*round(twoAc a(q,s)));  
                        prob=poisscdf(possible,twoA ca(q,s));  
                        random=rand(1);  
                        if  random > prob(length(prob))  
                            twoAca_rand(q,s)=length (prob)+1;  
                        else  
                        twoAca_rand(q,s)=find(rando m<=prob,1);  
                        end  
                    end  
                    
twoAca_cumulative(q,s)=twoAca(q,s)+twoAca_cumulativ e(q,s-1);  
                    
twoAca_rand_cumulative(q,s)=twoAca_rand(q,s)+twoAca _rand_cumulative(q,s
-1);  
                end  
                 
            end  
        end          
        twoAs=sum(twoAopens(:,s));  
         
  
    allampas(iter)=ampas;  
    ItwoA=twoAs*gnmda*Vmem;  
    Itri=tris*gnmda*Vmem;  
    Isyn_twoB=syn_twoBs*gnmda*Vmem;  
    Iex_twoB=ex_twoBs*gnmda*Vmem;  
     
    Inmda=ItwoA+Itri+Isyn_twoB+Iex_twoB;  
    allItwoA(iter)=ItwoA;  
    allItri(iter)=Itri;  
    allIsyn_twoB(iter)=Isyn_twoB;  
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    allIex_twoB(iter)=Iex_twoB;  
     
    allInmda(iter)=Inmda;  
  
    Iampa=ampas*gampa*Vmem;  
    allIampa(iter)=Iampa;  
    Ileak=gleak*(Vmem-(-60e-3));  
     delVmem=(((Inmda+Iampa)-Ileak)*timestep/Cmem);  
     
    allVmem(iter)=Vmem;  
   %timeforplot(1,iter)=time;  
    Vmem=Vmem+delVmem;  
     
    %calculation of Punblocked for each subtype  
    %vary Mg concentration to add mechano-effect  
     
    Punblocked=1/(1+2.718^(-0.062*(Vmem*1000))*(0.8 *3.57));  
    Punblocked_twoB=1/(1+2.718^(-0.062*(Vmem*1000)) *(0.8*3.57));  
    Punblocked_tri=1/(1+2.718^(-0.062*(Vmem*1000))* (0.8*3.57));  
 
    allP(iter)=Punblocked;  
    iter=iter+1;  
end  
    charge_ampa(n)=trapz(allIampa).*timestep;  
    charge_nmda(n)=trapz(allInmda).*timestep;  
    charge_nmda_mg(n)=trapz(allInmda_mg).*timestep;  
    charge_twoA(n)=trapz(allItwoA).*timestep;  
    charge_twoA_mg(n)=trapz(allItwoA_mg).*timestep;  
    charge_tri(n)=trapz(allItri).*timestep;  
    charge_tri_mg(n)=trapz(allItri_mg).*timestep;  
    charge_syn_twoB(n)=trapz(allIsyn_twoB).*timeste p;  
    charge_syn_twoB_mg(n)=trapz(allIsyn_twoB_mg).*t imestep;  
    charge_ex_twoB(n)=trapz(allIex_twoB).*timestep;  
    charge_ex_twoB_mg(n)=trapz(allIex_twoB_mg).*tim estep;  
     
     
    
avg_Inmda=avg_Inmda+allInmda;  
 all_twoAca=sum(twoAca_rand_cumulative,1);  
 avg_all_twoAca=avg_all_twoAca+all_twoAca;  
 all_trica=sum(trica_rand_cumulative,1);  
 avg_all_trica=avg_all_trica+all_trica;  
 all_ex_twoBca=sum(ex_twoBca_rand_cumulative,1);  
 avg_all_ex_twoBca=avg_all_ex_twoBca+all_ex_twoBca;  
 all_syn_twoBca=sum(syn_twoBca_rand_cumulative,1);  
 avg_all_syn_twoBca=avg_all_syn_twoBca+all_syn_twoB ca;  
  
 all_ca=all_twoAca+all_trica+all_syn_twoBca+all_ex_ twoBca;  
 avg_all_ca=avg_all_ca+all_ca;  
 avg_allVmem=avg_allVmem+allVmem;  
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 total_twoAca(n)=max(all_twoAca);  
 total_trica(n)=max(all_trica);  
 total_ex_twoBca(n)=max(all_ex_twoBca);  
 total_syn_twoBca(n)=max(all_syn_twoBca);  
 total_all_ca(n)=max(all_ca);  
  
 avg_voltchange(n)=max(allVmem);  
 
%PLOT cumulative calcium entry 
  figure(1)  
  plot(smoldtime(1:100000),all_ca(1:100000),'b')  
  hold on  
  figure(2)  
  subplot(2,2,1)  
  plot(smoldtime(1:100000),all_twoAca(1:100000),'b' )  
  hold on  
  subplot(2,2,2)  
  plot(smoldtime(1:100000),all_trica(1:100000),'b')  
  hold on  
  subplot(2,2,3)  
  plot(smoldtime(1:100000),all_syn_twoBca(1:100000) ,'b')  
  hold on  
  subplot(2,2,4)  
  plot(smoldtime(1:100000),all_ex_twoBca(1:100000), 'b')  
  hold on  
  
  
 %%Opens and writes calcium entry data and smoldyn code specifying 
calcium entry sites and times for future intracellu lar signaling 
smoldyn models 
 
  A=fopen(['twoA_example_Ca_',num2str(n),'.txt'],'w t');  
  sB=fopen(['syn_twoB_example_Ca_',num2str(n),'.txt '],'wt');  
  eB=fopen(['ex_twoB_example_Ca_',num2str(n),'.txt' ],'wt');  
  tr=fopen(['tri_example_Ca_',num2str(n),'.txt'],'w t');  
  for t=1:100000  
  fprintf(A,'%.4f\t',twoAca_rand_cumulative(:,t));  
  fprintf(A,'\n');  
  fprintf(sB,'%.4f\t',syn_twoBca_rand_cumulative(:, t));  
  fprintf(sB,'\n');   
  fprintf(eB,'%.4f\t',ex_twoBca_rand_cumulative(:,t ));  
  fprintf(eB,'\n');  
  fprintf(tr,'%.4f\t',trica_rand_cumulative(:,t));  
  fprintf(tr,'\n');  
  end  
  fclose(A);  
  fclose(sB);  
  fclose(eB);  
  fclose(tr);  
   



Appendix B  Matlab code: calcium entry 
 

188 
 

  [i,j]=find(twoAca>0);  
  twoAdata=[];  
  for loop=1:length(i)  
      
twoAdata=[twoAdata;smoldtime(j(loop))*1000,floor(tw oAca_rand(i(loop),j(
loop))),twoAsets(i(loop),:)];  
  end  
   
 fid=fopen(['twoA_example_Ca_smoldyn_',num2str(n),' .txt'],'wt');  
  if isempty(twoAdata)<1  
 fprintf(fid,'cmd @ %4.2f pointsource ca %1.0f %8.4 f %8.4f 
8.4f\n',twoAdata');  
  end  
 fclose(fid);  
  
 [i,j]=find(trica>0);  
 tridata=[];  
  for loop=1:length(i)  
      
tridata=[tridata;smoldtime(j(loop))*1000,floor(tric a_rand(i(loop),j(loo
p))),trisets(i(loop),:)];  
  end  
 fid=fopen(['tri_example_Ca_smoldyn_',num2str(n),'. txt'],'wt');  
 if isempty(tridata)<1  
 fprintf(fid,'cmd @ %4.2f pointsource ca %1.0f %8.4 f %8.4f 
8.4f\n',tridata');  
 end  
 fclose(fid);  
  
 [i,j]=find(syn_twoBca>0);  
 syn_twoBdata=[];  
  for loop=1:length(i)  
      
syn_twoBdata=[syn_twoBdata;smoldtime(j(loop))*1000, floor(syn_twoBca_ran
d(i(loop),j(loop))),syn_twoBsets(i(loop),:)];  
  end  
 fid=fopen(['syn_twoB_example_Ca_smoldyn_',num2str( n),'.txt'],'wt');  
 if isempty(syn_twoBdata)<1  
 fprintf(fid,'cmd @ %4.2f pointsource ca %1.0f %8.4 f %8.4f 
8.4f\n',syn_twoBdata');  
 end  
 fclose(fid);  
  
 [i,j]=find(ex_twoBca>0);  
 ex_twoBdata=[];  
  for loop=1:length(i)  
      
ex_twoBdata=[ex_twoBdata;smoldtime(j(loop))*1000,fl oor(ex_twoBca_rand(i
(loop),j(loop))),ex_twoBsets(i(loop),:)];  
  end  
 fid=fopen(['ex_twoB_example_Ca_smoldyn_',num2str(n ),'.txt'],'wt');  
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 if isempty(ex_twoBdata)<1  
 fprintf(fid,'cmd @ %4.2f pointsource ca %1.0f %8.4 f %8.4f 
8.4f\n',ex_twoBdata');  
 end  
 fclose(fid);  
  
end  
avg_all_twoAca=avg_all_twoAca./n;  
avg_all_trica=avg_all_trica./n;  
avg_all_ex_twoBca=avg_all_ex_twoBca./n;  
avg_all_syn_twoBca=avg_all_syn_twoBca./n;  
avg_all_ca=avg_all_ca./n;  
avg_allVmem=avg_allVmem./n;  
 
 
avg_Inmda=avg_Inmda./n; 
 
%Plots average cumulative calcium entry for all sim ulations 
 
  figure(1)  
  plot(smoldtime(1:100000),avg_all_ca(1:100000),'r' ,'LineWidth',2)  
  hold on  
  figure(2)  
  subplot(2,2,1)  
  plot(smoldtime(1:100000),avg_all_twoAca(1:100000) ,'r','LineWidth',2)  
  hold on  
  subplot(2,2,2)  
  plot(smoldtime(1:100000),avg_all_trica(1:100000), 'r','LineWidth',2)  
  hold on  
  subplot(2,2,3)  
  
plot(smoldtime(1:100000),avg_all_syn_twoBca(1:10000 0),'r','LineWidth',2
)  
  hold on  
  subplot(2,2,4)  
  
plot(smoldtime(1:100000),avg_all_ex_twoBca(1:100000 ),'r','LineWidth',2)  
  hold on  
  figure(3)  
  plot(0.001e-3:0.001e-3:1000e-3,avg_allVmem(1:1000 000),'r')  
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##EXAMPLE SMOLDYN CODE FOR THE INTRACELLULAR ACTIVATION OF 
##CALMODULIN 
 
graphics none 
graphic_iter 10 
dim 3 
 
#Define names of molecular species 
names gl ca Cam CamN1 CamC1 CamN2 CamC2 CamN1C1 CamN2C1 CamN1C2 
CamN2C2 CBP CBP1 CB CBM1 CBH1 CBM2 CBH2 CBM1H1 CBM2H1 CBM1H2 
CBM2H2 
 
max_mol 2000000 
 
#Define color and size of molecules 
color gl(all) 1 0 0 #red 
color ca(all) 0 1 0 #green 
color Cam(all) 0 0 1 #blue 
color CamN1(all) 1 0 0 
color CamC1(all) 1 0 0 
color CamN2(all) 1 0 0 
color CamC2(all) 1 0 0 
color CamN1C1(all) 1 0 0 
color CamN2C1(all) 1 0 0 
color CamN1C2(all) 1 0 0 
color CamN2C2(all) 1 0 0 
color CBP(all) 1 0 0 
color CBP1(all) 1 0 0 
color CB(all) 1 0 0 
color CBM1(all) 1 0 0 
color CBH1(all) 1 0 0 
color CBM2(all) 1 0 0 
color CBH2(all) 1 0 0 
color CBM1H1(all) 1 0 0 
color CBM2H1(all) 1 0 0 
color CBM1H2(all) 1 0 0 
color CBM2H2(all) 1 0 0 
 
display_size gl(all) 2 
display_size ca(all) 2 
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display_size Cam(all) 2 
display_size CamN1(all) 2 
display_size CamC1(all) 2 
display_size CamN2(all) 2 
display_size CamC2(all) 2 
display_size CamN1C1(all) 2 
display_size CamN2C1(all) 2 
display_size CamN1C2(all) 2 
display_size CamN2C2(all) 2 
display_size CBP(all) 2 
display_size CBP1(all) 2 
display_size CB(all) 2 
display_size CBM1(all) 2 
display_size CBH1(all) 2 
display_size CBM2(all) 2 
display_size CBH2(all) 2 
display_size CBM1H1(all) 2 
display_size CBM2H1(all) 2 
display_size CBM1H2(all) 2 
display_size CBM2H2(all) 2 
 
#Define diffusion constant for molecules 
difc ca(all) 220000 
difc Cam(all) 22000 
difc CamN1(all) 10000 
difc CamC1(all) 10000 
difc CamN2(all) 10000 
difc CamC2(all) 10000 
difc CamN1C1(all) 10000 
difc CamN2C1(all) 10000 
difc CamN1C2(all) 10000 
difc CamN2C2(all) 10000 
difc CBP(all) 0 
difc CBP1(all) 0 
difc CB(all) 28000 
difc CBM1(all) 28000 
difc CBH1(all) 28000 
difc CBM2(all) 28000 
difc CBH2(all) 28000 
difc CBM1H1(all) 28000 
difc CBM2H1(all) 28000 
difc CBM1H2(all) 28000 
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difc CBM2H2(all) 28000 
 
low_wall 0 -2000 r 
high_wall 0 2000 r 
low_wall 1 -2000 r 
high_wall 1 2000 r 
low_wall 2 -2000 r 
high_wall 2 2000 r 
 
#Define start time, end time, and time step 
time_start 0 
time_stop 1200 
time_step 0.01 
 
 
 
 
 
 
#Defined pointsources of calcium entry at distinct receptor locations as defined by 
previous #model outputs of receptor activation and calcium entry 
cmd @ 31.72 pointsource ca 12  -9.8040 249.9000 -26.1099 
cmd @ 82.23 pointsource ca 5  -9.8040 249.9000 -26.1099 
cmd @ 82.54 pointsource ca 11  -9.8040 249.9000 -26.1099 
cmd @ 84.66 pointsource ca 9  -9.8040 249.9000 -26.1099 
cmd @ 87.64 pointsource ca 9  -9.8040 249.9000 -26.1099 
cmd @ 91.63 pointsource ca 11  -9.8040 249.9000 -26.1099 
cmd @ 108.18 pointsource ca 5  -9.8040 249.9000 -26.1099 
cmd @ 108.45 pointsource ca 10  -9.8040 249.9000 -26.1099 
cmd @ 159.25 pointsource ca 11  -9.8040 249.9000 -26.1099 
cmd @ 161.17 pointsource ca 12  -9.8040 249.9000 -26.1099 
cmd @ 162.25 pointsource ca 10  -9.8040 249.9000 -26.1099 
cmd @ 162.36 pointsource ca 8  -9.8040 249.9000 -26.1099 
cmd @ 196.71 pointsource ca 9  -9.8040 249.9000 -26.1099 
cmd @ 199.40 pointsource ca 8  -9.8040 249.9000 -26.1099 
cmd @ 199.51 pointsource ca 6  -9.8040 249.9000 -26.1099 
cmd @ 254.10 pointsource ca 7  -9.8040 249.9000 -26.1099 
cmd @ 254.99 pointsource ca 11  -9.8040 249.9000 -26.1099 
cmd @ 2.38 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 4.76 pointsource ca 9 -63.7896 249.9000 124.9730 
cmd @ 6.43 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 7.41 pointsource ca 8 -63.7896 249.9000 124.9730 
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cmd @ 8.06 pointsource ca 6 -63.7896 249.9000 124.9730 
cmd @ 8.23 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 8.48 pointsource ca 6 -63.7896 249.9000 124.9730 
cmd @ 10.41 pointsource ca 9 -63.7896 249.9000 124.9730 
cmd @ 12.44 pointsource ca 3 -63.7896 249.9000 124.9730 
cmd @ 23.51 pointsource ca 7 -63.7896 249.9000 124.9730 
cmd @ 24.77 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 25.98 pointsource ca 13 -63.7896 249.9000 124.9730 
cmd @ 26.91 pointsource ca 3 -63.7896 249.9000 124.9730 
cmd @ 27.86 pointsource ca 4 -63.7896 249.9000 124.9730 
cmd @ 28.59 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 30.42 pointsource ca 6 -63.7896 249.9000 124.9730 
cmd @ 30.43 pointsource ca 4 -63.7896 249.9000 124.9730 
cmd @ 31.13 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 31.73 pointsource ca 9 -63.7896 249.9000 124.9730 
cmd @ 32.22 pointsource ca 3 -63.7896 249.9000 124.9730 
cmd @ 33.77 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 35.75 pointsource ca 9 -63.7896 249.9000 124.9730 
cmd @ 36.15 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 36.18 pointsource ca 8 -63.7896 249.9000 124.9730 
cmd @ 36.85 pointsource ca 13 -63.7896 249.9000 124.9730 
cmd @ 37.61 pointsource ca 9 -63.7896 249.9000 124.9730 
cmd @ 41.92 pointsource ca 7 -63.7896 249.9000 124.9730 
cmd @ 42.89 pointsource ca 6 -63.7896 249.9000 124.9730 
cmd @ 43.85 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 44.01 pointsource ca 8 -63.7896 249.9000 124.9730 
cmd @ 44.23 pointsource ca 5 -63.7896 249.9000 124.9730 
cmd @ 47.01 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 57.64 pointsource ca 12 -63.7896 249.9000 124.9730 
cmd @ 58.19 pointsource ca 8 -63.7896 249.9000 124.9730 
cmd @ 58.56 pointsource ca 10 -63.7896 249.9000 124.9730 
cmd @ 0.36 pointsource ca 8 -77.7054 249.9000  11.5564 
cmd @ 0.73 pointsource ca 12 -77.7054 249.9000  11.5564 
cmd @ 0.77 pointsource ca 8 -77.7054 249.9000  11.5564 
cmd @ 2.24 pointsource ca 8 -77.7054 249.9000  11.5564 
cmd @ 3.97 pointsource ca 6 -21.0092 249.9000 -18.9144 
cmd @ 4.12 pointsource ca 11 -77.7054 249.9000  11.5564 
cmd @ 4.43 pointsource ca 7 -21.0092 249.9000 -18.9144 
cmd @ 4.92 pointsource ca 7 -44.4056 249.9000 -33.4383 
cmd @ 7.03 pointsource ca 10 -77.7054 249.9000  11.5564 
cmd @ 7.11 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 7.37 pointsource ca 13 -21.0092 249.9000 -18.9144 
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cmd @ 7.43 pointsource ca 12 -44.4056 249.9000 -33.4383 
cmd @ 7.61 pointsource ca 9 -44.4056 249.9000 -33.4383 
cmd @ 8.49 pointsource ca 8 -44.4056 249.9000 -33.4383 
cmd @ 8.90 pointsource ca 5 -44.4056 249.9000 -33.4383 
cmd @ 9.06 pointsource ca 5 -77.7054 249.9000  11.5564 
cmd @ 9.47 pointsource ca 9 -77.7054 249.9000  11.5564 
cmd @ 9.52 pointsource ca 10 -77.7054 249.9000  11.5564 
cmd @ 10.11 pointsource ca 11 -77.7054 249.9000  11.5564 
cmd @ 10.58 pointsource ca 12 -44.4056 249.9000 -33.4383 
cmd @ 11.23 pointsource ca 14 -77.7054 249.9000  11.5564 
cmd @ 12.24 pointsource ca 16 -77.7054 249.9000  11.5564 
cmd @ 12.38 pointsource ca 6 -77.7054 249.9000  11.5564 
cmd @ 13.18 pointsource ca 4 -77.7054 249.9000  11.5564 
cmd @ 13.28 pointsource ca 4 -44.4056 249.9000 -33.4383 
cmd @ 13.71 pointsource ca 8 -77.7054 249.9000  11.5564 
cmd @ 13.87 pointsource ca 4 -77.7054 249.9000  11.5564 
cmd @ 14.65 pointsource ca 7 -77.7054 249.9000  11.5564 
cmd @ 15.85 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 16.47 pointsource ca 6 -77.7054 249.9000  11.5564 
cmd @ 17.02 pointsource ca 9 -21.0092 249.9000 -18.9144 
cmd @ 18.01 pointsource ca 13 -77.7054 249.9000  11.5564 
cmd @ 18.48 pointsource ca 6 -21.0092 249.9000 -18.9144 
cmd @ 19.58 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 21.38 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 23.52 pointsource ca 8 -21.0092 249.9000 -18.9144 
cmd @ 24.01 pointsource ca 5 -21.0092 249.9000 -18.9144 
cmd @ 28.18 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 28.44 pointsource ca 7 -21.0092 249.9000 -18.9144 
cmd @ 29.05 pointsource ca 9 -21.0092 249.9000 -18.9144 
cmd @ 29.13 pointsource ca 8 -21.0092 249.9000 -18.9144 
cmd @ 29.33 pointsource ca 5 -21.0092 249.9000 -18.9144 
cmd @ 29.34 pointsource ca 9 -21.0092 249.9000 -18.9144 
cmd @ 30.93 pointsource ca 10 -21.0092 249.9000 -18.9144 
cmd @ 31.47 pointsource ca 12 -21.0092 249.9000 -18.9144 
cmd @ 31.58 pointsource ca 7 -21.0092 249.9000 -18.9144 
cmd @ 31.76 pointsource ca 6 -21.0092 249.9000 -18.9144 
cmd @ 33.58 pointsource ca 9 -21.0092 249.9000 -18.9144 
cmd @ 34.74 pointsource ca 5 -21.0092 249.9000 -18.9144 
cmd @ 34.84 pointsource ca 11 -21.0092 249.9000 -18.9144 
cmd @ 35.03 pointsource ca 6 -21.0092 249.9000 -18.9144 
cmd @ 35.25 pointsource ca 5 -21.0092 249.9000 -18.9144 
cmd @ 39.37 pointsource ca 9 -21.0092 249.9000 -18.9144 
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cmd @ 40.31 pointsource ca 11 -21.0092 249.9000 -18.9144 
cmd @ 40.34 pointsource ca 10 -21.0092 249.9000 -18.9144 
 
 
#DEFINE SURFACES 
 
max_surface 20 
 
start_surface 
name absorbingbound 
action both all absorb 
polygon front face 
polygon back edge  
max_panels r 10 
 
panel r -1 -400 1000 -400 800 800 
panel r +1 -400 -1000 -400 800 800  
panel r +0 -400 1000 -400 -2000 800  
panel r -0 400 1000 -400 -2000 800  
panel r -2 -400 -1000 -400 800 2000  
panel r -2 -400 -1000 400 800 2000  
end_surface 
 
 
start_surface 
name synapticface 
action both all r 
#color all 1 0 0 0.5 
max_panels r 30 
max_panels tri 50  
polygon both edge  
panel r -1 -150 250 -150 300 300 synapticface 
end_surface 
 
start_surface 
name perisynaptic 
action both all r 
#color all 1 0 0 0.5 
max_panels r 30 
max_panels tri 50  
polygon both edge 
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panel tri -150 250 150 -250 150 150 -250 150 -150 peri1 
panel tri -150 250 150 -250 150 -150 -150 250 -150 peri2 
panel tri -150 250 150 -150 150 250 -250 150 150 peri3 
panel tri -150 250 150 -150 150 250 150 150 250 peri4 
panel tri -150 250 150 150 250 150 150 150 250 peri5 
panel tri 150 250 150 150 150 250 250 150 150 peri6 
panel tri 150 250 150 250 150 150 250 150 -150 peri7 
panel tri 150 250 150 150 250 -150 250 150 -150 peri8 
panel tri 150 250 -150 250 150 -150 150 150 -250 peri9 
panel tri 150 250 -150 150 150 -250 -150 150 -250 peri10 
panel tri 150 250 -150 -150 250 -150 -150 150 -250 peri11 
panel tri -150 250 -150 -150 150 -250 -250 150 -150 peri12 
end_surface 
 
start_surface 
name extrasynaptic 
action both all r 
#color all 0 1 0 0.5 
max_panels r 30 
max_panels tri 50 
polygon both edge 
 
panel r +0 -250 150 -150 -300 300 extra1 
panel r -0 250 150 -150 -300 300 extra2 
panel r -2 -150 -150 -250 300 300 extra3 
panel r -2 -150 -150 250 300 300 extra4 
panel tri -150 150 250 -250 150 150 -250 -150 150 extra5 
panel tri -150 150 250 -150 -150 250 -250 -150 150 extra6 
 
panel tri 150 150 250 250 150 150 250 -150 150 extra7 
panel tri 150 150 250 150 -150 250 250 -150 150 extra8 
panel tri 250 150 -150 150 150 -250 150 -150 -250 extra9 
panel tri 250 150 -150 250 -150 -150 150 -150 -250 extra10 
panel tri -150 150 -250 -250 150 -150 -250 -150 -150 extra11 
panel tri -150 150 -250 -150 -150 -250 -250 -150 -150 extra12 
end_surface 
 
start_surface 
name spinebottom 
#color all 1 0 0 0.5 
  
max_panels r 30 
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max_panels tri 50 
polygon both edge 
 
panel tri -250 -150 150 -250 -150 -150 -150 -250 150 
panel tri -150 -250 150 -150 -250 -150 -250 -150 -150  
panel tri -250 -150 150 -150 -150 250 -150 -250 150 
panel tri -150 -250 150 -150 -150 250 150 -150 250 
panel tri -150 -250 150 150 -250 150 150 -150 250 
panel tri 150 -250 150 150 -150 250 250 -150 150 
panel tri 250 -150 150 150 -250 150 150 -250 -150 
panel tri 250 -150 150 250 -150 -150 150 -250 -150 
panel tri 150 -250 -150 250 -150 -150 150 -150 -250 
panel tri 150 -150 -250 -150 -150 -250 -150 -250 -150 
panel tri 150 -150 -250 150 -250 -150 -150 -250 -150 
panel tri -150 -250 -150 -250 -150 -150 -150 -150 -250 
panel r +1 -150 -250 -150 50 300 
panel r +1 100 -250 -150 50 300 
panel r +1 -100 -250 -150 200 50 
panel r +1 -100 -250 100 200 50 
panel tri -100 -250 -100 -50 -250 -100 -100 -250 -50 
panel tri 50 -250 -100 100 -250 -100 100 -250 -50 
panel tri -100 -250 50 -100 -250 100 -50 -250 100 
panel tri 50 -250 100 100 -250 100 100 -250 50 
panel r +0 -100 -250 -50 -500 100 
panel r -0 100 -250 -50 -500 100 
panel r -2 -50 -750 -100 100 500 
panel r -2 -50 -750 100 100 500 
panel tri -50 -250 100 -50 -750 100 -100 -750 50 
panel tri -50 -250 100 -100 -250 50 -100 -750 50 
panel tri 50 -250 100 50 -750 100 100 -750 50 
panel tri 50 -250 100 100 -250 50 100 -750 50 
panel tri -50 -250 -100 -50 -750 -100 -100 -750 -50 
panel tri -50 -250 -100 -100 -250 -50 -100 -750 -50 
panel tri 50 -250 -100 50 -750 -100 100 -750 -50 
panel tri 50 -250 -100 100 -250 -50 100 -750 -50 
end_surface 
 
start_surface 
name transparent_spine_bottom 
action both ca t 
action both Cam r 
action both CamN1 r 
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action both CamC1 r 
action both CamN2 r 
action both CamC2 r 
action both CamN1C1 r 
action both CamN2C1 r 
action both CamN1C2 r 
action both CamN2C2 r 
action both CBP r 
action both CBP1 r 
action both CB r 
action both CBM1 r 
action both CBH1 r 
action both CBM2 r 
action both CBH2 r 
action both CBM1H1 r 
action both CBM2H1 r 
action both CBM1H2 r 
action both CBM2H2 r 
 
color both 0 0 1 0 
polygon both edge 
max_panels r 5 
panel r -1 -175 -249 -175 350 350 
end_surface 
 
  
start_surface 
name PSD 
action both all t 
color both 0 0 1 0.5 
polygon both edge 
max_panels r 10 
panel r -1 -150 220 -150 300 300 
panel r +1 -150 249 -150 300 300  
panel r +0 -150 220 -150 29 300  
panel r -0 150 220 -150 29 300  
panel r -2 -150 220 -150 300 29  
panel r -2 -150 220 150 300 29 
end_surface  
 
max_compartment 5 
start_compartment 



Appendix C  Smoldyn code: CaM activation 
 

199 
 

name PSD 
surface PSD 
point 0 220 0 
end_compartment 
 
start_compartment 
name spinehead 
surface synapticface 
surface extrasynaptic 
surface perisynaptic 
surface spinebottom 
surface transparent_spine_bottom 
point 0 0 0 
end_compartment 
 
#Define initial number of intracellular molecules within spine head 
compartment_mol 1200 Cam spinehead 
compartment_mol 300 CBP spinehead 
compartment_mol 2700 CB spinehead 
 
#Define reactions – REACTANTS -> PRODUCTS RATE 
reaction CamN1bind Cam + ca -> CamN1 179280 
reaction CamN1unbind CamN1 -> Cam + ca 4.15 
reaction CamC1bind Cam + ca -> CamC1 11288 
reaction CamC1unbind CamC1 -> Cam + ca 0.068 
reaction CamN2bind CamN1 + ca -> CamN2 179280 
reaction CamN2unbind CamN2 -> CamN1 + ca 0.8 
reaction CamC2bind CamC1 + ca -> CamC2 11288 
reaction CamC2unbind CamC2 -> CamC1 + ca 0.010 
reaction CamN1C1bind1 CamN1 + ca -> CamN1C1 11288 
reaction CamN1C1unbind1 CamN1C1 -> CamN1 + ca 0.068 
reaction CamN1C1bind2 CamC1 + ca -> CamN1C1 179280 
reaction CamN1C1unbind2 CamN1C1 -> CamC1 + ca 4.15 
reaction CamN2C1bind1 CamN2 + ca -> CamN2C1 11288 
reaction CamN2C1unbind1 CamN2C1 -> CamN2 + ca 0.068 
reaction CamN2C1bind2 CamN1C1 + ca -> CamN2C1 179280 
reaction CamN2C1unbind2 CamN2C1 -> CamN1C1 + ca 0.8 
reaction CamN1C2bind1 CamN1C1 + ca -> CamN1C2 11288 
reaction CamN1C2unbind1 CamN1C2 -> CamN1C1 + ca 0.010 
reaction CamN1C2bind2 CamC2 + ca -> CamN1C2 179280 
reaction CamN1C2unbind2 CamN1C2 -> CamC2 + ca 4.15 
reaction CamN2C2bind1 CamN2C1 + ca -> CamN2C2 11288 
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reaction CamN2C2unbind1 CamN2C2 -> CamN2C1 + ca 0.010 
reaction CamN2C2bind2 CamN1C2 + ca -> CamN2C2 179280 
reaction CamN2C2unbind2 CamN2C2 -> CamN1C2 + ca 0.8 
reaction CBPbind CBP + ca -> CBP1 99600 
reaction CBPunbind CBP1 -> CBP + ca 1.2 
reaction CBM1bind CB + ca -> CBM1 72210 
reaction CBM1unbind CBM1 -> CB + ca 0.0358 
reaction CBH1bind CB + ca -> CBH1 9130 
reaction CBH1unbind CBH1 -> CB + ca 0.0026 
reaction CBM2bind CBM1 + ca -> CBM2 72210 
reaction CBM2unbind CBM2 -> CBM1 + ca 0.0358 
reaction CBH2bind CBH1 + ca -> CBH2 9130 
reaction CBH2unbind CBH2 -> CBH1 + ca 0.0026 
reaction CBM1H1bind1 CBM1 + ca -> CBM1H1 9130 
reaction CBM1H1unbind1 CBM1H1 -> CBM1 + ca 0.0026 
reaction CBM1H1bind2 CBH1 + ca -> CBM1H1 72210 
reaction CBM1H1unbind2 CBM1H1 -> CBH1 + ca 0.0358 
reaction CBM2H1bind1 CBM2 + ca -> CBM2H1 9130 
reaction CBM2H1unbind1 CBM2H1 -> CBM2 + ca 0.0026 
reaction CBM2H1bind2 CBM1H1 + ca -> CBM2H1 72210 
reaction CBM2H1unbind2 CBM2H1 -> CBM1H1 + ca 0.0358 
reaction CBM1H2bind1 CBM1H1 + ca -> CBM1H2 9130 
reaction CBM1H2unbind1 CBM1H2 -> CBM1H1 + ca 0.0026 
reaction CBM1H2bind2 CBH2 + ca -> CBM1H2 72210 
reaction CBM1H2unbind2 CBM1H2 -> CBH2 + ca 0.0358 
reaction CBM2H2bind1 CBM2H1 + ca -> CBM2H2 9130 
reaction CBM2H2unbind1 CBM2H2 -> CBM2H1 + ca 0.0026 
reaction CBM2H2bind2 CBM1H2 + ca -> CBM2H2 72210 
reaction CBM2H2unbind2 CBM2H2 -> CBM1H2 + ca 0.0358 
 
output_files phys_CaM_example CaM example_ca 
 
#Define the output files 
output_file_number phys_noloss_Cam_new 35 
output_file_number phys_noloss_Cam_new_ca 35 
 
#Define the writing of output files 
cmd e molcount Cam_example 
cmd e molcountincmpt spinehead Cam_example_ca 
 
 
 


	University of Pennsylvania
	ScholarlyCommons
	Summer 8-12-2011

	An an Vitro and in Silico Investigation of the Role of Nmda Receptor Subtypes Following Mechanical injury
	Pallab Singh
	Recommended Citation

	An an Vitro and in Silico Investigation of the Role of Nmda Receptor Subtypes Following Mechanical injury
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Cover page
	Copyright page
	Acknowledgements and Abstract
	Table of Contents
	List of Tables
	List of Figures
	chapter 1
	chapter 2
	chapter 3
	chapter 4
	chapter 5
	Bibliography
	Appendix A
	Appendix B
	Appendix C

