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The Acquisition of Human B Cell Memory in Response to Plasmodium
Falciparum Malaria

Abstract

Immunity to Plasmodium falciparum (Pf), the most deadly agent of malaria, is only acquired after years of
repeated infections and appears to wane rapidly without ongoing exposure. Antibodies (Abs) are central to
malaria immunity, yet little is known about the B-cell biology that underlies Pf-specific humoral immunity. To
address this gap in our knowledge we carried out a year-long prospective study of the acquisition and
maintenance of long-lived plasma cells (LLPCs) and memory B cells (MBCs) in 225 individuals aged two to
twenty-five years in Mali, in an area of intense seasonal transmission. Using protein microarrays containing
approximately 25% of the Pf proteome we determined that Pf-specific Abs were acquired only gradually, in a
stepwise fashion over years of Pf exposure. Pf-specific Ab levels were significantly boosted each year during
the transmission season but the majority of these Abs were short lived and were lost over the subsequent six
month period of no transmission. Thus, we observed only a small incremental increase in stable Ab levels each
year, presumably reflecting the slow acquisition LLPCs. The acquisition Pf-specific MBCs mirrored the slow
step-wise acquisition of LLPCs. This slow acquisition of Pf-specific LLPCs and MBCs was in sharp contrast to
that of tetanus toxoid (TT')-specific LLPCs and MBCs that were vi vi rapidly acquired and stably maintained
following a single vaccination in individuals in this cohort. In addition to the development of normal MBCs
we observed an expansion of atypical MBCs that are phenotypically similar to hyporesponsive FCRL4+ cells
described in HIV-infected individuals. Atypical MBC expansion correlated with cumulative exposure to Pf,
and with persistent asymptomatic Pf-infection in children, suggesting that the parasite may play a role in
driving the expansion of atypical MBCs. Collectively, these observations provide a rare glimpse into the
process of the acquisition of human B cell memory in response to infection and provide evidence for a
selective deficit in the generation of Pf-specific LLPCs and MBCs during malaria. Future studies will address
the mechanisms underlying the slow acquisition of LLPCs and MBCs and the generation and function of
atypical MBCs.
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ABSTRACT

THE ACQUISITION OF HUMAN B CELL MEMORY IN RESPONSE TO
PLASMODIUM FALCIPARUM MALARIA

Greta E. Weiss

Susan K. Pierce

Immunity to Plasmodium falciparum (Pf), the most deadly agent of malaria, is
only acquired after years of repeated infections and appears to wane rapidly without
ongoing exposure. Antibodies (Abs) are central to malaria immunity, yet little is known
about the B-cell biology that underlies Pf-specific humoral immunity. To address this gap
in our knowledge we carried out a year-long prospective study of the acquisition and
maintenance of long-lived plasma cells (LLPCs) and memory B cells (MBCs) in 225
individuals aged two to twenty-five years in Mali, in an area of intense seasonal
transmission. Using protein microarrays containing approximately 25% of the Pf
proteome we determined that Pf-specific Abs were acquired only gradually, in a step-
wise fashion over years of Pf exposure. Pf-specific Ab levels were significantly boosted
each year during the transmission season but the majority of these Abs were short lived
and were lost over the subsequent six month period of no transmission. Thus, we
observed only an incremental increase in stable Ab levels each year, presumably
reflecting the slow acquisition of LLPCs. The acquisition Pf-specific MBCs mirrored the
slow step-wise acquisition of LLPCs. This slow acquisition of Pf-specific LLPCs and MBCs

was in sharp contrast to that of tetanus toxoid (TT)-specific LLPCs and MBCs that were
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rapidly acquired and stably maintained following a single vaccination in individuals in
this cohort. In addition to the development of normal MBCs we observed an expansion
of atypical MBCs that are phenotypically similar to hyporesponsive FCRL4" cells
described in HIV-infected individuals. Atypical MBC expansion correlated with
cumulative exposure to Pf, and with persistent asymptomatic Pf-infection in children,
suggesting that the parasite may play a role in driving the expansion of atypical MBCs.
Collectively, these observations provide a rare glimpse into the process of the
acquisition of human B cell memory in response to infection and provide evidence for a
selective deficit in the generation of Pf-specific LLPCs and MBCs during malaria. Future
studies will address the mechanisms underlying the slow acquisition of LLPCs and MBCs

and the generation and function of atypical MBCs.



Table of Contents

LI Ao 1= o1 (= Xi
LIST OF FIUIES ....oeeeeeeeceieneeneennseecreeeeseressasesssessssesssasesssessasessssssssesssassssesssasssssssnsessassssssssnassases xii
LiSt Of ADDIEVIAtIONS ...ccoceereiiieiieeeretieirireteisiecsesnensestassenessesesssesesssassssssassasssnsssssessssssasassssasens XV

Chapter 1: Introduction

1.1 OVEIVIEW...uiuiiiiiiicieitnstestessnss s e e snss s ssssssses e e s s sassnssasssssns s e sssassasssssssassns 1
1.2 Malaria burden and epidemiology......cccceeveeeeeerreenrreenreenecerenennecneeeseesssensesnesenane 1
1.3 P. falciparum life CyCle.........uuinuivrniiineinnnssinsninrinnsssessnssssssssssssssssssssssssssassssens 3
1.4 Current control strategies and the need for a vaccine........ccoeceeverevervneeceennee 5
1.5 Development of humoral memory in humans..........cooeeerveeveeecrecneecseecsseesnenns 7
1.6 The acquisition of immunity to malaria.........cccevcrevrrviinnnssncinnnninnnssssnisnnennes 12

1.7 The acquisition of antibodies and memory B cells in response to malaria..13
1.8 Hypotheses, g0als and OULIiNe.........coceeeveerrreecreerririnneeneeneeseeesseeessneesneessseene 19
Chapter 2: Materials and Methods

2.1 Ethics Statements

2.1.1 U.S. VacCine trialS.mmenecseisessinssessessnnsnsscss s s ssssessassssesssssssssssssens 22
2.1.2 U.S. blood bank SAmMPIES...cceecceererrenarecarensseecseeesseesseessseesenseessassssensns 22
2.1.3 Kambila, Mali cOhOrt stUdy...ccccceineenenssnssenisnnsnenssnssnnsnnssenssnsssssesssanses 22
2.1.4 Zungarococha, Peru CoONOrt StUdY....eeeeeerreeerreerrnnreseeesneesseessseessenssens 23

2.2 Study sites and cohorts

2.2.1 U.S. VacCineg trialS.ussessnsssssensesnessecsensssssessnsssssssssssssessssassassassassaesne 23
2.2.2 U.S. blood bank SampPles....cienerecrecaresnesnnecssesssesssensssessessessessssnssns 24
2.2.3 Kambila, Mali CONOIt StUAY.ccceeerueerreerrseecrennseenseensseeesenessnseesnnnsenssnenn 25
2.2.4 Zungarococha, Peru cohort stUdY....eeeeeerneeerreeereneesaeesneeceessseessenssnns 26

2.3 Sample collection

Vi



2.3.1 U.S. VACCINE trialS.ueeeeeesssnrreesssssneresssssranesessssnsssssssssssasssesssanesessssnsssssans 27

2.3.2 U.S. blood bank Samples.....cccciinerseenssnssensssnssnsssnssnsssssssssssesssnssssssssses 28
2.3.3 Kambila, Mali CONOIt StUdY..ccceeeceerceerssenssennssersnnnsesesssenessesssessesnsensn 28
2.3.4 Zungarococha, Peru cohort stUdY....eeeeeerneeerseereneesaeessneeceessseessenssnns 29
2.4 Vaccine compositions and schedules............ccuvveirinennnnnsnnnninnnsnesssnnineeenn 30

2.5 Assays and analysis

2.5.1 Research definition of Mmalaria..... e 30
2.5.2 Measurement of peripheral blood Pf parasitemia...c..cceeesnseeerssanenes 31
2.5.3 Identification of RBC polymorphisms......eeeimimminnimenes. 31
2.5.4 Stool and urine exam for helminth infection.......cueeevenenecneesnnnanne 32
2.5.5 Geographic information system data collection.......ccceceeeceeeneeccnens 32
2.5.6 Antibody detection by ELISA.......icveeeeceereeecseeesseecseenssencsencssnessanseessens 33

2.5.7 Memory B cell ELISPOT

2.5.7.1 MBC ELISPOT development......ceeeeeeeeceeeareseeesseesseensenenes 33
2.5.7.2 Memory B cell ELISPOT aS5aY...ccceererearecareearesseessseesseesseneses 35
2.5.7.3 Limiting dilution MBC ELISPOT ....ccecevtenemsumsnssunsnnsnsnsesnees 37
2.5.8 Phenotypic analysis and sorting of B cell subsets.....cccovcerreerrrercreneens 39
2.5.8.1 Conjugation of detection reagents ...cceeeeeecreensseecsenessennes 39
2.5.8.2 Basic B cell subset analysiS.....ceeeerreeerserreereseeeseneesneesneecsees 39
2.5.8.3 Detailed B cell subset analysiS....cceeeeernererresneeceessneessees 40
2.5.8.4 Plasma Cell aNalysSiS.ueicceeerseecreerrserrrenrssnressneesaeessseessenneesaeens 41
2.5.8.5 B cell SUDSET SOItiNG.cceeeereesseensseerreersrereseneesaeesnneessesnessneesnnne 41
2.5.9 B cell fractionation... s s sae s 41

2.5.10 Antibody profiling by protein microarray

2.5.10.1 Chip fabrication....ccccececsecsernsssssnsssessnenesssssseessenseessennnnes 42
2.5.10.2 Antibody profiling....ccccccscernenesrisnrecrsseeesseesssesssenenesssenens 44
2.5.10.3 Data normalization procedure....nenneneceesnnecssennnes 44

2.5.10.4 Gene ontology and Pf stage-specific expression analysis
of the IMMUNOEZENIC ProteiNS...ciirerrrerrerresreseerecereseaneenne 45

Vi



2.5.11 Data management and analysSiS...c.e eeieererrerneeseensseesseensseessennseenn 46

Chapter 3: Validation and optimization of the memory B cell ELISPOT assay
3.1 INErOdUCHION......cc e e er e s er s ssn s carsssaeesaeeesseesseesssessssnsssnsamanesananen 48

3.2 Results

3.2.1 Quantifying TT-specific MBC by flow cytometry.... e eenseenreeenenes 49
3.2.2 Quantifying TT-specific MBC by limiting dilution ELISPOT......ccceeeu. 51
3.2.3 Increasing the efficiency of the MBC ELISPOT as$ay...cccceeersseersensenns 51
3.2.4 Establishing the selectivity of the modified assay for MBCs........... 52
3.2.5 Detecting Pf-specific MBCs in individuals living in malaria endemic
=T L 53
3.3 DiISCUSSION....ceiiieiitniissar it tssassses s s essas e sae s ass e sassasssasssessss sasassssssnssassssasasans 55

Chapter 4: In malaria-naive individuals P. falciparum-specific memory B cells and
antibodies develop efficiently in response to subunit vaccination with CpG as an
adjuvant

0 R T3 o Yo 10t 1 o o 58

4.2 Results

4.2.1 The acquisition of MBCs in naive individuals in response to
A2 Lol g - 1 o O 60

4.2.2 The acquisition of MBCs mirrors and predicts Ab responses in
malaria-naive VacCing reCiPieNtS . i eeeeernernseeerneesseesseeseeessnsnsees 65

4.2.3 Vaccination influences MBCs and PCs independently of antigen
SPECITICITY aeeerreerarerseerssenesenersnesssasssaeesansesasessssesssasssnsesnasessessssasssensssssnases 67

8.3 DiSCUSSION..ceeeeeeerreerereenseessenssesssssssssresssssnssesassessssssssssessssssssssessasssessssssasessssenssensses 69

Chapter 5: The design of the longitudinal study in Kambila, Mali and cohort
description.

L0 I 1434 o Yo 11Tt o oY TS 75

5.2 Results

5.2.1 Description of the cohort and analysis of confounding factors ....75
viii



5.2.2 Analysis of confounding factors....ceeeeecneerereecreneecnnesseecseeesseesenenes 77
5.3 DiISCUSSION......ccccceeeecrreeecreeeesnersesersessnsesssnsanessnasesensessensnssnnessnasessnassssnsessasssansens 84

Chapter 6: A prospective analysis of the antibody response to P. falciparum before and
after the malaria season by protein microarray

(30 141 4o o [T o 4o T o TN 87
6.2 Results
6.2.1 Validity and reproducibility of the protein microarray assay.......... 88

6.2.2 Analysis of Pf-specific antibody profiles before and after the malaria
LY== 1 o o 90

6.2.3 Identifying Pf-specific Ab profiles before the malaria season that
correlated with subsequent protection from uncomplicated
MAlATTAu e ceeieeeninesrrsnsseesneses s asaseses s assasssnssssssssasssnsssssassssnsssssssnsssasns 926

5.3 DiSCUSSION....cereereererereeireereereseenssessenssesssssssssenesessrsssrassessssssssssessesstsssesssossssssssssnsans 100

Chapter 7: P. falciparum-specific MBCs and Abs increase gradually over years with
cumulative exposure in an area of intense seasonal Pf transmission

28 434 o Yo 11 Tt o oY o T 109
7.2 Results

7.2.1 Malaria immunity is acquired gradually despite intense exposure to
the Pf Parasiteu s nsmsnsmssnssssssssmsssnes 109

7.2.2 Analysis of Pf-specific and TT-specific MBCs and Abs in Pf-
uninfected children and adults before the malaria season............ 111

7.2.3 Longitudinal analysis of the Pf- and TT-specific MBC and Ab
responses two weeks after acute malaria and after a prolonged
period of decreased Pf @XPOSUIE ...ueeeceerereeeseneesseesseessesesseesssassnnes 117

7.2.4 AMA1- and MSP1-specific MBC frequencies and Ab levels and
MAIATIA FiSKuriiriirrrrnesrsssniieesnssessnsssesssssnsssssssssanssnssssssasssnssnssssssnnsens 120

7.3 DiSCUSSION....ccccceeeriresrneeenesessseresssnsesesesssssnsanessssssnsssasasene sasasanesassanasssessnsnsanannes 121
Chapter 8: Atypical memory B cell expansion in individuals in the Kambila cohort

b2 280 I 1 Yo 11 ot 4 oY TN 131



8.2 Results

8.2.1 Atypical MBCs are greatly expanded in individuals in malaria
ENUEMIC ArBAS.cirreererererrarecsneesanesseesssesssensssesssesssssessssesssessssssssasssnsssnanes 135

8.2.2 Class switching in atypical MBCs in individuals in malaria endemic

8.2.3 Longitudinal profiling of B cell subsets in children before and after

ACUTE MAlaridu ittt aaens 147

8.3 DiSCUSSION...ciuiuiiiiiiiiicsiesie st sseserssessssssssssssses et sassnsssssnssnssassnssnnane 149
Chapter 9: DiSCUSSION.....ccucciineirierceereceesenareseressseessensssnssesssssasesssssssessssnssssanssasssnsesssensssnsses 154
BiblIOBrapRY....cccceie et creeerseecrnaee st eesseesrreeesaesesseesasaesssesssasssnessnasesnssensee ssaessnsssnasennne 184



List of Tables

Table 3.1 Efficiency of MBC ELISPOT with PSC stimulation...........ccccevvvinniininennsncsensninns 51
Table 4.1 Sample size and mean vaccine-specific MBC percentage by vaccine type, CpG
group, and StUAY day. ...cccccviiiiiiniiicenceere s csnseeceessesssessssne e seesssasssnsssnasssasssnasesaeesssness 61
Table 5.1 Baseline clinical and demographic characteristics of entire cohort, according
TO QB BrOUP. ccociceieeiiiicrere i creaerere s saresesessss snsesesessssase sesssnsssnasssesssnsnnass sessnssnsassssasnsnsnnane 76
Table 5.2 Frequency of red blood cell polymorphisms, according to age group............ 78
Table 5.3 Malaria outcomes for the entire cohort, by age group......ccccceeeevcrrvcerceennen. 79

Table 5.4 Univariate analysis of baseline characteristics of children aged 2-10 years,
stratified by hemoglobin (HD) type.......u i eeviiveinceeenrrceeeneeceeeseecsseessasesneesasesssnnnes 82

Table 6.1 Gene ontology classifications overrepresented in the immunogenic Pf
proteins relative to the entire Pf MiCroarray........cceeecreeerseenseeesseresencesaeessnsessesesseesseens 92

Table 6.2 Baseline characteristics of children aged 8-10 years classified as susceptible
(21 malaria episodes) and protected (no malaria episodes) .......cccceerereerrvecceererennee 97

Table 6.3 Proteomic features of Pf proteins associated with protection from

uncomplicated Malaria.......ecciiici i e e s snessna e 99
Table 7.1 Baseline characteristics of MBC subset by age group......cccccceveeevrevneecseennne 110
Table 7.2 Malaria outcomes for the MBC subset, by age group......ccccceeceeeceeerecreecneens 112
Table S1. Pf proteins identified as immunogenic by protein microarray.........cccceuuu..e. 171

Xi



List of Figures
Chapter 1
Figure 1.1 The Plasmodium falciparum life cycle..........urverecrrceercerrenecreeee e csnneens 3

Figure 1.2 Clinical immunity to malaria is only acquired after repeated
INFECHIONS....e it sen s e snsseessnass e snssssasnansssnesans 12

Chapter 3
Figure 3.1 The frequency of TT-binding MBCs in vaccinated U.S. individuals.......... 50

Figure 3.2 The addition of IL-10 to PSC increased the efficiency of MBC
differentiation to PC by 10 fold. ......ccccevervnrrrrernreenneennseesrenessneensseesssesssesesencens 52

Figure 3.3 Testing the selectivity of the PSC+IL-10 stimulation cocktail for MBCs..53

Figure 3.4 The frequency of antigen-specific MBCs by LD in PBMCs of Pf-exposed

Figure 3.5 Numbers of total IgG* and antigen-specific ASC in bulk assay cultures of
PBMC from malaria exposed adults.........cccevriirerecsrrnccnsseenssssnnnneseesennsecanenns 54

Figure 3.6 Correlations between the frequencies of antigen-specific MBCs
determined by LD and antigen-specific ASC by bulk assay cultures............. 55

Chapter 4

Figure 4.1 MBC are readily induced in malaria-naive individuals upon vaccination
and CPG 7909 enhances the kinetics and magnitude of the AMA1-C1- and
MSP1,4,-C1-specific MBC response to vaccination.........cccveeennnssessnnisensnnnennens 62

Figure 4.2 The AMA1-C1- and MSP1,,-C1-specific Ab response mirrors the
corresponding MBC response and is enhanced by CPG 7909. .........c........... 65

Figure 4.3 The level of Ag-specific MBC at the time of booster vaccination predicts
the Ab response 14 days later.........eeieriineeneenneeineeieseeneesssesssessssssssssessenes 66

Figure 4.4 At steady-state, levels of Ag-specific MBC and Ab are highly
COMTRIAtM..... et sesssass s sas srass s e sas senassssssnssanssnassnssnssans 67

Figure 4.5 Vaccination appears to have an Ag-independent effect on the total IgG"
IMIBC POOL.....eceiceer e ccrer s crnaeeceeeessesssessnasssas ssn sesssn s nsesasessaessaeesssnssnnsssnnananns 68

xii



Chapter 5

Figure 5.1 Number of clinical malaria episodes per day from May 2006 to Jan 2007
for the Whole CONOIt.......... et eee e e ssasee s sessanaeessnasneans 79

Figure 5.2 Kaplan-Meier estimates of the time from study enrollment to the first
episode of malaria in children aged 2—10 years......cccccccerruerirernrrernenresnsennnns 81

Figure 5.3 Distribution of study participants and sickle cell trait (HbAS) carriers

who are study participants in the entire Kambila village population........... 83
Chapter 6
Figure 6.1 Validity and reproducibility of the protein microarray assay..........c........ 89
Figure 6.2 Gene ontology classification of the 491 immunogenic Pf proteins......... 91
Figure 6.3 Impact of age and Pf transmission on Pf-specific Ab profiles................... 95
Figure 6.4 Pf-specific Ab profiles associated with protection from malaria............. 98
Chapter 7
Figure 7.1 Malaria immunity is acquired gradually despite intense exposure to the
Pf ParaSite....uccieicreeneecreenseeireeerseesreeresssessasesssaessnssssasesassssssesssssssessssnseessssssssnsases 111
Figure 7.2 The Pf-specific MBC and long-lived antibody compartments expand
Bradually With Qge.....cceeeeerireieiriceeceenseeceaeecaeeeseesseessseeesenessnssssasesssanseessens 114
Figure 7.3 The size of the total IgG* MBC compartment expands gradually with
= 116
Figure 7.4 Longitudinal analysis of the Pf- and TT-specific MBC and Ab
PSP ONSE.ccueeeeereriseaeraesessnreresessssnsesesssssnsanesassssnsssesssnsnsessssssnsasesessssasesesssnsasess sasanns 118
Chapter 8
Figure 8.1 Flow cytometry gating strategies for B cell phenotyping.......cccccccuveunene 136

Figure 8.2 Atypical MBCs are significantly increased in Malian as compared with
U.S. VOIUNTEETS....cceeeerreirceereeene e ccnneeseessessssnesassessnsssenasssnssessessssassnsssnnsasnns 137

Figure 8.3 Inhibitory and tissue-homing receptor expression is increased and lymph
node-homing receptor expression is decreased on atypical MBCs relative to

ClasSICAl IMIBCS.......cccceeeceercnnnecancnnesssensssnesssesssnsssnasessessssnsssnnsssnssenassnsssnassssssnanas 139
Figure 8.4 Atypical MBCs increase with increased Pf transmission in individuals in
two endemic transmission SettiNgS......cccceeeerrneericrerensrrenssnerecseerecseenessnnnesens 140



Figure 8.5 Comparison of atypical MBC percentages in Peruvian individuals
separated by reported prior Pf-malaria......ccceoverveeervervneenneenssencsenesseessenneenne 141

Figure 8.6 The percent of atypical MBCs is larger in children with persistent
asymptomatic P. falciparum parasitemia as compared with parasite-free
Lol 11 Lo 1= 3 RSP 143
Figure 8.7 The IgG expression of atypical and classical MBCs is similar.................. 145

Figure 8.8 The percentage of IgG" atypical MBCs increases with increased Pf
transmission in individuals in two endemic transmission settings............. 146

Figure 8.9 Acute malaria alters B cell subset composition in the periphery during
CONVAIBSCEONCE......uceiiirctssiisssas s sssnssssssssssssss s s s sessnssas sassassnssansssassases 148

Figure 9.1 Model for the gradual acquisition of humoral immunity to blood stage P.
FAICIPATUM. ... ceeeeeecreee e sreeeesaesssanesnasesassssssesasassssesssasssnesnasennens 162

Xiv



List of Abbreviations

Ab antibody

Ag antigen

AMA1 apical membrane antigen 1 of Plasmodium falciparum

AMA1-C1 apical membrane antigen 1 of Plasmodium falciparum clinical grade

ASC antibody secreting cell

CIDR1 a cysteine-rich interdomain region l1a of the variant surface antigen of P.
falciparum

CSsP circumsporozoite protein of Plasmodium falciparum

BCR B cell receptor

FCRL4 Fc receptor-like-4

iRBCm infected red blood cell membrane

EBA1 erythrocyte binding antigen 1 of Plasmodium falciparum

gam gametocyte

HIV human immunodeficiency virus type-1

Ig immunoglobulin

IgD immunoglobulin delta

IgG immunoglobulin gamma

IgM immunoglobulin mu

iRBC Pf-infected red blood cell

KLH keyhole limpet hemocyanin

LD limiting dilution

LLPC long-lived plasma cells

LSA1 liver stage antigen 1 of Plasmodium falciparum

MBC memory B cell

XV



MSP1
MSP1,,-C1
MSP2
Mtb
mero
ODN
PAMP
PBMC
PC
PDC
PSC
PSC10
Pf
Pfs260
PfSE
RBC
RAP1
SAC
schiz
SIvV
SLPC
SP
spor
TLR

TRAP

merozoite surface protein 14, of Plasmodium falciparum
recombinant merozoite surface protein 14, of P. falciparum clinical grade
merozoite surface protein 2 of Plasmodium falciparum
Mycobacterium tuberculosis

merozoite

oligodeoxynucleotide

pattern-associated molecular protein

peripheral blood mononuclear cells

plasma cell

plasmacytoid dendritic cell

pokeweed, SAC and CpG

pokeweed, SAC, CpG and IL-10

Plasmodium falciparum

a sexual stage antigen of Plasmodium falciparum
Plasmodium falciparum schizont extract

red blood cell

rhoptry-associated protein of Plasmodium falciparum
Staphylococcus aureus Cowen

schizont

simian immunodeficiency virus

short-lived plasma cells

sulphadoxine—pyrimethanine

sporozoite

toll-like receptor

thrombospondin-related adhesive protein of Plasmodium falciparum

XVi



troph trophozoite
TT tetanus toxoid

TT-b/SA-APC tetanus toxoid conjugated to biotin bound to streptavidin-conjugated
allophycoerythrin

VvV vaccinia virus

VZV varicella-zoster virus

XVii



Chapter 1: Introduction

1.1 Overview

Malaria is a major world health concern today, in spite of existing preventative
measures. This is partially due to the failure to deliver existing anti-malarial measures to
affected populations, and partially due to vector and parasite escape from these anti-
malarial measures. A vaccine is widely regarded as a critical goal in malaria-control, but
barriers to reaching this goal include identifying immune parameters defining protection
from malaria and how these immune parameters are acquired over time in response to
natural infection and determining how malaria infections might alter the immune
system. Focusing on humoral immunity | present data addressing these issues, including:
the identification of the specificity of protective antibody (Ab) responses (Chapter 6); a
description of the development of Abs and memory B cells (MBCs) in response to
subunit malaria vaccines in malaria-naive individuals (Chapter 4) in contrast to the
development of Abs and MBCs to natural malaria infection (Chapter 7) and the
discovery of the presence of large numbers of atypical MBCs in individuals in malaria

endemic areas (Chapter 8).

1.2 Malaria burden and epidemiology

Plasmodium falciparum (Pf) infections are the most deadly of the four species
that cause malaria in humans, resulting in over 500 million cases of malaria and over

one million deaths annually (157), with 1.38 billion people living in areas of stable Pf



transmission (98). In addition to the human toll, there is a significant economic toll in
countries with a heavy malaria burden, as malaria can account for up to 40% of public
health expenditures, 30% to 50% of inpatient hospital admissions, 60% of outpatient
health clinic visits and can significantly impact the Gross Domestic Product of affected
countries (157). Although approximately half of the world’s population, about four
billion people, is at risk of malaria, countries in Sub-Saharan Africa bear the brunt of the
disease, with approximately 90% of deaths from malaria occurring in African children
under the age of five(151). It is estimated that on average African children have 1.6-5.4
episodes of malaria each year, with 20% of all childhood deaths in Africa due to malaria.
This means that every 30 seconds a child in Africa dies of malaria (157). Although
malaria can be prevented by anti-malarial prophylaxis and uncomplicated malaria is
curable with anti-malarial drugs, the infrastructure is not in place to deliver anti-
malarials to affected populations. In addition, Pf-drug resistance inevitably emerges
creating a constant demand for new drugs. Similarly, insecticides and insecticide-treated
bed nets can be effective control measures but again the infrastructure is not in place to
provide these consistently to all individuals at risk, and there is the predictable
emergence of Anopheles insecticide resistance. Malaria disproportionately affects
impoverished people in rural areas who either cannot afford treatment or have limited
access, or a complete lack of access to health care. Thus, in addition to anti-malarial
drugs and insecticides, a malaria vaccine is widely viewed as a priority in the control of

malaria.



1.3 P. falciparum life cycle

The Pf-life cycle within the human host is complex and tightly regulated. Pf is
transmitted by the infected female Anopheles mosquito, which transfers a small number
Pf sporozoites from her salivary glands to the human (Fig 1.2, A) as she takes a blood
meal. Upon contact with human skin the sporozoites travel to the draining lymph node
where CD8+ T cells are primed (37) (B(a)). Sporozoites also burrow through tissue until
reaching the bloodstream, which carries them to the liver (B(b)). Once inside the liver,
sporozoites invade hepatocytes where they expand dramatically in a clinically silent
stage of infection, with each sporozoite giving rise to tens of thousands of merozoites.
At this point the parasites lyse the hepatocytes, leaving the liver clear of sporozoites,

and enter the blood stage of infection as greatly expanded numbers of merozoites (C).
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During this stage of infection the parasites invade erythrocytes, where they digest
hemoglobin for energy to replicate, then lyse their host erythrocytes and invade new
erythrocytes, replicating exponentially in a 48 hour cycle (D). The blood stage is the
symptomatic stage of infection typically causing headache, chills, sweating, and fever in
uncomplicated malaria. During the blood stage of infection in a poorly understood
process male and female gametocytes form (E), which are taken up by a mosquito
during a blood meal (F). The gametocytes join in the mosquito midgut (G), differentiate
into haploid sporozoites which travel to the mosquito’s salivary glands and are
transferred to another human during a blood meal (H) to complete the parasite’s life-

cycle (192).

A number of features of the parasite’s life cycle within the human host appear to
have evolved to evade the immune system. Firstly, only a small number of sporozoites
are initially introduced into the host (as few as ten to fifteen sporozoites). The transport
of merozoites from the liver to the bloodstream is accomplished inside hepatocyte-
membrane derived vesicles, in which the parasite inhibits the exposure of
phosphatidylserine (181) which is thought to have a role in mediating phagocytosis
through protein kinase C activation (128). Thus, the parasite avoids antigen exposure,
both by keeping contained within host membrane, and by controlling, to some extent,
the composition of that membrane, decreasing the risk of phagocytosis. Merozoites
invade and replicate inside erythrocytes, which lack MHC class | allowing parasitized red

cells to evade CD8 T cell recognition. Merozoites also use multiple invasion pathways
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mediated by multiple different receptors such that Ab responses to any one receptor do
not block invasion (43, 189). Pf-infected red blood cells (iRBC) express the Pf protein
PfEMP1 on their surface, allowing iRBC to sequester to blood vessel endothelium in the
heart, brain, lung, kidney, subcutaneous tissue, and sometimes placenta, thus evading
clearance by the spleen. PfEMP1s are encoded by the var gene family which has ~60
members, and although most parasites during an infection will express the same var
gene product, the predominantly expressed PfEMP1 can change rapidly during infection,
assisting iRBC in evading detection by the immune system (reviewed in (189)). The
individual and cumulative effects of these mechanisms on the development of

immunological memory to Pf are not fully known.

1.4 Current control strategies and the need for a vaccine

Current malaria control strategies depend on use of insecticides and drug
therapies both as a prophylaxis and as treatment for infection, but the difficulty in
expanding these measures to all malaria-endemic areas and maintaining this coverage
as well as the growing resistance to these protective measures highlights the need for
vaccine development. Both vector control and anti-parasite drug therapy are limited by
the acquired resistance of mosquito to insecticides and parasites to antimalarials in
addition to the inadequate infrastructure to implement these measures. Vector control
includes indoor residual spraying (IRS) with insecticides including DDT and use of long-
lasting insecticide-treated bed-nets (LLINs). Drug therapies involve mass drug

administration (MDA) and intermittent preventive therapy (IPT)(75).



Mosquitoes and Pf parasites have both developed resistance to the respective
treatments and resistance has spread rapidly and widely. DDT resistance developed less
than two years after its introduction and now a number of mutations causing resistance
through multiple mechanisms have been observed in the Middle East, India, Southeast
and Central Asia, South-America and Africa (75), in more than 50 species of Anophiline
mosquitoes(99). In addition, other health risks of DDT must be considered (reviewed in
(195)). On the front of drug therapies, Pf has rapidly developed resistance to quinine,
chloroquine, amodiaquine, sulphadoxine—pyrimethanine (SP), and may have acquired
resistance to artemisinin (109). As an illustration of the rapidity of the acquisition of
drug resistance in some cases, SP had a useful life of only five years in Thailand (178). Pf
resistant to SP, originally reported in southeast Asia and South America, quickly spread
to east and central Africa in the mid 1990’s (126), chloroquine resistant Pf has spread to
almost all malaria-endemic countries, and by 2001 choloroquine resistant Pf accounted
for 25%-50% of all malaria cases in Africa (9), and multidrug resistant Pf has emerged in
some areas, notably southeast Asia (204). A 12 year study in Papua New Guinea found
that while using combinations of drugs increases clinical effectiveness, it does not
decelerate growth of drug resistance (153). Thus, the difficulty in delivering insecticides
or antimalarials to affected populations, the emergence of mosquitoes resistant to
insecticides and increasing drug resistance in Pf highlight the importance of developing

a vaccine.



1.5 Development of humoral memory in humans

The phenomenon of immunological memory is a fundamental property of the
adaptive immune system and is the basis for all vaccine development. For most
vaccines, neutralizing Abs play a critical role in protective immune responses (161), and
thus understanding the mechanisms that underlie the generation and maintenance of
humoral memory is of great importance. Long-term humoral immunity is encoded in
MBCs and long-lived plasma cells (LLPCs) that are generated during the primary immune
response in germinal center reactions (46, 47, 130). LLPCs are terminally differentiated
cells that reside in the bone marrow constitutively secreting Ab and thus are responsible
for the long-term maintenance of serum Ab levels which provide a critical first line of
defense against reinfection (87). MBCs express somatically hyper-mutated and isotype
switched B cell receptors (BCRs) and mediate recall responses to reinfection by
proliferating and differentiating into plasma cells (PCs) resulting in rapid, high-titer, high
affinity secondary Ab responses. Despite the central role of MBCs in protective immune
responses, little is understood about how they are acquired in naive individuals in
response to antigen exposure and what factors influence this process. Efforts to
develop new vaccines would benefit from a more detailed knowledge of the

mechanisms underlying the acquisition of these cells.

Although the longevity of PCs and MBCs is a central feature of humoral memory,
our understanding of the mechanisms that underlie the maintenance of these cell

populations for the lifetime of an individual is only partial. The long-lived nature of LLPCs



in humans has been inferred from the stability of serum Ab levels induced by
vaccination or infection. Virus-specific Ab levels were shown to be maintained for
longer than 60 years after smallpox vaccination (48, 73, 95, 135), and the reported half-
lives of Ab responses following infection ranges from 50 years for varicella-zoster virus
(VZV) to over 200 years for measles and mumps viruses (12). These vaccines also induce
stable, long-lasting Ab levels in the majority of individuals vaccinated, for example, more
than 90% of those vaccinated 25-75 years prior to testing had substantial immunity to
vaccinia (95). Typically, for the live-attenuated vaccines, vaccination causes a spike in
Ab titers followed by a decrease in titers over one to three years, after which Ab titers
remain relatively constant. For some vaccines Ab levels continue to decline but at a
much slower pace, over decades with a half-life closer to ten to twenty years, as in the

case of tetanus and diphtheria vaccination (46, 48, 73).

It remains an open question as to whether LLPCs are inherently long-lived or
whether LLPCs are replenished by MBCs that proliferate and differentiate in response to
persistent (216) or intermittent exposure to antigen, and/or through non-specific by-
stander activation (e.g. cytokines or TLR ligands) (30). Based on data from humans, it
seems likely that LLPCs are long-lived as Ab titers to tetanus, measles, mumps and
rubella have been shown to persist at protective levels for years after rituximab
treatment, which depletes CD20" cells, thus depleting naive B cells and MBCs without
depleting PCs (121), suggesting that MBC contributions to LLPC persistence are slight

over time. As we might expect since MBCs differentiate into PCs, accounting for the
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high titers of short-lived Abs during recall responses, recall responses after rituximab
treatment are inhibited in both non-human primates (86) and in humans (196). The
correlation observed between tetanus-, measles-, smallpox-, anthrax-, hepatitis B-, and
rotavirus-specific MBCs and their respective Ab levels at steady state suggests that
MBCs are ultimately responsible for replenishing PCs (30, 48, 64, 137, 165). Antigen-
specific MBC levels and Ab titers were also shown to correlate after acute infection with
measles, mumps and rubella, but not vaccinia (12). The story is not completely clear-cut
however as MBC levels and Ab titers did not correlate in other studies for hepatitis B

(199), varicella-zoster virus, EBV, tetanus and diphtheria (12).

Another key question is the role of antigen exposure in maintaining
immunological memory in humans throughout the human life-span. MBCs specific for
several pathogens after vaccination have been found to be remarkably stable in the
absence of antigen exposure and the role of attenuated live or inactivated vaccine
formulation is not entirely clear either with regard to the ability to induce long term
immunity or MBCs. MBCs specific for pathogens following vaccination with live
attenuated vaccines including vaccinia, measles, mumps and rubella, and inactivated
vaccines including diphtheria, and tetanus as well as Epstein-Barr virus and varicella-
zoster virus infection, were found to be remarkably stable in a recent cross-sectional
analysis of adults (12). Inactivated tetanus and diphtheria vaccines induced shorter-
lived antibody responses, however, the pathogen for which there was the most

evidence for re-exposure to antigen following vaccination, varicella-zoster virus, had the
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shortest-lived antibody response of the viruses studied. Interestingly, in the case of
cholera the inactivated oral vaccine Dukoral® was shown to be effective at preventing
severe diarrhea in large field trials in Bangladesh (40, 41), while the live attenuated oral
cholera vaccine Orochol® did not show significant protection in a large field trial in
Indonesia (167). There are several examples of the maintenance of Ab-mediated
immunity in the absence of antigen exposure including immunity to measles on the
Faroe Islands, yellow fever in the U.S., polio in remote Eskimo villages (reviewed in (46)),
as well as the detection of antigen-specific MBCs more than 50 years after smallpox
vaccination (48). Vaccinia-specific MBCs were detected over 50 years after smallpox
vaccination and represented approximately 0.1% of total circulating MBCs, remaining
unchanged at this percentage from 20 to 60 years post vaccination (48). The presence
of these MBCs was correlated with a robust recall Ab response upon re-vaccination.
Unlike PCs, which are terminally-differentiated, MBCs may be maintained through
homeostatic proliferation (133), possibly through exposure to polyclonal stimuli (30).
Our current understanding of the acquisition of B cell immunity in humans is
largely derived from studies of humans after vaccination due in large part to the
difficulty in studying natural infections in humans when we cannot predict who within a
population will be infected with a given pathogen at a given time. Although much can
be learned from studies of the response to vaccination, the relative complexity of
infection, where immune cells are typically stimulated by a panoply of PAMPs and

multiple antigens and exposed to infected cells and the by-products of dead infected
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cells, could significantly impact the development of immunity. Knowledge of the
individual and cumulative effects of signaling through various receptors, antigen load
and persistence, the cell types activated and the outcome of this activation on B cell
differentiation in infection in response to various pathogens would give a much greater
understanding of the requirements for or detriments to inducing long lived memory.
While we still do not understand the factors that contribute to determining long- versus
short-lived Ab responses, studying the response to vaccines allows us to gain some
understanding of the development of long-lived MBCs and LLPCs. However, studying
the differences between the responses to vaccines and those induced by infections
could provide valuable information on the elements important for the induction of long-
lived humoral immunity. Thus far, only three studies have analyzed the progression of a
humoral response after infection and these were in individuals who presented with
acute Vibrio cholerae infection, a pathogen that elicits long-term protection against
subsequent disease in endemic areas, and found in the majority of patients, IgA and IgG
MBCs specific for two antigens; cholera toxin B and toxin-co-regulated pilus major
subunit A, increase from day two to thirty, and remain stable at this level for one year
with no contraction (97, 112, 120). As will be shown in Chapter 7, this rapid acquisition
of stable B cell immunity differs dramatically from that observed in malaria infections.
Since at this point even some of the most basic questions surrounding the development
of long-lived humoral immunity have not been addressed, | feel that studying the

outcome in a highly complex disease such as malaria could ultimately offer important

11



insights into the factors that determine long-lived humoral memory. The study in

Kambila presented here is the first prospective longitudinal study of MBC development

in response to any natural infection.

1.6 The acquisition of immunity to malaria

Clinical immunity to Pf malaria develops gradually over years of repeated

exposures. It is well known in medium to high transmission areas that malaria is a

disease of children and pregnant women. Infants begin to get malaria around six

months of age when maternal Abs start to wane, and during the first few years of life

are at the greatest risk of severe malaria, manifested as severe anemia, acidosis or

cerebral malaria. Children remain susceptible to uncomplicated malaria until about ten

years of age, and adults remain susceptible to asymptomatic parasitemia throughout life

(Fig 1.2). Although some partially-immune adults do have malaria episodes, these are
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Figure 1.2 Clinical immunity to
malaria is only acquired after
repeated infections. Representa-
tive data from a number of
studies in Kilifi District on the
coast of Kenya showing prevlence
by age in relation to maximum
prevalence recorded of severe or
life-threatening malaria (green),
mild or uncomplicated malaria
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sitemia (red) is shown. Children
age five and under are at greatest
risk for severe malaria, and
remain susceptible to uncompli-
cated malaria until approximately
ten years of age. Adults remain
susceptible to asymptomatic
parasitemia throughout life.
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typically less severe and less frequent than episodes in children. In addition, adults who
have achieved clinical immunity to Pf malaria who migrate to non-endemic areas have
been empirically observed to become clinically susceptible after a one to two year time
period. Sterile immunity to Pf has not been documented following natural exposure to
the parasite. The pathologies and symptoms of severe malaria and uncomplicated
malaria are different and resistance to these disease states is likely mediated via
different immune mechanisms. My thesis will focus on the acquisition of B cell immunity

to uncomplicated malaria.

1.7 The acquisition of Abs and MBCs in response to malaria

In 1961 Cohen et al. (42) conducted a study in humans, passively transferring
purified 1gG from malaria immune Gambian adults to children with severe malaria. As
controls they gave children no treatment, IgG purified from malaria-naive donors in the
UK, or IgG-free serum from Gambian adults. No anti-malarial drugs were given and
fever and parasitemia were monitored. Fever and parasitemia decreased dramatically
in those given IgG from malaria-immune adults, while parasitemia decreased only
slightly and insignificantly in all other groups of children, giving the first conclusive
evidence that Abs play a key role in protection from malaria (42). Two human adoptive
transfer studies followed in 1962 (67), and in 1963 where 1gG from West African adults
was given to East African children, and a fourth study 30 years after the initial
manuscript, in 1991 (170) where West African 1gG was given to Thai patients. In all

cases, regardless of the geographical location or age of the patients, parasitemia and
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malaria symptoms decreased, and in the most recent study it was shown that
parasitemia decreased as rapidly in 1gG treated patients as it did in drug-treated

patients (170).

Several studies indicate that Abs specific for Pf proteins are generated
inefficiently and inconsistently and lost rapidly in the absence of ongoing exposure to
the parasite (reviewed in (129)). Many studies report Ab titers to Pf antigens in the
days following malaria, but this Ab decreases in titer rapidly to the point of being
undetectable in plasma weeks after malaria, suggesting that the entirety of, or the vast
majority of, these Ab responses are due to SLPCs rather than LLPCs. A study in Kenya
measured IgG to five Pf antigens, MSP1i5, MSP2 type 1, MSP2 type 2, EBA175, and
AMA1, and showed that the half-lives of these responses were 9.8 days for IgG1 and 6.1
days for IgG3, regardless of antigen specificity, with Abs undetectable or nearly
undetectable in individuals at six weeks (122). A four-year study in Sudan showed that
Pf-RAP1 Ab was detectable only during and immediately after malaria infections and
measureable Abs lasted only one to two months, although within an individual,
responses increased in magnitude with repeated infections, suggesting a memory
component (82). A study in The Gambia reported half-lives of 39.4 days for IgG1 and
32.6 days for IgG3 for Pf~AMAL and Pf-MSP2, and further showed that Abs of these two
specificities declined more slowly in children with persistent parasitemia, and in older
versus younger children, with children four to six having mean half-lives of 52 and 47

days for 1gG1 and IgG3 respectively, and children aged three and older having a mean
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half-life of 16 days for both isotypes for both antigens (8). The rapid decline of Pf-
specific Abs described in some studies may be explained by extrapolating the kinetics of
Ab titers observed in vaccine trials where antigen-specific Ab levels rapidly increase and
then rapidly decrease following immunization, as the subjects in these studies were
assayed immediately following malaria (8, 122). However, the repeated reappearance
and complete disappearance of Ab-reactivity in the plasma of individuals (36, 82, 188,
193) cannot yet be explained. These studies suggest that only short-lived Ab responses
rather than long-lived Ab responses are generated following some infections. In one
longitudinal study only 50% of adults had AMA1-specific Ab at any one of three
timepoints tested and only 11% had Ab at all three timepoints tested (193). The
percentage of adults in malaria endemic areas that have measureable Ab responses to
those Pf antigens that have been tested after years of malaria exposure is also lower
than would be expected based on vaccine studies, measured at 3-15% for MSP2 (207),
9-10% (207) and 58-66% for CSP (114), 20% for Pfs260 (188), 29-32% for RAP1 (82), 13-
54% for PfSE (207), 19-41% for LSA1 (114), 61-64% for TRAP (114), 38% (188), 13-48%
(207), 40% (68) and ~75% (152) for MSP1,4, 70-75% for EBA1 (152), 11-50% (193), 23-
37% (207) and ~90% for AMA1 (162). The low percentage of adults with positive Ab
titers along with the observation that the Ab titer measured both increased with age,
comparing adults <40 versus >40, and Pf transmission (152), indicate that even in
individuals with decades of exposure to Pf, acquisition of stable long-lived Ab levels is

remarkably slow.
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Pf-specific MBCs have been measured in only two studies to date, and both
indicate defects in MBC development. One study (64) reported that the percentage of
adults with detectable antigen-specific MBCs was 46% for AMA1, 36% for MSP1;5 and
64% for CIDR1a, compared to 71% for tetanus. Interestingly, children five months to
nine years of age had comparable levels of MBCs to AMA1 and MSP1 and only differed
for CIDR1a, where 21% of children had detectable MBCs. Children aged five months
and adults had comparable numbers of Pf-specific MBCs and comparable but higher
levels of tetanus-specific MBCs suggesting that there may be a limit to the size of the
antigen-specific niche that cannot be overcome with repeated exposure. However
these data are difficult to interpret as the sample numbers were quite low, with 15
adults and an average of six children per year of age studied. It is also difficult to
compare these results with others in the literature as the MBC frequency was
determined by a poisson distribution calculation based on the proportion of an average
of six wells/sample which were positive, the translation of which to a direct frequency
or percent is not entirely clear. In addition, the study was cross-sectional and
parasitemic and aparasitemic individuals were analyzed as a group. If Pf-specific MBCs
have some defect in maintenance, and are only observed transiently following infection
as are Pf-specific Ab titers in some studies, analyzing parasitemic and aparasitemic
individuals together could obfuscate age-related differences in MBC levels. Pf-specific
MBCs and Ab titers were found to correlate, but for AMA1 and CIDR1a antigens, more

individuals had Ab with no detectable MBCs than in the case of tetanus (64). In the
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second study of Pf-specific MBCs, adults in a malaria endemic area were compared to
those in the same city who had had a recent known episode of Pf-malaria, with the
percentage positive for MBCs to each antigen given for these two groups respectively;
for AMA1 14.2% and 48%, for MSP119 14.2% and 33%, for MSP2 4.8% and 18%, and for
CSP 0% and 1% (207). In this study no correlation was observed between MBCs and Ab
titers. Again these data should be considered carefully, as the study was small, the time
from the last Pf infection was not stringently known and groups were designated by a
combination of volunteer-recalled malaria, seropositivity to schizont extract (PfSE), and
prior recorded episodes of either P. vivax or P. falciparum. The failure to differentiate
between prior P. vivax and P. falciparum infections, and, possibly even more critically,
defining individuals as “recently exposed” based on seropositivity rather than
documented recent exposure could bias the results. Collectively these data indicate an
inefficient acquisition of Ab and MBC responses to Pf-malaria. Elucidating the cellular
basis of the inefficient acquisition of malaria immunity and Pf-specific Ab responses may

ultimately prove critical to the design of an effective malaria vaccine.

While Ab to several individual antigens confers protection in animal models, Ab
reactivity to any single Pf antigen has not been conclusively correlated with protection
in humans, and considering the complexity of the parasite’s life cycle within the host, it
is likely that Abs to multiple Pf antigens will be required to induce clinical immunity.
One possibility is that immunity requires Abs to all of the PfEMP1 gene products of the

~60 members of the var gene family which Pf causes the expression of on infected red
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blood cells (iRBC). Although most parasites during an infection will express the same var
gene product, the predominantly expressed PfEMP1 can change rapidly during infection,
thus evading elimination of iRBCs mediated by Abs to other PfEMP1’s (reviewed in
(189)). By this hypothesis, the slow development of immunity is due to the length of
time required to expose individuals to all the various var gene products and recurrent
infections are due to iRBC expressing PfEMP1’s unfamiliar to that host. In addition to
var genes, Pf has extensive genetic diversity, with nearly as many alleles of some genes
reported as there are gene sequences, and a related hypothesis on the delay of
acquisition of immunity is based on the length of time required to develop Abs to the
wide natural genetic diversity (186). It has also been suggested that the difficulty in
developing immunity to Pf could be a property of some Pf antigens themselves, either
by inhibition of CD4 T cell activation (132), or by the presence of disulfide bonds that
impede efficient antigen processing (100). Subunit Pf protein vaccines would allow the
assessment of the ability of Pf antigens alone to induce MBCs independent of the effects
of other Pf antigens and the complex effects of Pf infection. It would also be critical to
test these subunit vaccines in malaria-naive individuals who would not have had the
opportunity to develop lasting immune modulation of the response to these antigens,
as it is well known that preexisting immune reactions affect recall responses. Thus, by

using subunit vaccines in malaria-naive individuals we can explore this possibility.

In summary, as a result of the studies in Pf-specific Ab longevity, the delay in the

development of immunity, and the renewed susceptibility to clinical infection of
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previously immune individuals who return to endemic areas, there has been doubt in
the malaria research community as to whether true immunologic memory to Pf
develops or can be maintained. These are some of the central questions that we

explore here.

1.8 Hypotheses, goals and outline

Our goals in these studies are to assess the ability of two blood stage Pf vaccine
candidates to induce Pf-specific Abs and MBCs in malaria-naive individuals in the
context of vaccination, and in children in a malaria endemic area in the context of Pf
infection. As a control antigen, to assess the effects of Pf infection as well as the
development and maintenance of a non-Pf-related antigen in this population we will
assess the Ab and MBC responses to tetanus vaccination. In addition we will analyze B
cells for phenotypic changes associated with malaria by flow cytometry. In order to
address the specificity of protective Ab responses, we will probe plasma samples by
protein microarray to determine whether Ab reactivity to some antigens correlates with
subsequent protection from clinical malaria, and to test this protein microarray platform

as a way to identify protective Ab specificities.

Based on the observed delay in the development of immunity to Pf-malaria, the
apparently short-lived nature of immunity to clinical Pf-malaria, the serology data
indicating that Ab responses to Pf proteins are inconsistently generated, the rapid
decrease in immunity in the absence of exposure, and the incredibly complex immune

environment induced during Pf-malaria, we hypothesize that the MBC response to Pf
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infection will be significantly impaired relative to that of tetanus vaccination within the
same population, and/or relative to the response in malaria-naive individuals vaccinated
with Pf-antigens. We hypothesize that the MBC response in malaria exposed individuals
will be either of decreased magnitude, inconsistently present within an individual, or
inconsistently generated across individuals. In spite of the proposed idea that Pf-
malaria can suppress non-related immune responses, we hypothesize that TT
vaccination will likely have induced a relatively robust response in our Malian cohort, as
it is unlikely that many individuals were infected with Pf at the time of vaccination, and
there is little data to support a malaria-induced long-lasting general immune-

suppression.

We do not hypothesize that we will see a correlation between AMA1- or MSP1-
specific MBCs and malaria risk, as recent clinical trials showed that vaccination with
either AMA1 or MSP1 did not confer protection (156, 171). Furthermore, we suspect
that the frequency of MBCs per se may not reliably predict clinical immunity to malaria
regardless of antigen specificity, but MBCs to protective antigens might predict future
Ab titers that would be protective. This is based on the kinetics of Pf blood-stage
infection, where symptoms can begin as early as three days after the blood stage
infection begins (179), while the differentiation of MBCs into PCs peaks approximately
six to eight days after re-exposure to antigen (30). Thus there may not be sufficient
time for MBCs specific for Pf blood stage antigens to differentiate into the Ab-secreting

cells such that existing MBCs could prevent the onset of malaria symptoms. Based on
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the delay in acquisition of immunity and the data indicating defective Ab and MBC
responses to Pf we hypothesize that there will be malaria-related phenotypic changes in
B cells. We also hypothesize that a pattern of Ab reactivity to certain Pf antigens will

correlate with subsequent protection from clinical malaria.

The data | present here address these questions and hypotheses. These data
indicate an efficient development of Ab and MBCs to Pf antigens in response to subunit
malaria vaccines in malaria-naive individuals. This contrasts to the incremental,
stepwise development of Abs and MBCs to the same Pf antigens in response to natural
malaria infection. Further, all malaria-naive vaccinees had detectable Pf-specific MBCs
following vaccination, while approximately half of adults with a lifetime of exposure to
the antigens had detectable Pf-specific MBCs. The incremental development of Pf-
specific MBCs also contrasted with the efficient and stable development of TT-specific
Abs and MBCs in the malaria-exposed individuals. Potentially related to the inefficient
development of Pf-specific Abs and MBCs, we identified an expansion of atypical MBCs
phenotypically similar to the hyporesponsive FCRL4" MBCs which are similarly expanded
in HIV patients. We also present a potential method of identifying the specificity of
protective Ab responses, and identify 49 proteins to which higher antibody titer
correlated with subsequent protection from malaria. While certain Ab specificities
correlated with protection, MBCs to the two Pf antigens we tested did not correlate

with protection, as predicted. Overall these observations give the first glimpse into the
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development of humoral memory to Pf malaria and raise important questions for

further research.

Chapter 2: Materials and Methods

2.1 Ethics Statements

2.1.1 U.S. Vaccine trials

Both the AMA1 and MSP1 vaccine trials were conducted under Investigational New Drug
Applications reviewed by the U.S. Food and Drug Administration, and both were
reviewed and approved by the National Institute of Allergy and Infectious Diseases
Institutional Review Board and by the Institutional Review Boards at their respective
sites and funding agencies. Written informed consent was obtained from all

participants.

2.1.2 U.S. blood bank samples

Blood samples were obtained for research use by signed consent of the donors under

approved human subjects protocol Institutional Review Board (IRB) no. 99-CC-0168.

2.1.3 Kambila, Mali cohort study

The ethics committee of the Faculty of Medicine, Pharmacy, and Odonto-Stomatology,
and the institutional review board at the National Institute of Allergy and Infectious

Diseases, National Institutes of Health approved this study (NIAID protocol number 06-I-
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N147). Written, informed consent was obtained from adult participants and from the
parents or guardians of participating children. The study was externally monitored by
international monitors under contract with NIAID, in compliance with the International
Conference on Harmonization Good Clinical Practices (ICH/GCP), 1) to verify the prompt
reporting of all data points, including reporting severe adverse events, checking
availability of signed informed consents; 2) to compare individual subject records and
the source documents (supporting data, laboratory specimen records and medical
records to include physician progress notes, nurse’ notes, subjects’ hospital charts); 3)
to ensure protection of study subjects, compliance with the protocol, and accuracy and
completeness of records. The monitors also will inspect the clinical site regulatory files

to ensure that regulatory requirements are being followed.

2.1.4 Zungarococha, Peru cohort study

Ethical clearance for this study was received from New York University, the University of
Alabama, and the Peruvian Ministry of Health National Institute of Health Internal
Ethical Review Boards. All individuals enrolled in this study gave signed informed

consent.

2.2 Study sites and cohorts

2.2.1 U.S. Vaccine trials
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Malaria-naive adults (n=40) residing in the U.S. were enrolled in two separate phase 1
clinical trials (n=20 for each trial, half of which were vaccinated with CPG 7909-
containing vaccines for each vaccine trial) of the blood stage malaria vaccine candidates,
apical membrane antigen 1-combination 1 (AMA1-C1) and merozoite surface protein
14,-combination 1 (MSP14,-C1). Participants were healthy adults age 18-50. Exclusion
criteria included prior malaria infection, recent or planned travel to a malaria endemic
area, recent use of malaria prophylaxis, and pre-existing autoimmune disease. Subjects
were required to be in good general health, without known significant medical
conditions or significant medical history, and were required to have normal results for
screening laboratories: complete blood count, alanine aminotransferase (ALT), and
creatinine; no serologic evidence of hepatitis B, hepatitis C, or human immunodeficiency
virus infection; and negative anti-double stranded DNA (dsDNA) as a marker for
autoimmune disease. Urine pregnancy testing was performed at screening as well as

prior to each vaccination for females.

2.2.2 U.S. blood bank samples

Venous blood samples from healthy U.S. adult blood bank donors (n=10) were analyzed
as controls. Travel histories for these U.S. adults were not available, but prior exposure

to Pfis unlikely.
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2.2.3 Kambila, Mali cohort study

Individuals were invited to be screened for the study after being randomly selected from
an age-stratified census of the entire village population and were enrolled (n=225)
according to age categories; age 2-4 (n=75), age 5-7 (n=50), age 8-10 (n=50) and adults
age 18-25 (n=50). Enrollment exclusion criteria were hemoglobin level <7 g/dL, fever
>37.5°C, acute systemic illness, use of antimalarial or immunosuppressive medications
in the past 30 days, and pregnancy. The study was carried out in Kambila, a small (~1
km?), well-circumscribed, rural village with a population of 1500, situated 20 km north
of Bamako, the capital of Mali. The transmission of P. falciparum is seasonal and
intense, from July through December, peaking in September through November. The
entomological inoculation rate measured in a nearby village was near zero during the
dry season, and there were approximately 50-60 infective bites per person per month
in October 2000 (59). Participants were encouraged to report symptoms of malaria at
the village health center, which was staffed 24 hours a day by a study physician. For
subjects with signs or symptoms of malaria, blood smears were prepared and examined
for the presence of P. falciparum. Patients with positive smear results were treated with
a standard three-day course of artesunate plus amodiaquine, following the guidelines of
the Mali National Malaria Control Program. Children with severe malaria were referred
to Kati District Hospital after an initial parenteral dose of quinine. At the end of the
malaria season, participants (or their parents or guardians, in the case of children) were

asked whether or not they had used a bed net nightly during the rainy season.
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2.2.4 Zungarococha, Peru cohort study

In the small collaborative study reported here Peruvian adults (n=18) were analyzed,
both presenting with Pf parasitemia with no prior reported history of malaria (n=6), and
presenting with Pf parasitemia and a prior reported history of one or more episodes of
Pf malaria (n=12). This study, done in collaboration with the Malaria Immunology and
Genetics in the Amazon (MIGIA) study (32), is ongoing in a region called Zungarococha,
south of Iquitos, Peru. The transmission of Pf is seasonal and low, from January through
July and the incidence of infection is 0.13 Pf infections/person/malaria season. The
study began in 2003 and from 2003-2007 active case detection (ACD) surveillance (by
using community surveys and longitudinal prospective sampling of sentinel houses), and
passive case detection (PCD; presentation of symptomatic community members at the
clinic) were done. At each visit (ACD or PCD) the individual is given an epidemiologic
guestionnaire, asking how many malaria infections they have had in their life time, who
diagnosed them, and if and where they received treatment, in order to define if
individuals had 0, 1, 2 or >2 prior clinical Pf malaria infections. Comparing self reports
with the health center records, there was complete agreement in the 0, 1, 2 or >2
classification in 56.3% of individuals, and in classification within one difference (e.g., a
“0” in patient report versus a “1” in the health post records) there was complete
agreement in 83.1% of individuals. At least once a year a demographic survey, pedigree,
GPS/GIS, nutritional questionnaire, weight, height, helminthes examination, and self

report of lifetime malaria (matched with health records) are taken for each individual.
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All malaria treatments are administered by the Peruvian Ministry of Health (MOH) at no
charge. There is no known black market for malaria drugs in this region and since 1995
all fever cases presenting in health centers and any diagnosis of malaria have been

recorded, specifying P. falciparum and/or P. vivax.

2.3 Sample collection

2.3.1 U.S. Vaccine trials

Peripheral venous blood samples were drawn into heparanized tubes (BD) on day
0,3,7,28,31,35,56,59,63,84,140 and 236 after vaccination for AMA1l and on day
0,7,28,31,56,59, and 140 for MSP1. For blood draw days that were on vaccination days,
i.e. day 0, 28, and 56, blood draws were done prior to vaccination. Plasma was isolated
and stored at -80C. PBMC were isolated from whole blood by Ficoll-Hypaque density
gradient centrifugation (Amersham Biosciences) and frozen at ten million cells/ml in
90% heat-inactivated FBS (Gibco) and 10% DMSO (Sigma-Aldrich) at -80 °C for 24 h
before storage in liquid nitrogen. For each individual, frozen PBMC from all available
time points were thawed and assayed simultaneously. PBMC were rapidly thawed in a
37°C water bath and then added to complete media [RPMI-1640 plus L-glutamine
(Gibco) supplemented with 10% heat-inactivated FBS, penicillin (10,000 [U/ml)
streptomycin (10,000ug/ml) (Gibco), and B-ME (50uM) (Gibco)] warmed to 37°C. Cells
were washed, resuspended in complete media, and counted using trypan blue

(BioWhittaker) dye exclusion to detect viable cells.
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2.3.2 U.S. blood bank samples

PBMC obtained from healthy donors at the NIH blood bank were isolated from whole
blood or elutriated mononuclear cell buffy coats (obtained by lymphapheresis) by Ficoll-
Hypaque density gradient centrifugation. Peripheral blood mononuclear cells were
washed twice with sterile phosphate buffered saline (PBS; KD Medical), platelets were
removed by low-speed centrifugation at 350g for 10 minutes through 5-10 ml
underlayed FBS, and used immediately or resuspended in 90% heat-inactivated fetal
bovine serum (FBS; Gibco, Grand Island, NY) and 7.5% dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St. Louis, MO), kept at -80°C for 24 h, and then stored at 196°C in liquid
nitrogen.

2.3.3 Kambila, Mali cohort study

Stool and urine samples were examined at enroliment for the presence of helminth and
Schistosoma haematobium infection, respectively. Venous blood samples and blood
smears were collected before the malaria season (May 2006), at cross-sectional time
points every two months during the malaria season (July, October, and December 2006),
prior to the second malaria season (May 2007), and 14 days after the first episode of
malaria. Blood samples (8 ml for children and 16 ml for adults) were drawn by
venipuncture into sodium citrate-containing cell preparation tubes (BD, Vacutainer®
CPT™ Tubes) and transported to the laboratory (20 km) for processing within two h.
Following centrifugation according to the manufacturer’s instructions (1800 relative

centrifugal force; 20 min), plasma was collected and stored at -80°C. Peripheral blood
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mononuclear cells were collected, washed twice with sterile phosphate buffered saline
(PBS; KD Medical), resuspended in 90% heat-inactivated fetal bovine serum (FBS; Gibco,
Grand Island, NY) and 7.5% dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO),
kept at -80°C for 24 h, and then stored at 196 C in liquid nitrogen. For each individual,
PBMC and plasma samples from all time points were thawed and assayed
simultaneously. Two hundred microliters of whole blood was collected from the sterile
tubing and used to identify RBC polymorphisms HbS (sickle cell trait), HbC, a-thalassemia,
glucose-6-phosphate dehydrogenase (G6PD) deficiency, as well as blood group. Participants
were instructed to report symptoms of malaria at the only village health center, staffed
24 hours per day by a study physician. For individuals with signs or symptoms of malaria,
blood smears were examined for the presence of Pf. Patients with positive smear results
(i.e. any level of parasitemia) were treated with a standard three-day course of
artesunate plus amodiaquine, following the guidelines of the Mali National Malaria
Control Program. Individuals with Plasmodium malarias other than P. falciparum and co-
infections were excluded from analysis. Anti-malarial drugs were provided exclusively
by the study investigators. Children with severe malaria were referred to Kati District

Hospital after an initial parenteral dose of quinine.

2.3.4 Zungarococha, Peru cohort study
At each visit (ACD or PCD) the individual is examined by a physician, and has a finger-
prick blood sample (500ul) taken for a blood smear, haematocrit, serum sample, and red

blood cell sample. If diagnosed with malaria, a 4-8mL Vacutainer tube of blood is taken.
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PBMC were isolated using ficoll density-gradient centrifugation and frozen in FBS and
DMSO. Frozen vials were obtained from our collaborators and all assays and analyses

were performed at NIAID.

2.4 Vaccine compositions and schedules

Apical membrane antigen 1-combination 1 (AMA1-C1) and merozoite surface protein
14,-combination 1 (MSP14,-C1), both formulated on Alhydrogel and mixed with 564 ug
of CPG 7909 (149) (www.clinicaltrials.gov no. NCT00320658). Both vaccines contained
an equal mixture of antigen from two different clones of P. falciparum (FVO and 3D7)
produced separately as recombinant proteins. Individuals received i.m. vaccinations on
days 0, 28, and 56. For the AMA1-C1 trial, individuals received 80 pg of AMA1-C1
protein with the exception of four volunteers in the CPG 7909 group who received 20
ug. Since the dose of AMA1-C1 was not associated with a difference in the magnitude of
the AMA1-C1-specific MBC response at any time point (p > 0.100 for all time points), the
high- and low-dose groups were analyzed as a single group. For MSP1,4,-C1, all
individuals received 80 pg of protein.

2.5 Assays and analysis

2.5.1 Research definition of malaria

The research definition of malaria was an axillary temperature >37.5°C, P. falciparum
asexual parasitemia 25000 parasites/uL, and a nonfocal physical exam by the study

physician. Severe malaria, as defined by the WHO (1), was included in this definition.
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2.5.2 Measurement of peripheral blood Pf parasitemia

Thick blood smears were stained with Giemsa and counted against 300 leukocytes. P.
falciparum densities were recorded as the number of asexual parasites per microliter of
whole blood, based on a mean leukocyte count of 7500 cells/uL. Each smear was
evaluated separately by two expert microscopists blinded to the clinical status of study
participants. Any discrepancies were resolved by a third expert microscopist.

2.5.3 Identification of RBC polymorphisms

Hemoglobin was typed by high-performance liquid chromatography (D-10 instrument;
Bio-Rad). The mutation responsible for G6PD deficiency in Mali (G6PD*A-) was
identified by restriction-fragment length polymorphism analysis of PCR-amplified DNA
samples, as described elsewhere (91). ABO blood groups were determined by use of a
monoclonal Ab— based kit (Linear Chemicals). The 3.7-kb deletional determinant of a-
thalassemia (a’) was identified by a nested PCR protocol. Approximately 5 ng of
extracted genomic DNA (Qiagen) was amplified in a 25-uL reaction volume consisting of
20 mmol/L Tris-HCl, pH 8.5, 50 mmol/L KCI, 1.5 mmol/L MgCl2, 1 mol/L betaine (Sigma),
0.3 pumoles/L of each primer, 0.2 mmol/L each dNTP and 1.25 units Platinum Tag
polymerase (Invitrogen). In the first round (multiplexed), forward 5'-CCCCTCGCCA
AGTCCACC C-3' [40] and reverse 5'- AAAGCACTCTAGGGTCCAG CG-3' (39) primers were
used to generate a product that would only amplify if o>’ was deleted. A different
reverse primer 5'- AGACCAGGAAGGGCCGGTG-3' (39) was used in the same reaction

mixture to generate a product that would only amplify if o>’ was present. Denaturation
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at 95°C for five min was followed by 35 cycles of denaturation at 97°C for 45 s, annealing
at 60°C for 75 s, and extension at 72°C for 2.5 min with a final extension at 72°C for five
min. Separate nested amplifications of the first round products (1 uL of 1:20 dilution)
were performed in the same reaction buffer with forward primer 5'-CTTTCCCTACCCAGA
GCCAGGTT -3' (25) and reverse primer 5'-AGGAGGGCCCGTTGGGAGGC-3' (to generate a
1.8-kb product that amplifies in the absence of o*’) or forward primer 5'-CTTTCCCTAC
CCAGAGCCAGGTT-3" (25) and reverse primer 5'-CCACTTTCCCTCCTCCATCCC-3' (to
generate a 2.0-kb product that amplifies in the presence of a”). Thermal cycling steps
were the same as for the first round. Amplified products were separated and visualized
on 1.2% agarose gels (Lonza). The sole presence of the 1.8-kb band indicated no
deletion, the sole presence of the 2-kb band indicated a>’ homozygosity (-a/-a), and
the presence of both the 1.8-kb and 2-kb bands indicated o> heterozygosity (-a/aa.).
2.5.4 Stool and urine exam for helminth infection

At enrollment, duplicate stool samples were examined for S. mansoni eggs and other
intestinal helminthes by use of the semi quantitative Kato-Katz method. To detect S.
haematobium eggs, 10 mL of urine were poured over Whatman filter paper. One or two
drops of ninhydrin were placed on the filter and left to air dry. After drying, the filter
was dampened with tap water, and helminth eggs detected by microscopy.

2.5.5 Geographic information system data collection

Latitude and longitude coordinates and the altitude of study subjects’ households were

measured by a handheld global positioning system receiver (GeoXM; Trimble).

32



2.5.6 Antibody detection by ELISA

ELISAs were performed by a standardized method as described previously (141). For
both AMA1 and MSP1, a 1:1 mixture of FVO and 3D7 AMA1 and MSP1 isotypes was
used to coat the ELISA plates for the Kambila cohort, and AMA1-C1-FVO and AMA1-C1-
3D7, and MSP14,-C1-FVO and MSP14,-C1 -3D7 for U.S. vaccine recipients. It is
noteworthy that there was a strong correlation between AMA1-C1-FVO and AMA1-C1-
3D7 titers (149), as well as MSP1,4,-C1-FVO and MSP1,4,-C1-3D7 titers (Martin et al,
unpublished, www.clinicaltrials.gov #NCT00320658). The limit of detection for the
AMA1 and MSP1 ELISA is derived by a calculation developed by Kazutoyo Miura based
on the range of values that gives reproducible results at the Malaria Vaccine and
Development Branch at NIAID where the assay is routinely performed. The limit of
detection is the ELISA unit value at the lowest point on the standard curve, multiplied by
the dilution factor at which samples are tested. The minimal detection levels for the
MSP1 and AMAL1 ELISA assays were 11 and 33 ELISA units, respectively. For analysis, all
data below the minimum detection level were assigned a value of one half the limit of
detection (i.e. 6 units for MSP1, 17 units for AMA1). The limit of detection for the TT

ELISA was not determined because we did not have access to TT-naive serum.

2.5.7 Memory B cell ELISPOT

2.5.7.1 MBC ELISPOT development
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Whole PBMCs or sorted populations of MBCs, naive B cells or PCs were cultured at
1x10°cells/ml in complete media in 24 well plates alone or with 2.5 pg/ml CpG
oligodeoxynucleotide-2006 (Operon Technologies); 1/10,000 dilution SAC, 1/100,000
dilution pokeweed mitogen (Sigma-Aldrich). When indicated the wells of 24 well culture
plates were incubated overnight at 4°C with 0.5 pg/ml CD40-specific Ab and washed. In
addition, when indicated 10 ng/ml IL-2, 15 ng/ml IL-4, 150 ng/ml IL-5, 150 ng/ml IL-6,
10-150 ng/ml IL-10, or 100 ng/ml IL-21 (Cell Sciences) or 50 ng/ml BAFF (R&D Systems)
were added to cultures. Cells were incubated for five to seven days, washed in
complete media warmed to 37°C, counted and plated on prepared ELISPOT plates.
Filterbottom 96-well ELISPOT plates (Millipore Multiscreen-HA) were prepared by
incubating plates overnight at 4°C with either: 10 pg/ml polyclonal goat Abs specific for
human IgG (Caltag) to detect all IgG-secreting cells; 1% bovine serum albumin (BSA) as a
non-specific protein control or 5 ug/ml of tetanus toxoid (TT), MSP1 or AMA1 in PBS.
Plates were blocked by incubation with a solution of 1% BSA in RPMI for 2 h at 37°C.
Cells from five to six day cultures were serially diluted in duplicate or triplicate at
concentrations of 4x10%-3x10*> PBMC/well to detect total lgG* ASCs and 5x10°-4x10°
PBMC/well to detect antigen-specific ASCs in the culture media described above at 37°C
for five to six days. ELISPOT plates were kept at 37°C in a 5% CO, incubator for five
hours, then washed four times with PBS and four times with PBS-0.05% Tween 20. Goat
Abs specific for human 1gG Fc conjugated to alkaline phosphatase (Jackson

ImmunoResearch Laboratories) diluted 1:1000 in PBS-0.05% Tween 20 with 1% FBS was
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added to wells and incubated overnight at 4°C. Plates were washed four times with PBS-
0.05% Tween 20, three times with PBS, and three times with distilled water before
adding BCIP/NBT 100 uL/well (Calbiochem). Plates were dried in the dark and spots
were quantified with the Immuno Spot series 4 analyzer (Cellular Technologies LTD) and

results analyzed using Cellspot software.

2.5.7.2 Memory B cell ELISPOT assay

PBMCs were thawed and cultured in 24 well plates at 37°C in a 5% CO, atmosphere for
six days in media alone (RPMI 1640 with L-Glutamine, Penicillin/ Streptomycin 100
IU/ml, 10% heat-inactivated FBS, 50 uM B-Mercaptoethanol) or media plus a cocktail of
polyclonal activators: 2.5 pug/ml of CpG oligonucleotide ODN-2006 (Eurofins
MWG/Operon, Huntsville, AL), Protein A from Staphylococcus aureus Cowan (SAC) at a
1/10,000 dilution (Sigma-Aldrich, St. Louis, MO), pokeweed mitogen at a 1/100,000
dilution (Sigma-Aldrich), and IL-10 at 25 ng/ml (BD Biosciences). Cells were washed and
distributed on 96-well ELISPOT plates (Millipore Multiscreen HTS IP Sterile plate 0.45um,
hydrophobic, high-protein binding) to detect Ab-secreting cells (ASCs). ELISPOT plates
were prepared by coating with either: a 10 pg/ml solution of polyclonal goat Abs
specific for human IgG (Caltag) to detect all IgG-secreting cells; a 1% solution of bovine
serum albumin (BSA) or keyhole limpet hemocyanin (KLH; Pierce) at 2.5 pug/ml in PBS as
a non-specific protein control; or 5 ug/ml solutions of either tetanus toxoid (TT), AMA1,

or MSP1 to detect antigen-specific ASCs. For AMA1 and MSP1, a 1:1 mixture of FVO and
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3D7 isotypes (2.5 pug/ml each for a final concentration of 5 pg/ml) was used to coat the
ELISPOT plates. For the vaccine trial these recombinant proteins were clinical grade and
lot matched to the vaccines administered to the study participants. Plates were blocked
by incubation with a solution of 1% BSA (Sigma-Aldrich) in RPMI-1640 for 2 h at 37°C.
For the detection of antigen-specific ASCs, cells were plated in duplicate in eight serial
dilutions beginning with 5x10° cells/well. At this stage it is critical to keep cultured cells
at 37°C to maintain optimal readout. For detection of total IgG ASCs cells were plated at
six serial dilutions beginning at 4x10* cells/well. As controls, stimulated PBMC were
distributed onto BSA- or KLH-coated wells at 2-4 x 10* cells/well and unstimulated PBMC
at 2-20 x 10” cells/well on anti-human IgG-coated wells. After a five hour incubation of
the cells in the ELISPOT plates, plates were washed four times each in PBS and PBS-
Tween 20 0.05% (PBST), and incubated overnight with a 1:1000 dilution of alkaline
phosphatase-conjugated goat Abs specific for human IgG (Zymed) in PBST/1% FCS.
Plates were washed four times each in PBST, PBS, and ddH,O; developed using 100
uL/well BCIP/NBT (Calbiochem) for 10 minutes; washed thoroughly with ddH,O and
dried in the dark. ELISPOTS were quantified using Cellular Technologies LTD plate-
reader and results analyzed using Cellspot software. Laboratory investigators were
blinded to the CPG 7909 status for the vaccine trials, or clinical parameters and
timepoint for the Kambila cohort, of study participants. Results are reported either as

frequencies of MBCs per 10° PBMCs after the six-day culture or percentage:
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the frequency of antigen-specific MBCs per million PBMC (after 5 day culture)
x 100

the frequency of IgG secreting MBCs per million PBMC (after 5 day culture)

The limit of detection of the MBC ELISPOT assay for the Kambila cohort analysis was five
ASCs per 10° PBMC based on the average number of ASCs on the BSA control. This was
determined for this set of assay plates and the background and subsequent limit of
detection could vary depending on the immune experience of the cohort. Assay failure
was defined as fewer than 1000 IgG* ASCs per 10° PBMCs after the six-day culture which
resulted in the exclusion of 15% of individuals at month 0, 13.2% 14 days after the first
malaria episode, and 7.3% at month 12. For individuals with a limited number of
PBMC s, priority was given to performing the ELISPOT assay for MSP1, then TT, and then

AMAL.
2.5.7.3 Limiting dilution MBC ELISPOT

The limiting dilution (LD) assay was modified from Pinna et al, 2009. After isolation,
PBMCs were resuspended in complete medium with 10% FCS and cultured at
concentrations of 5x10°-5x10* PBMC/well in 96 well plates to detect total IgG* MBCs
and 2x10°-2.5x10* PBMC/well to detect TT-specific MBCs in section 3.2.2. For these
experiments cells were directly transferred from 96 well culture plates to 96 well
ELISPOT plates. For AMA1, MSP1 and TT LDA’s in section 3.2.5 cells were cultured in 96

well plates at five-graded concentrations: (1.0 X 10°, 0.75 X 10°, 0.5 X 10°, 0.25 X 10°,
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0.1 X 10°). Eighteen replicate wells for each PBMC concentration were cultured in 200
uL of complete medium containing 10% FCS with, or without with the polyclonal
activators; pokeweed mitogen, SAC, IL-10 and CpG. Cells were incubated at 37 °C in 5%
CO2 for 10 days. At the end of the culture period, supernatants were cleared of debris
by centrifugation, harvested and frozen. For the detection of antigen specific IgG in
section 3.6 culture supernatants, 96-well flat bottomed ELISA plates were coated with
the respective recombinant (including the negative control protein, KLH) antigens at
pre-determined concentrations of 10 ug/ml. After overnight incubation at 4°C, plates
were blocked with 200 pl/well of PBS/10% FCS (Sigma-Aldrich) for 1 h at room
temperature. To assess the secretion of antigen specific Ab, 30 ul of cell culture
supernatant was added to each ELISA well following exactly the same plate-layout as the
corresponding culture plate. After overnight incubation at 4 °C, plates were washed and
bound 1gG Abs were revealed by adding 100 pl/well of an alkaline phosphatase-
conjugated goat anti-human 1gG diluted 1/2000 in PBS with 1% FCS and 0.05% Tween
(Sigma-Aldrich), followed by 100 pl/well p-nitrophenyl phosphate (pNPP) in alkaline
phosphatase buffer (Sigma-Aldrich). The reaction was stopped after 30 min with 2 M
NaOH (50 ul/well) and the optical density (OD) of each plate was read at 405 nm. Based
on the OD obtained from ELISA results, the number of wells that were positive and
negative for the presence of antigen-specific Ab was determined for each PBMCs
dilution. An OD equal to the average + 3 SD OD observed in 6 replicate wells with

supernatants from unstimulated cells was taken as a cut-off value to score a well as
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positive. Wells cross-reactive with KLH were not included in the analysis.
2.5.8 Phenotypic analysis and sorting of B cell subsets

For assays described in 2.5.8.1-5 all phenotypic analyses were performed using mouse
mAbs specific for human B cell markers conjugated to fluorophores or biotin with a
secondary streptavidin-conjugated fluorophore. Stains were done on 0.5-1x10° PBMC at
4°C for 20-30 min. FACS data analyses were performed using Flowlo software, (Tree

Star; Ashland, OR). Other details are described per section below.
2.5.8.1 Conjugation of detection reagents

Reagents used for antigen-specific B cell detection by FACS were prepared in our lab.
Tetanus toxin (TT) was provided by Biologic Laboratories, University of Massachusetts
Medical School, Jamaica Plains, MA. TT and human serum albumin (HSA) were
biotinylated using the EZ-Link™Sulfo-NHS-LCBiotin kit (Pierce), according to the
manufacturer’s protocol. In brief, 450 ug of TT protein or 300 ug of HSA protein were
incubated with biotin at a molar ratio of 1 mole of protein per 10 moles of biotin and
dialyzed to remove excess biotin. TT was conjugated to Alexa Fluor® 488 (Molecular

Probes) according to the manufacturer’s direction.
2.5.8.2 Basic B cell subset analysis

For basic B cell subset analysis during the MBC ELISPOT assay development the

following markers were used: CD19-PE-Cy5.5, CD27-PE, CD20-APC Alexa Fluor 750
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(Caltag Laboratories) and CD38-APC and IgD-FITC (BD Pharmingen). Stained cells were
resuspended in PBS, fixed with 1% paraformaldehyde, and analyzed on a FACSCalibur

flow cytometer (BD Biosciences).

2.5.8.3 Detailed B cell subset analysis

The source of mAbs specific for the following markers conjugated to fluorophores is as
follows: PECy7-CD19, PE-CD20, APC-CD10, APC-CD27 and PE-IgG, BD Biosciences (San
Jose, CA); FITC-CD21, Beckman Coulter (Fullerton, CA); PE-CD85j, PE-CXCR3, PE-CCRS6,
PE-CCR7, PE-CXCR4, and PE-CXCR5, R&D Systems (Minneapolis, MN) and PE-CD11c,
Invitrogen (Carlsbad, CA). The FCRL4-specific mAb was kindly provided by M.D. Cooper
(Emory University School of Medicine, Atlanta, GA)(69). PE-conjugated rabbit Abs
specific for mouse 1gG2a were purchased (Invitrogen) and used to detect the mouse
FCRL4-specific mAb. A four color two-stain strategy was used (stain 1: FITC-CD21, PE-
CD20, PECy7-CD19, APC-CD20; stain 2: FITC-CD21, PE-IgG, PECy7-CD19, APC-CD27) in
which within the CD19" gate the number of plasma cells (CD21° CD20) are subtracted
from the number of CD21 CD27" cells to obtain the number of activated MBCs. The
number of immature B cells (CD10") is subtracted from the number of CD21* CD27 cells
and the number of GC B cells (CD10" CD27") is added to obtain an accurate number of
naive B cells. The number of CD21 immature B cells is subtracted from CD21 CD27
cells to obtain the number of atypical MBCs. FACS analyses were performed on a

FACSCalibur flow cytometer.
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2.5.8.4 Plasma cell analysis

The kinetics of the PC response to vaccination was examined in a subset of individuals
from the AMA1-C1/Alhydrogel study. The lymphocyte fraction of peripheral venous
blood samples was separated by Ficoll-Hypaque density gradient centrifugation, and 1 x
10° fresh PBMC were placed in each well of a 96-well plate and stained at 4°C for 30 min
with fluorescently-labeled Ab to CD19 (PE-Cy5.5, Invitrogen), CD3 (Alexa 405,
Invitrogen), CD27 (PE, Invitrogen), CD38 (PE-Cy7, Invitrogen), and IgD (FITC, Invitrogen),
and then washed with PBS. Stained cells were resuspended in PBS, fixed with 1%

paraformaldehyde and analyzed on a Becton-Dickinson LSR-II (BD).

2.5.8.5 B cell subset sorting

For sorting, PBMC were washed in PBS and platelets were removed by low-speed
centrifugation through FBS. For MBC ELISPOT development assays cells were stained
with fluorescently-labeled Ab to CD19 (PE-Cy5.5, Caltag), CD27 (PE, Caltag), and CD38
(APC, BD) and sorted on a FACSAria cell-sorting system (BD Biosciences). B cell subsets
were defined as naive B cells (CD19" CD27-), MBCs (CD19°CD27* CD38), plasma cells

(PCs) (CD19°CD27" CD38™™), and non-B cells (CD19-).

2.5.9 B cell fractionation

Mature (CD10) B cells were isolated from PBMCs by negative magnetic bead-based
selection using a B cell enrichment cocktail supplemented with tetrameric CD10-specific

mAb, Stem Cell Technologies (Vancouver, B.C., Canada). Mature B cells were separated
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into CD19", CD27‘L/CD21hi and CD27'/CD21Io fractions using a two step magnetic bead
selection process as detailed elsewhere (143). The subpopulations were cultured as
previously described (44) in complete media alone or complete media plus a cocktail of
polyclonal activators which included 2.5 ug/ml of CpG oligonucleotide ODN-2006 from
Eurofins MWG/Operon (Huntsville, AL), Protein A from Staphylococcus aureus Cowan at
1/10,000 dilution from Sigma-Aldrich (St. Louis, MO), pokeweed mitogen at 1/100,000
dilution from Sigma-Aldrich, and IL-10 at 25 ng/ml from BD Biosciences. Cells were kept
at 37°Cin a 5% CO, incubator for five days, washed twice with complete media warmed
to 37°C, counted and distributed onto 96 well ELISPOT plates coated with human IgG-

specific goat Abs to detect all IgG-secreting cells as described (47).

2.5.10 Antibody profiling by protein microarray

2.5.10.1 Chip fabrication

Protein microarrays were constructed in four steps: (1) PCR amplification of each
complete or partial Pf open reading frame, (2) in vivo recombination cloning, (3) in vitro
transcription/translation, and (4) microarray chip printing. Open reading frames were

derived from the Pf genomic sequence database (www.plasmodb.org) and selected

based on stage-specific transcription or protein expression (80), subcellular localization
in the parasite infected red blood cell, secondary protein structure, and documented
immunogenicity in humans or animal models. The 1,204 unique proteins on the array

are represented by 2,320 whole or partial proteins because open reading frames >3,000

42



base pairs were cloned as overlapping segments. Custom PCR primers comprising 20
base pairs of gene-specific sequence with 33 base pairs of “adapter” sequences are used
in PCRs with Pf clone 3D7 genomic DNA as template. We optimized the PCR conditions
to increase the efficiency of target sequence amplification using low temperature
annealing and elongation protocols (182). The adapter sequences, which become
incorporated into the termini flanking the amplified gene, are homologous to the
cloning site of the linearized T7 expression vector pXT7 (52) and allow the PCR products
to be cloned by in vivo homologous recombination in competent DH5a cells. We have
recently introduced a more efficient method which allows the recombination to occur in
vitro with much lower amounts of recombination product to be transformed into E. coli
(26). The resulting fusion protein also incorporates a 5’ polyhistidine epitope, an ATG
translation start codon, and a 3’ hemagglutinin epitope and T7 terminator. Sequence-
confirmed plasmids are expressed in five hour in vitro transcription/translation reactions
(rapid translation system (RTS) 100 Escherichia coli HY kits; Roche) according to the
manufacturer’s instructions. Protein expression is monitored either by dot blot or
microarray using monoclonal anti-polyhistidine (clone His-1, Sigma) and anti-
hemagglutinin (clone 3F10, Roche). Microarrays are printed onto nitrocellulose coated
glass FAST slides (Whatman) using an Omni Grid 100 microarray printer (Genomic
Solutions). Each microarray chip contains the following controls: (1) a ‘no DNA’ negative
control in which an empty plasmid vector is placed in the RTS reaction, (2) serially

diluted human IgG—a positive control and standard curve to normalize data from arrays
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probed at different times, and (3) serially diluted Epstein-Barr nuclear antigen-1—a
positive control given the high prevalence of latent Epstein—Barr virus infection in Africa.
2.5.10.2 Antibody profiling

Prior to incubating with the microarray chip, the plasma samples are diluted to 1/200 in
Protein Array Blocking Buffer (Whatman) containing E. coli lysate at a final
concentration of 30% and incubated at room temperature for 30 minutes on a rotating
platform. The arrays are rehydrated in blocking buffer for 30 minutes and probed with
the pretreated plasma overnight at 4°C with constant agitation. The slides are then
washed five times in tris (hydroxymethyl)-aminomethane (Tris) buffer, pH 7.6 containing
0.05% (v/v) Tween 20, and incubated in biotin-conjugated goat anti-human
immunoglobulin (anti-IgGFcy, Jackson Immuno Research) diluted 1/200 in array blocking
buffer. After washing the slides three times in Tris buffer containing 0.05% (v/v) Tween
20, bound Abs are detected by incubation with streptavidin-conjugated SureLight® P-3
(Columbia Biosciences). The slides are then washed three times in Tris buffer containing
0.05% (v/v) Tween 20 and three times in Tris buffer without Tween 20 followed by a
final water wash. The slides are air dried after brief centrifugation at 1000g for four
minutes and analyzed using a Perkin Elmer ScanArray Express HT microarray scanner.
Intensities are quantified using QuantArray software.

2.5.10.3 Data normalization procedure

It has been noted in the literature that data derived from microarray platforms is

heteroskedastic (21, 66, 108). This mean-variance dependence has been observed in
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the arrays presented in this dissertation (183, 184). In order to stabilize the variance,
the vsn method (105) implemented as part of the Bioconductor suite

(www.bioconductor.org) in the R statistical environment (www.r-project.org) is applied

to the quantified array intensities. In addition to removing heteroskedacity, this
procedure corrects for non-specific noise effects by finding maximum likelihood shifting
and scaling parameters for each array such that the variances of each negative 'No-DNA'
and positive human IgG probes are minimized. This calibration has been shown to be

effective on a number of platforms (23, 123, 172).

2.5.10.4 Gene ontology and Pf stage-specific expression analysis of the immunogenic
proteins

We electronically annotated the entire Pfgenome by using the default settings of

Blast2GO (http://blast2go.bioinfo.cipf.es/home). From a total of 5,679 genes, we

assigned gene ontologies to 3,416. To determine which gene ontology terms were
overrepresented among the immunogenic Pf proteins relative to the 2,320 proteins on
the Pf microarray, we used a one-tailed Fisher’s Exact Test with a false discovery rate
filter set at P < 0.05. For each chosen subset, we plotted multilevel pie charts filtered by
the number of sequences per gene ontology term. To determine the proportion of
immunogenic proteins expressed during the sporozoite and blood stages of the Pf life
cycle, we retrieved DNA microarray expression data from PlasmoDB

(www.plasmodb.org). Because many proteins are expressed during more than one

stage, we assigned each protein to the stage at which it is maximally expressed.
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2.5.11 Data management and analysis
Data was analyzed using Stata software (version 10.0; StataCorp), GraphPad Prism

(version 5.01 for Windows; GraphPad Software), and R 2.0 (www.r-project.org).

Blast2Go (www.blast2go.org) was used for gene ontology annotation and enrichment

analysis.. Clinical data collected from the Kambila site were double entered and verified
in a database (Microsoft Access 2003; Microsoft). Three clinical endpoints were used to
evaluate the relationship between Pf-specific immune responses and malaria risk: 1)
whether or not malaria was experienced, 2) the incidence of malaria, and 3) the time to
the first malaria episode. The Kruskal-Wallis test was used to compare continuous
variables between groups, and the Fisher’s exact test was used to compare categorical
variables and binary outcomes. The probability of a subject remaining malaria-free over
an eight-month period was estimated by the Kaplan-Meier method, and the time-to-
event curves of different groups were compared by the log rank test. The Cox
proportional hazards model was used to assess the effect of the following factors on risk
of malaria: age, sex, weight, ethnicity, distance of residence from clinic, bed net use,
baseline Pf parasitemia, helminth infection, HbAS phenotype, HbAC phenotype,
G6PD*A- genotype (hemizygosity, heterozygosity, and homozygosity), -a/aa genotype,
and ABO blood group. The same list of variables was included in a Poisson regression
model to determine their impact on malaria incidence. The covariates included in the
final Cox and Poisson regression models were determined by applying the stepwise

model selection procedure, in which P values <.1 and >.2 were set as criteria for
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covariate inclusion and removal, respectively. For all tests, 2-tailed P values were
considered significant if they were <.05. The nonparametric Wilcoxon rank-sum and
Wilcoxon matched pairs tests were used to compare continuous variables between
unpaired and paired groups, respectively. The correlation between different continuous
measures was determined by using the Spearman correlation coefficient. To account for
the correlation among multiple measurements for the same subject, the generalized
estimating equations (GEE) method (Liang, 1986) was employed to study the association
between continuous outcomes and covariates of interest. An “exchangeable”
correlation structure was used as the working assumption for all GEE analyses. The
strength of association between two continuous variables was determined by
calculating the Pearson correlation coefficient (r). The microarray data was normalized
and calibrated as described above, then Bayes-regularized t-tests were used to identify
significant differential Ab reactivity (22). The Benjamini-Hochberg method was used to
correct for the false discovery rate. With the exception of gene ontology analysis, for all

tests, 2-tailed P values were considered significant if they were < 0.05.
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Chapter 3: Validation and optimization of the memory B cell ELISPOT assay

3.1. Introduction

Despite the importance of immunological memory, we still have an incomplete
understanding of the cellular and molecular mechanisms that underlie the generation,
maintenance and re-activation of immunological memory. An inherent limitation to the
analysis of MBCs in humans has been the restricted access to tissues other than
peripheral blood and the unknown relationship between the relative frequency of MBCs
in the peripheral blood and lymphoid tissue. However, a recent study of individuals
decades after smallpox vaccination showed that although the majority of vaccinia-
specific MBCs were in the spleen, their frequency in the spleen reflected the frequency
in peripheral blood (134). Furthermore, the frequency in the spleen and peripheral
blood remained correlated throughout revaccination in these individuals. Based on this
observation, the frequencies of MBCs in peripheral blood are a good reflection of the

total number of MBCs in an individual.

An assay frequently used to detect antigen-specific human MBCs in human
peripheral blood, described by Crotty et al. 2004 (47), relies on the selective ability of
MBCs to proliferate and differentiate into Ab secreting cells (ASC) in vitro in response to
a combination of pokeweed mitogen (PWM), fixed S. aureus, Cowan strain (SAC) and the
TLR9 agonist CpG oligonucleotide (ODN-2006) over a five to six day culture period.
Antigen-specific and total ASCs are quantified in ELISPOT assays using plates coated with

either antigen or human Ig-specific Abs to capture total IgG. Crotty et al. showed that
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peripheral blood MBCs (defined as CD19°CD20CD27") from individuals immunized with
anthrax vaccine differentiated into anthrax protective antigen (PA)-specific ASCs, while
naive B cells (defined as CD19°CD207CD27’) did not. PA-specific MBCs represented up to
2% of circulating 1gG" B cells in immune individuals and were essentially undetectable in
non-immune individuals. Thus, this assay provided a means of identifying antigen-
specific MBCs in human peripheral blood. Here we assess the efficiency of this assay,
and optimize it, and determine that this modified assay can be successfully used to
guantify Pf-specific MBCs in semi-immune adults in Kenya. The increased efficiency of
this modified assay allows for the measurement of MBCs from smaller blood volumes

than was possible with the original assay, facilitating field studies.

3.2 Results

3.2.1 Quantifying TT-specific MBCs by flow cytometry

To quantify the number of TT-specific MBCs in the peripheral blood of vaccinated
U.S. individuals we used a sensitive flow cytometry-based assay for detecting MBCs
described by Amanna and Slifka (11). This method allows the detection of low
frequency antigen-binding MBCs by using antigens labeled with two different
fluorophores at sub-saturating levels. To detect TT-specific MBCs we incubated
peripheral blood PBMCs with TT conjugated to Alexa Fluor 488 (TT-Alexa 488) and
biotinylated TT (b-TT) followed by streptavidin-conjugated APC (SA-APC). As a control

antigen we used biotinylated human serum albumin (b-HSA) and SA-APC. Gating on
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Figure 3.1 The frequency of TT-binding MBCs in vaccinated U.S. individuals. (A) TT-specific MBC are
identified by gating on MBCs that stain positive for TT- and TT-b/SA-APC Alexa 488. (B) Cold competition
control, where cells are incubated with unlabeled TT before staining with TT-b/SA-APC and TT-Alexa 488.
(C) Mis-matched antigen control, where cells are stained with TT-b/SA-APC and HAS-Alexa 488.

CD20%, CD277, IgD” MBCs, we detected approximately 30 cells/10° PBMCs that bound to
both b-TT/SA-APC and to TT-Alexa 488 (Fig. 3.1 A). Similar results were obtained
defining MBCs as CD19"and CD27". The specificity of the staining was confirmed using a
cold competition control where PBMCs were incubated with unlabelled TT prior to
staining with TT-Alexa 488 and b-TT/SA-APC (Fig. 3.1 B). A mis-matched antigen control,
was also used in which case PBMCs were stained with TT-Alexa Fluor 488 b-HSA/SA-APC
(Fig. 3.1 C). Essentially no double labeled cells were detected in either case. The
frequency of approximately 30 TT-specific MBCs per 10° PBMCs detected in our PBMC
samples is on the order of that reported by Amanna and Slifka (11) who observed 107

TT-specific MBCs per 10° CD20" B cells, assuming that CD20" B cells were 15%-20% of

total PBMC in their assay.
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3.2.2 Quantifying TT-specific MBCs by limiting dilution ELISPOT

To determine the frequency of TT-specific MBCs in the in vitro culture assay described
by Crotty et al. we modified the assay, culturing PBMC in complete media containing
pokeweed mitogen, Staphylococcus aureus Cowen and CpG (PSC) at limiting dilution
(LD) in 96 well plates rather than in bulk culture 24 well plates. We determined that LD,
when > 66% of the wells were negative, was reached when cells were cultured at
100,000-50,000 PBMC per well in 96 well plates for TT-specific MBCs, and 5,000-500
PBMC per well for total IgG" MBCs. Wells were scored positive when there were three
or more ASCs per well, and a minimum of 48 wells were used per dilution per condition.
We detected approximately three TT-specific MBCs per 10° PBMCs (Table 3.1). Thus,
only approximately one in ten TT-specific MBCs detected by flow cytometry responded

by differentiating into ASCs in the LD assay in vitro.

3.2.3 Increasing the efficiency of the MBC ELISPOT assay

To optimize the efficiency of the ELISPOT assay, several cytokines and
stimulatory factors known to have a role in the differentiation of MBCs and ASCs,

including anti-CD40, IL-2, IL-21, IL-6, IL-4, IL-10 and BAFF, were added to in various

Table 3.1 Efficiency of MBC ELISPOT with PSC stimulation
# responding

Number of Percent of tetanus-specific Assay
cells per well | wells positive | MBCs /10° PBMC efficiency
100 x 10° 27% 2.7 11.1%
50 x 10° 12.5% 2.5 10.3%
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combinations with PSC to cultures in 24 well plates. Combinations included: PSC with
IL-4, IL-5, IL-6, IL-10, BAFF or anti-CD40; PSC+ IL-4+ BAFF; PC+ IL-10; PSC+ IL-4+ BAFF; IL-
4+ BAFF, anti-CD40+ IL-4; anti-CD40+ IL-10, and BAFF+ IL-21. The number of total ASCs
detected on anti-lg coated ELISPOT plates from the 24 well plate cultures was only
consistently significantly increased by a combination of PSC and 25ng/ml IL-10. Adding
concentrations greater than 25ng/ml IL-10 did not further increase the number of ASCs.

LD analyses showed that as compared to

PBMCs cultured in PSC alone, the A B
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Figure 3.2 The addition of IL-10 to PSC increased
the efficiency of MBC differentiation to PC by 10
fold. Comparison of two stimulation cocktails at LD,
in  PSC- versus PSC+IL-10-containing PSC, or PSC+IL-10. (A) Average fold change in the

number of IgG* MBC differentiating into ASC in PSC
cultures (Fig. 3.2 B). or P§C+IL-10, vyrith PSC set to 1 in order to compare

multiple experiments. (B) Average number of
daughter ASC arising from each responding IgG*
MBC in PSC or PSC+IL-10.

difference in the average ASC burst size

3.2.4 Establishing the selectivity of the
modified assay for MBCs

In order to confirm that only MBCs were responsive to stimulation with PSC+IL-
10, B cells were sorted into MBCs (CD19", CD27" gating out CD27"*, CD38"" plasma

cells), naive B cells (CD19*, CD27’) and PCs (CD19%, CD27*", CD38""). These populations
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had a purity of > 98.2% for MBCs, 99.9% for naive B cells,
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Figure 3.3 Testing the selectivity Measurable effect on the differentiation of naive B cells

of the PSC+IL-10 stimulation
cocktail for MBCs. Naive Bcells  (Fig. 3.3). Approximately four ASCs were detected per
(CD19*CD27-), MBCs (CD19*
CD27*), and PCs (CD19*CD27**
CD38***) were sorted and cul-
tured with CD19* B cell-deple-
ted PBMCs in PSC+IL-10. Shown  a low frequency of PCs surviving in the five-day cultures.
are the number of IgG+ ASC per
1000 sorted input B-cells.

1000 input cells in the PC population that could be due to

If so, in whole PBMCs in which PCs represent
approximately 0.5-2.0% of B cells, these PCs would contribute an additional 0.012% of

the 1gG producing ASCs.
3.2.5 Detecting Pf-specific MBCs in individuals living in malaria endemic areas.

In collaboration with Francis M. Ndungu and Kevin Marsh of the Kenya Medical
Research Institute we used the PSC10 LD cultures to determine the frequency of MBCs
specific for TT and two Pf antigens in the PBMCs of adults living in a malaria endemic
area of Kenya. The results showed an average frequency of 19 TT-specific MBCs per 10°
PBMC in 12 adults (Fig. 3.4), similar to the frequency of 27/10° PBMCs reported here for

U.S. volunteers. The average frequencies of MBCs specific for two Pf proteins, namely
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AMA1 and MSP1, were 11 and 18 per 10°
PBMCs measured in 13 and 11 individuals
respectively (Fig. 3.4). LD analyses are
more expensive, time consuming and
laborious than the bulk cultures for
reading out total ASCs. We therefore
determined if there was a correlation

between the frequency of MBCs

determined in LD and the number of ASCs

measured from bulk cultures (Fig. 3.5).
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Figure 3.4 The frequency of antigen-specific MBCs
by LD in PBMCs of Pf-exposed adults. Total PBMC

were plated in 5-graded dilutions (from 10* to 10°%) in
18 replicate wells, each, and stimulated with PSC10

over a 10 day culture period. Supernatants were
analyzed by ELISA for TT-, AMA1-, and MSP1-specific
1gG. Shown are the mean + SEM of antigen specific
MBC/108 PBMC. Data obtained by Francis M. Ndungu

Shown are the numbers of total IgG-ASCs (Fig. 3.5 A), TT-, MSP1- and AMA1-specific

ASCs per 10° PBMCs (Fig. 3.5 B). We observed a correlation between the number of

MBCs detected in LD and the number of ASCs in five day bulk culture for TT and AMA1
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Figure 3.5 Numbers of total IgG* and antigen-specific ASCs in bulk assay cultures of PBMC from malaria
exposed adults. PBMCs were cultured for 5 days with PSC10. Shown are the mean + SEM of IgG* (A) or
antigen-specific (B) ASC/10° cultured PBMC. Data obtained by Francis M. Ndungu.
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Figure 3.6 Correlations between the frequencies of antigen-specific MBCs determined by LD and antigen-
specific ASC by bulk assay cultures. Antigen-specific correlations shown for adults exposed to malaria for (A)
TT, (B) AMA-1 and (C) MSP-1. Spearman rank correlations are shown. Data obtained by Francis M. Ndungu.

(Fig. 3.6). Thus, the 24 well cultures appear to be a good tool to measure the relative
frequencies of MBCs. It is of interest that the ratio of MBCs from LD and ASCs from bulk
cultures is approximately 1:7 for TT-specific cells and approximately 1:2 for Pf-specific
MBCs, suggesting that the ability of Pf-specific MBCs to differentiate into ASCs in vitro
may be reduced. It will be of interest to determine if this is a phenomenon associated

with the differentiation of MBCs during Pf infections.

3.3 Discussion

MBCs are important in immunity and it is of interest to develop highly efficient
assays that provide the tools for assessing MBCs. We have optimized and characterized
the MBC ELISPOT assay described by Crotty et al., and specifically tested its applicability
for detecting Pf-specific MBCs in the PBMCs of individuals in a malaria endemic area.
Here we report that only approximately ten percent of antigen-specific MBCs
enumerated by flow cytometry respond in a limiting dilution version of the in vitro assay

described by Crotty et al. and that the efficiency of this assay can be significantly
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improved to nearly one hundred percent by the addition of IL-10 to the five day
cultures. 1L-10 is known to induce MBCs to differentiate into PCs (17, 211) and the
addition of IL-10 has been shown to result in a 17 fold increase in ASCs derived from
MBCs as compared to cultures without IL-10 (38). It has also been shown that IL-10
preferentially induces MBCs to differentiate into ASCs, while having little effect on the
differentiation of naive B-cells (16). Thus, IL-10 was one of the better candidates in
increasing the sensitivity of the assay without disrupting the specificity for detecting
MBCs. As IL-10 causes an increase of MBCs that respond to stimulation without
affecting burst size, IL-10 could contribute to controlling the stringency of MBC
differentiation into ASCs in vitro. As IL-10 is well known to decrease a cellular immune
response and influence the development of CD4+ helper T cells, this cytokine could have
other functions in furthering a humoral immune response, however the relevance of
this observation in vivo has yet to be determined. We provide evidence that this
modified assay can be successfully used to quantify Pf-specific MBCs in semi-immune

adults in Kenya.

Collectively, the results presented here demonstrate that the efficiency of the in
vitro assay described by Crotty et al. to detect antigen-specific MBCs can be increased
significantly by the addition of IL-10 to the cultures. The addition of IL-10 increased the
frequency of the MBCs activated in culture but did not influence the ASC burst size nor
did it alter the selectivity of the assay for MBCs. In addition the assay proved efficacious

in detecting MBCs in field samples from adults living in a malaria endemic area in Africa.
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The increased efficiency of this modified assay allows for the measurement of MBCs
frequencies from smaller blood volumes than was possible with the original assay,
which is important in field studies in children where blood volumes are limiting. The
further application of this assay to the study of the acquisition and maintenance of Pf-
specific B cell memory through natural infection may ultimately aid in the design and

development of a badly needed malaria vaccine.
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Chapter 4: In malaria-naive individuals P. falciparum-specific memory B cells and
antibodies develop efficiently in response to subunit vaccination with CpG as an
adjuvant

4.1 Introduction

Because of the delay in development of clinical immunity to malaria, reports of
very short half-lives of some Pf antigens, and the observation that some individuals with
life-long exposure to Pf fail to have measureable Ab titers to commonly expressed
proteins, it has been proposed that properties of the antigens in question prevent the
efficient development of MBCs or LLPCs (100, 132). These observations as well as the
renewed susceptibility to clinical infection of previously immune individuals who return
to endemic areas, has caused some doubt as to whether immunologic memory to Pf can
develop, and if memory is induced, whether it can be maintained. By using subunit
vaccines in malaria-naive individuals we can explore the ability of Pf antigens to induce
MBCs and start to dissect the effect of individual antigens versus the immune
environment induced during Pf-malaria on the development and maintenance of MBCs.
Establishing whether MBCs and LLPCs can develop to these antigens is an important first
step in vaccine development. In the vaccine trials presented here, malaria-naive
individuals were vaccinated with two blood stage antigens, AMA1 and MSP1. We

demonstrate that in this context, MBCs and Ab develop readily to these two antigens.

The design of this vaccine trial also provided an opportunity to address another
guestion important to the development of immune memory, namely; can the

development of B cell immunity be enhanced in human vaccination by adding a TLR
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ligand to the vaccine? Of particular interest in the generation of memory is the role of
TLR9, a pattern recognition receptor that initiates innate immune responses. TLR9
detects microbial DNA with hypomethylated CpG motifs and in humans is preferentially
expressed by plasmacytoid dendritic cells (PDC) and B cells [reviewed in (124). The net
effect of TLR9 activation is the differentiation of Thl cells and the induction of IgG
isotype switching and Ab secretion. In a hepatitis B vaccine clinical trial the addition of
CPG 7909, a B-class CpG oligodeoxynucleotide (ODN), accelerated the acquisition of
specific Abs and increased peak Ab titers (92-94). CpG also has the capability to activate
B cells independently of their antigen-specificity through bystander activation (18, 30).
However, the impact of CpG on the generation of MBCs in response to primary
immunization has not been delineated. Here we describe the kinetics of antigen-
specific MBC acquisition in malaria-naive individuals in response to vaccination with
malaria antigens and provide evidence that CPG 7909 enhances this process in malaria-
naive individuals. This analysis was carried out in the context of two separate clinical
trials of two candidate malaria subunit protein vaccines formulated on aluminum
hydroxide gel (Alhydrogel), with and without CPG 7909, given to healthy malaria-naive

adults (149) (Martin et al., unpublished, www.clinicaltrials.gov #NCT00320658) .
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4.2 Results

4.2.1 The acquisition of MBCs in naive individuals in response to vaccination

To determine the kinetics, magnitude and longevity of MBCs generated in
response to primary immunization of malaria-naive volunteers to individual Pf antigens,
as well as the impact of TLR9 activation on this process, we examined the acquisition of
Pf-specific MBCs in malaria-naive individuals enrolled in two Phase 1 clinical trials of two
malaria subunit protein vaccine candidates, AMA1-C1 and MSP14,-C1. Both AMA1-C1
and MSP14,-C1 were formulated on Alhydrogel with and without CPG 7909. Longitudinal
samples collected over approximately eight months were analyzed from 40 individuals,
20 from each trial, and within each trial half were vaccinated with CPG 7909-containing
vaccines. Individuals were vaccinated on days 0, 28 and 56, and peripheral blood
samples were collected at the times shown in Table 4.1. For both trials the mean
viability of PBMCs after thawing was similar in the CPG and non-CPG groups, 92.3% and

95.9%, respectively (p=0.165).

MBC ELISPOTs were performed on all the PBMC samples, with each individual’s
samples analyzed in parallel to reduce variability in assay conditions. As there is not
currently a standard way to analyze MBC ELISPOT data, we examined the MBC ELISPOT
data both as the percentage of antigen-specific MBCs of the total IgG* MBCs, and MBCs
asa frequency/lO6 PBMCs’, referring to the number of PBMCs after the five-day culture.

We examined both, as if there are significant changes in the IgG* MBCs due to bystander
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Table 4.1 Sample size and mean vaccine-specific MBC percentage by vaccine type, CpG group and study day.

AMAIL-C1® MSP1,.-C1*
Without CPG 7909 With CPG 7909 Without CPG 7909 With CPG 7909

Study Day n % MBC* (95% CI) n % MBC (95% CI) n % MBC (95% CI) " % MBC (95% CI)
o 10 0.03 (—0.16, 0.22) 10 0.02 (—0.77, 0.30) 11 0.01 (—0.05, 0.07) 9 0.01 (—0.38, 0.39)
3 10 0.02 (=021, 0.26) 8 0.04 (-0.74,0.32)
7 10 0.01 (—0.20, 0.21) v 0,05 (—0.73, 0.83) 11 0.01 (—0.05, 0.07) 9 0.004 {—0.38, 0.39)
28 10 0.02 (=0.19,0.23) 9 0.09 (=0.76, 0.94) 10 0.04 (—=0.02, 0.10) 9 0.07 (-0.32,0.45)
31 8 0.03 (=0.18,0.24) 9 0.54 (=027, 1.36) 11 0.04 (=0.01, 0.10) 9 0.06 (=0.32, 0.44)
35° 10 0.09 (—0.14, 0.32) 8 2.94%(2.12,3.75)
567 10 0.13 (=0.09, 0.35) 8 1.79* (0.97, 2.60) 10 0.10* (0,04, 0.15) 9 0.97* (0.59, 1.35)
59 8 0.11(=0.11,0.33) 9 1.58%(0.72,2.43) 10 0.08* (0.02, 0.14) 8 1.20% (0.80, 1.60)
63 7 0.26 (0.04, 0.48) 8 3.45%(2.55,4.35)
84 8 0.75* (0.51, 0.98) 7 1.52% (0.67,2.37)
140 10 0.59* (0.37, 0.81) 9 1.44% (0.62, 2.26) 11 0.13* (0.08, 0.19) 9 0.83*% (0.45, 1.21)
236° 7 0.15 (—0.21, 0.50) 4 1.41*(0.45,2.37)

“ Missing data due to technical error (4.6%), individual lost to follow-up (5.8%), or unavailability of sample (7.5%).

# Missing data due to unavailability of sample (2.9%).

© Percentage vaccine-specific MBC and 95% Cls are obtained by fitting GEE models described in Materials and Methods
4 Vaccination day

“ Samples collected for AMAIL-C1 trial only.

*, p < 0.05 vs study day 0

activation via CpG for example, or alterations in non-B cell proportions due to activation
with vaccination that persist through six-day cultures, the results could differ analyzed in
these two ways. In the AMA1-C1 trial, prior to vaccination (baseline) the mean
percentage of IgG" MBCs that were AMA1-Cl-specific was not significantly different
from the irrelevant control antigen KLH (percentage: 0.02% AMA1-C1-specific MBCs vs.
0.07% KLH-specific MBC; p=0.44). Similar patterns were observed for antigen-specific
MBCs expressed as a percent of total IgG* MBCs or as the frequency per 10° PBMC post-
culture. Compared to baseline, individuals receiving AMA1-C1/Alhydrogel without CPG
7909 did not have a statistically significant increase in AMA1-C1-specific MBCs until 28
days after the second vaccination as measured by frequency, and 28 days after the third
vaccination as measured by percent (day 56: average frequency 58.4 p=0.012 vs.
baseline; day 84: average percent 0.75% p<0.001 vs. baseline; Fig. 4.1 A,C). AMA1-C1-
specific MBCs remained above baseline at 0.59% 84 days after the third vaccination

(p<0.001 vs. baseline), and although the frequency of AMA1-C1-specific MBCs remained
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measured (p=0.001 vs. baseline), AMA1-C1-specific MBCs decreased as a percentage of
total 1gG" MBCs to baseline levels approximately six months after the last vaccination
(p=0.57 vs. baseline). At all other time points, the percentage of AMA1-C1-specific MBCs
did not differ significantly from baseline levels. Thus, in response to vaccination with
AMA1-C1/Alhydrogel (with or without CPG 7909) AMA1-Cl-specific MBCs were
generated, and these MBCs persisted at detectable levels six months after the last
vaccination. In contrast, a dramatic increase in AMA1-C1-specific MBCs was observed in
individuals vaccinated with AMA1-C1/Alhydrogel plus CPG 7909. In this group AMA1-
Cl-specific MBCs appeared in the peripheral circulation three days after the second
vaccination and peaked three and seven days later as a percent and a frequency
respectively, at 2.94% of all IgG* MBCs and 447/10° PBMC, and then decreased to 1.79%

and 421/10° PBMC 21 days later on the day of the third vaccination (Fig. 4.1 A, C).
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Seven days after the third vaccination the percentage peaked again at 3.45% and
596/10° PBMC and then contracted to 1.41% and 303/10° PBMC by the end of the study
(236 days after the first vaccination), a rate of decline of approximately 0.4% per month.
AMA1-Cl-specific MBCs were significantly increased over baseline as a frequency at all
time points beginning 28 days after the first vaccination and as a percent at all time
points beginning seven days after the second vaccination through the end of the study
period (p<0.010 vs. baseline). Compared to individuals who received AMA1-
C1/Alhydrogel without CPG 7909, the mean percentage of AMA1-Cl-specific MBCs was
higher at all time points after vaccination, reaching statistical significance as a
percentage on days 35, 56, 59 and 63 (all p<0.010) and marginal statistical significance
on days 140 and 236 (p=0.092 and p=0.061, respectively). Similarly, as a frequency,
AMA1-C1-specific MBCs reached statistical significance on days 35, 56, 63, 140 (all
p<0.040) and marginal statistical significance on day 28 (p=0.062). Thus, the inclusion of

CPG 7909 enhanced the kinetics and magnitude of the AMA1-C1-specific MBC response.

CPG 7909 had a similar impact on the acquisition of MBCs in response to
vaccination with MSP14,-C1/Alhydrogel (Fig. 4.1 B,D). Compared to the AMA-C1 trial,
fewer PBMC samples were collected in the MSP14,-C1 trial, namely, on the day of each
vaccination (days 0, 28 and 56), seven days after the first vaccination, three days after
the second and third vaccination, and on day 140 (Table 4.1). Prior to vaccination
(baseline) the mean percentage of IgG* MBCs that were MSP14,-C1-specific was not

significantly different from KLH (0.01% MSP14,-C1-specific MBCs vs. 0.07% KLH-specific
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MBC; p=0.89). Vaccination with MSP14,-C1/Alhydrogel without CPG 7909 did not
generate statistically significant levels of MSP14,-C1-specific MBCs as a percent and as a
frequency, until 28 days after the second vaccination, reaching 0.10% of all IgG* MBCs
(p=0.005 vs. baseline) and a frequency of 21/10° PBMC (p=0.003 vs. baseline). The
percentage and frequency of MSP1,4,-Cl-specifc MBCs remained greater than baseline
at three and 84 days after the third vaccination (day three after third vaccination, 0.08%
p=0.022 vs. baseline, 7/106 PBMC p=0.005 vs. baseline; day 84 after third vaccination,
0.13%, p<0.001 vs. baseline, 16/106 PBMC p=0.002 vs. baseline). Vaccination with
MSP14,-C1/Alhydrogel with CPG 7909, by contrast, generated a mean percentage of
MSP14,-C1-specific MBCs of 0.97% and frequency of 91/10° PBMC on the day of the
third vaccination (p<0.001 vs. baseline) and remained at 1.20% and 0.83%, and a
frequency of 59/10° PBMC and 84/10° PBMC, at three and 84 days after the third
vaccination (p<0.001, p=0.001, p=0.002, and p<0.001 respectively, vs. baseline).
Compared to individuals who received MSP1-C1/Alhydrogel without CPG 7909, the
mean frequency of MSP1-Cl-specific MBC/10° PBMC was higher at all time points
starting 28 days after the first vaccination, reaching statistical significance on days 28,
56, 59 and 140 (all p<0.040) and marginal statistical significance on day 31 (p=0.090).
Thus, the inclusion of CPG 7909 enhanced the kinetics and magnitude of both the
AMA1-C1- and MSP1-C1-specific MBC responses. Because samples were not collected
seven days after the second and third vaccination in the MSP14,-C1 trial, we do not

know whether the MBC percentage reached higher peak levels, as observed in the

64



AMAI1-C1 trial. Thus, despite the difference in the ability of AMA1-C1 and MSP14,-C1
to generate vaccine-specific MBCs in the absence of CPG 7909, the CPG 7909-containing
vaccines resulted in a similar percentage of vaccine-specific MBCs at the end of each
study, approximately 1% of total IgG* MBCs, compared with approximately 0.1% for the
non-CPG 7909-containing vaccines. Frequencies of antigen-specific MBCs induced did,

however, vary significantly between the AMA1-C1 and MSP1-C1 vaccines.

4.2.2 The acquisition of MBCs mirrors and predicts Ab responses in malaria-naive
vaccine recipients

In humans the role MBCs play in maintaining Ab titers and LLPCs remains
unclear. The longitudinal design of this study allowed an examination of the relationship
between MBCs and Ab titers in a manner not possible in cross-sectional analyses. In

general we observed that vaccination with either AMA1-C1 or MSP14,-C1 on Alhydrogel

A AMA1-C1 C MSP1,,-C1 Figure 4.2 The AMA1-C1-
- S50 g il w0 3Nd MSP142-Cl-specific Ab
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23 oo & E27Y | .00 2 Fesponse and is enhanced
38 : 23 2 by CPG 7909. The Ab levels
g 44 ¢ Fo00 E 5, J_y}\_\ 1000 (red circles) determined by
* 8 y w%:_:j::__ " H N A " ELISA are given for individu-
= ‘:“’um::” a0 = o % “':'“d’ d::“ 20 20 als vaccinated with AMA1-
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B AMA1-C1 + CpG7909 D  MSP1,,-C1 +CpG7909 MSP142- C1/Alhydrogel (C,D)
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o4 ~ memnyscen || 2 g ~ mmoecs|| - with CPG 7909 (B,D). Ab
£5. UV , i - y vaconaien 2 levels for each vaccine are
f;‘z_ 200 ¢ éé;z 4000 gthe average of the 3D7 and
i i 2E 7 FVO responses. The corre-
1 2 : I sponding percentages of
T % T 5 R et —r———— 10 Ag-specific MBC are given for
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Data are reported as mean percentage (MBC) or mean ELISA units (Ab) £ SEM. The sample size at each
time point is given in Table 4.1.
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Figure 4.3 The level of
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generated Ab levels that correlated with the vaccine-specific MBC response, and for
both vaccines the inclusion of CPG 7909 induced higher levels of Abs and MBCs (Fig.
4.2). We also observed that the percentage of AMA1-C1l-specific MBCs on the day of
the second and third vaccination (days 28 and 56) was highly correlated with the levels
of AMA1-C1 Abs 14 days later (days 42 and 70) (Fig. 4.3 A) [second vaccination, r=0.70,
p=0.003; Fig. 4.3 B) third vaccination, r=0.87, p=<0.001)}. The majority of the Ab
response likely represents the differentiation of MBCs into short-lived PCs given the
rapid decline in titers that followed. In the MSP14,-C1 trial we observed a similar
relationship between MBCs at the time of revaccination and Ab titers 14 days later in

the MSP14,-C1 trial (Fig. 4.3 C second vaccination r=0.47, p=0.057; Fig. 4.3 D third

vaccination r=0.83, p<0.001). To determine the relationship between antigen-specific
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Figure 4.4 At steady-state, levels of Ag- A B

oge ' AMA1-C1 MSP1,4,-C1
specific MBC and Ab are highly correla- i, - =
ted. To determine the correlation be- O +CPG 7909 . O +CPG 7909
tween Ag-specific MBC and Ab titers = * -CPGT7000 ° §  qs0] | °_-CPOTe0S 9
closer to steady-state, the last time point §o **1 ©,4 g
with corresponding ELISPOT and ELISA uj‘; " g é 10004 o °
data (A) AMA1-C1 trial day 236 (B) MSP- EO 100 o ki ‘q, ° o
142-C1 trial day 140 was analyzed in z o b o |4 .o‘
cross-section. A positive correlation be- e N
tween Ag-specific MBC and Ab titers was 0 1 2 3 4 0.0 05 10 15 20
observed in both trials at steady-state % AMA1-C1-specific MBC per total 1gG* MBC % MSP1,,;-C1-specific MBC per total IgG* MBC
Day 236 Day 140

(AMA1-C1, r = 0.80, p = 0.014; MSP142-C1,

r=0.86, p < 0.001). Corresponding ELISPOT and ELISA data were available for 9 individuals in the AMA1-C1 trial and
19 individuals in the MSP142-C1 trial at this timepoint. Ab levels for each vaccine are the average of the 3D7 and
FVO responses.

MBCs and Ab titers at steady state (approximately three and six months after the last

MSP14,-C1 and AMA1-C1 vaccination, respectively), the last time point with
corresponding MBC and ELISA data was analyzed in cross-section. We observed a
positive correlation between antigen-specific MBCs and Ab titers in both trials [Fig. 4.4 A
AMA1-C1, r=0.80, p=0.003; Fig. 4.4 B MSP1,4,-C1, r=0.86, p<0.001). Since LLPCs are the
likely source of Ab titers at this later time point, the correlation between MBCs and Ab

titers suggests that the maintenance of LLPCs may be linked to MBCs.

4.2.3 Vaccination influences MBCs and PCs independently of antigen specificity

An examination of total IgG" MBCs circulating in the periphery showed that
vaccination affected this population independently of antigen (Fig. 4.5). Vaccination
with AMA1-C1/Alhydrogel plus CPG 7909 was associated with a decrease in the
frequency of IgG" MBCs three days after each vaccination, followed by a gradual return
to baseline (Fig. 4.5 B), although the decrease was only statistically significant after the
third vaccination (p=0.012) At the same time points, the frequency of IgG" MBCs in

those vaccinated with AMA1-C1/Alhydrogel without CPG 7909 did not show a consistent
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Figure 4.5 Vaccination appears to havean  p
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response (Fig. 4.5 A). Vaccination with MSP14,-C1 with or without CPG 7909, was
associated with a decrease in the frequency of IgG" MBCs seven days after the first
vaccination, and three days after the second and third vaccinations, followed by a return
to baseline (Fig. 4.5 C, D). The decrease was statistically significant after the third
vaccination in the MSP14,-C1 with CPG 7909 group (p=0.018), and after the first and
third vaccinations in the MSP14,-C1 without CPG 7909 group (p=0.021 and p=0.037,
respectively). Thus, MBCs appear to transiently leave the circulation after vaccination.
To determine if there was a concomitant increase in total PC numbers indicating a
polyclonal activation of MBCs, fresh PBMC from a subset of individuals in the AMA1-Cl
study were analyzed by flow cytometry (fresh PBMC from the MSP14,-C1 trial were not
available). Irrespective of the CPG 7909 status, three days after the second and third
vaccination with AMA1-C1/Alhydrogel, there was an increase in CD27°CD38"™ PCs as a
percentage of total CD3'CD19" B cells which was statistically significant after the second

vaccination in the CPG 7909 group (p<0.01). We have confirmed by direct ELISPOT on
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freshly sorted cells that in our hands CD19°CD27°CD38™*" cells secrete antibody while
CD19°CD27* MBCs, CD19°CD27 naive B cells, and CD19 non-B cells do not secrete
antibody. Thus it appears that vaccination with TLR-containing vaccines might have the
potential to polyclonally activate MBCs, independently of antigen, and that this
activation may drive the differentiation of MBCs into PCs, according to one of the

models we discussed in Chapter 1.5 (130).

4.3 Discussion

In this longitudinal study we examined the effect of Pf-subunit vaccination on
MBC generation in malaria-naive individuals and determined the impact of TLR9
activation on this process in vivo. MBCs and Abs developed reliably and robustly in
response to AMA1 or MSP1 vaccination in malaria-naive individuals, with antigen-
specific MBCs persisting at least six months in the case of AMA1 and at least three
months in the case of MSP1. This indicates that there are no overt intrinsic properties
of these antigens which prevent a humoral response from developing. In support of
this, another study found that vaccination with another blood-stage Pf-antigen, MSP3,
also in malaria-naive volunteers, induced an Ab response lasting at least one year (65).
The results presented here offer new insights into the kinetics of the development of
Abs and MBCs and provide evidence that the innate immune receptor TLR9 plays a
significant role not only in the generation of MBCs in naive individuals but may also
affect the expansion of MBCs and the differentiation of existing MBCs into PCs. For the

two protein subunit malaria vaccine candidates, AMA1-C1 and MSP14,-C1, the inclusion
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of CPG 7909 had a dramatic effect on malaria naive individuals, resulting in a more rapid
acquisition of vaccine-specific MBCs, in greater numbers. Antibody titers to MSP1 and
AMA1 remained statistically significantly higher in individuals receiving vaccines with
CPG 7909 versus without CPG 7909 at days 238 and 236 respectively (74, 149).
Interestingly, using one of these, the AMA1-C1 vaccine, in a cohort of semi-immune
adults in Mali, the addition of CPG 7909 did not enhance the acquisition of vaccine-
specific MBCs either kinetically or numerically (190). The mechanistic meaning of this
apparent refractoriness to TLR9 activation is of considerable interest for the purpose of

vaccine design.

The longitudinal design of this study of the response of naive individuals to
vaccination permitted a detailed characterization of the kinetics of MBC generation and
maintenance in response to primary and secondary vaccination. The capacity for a
detailed characterization was most apparent in the analysis of the AMA1-C1 vaccine trial
in which PBMC samples were collected at several time points after each vaccination.
We observed that AMA1-Cl-specific MBCs peaked in the peripheral circulation seven
days after the second and third vaccinations, representing approximately 3-4% of the
total IgG* MBC pool. Although it has been reported for diphtheria vaccination that the
magnitude of the peak MBC response decreased with each booster immunization (150),
we did not observe a significant difference between peaks in this study [day 35 CPG
7909 group, 2.94% (95% Cl, 2.12-3.75) vs. day 63 CPG 7909 group, 3.45% (95% Cl, 2.44-

4.35); p=0.328]. The differences between the studies may be due to the length of time
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between vaccination or the efficacy of the vaccines themselves. It is of interest that the
second AMA1-C1 vaccination generated AMA1-C1-specific MBCs at levels comparable to
those observed after influenza (173, 208) and smallpox (48) booster vaccination.
Irrespective of CPG 7909 status, the rate of decline of AMA1-Cl-specific MBCs was
approximately 0.4% per month. If this rate held steady, within two years the level of
AMA1-Cl-specific MBCs would approach pre-immune levels in the CPG 7909 group.
However, we do not know whether, or at what level, the antigen-specific MBC pool
reaches equilibrium. In a cross-sectional study 18 months after smallpox vaccination,
antigen-specific MBCs, as a percentage of the total IgG" MBCs, decreased to 0.1% from
a peak of 1% 14 days after vaccination (48). Similarly, in individuals receiving influenza
booster vaccinations, influenza-specific MBCs increased from low levels before
vaccination to 8.2% of 1gG" MBCs 14 days after vaccination, and then declined rapidly to
<1% 80 days post-vaccination (208). Based on these observations, AMA1-C1-specific
MBCs would be expected to reach equilibrium at ~0.3% within a year after the final

vaccination.

Although TLR9 expression has been reported to be low in naive B cells and
constitutively high in MBCs (29), the impact of this differential expression on the in vivo
responsiveness to CpG in humans at the cellular level is not known. As measured by the
MBC response, we observed no effect of CPG 7909 on primary immunization with
AMA1-C1 or MSP14,-C1, suggesting that CPG 7909 had little effect on naive B cells

directly, or indirectly through TLR9-expressing PDCs, However, once generated by
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primary immunization, TLR9-expressing antigen-specific MBCs responded dramatically
to secondary immunization in the presence of CPG 7909. Although the relative impact of
TLR9 activation in PDCs versus MBCs on the secondary response in vivo is not known, it
is clear from the results of our in vitro experiments described in Chapter 3, that purified

MBC differentiate into ASCs upon TLR9 activation, as has been shown by others (46).

Interestingly, the mechanisms underlying the apparent expansion and
contraction of circulating antigen-specific MBCs still need to be elucidated. The
contraction phase may represent migration of MBCs to lymphoid tissue where newly
generated MBCs compete for limited homeostatic niches in the MBC compartment.
Alternatively, in a manner analogous to T cell antigen-driven expansion and contraction,
contraction may represent an activation-induced cell death phenomenon (96). Another
possibility is the differentiation of a large portion of MBCs into SLPCs. What remains
unknown is which factors control the magnitude of the peak response and the

subsequent steady state level.

The results presented here also address the controversy surrounding the
relationship between MBCs, LLPCs, and serum Ab levels. In general, we observed a
positive correlation between the magnitude of the vaccine-specific MBC response and
Ab titers. We also observed that the percentage of vaccine-specific MBCs present at the
time of the second and third vaccinations predicted Ab titers two weeks later as has
been observed. The majority of this Ab was likely produced by short-lived PCs given the

rapid decline in titers that followed. Similar results were recently reported for infants
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immunized with the serogroup C meningococcal conjugate vaccine in which the
frequency of specific MBCs at the time of boosting correlated with post-vaccination
titers (31). However, the Ab titers we observed closer to steady state (approximately
three and six months after the last MSP14,-C1 and AMA1-C1 vaccination, respectively)
were likely produced by LLPCs, and thus the correlation between MBCs and Ab titers at
steady state suggests that the maintenance of LLPCs may be linked to MBCs. The cellular

and molecular nature of this relationship remains poorly understood.

In addition to the antigen-specific induction of MBCs, we observed an
approximately two fold antigen-independent decrease in the frequencies of total 1gG*
MBCs in circulation three days after the majority of vaccinations. This drop may reflect
the migration of MBCs into lymphoid tissues, apoptosis of MBCs, differentiation of MBCs
into SLPCs or LLPCs, or a combination thereof. The concurrent increase in CD27°CD38™""
PCs we observed three days after the second and third vaccinations in the AMA1-
C1/Alhydrogel study suggests that the decline in MBCs may be due in part to their
differentiation into PCs. In a separate phase | study of AMA1-C1/Alhydrogel without CPG
7909, we observed a similar increase in PCs three days after vaccination (unpublished).
The hypothesis that polyclonal activation can drive the differentiation of MBCs into PCs
is supported by other studies that have examined the antigen-independent effects of
vaccination on PCs. Bernasconi et al. observed an increase in ASCs directed against

Toxoplasma gondii and measles six days after vaccination with tetanus toxoid (30).

These authors attributed this to the polyclonal activation and differentiation of all MBCs
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into PCs. Odendahl et al. also observed an increase in circulating ASCs of unknown
specificity six days after vaccination with tetanus toxoid, but interpreted the ASCs to be
LLPCs displaced from the bone marrow by newly generated tetanus-specific PCs that
better competed for bone marrow PC niches (155). However, a recent study showed
that up to one third of circulating ASCs appearing after influenza vaccination were not
vaccine-specific, and had recently divided, ruling out the possibility that these were
LLPCs displaced from the bone marrow (134). Collectively, these findings are consistent
with a model in which the decrease in total IgG" MBCs (which we observed after
vaccination) is due in part to their polyclonal activation and differentiation into PCs
(130). The results of this study also provide an important baseline for our further
investigation of the B cell response to malaria vaccine candidates and natural infection

with P. falciparum.
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Chapter 5: The design of the longitudinal study in Kambila, Mali and cohort
description.

5.1 Introduction

To address fundamental questions related to the generation and maintenance of
MBCs and Abs specific for Pf malaria during natural infections, we conducted a year-long
prospective study in a rural village of Mali that experiences an intense, sharply-
demarcated six-month malaria season annually. In this chapter we describe the cohort
study that we designed to address the questions of how Ab responses to Pf develop
(Chapter 6), whether Pf infection generates MBCs specific for Pf blood stage antigens,
and if so, what is the pattern of acquisition of these MBCs (Chapter 7), and whether
there are any phenotypic changes in B cells in malaria-exposed individuals (Chapter 8).
Here we describe the study design, cohort demographics, clinical outcomes and our
analysis of confounding factors in this cohort. The seasonal transmission of Pf at our
study site, the focusing of the cohort on young children who are in the process of
developing immunity to malaria and the longitudinal nature of the study gave us a rare
opportunity to study the natural acquisition of MBCs and Abs in response to infection

rather than vaccination.

5.2 Results

5.2.1 Description of the cohort demographics
In May 2006 we initiated an observational cohort study in Mali to investigate the

mechanisms underlying naturally-acquired malaria immunity. The study population was
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an age-stratified, random sample representing 15% of all individuals living in a small,
rural, well-circumscribed, non-migratory community where antimalarial drugs were
provided exclusively by the study investigators. At this site, 237 individuals were
screened, and 12 individuals were excluded based on one of the following criteria;
hemoglobin level <7 g/dL, fever 237.5°C, acute systemic illness, use of antimalarial or
immunosuppressive medications in the past 30 days, and pregnancy. During a two-
week period one month prior to the abrupt onset of the six-month malaria season, we
enrolled 225 individuals in four age groups: 2—4 years (n=73), 5-7 years (n=52), 8-10
years (n=51), and 18-25 years (n=49). Attendance at scheduled follow-up visits was
>99% for children (2-10 years) and 82% for adults (18-25 years) during the one-year
study period indicating a high degree of study awareness and participation. Table 5.1
shows baseline demographic and clinical characteristics according to age group. Overall,
115 (51.1%) of 225 subjects were female, and the predominant ethnic groups were

Bambara (134 (59.6%)) and Sarakole (77 (34.2%)). The prevalence of asymptomatic

Table 5.1 Baseline clinical and demographic characteristics of entire cohort, according to age group.

Age group

2=-4 years &=7 years 8-10 yeaars 18-26 yaars All
Characteristic n 73) in 52) i 51} n 49} N 225)
Female sex 42 (57.5) 25 (48.1) 19 (37.3) 30 (81.2) 115 (51.1)
Ethnicity
Bambara 48 (65.8) 26 (50.0) 27 (63.0) 33 (67.4) 134 (59.6)
Sarakole 21 (28.8) 23 (44.2) 20 (39.2) 13 (26.5) 77 (34.2)
Fulani 2 4.1) 3 (5.8) 3 (5.9]) 21(4.1) 11 (4.9)
Malinke 1(1.4) 0 {0.0) 1(2.0) 1(2.0) 3101.3)
Flasmodium falciparurm smaar
Positive result at enrollmeant® 4 (5.5) 4 (7.7) 5 (9.8) 31(6.1) 16 (7.1)
Parasitemia, geometric mean no. of
parasites/ul (95% CI) 1438 (159-12,973) 3616 (1500-8715) 415 (134-1287) 953 (39-23,382) 1137 (579-2232)
Gl helminth infection at enrollmentt 9013.0) 4 (8.3) 4 (9.3) 0 (0.0} 17 (2.0)
Schistosoma haematobiurm in urine at
enrollments 0 (0.0} 0 {0.0) 2 14.3) 2 (28.1) 11 (6.0}
Hemaoglobin level at enrollment, mean
= SD, g/dlL 11.2 +1.2 11.8 = 1.0 12.3 = 1.1 126=14 12.1 =1.5
Distance of residence from clinic, mean
= SD, meters 393 = 102 393 = 136 378 = 1056 360 = 92 382 = 112
Bed net use 21 (28.8) 16 (20.8) 9(17.6) 15 (30.8) 61 (27.1)

cts, unless otherwise indicated. Cl, confidence interval; Gl, gastrointestinal

at enrolliment

i Nightly bed net use self-reported at the end of the malaria season
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parasitemia at enrollment was 7.1% (16 subjects) and did not vary significantly with age
(p=0.83). Of note, asymptomatic parasitemia during the dry season is commonly
observed in Mali (56, 58). Of 190 subjects with stool sample data available, 17 (9.0%)
showed evidence of intestinal helminthes; of 184 subjects with urine sample data
available, 11 (6.0%) showed evidence of S. haematobium infection. These prevalences
were lower than expected, likely due to community-wide albendazole treatment prior
to this study. The mean distance between the study clinic and subjects’ residences was
382 meters (range, 127-881 meters), and 61 (27.1%) of 225 participants self-reported

nightly bed net use during the rainy season.

5.2.2 Analysis of confounding factors

Age is well known as a covariate of immunity in malaria endemic areas. Genetic
red blood cell (RBC) polymorphisms that are reported to affect susceptibility to Pf
include HbS (sickle cell trait), HbC, a-thalassemia, glucose-6-phosphate dehydrogenase
(G6PD) deficiency, as well as blood group O. Although the mechanisms of protection
remain to be fully elucidated, individuals with the genotype HbAS, HbAC or HbCC have a
reduced risk of clinical malaria compared to individuals with a HbAA genotype (77).
These polymorphisms are common in the regions of Africa where studies of Pf~-malaria
are conducted. The prevalence of sickle cell trait (HbAS), for example, exceeds 25% in
some areas (146). Although these RBC polymorphisms are associated with decreased
risk of malaria, as measured by odds ratios (91, 101, 142, 168, 206) or incidence rate
ratios (205), their impact on the time to first malaria episode is not known. In our
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Table 5.2 Frequency of red blood cell polymorphisms, according to age group.

Age group
Polymorphism 2-4 years 5-7 years 8-10 years  18-25 years All
Hemoglobin type
AA 50/69 (72.5) 43/50(86.0) 35/51(68.6) 32/42(76.2) 160/212(75.5)
AS 8/69(11.6)  4/50(8.0) 5/51 (9.8) 5/42 (11.9) 22/212(10.4)
AC 10/69 (14.5)  3/50 (6.0) 11/51 (21.6) 5/42 (11.9) 29/212 (13.7)
CC 1/69 (1.5) 0/50 (0.0) 0/51 (0.0) 0/42 (0.0) 1/212 (0.5)
G6PD*A—
Female
Normal 32/42(76.2) 23/25(92.0) 15/19(79.0) 23/26 (88.5) 93/112 (83.0)
Heterozygous  6/42 (14.3)  2/25(8.0) 3/19 (15.8) 3/26 (11.5) 14/112 (12.5)
Homozygous 4/42 (9.5) 0/25 (0.0) 1/19 (5.3) 0/26 (0.0) 5/112 (4.5)
Male
Normal 26/29 (89.7) 18/24 (75.0) 27/30(90.0) 14/16 (87.5) 85/99 (85.9)

Hemizygous 3/29(10.3) 6/24(25.00 3/30(10.00 2/16(12.5) 14/99 (14.1)
a-thalassemia

Normal 35/67 (52.2) 34/51(66.7) 26/51(51.0) 30/42(71.4) 125/211(59.2)
Heterozygous 32/67 (47.8) 15/51(29.4) 25/51(49.0) 12/42(28.6) 84/211 (39.8)
Homozygous 0/67 (0.0) 2/51 (3.9 0/51 (0.0) 0/42 (0.0) 2/211 (1.0)
ABO blood group

(0] 20/67 (29.9) 15/49(30.6) 16/48(33.3) 12/26(46.2) 63/190 (33.2)
A 27/67 (40.3) 13/49(26.5) 11/48(22.9) 7/26 (26.9) 58/190 (30.5)
B 16/67 (23.9) 15/49 (30.6) 14/48(29.2)  5/26(19.2) 50/190 (26.3)
AB 4/67 (6.0) 6/49 (12.2) 7/48 (14.6) 2/26 (7.7) 19/190 (10.0)

NOTE. Data are no. of subjects with a given trait/no. of subjects for whom data was available (%). There
were 225 subjects enrolled: 73 in the 2-4 years group, 52 in the 5-7 years group, 51 in the 8-10 years group,
and 49 in the 18-25 group.

cohort, HbAS and HbAC phenotypes were present in 22 (10.4%) and 29 (13.7%) of 212
individuals, respectively (Table 5.2). The prevalence of the G6PD*A- genotype was
17.0% (19 of 112) among females (heterozygous and homozygous individuals) and
14.1% (14 of 99) among males (hemizygous individuals)."a/aa and -a/-a genotypes
were found in 84 (39.8%) and two (1.0%) of 211 individuals, respectively. Because of
the low frequency of the -a/-a genotype, individuals with this genotype were excluded
from further analyses. Blood groups O, B, A, and AB were identified in 63 (33.2%), 58

(30.5%), 50 (26.3%), and 19 (10.0%) of 190 individuals, respectively.
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Table 5.3 Malaria outcomes for the entire cohort, by age group.

Age group
2-4 5-7 8-10 years 18-25 years All
years years (n=51) (n=49) P
Outcome (n=73) (n=52) (n=225)
PP "

S L A R IO o S 1.94 +1.21 0.98 +1.05 0.08+0.28  1.33+1.30 <0.001
of episodes
Severe malaria, no. of episodesb 4 1 0 0 5
2 1 malaria episode, no. (%) of

. 63 (86.3) 45 (86.5) 31 (60.8) 4(8.2) 143 (63,6) <0.001
subjects
T|me. to first Talana episode, 101 114 130 153 115 0.016
median, days
Parasitemia at first malaria 34,374 15,687 10,433 8,816 19,625
episode, geometric mean no. of (24,955- (9,623- (5,079- (4,082- (15,004- 0.036
parasites/ul (95% Cl) 47,348) 25,574) 21,427) 19,037) 25,688)

* A malaria episode was defined as axillary temperature > 37.5°C, asexual parasitemia > 5000 parasites/ul, and a nonfocal physical

examination by the study physician.
® In accordance with the World Health Organization definition of severe malaria (1).
° Days since study enrollment.

Importantly, several features of this study favored an unbiased detection of
malaria episodes: (1) the study population was an age-stratified, random sample
representing 15% of all individuals living in a well-circumscribed, non-migratory
community, (2) follow-up at scheduled visits during the course of the study was >99%

for children and 82% for adults, indicating a high

T4
degree of study awareness and participation, (3) &12-
210
antimalarial drugs were provided exclusively by the i‘? 8-1
& 6--
£ 4.
study investigators who were available at all times at 5 :
the only easily accessible health care facility, and (4) &A $ \»¢Q’cg°’¢oé‘\o“oe’° &

. c e , Figure 5.1 Number of clinical malaria
the average distance of individuals’ homes to the episodes per day from May 2006 to

January 2007 for the whole cohort.

study clinic was 0.38 kilometers (range: 0.13 — 0.88 There were 298 clinical episodes
defined as axillary temperature 2
37.5°C, Pf asexual parasitemia 25000
parasites/uLand a nonfocal physical
examination by the study physician.

kilometers), minimizing geographic and logistic
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barriers to study participation. A record of the number of malaria cases per day from
May 2006 to January 2007 (Fig. 5.1) illustrates the intense, seasonal malaria
transmission at this site. During 495 clinic visits that occurred during the study period,
298 episodes of malaria were diagnosed. Table 5.3 summarizes malaria outcomes
according to age group. As expected, malaria incidence decreased with age (P < 0.001),
and the five cases of severe malaria were confined to children five years old or younger.
Among those who presented with malaria, the median time to first malaria episode (as
measured in days from study enroliment) increased with age (101 days for subjects two
to four years old vs. 153 days for subjects 18-25 years old; p=0.016). The geometric
mean parasite density per microliter at time of the first malaria episode decreased with

age (p=0.036).

Because adult subjects had few episodes of malaria (Table 5.3), the analysis of
RBC polymorphisms and malaria outcomes focused on children aged two to ten years.
Time-to-event analysis (Fig. 5.2 A) showed that HbAS was associated with a significant
delay in the time to first malaria episode (p=0.038 by log rank test). Among children who
presented with malaria, HbAS was associated with a median 34-day delay to the first
episode, compared with the non-HbAS group (median, 145 days for the HbAS group vs.
111 days for the non-HbAS group; p=0.017). HbAS was also associated with a 53%
reduction in malaria incidence (mean malaria incidence, 0.82 episodes for the HbAS
group [95% confidence interval {Cl}, 0.48 —1.17] vs. 1.76 episodes for the non-HbAS
group [95% Cl, 1.56 —1.96]; p=.003). Although the geometric mean parasite densities at
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the time of the first malaria episode were lower in HbAS children, this difference was
not statistically significant (9,033 parasites/uL in the HbAS group [95% Cl, 1,364-59,825]
vs. 21,257 parasites/pL in the non-HbAS group [95% Cl, 16,312-27,701]; p=0.83). The
five cases of severe malaria occurred in non-HbAS children (3 HbAA children and two
HbAC children). HbAC phenotype, G6PD*A- genotype (hemizygosity, heterozygosity,
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and homozygosity), “a/ao genotype, and blood group O were not associated with a

delayed time to first malaria episode (Fig. 5.2 B—D) or a decreased incidence of malaria.

To assess for potential confounding of the protective effect of HbAS, factors that

might influence malaria risk were stratified by Hb type (Table 5.4). While there was a

higher proportion of females in the HbAS group (p=0.022), HbAS children did not differ

significantly from non-HbAS children with regard to age, weight, ethnicity, distance of

residence from the clinic, or frequency of G6PD*A" and -a/aa genotypes.

The

prevalence of asymptomatic parasitemia at enrollment was 9.4% (12 of 128) among

HbAA children and 0% (0 of 41) among HbAC and HbAS children. However,

asymptomatic parasitemia at enrollment was associated with a delayed time to first

Table 5.4 Univariate analysis of baseline characteristics of children aged 2-10 years, stratified

by hemoglobin (Hb) type.

Hemoglobin type

HbAA HbAC HbAS

Characteristic (n=128) (n = 24) (n=17) Pe
Age, mean = SD, years 56+23 6.0=+28 5122 382
Female sex 59 (46.1) 12 (50.0) 13(76.5)  .022
Weight, mean + SD, kg 179+x54 186x=6.8 18.1x8.1 .718
Ethnicity

Bambara 72 (56.3) 14 (58.3) 8(47.1) 453

Sarakole 48 (37.5) 8(33.3) 8(47.1) 435

Fulani 6(4.7) 2(8.3) 1(5.9) ND

Malinke 2(1.8) 0(0.0) 01(0.0) ND
Distance of residence from clinic, mean = SD, meters 386111 39559 381177 .163
Bed net useb 38(29.7) 5(20.8) 2(11.8) ND
Plasmodium falciparum smear positive at enrollment 12 (9.4) 01(0.0) 01(0.0) ND
Gl helminth infection at enrollment 10 (8.6) 3(13.6) 2(12.5) ND
Schistosoma haematobium detected in urine at enrollment 1(0.9) 11(4.4) 0(0.0) ND
G6PD*A—=< 22(17.9) 3012.5) 3(17.6) .99
a-thalassemia, heterozygous 50 (41.3) 15 (62.5) 6(375 .792
Blood group O 40 (31.3) 9 (37.5) 2(11.8) ND

NOTE. Data are no. (%) of subjects, unless otherwise indicated. Gl, gastrointestinal; ND, not done.
® For the comparison of HbAS versus non-HbAS (i.e., HbAA and HbAC) children (statistical test not done if <3 in subgroup).

b Nightly bed net use self-reported at the end of the malaria season.
¢ Includes heterozygous, hemizygous, and homozygous individuals.
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malaria episode (Fig. 5.2 E; p=0.026, by log rank test) and a trend toward decreased
malaria incidence. Thus, HbAS children were not delayed in their time to first malaria
episode as a result of the effect of asymptomatic parasitemia. There were too few HbAS
children to make meaningful comparisons with respect to the remaining variables.

It is unlikely that differential mosquito exposure confounded the association
between HbAS and the time to first malaria episode because HbAS individuals appeared
to be randomly distributed in this small, well-circumscribed village, which lacks a
dominant body of water (Fig. 5.3). Moreover, the frequency of bed net use was evenly
distributed between HbAS and non-HbAS individuals. It is also unlikely that access to the
study clinic played a significant role because the distance to the clinic from the
individuals’ residences did not differ by hemoglobin type.

Cox regression analysis revealed that greater age (HR, 0.87 [95% Cl, 0.80-0.94];

Figure 5.3
Distribution of
study partici-
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p=0.001), HbAS phenotype (HR, 0.48 [95% CI, 0.26—-0.91]; p=0.024), and asymptomatic
parasitemia at enrollment (HR, 0.35 [95% Cl, 0.14-0.85]; p=0.021) were associated with
decreased malaria risk. Poisson regression analysis showed that greater age (incidence
rate ratio [IRR], 0.90 [95% Cl, 0.85— 0.95]; P < 0.001) and HbAS phenotype (IRR, 0.46
[95% CI, 0.27- 0.79]; p=0.005) were significant predictors of decreased malaria
incidence, whereas asymptomatic parasitemia at enrollment was not (P > 0.100).
Removal of the “a/aa genotype from the analysis decreased the hazard ratio (HR, 0.44;
p=0.020) and incidence rate ratio (IRR, 0.44; p=0.004) for HbAS, indicating negative
epistasis between these polymorphisms. Factors that did not independently predict
either measure of malaria risk (hazard ratio or incidence rate ratio) were sex, weight,
distance of residence from clinic, bed net use, helminth infection, HbAC phenotype,
G6PD*A” genotype (hemizygosity, heterozygosity, or homozygosity), “a/aa genotype,
and blood group O.

5.3 Discussion

Three of the confounding factors we analyzed, age, HbAS and asymptomatic
parasitemia at enrollment, at the end of the dry season, were associated with clinical
protection. RBC polymorphisms that are reported to affect susceptibility to Pf are
common in the regions of Africa where studies of Pf~-malaria are conducted, including
HbS, HbC, a-thalassemia, G6PD deficiency, as well as blood group O. Although these
RBC polymorphisms are associated with decreased risk of malaria, as measured by odds

ratios (91, 101, 142, 168, 206) or incidence rate ratios (205), their impact on the time to
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first malaria episode was not known. We found that HbAS was associated with a 34 day
delay in the median time to first malaria episode, and this association remained
statistically significant in multivariate Cox regression analysis. HbAS was unique in this
regard as we found no association between HbAC, a-thalassemia, G6PD deficiency, or
blood group O and a delayed time to first malaria episode. This observation along with
the observation of increasing time to first malaria infection with increasing age has not
been made previously to our knowledge, likely due to the paucity of prospective
longitudinal studies of malaria to date. Our finding that HbAS was associated with a 34
day delay in the time to first malaria infection has direct applicability to vaccine trials, as
the World Health Organization (WHQO) recently recommended that the time to first
malaria episode serve as the primary end point in phase Il malaria vaccine trials. Given
our findings it would be advisable for malaria vaccine trials and observational studies
that use this end point to include Hb typing in the design of studies conducted in areas
where HDbAS is prevalent. As chronic asymptomatic parasitemia was found to be
protective as well, it might be advisable to take this into consideration as well when
initiating malaria vaccine trials. The other covariate of immunity in our study, age, is
well known as such in malaria endemic areas.

The clinical outcomes we found in this cohort match general epidemiological
observations with decreasing malaria risk and decreasing malaria incidence with
increasing age. We observed no clusters of higher malaria incidence within the village,

with malaria episodes spread fairly evenly geographically throughout the village. This
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indicates that it is unlikely that exposure to Pf varies significantly across the cohort. We
found the study population to be non-migratory (limiting exposure to increased or
decreased Pf transmission), to live equidistant from the health center (medical care is
equally accessible to all study participants), and to have a high degree of study
awareness and participation. Overall this study site and cohort are well suited for the

guestions we aim to address.
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Chapter 6: A prospective analysis of the Ab response to P. falciparum before and after
the malaria season by protein microarray

6.1 Introduction

As discussed earlier it has been shown that purified 1gG from malaria-immune
adults, when transferred to children acutely ill with malaria, reduced fever and
parasitemia (42), thus indicating that Abs against Pf proteins play a critical role in
controlling the blood stage of the infection. However, which of the 5,400 possible Pf
proteins (83) elicit the production of protective Abs is not known. A number of studies
have been carried out in malaria endemic areas to identify a correlation between
malaria immunity and an individual’s Pf-specific Abs. These studies have been
constrained to measuring Abs to the relatively few Pf proteins made available through
traditional cloning methods (< 0.5% of the proteome) (198). Thus far, correlations
between Abs to the relatively small number of Pf proteins that have been tested and
malaria immunity have not been firmly established, suggesting either that Abs against
these proteins do not play a role in protective immunity, or that Abs against single
parasite proteins are insufficient to confer protection. To address these critical
knowledge gaps we used Pf genome sequence data (83) and high throughput cloning
and in vitro protein expression methods (52) to construct a protein microarray
representing ~23% of the Pf proteome (1,204 known and hypothetical proteins). In a
single assay, Abs against these proteins can be detected and quantified in the plasma of

Pf-exposed individuals. In this study we analyzed 220 individuals from the Kambila
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cohort (Described in Chapter 5.2.1) by probing plasma samples collected before and
after the six-month malaria season to gain insight into the kinetics of the humoral
immune response to Pf and to identify Pf -specific responses that are associated with

protection from malaria.

6.2 Results

6.2.1 Validity and reproducibility of the protein microarray assay

To assess the validity of Ab reactivity against proteins expressed in the high-
throughput translation system, we included three well-characterized, correctly folded Pf
proteins being developed as malaria vaccine candidates on the same protein microarray
chip—CSP, AMA1-C1, and MSP-2. Ab reactivity against these malaria vaccine candidates
correlated with Ab reactivity against the same proteins expressed in the high-
throughput system (CSP (r=0.77; P < 0.001), AMA-C1 (r=0.78; P < 0.001), and MSP-2
(r=0.96; P < 0.001); Fig 6.1). Each microarray chip also contained both positive and
negative controls and an IgG standard curve to normalize data from arrays probed at
different times (detailed in methods section 2.5.10.2). The reproducibility of the
microarray assay was assessed by probing two microarray chips that had been printed
on separate occasions with Ab against the 3’ hemagglutinin tag. Reactivity against
hemagglutinin on all spots for the two microarray chips was highly correlated (r=0.92; P
< 0.001). To further assess the reproducibility of the microarray assay, we constructed a

second smaller microarray chip containing the 49 proteins to which Ab reactivity was
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Figure 6.1. Validity and reproducibility of the
protein microarray assay. To test the validity of Ab
reactivity against proteins expressed in the RTS, a
subset of randomly selected plasma samples from
the study cohort (n = 149) was probed with a
microarray containing three well-characterized
correctly folded Pf proteins and the corresponding
protein pairs was correlated for CSP r=0.77,P <
0.001 (A), AMA-1r=0.78, P < 0.001 (B), and MSP-2
r=0.96, P < 0.001 (C). The reproducibility of the
microarray assay was assessed by probing two
microarray chips that had been printed on

separate occasions with Ab against the 3’ hemagglutinin tag. Reactivity against hemagglutinin on all
spots for the two microarray chips was highly correlated r = 0.92, P < 0.001 (D). To assess the reproduc-
ibility of the micro- array assay further, we constructed a second smaller microarray containing the 49
signature proteins identified on the larger microarray. A random subset of the original plasma samples
(n = 149) was probed against this second array and showed that Ab reactivity against the 49 proteins
for the same plasma samples tested on the smaller and larger microarrays was highly correlated r=
0.91, P < 0.001 (E). Of note, the displacement in the intercept from zero in (E) is attributable to the
difference in laser power.

associated with protection from malaria (described below in section 6.2.3). A random

subset of the original plasma samples (n = 149) was probed against this smaller array.
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The Ab reactivity against the 49 proteins for the same plasma samples tested on the

smaller and larger microarrays was highly correlated (r=0.91; P < 0.001; Fig. 6.1 D).

6.2.2 Analysis of Pf-specific Ab profiles before and after the malaria season

We examined Ab reactivity to the 2,320 Pf proteins (representing 1,204 unique
proteins) on the microarray in plasma collected before and after the six-month malaria
season. Of the 225 individuals enrolled in the study, microarray data was available from
220 individuals before the malaria season and 194 individuals after the malaria season.
Ab reactivity to 491 of the 2,320 proteins, measured before the malaria season,
exceeded two SDs above the negative control (a rapid translation reaction into which an
empty plasmid vector is placed). These 491 proteins are listed in Table S.1 and referred
to here as immunogenic proteins. Based on mass spectrometry data (80) obtained from
PlasmoDB (www.plasmodb.org), the life cycle stage at which these 491 proteins are
maximally expressed is as follows: sporozoite (25.2%), merozoite (5.5%), trophozoite
(16.8%), gametocyte (20.6%), and unknown (31.9%). Gene ontologic analysis indicated
that ~40% of the immunogenic proteins are expressed in the membrane of the parasite
or host erythrocyte, and that they are overrepresented in the biological process
categories of “pathogenesis”, “cytoadherence to microvasculature”, “antigenic
variation”, and “rosetting” (Fig. 6.2, Table 6.1). In a study that used a smaller version of
the same microarray platform (250 proteins), 32 ‘serodominant’ proteins were
identified in a study of Pf-exposed adults in Kenya (63), 26 of which were identified as
immunogenic in this study (overlapping proteins are indicated by shading in Table S.1).
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Figure 6.2 Gene ontology classification of the 491 immunogenic Pf proteins. Shown is the proportion of
491 immunogenic proteins expressed during the sporozoite and blood stages of the Pf life cycle based on
mass spectrometry data obtained from PlasmoDB (www.plasmodb. org). Biological process gene ontology
categories are shown. The size of each slice represents the number of proteins assigned to each category.
Categories that are statistically significantly overrepresented relative to the entire microarray are indicated
in red. Gene ontology categories with <5 assigned proteins were not included in the figure. The complete
results of the gene ontology analysis for immunodominant proteins are given in Table 6.2.

Both the breadth and intensity of Ab reactivity to the 491 immunogenic proteins
increased with age (Fig. 6.3 A), and from before to after the Pf transmission season (Fig.
6.3 B). The average number of proteins recognized by Pf-exposed individuals increased
with age, both before (P < 0.0001; Fig. 6.3 C) and after (P < 0.0001; Fig. 6.3 C) the
malaria season. The average number of proteins recognized by children in each age
group increased from before to after the malaria season (p<0.0001 for each

comparison; Fig. 6.3 C), whereas the number recognized by adults did not increase
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Table 6.1. Gene ontology classifications overrepresented in the immunogenic Pf proteins relative to the
entire Pf microarray.

# non
#in #in #non | annot
single test test ref. annot ref.
GO Term Name FDR* FWERTt p-valuet group | group test group
G0:0020002 | host cell plasma membrane 7.21E-05 3.81E-05 1.13E-06 13 1 232 580
G0:0051809 passive evasion of immune 7.21E-05 5.72E-05 1.33E-06 11 0 234 581
response of other organism
during symbiotic interaction
G0:0020033 antigenic variation 7.21E-05 5.72E-05 1.33E-06 11 0 234 581
G0:0043657 | host cell 7.21E-05 1.18E-04 3.54E-06 16 4 229 577
G0:0018995 host 7.21E-05 1.18E-04 3.54E-06 16 4 229 577
G0:0043245 extraorganismal space 7.21E-05 1.18E-04 3.54E-06 16 4 229 577
G0:0044419 interspecies interaction 7.21E-05 1.44E-04 3.90E-06 21 9 224 572
between organisms
G0:0044403 symbiosis, encompassing 7.21E-05 1.44E-04 3.90E-06 21 9 224 572
mutualism through parasitism
G0:0051704 multi-organism process 1.31E-04 3.27E-04 8.87E-06 21 10 224 571
G0:0044421 | extracellular region part 1.31E-04 4.51E-04 1.12E-05 17 6 228 575
G0:0052564 response to immune response 1.31E-04 5.25E-04 1.18E-05 11 1 234 580
of other organism during
symbiotic interaction
G0:0051805 evasion or tolerance of 1.31E-04 5.25E-04 1.18E-05 11 1 234 580
immune response of other
organism during symbiotic
G0:0052173 | response to defenses of other | 1.31E-04 | 5.25E-04 1.18E-05 11 1 234 580
organism during symbiotic
interaction
G0:0051834 evasion or tolerance of 1.31E-04 5.25E-04 1.18E-05 11 1 234 580
defenses of other organism
during symbiotic interaction
G0:0051807 | evasion or tolerance of 1.31E-04 5.25E-04 1.18E-05 11 1 234 580
defense response of other
organism during symbiotic
G0:0051832 | avoidance of defenses of other 1.31E-04 5.25E-04 1.18E-05 11 1 234 580
organism during symbiotic
interaction
G0:0050896 response to stimulus 1.31E-04 5.56E-04 1.32E-05 27 18 218 563
G0:0009405 | pathogenesis 2.42E-04 0.001089 2.78E-05 14 4 231 577
G0:0020030 infected host cell surface knob 4.62E-04 0.002539 5.52E-05 8 0 237 581
G0:0007157 | heterophilic cell adhesion 4.62E-04 0.002539 5.52E-05 8 0 237 581
G0:0020013 rosetting 4.62E-04 0.002539 5.52E-05 8 0 237 581
G0:0016337 | cell-cell adhesion 4.62E-04 0.002539 5.52E-05 8 0 237 581
G0:0006952 | defense response 4.63E-04 0.002657 5.64E-05 11 2 234 579
G0:0005576 | extracellular region 4.75E-04 0.002848 6.48E-05 17 8 228 573
G0:0020035 | cytoadherence to 7.89E-04 0.005507 1.18E-04 9 1 236 580
microvasculature, mediated by
parasite protein
G0:0044406 | adhesion to host 7.89E-04 0.005507 1.18E-04 9 1 236 580
G0:0051825 | adhesion to other organism 7.89E-04 0.005507 1.18E-04 9 1 236 580
during symbiotic interaction
G0:0050839 | cell adhesion molecule binding 7.89E-04 0.005507 1.18E-04 9 1 236 580
G0:0030430 | host cell cytoplasm 0.001091 0.007877 1.66E-04 10 2 235 579
G0:0005539 | glycosaminoglycan binding 0.001236 0.010144 1.90E-04 7 0 238 581
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G0:0030246 carbohydrate binding 0.001236 0.010144 1.90E-04 7 0 238 581
G0:0030247 | polysaccharide binding 0.001236 0.010144 1.90E-04 7 0 238 581
G0:0001871 | pattern binding 0.001236 0.010144 1.90E-04 7 0 238 581
G0:0004872 | receptor activity 0.001285 0.011184 1.94E-04 11 3 234 578
G0:0043656 intracellular region of host 0.001285 0.011184 1.94E-04 11 3 234 578
G0:0016020 | membrane 0.002221 0.01979 4.48E-04 43 52 202 529
G0:0004197 cysteine-type endopeptidase 0.002873 0.026228 4.82E-04 9 2 236 579
activity
G0:0051701 | interaction with host 0.003069 0.028732 5.12E-04 12 5 233 576
G0:0004871 | signal transducer activity 0.007197 0.069795 0.001269 11 5 234 576
G0:0060089 molecular transducer activity 0.007197 0.069795 0.001269 11 5 234 576
G0:0005488 | binding 0.007197 0.07112 0.001324 155 300 90 281
G0:0006974 | response to DNA damage 0.007316 0.077333 0.001371 8 2 237 579
stimulus
G0:0006281 | DNA repair 0.007316 0.077333 0.001371 8 2 237 579
G0:0009719 response to endogenous 0.007316 0.077333 0.001371 8 2 237 579
stimulus
G0:0022610 | biological adhesion 0.007447 0.080375 0.00138 10 4 235 577
G0:0007155 | cell adhesion 0.007815 0.087743 0.00143 9 3 236 578
G0:0008234 | cysteine-type peptidase 0.007815 0.087743 0.00143 9 3 236 578
G0:0031224 | intrinsic to membrane 0.00843 0.098133 0.001885 16 12 229 569
G0:0016021 | integral to membrane 0.00843 0.098133 0.001885 16 12 229 569
G0:0046872 | metal ion binding 0.022674 0.25113 0.003881 38 51 207 530
G0:0043167 | ion binding 0.022674 0.25113 0.003881 38 51 207 530
G0:0008270 | zincion binding 0.024819 0.27586 0.004746 18 17 227 564
G0:0050794 regulation of cellular process 0.025929 0.29086 0.005116 21 22 224 559
G0:0006350 | transcription 0.028185 0.31812 0.006073 15 13 230 568
G0:0046914 | transition metal ion binding 0.028185 0.321402 0.006371 23 26 222 555
G0:0050789 | regulation of biological process | 0.029869 0.341892 0.007184 21 23 224 558
G0:0051056 | regulation of small GTPase 0.039286 0.445501 0.007607 4 0 241 581
mediated signal transduction
G0:0007265 Ras protein signal transduction 0.039286 0.445501 0.007607 4 0 241 581
G0:0046578 regulation of Ras protein signal 0.039286 0.445501 0.007607 4 0 241 581
transduction
G0:0009966 | regulation of signal 0.039286 0.445501 0.007607 4 0 241 581
G0:0006950 | response to stress 0.045623 0.502748 0.009268 15 14 230 567
G0:0006351 | transcription, DNA-dependent 0.045623 0.507235 0.009426 13 11 232 570

*FDR: corrected p-value by False Discovery Rate control.
TFWER: corrected p-value by Family Wise Error Rate.
1Single Test p-Value: p-Value without multiple testing corrections.

significantly (Fig. 6.3 C). Similarly, the number of proteins recognized by at least 90% of
individuals in each age group also increased with age and Pf transmission (Fig. 6.3 D). By
the end of the malaria season, nearly all of the 491 immunogenic proteins were
recognized by at least 50% of individuals eight years of age and older. Pf-naive adults (n
=27) recognized an average of 203 of the 491 immunogenic proteins (Fig. 6.3 C);

however, the level of Ab reactivity against these proteins was relatively low, similar to
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levels observed in two to four year old children before the malaria season (Fig. 6.3 C),
but lower than that of individuals aged five years and older before the malaria season (P
< 0.01 for each comparison) and lower than that of all children and adults after the
malaria season (P < 0.01 for each comparison). Moreover, only 24 of the 491
immunogenic proteins (4.9%) were recognized by 90% of Pf-naive adults (Fig. 6.3 D), in
contrast to the 346 proteins (70.5%) recognized by 90% of Pf-exposed adults after the
malaria season (Fig. 6.3 D). Of note, Ab reactivity to the 24 proteins recognized by
malaria-naive adults increased along with Ab reactivity to all 491 immunogenic proteins
in Pf-exposed individuals (Fig. 6.3 E), suggesting that the low level of Ab reactivity in
samples from Pf-naive adults may be attributable, in part, to cross-reactivity of Abs
generated in response to other protozoa of the phylum Apicocomplexa such as
Toxoplasma gondii. (3), a relatively common infection in the U.S. (116), rather than

nonspecific binding.

We also quantified the level of Ab reactivity to the 491 immunogenic proteins
with age and in response to Pf transmission. For each study participant we calculated
the average Ab reactivity to the 491 immunogenic proteins before and after the malaria
season, and then plotted the mean of these values within each one year age group (Fig.
6.3 F). Two year-old children began the malaria season with Abs to the immunogenic
proteins—presumably elicited in response to Pf exposure during the preceding malaria
season. The mean level of Abs to these proteins increased during the subsequent

malaria season in each age category, but increases only reached statistical significance
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Figure 6.3 Impact of age and Pf transmission on Pf-specific Ab profiles. Heat maps of proteins analyzed
for immunoreactivity across plasma samples collected before (A) and after (B) the malaria season show
that the breadth and intensity of Ab reactivity increases with age and in response to Pf transmission. The
491 immunogenic proteins are represented in rows in descending order of immunoreactivity. Individual
plasma samples are in columns and grouped by age in years. Within each age group, samples are sorted
by increasing average immunoreactivity. Red indicates positive immunoreactivity, black indicates interme-
diate immunoreactivity, and green indicates no immunoreactivity. (C) Of the 491 immunogenic proteins,
the average number recognized by Pf-exposed individuals increased with age both before (P<0.0001) and
after (P<0.0001) the malaria season. Significant increases in the number of proteins recognized from
before to after the malaria season within age groups are indicated by an asterisk (P < 0.0001 for all
significant changes). (D) Number of proteins recognized by at least 90% of Pf-exposed individuals
increased with age and Pf transmission. (E) Average level of Ab reactivity to the 491 immunogenic Pf
proteins (reactivity tothenegative control subtracted) measured before the malaria season increased with
age. In both children and adults, the level of Ab reactivity increased from before to after the malaria
season. Statistically significant (P<0.05) increases are indicatedby an asterisk.

(p<0.05) in children aged two to eight years. In comparing the levels of Abs before the
malaria season in aged two to three years, most of the increase in Ab levels from before

to after the malaria season appeared to be short-lived—decreasing over the six month
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dry season during which there was little to no Pf transmission. However, the level of the
Pf-specific Abs before the malaria season was higher in children aged three years versus
two years, suggesting that a small portion of the Abs acquired by two-year-old children
over the malaria season persisted for six months in the absence of Pf exposure. This
general pattern of rapid seasonal rise in Ab reactivities and gradual acquisition of
persistent Ab responses continued to adulthood at which point Ab reactivity was
substantial before the malaria season and only increased by a relatively small amount
during the malaria season. Importantly, in children aged two to ten years, the combined
Ab reactivity to the 491 immunogenic proteins measured before the malaria season was
associated with decreased malaria risk (age adjusted OR 0.34 [95% confidence interval,
0.13 to 0.89]; p=0.03), whereas the combined Ab reactivity to the same proteins
measured after the malaria season was not (age adjusted OR 2.15 [95% confidence
interval, 0.59 to 7.89]; p=0.25).
6.2.3 Identifying Pf-specific Ab profiles before the malaria season that correlated with
subsequent protection from uncomplicated malaria

To determine if Abs to particular Pf proteins within the 491 immunogenic
proteins present before the malaria season correlated with subsequent protection from
malaria, we compared Ab profiles of children who did not experience malaria
(‘protected’) versus those who experienced at least one malaria episodes (‘susceptible’)
during the eight-month study period. We focused on children aged eight to ten years

for this analysis to avoid the confounding effect of age on malaria risk, and because the
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majority of individuals above and below this age range were protected or susceptible,
respectively (Fig. 5.3 C). Importantly, all of the eight to ten year old children classified as
‘protected’ had at least one blood smear positive for asexual Pf parasites at scheduled
follow-up visits during the malaria season, indicating that protected children were not
misclassified as such because of lack of Pf exposure. Furthermore, protected and
susceptible children in this age group were similar in terms of factors potentially related
to malaria risk and exposure including age, gender, ethnicity, distance of residence from

the study clinic, mosquito bed net use, and prevalence of common red blood cell

Table 6.2 Baseline characteristics of children aged 8-10 years classified as susceptible (>1 malaria
episodes) and protected (no malaria episodes).

Susceptible Protected P

Characteristict (n=29) (n=12) Valuet
Age—yr 8.4 0.7 8.9+0.9 0.09
Male sex—no. (%) 19 (65.5) 6 (50.0) 0.49
Weight—kg 23.4+£3.7 25.3+3.6 0.13
Ethnicity—no. (%)

Bambara 15 (51.7) 6 (50.0) 1.00

Sarakole 10 (34.5) 6 (50.0) 0.46

Fulani 3(10.3) 0(0.0) _

Malinke 1(3.5) 0(0.0) _
Distance of residence from study clinic—meters 368 +87 368 +66 0.82
Bednet use—no. (%)§ 6 (20.7) 2 (18.2) _
Pf smear positive at enrollment—no. (%)9 0(0.0) 0(0.0) o
Gl helminth infection at enrollment—no. positive/no. available (%) || 2/25 (8.0) 1/9 (11.1) _
Schistosoma haematobium detected in urine at enrollment—no. 2/26(7.7) 0/11 (0.0) .
positive/no. available (%) ||
HbASY| 0 (0.0) 0 (0.0) _
G6PD*A- 6(20.7) 3(25.0) 1.00
a-thalassemia, heterozygous 16 (55.2) 5(41.7) 0.51
Blood group O 9(31.0) 6 (50.0) 0.30

*Plus-minus values are means * s.d. Gl, gastrointestinal; HbAS, hemoglobin AS phenotype; G6PD*A, the mutation
responsible for glucose-6-phosphate dehydrogenase in Mali, includes heterozygous, hemizygous, and homozygous
individuals.

tMethods used to determine these characteristics are described elsewhere (14).

FThe characteristics of susceptible and protected individuals were compared with the use of Fisher’s exact tests and
Wilcoxon rank-sum tests for binary and continuous variables, respectively. Statistical test not done if <3 in subgroup.
§Nightly bednet use self-reported at the end of the malaria season.

fIBecause asymptomatic parasitemia before the malaria season and sickle cell trait were independently associated
with decreased malaria risk in this cohort (14), these individuals were excluded from this analysis.

|| The lower than expected prevalence of helminth infections was likely due to community-wide albendazole
treatment prior to this study.

97



polymorphisms and helminth coinfection (Table 6.2). Individuals with asymptomatic Pf
parasitemia before the malaria season or sickle cell trait were excluded from this
analysis (n = 10), because these factors were independently associated with decreased
malaria risk in this cohort (Chapter 5.2.1). Using plasma samples collected before the
malaria season, we identified 49 proteins to which the mean Ab reactivity was higher
among protected (n = 12) versus susceptible (n = 29) children (x = 0.05, false discovery
rate-corrected). Heatmaps of immunoreactivity against these 49 proteins demonstrate
the difference between samples from protected and susceptible children (Fig. 6.4). Of
the 491 immunogenic proteins, there were none to which Ab reactivity was significantly
higher in the susceptible children. Of the 49 proteins associated with protection, four
are being developed as malaria vaccines candidates—sporozoite threonine—asparagine-

T e ™ Figure 6.4 Pf-specific Ab
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Table 6.3 Proteomic features of Pf proteins associated with protection from uncomplicated malaria.

Sig Affy
nal [#TM Expres-
Pep | Dom | Mass Spec. Expression sion
Gene ID Protein Name p* tide | ains Evidencet Evidencet
PFI0510c Hypothetical, conserved 0.00002 | No 0 Spor gam
PFD1060w u5 small nuclear 0.0004 No 0 mero>spor>gam>troph early troph
ribonucleoprotein-specific protein
PFC0875w ABC transporter 0.0005 No 13 unknown early ring
PFAO510w bromodomain containing protein 0.0005 No 0 gam>spor early troph
PF14_0419 Hypothetical, conserved 0.0005 No 0 gam>spor early schiz
PF14_0170 NOT family protein 0.0008 No 0 spor>mero early schiz
PFL1545c¢ chaperonin cpn60 0.0008 Yes 1 iRBCm>trop=schiz>gam early troph
PFAO110w RESA 0.0009 No 0 mero=troph=schiz>iRBCm>ga | mero
m
MAL13P1.148 Pf myosin 0.001 No 0 troph>gam early troph
PFL1620w asparagine/aspartate rich protein 0.001 No 0 Spor early troph
PF13_0179 isoleucine--tRNA ligase 0.001 No 0 mero>gam>troph early troph
PF11_0232 Hypothetical, conserved 0.001 No 0 spor>gam early troph
PF10_0356 LSA-1 0.002 Yes 1 liver(Zhu, 1991 #428) mero
PF14_0384 Allantoicase 0.002 No 0 gam>troph early troph
MAL13P1.278 Ser/Thr protein kinase 0.002 No 0 spor>troph>mero gam
PF13_0350 signal recognition particle receptor | 0.002 no 0 gam>mero>iRBCm early troph
alpha subunit
PF10_0177 erythrocyte membrane-associated 0.002 Yes 1 Troph gam
antigen
PFI0925w gamma-glutamylcysteine 0.002 No 0 Mero early ring
svnthetase
MAL7P1.138 Hypothetical, conserved 0.002 No 5 gam>spor early ring
PFEO090w chromosome assembly factor 1 0.002 No 0 troph>mero early schiz
PF11_0507 antigen 332 0.002 No 0 iRBCm=troph=schiz early troph
PFEO055¢ HSP 0.003 No 1 iRBCm>gam>troph=schiz mero
PF14_0344 Hypothetical, conserved 0.003 Yes 0 iRBCm>troph=schiz>mero>sp | mero
or>gam
MAL13P1.22 DNA ligase 1 0.003 Yes 0 troph>spor early schiz
PF11_0008 PfEMP1 0.003 No 1 spor and iRBCm(Scherf, 2008 | gam
#462)
PF11_0158 Hypothetical 0.004 No 0 mero>troph=gam>spor gam
PF11_0175 HSP 0.004 Yes 1 troph=schiz>iRBCm>mero>ga | mero
m>spor
PF14_0632 26S proteasome subunit 0.004 No 0 iRBCm>mero=gam>spor late troph
MAL13P1.323 Hypothetical, conserved 0.004 No 2 spor>gam>mero=troph early ring
PF14_0681 diacylglycerol kinase 0.004 No 0 gam>mero early schiz
PF13_0003 PfEMP1 0.004 No 0 spor and iRBCm(Scherf, 2008 | early ring
#462)
MAL13P1.140 Hypothetical, conserved 0.004 No 0 Spor gam
PFI0345w GTPase activator 0.004 No 0 Gam early ring
PFLO470w Hypothetical, conserved 0.004 No 0 mero>troph late schiz
PFO7_0006 Starp antigen 0.004 Yes 0 spor(Fidock, 1994 #422)>gam | early ring
PF13_0190 Hypothetical, conserved 0.004 No 0 gam>mero>iRBCm early troph
PFB0115w Hypothetical, conserved 0.004 No 0 troph>spor early troph
PF13_0285 inositol-polyphosphate 5- | 0.004 No 3 unknown gam
phosphatase
PF11_0270 threonine -- tRNA ligase 0.004 Yes 0 mero>troph=schiz>iRBCm>ga | early troph
m>spor
PFI0855w Hypothetical, conserved 0.004 No 0 Gam late troph
PFO7_0035 cgl protein 0.004 Yes 0 iRBCm>spor late troph
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PFB0260w proteasome 26S regulatory subunit | 0.005 No 0 iRBCm>schiz=troph>mero>ga | gam
m>spor

PFLO545w kinesin-related protein 0.005 No 0 spor>gam gam

MAL13P1.56 m1-family aminopeptidase 0.005 No 1 mero>troph=schiz>gam>iRBC | early troph
m>spor

PFO7_0126 transcription factor with AP2 | 0.005 No 0 spor=troph>mero early ring

domain(s)

PFLO590c P-type ATPase 0.005 No 8 mero>spor>gam>troph early troph

MAL6P1.131 SET-domain protein 0.005 No 0 mero>gam>spor

PFEO060wW PIESP2 0.005 Yes 3 iRBCm>troph=schiz>gam early troph

PFD0430c MAC/perforin 0.005 Yes 0 Spor gam

*P value for the comparison of reactivity between protected and susceptible children. The Benjamini-Hochberg method was used to
correct for the false discovery rate.

tFrom PlasmoDB, Sequest algorithm (www.plasmodb.org). Stage-specific expression evidence in this column that is not based on
mass spectrometry evidence is noted. Abbreviations:

$From PlasmoDB

rich protein (STARP), liver stage antigen-1 (LSA-1), ring-infected erythrocyte surface
antigen (RESA), and antigen 332. There were also several highly conserved proteins
such as an ATP-binding cassette (ABC) transporter (PFCO875w), PIESP2 (PFE0O060w), and
a protein with a membrane-attack complex/perforin (MACPF)-like domain (PFD0430c).
Of the 25 var gene products (174) included on the microarray, two were associated with
protection—PF13 0003 and PF11_0008. There were also 12 hypothetical proteins.
Table 6.3 summarizes the proteomic features of these 49 proteins. Notably, Ab
reactivity against proteins representing the leading malaria vaccine candidates CSP, LSA-
3, MSP1, MSP-2, and AMA1 did not discriminate protected and susceptible children (Fig.
6.4, top).

6.3 Discussion

In this study we used a protein microarray representing ~23% of the Pf proteome
to gain insight into the kinetics of acquiring Pf-specific humoral immune responses and
to identify Abs against known and hypothetical Pf proteins that may be associated with

naturally-acquired protection from uncomplicated malaria. The approach described
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here addresses two technical bottlenecks that have hindered studies seeking to
correlate naturally-acquired malaria immunity with specific Ab responses in Pf-exposed
populations: (1) the ELISA-based platform that is limited to evaluating one antigen at a
time and (2) traditional cloning and protein expression and purification methods that
have made <0.5% of the Pf proteome available for analysis. The many
seroepidemiological studies that have evaluated this limited set of proteins have yet to
establish a firm correlation between Ab responses and naturally-acquired malaria
immunity (198). Although more recent studies have sought to correlate malaria
immunity with Ab responses to as many as 18 Pf antigens by ELISA (158), (110) or
protein microarray (88), these studies evaluated already characterized malaria vaccine

candidates.

We compared Ab profiles of children based on whether or not they had
experienced malaria during the eight-month study period. We chose this study
endpoint, rather than the incidence of symptomatic infection or time to first
symptomatic infection, because it represents the best possible clinical outcome for
malaria vaccine candidates targeting pre-erythrocytic and erythrocytic stages. Ab
reactivity to 49 known and hypothetical Pf proteins was significantly higher in eight to
ten year old children who were infected with Pf but did not experience symptoms of
malaria. Four of these proteins are already being developed as malaria vaccine
candidates—STARP, LSA-1, RESA, and antigen 332. STARP is a highly conserved protein

expressed primarily on sporozoites, and to a lesser extent, during the liver and early
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intra-erythrocytic stages of infection (78). STARP-specific 1gG, whether acquired
naturally or through irradiated sporozoite immunization, has been shown to inhibit
sporozoite invasion of human hepatocytes (160). Although LSA-1 is expressed during the
liver stage (215), where cell-mediated immunity likely predominates, LSA-1-specific IgG
levels in individuals living in malaria endemic areas have been associated with
protection against malaria (115). Furthermore, LSA-1-specific Ab responses have been
detected in individuals vaccinated with irradiated sporozoites (127). However, in the
only phase I/Il trial conducted to date, vaccination with recombinant LSA-1 did not
protect against Pf experimental sporozoite challenge (76). RESA is released by the
merozoite upon erythrocyte invasion where it interacts with the spectrin network of the
host cell membrane (81). A vaccine combining RESA, MSP1 and MSP-2 was the first
blood-stage vaccine to show some efficacy, reducing parasitemia in children enrolled in
a Phase I/Ilb trial in Papua New Guinea (85), although the relative contribution of the
three antigens to protection remains unclear. Antigen 332 is expressed in trophozoites
and translocated to the erythrocyte membrane during the schizont stage (102). Abs
against Pf332 have been shown to inhibit parasite grown in vitro (6) and have been
associated with decreased parasitemia (200) and decreased malaria risk (5) in field

studies.

We identified differential Ab reactivity against other highly conserved proteins
that could be targeted as malaria vaccines. For example, PFCO875w is predicted to be

an ABC transporter, and vaccination with ABC transporter proteins has been shown to
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protect against pathogenic bacteria in animal models (84, 187). PIESP2 (PFEO060w) is a
highly conserved protein of unknown function that is thought to be expressed on the
surface of infected red blood cells (79). A protein with a MACPF-like domain (PFD0430c)
is an intriguing target for both pre-erythrocytic and transmission blocking vaccines since
it plays a role in the traversal of hepatic sinusoids by sporozoites (111) and the mosquito
midgut epithelium by ookinetes (118), possibly by forming pores in the host cells’
plasma membranes (119). Of the 25 var gene products (174) included on the
microarray, two were associated with protection: PF13_0003 and PF11_0008. Both
belong to the Group A var cluster which is characterized by relative structural
homogeneity (131) preferential expression in patients with severe malaria, and rapid
induction of Abs (113). The analysis also identified 12 hypothetical proteins that were
associated with protection, which highlights the potential value of this approach for
identifying novel vaccine candidates. Further study of selected antigens identified by
this strategy will be needed to define their potential as malaria vaccine candidates. In
addition, with the inherent bias in any single epidemiological study, larger studies in
other settings will be needed to validate this as an approach for identifying correlates of

naturally-acquired malaria immunity.

Ab reactivity to several intracellular proteins was significantly higher in the
protected group. Abs to intracellular proteins are typically viewed as markers of past
infection, and not as evidence for vaccine potential; and it is possible that higher Ab

reactivity against intracellular proteins among protected individuals is a marker of
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enhanced parasite killing. However, intracellular proteins of other parasites have been
shown to induce protective Abs. For example, immunization with heavy chain myosin
induced protection against Brugia malayi challenge in a rodent model (197).
Interestingly, in the present study, we found that Ab reactivity to P. falciparum myosin
was associated with protection from malaria. Given how little is known about the
infection biology of P. falciparum in humans, it may be premature to categorically
dismiss immunogenic proteins as potential vaccine targets based solely on subcellular

location.

Ab reactivity to the malaria vaccine candidates CSP, LSA-3, AMA1, MSP1 and
MSP-2 did not discriminate protected and susceptible children (Fig. 6.4, top).This is
consistent with recent clinical trials in which vaccination with AMA1 (171) or MSP1 (156)
did not confer protective immunity, although reformulating these antigen constructs,
adding novel vaccine adjuvants or simply vaccinating malaria-naive individuals who have
not yet imprinted an immune reaction to the given antigens in the context of Pf
infection, may improve their efficacy. It is also possible that many of the highly
immunogenic Pf antigens, including these, are expressed by the parasite as decoy
antigens, and Abs to these does not confer protection. Abs to CSP did not correlate with
protection from clinical disease in this study, consistent with seroepidemiological
studies (104) and vaccine trials (RTS,S vaccine) (2, 27) which found no association

between CSP-specific Ab levels and protection from clinical disease. However, some
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studies have shown a relationship between CSP-specific Ab levels and protection from
Pf infection (i.e. positive blood smear without malaria symptoms) (2, 10, 15).

An inherent drawback to the use of the in vitro transcription and translation
system to produce Pf proteins is the possibility that not all proteins will be properly
folded and display all possible antigenic epitopes. We observed a correlation between
Ab reactivity to proteins expressed in this system and to the corresponding well
characterized, correctly folded recombinant proteins spotted on the same array, but
despite this correlation, it is likely that this method will fail to detect all potential Ab
reactivities.

This study also sheds light on the interface between the complex, multistage Pf
parasite and the host immune response by determining the life-cycle stage, sub-cellular
location, and biological process of the Pf antigens recognized by Pf-exposed individuals.
Further analysis to determine if patterns of Ab reactivity against individual antigens can
be predicted by these, and other proteomic features, may inform malaria vaccine
development.

This analysis also provided insight into the kinetics of naturally-acquired humoral
responses to Pf in an area of intense seasonal malaria transmission. We found that Ab
reactivity to Pf proteins rose dramatically in children during the malaria season;
however, most of this response appeared to be short-lived based on the cross-sectional
analysis at the end of the dry season which revealed only modest incremental increases

in Ab reactivity with age. Because there is little to no Pf transmission at the study site
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during the six-month dry season (Chapter 5.2.1 and(59)) and IgG has a half-life of
approximately twenty-one days (180), we infer that Pf-specific Abs in circulation at the
end of the dry season are generated by long-lived plasma cells (LLPCs), whereas the
increase in Ab levels observed after the malaria season likely reflects the differentiation
of naive and/or memory B cells (MBCs) into short-lived plasma cells (SLPCs) that
disappear by the end of the next dry season. However, with increasing age there
appears to be a gradual expansion of long-lived, Pf-specific plasma cells. Thus, it
appears that the Pf-specific LLPC compartment gradually “fills” with repeated Pf
exposure. In age-adjusted analysis, protection from malaria was associated with the
overall level of Pf-specific Abs in circulation before the malaria season, whereas Ab
levels after the malaria season were not associated with protection. Taken together,
these data suggest that the delayed acquisition of immunity to uncomplicated malaria
may be attributable, in part, to the gradual, step-wise acquisition of LLPCs, not
conferring protection until a critical threshold of circulating Ab is exceeded. Our results
also suggest that SLPCs derived from MBCs in response to acute Pf infection, a process
that peaks six to eight days after antigen reexposure (30), at least in the case of
vaccination, may not provide Abs rapidly enough to prevent the onset of malaria
symptoms, which can occur as early as three days after the start of the blood stage
infection (179). This model stands in contrast to the humoral immune response after
reexposure to some viruses in which longer incubation periods allow virus-specific MBCs

to differentiate into plasma cells that contribute to the control of viral replication before
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symptoms develop. For example, follow-up studies of hepatitis B vaccinees have shown
that protection can persist despite the decline of anti-hepatitis B Abs to undetectable
levels (202), presumably because of the recall response of persistent MBCs. An
alternative explanation for the maintenance of Ab levels through the six-month dry
season is the persistence of low-grade parasitemia despite little to no Pf transmission at
the study site. Although only seven percent of individuals were smear positive when
they were enrolled just prior to the malaria season, this may underestimate the
proportion of the cohort that experienced intermittent, low-grade parasitemia in the
months prior to enrollment. At present, the molecular and cellular mechanisms that
underlie the generation and maintenance of Pf-specific LLPCs and MBCs are not known.
It is possible that the large number of Pf antigens overwhelms the immune system’s
capacity to select for and commit a sufficient number of MBCs and PCs specific for any
given Pf antigen to a long-lived pool (169). If immunity to clinical malaria requires high
levels of Abs to a large number of Pf proteins, the inability to commit large numbers of
LLPCs specific for any given Pf antigen during any given infection may explain, in part,
why malaria immunity is acquired slowly. An alternative, non-mutually exclusive
explanation for the gradual acquisition of malaria immunity is the length of time needed
to acquire Abs that cover the range of antigenic diversity in the parasite population as
discussed in Chapter 1.7 (186).

The analysis described here also demonstrates how protein microarrays

representing large portions of the Pf proteome can be used to probe the interface
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between the parasite and the host immune response, and to identify Ab profiles against
known and hypothetical proteins that are associated with naturally-acquired malaria
immunity. This approach, if validated in larger studies and in other epidemiological
settings, could prove to be a useful strategy for identifying malaria vaccine targets and

for better understanding fundamental properties of the human immune response to Pf.
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Chapter 7: P. falciparum-specific MBCs and Abs increase gradually over years with
cumulative exposure in an area of intense seasonal Pf transmission.

7.1 Introduction

In this chapter we present data addressing whether Pf infection generates MBCs
specific for Pf blood stage antigens, and if so, whether they accumulate with age and
cumulative Pf exposure, and also whether their frequency correlates with protection
from malaria. In addition, we determine whether acute, symptomatic Pf infection
results in an increase in the number of Pf-specific MBCs and the levels of Pf-specific Abs,
and if so, whether this increase remains stable over a six-month period of markedly
reduced Pf transmission. By taking advantage of the tetanus immunization schedule in
Mali in which infants and women of child-bearing age are vaccinated, we compare the
relative efficiencies of the acquisition of tetanus toxoid (TT)- and Pf-specific MBCs and
Abs, and also test three hypotheses: 1) that growth of the MBC compartment depends
on immunological experience rather than age, 2) that Pf infection induces non-specific
activation of bystander B cells (62, 89), and 3) that polyclonal activation during
heterologous immune responses is a general mechanism for maintaining MBCs and

LLPCs (30).

7.2 Results

7.2.1 Malaria immunity is acquired gradually despite intense exposure to the Pf
parasite.

For the MBC analysis reported in this chapter, a subset of 185 individuals was

randomly selected within each of the four age categories from those in the Kambila
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Table 7.1 Baseline characteristics of MBC subset by age group.

Age group, years All
2-4 5-7 8-10 18-25
Gender, % female (no.) 66.1(39) | 48.7(18) 33.3(14) | 61.7(29) | 54.1(100)
Ethnicity, % (no.)
Bambara 62.7 (37) | 51.4(19) | 54.8(23) | 66.0(31) | 59.5(110)
Sarakole 32.2(19) | 43.2(16) | 35.7(15) | 27.7(13) | 34.1(63)
Fulani 3.4(2) 5.4(2) 7.1(3) 43(2) 4.9(9)
Malinke 1.7 (1) 0.0 (0) 2.4 (1) 2.1(1) 1.6 (3)
Hemoglobin AS, % (no.)? 13.6 (8) 8.1(3) 7.1(3) 10.6 (5) 10.3 (19)
P. falciparum smear positive at enrollment, % 6.8 (4) 10.8 (4) 11.9 (5) 6.4 (3) 8.7 (16)
Parasitemia if smear positive at enrollment, 1438 3616 415 (134- | 953 (39- 1137
parasites/microliter [geometric mean (95% Cl)] (159— (1500 — 1287) 23381) (579—
12973) 8715) 2232)
Gl helminth, % positive at enroliment (no.)* 14.6 (8) 8.3(3) 11.8 (4) 0(0) 9.7 (15)
Urine schistosomiasis, % positive at 0(0) 0(0) 5.3(2) 29.0 (9) 7.4 (11)
Distance lived from clinic, meters (mean +SD) 395 408 365 (+83) | 359 (+91) 382
Bed net use, % (no.)® 27.3(15) | 41.2(14) | 17.1(7) | 39.5(15) | 30.4 (51)

Data available for 177 subjects.

ball subjects were asymptomatic at enrollment.

Data available for 154 subjects; Gl=gastrointestinal.

9Data available for 148 subjects.

€Nightly bednet use self-reported at the end of the malaria season.

cohort who had complete sets of PBMC samples over the entire study period. The
baseline demographic and clinical characteristics of this subset (Table 7.1) did not differ
significantly from the entire cohort. In this subset during the one-year study period there
were 380 unscheduled clinic visits, during which 219 cases of malaria were diagnosed
(similar to the 495 unscheduled clinic visits and 298 cases of malaria in the entire cohort
(Table 5.3)), and included the five cases which met the WHO criteria for severe malaria
(1). Malaria episodes were defined as an axillary temperature >37.5°C, Pfasexual
parasitemia 25000 parasites/uL, and a non-focal physical exam by the study physician.
As expected in this region of Mali, all malaria cases were confined to a six-month period

that began in July, peaked in October, and ended by January (Fig. 7.1 A). The incidence
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of malaria and the proportion of individuals experiencing at least one malaria episode
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Figure 7.1 Malaria immunity is acquired gradually
despite intense exposure to the Pf parasite. There
were 219 clinical episodes defined as axillary
temperature 237.5°C, Pf asexual parasitemia 25000
parasites/uL and a nonfocal physical examination by
the study physician. (A) To track the B-cell response
to acute malaria, and after a period of reduced Pf
exposure, PBMCs and plasma compared in Fig. 7.3
were collected at points indicated by the arrows:
before the malaria season, two weeks after the first
malaria episode (arrow with asterisk indicates the
mean time to first malaria episode, 132 days from
enrollment), and six months after the end of the
malaria season. (B) Kaplan-Meier estimates of the
cumulative probability of malaria over the study
period, according to age category. The number of
individuals at risk over the study period is shown
below the graph. The P value was obtained using the
log rank test.

decreased with age, whereas the time
to the first malaria episode increased
with age (Fig. 7.1 B). Thus, despite
intense annual Pf transmission at this
study site,

immunity to malaria is

acquired slowly.

7.2.2 Analysis of Pf-specific and TT-
specific MBCs and Abs in Pf-uninfected
children and adults before the malaria
season

We first established baseline levels of
IlgG" AMA1-, MSP1- and TT-specific
MBCs and Abs in Pf-uninfected, healthy
children and adults in May just before
the malaria season, a point at which
little to

there had been no Pf

transmission for five months. For this
analysis we excluded individuals with
asymptomatic Pf parasitemia (8.7% of
cohort; Table because

7.2), they

showed a decreased risk of malaria and
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tended toward higher frequencies of AMA1- and MSP1-specific MBCs and levels of Ab,
which could obscure age-related differences in MBC and Ab acquisition. Because of the
small number of individuals with asymptomatic parasitemia at baseline and the age
range of these individuals, there were too few to analyze as a comparator group. In
addition, the meaning of persistent parasitemia relative to immunity is not clear-cut as
this persistent parasitemia could be due to a property of the parasite rather than the
human immune system and could result in increased immunity due to prolonged

infection with a less virulent parasite.

We focused our analyses on MBCs and Abs specific for Pf blood-stage antigens
because humoral responses are known to be critical to blood-stage immunity (42). We
examined the response to the same two blood stage proteins, AMA1 and MSP1, that we
studied the MBC and Ab responses to in vaccination of Pf-naive individuals in Chapter 4
(45). This afforded the opportunity to compare the acquisition of B cell memory to the
same antigens after vaccination versus natural Pf infection. Because there was high

Table 7.2 Malaria outcomes for the MBC subset, by age group.

Age group, years
2-4 5-7 8-10 18-25 All
(n=59) (n=37) (n=42) (n=47) (n=185)
Malaria incidence, mean (+SD)? 1.86 1.81 0.95 0.09 1.19
(£1.28) (£1.17) (£1.08) (£0.28) (£1.27)
Severe malaria incidence, no.2 4 1 0 0 5
At least one malaria episode, % (no.) 83.1 (49) 81.1(30) 57.1(24) 8.5 (4) 57.8 (107)
Time to first malaria episode, days 101 121 124 153 118
(median)®
Parasitemia at first malaria episode, 39084 26417 20561 8816 28678
parasites/microliter [geometric mean (30579 — (19440 - (15683 — (4082 — (24334 -
(95% Cl)] 49954) 35896) 26956) 19037) 33799)

#Malaria episode defined as T >37.5°C, asexual parasitemia > 5000/microliter, and non-focal physical examination.

SWHO definition of severe malaria’.
Days since study enrollment.
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intra-individual variability in the frequency of 1gG* MBCs during this study, these
antigen-specific data were analyzed using the more stable parameter of PBMC post
culture rather than as a percentage of IgG" MBCs. In the present study, the mean
frequency of AMA1-specific MBCs per 10° PBMCs increased with age (Fig. 7.2 A; 2-4 yr:
1.2 [95% Cl: 0.45-1.9]; 5-7 yr: 5.0 [95% Cl: -0.2-10.1]; 8-10 yr: 8.9 [95% Cl: 4.9-12.9]; 18-
25yr: 37.8 [95% Cl: 10.4-65.3]; p<0.001), as did the proportion of individuals with
detectable AMA1-specific MBCs (2-4 yr: 8.1%; 5-7 yr: 30.8%; 8-10 yr: 50.0%; 18-25yr:
54.8%; p<0.001). Similarly, AMA1-specific Ab levels and the proportion of individuals
seropositive for AMA1-specific Abs increased with age (Fig. 7.2 A; p<0.001 for both
comparisons). There was a positive correlation between the frequency of AMAI1-
specific MBCs and Ab levels (Spearman’s correlation coefficient = 0.43; p<0.001). We
observed a similar age-associated increase in the frequency of MSP1-specific
MBCs,although the overall frequency was lower than that for AMA1-specific MBCs (Fig.
7.2 B; 2-4 yr: 1.2 [95% CI: 0.55-1.9]; 5-7 yr: 3.2 [95% Cl: 1.2-5.2]; 8-10 yr: 5.9 [95% ClI:
2.9-9.0]; 18-25yr: 10.3 [95% Cl: 6.3-14.3]; p<0.001). Likewise, the proportion of
individuals who had detectable MSP1-specific MBCs (2-4 yr: 9.1%; 5-7 yr: 27.8%; 8-10 yr:
34.3%; 18-25yr: 47.6%; p=0.001) was similar to that for AMA1. MSP1-specific Ab levels
and the proportion of individuals seropositive for MSP1-specific Abs also increased
gradually with age (Fig. 7.2 B; p<0.001 for both comparisons). There was a positive
correlation between the frequency of MSP1-specific MBCs and Ab levels (Spearman’s

correlation coefficient = 0.33; p<0.001). Remarkably, despite exposure to 50-60 infective
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Figure 7.2 The Pf-specific MBC and
long-lived antibody compartments
expand gradually with age. Shown are
the MBC frequencies per 10° PBMCs
post culture (bars, left axis) and anti-
body levels in ELISA units (AMAT,
MSP1) or as OD (TT) (lines, right axis)
specific for AMA1 (A) and MSP1 (B) by
age category; and TT (C) by age cat-
egory and gender; before the malaria
season in Pf-uninfected individuals. The
frequency of AMA1- and MSP1-specific
MBCs increased with age (p<0.001 for
both), as did the level of AMA1- and
MSP1-specific antibodies (p<0.001 for
both). There were no significant differ-
ences by gender for the AMA1-and
MSP1-specific responses. To determine
if the expansion of Pf-specific MBCs
with age was driven by exposure to
antigen or simply a function of age, we
measured the TT-specific MBC and
antibody response with age. In Mali,
infants are vaccinated with TT, and
females receive a TT booster around
the age of 15 years to prevent neonatal
tetanus. In contrast to AMA1 and MSP1,
the frequency of TT-specific MBCs and
the level of TT-specific antibodies for
males did not change significantly from
age 2 to 25 years (p=0.80 and p=0.44,
respectively). However, the frequency
of TT-specific MBCs and the level of
TT-specific antibodies was higher in
female adults compared to female
children (p<0.001 for both compari-
sons). MBC frequencies were deter-
mined by ELISPOT and are expressed
per million PBMC. The number of
individual samples assayed and the
percent of individual samples that
exceeded the limit of detection (i.e.
those considered positive) is indicated
below the graph. p values were
obtained by the Kruskal-Wallis test.
Data are shown as mean =+ s.e.m.
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mosquito bites per month at the peak of each malaria season in this area (59), only
approximately half of adults had detectable MBCs specific for AMA1 and MSP1, even
though most had detectable AMA1- and MSP1-specific Abs. Of the 72 individuals
without detectable AMA1-specific MBCs before the malaria season, 64 (88.9% [95% Cl
79.3 - 95.1]) did not have detectable MSP1-specific MBCs, suggesting that failure to
generate MBCs to one Pf antigen is associated with failure to generate MBCs to other Pf

antigens.

To understand if the expansion of Pf-specific MBCs with age was driven by
repeated exposure to Pf antigens or simply a function of age, we determined the
frequency of MBCs specific for an unrelated antigen, tetanus toxoid (TT), with age. In
Mali, a single TT vaccine is administered to infants less than six months of age and a
second TT vaccine is administered to females around 15 years of age to prevent
neonatal tetanus. Thus, we measured TT-specific Ab and MBC responses at least 18
months after TT vaccination for children and at least three years after booster
vaccination for adults, a point at which the TT-specific response is likely to be at steady
state. In contrast to what was observed for AMA1- and MSP1-specific MBCs, the
frequency of TT-specific MBCs among males did not change significantly from age two to
25 years (Fig. 7.2 C) (2-4 yrs: 10.8 [95% CI -7.4-29.0], 5-7 yrs: 7.3 [95% CI 0.7-13.9], 8-10
yrs: 8.0 [95% Cl 3.1-12.8], 18-25 yrs: 4.7 [95% Cl 1.4-8.1]; p=0.80). Similarly, the
proportion of male adults who were positive for TT-specific MBCs did not differ

significantly from male children (2-4 yrs: 25.0%, 5-7 yrs: 33.3%, 8-10 yrs: 40.9%, 18-25
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yrs 28.6%; p=0.80). The slightly higher frequency of TT-specific MBCs in male versus
female children was not statistically significant. However, the frequency of TT-specific
MBCs was significantly higher in female adults compared to female children (Fig. 7.2 C;
mean frequency of TT-specific MBCs per million PBMC by age group (2-4 yrs: 2.9 [95% ClI
1.1-4.7], 5-7 yrs: 3.2 [95% CI 0.2-6.1], 8-10 yrs: 3.4 [95% Cl 1.1-5.7], 18-25 yrs: 58.7 [95%
Cl 34.2-83.3]; p<0.001) presumably the result of booster vaccination. Likewise, the
proportion of female adults who were positive for TT-specific MBCs was significantly
higher as compared to female children (2-4 yrs: 28.1%, 5-7 yrs: 25.0%, 8-10 yrs: 27.3%,
18-25 yrs 88.0%; p<0.001). For both females and males, TT-specific Ab levels mirrored
MBC frequencies (Fig. 7.2 C)—clearly increasing from female children to female adults

(p<0.001), while not changing significantly

by age in males (p=0.44). Overall, TT- 2
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repeated antigen exposure and is not simply a function of age. Of note, the size of the
total IgG" MBC compartment, as reflected in the peripheral blood, increased with age
(Fig. 7.3; p<0.001), consistent with the maturation of the total MBC compartment with

immunological experience.

7.2.3 Longitudinal analysis of the Pf- and TT-specific MBC and Ab responses two weeks
after acute malaria and after a prolonged period of decreased Pf exposure

To assess the Pf-specific MBC and Ab responses to acute malaria, and to
determine the stability of this response during a period of little to no Pf transmission,
we measured the frequencies of MBCs and Ab levels specific for AMA1 and MSP1 14
days after the first episode of malaria (convalescence), and in a cross-sectional survey at
the end of the following dry season (month 12), and compared these frequencies to the
pre-malaria season baseline (month 0; as detailed above). Malaria episodes were
defined as an axillary temperature >37.5°C, Pf asexual parasitemia 5000 parasites/puL,
and a non-focal physical exam by the study physician. Because few adults experienced
malaria (Table 7.2), this analysis only included children aged two to ten years (see Fig.
7.4 for sample sizes at each timepoint). The mean frequency of AMA1-specific MBCs in
children aged two to ten years increased from month O to convalescence (Fig. 7.4 A;
month 0: 4.7 [95% Cl: 2.8-6.6]; convalescence: 13.4 [95% Cl: 2.7-24.1; p=0.006] and then
decreased from convalescence to month 12 (Fig. 7.4 A; month 12: 5.9 [95% Cl: 2.4-9.4];
p=0.93 versus convalescence) to a point just above the frequency at month 0 (Fig. 7.4 A;
p=0.021, month 0 vs. month 12). Likewise, the level of AMA1-specific Abs increased

from month 0 to convalescence (Fig. 7.4 A; month 0: 422.8 [95% Cl: 228.7-617.0];
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Figure 7.4 Longitudinal analysis of the Pf-
and TT- specific MBC and Ab response. Com-
pared to month zero, the MBC frequencies
and antibody levels specific for AMA1 (A)
and MSP1 (B) increased two weeks after the
first episode of malaria and then contracted
to a point slightly higher than pre-infection
levels after a six-month period of decreased
Pf exposure. Compared to month zero, there
was a small but statistically significant
increase in TT-specific MBC two weeks after
the first episode of malaria (C), whereas the
level of TT-specific antibodies did not
change. The number of individuals in each
age category is indicated. Only statistically
significant P values are shown. P values were
obtained by the Wilcoxon matched-pairs
signed-rank test. Data are shown as mean +
s.e.m.

convalescence: 797.2 [95% Cl: 460.0-1134.7;
p<0.001] , and then decreased from
convalescence to month 12 (Fig. 7.4 A;
month 12: 535.5 [95% Cl: 283.8-787.2];
p<0.001 versus convalescence], to a point
just above month O levels (Fig. 7.4 A;

p=0.040, month 0 vs. month 12).

The MSP1-specific MBC and Ab
responses followed a similar pattern. The
mean frequency of MSP1-specific MBCs in
children aged two to ten years increased
7.4 B; month 0: 3.3 [95% CI: 2.0-4.6];
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convalescence: 4.8 [95% Cl: 2.9-6.8; p=0.002] and then decreased from convalescence
to month 12 (Fig. 7.4 B; month 12: 4.5 [95% Cl: 2.4-6.6]; p=0.71 versus convalescence) to
a point just above the frequency at month 0 (Fig. 7.4 B; p=0.156, month 0 vs. month
12). Likewise, the level of MSP1-specific Ab increased from month 0 to convalescence
(Fig. 7.4 B; month 0: 14.6 [95% Cl: 10.5-18.6]; convalescence: 302.6 [95% Cl: 111.7-
493.4; p<0.001], and then decreased from convalescence to month 12 (Fig. 7.4 B; month
12:31.1 [95% CI: 5.5-56.6]; p<0.001 versus convalescence], to a point just above month

0 levels (Fig. 7.4 B; p=0.052, month 0 vs. month 12).

To determine if malaria induces non-specific activation of ‘bystander’ MBCs, we
compared the frequencies of TT-specific MBCs and Ab levels before the malaria season
(month 0) to that 14 days after acute malaria (convalescence). We observed a small,
but statistically significant increase in the frequency of TT-specific MBCs from month 0
to convalescence (Fig. 7.4 C; month 0: 7.1 [95% Cl: 3.1-11.2]; convalescence: 8.4 [95% Cl:
5.0-11.8; p=0.012) that did not change significantly at month 12 (month 12: 9.1 [95% Cl:
3.2-15.4]; p=0.974 versus convalescence]. In contrast, TT-specific Ab levels decreased
slightly from month 0 to convalescence, and again from convalescence to month 12,
although neither decline was statistically significant (Fig. 7.4 C; month 0: 0.58 [95% ClI:
0.5-0.7]; convalescence: 0.57 [95% Cl: 0.5-0.7; p=0.063]; month 12: 0.54 [95% CI: 0.4-
0.6]; p=0.525 versus convalescence). Collectively these results indicate that malaria

infection results in an increase in the frequencies of both Pf-specific, and bystander
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MBCs. However, malaria selectively induces Pf-specific Ab production but does not

appear to drive the differentiation of bystander naive and memory B cells into PCs.

7.2.4 AMA1- and MSP1-specific MBC frequencies and Ab levels and malaria risk

We determined prospectively whether AMA1- or MSP1-specific Ab levels or MBC
frequencies measured just prior to the six month malaria season were associated with
the subsequent risk of malaria. For this analysis a malaria episode was defined as an
axillary temperature >37.5°C, Pfasexual parasitemia =5000 parasites/uL, and a non-
focal exam by the study physician. Because the incidence of malaria was very low in
adults during the study period (Table 7.2), they were excluded from this analysis. Three
measures of malaria risk were analyzed: 1) whether or not malaria was experienced, 2)
the incidence of malaria, and 3) the time to the first malaria episode. In the
corresponding multivariate regression models (logistic, Poisson, and Cox regression)
which controlled for age, sickle cell trait, and concurrent asymptomatic Pf parasitemia,
we found no correlation between malaria risk and AMA1- or MSP1- specific Ab levels or
MBC frequencies. As discussed below, this finding was not unexpected based on the
observation that the malaria vaccine candidates AMA1 and MSP1 did not confer

protection against malaria in clinical trials (156, 171).
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7.3 Discussion

In this year-long prospective study of children and adults in an area of intense,
annual, sharply demarcated Pf transmission, we show that MBCs specific for Pf can be
acquired, but did so gradually in a stepwise fashion over years of repeated Pf exposure.
MBCs specific for two Pf antigens, AMA1 and MSP1, increased in frequency in response
to acute Pf infection, and then contracted during a six-month period of decreased Pf
exposure to a point slightly above pre-infection levels. Cross-sectional analysis of
individuals aged two to twenty-five years just before the malaria season indicated that
this step-wise, incremental increase in Pf-specific MBCs with each malaria season
contributes to the gradual expansion of the Pf-specific MBC compartment with
cumulative Pf exposure. By comparison, the stable frequency of TT-specific MBCs with
age after immunization in infancy indicates that growth of antigen-specific MBC
compartments does not simply occur with age, but requires repeated antigen exposure.
Although infants have immature immune systems and have responses of lower
magnitude than do older children and adults, studies have shown that vaccination in
infancy can result in immunity lasting 18 years (50, 212). With regard to TT vaccination
in infancy, a study in Cameroon found no difference in the responses of children
recorded to have one or three TT vaccinations in infancy, all before the age of six
months, and 55% and 62%, respectively, of individuals re-vaccinated at age 14-15 and
at age 10-11 responded with titers above the seropositivity threshold set at 0.10 Ul/ml

(163). This is relatively similar to our data, with low responses evident after vaccination
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in infancy, and the majority of individuals responding to vaccination with Ab and MBC
levels higher than those of un-boosted individuals. The suggestion of these data that
some individuals might not have persisting responses from vaccination in infancy and
could be experiencing a primary response at the age 15 “booster” vaccination rather
than a secondary response makes the contrast with the incremental response to Pf
antigens even more remarkable. The ultimate comparison between humoral responses
to a vaccine and to infection is difficult to make, as these are very different immune
stimuli. What is clear, however, is that these individuals are able to mount a response
and a recall response, indicating no long-term immunosuppressive effect of Pf. Data
indicating that children aged five have comparable immunogenicity to adults following
vaccination (13), further indicates that although infants have a disadvantage in
mounting lasting immune responses, relatively young children can have competent
immune responses. In spite of this finding, but in keeping with our data, there are
differences in the ability of malaria-naive children and adults to respond to malaria.
Malaria-naive adults are initially more susceptible to severe malaria than malaria-naive
children, but adults develop protective immunity and antibody faster than do children
(20, 106). The implications of this with regard to the mechanisms required to develop
protective immunity are not clear, but could be related to a more anti-inflammatory
profile in children, preventing severe disease, the increased levels of lymph node
homing receptors (90) or inhibitory receptors (145) on regulatory T-cells in children

versus adults, or possibly impaired responses to TLR ligands documented in neonates
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(136) persist into childhood, as we have shown TLR ligands can affect MBC and Ab
development (Chapter 4). We do not formally know if the gradual gain in Pf-specific
MBCs is in fact due to an increase in long-lived MBCs, or whether those MBCs require
Pf-stimulation and would be lost if Pf transmission did not resume after the six-month
dry season. Recent studies in mouse models are revealing multiple, phenotypically and
functionally distinct populations of MBCs (14, 60) and it will be of interest to further

characterize the MBCs described here.

The study described here provides a rare view of the acquisition and
maintenance of human B cell memory. Most prospective studies of human B and T cell
immunological memory have evaluated responses to vaccination rather than natural
infection, in part because of the difficulty of predicting who within a population will be
infected with a given pathogen at a given time. In response to a single vaccination,
several studies have described an expansion and contraction of vaccine-specific MBCs
(19, 208) and CD8" memory T cells (141). In one of the few longitudinal studies of MBC
responses to natural infection, Harris et al. examined antigen-specific MBC responses in
patients after presenting with acute Vibrio cholerae infection, a pathogen that elicits
long-term protection against subsequent disease in endemic areas (97). In contrast to
our results, they observed that the majority of patients acquired IgA and IgG MBCs
specific for two Vibrio cholerae antigens and that these increased from day two to day
30 after presentation with cholera, and persisted at this level up to one year after

infection.
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Whereas MBCs mediate recall responses to reinfection by rapidly expanding and
differentiating into PCs, in one model of a topic still debated LLPCs residing in the bone
marrow constitutively secrete Ab in the absence of antigen and thus provide a critical
first line of defense against reinfection (87). Logistical constraints precluded the direct
measurement of circulating PCs in this study. However, we took advantage of the
discrete six-month dry season, a period of little to no Pf transmission, to infer the
relative contributions of SLPCs and LLPCs to the Pf-specific I1gG response based on a
serum IgG half-life of approximately twenty-one days (147). Two weeks after acute
malaria, AMA1- and MSP1-specific Ab levels increased significantly and then decreased
over a six-month period to a point just above pre-infection levels, indicating that the
majority of PCs generated in response to acute Pf infection were short-lived. This
observation is consistent with previous studies that described rapid declines in Pf-
specific Abs within weeks of an acute malaria episode (36, 122). We infer that the small
net increase in Pf-specific Abs at the end of the six-month dry season represents the
acquisition of Pf-specific LLPCs. Because Pf transmission resumes after the six-month dry
season, we cannot estimate the long-term decay rate of Pf-specific Abs or these
apparently LLPCs in the absence of reinfection. It remains to be seen whether long-term
decay rates of Pf-specific Abs are comparable to rates of Ab decay after exposure to
common viral and vaccine antigens such as mumps and measles which elicit Abs with
half-lives exceeding 200 years (12). The small incremental gains in AMA1- and MSP1-

specific Abs in response to acute malaria mirrors the gradual exposure-related increase
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in Pf-specific MBCs, consistent with the long-lived Abs being the products of LLPCs
derived from MBCs. It may be that repeated exposure to the parasite is necessary to
‘fill’ the LLPC compartment to the point where basal levels of circulating Abs to any
given Pf antigen reach a protective threshold. From these data Pf appears to induce a

relatively high SLPC-to-LLPC ratio.

In addition, a remarkably high proportion of adults in the present study did not
have detectable AMA1- or MSP1-specific MBCs despite annual exposure to fifty to sixty
infective mosquito bites per person per month at the height of the malaria season (59),
similar to what Dorfman et al. observed in a cross-sectional study in Kenya (64). In
contrast, most female adults had detectable TT-specific MBCs three to ten years after a
single TT booster vaccine in adolescence. In Chapter 4.2 we discussed our results of
vaccination In Pf-naive U.S. adults where following just two vaccinations AMA1- and
MSP1-specific MBCs were reliably generated (45). Taken together, these observations
indicate that the relatively inefficient generation and/or maintenance of Pf-specific
MBCs in response to natural Pf infection cannot be ascribed entirely to inherent

deficiencies in the antigens themselves.

In multivariate analysis we found no correlation between the frequency of MBCs
and levels of Abs specific for AMA1 or MSP1 and malaria risk. This is not necessarily
unexpected in light of recent clinical trials that showed that vaccination with either
AMA1 or MSP1 did not confer protection (156, 171). Furthermore, we suspect that the

frequency of MBCs per se may not reliably predict clinical immunity to malaria
125



regardless of antigen specificity. Malaria symptoms only occur during the blood stages
of Pfinfection and can begin as early as three days after the blood stage infection begins
(179).Because the differentiation of MBCs into PCs peaks approximately six to eight days
after re-exposure to antigen (30), there may not be sufficient time for MBCs specific for
Pf blood stage antigens to differentiate into the Ab-secreting cells that would prevent
the onset of malaria symptoms. In contrast, the longer incubation period of other
pathogens allows MBCs to differentiate into protective Ab-secreting cells before
symptoms develop. For example, follow-up studies of hepatitis B vaccinees have shown
that protection can persist despite the decline of hepatitis B-specific Abs to
undetectable levels (202), presumably due to the recall response of persistent MBCs.
Thus, protection against the blood stages of malaria may depend on achieving and
maintaining a critical level of circulating Ab that can rapidly neutralize the parasite.
MBCs may contribute to the gradual acquisition of protective immunity by
differentiating into LLPCs with each Pf infection.

It is also possible that Pf infection disrupts the immune system’s ability to
generate or maintain MBCs or LLPCs. The differentiation of B cells into long-lived MBCs
depends to a great extent on the affinity of their BCRs for antigen. Recently, evidence
was presented that affinity maturation of B cells may fail to occur in the absence of
adequate Toll-like receptor (TLR) stimulation (55). As we discussed in Chapter 4.3, based
on trials using the same AMA1-C1 CpG vaccines, Malian adults appear refractory to the

TLR9 agonist CpG, relative to malaria-naive U.S. vaccinees (190), raising the possibility
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that the slow acquisition of MBCs observed here may be due to a failure of B cells to
undergo affinity maturation during Pf infection. Although our data do not directly
address the role of apoptosis in the gradual acquisition of Pf-specific MBCs, it is worth
noting that we found no evidence of Pf-induced ablation of Plasmodium-specific MBCs,
as was observed in mice four days after Plasmodium yoelii infection (209). The relatively
inefficient response to natural Pf infection also does not appear to be due to a
persistent, Pf-induced general immunosuppression as the frequency of TT-specific MBCs
increased significantly in most adult females in response to a single TT booster
vaccination, an increase that appeared to be maintained for years. In an experimental
model of lymphocytic choriomeningitis virus (LCMV) infection, a high antigen-to-B cell
ratio disrupted germinal center formation and the establishment of B cell memory
(214). It is plausible that a similar mechanism is at play during the blood stage of Pf
infection when the immune system encounters high concentrations of parasite proteins.
Indeed, germinal center disruption is observed in mice infected with P. berghei ANKA
(35) and P. chabaudi (4). It is also possible that specific parasite products selectively
interfere with the regulation of B cell differentiation (175) or with the signals required
for sustaining LLPCs in the bone marrow (154). It is also conceivable that the high level
of class-switched SLPCs we observed in response to Pf infection arises from pre-
diversified 1gM*IgD*CD27" (marginal zone) B cells—analogous to the rapid protective
response against highly virulent encapsulated bacteria that do not elicit classical T-

dependent responses (201). These and other hypotheses could be tested by applying
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systems biology methods (164) and targeted ex vivo and in vitro assays to rigorously

conducted prospective studies of Pf-exposed populations.

Here we also provide evidence concerning the mechanism by which MBCs and
LLPCs are maintained. We observed a modest but statistically significant increase in TT-
specific MBCs two weeks after acute malaria, in support of the hypothesis that MBCs
are renewed by polyclonal or ‘bystander’ activation (30). The stable frequency of TT-
specific MBCs with age suggests that the rate of loss of TT-specific MBCs is balanced by
the small increases in TT-specific MBCs over time, possibly due in part to Pf-induced
polyclonal activation. It is of general interest to determine which parasite products are
responsible for the polyclonal activation of MBCs observed here. Studies in vitro suggest
that Pf drives polyclonal MBC activation by the cysteine-rich interdomain regions la
(CIDR1a) of the Pf erythrocyte membrane protein 1 (PfEMP1) (61, 62), but it is
conceivable that Pf-derived TLR agonists (125, 159) or bystander T cell help (103, 107,

117) also contribute to MBC proliferation in the absence of BCR triggering (139).

Similarly, it has been hypothesized that non-specific polyclonal stimulation
maintains long-lived Ab responses by driving MBCs to differentiate into SLPCs or LLPCs
(30). It has also been proposed that Plasmodium infection generates large amounts of
non-specific Ig (49) through polyclonal B cell activation (62, 89). However, despite the
presence of TT-specific MBCs and their expansion following Pf infection, we did not
observe a concomitant increase in TT-specific IgG. This finding is consistent with recent

human studies that demonstrate a lack of bystander IgG production after heterologous
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vaccination or viral infection (12, 57); as well as studies in mice that demonstrate PC
persistence after MBC depletion (7), and the failure of MBCs to differentiate into PCs in
vivo upon TLR4 and 9 activation (166). This finding does not represent an overt inability
of TT-specific MBCs to differentiate into PCs, since adult females in this study had a
sharp increase in tetanus IgG after a single tetanus booster. It is possible that bystander
MBCs specific for antigens other than TT differentiate into PCs after Pf infection, but
based on the results of this study we hypothesize that the preponderance of IgG
produced in response to malaria is specific for the ~2400 Pf proteins expressed during
the blood-stage of infection (80), and that increases in ‘non-specific’ IgG reflect boosting
of cross-reactive B cells (51, 213). From a basic immunology perspective, these data
support a model in which non-specific stimuli contribute to MBC self-renewal, but not to
the maintenance of LLPCs. Studies of other Ab specificities and isotypes before and
after malaria and other infections would test this hypothesis further. Although a recent
mouse study showed that MBCs do not proliferate in vivo after immunization with an
irrelevant antigen (28), this may reflect the difference in requirements for MBC

maintenance in mammals with relatively short life spans.

Animal models have provided important insights into the immunobiology of
Plasmodium infection (210), but ultimately, despite obvious experimental limitations, it
is critical to investigate the human immune response to Pf in longitudinal studies since
findings from animal models do not always mirror human biology or pertain to the

clinical context (53, 138). Key challenges for future studies will be to determine the
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molecular basis of the inefficient generation of MBCs and LLPCs in response to Pf
infection and to determine the longevity of these cells in the absence of Pf transmission
over longer periods of time. Greater insight into the molecular and cellular basis of
naturally-acquired malaria immunity could open the door to strategies that ultimately

prove useful to the development of a highly effective malaria vaccine.
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Chapter 8: Atypical memory B cell expansion in individuals in the Kambila cohort
8.1 Introduction

Data presented in Chapter 7 provides evidence that what appear to be normal
Pf-specific MBCs are ultimately acquired in individuals living in malaria endemic areas.
Here we address the question: is there, in addition, any evidence for an abnormal or

atypical expansion of any MBC population in malaria exposed individuals?

This is an important factor to consider as the development of sub-optimal
memory B cells due to cellular exhaustion or anergy, or the induction of an immuno-
regulatory B cell type could be related to the slow development of Pf-specific MBCs that
we have observed. During normal MBC or PC development, B cells could be diverted
into a dysfunctional phenotype, removing these cells from the functional MBC
repertoire, resulting in the development of an altered B cell phenotype. Alternately B
cells with a non-traditional B cell function, akin to regulatory B cells, could alter the
normal development of MBCs by cytokine secretion interrupting normal MBC
development and thus contributing to the slow acquisition of Pf-specific MBCs.
Ultimately this could affect the ability to mount a parasite-clearing immune response,
and contribute to the slow acquisition of immunity to malaria. Both human and murine
malarias induce regulatory T cells (176). As Pf has already demonstrated several
properties which lend to evading the immune system, it seems likely that more
mechanisms could exist. The ability of pathogens to impair B cell function has not been

as widely studied as has been the effect on T cells, but there is evidence to suggest that
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B cell impairment is induced during HIV (144), herpes simplex infection (24), and in
animal models, in EBV (185). In a murine model malaria infection decreased the IgG
response to vaccination as compared to uninfected mice (140), and taken together with
data we have presented in Chapters 6 and 7 and the studies discussed in Chapter 1.7
which show that Pf-specific Ab is short-lived, and inconsistently generated, it could very
well be that there is an underlying cellular dysfunction in MBC development in response

to malaria.

One of the more interesting possibilities of altered B cell function in this regard is
that initially described by Ehrhardt et al. (71), where a morphologically and functionally
distinct human MBC population was found in tonsil, defined by the expression of FCRL4,
a member of a recently identified family of FcR like proteins. FCRL4™ MBCs were found
almost exclusively in lymphoid tissues near epithelial surfaces. Most MBCs in humans
express CD27, a member of the TNF family, and have somatically mutated V genes and
switched Ig isotypes. The expression of the classical marker for human MBCs, CD27, is
much reduced on FCRL4" MBCs, but these B cells have undergone isotype switching and
somatic hypermutation. FCRL4" MBCs express the activation markers CD69, CD80 and
CD86 and are functionally distinct from CD27* FCRL4” MBCs, as FCRL4" MBCs proliferate
and secrete high levels of immunoglobulins in response to cytokines and CD40 ligand
(CD40L) but fail to proliferate in response to BCR crosslinking or treatment with
Staphylococcus aureus Cowen (SAC). Recent transcriptome analyses of FCRL4™ and

FCRL4 MBCs showed that these two populations differentially express genes in several
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categories including cell-cycle regulators, adhesion molecules, homing receptors and
signal transduction intermediates (70). Although a distinct function has not yet been
attributed to FCRL4® MBCs in vivo, their exclusive location in epithelial associated
lymphoid tissues and their activated phenotype suggest to Ehrhardt et al. that they may

play a normal role in mucosal defense against invading pathogens.

Recently, Moir et al. (143) showed that in the peripheral blood of HIV patients
with high viremia, an atypical population of FCRL4'CD20"CD27°CD21" MBCs was greatly
expanded, representing on average 19% of total B cells, compared to less than 4% in
healthy individuals. These atypical MBCs in HIV-infected individuals had undergone
somatic hypermutation and class switching albeit to lower levels as compared to CD27"
MBCs. Compared to naive B cells and classical MBCs, the atypical MBCs in the
peripheral blood of HIV-infected individuals proliferated less to BCR-crosslinking and/or
CD40L and the TLR agonist, CpG, and showed a decreased ability to differentiate into Ab
secreting cells in response to CpG and SAC. The atypical MBCs in HIV-viremic individuals
expressed relatively high levels of inhibitory receptors and a profile of homing receptors
similar to that described for tissue-based FCRL4" MBCs (70, 143) and for exhausted CD8"
T cells during chronic viral infection (203). Because of the overall hypo-responsiveness
of these atypical MBCs, their altered expression of inhibitory and homing receptors that
together are signatures for virus-induced exhaustion of T cells (54, 191, 203), Moir et al.
coined these atypical MBCs ‘exhausted MBCs’. HIV-specific MBCs were found to be

increased in the exhausted MBC compartment as compared to the classical MBC
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compartment, in contrast, influenza-specific MBCs were more prevalent in the classical
MBC compartment (143). Importantly, exhausted MBCs were found in normal levels in
peripheral blood of individuals treated early to reduce viremia, and decreased by
approximately half in individuals with high levels of atypical MBCs after their viremia
was brought down by antiretrovirals. The expanded level of atypical MBCs in these
individuals may be maintained by viral spiking (S. Moir, unpublished observations).
These authors proposed that chronic HIV stimulation of B cells may lead to their
premature exhaustion, contributing to the poor Ab responses in HIV-infected
individuals. As an increased prevalence of these atypical MBCs may contribute to (if
these cells have a regulatory function), or be a side effect of (if these cells are
dysfunctional cells derailed on their way to becoming functional MBCs) the delayed
acquisition and short-lived nature of immunity, MBCs and/or LLPCs in response to Pf
malaria, in this chapter we report on analyses to determine whether B cells
phenotypically and functionally similar to these atypical MBCs are expanded in
individuals chronically exposed to Pf. A more thorough exploration of B cell phenotypes
in malaria-exposed individuals could reveal important aspects of the B cell response to
Pf infection and inform the design of malaria vaccines that go beyond the traditional

empiric approach and address Pf-specific modulation of the immune response.
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8.2 Results
8.2.1 Atypical MBCs are greatly expanded in individuals in malaria endemic areas

An age-stratified subset was randomly selected from the Kambila study cohort
(peak season: n-87, pre-season: n=109) that, based on baseline characteristics of study
subsets and malaria outcomes, did not differ significantly from the entire cohort. The B
cells in the peripheral blood of the volunteers, before the start of the malaria
transmission season and at the peak of the malaria transmission season in October were
characterized by flow cytometry using a panel of fluorophore conjugated Abs specific for
CD19, CD27, CD21, CD10 and CD20 that allowed the identification of immature B cells
(CD19* CD10%), naive B cells (CD19* CD27 CD21" CD10), classical MBCs (CD19* CD27*
cD21" €D10), activated MBCs (CD19* CD27* cD21"° cD20" CD10), atypical MBCs (CD19*
CD27 CD21"°cD20" €D10) and plasma cells or plasma blasts (CD19* CD27* CD21"° CD20"
). 1gD expression was not examined, but would be expected to be in CD19*CD27 cD21"
CD10 naive B cells. Fig. 8.1 shows the gating strategy used to identify these B cell
subpopulations and a representative example of an individual from the U.S. as
compared to an individual in Mali.

A comparison of the proportion of B cells in each subpopulation in the peripheral
blood at the peak of malaria transmission is given as a percent of total CD19" B cells (Fig.
8.2 A-F). The percent of CD19" B cells per PBMC did not vary significantly between
individuals before and at the peak of the malaria transmission season (before season:

mean 12.16% [95% Cl, 11.36-12.97] vs. peak season: mean 11.71% [95% Cl, 10.86-12.57]
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U.S. Malian Figure 8.1 Flow cytometry gating strategies for
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p=0.451). The relative proportions of all the B cell subpopulations analyzed per total B
cells for each age group are also shown as stacked plots in Fig. 8.2 G. The percent of
plasma cells/plasma blasts (Fig. 8.2 B) was similar in both U.S. and Malian adults and
children. The percent of naive B cells, and immature B cells had a tendency to decrease
with increasing age in Malians and for these subsets, U.S. adults appeared similar to
Malian children (Fig. 8.2 A, C). As compared to U.S. adults, Malian adults had a similar
percent of classical MBCs (Fig. 8.2 D). Malian children in both the two to seven and
eight to ten year age groups had a smaller percent of classical MBCs as compared to
either U.S. or Malian adults, likely an age-related phenomenon unrelated to malaria.
The increase with age of classical MBCs is consistent with the increase in total IgG* MBCs
we observed using the MBC ELISPOT assay (Fig. 7.3). Strikingly, the percent of atypical
MBCs was significantly higher in Malian adults and children compared to U.S. adults,
with a trend of increasing atypical MBCs with increasing age among the Malian donors
(Malian adults: mean 15.5% [95% Cl, 9.7-21.2] vs. U.S. adults: mean 1.6% [95% Cl, 1.0-
2.2]; p<0.001; Malian children: mean 9.8% [95% Cl, 8.2-11.3]; p<0.001 vs. U.S. adults)

(Fig. 8.2 E). The percent of B cells with an activated MBC phenotype was significantly
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higher in Malian adults as compared to Malian children and U.S. adults (Malian adults:
mean 3.7% [95% Cl, 2.5-5.0] vs. U.S. adults: mean 1.3% [95% Cl, 0.6-2.1]; p=0.001;
Malian children: mean 1.9% [95% ClI, 1.4-2.4]; p<0.001 vs. Malian adults) (Fig. 8.2 F). As
with the atypical MBCs, there was a trend of increased activated MBCs with increased
age among the Malian donors. For both atypical MBCs and activated MBCs the largest

differences were between U.S. and Malian adults.

We further characterized atypical MBCs, classical MBCs and naive B cells from
peripheral blood of a randomly selected subset of Malian adults (n=6) and children age
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two to four (n=6) to determine the expression level of several inhibitory and homing
receptors which are characteristic of both tissue-based (70) and exhausted MBCs (143)
(Fig. 8.8). FCRL4, the cell-surface marker that defines tissue-based MBCs and is a
characteristic of exhausted MBCs was expressed at significantly higher levels on atypical
MBCs compared to classic MBCs and naive B cells. The expression pattern of inhibitory
and homing receptors on atypical MBCs was similar for Malian children and adults, and
comparable to that observed in HIV viremic individuals and in FCRL4" tonsilar MBCs (70,
71, 143). Atypical MBCs showed increased expression of the inhibitory receptors CD85j
and CD22. No differences were observed between classical MBCs and atypical MBCs in
the expression of the inhibitory receptor LAIR1, although as compared to naive B cells
both subpopulations expressed less LAIR1. CD11c and CXCR3 levels were increased on
atypical MBCs as compared to either classic MBCs or naive B cells. CXCR4, CD62L,
CXCR5 and CCR7 expression was decreased on atypical MBCs and little difference
between subpopulations was observed in the expression of CCR6 (Fig. 8.3) or CD72. The
phenotypes of both the naive B cells and classical MBCs were similar to that described
for U.S. individuals. Overall these cells closely match the phenotype of the atypical
MBCs characterized in HIV (143), and the receptor expression fits the profile of cells that
are refractory to BCR-mediated activation, with the increased levels of inhibitory
receptors, and unlikely to participate in germinal center reactions, with the decreased

levels of lymph-node homing receptors and increased levels of tissue homing receptors.
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Figure 8.3 Inhibitory and tissue-homing receptor expression is increased and lymph node homing receptor
expression is decreased on atypical MBCs relative to classical MBCs. FACS analysis of the expression of
inhibitory and homing receptors on naive B cells (green), atypical MBCs (blue) and classical MBCs (red) on a
subset of 12 Malian individuals: 6 children age 2-4 and 6 adults. For each panel (A-F) the top plots show
individual MFI values for each cell subpopulation of each individual, as well as the average MFI and standard
deviation. Underneath are histograms of the MFI for each subpopulation of a representative individual. The
expression of inhibitory receptors (A-D), tissue homing receptors (E-H) and lymph node homing receptors
(1-K) is given for classical MBCs, atypical MBCs and naive B cells (as defined in Fig. 1) using appropriately
labeled Abs specific for CD19, CD27, CD21 and the particular inhibitory and homing receptors indicated. The
Wilcoxon matched pair test was used for this comparison.
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To determine if these atypical MBCs are present at the end of the dry season, as
opposed to only during the malaria transmission season, we examined the percentage
of atypical MBCs at the end of the dry season and found comparable percentages in
both children and adults (Malian adults aged 18-25 years: 14.8% [95% Cl: 11.0-19.1],
Malian children aged two to ten years: 10.2% [95% Cl: 8.7-11.8]). At this timepoint, with
increasing age, and as a percentage of total CD19" B cells we observed a decrease in
immature B cells (p<0.001) and naive B cells (p=0.047) and an increase in resting 1gG"
MBCs (p<0.001) and activated IgG" MBCs (p<0.001). Overall there was little difference
in the total B cell subset composition before the malaria transmission season and at the

peak of transmission, and the age-related patterns were the same.

To determine if atypical MBCs were expanded in individuals in other,
geographically distinct malaria endemic settings in a small collaborative study we

analyzed adults living in an area of low Pf transmission in Peru. In this region of Peru,
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Figure 8.4 Atypical MBCs increase with increased Pf transmission in individuals in two endemic trans-
mission settings. Comparison of atypical MBC frequencies as a percent of total B cells in healthy U.S.
blood bank controls, Peruvian adults with prior reported Pf infection and current Pf parasitemia (Day 0),
and Malian adults with prior reported Pf infection and current Pf parasitemia (A). Total B-cell subset
analysis (B). Groups are as described in part (A) with subsets defined within CD19* cells as in Fig. 8.1
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individuals receive approximately one to two infectious bites per year as compared to

the 50-60 infectious bites per month at the height of the malaria transmission season in

Kambila. To make the most direct comparison possible between high and low

transmission settings we selected adults in Peru with Pf parasitemia who have a history

of prior Pf-malaria, excluding those with no prior history of Pf-malaria, and we selected

adults in Mali only at their first positive Pf
parasitemia of the transmission season, as many
have positive Pf parasitemia at multiple
timepoints, and all adults in the Kambila cohort
have a history of Pf-malaria (Fig.8.4). However,
individuals in Peru had symptoms of malaria, while
individuals in Mali were asymptomatic. In
comparing B cell subsets in individuals from Peru
and Mali, we observed no differences in the
percentages of plasma cells, activated MBCs,
classical MBCs, or naive B cells. Compared to
individuals in Peru, individuals in Mali had a lower
average percentage of immature B cells (Peru:
11.0%, Mali: 4.8%; p=0.011) and increased
percentage of atypical MBCs (Peru: 6.5%, Mali:

13.1%; p=0.002) (Fig. 8.4). Compared to healthy
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Figure 8.5 Comparison of atypical MBC
percentages in Peruvian individuals
separated by reported prior Pf-malaria.
Comparison of atypical MBC frequencies
as a percent of total B cells in healthy US
blood bank controls, Peruvian individuals
with no prior reported Pf infection and
current Pf parasitemia, and Peruvian in-
dividuals with one or more prior reported
Pf infection and current Pf parasitemia.
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U.S. donors, individuals in Peru and Mali had a lower average percentage of naive B cells
(U.S.: 64.2% Peru: 45.0%, Mali: 54.0%; U.S. vs. Peru p=0.003; U.S. vs. Mali p=0.013), and
a greater average percentage of activated MBCs (U.S.: 0.9%, Peru: 3.5%, Mali: 4.0%; U.S.
vs. Peru p=0.002; U.S. vs. Mali p=0.0003) (Fig. 8.4 B), and atypical MBCs (U.S.: 1.4%,
Peru: 6.5%, Mali: 13.1%; U.S. vs. Peru p<0.0001; U.S. vs. Mali p<0.0001) (Fig.8.4).
Compared to healthy U.S. donors, individuals in Peru also had a greater average
percentage of classical MBCs (U.S.: 22.4% Peru: 32.6%, p=0.038), and individuals in Mali

had a lower average percentage of immature B cells (U.S.: 10.6% Mali: 4.8%, p=0.003).

We also compared individuals in Peru presenting with Pf parasitemia with no
prior history of malaria (n=6) and those with one or more prior cases of Pf-malaria
(n=12). Individuals presenting with Pf parasitemia with no prior history of malaria had
higher percentages of atypical MBCs than malaria-naive U.S. volunteers, but lower
percentages of atypical MBCs as compared those with one or more prior cases of Pf-
malaria (U.S. control: 1.4%, no prior malaria: 3.1%, prior Pf-malaria: 6.6%; U.S. vs. Peru
no prior malaria: p=.008, Peru no prior vs. prior malaria p=0.028) (Fig. 8.5). These data
suggest that atypical MBCs increase with increased Pf exposure. We cannot, however,
rule out the possibility that atypical MBCs are a phenomenon related to race rather than
malaria exposure as we do not have access to the ethnicity of U.S. blood bank donors. It
is a possibility that Africans are genetically predisposed to atypical MBC development
and that Peruvians also have a genetic predisposition to atypical MBC development to a

lesser extent than do Africans. Considering the increase in atypical MBCs from Peruvian
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Figure 8.6 The percent of atypical MBCs is

larger in children with persistent asymptom-
p=0291 atic P.falciparum parasitemia as compared
to parasite-free children. Shown is the
percent of atypical MBCs per total B cells in
children aged 2-10 years (A) with (n=9) or
without (n=62) Pf parasitemia at the end of
the dry season or (B) with (n=8) or without
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adults with no prior history of malaria to Peruvian adults with prior history of malaria
within the same ethnic group does suggest, however, that this expansion is related to
malaria exposure rather than being solely a genetic phenomenon, or resulting from

exposure to other pathogens which is unlikey to differ significantly in these groups.

To attempt to determine if the increase in atypical MBCs in the Kambila cohort is
related to exposure to Pf, and to get the cleanest comparison of exposure versus non-
exposure in this study we compared the percentage of atypical MBCs in children with or
without asymptomatic Pf parasitemia at the end of the six-month dry season. Since
little or no parasite transmission occurs over the dry season (59), Pf parasitemia at this
time reflects a chronic infection persisting from the previous year’s transmission season.
Conversely, aparasitemic individuals at this time have likely been aparasitemic for
months. We felt that this would be the optimal timepoint to make this comparison as
during the transmission season partially-immune individuals typically have
asymptomatic parasitemias and recent exposure to Pf is more difficult to determine.
The percent of asymptomatic parasitemic individuals was similar across all age groups

and ranged between 3-5% (Table 5.1). There was a trend toward a higher percentage of
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atypical MBCs in children age two to ten years with asymptomatic Pf infection (n=9) as
compared to those without infection (n=62) (Fig. 8.6 A; with Pf parasitemia: mean 14.7%
[95%Cl, 2.7-21.0]; without Pf parasitemia: mean 9.9% [95%Cl, 8.1-11.7]; p=0.055). In
multivariate regression analysis that included age as a covariate, this association did not
reach statistical significance. Intestinal helminth infection was not associated with a
significant change in the percentage of atypical MBCs in children aged two to ten years
(Fig. 8.6 B); with helminth infection: n=8 mean 13.4% [95%CI, 5.2-21.6]; without
helminth infection: n=56 mean 9.9% [95%CI, 8.1-11.7]; p=0.291), although the sample
size may be too small to detect a significant difference. Of note, neither the percentage
of atypical MBCs before the malaria season nor the percentage at the peak of the
malaria season was associated with malaria risk, as defined by malaria incidence or time

to the first malaria episode (not shown).

8.2.2 Class switching in atypical MBCs in individuals in malaria endemic areas

Class switching occurs during MBC maturation, simultaneous with somatic
hypermutation, with both processes dependent on AID expression. The proportion of
IgG" FCRL4" B cells in Ehrhardt et al’s study was 63%, followed by IgA at 28%, with the
IgM isotype accounting for only 11% of FCRL4" B cells. The proportion of IgG" atypical
MBCs in HIV positive individuals which responded to stimulation was approximately
half, with IgM accounting for the other half, and IgA nearly undetectable (143). To
assess class-switching in the MBC subpopulations we analyzed cell surface IgG
expression of atypical and classical MBCs in our Malian cohort. Overall the pattern of
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IgG-expression was similar for classical and atypical MBCs (Fig. 8.7) with the proportion
of 1IgG" MBCs increasing with age in both classical and atypical MBCs. In each age group
the proportion of atypical MBCs that were I1gG" was slightly higher than the proportion
of classical MBCs that were 1gG*. We conclude that isotype switching is similar in the
different MBC subpopulations and that the high proportion of IgG" atypical MBCs

indicates that it is likely these cells have undergone somatic hypermutation.

In the Peruvian cohort we also examined the percentage of atypical MBCs that
were IgG" While individuals in the U.S. had an average of ~10% IgG" atypical MBCs, the
percentage of IgG" atypical MBCs was dramatically increased in Pf-infected individuals
from Peru with a history of prior Pf~-malaria and further increased in individuals from
Mali (U.S.: 9.11%, Peru: 49.6%, Mali: 59.3%; U.S. vs. Peru p=0.003; U.S. vs. Mali p=0.003;
Peru vs. Mali p=0.008) (Fig. 8.8 A). 30
Individuals in  Peru with Pf

parasitemia and no prior history of

% of total B cells

malaria had greater numbers of IgG"

atypical MBCs than did individuals

from the U.S., and although there
1gG* classical MBCs
1gG- classical MBCs
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was a trend toward a greater

Figure 8.7 The IgG expression of atypical and classical
individuals with a prior history of P~ MBCs is similar. Stacked plots showing the percentage

of 1gG* and 1gG- MBC for both the classical MBC sub-

population and the atypical MBC subpopulation.

percentage of atypical MBCs in
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malaria, the difference was not statistically significant (Fig.8.8 B).

Exhausted MBCs in HIV-viremic individuals were hypo-responsive in their ability

to differentiate into Ab secreting cells (ASC) in vitro in response to polyclonal stimulation

with a combination of CpG and SAC (143). In preliminary studies, we separated

peripheral blood B cells from Malian adults into atypical MBCs (CD19" CD27 CD21'°),

classical MBCs (CD19* CD27* €D21") and naive B cells (CD19* CD27 CD21") as described

(143). When stimulated with CpG and SAC atypical MBCs failed to produce any ASCs

(n=1; classical MBCs 34,900 ASC/lO6 at end of culture [SD + 2,000]; atypical MBCs 0

ASC/106; naive B cells 1,300 ASC/1O6 [SD + 200]). As compared to classical MBCs,
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individuals with one or more prior reported Pf infection and current Pf parasitemia.

146



atypical MBCs responded poorly to the combination of pokeweed mitogen, SAC, CpG
and IL-10, as we showed in Chapter 3, a combination that is more efficient in inducing
the differentiation of MBCs into ASCs (n=2; classical MBCs 102,800 ASC/106 at end of
culture [SD £ 18,200]; atypical MBCs 2,600 ASC/1O6 [SD + 1,200]; naive B cells 8,250
ASC/10° [SD + 2,000]). Naive B cells, as predicted (46), responded weakly to both
stimulation cocktails. By these criteria, the atypical MBCs in Malian volunteers are
hypo-responsive to stimuli that activate classical MBCs, and thus phenotypically and

possibly functionally resemble exhausted MBCs.
8.2.3 Longitudinal profiling of B cell subsets in children before and after acute malaria

We investigated the impact of acute malaria on the relative proportion of B cells
in each subset in children aged two to ten years. Compared to the pre-malaria season
baseline (month 0), there were no significant changes in the percent of lymphocytes
that were CD19" 14 days after acute malaria. Within the CD19" B cell population there
were no significant changes in the percent of immature B cells, naive B cells, or classical
MBCs, after acute malaria. However, we observed a decrease in the percentage of total
atypical MBCs (Fig. 8.9 A; month 0: 10.9% [95% Cl: 9.4-12.4], convalescence: 8.7% [95%
Cl: 7.3-10.2]; p=0.027), and an increase in activated MBCs following acute malaria (Fig.
8.9 B; month 0: 1.6 [95% Cl: 1.2-2.0], convalescence: 1.9 [95% Cl: 1.4-2.4]; p=0.09).
Within the activated and atypical MBC subset there was a significant decrease in the
proportion that were 1gG" (Fig. 8.9 C; activated MBC; month 0: 60.5% [95% Cl: 56.7-

64.3], convalescence: 36.7% [95% Cl: 29.3-44.0]; p<0.0001; Fig. 8.9 D; atypical MBC;
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Figure 8.9 Acute malaria alters B cell subset composition in the periphery during convalescence. As a
percentage of CD19* B cells, atypical MBCs decreased (A) and activated MBC increased (B) 14 days after
acute malaria in children aged 2-10 years compared to the percentage before the malaria season. The
percentage of classical MBC that are IgG* increases (C) and the percentage of atypical MBC (D) and act-
ivated MBC (E) that are IgG* decreased in this same age group 14 days after acute malaria. Data shown as
mean +s.e.m.

month 0: 39.2% [95% Cl: 35.8-42.5], convalescence: 24.9% [95% Cl: 20.0-29.7];
p<0.0001) and an increase in the proportion of classical MBCs that were I1gG" (Fig. 8.9 E;
month 0: 30.0% [95% Cl: 28.0-32.1], convalescence: 48.2% [95% Cl: 42.2-54.1];
p<0.0001). The decrease in the proportion of atypical MBCs in the peripheral blood
suggests that this subpopulation may be trafficking out of the circulation into tissues in
response to acute malaria. The increase in activated MBCs could be expected in
response to infection and is likely due to activation of Pf-specific classical MBCs, but we
cannot rule out the possibility at this point that they could result from atypical MBCs.
As activated MBCs increase as a percent but decrease in percent IgG’, the majority of
MBCs that are activated during malaria are not IgG". The observed increase in IgG"
MBCs is consistent with ELISPOT results and suggests that this compartment is gaining

Pf-specific 1gG" MBCs during malaria, most of which seem to be short-lived (Fig. 7.4).

The decrease in both total atypical MBCs and the %lgG" atypical MBCs indicates that
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IlgG* MBCs could be selectively migrating out of peripheral blood to sites in tissue, or
could be selectively differentiated to a different phenotype over non-lgG* atypical
MBCs. Pf-mediated isotype switching of atypical or activated MBCs from IgG to IgE or
IgA is another interesting possibility, but further studies would be required to address

these questions.

8.3 Discussion

The finding we report here of an expanded, atypical MBC subpopulation in
malaria-exposed individuals is the first description of a phenotypic alteration of MBCs in
individuals exposed to Pf. At present, the factors that cause the expansion of the
atypical MBCs are not known. In HIV infections the virus appears to play a role in driving
B cells into the exhausted MBC subpopulation, although this might not be a direct effect
of the virus itself. HIV causes massive depletion of memory T cells in the gut and results
in damage to the intestinal epithelial microenvironment (177), and increased
translocation of microbial products (33) such as bioactive LPS, which correlates with
levels of immune activation in HIV infected humans and SIV infected rhesus and is
absent in non-pathogenic SIV infection of sooty mangabeys (34). The effect of these
high levels of bioactive microbial products is not fully known, but has been proposed to
be a major component in causing the systemic immune activation observed in HIV and
this could be the force driving the expansion of exhausted MBCs in HIV. In individuals
with untreated HIV infections, the exhausted MBC subpopulation had a greater

proportion of HIV-specific MBCs than did the classical MBC subpopulation (143) and in
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patients whose viral loads were reduced to levels below detection by antiretroviral
therapy, the number of exhausted MBCs decreased to about half over a period of six
months. However, the exhausted MBC subpopulation in treated patients remained
statistically greater than that in healthy donors, presumably due to viral spiking
(unpublished observation). Due to the small cell numbers we were able to obtain in our
Malian cohort, especially from young children, we were unable to carry out similar
assays to directly determine if Pf-specific MBCs were differentially represented in the
atypical and classical MBC populations.  Finding that persistent Pf infection may be
associated with a greater degree of expansion of atypical MBCs, suggests that parasite
antigens or other parasite products may be responsible for driving the B cells into the
atypical MBC subpopulation. Other factors could account for the expanded atypical
MBCs in Malian individuals, such as genetic background or environmental factors
associated with Pf transmission that were not assessed in our study, for example,
malnutrition or the increased seasonal exposure to other pathogens. Although we did
not test for HIV, it is unlikely that HIV is responsible for the expanded atypical MBC
compartment in our study population since the prevalence of HIV in Mali is extremely
low (1.5%) and based on demographic data we would expect HIV prevalence be lower

than the country average in our study population (157).

Isotype switching occurs during memory B cell differentiation, simultaneous with
somatic hypermutation and the presence of a significant proportion of IgG" atypical

MBCs indicates that these cells have likely undergone somatic hypermutation and are
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likely MBCs by this classification. The proportion of atypical MBCs that were IgG"
increased with increasing age, and with increased cumulative exposure to Pf. Peruvian
adults with no prior reported malaria episodes (i.e. the measured episode reported here
is hypothetically their first malaria episode) had comparable levels of IgG" atypical MBCs
at this first reported episode as did two to seven year old Malian children, who have
likely had many malaria episodes, even though the average percentage of total atypical
MBCs in Malian children age two to seven was more than twice that of Peruvian adults,
indicating that the dramatic change, from approximately 10% IgG" in malaria naive
individuals to approximately 50% IgG" in malaria-exposed individuals, is associated with
the expansion of atypical MBCs. This apparently rapid shift in the proportion of IgG"
atypical MBCs with expansion of this population is consistent with a model where
atypical MBCs are generated as a byproduct of a dysfunctional or altered germinal
center reaction during which class switching occurs, or a model where atypical MBCs are

generated from existing classical MBCs, as the proportion of 1gG" cells was the same

within an individual in these two populations, increasing in parallel with increasing age.

The role of atypical MBCs in the context of malaria remains unclear. It has been
suggested that FCRL4" MBCs resident in mucosal lymphoid tissue play a role against
invading pathogens, possibly through their influence on other cells, either directly or
indirectly through the secretion of cytokines (70, 71). Moir et al. (143) concluded that
the HIV-associated exhaustion of B cells may play a role in the diminished HIV-specific

Ab responses in infected individuals as these cells are enriched in HIV-specificity and
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reticent to differentiate into ASCs in vitro, with an output similar to naive B cells with
stimulation. By analogy it may be that the atypical MBCs in Pf-exposed individuals play
a similar role in the inefficient acquisition of Pf-specific MBCs and the predominance of a
short-lived, rather than long-lived Ab and MBC response to Pf, as our preliminary results
suggested that atypical MBCs in malaria exposed individuals were hypo-responsive to
polyclonal B cell activation, with a readout of ASC differentiation less than that for naive
B cells. Hypothetically, Pf-specific classical MBCs in the periphery at some point during
Pf infection or convalescence could switch to the hyporesponsive atypical MBC
phenotype, leaving a minority of Pf-specific MBCs as fully functional classical MBCs. In
this model the “short-lived MBCs” we observe 14 days after presentation with malaria
could be altered either by subsequent malaria episodes or by persisting Pf antigen.
Alternatively atypical MBCs could result from a diversion of classical MBC development
during initial differentiation in germinal centers, preventing development of a significant
proportion of Pf-specific classical MBCs. In this model, the short-lived MBCs we observe
could be differentiating into PCs in a productive response to infection, or could be yet
another (abnormally short-lived) population resulting from an altered germinal center
reaction. Collectively, these observations could reflect the generation of atypical MBCs

in lieu of the normal generation of long-lived MBCs or PCs in response to Pf infection.

As suggested by Ehrhardt et al., atypical MBCs could be functional, and the
expansion of atypical MBCs in Pf infection may in some way benefit the host, reflecting

the unique relationship between the parasite and the host that allows the
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asymptomatic persistence of the parasite within an otherwise functional immune
system in individuals who have acquired clinical immunity. Given that the human and
Plasmodium genomes have co-evolved (148), it is possible the Pf has shaped immune
mechanisms which allows chronic and recurrent infections to occur. Presumably the
persistence of the parasite has some benefit to the host as indicated, for example, by
our finding that asymptomatic Pf infection is associated with protection against clinical
disease (Chapter 5.2.1). It is possible that atypical MBCs play a beneficial role in
protecting the host from clinical disease by modulating immune responses, for example,

through the secretion of cytokines to control inflammation.

It will be important to determine if individuals with expanded atypical MBCs can
be effectively vaccinated to produce long term Pf-specific memory responses as the
expansion of this population could indicate an altered immune response to Pf that will
be maintained through subsequent exposure to Pf antigens. As discussed in Chapter
4.3, we have observed that compared to U.S. adults, Malian adults appear to respond
less well to the same candidate malaria vaccine in Phase | clinical trials as measured by
the generation of antigen-specific MBCs. Future studies will be needed to determine
whether the expansion of atypical MBCs represents a protective response or an immune
evasion strategy of Pf, and if the latter, whether it can be overcome by vaccination that

specifically addresses this mechanism.
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Chapter 9: Discussion

Here | present data focused on humoral immunity to Pf malaria, a major world
health concern in the present day. As a result of studies showing short-lived and
inconsistently generated Ab responses, and incomplete protection from malaria, there
has been doubt in the malaria research community as to whether true immunologic
memory to Pf develops or can be maintained. | present data addressing the
development of Abs and MBCs in response to subunit malaria vaccines in malaria-naive
individuals (Chapter 4) in contrast to the development of Abs and MBCs to natural
malaria infection (Chapter 7), the presence of large numbers of atypical MBCs in
individuals in malaria endemic areas (Chapter 8), and the identification of the specificity
of protective Ab responses (Chapter 6). In addition my data allows me the opportunity
to comment on general questions regarding the mechanisms of MBC and LLPC

development and maintenance.

Overall | found the efficiency and magnitude of acquisition of Pf-specific Abs and
MBCs to depend heavily on the context of exposure. In the context of subunit
vaccination given to malaria naive adults, Pf-specific Abs and MBCs are efficiently
generated with three vaccinations and maintained for at least three to six months. This
is in sharp contrast, however, with the response to Pf-malaria in which Pf-specific Abs
and MBCs are gradually acquired over years of repeated infections, with incremental
increases each malaria season. In analysis of 491 immunogenic Pf proteins, both the
breadth and intensity of Ab reactivity increased with age, asymptomatic Pf infection,
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and with malaria transmission. The increase from before to after the Pf transmission
season is less pronounced with increasing age. The majority of the Ab response to Pf-
exposure measured by both protein microarray and ELISA was short-lived with an
incremental increase with each year of age in the titer of Ab maintained through the six-
month dry season. Considering serological studies reporting a rapid decline of Pf-
specific Ab in the light of my longitudinal data, it is plausible that these studies
measured the sharp decline of the short-lived Ab response after acute malaria, rather
than the long-lived component which is the minority of the Ab response. The same
pattern was observed for Pf-specific MBCs, although the potential heterogeneity in this
population, i.e. whether activated MBCs are contributing to the MBC ELISPOT readout
during convalesence, as opposed to only resting MBCs reading out in the assay (as is the
case during steady state) is not clear. This is an important point to address in future
research. This inefficient development of Abs and MBCs seems to be specific to Pf-
specific Abs and MBCs, and | found no evidence that Pf causes a general lasting immune-
suppression as individuals in this cohort had efficient and stable responses to tetanus
vaccination. Interestingly, in addition to the incremental acquisition of Pf-specific Abs
and MBCs, in adults with a lifetime of exposure to malaria, the magnitude of the MBC
response was dramatically lower than that seen in vaccinated malaria-naive individuals.
In addition the magnitude of the MBC response to a particular antigen might be
determined by Pf infection and whether this can be subsequently overcome by

vaccination remains to be determined. As the vaccinations done in semi-immune
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Malian adults using the AMA1-C1 versus AMA1-C1 with CPG vaccines was done at the
height of the malaria transmission season (190), it is not clear whether the MBC
response to these antigen is set by Pf infection or whether individuals were unable to

respond more robustly because of concurrent exposure to the parasite.

The two prior reports of Pf-specific MBCs in adults in malaria endemic areas
indicate that a relatively high percentage of individuals do not have detectable MBCs to
Pf antigens, and | found a similar pattern, with approximately half of adults in our cohort
without detectable MBCs to the Pf antigens | tested. Although much can be learned
from studies of vaccination, the relative complexity of infection clearly plays a role in
MBC development in the case of Pf malaria. This inefficient acquisition of Pf-specific
MBCs in response to natural infection contrasts not only with responses to these same
antigens in a different population (malaria-naive vaccine recipients), and the response
to a different antigen in the same population (TT), but also contrasts to the one other
disease where MBC development has been studied longitudinally to date, namely
cholera. In response to cholera there is rapid acquisition of stable MBC levels (97, 112,
120) which differs dramatically from the incremental increase and high ratio of short-
lived to long-lived MBCs resulting from Pf malaria. Collectively these data indicate
significant impairment in the ability to develop MBCs and LLPCs in the context of Pf
infection. As Pf transmission resumes after a six-month hiatus, | cannot comment
definitively on the ultimate longevity of the Ab and MBC responses to Pf. However

based on the empirical observation that semi-immune adults will become susceptible to
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malaria over a one to two year period of non-exposure it seems probable that the LLPCs
that result from Pf malaria have either an extremely short half-life, or are not acquired
far in excess of the threshold required for maintaining neutralizing antibody. These
semi-immune adults rarely succumb to fatal malaria, however, likely due to maintained
Pf-specific MBCs differentiating into PCs upon antigen re-exposure, thus allowing
symptoms but preventing fatal malaria. These individuals also re-acquire clinical
immunity (again based on empirical observation) more rapidly than a malaria naive
individual would acquire immunity, suggesting a potential memory component in the
response. This supports further the model | propose for independent homeostatic
regulation of MBCs and LLPCs, by indicating that LLPCs are ultimately derived from
MBCs, but antigen stimulation (or cross-reactivity of a certain affinity) is required for PC

differentiation.

Another interesting finding in the light of this apparent impairment is the
expansion of atypical MBCs in Pf-exposed individuals. The role and origin of these cells
is still unclear, perhaps they have an immunosuppressive role, a protective role, or they
may be non-functional. Atypical MBCs might result from deferred classical MBC
development in a defective germinal center reaction or arise from alterations to existing
MBCs. | hypothesize that these cells are largely non-functional with regard to antibody
production and result from altered germinal center reactions. Atypical MBCs express a
pattern of increased inhibitory receptors relative to classical MBCs, are phenotypically

comparable to the hyporesponsive ‘exhausted MBCs’ described in HIV patients and are
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also functionally hyporesponsive in their ability to differentiate into ASCs (per my
preliminary data). In addition atypical MBCs in HIV patients have levels of somatic
hypermutation that fall between naive B cells and classical MBCs. With regard to their
origin, in a study comparing spleens from fatal malaria, fatal sepsis, and normal control
cases, researchers found that in malaria cases there was a severe depletion of B cells in
the marginal zone where memory B cells typically are found and there were fewer
germinal centers in malaria cases than in controls. Although activated B cells (and PCs)
can migrate into the red pulp and differentiate in foci to secrete Abs, B cell numbers
were lower in the red pulp of malaria cases than in controls (194). As a relatively high
proportion of FCRL4" B cells were found in healthy tonsils (71), indicating that the
expression of this inhibitory receptor is probably normal on certain B cells during a stage
of germinal center development (likely to tightly regulate activation and differentiation
resulting from BCR stimulation during positive selection), the interruption of germinal
center organization that occurs during malaria could result in B cells at this stage of
development exiting to the periphery rather than completing maturation into memory B
cells. It is not clear either whether the large numbers of apparently short-lived MBCs
observed during convalescence could be contributing to the atypical MBC pool, possibly
upon re-entering a germinal center reaction to undergo further somatic hypermutation
/ affinity maturation after cycling through the periphery and receiving a signal or failing
to receive a signal which results in their development into atypical MBCs. Studies done

in our lab have shown that expression of FCRL4 on Ramos cells decreases BCR-mediated
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activation and both initial and sustained calcium flux in response to either soluble or
membrane-bound antigen (H. Won Sohn, unpublished observations). While tonic
signaling through the BCR is known to be a requirement for survival of B cells, FCRL4
expression disrupts activation through the BCR without interrupting the tonic signal
necessary for survival. Thus FCRL4 inhibits BCR activation by virtue of its expression
alone without interrupting the tonic signaling through the BCR required for B cell
survival, allowing these cells to survive in a hyporesponsive form. Whether these cells
survive as a nonfunctional anomaly from a germinal center reaction or whether these
cells represent another piece of immunity by having a non-traditional B cell function
remains to be determined. The long term persistence of these cells and their decrease
in peripheral blood during convalescence following malaria could indicate that they are
maintained to perform a function and might ultimately be protective to the host,
possibly through the secretion of cytokines, antigen presentation or another non-
traditional B cell role, thus filling a role akin to an innate immune cell. As the BCR seems
largely non-functional in these cells and preliminary microarray data indicates cytokine
expression (S. Moir, unpublished observations), | hypothesize that these cells are
influencing the immune environment via cytokine production. Alternately, the
expression of FCRL4 could be reversible, allowing these cells to enter a form of stasis
and then later resume a traditional B cell function, differentiating into PCs or classical
MBCs. In short, together with the evidence for altered germinal center reactions in

malaria, the decreased level of somatic hypermutation and the comparable level of IgG
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class-switching in atypical versus classical MBCs, and the incremental acquisition of Pf-
specific classical MBCs, | hypothesize that Pf alters germinal center reactions, resulting
in the diversion of B cells into atypical MBCs in lieu of classical MBCs. These atypical
MBCs are likely hyporesponsive in their ability to differentiate into antibody secreting
cells, but influence immune responses via cytokine secretion. The alterations in
germinal center reactions and the process of atypical MBC development could be driven
by massive immune activation, high antigen numbers (as over 3,000 proteins are
transcriptionally active during blood stage infection), high antigen levels (as tens of
thousands of merozoites exit the liver and proceed to replicate exponentially), the
pattern of antigen exposure (as more than 75% of proteins expressed during the blood
stage of infection are transcriptionally active once causing a continuous cascade of gene
expression), or repeated antigen exposure (192). | feel the most likely of these
possibilities is that these changes result from large doses of antigen in combination with
massive immune activation resulting from parasite products in the plasma. In support
of this there are bioactive microbial products in the plasma in the case of HIV (33) and
large doses of bioactive parasite products in the case of Pf, and both diseases cause
widespread immune activation. These commonalities could underlie the development
of atypical MBCs in these two diseases. Atypical MBCs could also result from classical
MBCs going through abnormal differentiation into PCs. Ultimately it could be important
to determine the role of atypical MBCs and whether they are generated in lieu of the

normal development of long-lived MBCs or PCs in response to Pf infection, as well as to
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ascertain whether atypical MBCs contribute to the apparent refractoriness of Malian
adults to respond to Pf subunit vaccination. It will be important to determine if
individuals with expanded atypical MBCs can be effectively vaccinated to produce long
term Pf-specific memory responses as the expansion of this population could indicate an
altered immune response to Pf that will be maintained through subsequent exposure to

Pf antigens.

With regard to protection, since recent clinical trials show that vaccination with
either AMA1 or MSP1 does not confer protection, | did not expect AMA1- and MSP1-
specific MBCs to correlate with protection, which they did not. Based on the kinetics of
MBC to PC differentiation which requires approximately six to eight days (30), and the
more rapid kinetics of Pf replication to the point of clinical symptoms (i.e. malaria)
which requires approximately three days once blood-stage infection begins (179), |
suspect that the frequency of MBCs per se may not reliably predict clinical immunity to
malaria regardless of antigen specificity but MBC to protective antigens might predict
future Ab titers that would be protective as well as protection from fatal malaria. This
collectively gives rise to a model of the development of protective humoral memory to
Pf malaria, where Pf-specific Abs and MBCs of protective specificities increase following
each malaria infection, expanding and contracting, but with a stepwise incremental gain
in the long-lived component. Due to the kinetics of MBC differentiation into PCs, the
relatively high levels of Ab required for protection versus the relatively low levels of Ab

that are long-lived with each exposure, and the speed with which the parasite

161



Model for the gradual acquisition of humoral immunity to blood stage P. fakiparum
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Figure 9.1 Model for the gradual acquisition of humoral immunity to blood stage P. folciparum. Individuals
remain susceptible to malaria for years as titers of protective Ab and correlating MBCs increase in a gradual
stepwise fashion, with the majority of the response dedicated to SLPCs rather than LLPCs. Malaria episodes
continue to accur untll Ab of protective speclficlties exceeds a neutrallizing threshold. MBCs do not directly
correlate with protection as the time required to differentiate into PCs is greater than that required by the
parasite to cause illness, thus only the Ab present at the time of infection is protective against disease.

replicates, the individual continues to have malaria episodes until the long-lived Ab
exceeds a neutralizing Ab threshold (Figure 9.1). The specificity and levels of Ab present
in plasma at the time of infection would, however, be immediately protective, and
considering the complexity of the parasite’s life cycle within the host, it is likely that Ab

to multiple Pf antigens will be required to induce clinical immunity.

In a protein microarray analysis of age-matched protected (children with no
malaria episodes in spite of positive Pf parasitemia) and susceptible (children who had

one or more episodes of malaria) | found a panel of 49 known and hypothetical proteins
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to which Ab reactivity correlated with clinical protection. As Ab reactivity to some of the
known proteins of this panel have been shown either to inhibit sporozoite invasion of
human hepatocytes (160), to inhibit parasite growth in vitro (6), to be associated with
decreased malaria risk or parasitemia in field studies (5, 115, 200), or induced by a
multiple-antigen vaccine which reduced parasitemia in children (85), the protein
microarray is likely an effective tool to identify novel vaccine candidates. Of the
proteins | identified those Abs that are ultimately protective will need to be determined
in future studies, possibly by further microarray profiling of Ab responses in larger

prospective longitudinal cohort studies in various endemic settings.

Although the Pf antigens | tested clearly do not solely account for the suboptimal
Ab and MBC responses measured in malaria endemic areas, as malaria naive individuals
rapidly developed high levels of Abs and MBCs to these proteins, the antigen seems to
have some role in determining the magnitude of the Ab and MBC response as a similar
pattern was observed with Abs and MBCs consistently higher to AMA1 than to MSP1 in
both Kenya and Mali with exposure to the parasite, and in the U.S. in response to
subunit vaccination. The quantity of protein given was less important in determining
the resulting Ab and MBC responses in these trials, as no difference was observed in
AMAI1-specific Ab titers and MBC levels whether given the same dose as that given in
the MSP1 trial or one quarter of this dose. Thus the pattern of greater Abs and MBCs to
AMA1 versus MSP1 persisted across three study populations (Kenya and Mali following

malaria and U.S. following vaccination) regardless of antigen dose, and regardless of
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whether the antigen exposure was via vaccine or during acute infection. It would be
interesting to further the studies that have already suggested some properties of MSP1
which might contribute to this (132), (100), as this could shed light on what ultimately

determines the “immunogenicity” of a protein for humans.

One thing that does stand out with regard to the ability of Abs and MBCs to
develop was the addition of CpG to subunit vaccines. TLR9 plays a significant role not
only in the generation of MBCs in naive individuals but also in controlling the behavior
of existing MBCs. For the two protein subunit malaria vaccine candidates, AMA1-C1 and
MSP1,4,-C1, the inclusion of CPG 7909 had a dramatic effect on malaria naive individuals,
resulting in a more rapid acquisition of vaccine-specific Abs and MBCs, in greater
number/titer. CPG 7909 had no effect on primary immunization with AMA1-C1 or
MSP14,-C1, suggesting that CPG 7909 had little effect on naive B cells directly, or
indirectly through TLR9-expressing PDCs. However, once generated by primary
immunization, TLR9-expressing antigen-specific MBCs responded dramatically to
secondary immunization in the presence of CPG 7909. Interestingly, the addition of CPG
7909 did not enhance the acquisition of vaccine-specific MBCs either kinetically or
numerically when the AMA1-C1 vaccine +CpG was tested in a cohort of semi-immune
adults in Mali (190). The mechanistic meaning of this apparent refractoriness to TLR9

activation is of considerable interest for the purpose of vaccine design.

The development of an effective malaria vaccine would be a critical step toward

the control and eventual elimination of this disease. Malaria has thus far proved
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resistant to attempts at reliably inducing long-lived protection through vaccine efforts.
This could be due to properties of the parasite or the immune environment induced
during infection, and a better understanding of these processes could be instrumental in
informing vaccine design. To date, most licensed vaccines are for pathogens that induce
long-lived protective Abs after a single infection. In contrast, immunity to malaria is only
acquired after repeated infections, is typically dependent on boosting by regular
infections, and usually short-lived (129), as discussed earlier. For these reasons an
effective malaria vaccine would expedite and streamline, rather than mimic, the natural
course of the development of immunity in the context of Pf infection. To date malaria
vaccines have at best provided only partial protection. It is worth noting, however, that
only approximately 0.5% of the Pf genome has been explored for subunit vaccine
potential, and rarely have individual proteins been used in combination. | have begun to
address some of the major questions that remain for vaccine development including
which antigen specificities confer protection, whether MBCs to Pf develop and can be
maintained and what mechanisms might underlie the inefficient acquisition of immunity
to malaria. In addition to these, questions that still remain for vaccine development
include which Ab specificities confer protection, the affinity of these Abs required, the
titre of these Abs required, whether these titers can be induced in malaria-experienced
individuals or whether children must be vaccinated while still malaria-naive, and
whether these titers can then be maintained regardless of Pf exposure. With regard to

affinity the possibility also exists that Pf causes increased AID expression ultimately
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resulting in decreased affinity of Abs to Pf proteins, another important avenue to
explore. In conclusion | hypothesize that a successful vaccine is probable if the correct
antigens are identified, the Ab titers required for protection are defined, and individuals
are vaccinated with a vaccine regimen sufficient to induce neutralizing Ab titers to these
antigens prior to Pf exposure. This last point seems equally critical to the others as
semi-immune adults in Mali, with prior exposure to Pf, responded to vaccination with a
magnitude of MBCs comparable to the magnitude of MBCs which resulted from
infection with Pf. This is in contrast to the much greater magnitude of MBCs generated
by malaria-naive adults in response to this same vaccine. This suggests that the
magnitude of the response to Pf antigens is determined during Pf infection and once
this is determined it cannot be overcome with subsequent vaccination. Further studies

will be required, however, to address these questions.

My work has also given me the opportunity to address some fundamental
guestions regarding the development and maintenance of humoral memory in humans.
Pf- and TT- specific MBCs increased with cumulative exposure to antigen, albeit at
different rates, while TT-specific MBCs remain constant in the absence of further
exposure, indicating that the increase in antigen-specific MBCs is driven by repeated
antigen exposure and is not simply a function of age. Consistent with this, the size of
the total IgG* MBC compartment, as reflected in the peripheral blood, increased with
age and immunological experience. Regarding maintenance, unlike PCs, which are

terminally-differentiated, MBCs may be maintained through homeostatic proliferation
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(133), possibly through exposure to polyclonal stimuli (30). In support of this, TT-
specific MBCs were slightly increased following malaria, possibly due to polyclonal
activation. The stability of TT-specific MBCs that | observed until the age of twenty-five
following vaccination in infancy is also striking in comparison to studies done in non-
malaria exposed western populations. This difference in the ability to maintain MBCs
could reflect the difference in exposure to infections and the subsequent polyclonal
expansion of MBC populations. If the maintenance of MBCs in the human immune
system does depend on polyclonal activation, it would be in-tune with the higher degree
of pathogen exposure that humans have evolved with up until the last one-hundred
years or so with the progressively more pathogen-free environments that have been
created in recent human history. | hypothesize that the steady level of TT-specific MBCs
| observed here reflects the maintenance of MBCs as it has naturally evolved resulting in
a steady state throughout life achieved by frequent pathogen exposure, while the
decline of these MBC populations observed in more pathogen-free environments is a
reflection of the subsequent decrease in polyclonal activation these MBC populations
are experiencing throughout time. The correlation between Abs and MBCs at steady
state that | observed in both the U.S. vaccine trial and the Kambila cohort study suggest
that MBCs are ultimately responsible for replenishing PCs. The non antigen-specific
increase of PCs that | observed after the second and third vaccinations in the U.S.
vaccine trials suggest that this process occurs by polyclonal activation of MBCs, but

these are weak data, as these could be antigen-specific or cross-reactive PCs responding
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to the vaccine, and better support for this model has been presented by others (134).
My TT-specific data from the Kambila cohort study makes a much stronger case for the
model | propose, that MBCs and PCs are maintained by different mechanisms, and
polyclonal activation only has a role in maintaining MBC numbers while PC
differentiation requires antigen-specific stimulation. It seems unlikely that the
differentiation of MBCs into PCs would occur with any reasonable efficiency in the
absence of antigen-specific stimulation as this could easily result in large amounts of
irrelevant Ab or hypergammaglobulinemia following any infection, and the expense of
resources for a terminally differentiated cell that is not assisting in eliminating the
current infection. The apparent discrepancies in these data could, however, simply be a
result of the differential effects of alum, which activates via the inflammosome (72), the
TLR ligand CpG, and the massive impact of malaria on the immune system. The positive
correlation | observed between MBCs and Abs in both the U.S. trials and the Kambila
cohort study suggest that MBCs are ultimately responsible for replenishing PCs,
although, again, this correlation likely depends on the point at which the sample is
taken. The mechanism driving this is not yet clear. If signaling through the BCR is
required it could be accomplished through relevant antigen stimulation or cross-
reactivity, or alternatively this process could be driven by certain innate triggers which
might not be activated during malaria. In all three studies the correlation between
MBCs and Ab titers at steady state suggests that the long-term maintenance of LLPCs

may be linked to MBCs. However, the cellular and molecular nature of this relationship
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remains to be fully elucidated. Collectively these data support a model where MBC and
PC are regulated through different mechanisms. | hypothesize that MBC numbers are
maintained by polyclonal activation, and although PCs arise from MBCs it is via
stimulation through the BCR with relevant or cross-reactive antigen. In this model the
correlation of MBC numbers and PC numbers would depend on the point at which the
sample is obtained. During and immediately after vaccination regimens, or relevant
antigen exposure, one would expect a better correlation between MBCs and PCs of a
given specificity. At timepoints further from vaccination or relevant antigen exposure
correlation may not occur due to polyclonal activation of MBCs following other
infections or PC numbers declining over time without being replenished by relevant
antigen stimulation. Empirical observation that semi-immune adults who become
susceptible to malaria over a one to two year period of non-exposure but rarely
succumb to fatal malaria indicates that PCs to Pf might be short-lived, however, MBCs
seem to be maintained and are capable of differentiating into PCs upon antigen re-
exposure, thus allowing symptoms but preventing fatal malaria. This supports further
the model | propose for independent homeostatic regulation of MBCs and LLPCs, by
indicating that LLPCs are ultimately derived from MBCs, but antigen stimulation (or

cross-reactivity of a certain affinity) is required for PC differentiation.

The studies described here provide a rare view of the acquisition and
maintenance of human B cell memory. The ability to compare Ab and MBC responses to

the same antigens in the context of vaccination of naive individuals and in the
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pathogenic context of an acute infection has given me valuable information about the
development of humoral memory both in general and specifically in the case of Pf.
These studies lend new insights into the observations of short-lived Ab responses to Pf
antigens, and the delayed acquisition of malaria immunity. The findings | report here of
gradual acquisition of Pf-specific Abs and MBCs over years of exposure, and the
expansion of atypical MBCs in malaria-exposed individuals are the first descriptions of
MBC development in response to malaria, and a phenotypic alteration of MBCs in
individuals exposed to Pf. These findings have opened two new areas of research,
namely the mechanisms underlying the slow acquisition of MBCs and the generation
and function of atypical MBCs. An understanding of the cellular and molecular
mechanisms involved could open the door to strategies for the design of a malaria
vaccine that go beyond the traditional empiric approach and address Pf-specific

interaction with the human host.
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Table S1. Pf proteins identified as immunogenic by protein microarray.*

Gene ID Gene ID Protein Name Normalized
Annotatedt Antibody
Reactivity

PFB0915w PFB0915w-e2s1 liver stage antigen 3 152615.9595
PFI11475w PFI1475w-s2 merozoite surface protein 1, precursor 139468.2384
PFB0300c PFB0300c merozoite surface protein 2 precursor 133931.7351
PF08_0140 PFO8_0140e2s1 erythrocyte membrane protein 1 (PfEMP1) 65360.0092
PF14_0102 PF14_0102e1s1 rhoptry-associated protein 1, RAP1 57753.94791
PFB0310c PFB0310c-el merozoite surface protein 4 52544.25246
PFL1930w PFL1930w-s5 hypothetical protein 47988.93143
PFO8_0137 PF08_0137e2s1 hypothetical protein 47631.15621
MAL7P1.77 MAL7P1.77e1s1 hypothetical protein 46226.5337
PF10_0348 PF10_0348els1 hypothetical protein 43263.7235
PF11_0226 PF11_0226-s1 hypothetical protein 40014.55264
PFD0105c PFD0105celsl SURFIN, surface-associated interspersed gene 39439.98399
PF10_0138 PF10_0138-s1 hypothetical protein 37236.96525
PFEO060w PFEOO60w-e2 hypothetical protein 36412.02639
PFD0310w PFD0310w sexual stage-specific protein precursor 31195.23728
PF10_0323 PF10_0323els1 hypothetical protein 31065.8283
PFO7_0006 PFO7_0006-e2 starp antigen 30620.62844
PFD0995c PFD0995ce2s1 erythrocyte membrane protein 1 (PfEMP1) 30553.43811
PF14_0170 PF14_0170e1s5 hypothetical protein 30130.45474
MAL6P1.252 MAL6P1.252-e2 erythrocyte membrane protein 1 (PfEMP1) 28422.84341
PFI11475w PFI1475w-s1 merozoite surface protein 1, precursor 27935.5303
PFE1590w PFE1590w early transcribed membrane protein 27477.9251
PFO7_0129 PFO7_0129e1s1 ATP-dept. acyl-coa synthetase 27309.74706
PF14_0461 PF14_0461-s1 hypothetical protein 26790.47396
MAL7P1.14 MAL7P1.14e1s1 hypothetical protein 26467.55614
PF11_0302 PF11_0302els1 hypothetical protein 25443.45625
PF14_0228 PF14_0228els1 hypothetical protein 25078.08075
PFO7_0128 PFO7_0128-e1s2 erythrocyte binding antigen 24634.38884
PFE1025c PFE1025celsl hypothetical protein 23416.01979
PF10_0138 PF10_0138-s2 hypothetical protein 23144.72091
PFLO795c PFLO795cels1 hypothetical protein 23012.23767
PF14_0495 PF14_0495-s1 hypothetical protein 22767.07431
PF13_0003 PF13_0003e2s1 erythrocyte membrane protein 1 (PfEMP1) 22705.2586
PFL1410c PFL1410c-s1 hypothetical protein 22607.42377
PFAO110w PFAO0110we2s2 ring-infected erythrocyte surface antigen precursor | 22604.21633
PFAO0410w PFA0410w-s3 hypothetical protein 22482.71261
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MAL6P1.252 MAL6P1.252-e1s3 erythrocyte membrane protein 1 (PfEMP1) 22358.28408
PFD0225w PFD0225w-s5 hypothetical protein 22186.71471
PF14_0631 PF14_0631els2 hypothetical protein 22144.20458
PF11_0037 PF11_0037e2s1 hypothetical protein 22046.00363
PFE1600w PFE1600we2s1 hypothetical protein 21806.60566
PFL2610w PFL2610we2s1 STEVOR 21521.41892
PFLO590c PFLO590cels1 p-type ATPase, putative 21334.59847
PF14_0407 PF14_0407-s2 hypothetical protein 21060.49502
PFO7_0007 PFO7_0007e1s1 hypothetical protein 21048.89483
PFO8_0141 PFO8_0141e2s1 erythrocyte membrane protein 1 (PfEMP1) 20913.80716
PF11_0008 PF11_0008e2s1 erythrocyte membrane protein 1 (PfEMP1) 20899.51859
PFO7_0048 PFO7_0048e2s1 erythrocyte membrane protein 1 (PfEMP1) 20576.3133
PFEOO55c PFEOO55ce3s1 heat shock protein, putative 20452.9307
PF11_0507 PF11_0507e1ls6 antigen 332, putative 20322.17949
PFI0580c PFI0580c-e2 hypothetical protein 20253.37777
PF10_0124 PF10_0124-el1s2 hypothetical protein 20239.99899
PF11_0226 PF11_0226-s3 hypothetical protein 19976.16813
PF10_0401 PF10_0401e2s1 RIFIN 19588.49889
PF10_0356 PF10_0356-el liver stage antigen, putative 19551.3558
PFLO470w PFLO470wels1 hypothetical protein 19168.9945
PFO7_0053 PFO7_0053e1s4 hypothetical protein 19132.58053
PF14_0495 PF14_0495-s2 hypothetical protein 18946.66363
PF13_0190 PF13_0190els1 hypothetical protein 18772.03871
PFLO445w PFLO445w-s1 hypothetical protein 18728.51992
PF10240c PFI0240c-els1 E1-E2_ATPase/hydrolase, putative 18525.67022
MAL7P1.92 MAL7P1.92e5s1 cysteine repeat modular protein 2 homologue 18402.28181
PFB0260w PFB0260w-e2 proteasome 26S regulatory subunit, putative 18264.03101
PFLO015c PFLO015ce2s1 RIFIN 18259.93569
PF14_0626 PF14_0626e5s2 dynein beta chain, putative 18203.65258
PFL2505c PFL2505ce8s2 hypothetical protein 18060.60157
PFD0380c PFD0380ce2s2 hypothetical protein 17969.72993
PFA0410w PFA0410w-s2 hypothetical protein 17947.48879
MAL13P1.234 | MAL13P1.234-e1s4 | hypothetical protein 17788.92229
PF10_0079 PF10_0079-s1 hypothetical protein 17694.83855

MAL13P1.176

MAL13P1.176e1s2

Plasmodium falciparum reticulocyte binding
protein 2 homolog b

17477.14642

PFO8_0107 PFO8_0107e2s1 erythrocyte membrane protein 1 (PfEMP1) 17397.95244
PFO7_0016 PFO7_0016-s1 hypothetical protein 17357.62457
PFA0410w PFA0410w-s1 hypothetical protein 17338.00845
PF10_0075 PF10_0075e1s2 asparagine-rich antigen 17275.58967

172




PF10_0322 PF10_0322-s2 S-adenosylmethionine decarboxylase-ornithine 17141.1087
decarboxylase
PFLO185c PFLO185c-e3 nucleosome assembly protein 1, putative 16979.40771
PFA0430c PFA0430celsl hypothetical protein 16942.61442
PF10_0356 PF10_0356-e2s2 liver stage antigen, putative 16749.97001
PF10260c PF10260c-s6 hypothetical protein 16722.36594
PF11_0507 PF11_0507els1 antigen 332, putative 16637.26818
MAL13P1.234 | MAL13P1.234-e1s3 | hypothetical protein 16633.18697
PFB0305c¢ PFB0305c-el merozoite surface protein 5 16538.4958
PFI11735c PF11735ce2s1 hypothetical protein 16354.26532
PFD0385w PFD0385we1ls2 hypothetical protein 16062.89978
PF13_0275 PF13_0275e2s1 hypothetical protein 15892.22657
PFO8_0018 PFO8_0018-s2 translation initiation factor-like protein 15872.85894
PFB0915w PFB0915w-e2s2 liver stage antigen 3 15538.43009
PF14_0690 PF14_0690-e1s2 histone deactylase, putative 15507.8785
PELO625C PFLO625c-s1 eukaryotic translation initiation factor 3 subunit 10, | 15282.34127
putative
PF14_0751 PF14_0751-el fatty acyl coenzyme A synthetase-1, putative 15228.91766
PFI0460w PFI0460w hypothetical protein 15223.94654
PF13_0197 PF13_0197 Merozoite Surface Protein 7 precursor, MSP7 14869.03924
PF11_0358 PF11_0358-e2s2 DNA-directed RNA polymerase, beta subunit, 14501.87999
putative
PF10_0224 PF10_0224e1s3 dynein heavy chain, putative 14277.26022
MAL6P1.252 MAL6P1.252-e1s2 | erythrocyte membrane protein 1 (PfEMP1) 14260.29746
PFE0380c PFEO380celsl hypothetical protein, conserved 14193.51008
PF14_0170 PF14_0170els4 hypothetical protein 14130.47682
PF14_0699 PF14_0699e2s1 hypothetical protein, conserved 13962.52894
PFEO465c¢ PFEO465c-els1 RNA polymerase | 13834.50984
PF11_0351 PF11_0351elsl heat shock protein hsp70 homologue 13812.06223
MAL13P1.107 | MAL13P1.107-s2 hypothetical protein 13670.71395
PFEO090wW PFEO090wels1 hypothetical protein 13521.96267
PF10_0124 PF10_0124-els1 hypothetical protein 13519.23215
PFC0810c PFC0810ce3s1 hypothetical protein 13463.04597
PF11_0479 PF11_0479-e3s1 hypothetical protein 13420.26677
PF14_0170 PF14_0170e1s3 hypothetical protein 13378.4088
MAL8P1.23 MAL8P1.23-s8 ubiquitin-protein ligase 1, putative 13266.74682
PF10_0251 PF10_0251e2s3 hypothetical protein 13222.4801
PF14_0315 PF14_0315-e2s5 hypothetical protein 13158.96852
PFI0370c PFI0370cels1 subunit of proteaseome activator complex, 13101.74581
putative
PF14_0344 PF14_0344els1 hypothetical protein 13095.46259
MAL13P1.140 | MAL13P1.140e1s3 | hypothetical protein 13025.29436
PFE1120w PFE1120w-e4s2 hypothetical protein 12987.79414
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PFI0170w PFI0170welsl hypothetical protein 12968.09916
PF10_0214 PF10_0214-e2 hypothetical protein 12845.00108
PFEO465c¢ PFEO465c-e1s3 RNA polymerase | 12816.88091
MAL13P1.107 | MAL13P1.107-s1 hypothetical protein 12759.1721
PF11_0129 PF11_0129-el hypothetical protein 12757.79701
PFC0085c PFC0085ce2s1 hypothetical protein, conserved 12756.32375
PFL1605w PFL1605w-s2 hypothetical protein 12690.90642
PFL1745c PFL1745ce2s1 clustered-asparagine-rich protein 12634.56312
PF11_0161 PF11_0161elsl falcipain-2 precursor, putative 12612.23384
PF13_0153 PF13_0153els1 hypothetical protein 12577.80154
PF11_0374 PF11_0374-e2s1 hypothetical protein 12573.26126
PFE1120w PFE1120w-e3s5 hypothetical protein 12529.9278
PFL1925w PFL1925wels1 cell division protein FtsH, putative 12486.0198
PFLO275w PFLO275wels2 hypothetical protein 12472.92094
PF10_0369 PF10_0369e2s1 helicase, putative 12456.50741
PF10_0242 PF10_0242e2s2 hypothetical protein 12391.59892
MAL13P1.234 | MAL13P1.234-e1s1 | hypothetical protein 12386.41008
PFC0170c PFC0170celsl dihydrolipoamide acyltransferase, putative 12381.67288
MAL6P1.201 MAL6P1.201-s2 leucyl-tRNA synthetase, cytoplasmic, putative 12297.49564
MAL8P1.23 MAL8P1.23-s4 ubiquitin-protein ligase 1, putative 12262.62503
PF07_0020 PFO7_0020-e1s2 hypothetical protein 12219.01571
PF14_0327 PF14_0327elsl methionine aminopeptidase, type Il, putative 12195.72241
PF13_0210 PF13_0210e1s3 hypothetical protein 12120.05022
MAL13P1.285 | MAL13P1.285-e2s1 | hypothetical protein 12099.54207
PFCO875w PFCO875w-els1 transporter, putative 12096.44852
PFL1135c PFL1135c-el hypothetical protein 12046.92063
PF10_0041 PF10_0041els2 U5 small nuclear ribonuclear protein, putative 11988.36178
PFO7_0029 PFO7_0029-e2 heat shock protein 86 11981.88784
PFO8_0020 PFO8_0020e1s2 hypothetical protein 11901.73488
PF14_0433 PF14_0433-e4 hypothetical protein 11868.9163

MAL13P1.218

MAL13P1.218-e2

UDP-N-acetylglucosamine pyrophosphorylase,
putative

11850.69599

PFL2390c PFL2390cels3 hypothetical protein 11805.22185
PF14_0188 PF14_0188e1ls2 hypothetical protein 11798.15192
PF14_0515 PF14_0515-s1 hypothetical protein 11675.49099
PFO8_0034 PFO8_0034e1ls2 histone acetyltransferase Gen5, putative 11667.89814
PF13_0327 PF13_0327-el hypothetical protein 11638.1447
PFE1010w PFE1010welsl protein phosphatase 2c, putative 11618.39136
PF10_0013 PF10_0013e2s1 hypothetical protein 11571.38037
PFE1120w PFE1120w-e3s1 hypothetical protein 11570.53989
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MAL13P1.123

MAL13P1.123e1s1

hypothetical protein

11541.44537

PFL1255c PFL1255c-el hypothetical protein 11537.0175
PF13_0044 PF13_0044e2s1 carbamoyl phosphate synthetase, putative 11510.27053
PF14_0633 PF14_0633elsl hypothetical protein 11490.95815
PFB0265c PFB0265c-s2 DNA repair endonuclease, putative 11476.24344
PF13_0012 PF13_0012 hypothetical protein 11441.50774
PFO8_0089 PFO8_0089e1s1 hypothetical protein 11414.95098
PF11_0175 PF11_0175e4s1 heat shock protein 101, putative 11407.66206
PF10_0215 PF10_0215e2s1 hypothetical protein 11240.78214
PFE1120w PFE1120w-e3s6 hypothetical protein 11240.23131
MAL13P1.19 MAL13P1.19e1s1 hypothetical protein 11201.98804
PF11_0240 PF11_0240e2s3 dynein heavy chain, putative 11175.20979
PFCO150w PFC0150we2s2 hypothetical protein, conserved 11168.62587
PFE1120w PFE1120w-e4s3 hypothetical protein 11163.70034
PF11_0049 PF11_0049e1ls1 hypothetical protein, conserved 11086.99732
PFD0225w PFD0225w-s3 hypothetical protein 11046.32962
PF10260c PF10260c-s5 hypothetical protein 11042.2394
PF14_0370 PF14_0370e2s2 RNA helicase, putative 11011.62255
PF14_0736 PF14_0736-e2 hypothetical protein 10997.62592
PFEO335w PFEO335w-el hypothetical protein 10984.92669
MAL6P1.131 MAL6P1.131-e1s5 SET-domain protein, putative 10852.78571
PF14_0626 PF14_0626e4s2 dynein beta chain, putative 10827.30706
PFO8_0140 PFO8_0140e1ls1 erythrocyte membrane protein 1 (PfEMP1) 10819.77022
PF10_0264 PF10_0264e2s1 40S ribosomal protein, putative 10793.12246
MAL6P1.146 MAL6P1.146-s2 P. falciparum PK4 protein kinase 10786.19724
PF11_0512 PF11_0512-e2 ring-infected erythrocyte surface antigen 2, RESA-2 | 10784.61191
PFI0O010c PFI0010ce2s1 RIFIN 10718.69697
PFO7_0035 PFO7_0035e1s1 cgl protein 10633.55099
MAL13P1.148 | MAL13P1.148e3s2 | P. falciparum myosin 10619.39392
MAL8P1.139 MAL8P1.139-e2s2 hypothetical protein 10613.69831
PFC0120w PFC0120welsl Cytoadherence linked asexual protein, CLAG 10589.42442
PFO7_0128 PFO7_0128-els1 erythrocyte binding antigen 10574.12949
MAL7P1.146 MAL7P1.146e5s1 hypothetical protein 10515.18301
MAL8P1.23 MAL8P1.23-s3 ubiquitin-protein ligase 1, putative 10495.06254
PFO7_0087 PFO7_0087 hypothetical protein 10446.86388
PFAO555c¢ PFAO555cedsl UMP-CMP kinase, putative 10419.34334
PF11_0356 PF11_0356-s2 hypothetical protein 10412.55787
PF14_0664 PF14_0664-els4 biotin carboxylase subunit of acetyl CoA 10401.24851
carboxylase, putative
PFEO655w PFEO655we2s3 hypothetical protein 10366.124
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PFI0925w PFI0925wels2 gamma-glutamylcysteine synthetase 10339.66882
PFL1010c PFL1010cels3 hypothetical protein conserved 10287.4824
PFC0210c PFC0210c circumsporozoite (CS) protein 10213.11895
PFBO115w PFBO115wels2 hypothetical protein 10151.08831
PFD0265w PFD0265we2s1 pre-mRNA splicing factor, putative 10140.18259
PFI1265w PFI1265welsl hypothetical protein 10132.87288
PF11_0008 PF11_0008e1ls1 erythrocyte membrane protein 1 (PfEMP1) 10121.03625
PF13_0044 PF13_0044e2s2 carbamoyl phosphate synthetase, putative 10092.33613
PFC0440c PFC0440cels3 helicase, putative 10077.89511
PF10_0078 PF10_0078-s2 hypothetical protein 10077.72497
PF14_0632 PF14_0632-els2 26S proteasome subunit, putative 10075.79315
PF10_0374 PF10_0374e6s2 gene 11-1 protein precursor 10062.15984
PFC0425w PFC0425we1ls3 hypothetical protein 10060.47542
PF14_0419 PF14_0419e9s2 hypothetical protein 10041.06512
PF13_0182 PF13_0182-s1 hypothetical protein 10028.29203
PF14_0316 PF14_0316elsl DNA topoisomerase Il, putative 10003.98082
MAL13P1.56 MAL13P1.56els1 m1-family aminopeptidase 9986.474334
PFI0410c PFI0410ce18s1 hypothetical protein 9971.239257
PF10_0153 PF10_0153e2s1 hsp60 9970.623807
PFO8_0108 PFO8_0108e1ls1 pepsinogen, putative 9915.439661
PF11_0509 PF11_0509-e2s1 ring-infected erythrocyte surface antigen, putative | 9874.110117
PFEO570w PFEO570w-s3 hypothetical protein 9842.924739
PFEO565w PFEO565w hypothetical protein 9815.036893
PFE1085w PFE1085we1ls1 DEAD-box subfamily ATP-dependant helicase, 9792.772047
putative
PF11_0422 PF11_0422els2 hypothetical protein 9781.596283
MAL7P1.29 MAL7P1.29-e1s2 hypothetical protein 9746.119092
PF14_0690 PF14_0690-e1s3 histone deactylase, putative 9740.39546
PFO7_0020 PFO7_0020-e1s1 hypothetical protein 9731.804696
PF11_0162 PF11_0162elsl falcipain-3 9719.1029
PF14_0392 PF14_0392e5s1 Ser/Thr protein kinase, putative 9714.572442
PF14_0345 PF14_0345-e2 hypothetical protein 9689.222157
PF14_0013 PF14_0013e2s1 hypothetical protein 9683.310742
MAL7P1.102 MAL7P1.102-s1 hypothetical protein 9676.546177
PFC0O760c PFC0760c-s3 hypothetical protein 9669.811735
PFC0430w PFC0430welsl hypothetical protein 9643.566148
PF13_0062 PF13_0062e1ls1 clathrin-adaptor medium chain, putative 9632.774166
PFE1120w PFE1120w-e3s7 hypothetical protein 9626.195176
PF13_0157 PF13_0157els1 ribose-phosphate pyrophosphokinase, putative 9623.44828
PFO7_0118 PFO7_0118-s6 hypothetical protein 9621.942345
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PF10_0092 PF10_0092-e3 hypothetical protein 9618.732457
MAL7P1.29 MAL7P1.29-e2 hypothetical protein 9598.588302
MAL6P1.201 MAL6P1.201-s1 leucyl-tRNA synthetase, cytoplasmic, putative 9592.588034
MAL13P1.22 MAL13P1.22e2s1 DNA ligase 1 9523.455581
PF10_0211 PF10_0211els3 hypothetical protein 9519.204339
PF10_0143 PF10_0143e1s3 ADA2-like protein 9513.65552
PF11_0270 PF11_0270e1s2 threonine -- tRNA ligase, putative 9497.656597
PFE1355c PFE1355ce2s1 ubiquitin carboxyl-terminal hydrolase, putative 9494.149277

MAL13P1.176

MAL13P1.176e1s1

Plasmodium falciparum reticulocyte binding
protein 2 homolog b

9425.328954

PF14_0144 PF14_0144els1 mRNA capping enzyme, putative 9417.252814
PFI0355¢ PFI0355cels1 ATP-dependent heat shock protein, putative 9335.069157
PF11_0507 PF11_0507els4 antigen 332, putative 9324.467488
PF11_0395 PF11_0395els4 guanylyl cyclase 9317.207068
PFB0465c PFB0465c-e2 hypothetical protein 9303.523031
PFIO630w PFIO630we2s1 26S proteasome regulatory subunit, putative 9282.183577
PFL1395c PFL1395cels4 hypothetical protein 9269.789113
PF14_0681 PF14_0681e2s1 diacylglycerol kinase, putative 9221.430289
PF10_0356 PF10_0356-e2s1 liver stage antigen, putative 9216.504126
PFL2440w PFL2440w-e2s2 DNA repair protein rhpl6, putative 9194.252968
MAL8P1.156 | MAL8P1.156 hypothetical protein 9182.803714
PFLO440c PFLO440cels1 hypothetical protein 9172.914086
PF13_0080 PF13_0080e1s3 hypothetical protein 9160.237244
PFB0150c PFB0150ce2s2 protein kinase, putative 9149.570828
PF10_0079 PF10_0079-s3 hypothetical protein 9134.986366
PFL2120w PFL2120wels2 hypothetical protein 9087.52173
PFEO830c PFEO830c-s2 unknown protein, mb2 9060.089014
PF14_0620 PF14_0620-el hypothetical protein 8996.705803
PF11_0008 PF11_0008e1s3 erythrocyte membrane protein 1 (PfEMP1) 8996.598515
PFLOO85c PFLOO85c-e2 hypothetical protein 8989.089925
PFL1545c PFL1545c-el chaperonin cpn60 8974.854239
PF11_0156 PF11_0156-el hypothetical protein 8972.449275
PF13_0161 PF13_0161els2 hypothetical protein 8918.935635
MAL13P1.230 | MAL13P1.230els1 | hypothetical protein 8905.901169
PF14_0170 PF14_0170els1 hypothetical protein 8888.355673
PF10_0132 PF10_0132-els2 phospholipase C-like, putative 8888.25613
PF14_0546 PF14_0546els1 hypothetical protein, conserved 8846.010759
PFLO545w PFLO545w-e3s1 kinesin-related protein, putative 8758.925775
PFB0150c PFB0150celsl protein kinase, putative 8748.209963
PFL1880w PFL1880welsl long-chain-fatty-acid--CoA ligase, putative 8732.729075
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MAL8P1.142 MAL8P1.142e2s1 proteasome beta-subunit 8715.296014
PFI0315c PFI0315cels1 hypothetical protein 8701.278482
PFIO550wW PFI0550w-e1s2 hypothetical protein 8689.103799
MAL6P1.237 MAL6P1.237-e6s1 hypothetical protein, conserved 8680.178562
MAL8P1.139 MAL8P1.139-els1 hypothetical protein 8678.778016
PF11_0294 PF11_0294els1 ATP-dependent phosphofructokinase, putative 8670.818707
MAL13P1.323 | MAL13P1.323els2 | hypothetical protein 8644.168464
PF14_0588 PF14_0588e1s1 hypothetical protein 8638.221052
PFI1425w PF11425w-e2 hypothetical protein 8630.049101
PFL2430c PFL2430c eukaryotic translation initiation factor 2b, subunit 8626.481636
2, putative
PF11_0245 PF11_0245-el translation elongation factor EF-1, subunit alpha, 8621.729026
putative
PFB0150c PFB0150ce2s3 protein kinase, putative 8609.636772
PFL2335w PFL2335w-s2 hypothetical protein 8606.613155
PFL1070c PFL1070cels1 endoplasmin homolog precursor, putative 8605.53858
PFB0640c PFB0640c-e1s2 hypothetical protein, conserved 8586.666626
PFLO555¢ PFLO555cels1 hypothetical protein 8581.190497
PF14_0096 PF14_0096e1s1 hypothetical protein 8567.335236
PF13_0003 PF13_0003els1 erythrocyte membrane protein 1 (PfEMP1) 8517.087752
PFL2190c PFL2190cels2 hypothetical protein 8498.106985
PF11_0358 PF11_0358-e2s1 DNA-directed RNA polymerase, beta subunit, 8482.605802
putative
PFC0635c¢ PFC0635celsl translation initiation factor E4, putative 8470.186074
PF14_0668 PF14_0668e1s3 hypothetical protein 8468.381669
PFL1135c PFL1135c-e2s1 hypothetical protein 8452.723083
PF13_0214 PF13_0214e2s1 elongation factor 1-gamma, putative 8447.128945
MAL13P1.39 MAL13P1.39e4s1 hypothetical protein 8441.19673
PF11_0165 PF11_0165els1 falcipain 2 precursor 8411.044537
PFO7_0004 PFO7_0004e2s1 hypothetical protein 8377.692877
PF10_0177 PF10_0177els1 erythrocyte membrane-associated antigen 8365.436223
PFB0315w PFB0315w-s1 41 kDa antigen 8357.280331
PF14_0145 PF14_0145-s2 hypothetical protein 8340.915733
PF10_0320 PF10_0320e1ls1 hypothetical protein 8337.194876
PF11 0344 PF11_0344 Apical membrane antigen 1 precursor, AMA1 8311.627487
PF11_0158 PF11_0158e1ls2 hypothetical protein 8304.1304
MAL6P1.131 MAL6P1.131-e1s3 SET-domain protein, putative 8291.353271
MAL8P1.23 MAL8P1.23-s1 ubiquitin-protein ligase 1, putative 8261.708136
MALS8P1.11 MAL8P1.11-e2s1 hypothetical protein 8256.965595
PFEOO55c¢ PFEOO55ce4s1 heat shock protein, putative 8243.5595
PF11_0395 PF11_0395e1s3 guanylyl cyclase 8218.042431
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PFLO635c¢ PFLO635cels2 bromodomain protein, putative 8204.965078
PFEO090w PFEO090wels2 hypothetical protein 8198.602302
PF14_0678 PF14_0678e3s1 exported protein 2 8175.532522
PF11_0240 PF11_0240e2s5 dynein heavy chain, putative 8174.641458
PF14_0631 PF14_0631els3 hypothetical protein 8173.479269
PF10_0085 PF10_0085e1s1 nucleolar protein NOP5, putative 8169.333665
MAL6P1.146 MAL6P1.146-s3 P. falciparum PK4 protein kinase 8147.889101
PF10_0214 PF10_0214-e3 hypothetical protein 8117.898368
PF10_0133 PF10_0133-s1 hypothetical protein 8106.783834
MAL7P1.138 MAL7P1.138e1s1 hypothetical protein 8058.196747
PF14_0664 PF14_0664-e1s1 biotin carboxylase subunit of acetyl CoA 8050.768398
carboxylase, putative
PFB0O405wW PFB0405w-s1 transmission-blocking target antigen s230 8036.013201
precursor
PF14_0515 PF14_0515-s2 hypothetical protein 8025.653714
MAL8P1.60 MAL8P1.60e4s1 hypothetical protein 8006.553977
MAL8P1.139 MAL8P1.139-e2s3 hypothetical protein 8003.091653
PFI1520w PFI1520w hypothetical protein 7991.128636
PF10_0143 PF10_0143els2 ADA2-like protein 7978.69891
PF14_0589 PF14_0589e1s2 valine - tRNA ligase, putative 7976.03119
PF10240c PF10240c-els2 E1-E2_ATPase/hydrolase, putative 7962.420863
PF14_0664 PF14_0664-e1s3 biotin carboxylase subunit of acetyl CoA 7942.1471
carboxylase, putative
PFE0935c¢ PFE0935celsl RNA-binding protein, putative 7933.062828
PF13_0179 PF13_0179e1s1 isoleucine--tRNA ligase, putative 7884.268227
PF14_0338 PF14_0338els1 hypothetical protein 7874.18954
PF14_0593 PF14_0593els1 hypothetical protein 7858.143511
PFE1120w PFE1120w-e3s3 hypothetical protein 7840.523849
PFL1300c PFL1300cels1 hypothetical protein 7788.462024
PFO8_0035 PFO8_0035 hypothetical protein 7785.933475
PFO8_0107 PFO8_0107e1ls2 erythrocyte membrane protein 1 (PfEMP1) 7736.62189
PF08_0054 PFO8_0054 heat shock 70 kDa protein 7718.534823
PF11_0270 PF11_0270els1 threonine -- tRNA ligase, putative 7712.830563
PF14_0412 PF14_0412-e2 hypothetical protein 7674.124986
PFBO115w PFBO115welsl hypothetical protein 7670.748794
PFO7_0047 PFO7_0047e1s1 cell division cycle ATPase, putative 7654.640199
PF11_0069 PF11_0069e1ls1 hypothetical protein 7650.543302
PF14_0456 PF14_0456e2s2 hypothetical protein, conserved 7640.631399
PFO8_0089 PFO8_0089e1s2 hypothetical protein 7624.764323
PFO7_0048 PFO7_0048e1s2 erythrocyte membrane protein 1 (PfEMP1) 7619.90559
PF14_0377 PF14_0377-el vesicle-associated membrane protein, putative 7607.277771
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PF10_0133 PF10_0133-s2 hypothetical protein 7602.093407
PFO8_0018 PFO8_0018-s1 translation initiation factor-like protein 7537.255186
PFLO405w PFLO405we3s1 hypothetical protein 7536.74763
PF13_0339 PF13_0339els1 hypothetical protein 7533.131233
PFC0720w PFC0720welsl hypothetical protein 7516.473682
MAL6P1.252 MAL6P1.252-el1s1 | erythrocyte membrane protein 1 (PfEMP1) 7514.532873
MAL13P1.323 | MAL13P1.323els3 | hypothetical protein 7506.040184
MAL6P1.131 MAL6P1.131-e1s1 SET-domain protein, putative 7500.418405
PF13_0262 PF13_0262e2s1 lysine--tRNA ligase 7482.752188
PF13_0320 PF13_0320-e9 protein with aminophospholipid-transporting P- 7474.502005
ATPase and guanyl cyclase domains
PFE0270c PFE0270c-elsl DNA repair protein, putative 7474.215012
PF11_0048 PF11_0048els1 casein kinase Il beta chain, putative 7467.822509
PFB0895c PFB0895celsl replication factor C subunit 1, putative 7464.714781
PF14_0370 PF14_0370e2s1 RNA helicase, putative 7442.984447
PF14_0494 PF14_0494els2 hypothetical protein, conserved 7436.278116
PF13_0210 PF13_0210els1 hypothetical protein 7435.281903
PF11_0053 PF11_0053-els2 PfSNF2L 7433.57798
PFI0510c PFI0510cels2 hypothetical protein 7432.658531
MAL7P1.146 MAL7P1.146e5s2 hypothetical protein 7426.605798
PF13_0285 PF13_0285 hypothetical protein, conserved 7424.703323
MAL7P1.32 MAL7P1.32 hypothetical protein 7396.672225
PFI1730w PF11730w-e2 cytoadherence linked asexual protein 9(CLAG9) 7382.409075
PF14_0419 PF14_0419e6s1 hypothetical protein 7370.837308
PFB0340c PFB0340ce2s1 cysteine protease, putative 7368.607055
PFD0430c PFD0430ce3s1 hypothetical protein 7349.266825
PFI0235w PFI0235we2s1 replication factor A-related protein, putative 7347.834265
PF14_0463 PF14_0463els4 chloroquine resistance marker protein 7341.372167
MAL13P1.78 MAL13P1.78e1s2 hypothetical protein 7311.694931
MAL13P1.133 | MAL13P1.133-e3 hypothetical protein 7304.046282
PFC1065w PFC1065we2s1 hypothetical protein 7278.659314
PF14_0647 PF14_0647-e3s2 hypothetical protein 7257.637323
PFC0425w PFC0425wels4 hypothetical protein 7254.322439
PF13_0040 PF13_0040-e2 DNA-directed RNA polymerase alpha chain, 7233.989381
putative
PF14_0649 PF14_0649-e2s1 hypothetical protein 7233.309779
PFL1385c PFL1385celsl Merozoite Surface Protein 9, MSP-9 7231.525098
PFC0805w PFC0805we1ls2 DNA-directed RNA polymerase Il, putative 7197.784259
PFA0170c PFA0170celsl hypothetical protein, conserved 7188.848384
PFB0635w PFB0O635welsl T-complex protein 1, putative 7185.067723
PF14_0649 PF14_0649-e2s2 hypothetical protein 7179.630575
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PFD0445c PFD0445c-s1 hypothetical protein 7162.72283
PFI1500w PFI11500w-e2s2 hypothetical protein 7154.844139
PFL1620w PFL1620wels4 asparagine/aspartate rich protein, putative 7152.892601
PFI0345w PFI0345wels2 hypothetical protein 7146.854222
PFA0125c PFAQ0125cels2 Ebl-1 like protein, putative 7090.66901
PFL1680w PFL1680wels2 splicing factor 3b, subunit 3, 130kD, putative 7088.068113
PFO8_0012 PFO8_0012e1s3 hypothetical protein 7053.298595
PF10_0379 PF10_0379e1ls1 phospholipase, putative 7045.705137
PF13_0278 PF13_0278 hypothetical protein 7042.086823
PF10_0161 PF10_0161elsl hypothetical protein 7021.729422
MAL7P1.23 MAL7P1.23-e1s2 hypothetical protein 6987.412158
PF10_0224 PF10_0224els4 dynein heavy chain, putative 6976.407841
MAL8P1.132 MAL8P1.132e3s1 hypothetical protein 6969.24144
PF11_0407 PF11_0407els1 adrenodoxin reductase, putative 6933.424346
PFO8_0012 PFO8_0012e1s2 hypothetical protein 6926.642328
MAL13P1.201 | MAL13P1.201els1l | hypothetical protein 6919.964191
PF14_0632 PF14_0632-els1 26S proteasome subunit, putative 6909.752127
PFAO510w PFAO510wels3 hypothetical protein 6855.385223
MAL13P1.323 | MAL13P1.323els1l | hypothetical protein 6847.775256
PF11_0240 PF11_0240e2s2 dynein heavy chain, putative 6839.855305
PFLO730w PFLO730welsl hypothetical protein 6834.613094
PFL1010c PFL1010cels2 hypothetical protein conserved 6763.585876
PFLO305c PFLO305ce2s1 hypothetical protein 6762.696782
MAL13P1.178 | MAL13P1.178-e2 hypothetical protein 6702.31818
PFA0430c PFA0430cels2 hypothetical protein 6692.494869
PF14_0463 PF14_0463e1ls3 chloroquine resistance marker protein 6679.654276
PF11_0225 PF11_0225els1 PfGCN20 6675.064184
PFL1395c PFL1395cels1 hypothetical protein 6659.357974
PF11_0395 PF11_0395e1s5 guanylyl cyclase 6658.733808
PF14_0326 PF14_0326e2s4 hypothetical protein 6644.021506
PF11_0404 PF11_0404e2s3 malaria antigen 6630.080343
PF11620c PF11620c-s1 hyptohetical protein 6615.075509
PF10_0140 PF10_0140e2s1 hypothetical protein 6607.140105
PF14_0370 PF14_0370els1 RNA helicase, putative 6604.855744
PFO7_0126 PFO7_0126e1s2 hypothetical protein 6567.422807
PFO8_0137 PFO8_0137e2s2 hypothetical protein 6561.787212
PF14_0722 PF14_0722-e3s3 hypothetical protein 6556.433562
PF14_0470 PF14_0470-e2s1 hypothetical protein 6540.770424
PF14_0031 PF14_0031e4s2 hypothetical protein 6522.379348
PFL1085w PFL1085wels2 hypothetical protein 6516.321628
PF11_0232 PF11_0232els1 hypothetical protein 6486.300885
MAL7P1.134 MAL7P1.134e2s2 hypothetical protein 6483.238074
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PFO8_0127 PFO8_0127e1ls2 hypothetical protein 6482.116591
PF13_0121 PF13_0121-e3 dihydrolipoamide succinyltransferase, putative 6472.5763
PFI0410c PFI0410cel7s1 hypothetical protein 6454.623098
PFE1120w PFE1120w-e3s2 hypothetical protein 6450.243928
PF13_0153 PF13_0153els2 hypothetical protein 6437.075703
PFD0995c PFD0995cels2 erythrocyte membrane protein 1 (PfEMP1) 6431.265995
PF14_0198 PF14_0198e1s1 glycine -- tRNA ligase, putative 6425.666746
PF08_0102 PF08_0102e1s2 asparagine-rich antigen Pfa55-14 6421.481626
PF11_0341 PF11_0341-els2 hypothetical protein 6393.491532
PFL1620w PFL1620wels3 asparagine/aspartate rich protein, putative 6366.527628
PF11_0395 PF11_0395e1ls2 guanylyl cyclase 6359.654067
PF11_0307 PF11_0307els2 hypothetical protein 6335.347216
PFB0335c PFB0335celsl cysteine protease, putative 6334.054889
MAL7P1.134 MAL7P1.134e2s3 hypothetical protein 6333.2921
PF13_0173 PF13_0173els1 hypothetical protein 6323.246411
PFL1410c PFL1410c-s3 hypothetical protein 6310.707611
PFE1320w PFE1320w-s1 hypothetical protein 6298.410444
PFC0130c PFC0130celsl hypothetical protein, conserved 6291.954798
PF11_0158 PF11_0158els1 hypothetical protein 6281.779664
MAL6P1.131 MAL6P1.131-els4 | SET-domain protein, putative 6280.254743
PFC0590c PFC0590c-e2s1 hypothetical protein 6279.400678
MAL8P1.69 MAL8P1.69-e3 14-3-3 protein homologue, putative 6248.184309
PF13_0248 PF13_0248elsl pfa7 6244.690582
PF14_0384 PF14_0384els1 hypothetical protein 6244.418351
MAL13P1.114 | MAL13P1.114e3s1 | hypothetical protein 6218.991029
PF14_0597 PF14_0597e2s1 cytochrome c1 precursor, putative 6197.582496
PFO8_0135 PFO8_0135e1ls1 hypothetical protein, conserved 6153.27283
PF14_0338 PF14_0338e9s1 hypothetical protein 6141.637337
PF10_0143 PF10_0143elsl ADA2-like protein 6137.525035
PFD1060wW PFD1060we1s3 u5 small nuclear ribonucleoprotein-specific 6135.557867
protein, putative
PFLO130c PFLO130c-el hypothetical protein, conserved 6107.476554
PFB0645c PFB0645c-e2 Ribosomal protein L13, putative 6106.553861
PF14_0315 PF14_0315-e2s3 hypothetical protein 6104.017873
PF10_0211 PF10_0211els2 hypothetical protein 6103.63962
MAL13P1.234 | MAL13P1.234-e1s6 | hypothetical protein 6061.10284
PFCO710w PFCO710w-e3 inorganic pyrophosphatase, putative 6051.359702
PFC0180c PFC0180ce4s1 membrane skeletal protein, putative 6036.993061
PF13_0350 PF13_0350 signal recognition particle receptor alpha subunit, 6030.116609
putative
PFD0295c PFD0295ce4s1 hypothetical protein 6028.296022
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PF11_0008 PF11_0008e1ls2 erythrocyte membrane protein 1 (PfEMP1) 6024.490463
PF14_0196 PF14_0196 hypothetical protein 6016.360122
PF14_0345 PF14_0345-els1 hypothetical protein 6005.765993
PFAQ725w PFAO725welsl SURFIN, surface-associated interspersed gene 5974.526097
PF14_0401 PF14_0401e2sl1 methionine -- tRNA ligase, putative 5973.28568
PFO8_0121 PFO8_0121elsl peptidyl-prolyl cis-trans isomerase precursor 5967.693013
PFEO780w PFEO780web6s1 hypothetical protein 5966.141173
PF13_0014 PF13_0014-el 40S ribosomal protein S7 homologue, putative 5961.691164
MAL13P1.278 | MAL13P1.278e1s5 | Ser/Thr protein kinase 5959.922208
PFI0855w PFI0855wels1 hypothetical protein 5955.222393
PF14_0334 PF14_0334els1 NAD(P)H-dependent glutamate synthase, putative | 5930.477035
PFI0265c PFI0265ce7s1 rhoptry protein, putative 5926.144945
PFAO510w PFAO510wels2 hypothetical protein 5910.967246
MALS8P1.60 MAL8P1.60e15s1 hypothetical protein 5902.159318
PFI0345w PFI0345welsl hypothetical protein 5894.30382
PF14_0249 PF14_0249 hypothetical protein 5863.357196
PFE0040c PFE0040ce2s1 Mature parasite-infected erythrocyte surface 5856.782515
antigen (MESA) or PfEMP2
PFI1000w PF11000w-s2 hypothetical protein 5855.942334
MAL8P1.23 MAL8P1.23-s9 ubiquitin-protein ligase 1, putative 5855.890597
PF13_0320 PF13_0320-e13s2 | Protein with aminophospholipid-transporting P- 5835.057415
ATPase and guanyl cyclase domains
MAL6P1.237 MAL6P1.237-e6s2 hypothetical protein, conserved 5833.335879
MAL7P1.102 MAL7P1.102-s2 hypothetical protein 5828.9705
MAL13P1.346 | MAL13P1.346els2 | DNA repair endonuclease 5824.172003
PF13_0021 PF13_0021elsl small heat shock protein, putative 5819.944835
PFBO540w PFB0540wels2 hypothetical protein 5810.287972
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