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Abstract
Ribosomes catalyze protein synthesis via the translation cycle, in which the translation initiation is recognized
as a key step to regulate the process. The functional complexes of the bacterial ribosome undergo large
conformational changes during the initiation of protein synthesis. Dramatic progress in the elucidation of
ribosome structure by both X-ray crystallography and cryoelectron microscopy (cryo-EM) has provided
some of the best evidence for such changes. At the same time, detailed rate studies of initiation, even though
for the most part incomplete, have shown this process to be complex, multistep reactions, raising the question
of the extent to which specific structural changes can be assigned to specific steps described in the proposed
kinetic mechanism. By using fluorescence stopped-flow, quenched flow and FRET approaches to elucidate the
kinetic mechanism of initiation, particularly the formation of a 70S initiation, we have found that following
GTP hydrolysis by IF2 bound within a 70S complex, the G-domain moves toward L11-NTD, leading to
increased FRET efficiency, and that Pi is released following such movement. Our results also showed that two
G-proteins, IF2 and EF-Tu, can bind to the ribosome simultaneously during the transition from initiation to
elongation. In vitro fluorescence assays were also developed to identify biologically active thiopeptide
precursor compounds as potential new antibiotics. It is shown that some of these precursors represent novel
compounds with respect to their ability to bind to ribosomes. These findings provide not only insight into the
mechanism of action of thiopeptide compounds, but also demonstrate the potential of such assays for
identifying novel lead compounds that might be missed using conventional inhibitory screening protocols.
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ABSTRACT  

 

MEASURES OF THE DYNAMICS OF G PROTEIN INTERACTION WITH THE 

RIBOSOME WITH APPLICATIONS TO ANTIBIOTIC SCREENING 

Haiou Qin 

Barry Cooperman 

Ribosomes catalyze protein synthesis via the translation cycle, in which the translation 

initiation is recognized as a key step to regulate the process. The functional complexes of 

the bacterial ribosome undergo large conformational changes during the initiation of 

protein synthesis. Dramatic progress in the elucidation of ribosome structure by both X-ray 

crystallography and cryoelectron microscopy (cryo-EM) has provided some of the best 

evidence for such changes. At the same time, detailed rate studies of initiation, even though 

for the most part incomplete, have shown this process to be complex, multistep reactions, 

raising the question of the extent to which specific structural changes can be assigned to 

specific steps described in the proposed kinetic mechanism. By using fluorescence 

stopped-flow, quenched flow and FRET approaches to elucidate the kinetic mechanism of 

initiation, particularly the formation of a 70S initiation, we have found that following GTP 

hydrolysis by IF2 bound within a 70S complex, the G-domain moves toward L11-NTD, 

leading to increased FRET efficiency, and that Pi is released following such movement. 

Our results also showed that two G-proteins, IF2 and EF-Tu, can bind to the ribosome 

simultaneously during the transition from initiation to elongation. In vitro fluorescence 
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assays were also developed to identify biologically active thiopeptide precursor 

compounds as potential new antibiotics. It is shown that some of these precursors represent 

novel compounds with respect to their ability to bind to ribosomes. These findings provide 

not only insight into the mechanism of action of thiopeptide compounds, but also 

demonstrate the potential of such assays for identifying novel lead compounds that might 

be missed using conventional inhibitory screening protocols.  
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CHAPTER 1 

INTRODUCTION 
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1.1 BACTERIAL PROTEIN SYNTHESIS 

Protein synthesis occurs on large macromolecular ribonucleoprotein complexes 

named ribosomes in a process called translation. The E. coli ribosome is composed of a 

large 50S subunit and a small 30S subunit. The large ribosomal subunit is composed of 

34 proteins and two RNAs, sedimenting at 5S and 23S, containing about 120 and 2,900 

nucleotides, respectively. The small ribosomal subunit is composed of 21 proteins and a 

RNA of approximately 1,500 nucleotides sedimenting at 16S. It has three tRNA binding 

sites designated as the aminoacyl (A), peptidyl (P), and exit (E) sites. 

Translation consists of four phases: initiation, elongation, termination, and ribosome 

recycling. In prokaryotic cells, the initiation of translation begins with the formation of a 

“pre-initiation complex” that contains the 30S ribosomal subunit, mRNA, initiator tRNA 

(fMet-tRNAfMet) and the initiation factors IF1, IF2, IF3. These factors and at least one 

GTP molecule are necessary for the efficiency and fidelity of translation initiation. In the 

“pre-initiation complex” both mRNA and fMet-tRNAfMet, are randomly bound to the 30S 

subunits, but do not interact with one another. Only after a conformational change of the 

30S ribosomal subunit which brings about a specific interaction of the anticodon tRNA 

and the initiation triplet of mRNA is the functional “30S initiation complex” formed 

(Gualerzi et al., 2001).  

During the transition from the 30S to the 70S initiation complex, IF1 and IF3 are 

ejected from the ribosome and IF2 hydrolyzes GTP. Subsequently, the initiation phase is 

completed with the formation of first peptide bond between the P-site bound initiator 
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tRNA and the A-site bound aminoacyl tRNA (formation of the initiation dipeptide) and 

the ribosome enters the elongation phase of translation (Gualerzi and Pon, 1990; Gualerzi 

et al., 2000; Boelens and Gualerzi, 2002; Gualerzi et al., 2002). 

The elongation cycle of protein synthesis consists of  three major steps: 1) binding of 

aminoacyl-tRNA to the A site, 2) peptide bond formation, and 3) translocation of the A- 

and P- site-bound tRNAs to the P and E sites, respectively, accompanied by the 

concomitant advancement of the mRNA by one codon.. Two elongation factors, EF-Tu 

and EF-G, greatly accelerate steps 1 and 3: EF-Tu by delivering aminoacyl-tRNA (aa-

tRNA) in the form of the ternary complex (EF-Tu·GTP·aa-tRNA) to the A site of the 

elongating ribosome, whereas EF-G promotes the translocation step. Both EF-promoted 

events are accompanied by GTP hydrolysis, the intrinsic GTPase activity of the factors 

being greatly stimulated by the ribosome (Nishizuka and Lipmann, 1966). Whether the 

energy librated by GTP hydrolysis is used directly for tRNA binding and translocation or 

for the release of the factors has been a matter of debate for a long time. However, a 

recent kinetic study (Rodnina et al., 1997; Savelsbergh et al., 2003) has shown that the 

EF-G-dependent GTP hydrolysis drives translocation (Wintermeyer et al., 2004).  

The termination step begins when a stop codon appears in the decoding site and is 

recognized by either termination factor RF1 or RF2 (in bacteria), depending on its nature. 

Ribosomal binding of these factors in response to the appropriate stop codon in the A site 

triggers the hydrolysis and release of the peptide chain from the tRNA present in the P 

site, yielding a post-termination complex having a deacylated tRNA bound to the mRNA 
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in the P site and an empty A site. The turnover of RF1 and RF2 is promoted by factor 

RF3, another G protein with properties similar to initiation factor IF2 and elongation 

factors EF-G and EF-Tu. Transfer RNA and messenger RNA need to be released from 

the post-terminating ribosome to allow a new round of protein synthesis to take place. 

This recycling process requires another factor, the ribosome recycling factor (RRF), 

which acts in concert with EF-G and IF3 (Peske et al., 2005; Zavialov et al., 2005). 

 

1.2 INITIATION OF PROTEIN SYNTHESIS 

Among the four phases that characterize protein synthesis, initiation is the step 

displaying the most diversity between prokaryotic and eukaryotic cells and is regarded as 

the rate-limiting and the most tightly regulated step of translation (Mathews et al., 1996). 

 

1.2.1 Initiation of protein synthesis in prokaryotes 

As previously stated, in the 30S “pre-initiation complex” the ribosome bound mRNA 

and the fMet-tRNAfMet are not interacting with each other. The interaction between the 

Translation Initiation Region (TIR) of the mRNA and the 30S ribosomal subunit is 

facilitated by an interaction with ribosomal protein S1 and by base pairing between the 

anti-Shine-Dalgarno sequence of 16S rRNA and the Shine-Dalgarno sequence, when this 

is present on the mRNA. The SD interaction was shown to be mechanistically irrelevant 

for the 30S initiation complex formation and for the selection of the mRNA reading 

frame but to contribute to the efficiency of translation (Calogero et al., 1988). In the “pre-
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initiation complex” the mRNA occupies a ribosomal “stand-by” site corresponding to the 

region where the SD interaction takes place and is subsequently shifted towards a second 

site closer to the decoding site (Canonaco et al., 1989; La Teana et al., 1995). These 

processes are controlled kinetically by the initiation factors IF1, IF2 and IF3 (Spurio, et 

al., 1993). (Figure 1.1) 

 

1.2.2 Initiation factor 1 (IF1) 

IF1 is a small protein (8.1 kDa), encoded by infA, an essential gene in Escherichia 

coli (Sands et al., 1987). IF1 binds to both 30S subunit and, at least transiently, to 70S 

monomers, thus it affects both association and dissociation rates of 70S monomers 

(Grunberg et al., 1975; van der Hofstad et al., 1978; Dottavio-Martin et al., 1979). IF1 

enhances the affinity of the 30S subunit for IF2 and IF3 (Gualerzi and Pon, 1990) and 

stimulates the activities of these factors (Pon and Gualerzi, 1984). IF1 binds to the A-site 

of the 30S subunit (Moazed et al., 1995; Carter et al., 2001) and it may prevent premature 

access of aminoacyl-tRNA, thereby cooperating with IF2 to ensure that only fMet-

tRNAfMet binds to the P-site and interacts with the starting codon of the mRNA. During 

70S initiation complex formation IF1 is ejected from 30S ribosomal subunit and this may 

serve the dual purpose of opening the A site for binding aminoacyl tRNA and weakening 

the interaction of IF2 on the ribosome (Celano et al., 1988; Gualerzi et al., 1989). 
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1.2.3 Initiation Factor 2 (IF2) 

Bacterial IF2 is the largest initiation factor in bacteria (i.e. 741 amino acids in 

Bacillus stearothermophilus and 890 amino acids in E. coli) (Brombach et al., 1986; 

Sacerdot et al., 1984). It is composed of 3 major segments with a total of five structural 

domains (Figure 1.2) (Gualerzi et al., 1991; Roll-Mecak et al., 2000; Spurio et al., 2000). 

These segments are: A) a variable N-terminal region, which in Bst consists of the first 

227 residues and is apparently dispensable for all basic translational functions of the 

factor (Cenatiempo et al., 1987; Gualerzi et al., 1991); B) a highly conserved 40 kDa 

segment including the highly conserved GI domain (from residue 228 to 412), which 

contains all of the structural motifs characteristic of the family of GTP/GDP binding 

proteins (Cenatiempo et al., 1987; Roll-Mecak et al., 2000) and the GII domain (from 

residues 413 to 520) which includes a β-barrel module (al-Karadaghi et al., 1996; Roll-

Mecak et al., 2000); C) a 25 kDa C-terminal segment consisting of two domains: the C-1 

domain, rich in helical structures (Misslwitz et al., 1997; Krafft et al., 2000; Spurio et al., 

2000), and the C-2 domain (from Glu632 to Ala741) which consists of the C-terminal 

110 amino acids and contains the entire binding site for the 3'-terminus of fMet-tRNAfMet 

(Guenneugues et al., 2000; Krafft et al., 2000; Spurio et al., 2000). 

 Part of my thesis work is directed toward understanding the dynamics of the 

interaction between IF2 and fMet-tRNAfMet as it exists in the binary complex, the 30S 

initiation complex, and the 70S initiation complex. Pertinent structural work of others is 

discussed below.  
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IF2 forms a well-characterized binary complex with the acceptor end of fMet-

tRNAfMet via its C2 domain (Meunier et al., 2000). In this binary complex, residues 

within the GII peptide Asn 611–Arg 645 of E. coli IF2 (corresponding to Asn 464–Glu 

498 of B. stear.) were found to be close to the elbow region of the tRNA (Wakao et al. 

1989; Yusupova et al. 1996). Within the 30S initiation complex, the linkage between IF2 

and tRNA is maintained by a tight interaction (strong continuous density in the cryo-EM 

map) between the C2 domain of IF2, the conserved 3' hexa-nucleotide CAACCA end and 

part of the acceptor stem of the tRNA (Fig. 1.3), while the GII domain of IF2 separates 

from the elbow region of fMet-tRNAfMet. Within the 70S initiation complex, IF2 losses 

contact with initiator tRNA and the GII domain of IF2 remains distant from the elbow 

region of the tRNA (Myaniskov et al., 2005). Our results regarding the interaction 

between IF2 and fMet-tRNAfMet are presented in Chapter 5.  

Additionally, previous data from cross-linking and chemical probing experiments 

confirmed the existence of at least a partial overlap between the ribosomal-binding sites 

of IF2, EF-G and EF-Tu (Heimark et al., 1976; Moazed et al., 1988; Porse et al., 1999; 

Brandi et al., 2004). This localization has been confirmed by a more recent Cryo-EM 

study which has localized IF2 on the ribosome (Allen et al. 2005). IF2 is a “GTP/GDP 

binding protein” which stimulates ribosomal subunit association, increases the affinity of 

the 30S subunit for IF1 and promotes the adjustment of fMet-tRNAfMet in the ribosomal 

P-site to allow the formation of the first peptide bond (Grunberg-Manago et al., 1975). 

This activity is accomplished through an acceleration of the codon-anticodon interaction 
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in the ribosomal P-site (Gualerzi and Pon, 1990; Spurio et al., 2000) and is probably 

because IF2 recognizes and binds the initiator tRNA. The specific recognition of initiator 

tRNA by IF2 is primarily due to the recognition of the formyl group, blocking the α-NH2 

group. Like all G-proteins, IF2 undergoes a conformational change upon GTP hydrolysis 

resulting to a proper contact of the fMet-tRNAfMet and the ribosome (Myaniskov, 2005). 

 

1.2.4 Initiation Factor 3 (IF3) 

IF3 (20.7 kDa and 180 amino acids in E. coli) is encoded by infC (Olsson et al., 

1996). IF3 displays multiple activities in the formation of the initiation complex. It acts as 

a dissociation factor of 70S ribosomes by binding tightly to 30S subunits and shifting the 

equilibrium of the 70S toward free subunits (Kaempfer et al., 1972; Gottlieb and Davis, 

1975; Grunberg-Manago et al., 1975). This factor also influences the binding of IF1 and 

IF2 to 30S subunits and also acts as a “fidelity factor” by destabilizing the non canonical 

initiation complex formed in the presence of the initiator fMet-tRNAfMet and a non 

canonical initiation triplet (i.e. AUU), or the pseudo-initiation complex formed in the 

presence of aminoacyl-tRNAs or tRNAs other than initiator fMet-tRNAfMet (Pon and 

Gualerzi, 1974; Hartz et al., 1989; Hartz et al., 1990; Haggerty and Lovett, 1993; 

Sussman et al., 1996). In addition, IF3 destabilizes 30S ternary complexes made with 

leaderless mRNA by promoting the dissociation of fMet-tRNAfMet (Tedin et al., 1999). 

This capacity of IF3 to act as a “fidelity factor” in the different cases has been shown to 

occur when the factor is present in excess amount over the ribosome, while when present 



 9 

at a stoichiometry equal to the ribosome, it stimulates translation regardless of the 

initiation triplet present on the mRNA (La Teana et al., 1993; Pediconi et al., 1995). 

Finally, IF3 stimulates the “shift” of mRNA from the “stand-by” to the P-decoding site of 

the 30S subunits (La Teana et al., 1995).  

Griogoriadou et al. (2007b) demonstrated that the presence or absence of IF3 has, at 

most, minor effects on the rate of 30SIC formation using either AUG or AUU as the 

initiation codon, and concludes that the high affinity of IF2 for both 30S subunit and 

initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting 

from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a 

dramatic reduction in the rate of 70SIC (70S Initiation Complex) formation from 30SIC 

upon addition of 50S subunits. Interpreting their results in the framework of a 

quantitative kinetic scheme (Figure 5.3) leads to the conclusion that, within the overall 

process of 70SIC formation, the step most affected by substituting AUU for AUG 

involves the conversion of an initially labile 70 S ribosome into a more stable complex. 

In the absence of IF3, the difference between AUG and AUU largely disappears, with 

each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is 

the rate of IF3 dissociation from the 70S ribosome during 70SIC formation that is critical 

to its fidelity function. By FRET methods, Milon et al. (2008) also proved that IF3 was 

released during 70SIC formation. However, Antoun et al. (2006) reported that prior 

release of IF3 from the 30S pre-initiation complex was required for 50S association. As 
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discussed further in Chapter 3, this discrepancy in conclusions might be explained by 

different messenger RNAs used in these experiments.  

 IF3 is composed of two independent domains, C- and N- terminal domains 

connected by a lysine-rich flexible linker (Lammi et al., 1987; Fortier et al., 1994; Kycia 

et al., 1995). Studies using cryo-electron microscopy (cryoEM) suggest that both the C- 

and the N- terminal domains of IF3 are located in the interface side of the 30S subunits 

inside a region that involves many contacts with the 50S subunits in the whole 70S 

ribosome (McCutcheon et al., 1999; Yusupov et al., 2001). In another study, the crystal 

structure of a complex of T30S (30S subunits of T. thermophilus) with IF3C has shown 

an alternative location for the C-terminal domain of IF3. This crystal structure shows that 

IF3C is located within a cavity close to the anti-SD region of the 16S rRNA (Pioletti et al., 

2001); the existence of this location is consistent with some data obtained by NMR 

spectroscopy, mutagenesis, cross-linking, and foot-printing experiments (Petrelli et al., 

2003). If the N-terminal domain of IF3 is docked to the 30S subunit near the P-site, there 

is only limited space left for the binding of cognate tRNA in this site so that the 

discrimination of the near cognate and non cognate tRNA interactions by IF3N may be 

explained by space exclusion principles (Pioletti et al., 2001). NMR (deCock et al., 1999) 

and biochemical studies (Moreau et al., 1997) had shown that the linker region of IF3 is 

extremely mobile. This flexibility is maintained also when both IF3C and IF3N are bound 

to the 30S subunits and it has been suggested that the mobile inter-domain linker may act 

as a strap between the two domains, presumably for transmitting signals between the two 
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IF3 domains. However, work carried out by Petrelli et al. (2003) had shown that the C-

domain is necessary and sufficient for all IF3 functions, at least in vitro.  

 

1.2.5 Initiator tRNA (fMet-tRNA fMet) 

The kingdom-specific recognition and binding of fMet-tRNA is one of the main 

properties of bacterial IF2. Formylation of the αNH2 group of Met-tRNAfMet is catalyzed 

by 10-formyltetrahydrofolate: L-methionyltRNAfMet N-formyltransferase (the product of 

fmt) and is essential for the interaction of initiator tRNA with IF2. Disruption of fmt 

results in an almost tenfold reduction of the growth rate and in a conditional lethal 

phenotype (Guillon et al. 1992). 

 

1.3 CRYO-EM STRUCTURES OF THE INITIATION COMPLEX 

A cryo-EM density map of the 70S-IC from E. coli was recently obtained by using 

GDPNP to stall progression of initiation by inhibiting GTP hydrolysis (Figure 1.4) (Allen 

et al., 2005). Interpretation of this map using X-ray structures of the components helped 

to delineate their positions and binding modes. IF1, IF2 and fMet-tRNAfMet were clearly 

identified as filling the intersubunit space between the 50S and 30S subunits, confirming 

the findings of biochemical studies of the initiation complex (Marzi et al., 2003). The N2 

domain of IF2, an important ‘anchor’ to the 30S (Caserta et al., 2006) required for 

optimal growth (Sacerdot et al., 1992), was also found in the cryo-EM map.  
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Translational fidelity is controlled on the subunit by monitoring the base pairing 

between the codon and anticodon in the process known as decoding. The decoding center 

located at the upper part of the body and lower part of the head of the subunit is 

constructed entirely of RNA and contains, among other elements, the upper part of helix 

44 and the 3' and 5'  ends of the 16S rRNA. The recognition and binding of the 

translational initiation region (TIR) of the mRNA by the 30S ribosomal subunit depends 

to various degrees on the structural elements of a canonical TIR, which include the 

initiation triplet (most frequently AUG), the purine-rich Shine-Dalgarno (SD) sequence 

complementary to the 3´-end region of 16S rRNA, and a spacer, of variable length, 

separating SD and the initiation triplet. An interaction that is important for translation 

initiation occurs at the 3’end of the 16S rRNA that base-pairs with the SD sequence of 

the mRNA as shown in Figure 1.5.  

Myasnikov et al. 2005 also resolved the assembled 70S initiation complex 

comprising mRNA, fMet-tRNAfMet and IF2 with either a non-hydrolyzable GTP analog or 

GDP as shown in Figure 1.6. Upon GTP-to-GDP transition, IF2 rotates counter-

clockwise along its long axis (Figure 1.6 B) and also along a perpendicular axis (Figure 

1.6A, central arrow), resulting in the G domain pointing upward and domain IV being 

partially retracted from the A site. This leads to a modified interaction pattern: upon 

transition from the GTP-bound state to the GDP-bound state, IF2 loses the contact with 

P-site tRNA, and interactions with decoding region and the ribosomal GTPase domain 

are reduced. The associated conformational change of the ribosome is a slight rotation of 
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the 30S subunit with respect to the 50S subunit. In addition, the classical position of the 

tRNA-EF-Tu complex on the ribosome (Figure 1.7A) (Valle et al., 2003) is not 

compatible with the presence of IF2 (Figure 1.7B), suggesting that IF2 release is required 

for the ribosome to enter the elongation phase. Myasnikov et al. proposed that EF-Tu 

induces the release of IF2 by shifting the reaction equilibrium from the mRNA-fMet-

tRNAfMet-IF2-GDP-70Sribosme complex through the mRNA-fMet-tRNAfMet-70S 

ribosome initiation complex to the EF-Tu-70S ribosome elongation complex.  

 

1.4 FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) 

  Fluorescence resonance energy transfer (FRET) as shown in Figure 1.8 is a 

distance-dependent interaction between the electronic excited states of two dye molecules 

in which excitation is transferred from a donor molecule to an acceptor molecule without 

emission of a photon. The efficiency of FRET is dependent on the inverse sixth power of 

the intermolecular separation, making it useful over distances comparable with the 

dimensions of biological macromolecules. The Förster distance, Ro, at which the 

efficiency is 50 %, is calculated by Equation 1. 

Equation 1: 

R = Ro (1/E –1)1/6    (1) 

Equation 2: 

Ro (Å) = [8.8 x 10-5 .κ2 .n-4 .φDJ(λ)]1/6
      (2) 
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Here φD is the quantum yield of the donor, n is the refractive index of water, 1.33 

(Grossman, 1983). κ2 is the dipole orientation factor and is set to a value of 2/3 for 

donors and acceptors that randomize by rotational diffusion prior to energy transfer. J(λ) 

represents the spectral overlap between the fluorescence emission spectra of the donor 

and the absorbance spectra of the acceptor.   

Thus, FRET is an important technique for investigating a variety of biological 

phenomena that produce changes in molecular proximity.  

 

1.5 THIOSTREPTON (ThS) 

Recent studies have indicated that the position of IF2 on the ribosome is at least 

overlapping with that of EF-Tu and EF-G (La Teana et al. 2001; Marzi et al. 2003; 

Brandi et al. 2004; Allen et al., 2005; Myasnikiov et al., 2005). Like IF2, also these 

bacterial translation factors are GTPases and are involved in different steps of protein 

synthesis. A number of antibiotics that inhibit protein synthesis are thought to act by 

preventing structural changes of the ribosome occurring during translation. ThS, binding 

to the L11-binding region of the 23S rRNA, is one of them; this antibiotic is a potent 

inhibitor of translocation and its action has been the focus of several studies which have 

suggested different mechanisms of interference with translocation.  

It has been reported by Rodnina et al. (1999), that ThS does not interfere with EF-G 

binding or with the single round of GTP hydrolysis, but in subsequent steps which are Pi 

release, tRNA translocation and dissociation of the factor from the ribosome. However, a 
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different mode of inhibition was proposed by Cameron et al. (2002). Based on their 

results, these authors concluded that ThS inhibited the proper interaction of EF-G·GTP 

with the ribosome, probably by blocking an essential conformational change within the 

binding region. Also, Seo et al. (2004) proposed that added ThS slows down the initial 

binding of EF-G, and prevents formation of the more stable EF-G complex.  

Since, as mentioned above, IF2 is a GTPase which binds to a ribosomal site 

overlapping with that of EF-G, where upon GTP hydrolysis is triggered, the effect of ThS 

on IF2 functions was also investigated and the conclusions regarding its effect are 

controversial. In some studies, it has been concluded that ThS inhibits the recycling of 

IF2 off the ribosomes, either by freezing the factor on the 70S ribosome (Lockwood et al., 

1972; Lockwood et al., 1974; Sarkar et al., 1974) or by blocking the binding site on the 

50S subunit for 30S initiation complex (Naaktgeboren et al., 1976). However, a recent 

publication suggested that ThS decreases the stability of the IF2-70S and IF2-50S 

complexes without affecting the IF2-dependent binding of initiator tRNA to either the 

30S ribosomal subunit or to the 70S ribosome nor preventing the adjustment of fMet-

tRNAfMe in the P site sufficient to yield fMet-puromycin; however, formation of the 

initiation dipeptide was strongly inhibited by the presence of ThS (Brandi et al., 2004). 

Furthermore, conflicting results were obtained for what concerns the IF2-dependent 

GTP hydrolysis; thus, in line with the report that thiostrepton prevents the coupling of 

ribosomal subunits, it was reported that ThS inhibits the IF2-dependent GTP hydrolysis 

(Naaktgeboren et al., 1976) while other publications have shown instead that this 
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antibiotic stimulates the GTPase activity of IF2, probably causing a more rapid turnover 

of the factor (Cameron et al., 2002).  

 

1.6 SIGNIFICANCE 

 As described above, functional complexes of the bacterial ribosome undergo large 

conformational changes during the initiation of protein synthesis. Dramatic progress in 

the elucidation of ribosome structure by both X-ray crystallography and cryoelectron 

microscopy (cryo-EM) has provided some of the best evidence for such changes. At the 

same time, detailed rate studies of initiation, even though for the most part incomplete, 

have shown this process to be complex, multistep reactions, raising the question of the 

extent to which specific structural changes can be assigned to specific steps described in 

the proposed kinetic mechanism. 

To answer this question, our work has the following goals: a) further elucidating the 

kinetic mechanism of initiation using fluorescence stopped-flow, quenched flow, and 

FRET approaches. In particular, a key step in initiation is the formation of a 70S 

initiation complex (70SIC) and we will elucidate the timing and magnitude of a key 

conformational change within the process of 70SIC formation (Chapter 3); b) 

characterize simultaneous binding of G-factor proteins to the ribosome. We will follow 

up our recent result showing that two G-proteins, IF2 and EF-Tu, can bind to the 

ribosome simultaneously during the transition from initiation to elongation by coupling 

collaborative studies, using modeling to obtain a structure of the complex, with 
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measurements designed to both capture the movement of IF2 as EF-Tu binds, and to 

determine the importance of the stoichiometry of ribosomal protein dimer L7/L12 for the 

process (Chapter 4); c) elucidate the mechanism of IF2 and fMet-tRNAfMet 

interactionduring 30SIC formation using a FRET approach (Chapter 5) and d) using in 

vitro fluorescence assays developed in the course of this work to identify biologically 

active thiopeptide precursor compounds as potential new antibiotics (Chapter 6). 
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Figure 1.1. Scheme of the translation initiation events starting from “initiation 

competent” 30S and free ligands (mRNA and fMet-tRNAfMet) and ending with the 

formation of the initiation dipeptide. Based on this model, the messenger RNA (mRNA) 
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and the initiator tRNA bind, independently and in random order (steps A, A’, B, B’), to 

the ribosomal subunit 30S onto which the initiation factors IF1, IF2, IF3 and one 

molecule of GTP are bound, to form the “pre-initiation complex 30S”. The interaction 

between codon and anticodon occurs after the ribosome undergoes a conformational 

change induced by the initiation factors (step C); that process signals the transition to the 

“initiation complex 30S”. Steps A, A’ B, B’, are in rapid equilibrium between them and 

step C is the limiting step of the velocity of the entire process. Following this, a first-

order kinetic step occurs that is controlled in both directions by the initiation factors, 

which guarantee the efficiency and the fidelity of the initiation of protein synthesis. The 

initiation complex 30S can either dissociate to its components or bind the 50S ribosomal 

subunit to form the “initiation complex 70S” (step D). This step is irreversible by the 

ejection of initiation factors IF1and IF3.  
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Figure 1.2. The three-dimensional structure of IF2 as predicted by homology 

modeling with the archaeal IF2/eIF5B three-dimensional structure (Roll-Mecak et al., 

2000). The three-dimensional structure of the C-2 domain was taken from pdb file 

1D1NA (Guenneugues et al., 2000). This figure is adapted from (Marzi et al., 2003) 
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Figure 1.3. The interaction between IF2 and fMet-tRNA within the 30SIC.  

The tRNA decoding stem is bent towards the mRNA (the anti-codon is shown in green; 

the residual density next to it corresponds to the AUG start codon shown in dark 

green).Notably, the 3’ CCA end of the tRNA (insert, view from 50S side) is kinked 

towards IF2 domain IV (C2) compared to a classical tRNA (in yellow), as seen from 

differential protein/RNA density contouring levels (shown in pink and orange). 

(Simonetti 2008)  

 

 

GII domain 

Elbow region 
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Figure 1.4. The E. coli 70S-IC (50S subunit removed for clarity) is shown with fitted 

X-ray structures of IF2 (red), IF1 (blue), fMet-tRNAfMet (green) (Allen et al., 2007). 

The cryo-EM map of the N2 domain is also depicted, as well as a model of the N1 

domain based on the NMR structure (Laursen et al., 2004). The arrows on the model of 

the N1 domain indicate its inherent mobility. 
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Figure 1.5. MK27 mRNA on the 70S ribosome with the mRNA model (yellow) 

docked. The Shine-Dalgarno (S/D) helix (magenta) and the A- and P-site codons (orange 

and red, respectively) are viewed from the top of the 30S ribo- (green). It is adapted from 

Yusupova et al., 2001.  
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Figure 1.6. Comparison of the GTP- and GDP-bound states of IF2, illustrating the 

conformational change and spatial shift of IF2 and the associated conformational 

change of the ribosome upon GTP hydrolysis. (A) Superposition of the IF2-GMPPCP-

30S subunit complex on the IF2-GDP-30S subunit complex. (B) Stereo representation of 

IF2 in the two superposed states; the tRNA is shown as a green ribbon (Myasnikov et al., 

2005).  
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      A                           B 

 

Figure 1.7. tNRA-EF-Tu complex on the ribosome (A) and the superimposed state of 

EF-Tu and IF2 (B)(Valle et al., 2003; Myaniskov et al., 2005). In (B), EF-Tu is in 

green and IF2 is in orange.  
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Figure 1.8. Schematic representation of the FRET spectral overlap integral. 
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CHAPTER 2 

MATERIALS AND METHODS FOR CHAPTERS 3-5 
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2.1 PREPARATIONS  

2.1.1 Preparations of the ribosomes and subunits 

AM77 ribosome 

60-70 grams frozen cells from rifampicin-resistant E. coli AM77 strain only 

containing ribosomes that lack L11 suspended in 200mL buffer (20 mM Tris-HCl pH7.5, 

100 mM NH4Cl, 10 mM MgAc2, 0.5 mM EDTA, and 3 mM 2-mercaptoethanol/ βME) 

were opened by French press (10,000-12,000 psi) followed by two centrifugations at 15k 

rpm for 30 min and 60 min, respectively to obtain the supernatant S30. S30 was layered 

on top of 1.1 M sucrose in buffer 1 (20 mM Tris-HCl pH7.5, 500 mM NH4Cl, 10 mM 

MgAc2, 0.5 mM EDTA, and 3 mM βME) and centrifuged at 30k rpm ( Beckman rotor Ti 

45) for 21 hr.  

The pellets were resuspended in 35 mL buffer 1 and loaded on top of 10 mL 1.1 M 

sucrose in buffer 1, ready for the centrifugation at 30k rpm for 21 hr. This step was 

repeated twice, and the final pellets were dissolved in buffer 2 (10 mM Tris-HCl  pH7.5, 

60 mM NH4Cl, 8mM MgAc2, 0.25 mM EDTA, 3 mM βME, and 5% sucrose). The tight 

couple 70S ribosomes were isolated by centrifugation in a Beckman Ti 15 rotor (20k 

rpm, 16 hr) on a gradient from 10% to 50% sucrose in buffer 2. The 70S peak was 

collected (Seo et al., 2004), and the ribosomes were pelleted (Beckman Ti 70.1, 40k rpm, 

18 hr), resuspended in buffer (20 mM Hepes pH 7.5, 30 mM NH4Cl, 30 mM KCl, 6 mM 

MgCl2, and 4 mM βME), frozen in small aliquots by liquid nitrogen, and stored at -80 oC. 
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JE105 ribosome 

JE105 ribosome with a single L12 dimer (a gift from Dr. Sanyal at Uppsala 

University) is a genetically recombined E. coli strain, for which the last 30 nucleotides of 

the L10 gene of the wild-type E.coli strain (MG1655) were replaced with AmpR gene. As 

a result, all the ribosomes from this strain contained L10 protein with 10 amino acids 

deleted from its C-terminus, which is the binding site for one L12 dimer (Mandava et al., 

2007). The preparation of JE105 ribosomes grown in the presence of 80 ug/mL ampicillin 

was the same as for the AM77 ribosome except that 6 mM Mg2+ was used in the zonal 

sucrose gradient, as for normal tight-couple isolation.  

L7/L12-depleted ribosome 

500 pmole MRE600 70S ribosome in 500 µl buffer (10 mM Tris-HCl pH7.5, 1.0 M 

NH4Cl, 20 mM MgCl2, and 4 mM βME) was mixed with 250 µl cold ethanol with stirring 

on ice for 10 min, followed by the addition of an additional 250 µl ethanol and continued 

stirring on ice for another 5 min. The solution was centrifuged at 110k rpm for 40min. 

The process was repeated and the pellet was dissolved in buffer W (50 mM Tris-HCl 

pH7.5, 70 mM NH4Cl, 30 mM KCl, 7 mM MgCl2, and 1 mM dithiothreitol/DTT).  

50S and 30S subunits 

Tight couple 70S ribosome pellet was dissolved in buffer 3 (20 mM Tris-HCl pH 7.5, 

200 mM NH4Cl, 2 mM MgCl2, and 2 mM βME) and the subunits were isolated by zonal 
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centrifugation in a Beckman Ti 15 rotor (20k rpm, 16 hr) on a gradient from 10% to 50% 

sucrose in buffer 3. Based on the O.D. 260 nm profile, 50S subunits were pooled and 

pelleted in Ti 45 rotor at 30k rpm for 21 hr. Separately 30S subunits were pooled and 

pelleted in Ti 70.1 rotor at 56.6k rpm for 18 hr.  

Reconstituted 50S subunits 

50S subunits containing Cy5-labeled L11 (denoted 50SCy5) were prepared by 

incubating L11Cy5
 (1 nmol, measured as Cy5) with 1 nmol of 50S-L11 subunits in buffer 

4 (25 mM Tris pH 7.6, 30 mM NH4Cl, 70 mM KCl, 7 mM MgCl2, and 1 mM DTT) for 

15 min at 37oC. Unbound L11Cy5 and any residual unincorporated dye were removed by 

ultracentrifugation for 18 h through a 1.1 M sucrose cushion in buffer 4 in rotor type 

70.1Ti at 220000g, yielding 50SCy5 which contained 1.0±0.2 Cy5/subunit. A control 

reconstitution experiment performed with wild-type MRE 600 50S subunits resulted in a 

Cy5:50S subunit ratio of <0.2. 50S subunits reconstituted from 50S-L11 subunits and 

unlabeled L11 (denoted 50SL11) were prepared similarly. 

 

2.1.2 Protein preparations  

E. coli IF1, IF2, IF3 and B. stearothermophilus IF2 (Bst IF2) (Figure 2.2) 

Preparation of E. coli IF2 is as described in Pan et al., 2006. 
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~8 grams of transformed E. coli cell pellets for IF1, IF3 or Bst IF2 (Grigoriadou et al., 

2007a) were suspended in buffer (10 mM Tris pH7.7, 60 mM NH4Cl, 10 mM MgAc2, 5 

mM βME, 0.1 mM phenylmethylsulfonyl-fluoride/PMSF, and 0.1 mM benzamidine) was 

broken by French press (10,000-12,000 psi) and centrifuged in the SS-34 rotor at 14k rpm 

for 1hr. The solid ammonium chloride was added to the supernatant to bring its 

concentration to 1 M, followed by the centrifugation in a Beckman Ti 45 rotor at 25k rpm 

for 17 hr to get the S-150 supernatant. 

The S-150 supernatant of IF1 or IF3 was diluted with 9 volumes of Buffer 5 (20 mM 

Tris-HCl pH7.1, 1.0 mM EDTA pH 7.0, and 10% glycerol, containing no NH4Cl) and 

loaded onto a PC column (Whatman P11, cellulose phosphate) equilibrated with Buffer 5 

0.1 M NH4Cl. The column was washed by Buffer 5 containing 0.1 M NH4Cl and eluted 

with a linear gradient from 0.1 M to 0.7 M NH4Cl in buffer 5. Fractions containing IF1, 

as seen on a 17% SDS-PAGE gel, or fractions containing IF3, as seen on a 12.5% SDS-

PAGE gel, were combined and dialysed against Buffer 5 containing 6 M Urea, 0.05 M 

NH4Cl. The pool was then loaded onto a PC column equilibrated in Buffer 5 containing 6 

M Urea, 0.05 M NH4Cl, washed with the same buffer and eluted with a linear gradient 

from 0.05 M to 0.3 M NH4Cl for IF1 or a linear gradient from 0.05 M to 0.4 M NH4Cl for 

IF3 in the same buffer. The fractions containing IF1 or IF3, as seen by SDS-PAGE 

analysis, were combined, diluted with 3 volumes of Buffer 5 containing no NH4Cl, and 

loaded onto a PC column of 1-2 ml bed volume, equilibrated with Buffer 5 containing 
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0.1M NH4Cl, for concentration. The column was eluted with Buffer 5 containing 1 M 

NH4Cl and fractions of about 2 mL were collected. Fractions were pooled on the basis of 

A280nm, and further purified on either a Sephadex G50 column (IF1) or a Sephadex G75 

column (IF3). In each case the column was pre-equilibrated with Buffer 5 containing 0.2 

M NH4Cl, and eluted with the same buffer.  

The S-150 supernatant of IF2 was diluted with 9 volumes of Buffer 5 (containing no 

NH4Cl) and loaded onto a PC column (~40 mL, Whatman P11, cellulose phosphate) 

equilibrated with Buffer 5 containing 0.1 M NH4Cl. The column was washed by Buffer 5 

containing 0.1 M NH4Cl and eluted with a linear gradient from 0.1 M to 0.6 M NH4Cl in 

Buffer 5. Fractions containing IF2, as seen on a 8% SDS-PAGE gel, were combined and 

dialysed against Buffer 6 (20 mM Tris-HCl pH 8, 0.1 mM EDTA pH 8.0, 60 mM KCl, 

0.1 mM PMSF, and 0.1 mM Benzamidine). The pool was then loaded onto a Mono Q 

column (~1 mL) equilibrated in Buffer 6, washed with the same buffer and eluted with a 

gradient from 60 mM to 800 mM NH4Cl in the same buffer. The fractions containing IF2, 

as seen by SDS-PAGE analysis, were combined and dialysed against the storage buffer 

(20 mM Tris-HCl pH 7.1, 200 mM NH4Cl, 0.1 mM EDTA, 5% glycerol, and 5mM 

βME). Typical SDS-PAGE analyses of IF1, IF2 and IF3 are shown in Figure 2.2.  

The activities of initiation factors were tested by the amount of 35S-fMet-tRNAfMet 

bound to 30S pre-initiation complexes as a function of added factor. All the initiation 

factors promoted the binding of fMet-tRNAfMet with a plateau value of 0.8-1.0 fMet per 

ribosome. These assays also helped to establish the right concentrations of initiation 
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factors used in the experiments to reach saturating levels of fMet-tRNAfMet bound. 

Sample data are shown in Figure 2.5.  

L11 

The method was as described in Seo et al., 2006 with a modification. In the Ni-NTA 

resin purification step under the native condition as described in QIAGEN handbook, the 

S100 protein in Buffer 7 (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 4 mM 

βME) from ~8 g cell pellets (The N-terminus His-tagged L11 was engineered in Pet-14b 

vector and was transformed into BL21(DE3)pLysS host strain and the sequence is shown 

in Figure 2.4) was loaded to ~3 ml bed volume of Ni-NTA column (2×1cm). The His-

tagged-L11with impurities (about 6 mg) was eluted by buffer 7 containing 250 mM 

imidazole, followed by the two dialyses, first against Buffer 8 (20 mM Tris-HCl pH7.1, 1 

mM EDTA, 6 M Urea, 100 mM NH4Cl) without MgCl2 to get rid of PO4 
3- and to prevent 

the precipitation of Mg2 (PO4)3
 , when then against Buffer 8 with 20 mM MgCl2 added . 

The sample was finally loaded onto a MonoS FPLC column (~1mL) using the linear 

gradient buffer (20 mM Tris-HCl pH7.1, 1 mM EDTA, 6M Urea, 100-800 mM NH4Cl) 

to separate the target His-tagged L11 from the higher molecular-weight protein. The His-

tagged L11 (~3 mg) elutes out around 150 mM NH4Cl. SDS-PAGE analysis showed L11 

to be the major protein (Figures 2.3A and B). 

L7/L12 
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The supernatant from the preparation of L7/L12-depleted ribosome was precipitated 

by acetone (the volume ratio of acetone: supernatant is 5:1) on ice for 10 min and 

centrifuged at 15k rpm for 20 min. The pellet was dissolved in buffer (50 mM Tris pH7.6, 

30 mM NH4Cl, 70 mM KCl, 7 mM MgCl2, and 1 mM DTT). The L7/L12 can be 

visualized on a 16.5% SDS-PAGE gel (Figure 2.3C).  

 

2.1.3 Preparation of mRNA 

    mRNA (Figure 2.1) was prepared from JM109 cells transformed with pTZ18 

plasmid containing the 022 sequence under a T7 promoter, which were provided by Dr. 

C. Gualerzi (University of Camerino). The plasmid was extracted from the cell using the 

Qiagen Plasmid Maxi kit, and linearized by the restriction enzyme HindIII. In vitro 

transcription was conducted using the EPICENTRE Ampliscribe T7 Flash Transcription 

Kit. mRNA was isolated from other components in the reaction mixture by precipitation 

with 2.5 M LiCl on ice (30 min), followed by two ethanol precipitation (2.5 volume of 

100% ethanol and 1/10 volume of 0.3 M NaAc pH5.2, 1 h at -20 ºC). The purity was 

confirmed by urea-PAGE gel (Figure 2.3D), and the concentration was determined by 

absorption at 260 nm using extinction coefficient of 0.04 mg/A260. The activity of 

mRNA was tested by the amount of fMet-tRNAfMet bound to the ribosome as a function 

of mRNA concentration (Figure 2.5).  

 

2.1.4 Fluorescence labeling of proteins and tRNA 
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L11Cy5 

The L11 was concentrated to 2-5 mg/mL (Centricon YM-10), exchanged into the 50 

mM Tris-HCl pH 7.5, 400 mM NH4Cl buffer by a NAP-5 column (Sephadex G-25 

medium, 0.9×2.8cm) at a final concentration of 1mg/ml L11. 1 mL of this solution was 

reacted at 37 oC with 50 ul of ~10 mM Cy5 (Figure 2.3, GE Healthcare) in DMF, added 

dropwise with stirring. After incubation for 1h at 37 oC, the reaction was quenched with 3 

µL 14 M 2-mercaptoethanol and excess dye was removed by gel filtration on G-25 

column (1cm X 35cm, Sigma), pre-equilibrated in buffer (20 mM Hepes pH7.6, 20 mM 

MgAc2, 400 mM NH4Cl, 1 mM EDTA, and 4 mM βME), and concentrated using 

Centricon-10 filters with membrane YM10.   

IF2Cy3 

The Bst G378C-IF2 mutant was concentrated in buffer (50 mM Tris–HCl pH7.5, 

800 mM NH4Cl, 2 mM tris(2-carboxyethyl)phosphine/TCEP, and 1 mM EDTA pH8.0), 

and labeled in buffer (50 mM Tris–HCl pH 7.5, 800 mM NH4Cl, 0.01% (v/v) Triton X-

100) at a concentration of 15 µM with a 50-fold molar excess of Cy3 maleimide 

(Figure 2.3, GE Healthcare). After incubation for 2 h with stirring at room temperature, 

the reaction mixture was kept in the cold room overnight. The reaction was terminated by 

adding βME to a final concentration of 35 mM. Excess dye was removed by gel filtration 

on G-25 column (1cm X 35cm, Sigma) pre-equilibrated in buffer (20 mM Tris–HCl pH 

7.5, 200 mM NH4Cl, 1 mM DTT, 0.1 mM EDTA pH8.0,  and 5 % (v/v) glycerol), and 
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concentrated using Centricon filters with membrane YM30. Labeled protein had a 

stochiometry of 0.9 to 1.0 Cy3/protein, calculated using a ε550, Cy3 of 150,000 M−1cm−1 

(GE Healthcare). IF2 concentration was estimated by the Bradford assay. 

Cy5-fMet-tRNAfMet 

tRNAfMet from E. coli acquired from Chemical Block (Moscow) was fluorescently 

labeled with Cy5 hydrazide (Figure 2.6)(GE Healthcare) via reduction of D-loop 

dihydrouridines with NaBH4 and replacement of the resulting ureidopropanols with Cy5 

hydrazide (Figure 2.7). The procedure is similar to the one described for preparation of 

yeast tRNAPhe(prf16/17) (Wintermeyer and Zachau, 1979; Wintermeyer and Zachau, 

1974). My colleague Stanislav Kirrillov refined the protocol. 20 µL of NaBH4 (100 

mg/mL in 0.01 M KOH) was added to 10 A260 unit of tRNA dropwise, followed by 

incubation on ice for 60 min. The reaction was stopped by lowering the pH to 4-5 by 

gradually adding 6 M acetic acid. After precipitating this mixture twice with 2.5 volume 

of 100% ethanol and 1/10 volume of 20 % KAc (pH 5) at -20 ºC, the pellet was dissolved 

in 20 µL NaAc pH 3.7 and mixed with 5 µL of Cy5 (~200 mM) in DMSO and incubated 

at 37 ºC for 2 hr. To increase the labelling efficiency, the reaction mixture was dried by 

lyophilyzer for 15 min and redissolved in 100 µL water. Then the pH was adjusted to 7.5 

by Tris-HCl, and the mixture was extracted with phenol three times to remove extra dye. 

The resulting sample was precipitated by 2.5 volume of 100% ethanol and 1/10 volume 
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of 20 % KAc (pH6.5) at -20 ºC for two times (pH6.5 was used instead of pH5.0 to 

prevent the dissociation of Cy5), and was dissolved in water.  

2.1.5 Aminoacylation (charging) of tRNAs 

Unlabeled and Cy5-labeled E. coli tRNAfMet were charged and formylated with 

partially purified E. coli tRNA synthetase containing MetRS and formyl transferase by 

incubating 20 µM tRNAfMet, 80 µM [35S]–methionine (2000 dpm/pmol), 720 µM folinic 

acid (as a formyl donor), and 1/10 volume of crude E.coli aminoacyl-tRNA synthetases 

in 100 mM Tris-HCl pH7.8, 4 mM ATP, 20 mM MgCl2, 1 mM EDTA, 10 mM KCl, and 

7 mM βME at 37 oC for 30 min. The reaction was ended by addition of 1/10 volume of 

20% KAc (pH5.0). The samples were extracted by 1 volume of phenol (saturated with 

Tris buffer, pH4.3, from Fisher) to remove proteins and other components, with the 

second extraction by 1 volume of chloroform to remove phenol. Then ethanol 

precipitation was carried out (2.5 volume of 100% ethanol, -20 ºC overnight). The pellets 

after centrifugation were dissolved in 50 mM NaAc (pH5.0), and further purified by an 

FPLC MonoQ chromatography using 0 – 1 M NaCl in 50 mM NaAc (pH5.0) (Rodnina et 

al., 1994). The tRNA was eluted at about 0.7 M NaCl.   

 

2.2 COMPLEX FORMATION 

All complexes were made up in Buffer A (25 mM Tris-HCl pH 7.5, 70 mM NH4Cl, 

30 mM KCl, 7 mM MgCl2, 1 mM DTT) at 37 oC unless otherwise specified.  
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30S Initiation complex (30SIC) was always formed by incubation of 1.0 equiv of 30S 

subunits with 1.5 equiv of IF1, IF3, and fMet-tRNAfMet, 3.0 equiv of mRNA, and various 

amounts of IF2. 30SICs made up with Eco-IF2, Bst-IF2, and Bst-IF2Cy3 are denoted 

30SICEco, 30SICBst, and 30SICCy3, respectively. 

Ternary complex (TC) was formed by incubation of 1.0 equiv of [3H] Phe-tRNAPhe 

with 1.5 equiv of EF-Tu, 200 µM GTP, phosphoenolpyruvate (Roche Diagnostics) (1.5 

mM), and pyruvate kinase (Roche Diagnostics) (0.5 mg/L) for 15 min unless otherwise 

specified. The TC concentration was calculated as the concentration of [3H] Phe-tRNAPhe.  

70S Initiation complex (70SIC) was preformed by incubation of 30SIC (0.3 µM) with 

50S subunits (0.5 µM) in buffer A. 

 

2.3 KINETICS 

All concentrations specified in the text and figure legends refer to final 

concentrations after mixing unless otherwise specified, and were performed at 20 oC in 

buffer A (25 mM Tris, pH7.6, 30 mM NH4Cl, 70 mM KCl, 7 mM MgCl2, and 1 mM 

DTT) or polyamine buffer (20 mM Hepes pH7.6, 150 mM ammonium acetate, 4.5 mM 

MgAc2, 0.05 mM spermine, and 2 mM spermidine) 

 

2.3.1 Instrumentation 

Two rapid mixing devices frequently used in my kinetic studies are quenched 

flow and stopped flow (Figure 2.8). In a quenched flow apparatus, two solutions are 
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rapidly mixed and the reaction is stopped by a quenching reagent after a certain amount 

of time. The samples can then be analyzed by various means. In a stopped flow apparatus 

two solutions are rapidly mixed, and the reaction over time can be monitored by 

observation techniques such as UV-Vis absorption, fluorescence, and light scattering. 

Our quenched flow (Kintek) and stopped flow (SX.18MV stopped-flow 

spectrofluorometer (Applied Photophysics) have dead times of 5 ms and 1 – 2 ms, 

respectively, giving sufficient time resolution for most of the changes we monitor. 

 

2.3.2 Equilibrium Fluorescence 

Solutions were excited at 540 nm, and emission was monitored from 560 to 720 nm 

(SPEX Fluorolog-3, Jobin Yvon Inc.). 70SIC compositions are indicated in the legends. 

All solutions were pre-incubated 5 min. at 20 oC before spectra were recorded. 

 

2.3.3 Light scattering, IF2Cy3 fluorescence, 50SCy5 fluorescence, and Pi release 

Measurements were performed in either an SX.18MV (Applied Photophysics) or a 

KinTec SF-2004 stopped-flow spectrophotometer by rapid mixing of 30S complexes with 

50S subunits. For light scattering, the excitation was at 395 nm and output was monitored 

using a KV455 nm long-pass filter (Schott). For IF2Cy3 fluorescence and 50SCy5 

fluorescence, excitation was at 540 nm and output was monitored at 567 nm and either at 

670 nm or using a 680 ± 10 nm bandpass filter, respectively. In Pi release, phosphate 

released during 70S initiation complex formation was monitored on the stopped flow 
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apparatus using MDCC-PBP. 30SIC complex was rapidly mixed with 50S subunit. The 

30SIC solution also contained MDCC-PBP (2.5 µM), Pi MOP (7-methyl guanosine, 0.6 

mM), and purine nucleoside phosphorylase (0.9 unit/mL) in Pi release experiments 

(Brune et al., 1994). MDCC was excited at 436 nm and monitored using a 455 nm long 

pass filter.  

 

2.3.4 GTP hydrolysis  

GTPase measurements used [γ-32P] GTP. Aliquots were quenched with 0.6 M 

HClO4, 1.8 mM KH2PO4 solution, and [32P] Pi was extracted into ethyl acetate as a 

dodecamolybdate complex. (Rodnina et al., 1999; Wahler and Wollenberger, 1958) 

Background due to the ribosome-independent GTPase activity of Bst IF2 was subtracted 

(Severini et al., 1991). In these experiments, 50 S subunits in one syringe were mixed 

with IF2.GTP alone, or with IF2.GTP as part of the 30SIC in the other. We attribute the 

lower GTPase/IF2 stochiometry in the 50 S experiment to surface inactivation of IF2 in 

the syringe before mixing. One would expect this effect to be reduced in the 70 S 

experiment, since much of the IF2 surface would be buried within the 30SIC 

 

2.3.5 Poly(U)-dependent poly (Phe) synthesis 

The assay was carried out as described (Wang et al., 2007), except that 70S 

ribosomes were formed by pre-incubation of 50S subunits (0.5 µM) with 30S subunits 

(1.0 µM) for 15 min at 37 oC.  
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2.3.6 Formation of fMet-puromycin 

All kinetics experiments were carried out at in buffer A at 25 ºC unless otherwise 

specified. Given below are concentrations after mixing. 0.5 µM initiation complex was 

rapidly mixed with 10 mM puromycin on the quench flow apparatus. Reactions were 

quenched with 0.3 M NaAc pH 5.2. [35S]-fMet-puromycin was extracted into ethyl 

acetate and radioactivity was determined. 

 

2.3.7 fMetPhe formation 

Ternary complex was formed by pre-incubating 5 µM EF-Tu, 1 mM GTP, 1.5 mM 

phosphoenolpyruvate, and 0.5 mg/L pyruvate kinase for an additional 3 min and then 

incubating with 1 µM [3H]-Phe-tRNAPhe for 3 min at 37 ºC. 0.2 µM ternary complex 

(defined by [3H]-Phe-tRNAPhe concentration) was rapidly mixed with 0.4 µM initiation 

complex on a Kintek quench flow apparatus at 25 ºC. Reactions were quenched with 5 M 

NH4OH, lyophilized, taken up in 500 µl of water, and eluted with water from an 

analytical grade cation exchange column (Bio-Rad 50W-X8, 400 µl) that had been 

prewashed with 0.01 M HCl and water. Dipeptide eluted in the flow-through and ~5 

column volumes and radioactivity was determined in a scintillation counter. 

 

2.3.8 Formation of fMet-Phe-puromycin 

For fMetPhe-puromycin formation, 30SIC was rapidly mixed with 50S, TC, and EF-

G for varying times, followed by rapid addition of puromycin and further incubation for 5 
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seconds. Reaction was quenched by addition to ice-cold tubes pre-filled with 0.3 M 

sodium acetate (pH 5.2), fMetPhe-puromycin was extracted into ethyl acetate, and 3H-

radioactivity was determined.  

 

2.3.9 Co-sedimentation and SDS-PAGE analysis experiments  

SDS-PAGE analyses were performed on i) 70SIC complexes, ii) PRE complexes and 

iii) POST complexes. In each case, the final solution was loaded onto a 1.1M sucrose 

cushion and centrifuged for 40 min at 110 krpm using a micro-ultracentrifuge (Sorvall 

Discovery M120SE). The pellet was then dissolved in Buffer A and subjected to SDS-

PAGE analysis. 70SIC complexes were formed by mixing 70S, 1 µM; IF1, IF2, IF3, 

fMet-tRNAfMet, 1.5 µM; 022mRNA, 3 µM; GTP 200 µM and incubating at 37 oC for 15 

min. TC was formed by mixing EF-Tu, 6 µM; Phe-tRNAPhe, 3 µM; phosphoenolpyruvate, 

1.5mM; pyruvate kinase, 0.0005 mg/ml; and GTP 200 µM at 37 oC for 15 min. PRE 

complex was formed by adding 70SIC  (0.30 µM) to TC (0.60 µM) (both final 

concentrations), followed by incubation at 37 oC for 2 min. In experiments containing 

kirromycin, kirromycin was added to 70SIC and incubated for 5 min prior to TC addition. 

POST complexes were formed by mixing 70SIC complexes with TC and EF-G in the 

presence of GTP. The stoichiometries of IF2 and EF-Tu co-sedimenting with ribosomes 

were determined by comparison with standard samples. 

 

2.3.10 Western blotting 
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Running SDS-PAGE gel: The protein sample was run on a 16.5% SDS-PAGE gel at 

100 volts for ~3 hr in the cold room in which the pre-stained protein markers (Invitrogen) 

were used to indicate the approximate molecular mass of bands observed on the 

membrane. The inner chamber of the apparatus was filled with Tris-glycine running 

buffer containing the antioxidant NuPAGE, (Invitrogen) which is added to minimize 

degradation of the proteins.  

Transfer: A PVDF membrane (LC2005, Invitrogen) was soaked in methanol for 30 

sec and rinsed for three times with distilled water. The 4 blotting pads, the resolving gel, 

the PVDF membrane and the filter paper (LC2005, Invitrogen) equilibrated with transfer 

buffer( 25 mM Tris-HCl, 192 mM Glycine and 10% methanol) were assembled in the 

following order, on the cathode side of the apparatus: two blotting pads, filter paper, 

equilibrated gel, equilibrated membrane, filter paper, and two blotting pads. A glass 

pipette could be used to squeeze the bubbles out. The transfer module was tightly placed 

in the tank in which the inner chamber was filled with the transfer buffer and the outer 

chamber was filled with the cold water. The transferring was conducted at 30 volts for 1 

hr in the cold room.  

Probing: After the apparatus was disassembled, the membrane was incubated in 

blocking buffer (10% milk powder in 100 mM Tris-HCl pH7.5, 150 mM NaCl, and 0.1% 

Tween 20) at room temperature (RT) for 1 hr. The blocking solution was poured off and 

the diluted primary anti-L7/I12 antibody (a gift from Dr. Wilson, University of Alberta) 

in blocking buffer was added to incubate at RT for 1 hr or in the cold room overnight. 
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The membrane was rinsed by TBST buffer (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 

and 0.1% Tween 20) four times by incubating it for 10 min with agitation at RT each 

time. The use of larger volumes of TBST would reduce the background. The secondary 

Ab(Rabbit anti-sheep IgG-HRP, Santa Cruz Biotechnology) in blocking buffer was 

poured over the membrane and incubated for 1 hr at RT with agitation. The wash steps 

were repeated and the blot from the membrane was ready to be developed.  

Enhanced Chemiluminescence Development: Two solutions (Luminol/Enhancer and 

stable peroxide buffer, both obtained from Thermo Fisher) were mixed in equal parts and 

the blot was incubated in the above solution for about 1 min. The blot was wrapped in a 

plastic sheet and exposed to film (Fujifilm LAS-3000).  

 

2.3.11 Native 0.5% agarose/3% acrylamide gel 

A 15 mL solution containing 6% acrylamide, 50 mM Tris-HCl pH 8.0, 0.2 mM 

MgCl2, and 0.2% ammonium persulfate(APS) was pre-incubated at 45 oC for 20 min and 

then mixed with 15 mL 1% agarose, followed by the 1 min incubation at 45 oC. Prior to 

pouring into the gel assembly, tetramethylethylenediamine(TEMED) was added to 

promote gel formation. The whole assembly was kept in the cold room for 10 min and 

taken out to the RT for 1 hr. Samples were loaded onto the gel and run in buffer (25 mM 

Tris-HCl, pH 8.0 and 0.1 mM MgCl2) at 100 volts in the cold room for 2 hr. The gel was 

stained with 0.2% methylene blue in 7.5% acetic acid and destained in 1% acetic acid 

(Griaznova and Traut, 2000).  
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2.3.12 Data analysis 

Apparent rate constants and microscopic constants for specific kinetic schemes were 

determined using the programs Igor-Pro (Wavemetrics) and Scientist (MicroMath 

Research, LC), respectively. The latter allows global fitting of multiple experimental 

parameters to a specific scheme, and requires setting of initial values of rate constants. 

The Förster distance Ro was calculated from eq 1, where φD is the quantum yield of 

30SICCy3 , η is the refractive index of water ( = 1.33; 30), κ2 is a dipole orientation factor, 

and was set equal to 2/3 assuming random orientations of the fluorophores (Lakowicz, 

1999; dos Remedios and Moens, 1995) and J(λ) is the spectral overlap integral. φD was 

determined by comparing the integrated fluorescence of 30SICCy3 to that of a standard, 

Rhodamine B, as described (Lakowicz, 1999), yielding a value of 0.57 ± 0.03. J(λ), equal 

to 4.66 x 10-13 M-1cm3, was determined from the fluorescence and absorption spectra of 

30SICCy3 and 50SCy5, respectively (Seo et al., 2006). These values permit calculation of 

Ro equal to 60 ± 5 Å, in good agreement with other reported values of 50 – 60 Å for the 

Cy3:Cy5 pair (33, 34).  

Ro (Å) = [8.8 x 10-5·κ2· η-4·φD·J(λ)]1/6  (1) 

 FRET efficiency, E, was calculated from eq 2, where FDA and FA are the background- 

corrected fluorescences of the donor/acceptor pair and the acceptor alone, respectively, 

on irradiation at the excitation wavelength (λex) of the donor (540 nm) and detection at 
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the emission maximum of the acceptor, λA (670 nm), fD is a fractional labeling of donor 

(equal to 1.0), and εA and εD are the extinction coefficients of donor and acceptor at λex. 
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Figure 2.1. The sequence and restriction map of the synthetic gene encoding 

022mRNA (Calogero et al., 1988). 
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Figure 2.2 SDS-PAGE analyses of E. coli IF1 (A) and IF3 (C) and Bst IF2 (B). (A) 
The fractions from the Sephadex G50 column are run on a 17% gel. (B) The fractions 
from the MonoQ column are run on an 8% gel. The first lane is a purified IF2 sample and 
the second lane is a partially purified sample prior to MonoQ chromatography. The Mono 
Q step removes a minor impurity barely visible in lane 2. (C) The fractions from the 
Sephadex G75 column are run on a 12.5% SDS-PAGE gel.  
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Figure 2.3. PAGE and MALDI analyses. For the PAGE analyses, the bands shown for 

the purified samples were the only ones seen in the full gel. (A) 14% SDS-PAGE analysis 

of L11 protein after MonoS column. The first lane is the initial sample, the second lane is 

the flow-through, and the subsequent lanes are the collected L11-containing fractions. 

The dual bands might be due to proteolysis of L11 during preparation of sample for 

PAGE analysis because only one peak at 16895 a.m.u (calculated His-tagged L11 MW 

16.922 kD) was observed by MALDI analysis of the MonoS-purified fractions (B). (C) 

16.5% SDS-PAGE analysis of L7/L12 protein (left lane) stripped from wild type 

ribosome (right lane). (D) Urea-PAGE analysis of 022AUGmRNA. 

L7/L12 

mRNA 
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Figure 2.4. The sequence of His-tagged L11.  
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Figure 2.5. The activities of fMet-tRNAfMet (A), mRNA (B), IF1 (C), IF2 (D) and 

IF3(E) binding to pre-30S initiation complex. [35S]-fMet-tRNAfMet was incubated with 

30S subunit, IF1, IF2, IF3, GTP in buffer A at 37 ºC for 15 min followed by filtration on 

nitrocellulose filters. The experiments used different concentrations of fMet-tRNAfMet 

(A),   mRNA (B), IF1 (C), IF2 (D), or IF3 (E). For the components that were not varied, 

the concentrations were 0.30 µM 30S, 0.45 µM IF1, 0.45 µM IF2, 0.45 µM IF3, 0.9 µM 

mRNA, 0.45 µM [35S]-fMet-tRNAfMet. 
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Figure 2.6. Structures of Cy3 and Cy5. (A) Cy3 or Cy5 maleimide. (B) Cy3 or Cy5 
hydrazide.  
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Figure 2.7. The labeling scheme (Pan et al., 2009). Reductive cleavage of 

dihydrouridine by sodium borohydride, yielding 3-ureidopropanol, has been described by 

Cerutti and Miller (1967). 
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Figure 2.8. Diagrams of rapid kinetic instruments. (A) Quench flow. (B) Stopped 
flow. 
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CHAPTER 3 

IF2 INTERACTION WITH THE RIBOSOMAL GTPASE-

ASSOCIATED CENTER DURING 70S INITIATION 

COMPLEX FORMATION 
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3.1 ABSTRACT 

Addition of an E. coli 50S subunit containing a Cy5-labeled L11 N-terminal domain 

(L11-NTD) within the GTPase-associated center (GAC) to an E. coli 30S initiation 

complex containing Cy3-labeled B. stearothermophilus initiation factor 2 (Bst-IF2), leads 

to rapid development of a FRET signal. FRET efficiency increases as the initially-formed 

70S ribosome is converted to the 70S initiation complex (70SIC) (Grigoriadou et al., 

2007), demonstrating the ability of IF2 to induce conformational change within the 

inherently flexible GAC. Movement of IF2 toward L11-NTD following initial 70S 

ribosome formation is analogous to movement of EF-G following its binding to the 

ribosome (Seo et al., 2006). However, the rate with which such movement occurs has a 

much weaker dependence on GTP hydrolysis for IF2 than for EF-G, perhaps reflecting 

the more critical role of GTP hydrolysis in translocation than in 70SIC formation. The 

increase in FRET efficiency can also be used to monitor the fidelity function of initiation 

factor IF3 during 70SIC formation and provides evidence that conformational changes in 

the ribosome resulting from IF2-GTPase modulate IF3 function. While Bst-IF2 is fully 

functional as a substitute for E. coli IF2 in formation of E. coli 70SIC, relative reactivities 

toward dipeptide formation of 70SICs formed with the two IF2s suggests that Bst-

IF2.GDP is more difficult to displace from the GAC than E. coli IF2.GDP. 
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3.2 INTRODUCTION 

 Initiation factor 2 (IF2) is a G-protein that plays a crucial role in the initiation of 

procaryotic protein synthesis, interacting directly with fMet-tRNAfMet, favoring its 

decoding in the P-site, and physically linking the 30S and 50S subunits in the 70S 

initiation complex (70SIC) (Gualerzi and Pon, 1990; Boelens and Gualerzi, 2002; 

Ramakrishnan, 2002; Laursen et al., 2005; Gualerzi et al., 2001). It shares a common 

binding locus on the ribosome, the GTPase associated center (denoted GAC), with other 

G-proteins utilized in protein synthesis, such as elongation factor G (EF-G). The GAC 

includes 23 S rRNA helices 42-44, the associated proteins L11, L10, and at least one 

L7/L12 protein (Li et al., 2006; Connell et al., 2007). Cryoelectron microscopy (cryo-

EM) studies have indicated that both EF-G·GTP and IF2·GTP binding to the ribosome 

are accompanied by large conformational changes in the ribosome, and that, in both 

cases, further conformational changes in the ribosome·G-protein complex are seen 

following GTP hydrolysis (Agrawal et al., 1999; Agrawal et al., 2001; Myasnikov et al., 

2005; Allen et al., 2005).  

 The N-terminal domain of L11 (L11-NTD) is a particularly mobile portion of the 

ribosome that, following GTP hydrolysis, approaches the G’ domain of EF-G (Agrawal et 

al., 2001; Diaconu et al., 2005; Schuwirth et al., 2005). In earlier work utilizing single-

turnover fluorescence resonance energy transfer (FRET) measurements, we determined 

that rapid movement of the G’ domain toward L11-NTD within the E. coli ribosome 

requires prior GTP hydrolysis and, via branching pathways, either precedes Pi release 
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(major pathway) or occurs simultaneously with it (minor pathway) (Seo et al., 2006). In 

this latter work fluorescent groups were placed on the Cys 38 within L11-NTD and on a 

suitable residue within the G’ domain.  

Here we utilize a similar approach to determine whether there is a comparable 

movement toward L11-NTD of the G1-domain of IF2 (IF2 lacks a G’ domain) during 

70SIC formation from 30S initiation complex (30SIC) and 50S subunit. The cryo-EM 

structures of 70S complexes containing fMet-tRNAfMet, mRNA and either IF2.GDPCP (a 

nonhydrolyzable analogue of GTP) or IF2·GDP (11) result in an estimated distance of 50 

– 55 Å between the α-carbons of residue 378 in IF2 and residue 38 in L11 (Figure 4.1), 

quite suitable for probing by measurement of FRET efficiency. Accordingly, we employ 

50S subunits containing protein L11 labeled with Cy5 at position 38 (denoted L11Cy5) 

and B. stearothermophilus IF2 (Bst-IF2) labeled with Cy3 at position 378 (denoted Bst-

IF2Cy3) (Marzi et al., 2003).  

 Substituting Bst-IF2 for Eco-IF2 has been shown to facilitate the characterization of 

translation intermediates, due to the higher stability of the complexes that Bst-IF2 forms 

with E. coli ribosomes and ribosomal subunits as compared with Eco-IF2 (Marzi et al., 

2003; La Teana et al., 1996). Such substitution is reasonable in view of substantial 

evidence that Bst-IF2 is functionally interchangeable with Eco-IF2 in E. coli protein 

synthesis. Thus, Bst-IF2 complements an E. coli infB null mutation in vivo (E. Caserta 

and C. Gualerzi, private communication). In addition, in vitro studies demonstrate the 

near equivalence of Eco-IF2, Bst-IF2, and Bst-IF2Cy3 in binary complex formation with 
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E. coli fMet-tRNAfMet (Wu and RajBhandary, 1997), in stimulating of AUG-dependent 

fMet-tRNAfMet binding to E. coli 30S subunits and 70S ribosomes (Brombach et al., 

1986) and in kinetic measures of 70SIC formation (La Teana et al., 1996; Grigoriadou et 

al., 2007; work reported herein).   

We find that FRET efficiency increases as the 70S ribosomes formed initially 

from 30SIC and 50S subunits are transformed into the 70SIC, and that the rate of such 

increase depends on GTP hydrolysis, paralleling results obtained with EF-G. We further 

demonstrate that the increase in FRET efficiency can be used to monitor the fidelity 

function of the initiation factor IF3 during 70SIC formation. 

 

3.3 RESULTS 

In the work described below we use the FRET signal between a 30SIC containing 

Bst-IF2Cy3 and a 50S subunit containing L11Cy5 to monitor the relative movement of IF2 

with respect to L11 during 70SIC formation. Below we first demonstrate that, with minor 

qualifications, Bst-IF2Cy3 and L11Cy5 are acceptable functional analogues of Eco-IF2 and 

unlabeled L11, respectively, before presenting our FRET results. 

 

3.3.1 Bst-IF2 and Bst-IF2Cy3 as functional analogues of Eco-IF2 with respect to 

70SIC formation and reactivity  

In the presence of IF3, 30S association with 50S subunits to form 70SIC is 

completely dependent on the presence of IF2 (Grigoriadou et al., 2007). Here we carry 
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out four rapid kinetics measures (increase in light scattering, IF2-dependent single 

turnover GTP hydrolysis and subsequent Pi release, increase in fMet-tRNAfMet (prf20) 

fluorescence) that we previously employed in formulating a detailed quantitative kinetic 

scheme for 70SIC formation from 30SIC and 50S subunit (Grigoriadou et al., 2007) to 

compare the functionalities of Eco-IF2 (30SICEco), BSt-IF2 (30SICBst), and Bst-IF2Cy3 

(30SICCy3) in this process. We also compare the reactivities of the three 70SICs formed 

in dipeptide formation. Our results show that all three 30SICs have similar rates of 70SIC 

formation, but that the reactivity of the 70SIC in dipeptide formation is somewhat faster 

in the presence of Eco-IF2 vs. either of the Bst-IF2s. 

The increase in light-scattering on addition of 30SIC to 50S subunit is well described 

as a  2-phase process (Figure 3.2A), with the first corresponding to initial binding of the 

50S subunit to 30SIC to form a labile 70S complex and the second reflecting conversion 

to the more stable 70SIC. These two phases have apparent rate constants LS1 and LS2. 

Initial 70S formation is followed by GTP hydrolysis (Figure 3.2B), with an apparent rate 

constant (GTP1) that is similar to or somewhat smaller than LS1. Pi release proceeds via 

a lag phase, with an apparent rate constant Pi1, similar in magnitude to LS2, followed by 

the Pi release step, with an apparent rate constant Pi2 (Figure 3.2C). The increase in 

fluorescence of fMet-tRNAfMet(prf20) on 70SIC formation, which could not be measured 

for Bst-IF2Cy3 because of fluorophore interference, is also preceded by a lag phase 

(Figure 3.2D), with apparent rate constants for both phases, fMet1 and fMet2, that are 

similar in magnitude to the values of Pi1 and Pi2.  



 63 

Values for each of the apparent rate constants mentioned above are collected in Table 

1. From these values, as well as by direct inspection of Figures 3.2A-D, we conclude that 

70SIC formation proceeds in a very similar manner with either 30SICEco, 30SICBst, or 

30SICCy3. Some small quantitative differences include larger overall light scattering 

changes falling in the order Bst-IF2Cy3 > Bst-IF2 > Eco-IF2, and GTP1 values decreasing 

in the order Eco-IF2>BSt-IF2> Bst-IF2Cy3. 

The functionality of the three 70SIC complexes in fMetPhe-tRNAPhe formation 

following addition of the Phe-tRNAPhe.EF-Tu.GTP ternary complex was determined 

either following rapid mixing of each of the pre-formed 30SICs with 50S subunits and 

the cognate TC, or following rapid mixing of each of the pre-formed 70SICs with 

cognate TC (Figure 3.2E, Table 3.2). Comparable reactivities (k’dp) were found following 

the first protocol, with apparent rate constants falling in the order 30SICEco (0.28 ± 0.06 s-

1) > 30SICCy3 (0.18 ± 0.06 s-1) ~ 30SICBst (0.14 ± 0.03 s-1). On the other hand, the second 

protocol, while leaving the apparent rate constant (k* dp) for 30SICBst essentially 

unchanged (0.12 ± 0.02 s-1), leads to a marked increase k*dp found with 30SICEco (1.6 ± 

0.2 s-1).  

The latter difference may be related to the more stable binding within the 70SIC of 

Bst-IF2·GDP than Eco-IF2·GDP (La Teana et al., 1996; Qin et al., in preparation). Thus, 

productive binding of TC leading to dipeptide formation requires, at a minimum, 

movement of IF2 away from its canonical position within the 70SIC (Myasnikov et al., 

2005), allowing TC binding to the GAC, if not full IF2 dissociation from the ribosome. 
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Such movement (or dissociation) might be partially rate-determining for dipeptide 

formation when 50S subunit and TC are added simultaneously to 30SIC, consistent with 

earlier results of Tomsic et al. (Tomsic et al., 2000), but might already be completed, at 

least for the more weakly bound Eco-IF2, when TC is added to pre-formed 70SIC, 

resulting in more rapid dipeptide formation. 

 

3.3.2 50SCy5 as a functional analogue of wt-50S with respect to 70SIC formation and 

reactivity 

  Having established the functionality of 30SICCy3, we next use 30SCy3 to compare 

50SCy5 with wt-50S with respect to three single-turnover kinetic (GTP1 and the apparent 

rate constants for dipeptide and fMet-puromycin formation) and three single-turnover 

stoichiometric (GTPase, dipeptide, fMet-puromycin) measures of 70SIC formation and 

reactivity. The results, as displayed in Figure 3.3A,B and Table 3.2 (along with more 

limited results for 50SL11 and 50S-L11) show 50SCy5 to be a good functional analogue of 

wt-50S, with the only significant difference in these six measures being found for the 

value of k’dp (fMet-Phe formation), 0.18 ± 0.06 s-1 and 0.07 ± 0.01 s-1 for wt-50S and 

50SCy5, respectively. Furthermore, pre-formed 70S ribosomes have virtually identical 

activities in poly(U)-dependent poly(Phe) synthesis, whether made with wt-50S or 50SCy5 

subunits (Figure 3.3C).  

There is a significant decrease in the GTPase stoichiometry obtained with 50S-L11 

subunits (Figure 3.3A, Table 3.2), consistent with earlier results showing that 50S-L11 
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subunits are somewhat defective in forming 70SIC from 30SIC (Naaktgeboren et al., 

1976; G tz et al., 1989). However, even the 50S-L11 subunits show appreciable activity in 

polyPhe synthesis (Figure 3.3C), in agreement with earlier results (Cundliffe et al., 1979, 

Cohlberg et al., 1976). 

 

3.3.3 FRET changes accompanying 70SIC formation from 30SICCy3 and 50SCy5  

The experiments described above establish the basic functionality of 30SICCy3 and 

50SCy5 in 70SIC formation, making it likely that the FRET experiments described below 

that measure FRET during the combination of these modified subunits will be relevant 

for understanding the process of 70SIC formation from native, unmodified subunits. 

Long term incubation (15 min, 37 oC) of 30SICCy3, containing a fluorescent donor (D), 

with 50SCy5 subunits containing a fluorescence acceptor (A) results in formation of the 

double-labeled 70SIC (DA sample) and the generation of a strong FRET signal (Figure 

3.4A), with considerable decreases and increases in donor and acceptor fluorescence 

signals, respectively, as compared with the fluorescence of the D (30SICCy3 plus 50SL11) 

and A (30SICBst plus 50SCy5) samples. In fact, the donor decrease shown in Figure 3A 

underestimates FRET efficiency, given the intrinsic rise in donor fluorescence that 

accompanies 70SIC formation when 30SICCy3 is rapidly mixed with unlabeled 50SL11 

subunits (Figure 3.4B). By contrast, there is no corresponding change in acceptor 

fluorescence when 30SICBst replaces 30SICCy3 (Figure 3.4B). The similarity in acceptor 

fluorescence intensity at the two 30SICCy3 concentrations employed in Figure 3.4A 
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indicates that essentially all of 50SCy5 is taken up within the 70SIC at the higher 30SIC 

concentration. These results permit calculation of a FRET efficiency in the 70SIC 

complex of ~50% by application of eq 2 (Chapter 2).   

 

3.3.4 Changes in FRET vs. changes in light scattering during 70SIC formation  

 Strong evidence that the FRET signals seen in Figure 3.4 are a direct consequence 

of 70SIC formation is provided by results in Figure 3.5 A showing no such appearance of 

a FRET signal, measured as the increase in Cy5 fluorescence, when fMet-tRNAfMet is 

omitted from the reaction mixture. This is in accord with recent results showing that, in 

the presence of IF3, fMet-tRNAfMet is required for 70SIC formation (Grigoriadou et al., 

2007; Antoun et al., 2004; Antoun et al., 2006).  

The increase in light scattering on formation of 70SIC from 30SIC and 50S subunit 

provides another measure of 70SIC formation (Grigoriadou et al., 2007). Comparison of 

the time dependence of the increase in FRET efficiency for the complete system (i.e., 

including fMet-tRNAfMet) with the corresponding increase in light scattering, measured 

on identical samples (Figure 3.5A), clearly shows that both increases proceed in more 

than one phase, with both showing an initial rapid phase that is somewhat more 

pronounced for the light scattering change (Grigoriadou et al., 2007) than for the FRET 

change. As with FRET change, the rapid increase in light scattering is abolished when 

fMet-tRNAfMet is omitted. 
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The experiments shown in Figure 3.5A were conducted with both IF2Cy3 and 50SCy5 

subunits present in excess over 30S subunits. Under these conditions, the time courses of 

FRET and light scattering increases are directly comparable, with virtually all 30S 

subunits in the sample containing IF2Cy3 as part of the 30SIC and all 30SICCy3 interacting 

with 50SCy5. Other conditions, such as those employed in Figure 5B (30S > IF2Cy3 > 

50SL11; 50S > 30S > IF2Cy3), lead to multiphasic increases in light scattering that reflect 

sample heterogeneity and are unsuitable for directly comparing increases in FRET and 

light scattering. Thus, slow phases of light scattering are observed when either 50S 

subunit concentration is limiting, due to the presence of a minor fraction (< 20 %) of 50S 

subunits that lack L11 (50S-L11) and form 70SIC complexes only very slowly (data not 

shown –see also Naaktgeboren et al., 1976; Gtz et al., 1989), or when IF2Cy3 is limiting, 

since 30S initiation complexes formed in the presence of IF3 but lacking IF2 also form 

70SIC very slowly (Grigoriadou et al., 2007). Such sample heterogeneity is not a problem 

for FRET measurements, which only measure rapid 70SIC formation events between 

30SICs containing Bst-IF2Cy3 and 50S subunits containing L11Cy5. The rate of Pi release 

is also shown in Figure 3.5B for direct comparison with the rate of FRET increase.  

The results in Figures 5A and 5B can be globally fit to the minimal Scheme 1 (Figure 

3.5C), in which an initial binding reaction to form 70SI ribosomes (step 1), giving rise to 

a FRET signal with concomitant GTP hydrolysis (Figures 3.2B, 3.3A), is followed by a 

conformational change (step 2), resulting in formation of 70SII ribosomes, from which Pi 

is released (step 3). In carrying out this fitting the light scattering increase due to 70SI, 
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70SII, or 70SIC formation is assumed to be identical (Antoun et al., 2004). Constraining 

the FRET efficiencies to also be the same for all three 70S species led to poor fits to the 

FRET data. However, setting the relative FRET efficiency (RFE) for 70SIC equal to 1.0 

and allowing the RFEs of the other 70S species to be different led to best-fit values of 

0.57 and 1.00 for 70SI and 70SII, respectively. This point is made graphically in the inset 

to Figure 5A which shows that the ratio, normalized FRET change: normalized light 

scattering change, increases as 70SI is converted to 70SII and does not change thereafter. 

We conclude that the L11-NTD gets closer to the G1 domain of IF2 as 70SI is converted 

to 70SII, and that this movement follows GTP hydrolysis and precedes Pi release. 

 

3.3.5 GTP hydrolysis accelerates the increase in FRET efficiency following 70S 

formation 

 The previous conclusion led us to examine whether GTP hydrolysis was required 

for the increase in FRET efficiency within the 70S complex by replacing GTP with its 

nonhydrolyzable analogue GDPNP. We initially attempted to compare light scattering 

and FRET changes in the presence of GDPNP under conditions (50S > IF2 >30S) exactly 

paralleling those we had used in the presence of GTP (Figure 3.5A). As seen in Figure 

6A, replacement of GTP by GDPNP during 70SIC formation leads to only a small 

decrease in the magnitude of light-scattering increase, with little change in the rate of 

such increase. However, these conditions are not suitable for measuring FRET changes 

during 70SIC formation, since a rapid and significant change in FRET signal is seen even 
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in the absence of 70S formation (i. e., with fMet-tRNAfMet omitted, Figure 3.6B), 

presumably reflecting direct binding of Bst-IF2Cy3.GDPNP to 50SCy5. No such signal is 

seen in the presence of GTP (Figure 3.5A), because of the rapid hydrolysis of GTP within 

the 50S.IF2·GTP complex, and the relatively weak binding of IF2·GDP to 50S subunits 

(Grigoriadou et al., 2007). 

 Accordingly FRET experiments were carried out under conditions (30S > IF2 > 

50S) minimizing 50S.IF2.GDPNP formation, as seen by the very small FRET change 

when fMet-tRNAfMet is omitted (Figure 3.6C). Under these conditions, the total FRET 

change seen with GDPNP is similar to that seen with GTP, but the time development is 

different, with the initial rise occurring slightly faster with GDPNP and the full FRET 

change occurring much more slowly.  

 The light scattering results in the presence of GDPNP were well fit assuming 

biphasic kinetics. In contrast, fitting the FRET results required three phases, and show an 

approximate doubling in the apparent FRET efficiency during the slow third phase (kapp 

~0.2 s-1) when, on the basis of the light scattering results, little additional 70S formation 

would be expected. Taken together, the results in Figure 3.6A and 3.6C are consistent 

with a kinetic scheme for 70SIC formation in the presence of GDPNP that is similar to 

Scheme 1 for GTP (Figure 3.5C), except that step 3 would be reversible and the increase 

in FRET efficiency following 70S formation occurs later in the process. It would thus 

appear that GTP hydrolysis accelerates, but is not essential for, the movement of L11-
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NTD toward the G1 domain of IF2 as the initial 70S complex formed is converted to 

70SIC.  

 

3.3.6 FRET monitoring of the fidelity function of IF3 

Earlier we showed that the rate and magnitude light scattering increase provided a 

sensitive measure of the ability of IF3 to discriminate between a canonical (AUG) and a 

non-canonical (AUU) initiation codon in 70SIC formation (Grigoriadou et al., 2007b). 

The increase in FRET efficiency accompanying 70SIC formation also provides a 

sensitive probe of such discrimination (Figure 3.7). Thus, in the presence of IF3, 

substituting AUU (trace 3) for AUG (trace 1) leads to large decreases in both the rate and 

extent of FRET efficiency increase, whereas in the absence of IF3 the apparent rate is 

little affected, and the extent of increase is somewhat increased (traces 2 and 4). Identical 

trends were observed for light scattering changes (Grigoriadou et al., 2007b). 

 

3.4 DISCUSSION  

IF2 is a G-protein that is part of the 30SIC, and is retained within the 70SIC that is 

formed following reaction of the 30SIC with the 50S subunit (Myasnikov et al., 2005; 

Allen et al., 2005). Here we show that FRET measurement of IF2 interaction with L11-

NTD can be used to monitor the relative motions of IF2 and the GTPase activation center 

during the process of 70SIC formation. We measure a FRET efficiency of 50% for the 

70SIC complex, corresponding to an approximate fluorophore-fluorophore distance of 60 
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Å, equal to Ro (see Chapter 2). This value is in reasonable accord with the distances of 50 

– 55 Å between the α-carbons of residue 378 in Bst-IF2 and residue 38 in L11 that can be 

estimated from cryo-EM structures of 70S complexes containing fMet-tRNAfMet, mRNA 

and either IF2.GDPCP (another nonhydrolyzable analogue of GTP) or IF2·GDP 

(Myasnikov et al., 2005), since the distances between the dyes would be expected to be 

somewhat greater than the distances between the α-carbons to which they are attached.  

Although IF2·GDP binds to 70S ribosomes less tightly than IF2·GTP (Grigoriadou et 

al., 2007), consistent with the cryo-EM results of Myasnikov et al. (Myasnikov et al., 

2005) that indicate substantial differences in the overall interaction of IF2 with the 70S 

ribosome following GTP hydrolysis and Pi release, the results presented in Figure 5 

indicate that the G1 domain of IF2 moves closer toward L11-NTD as part of the process 

by which the complex initially formed from 50S association with the 30SIC, 70SI·GDP·Pi 

in Scheme 1 (Figure 3.5C), is converted into the 70SII·GDP·Pi complex, preceding Pi 

release and 70SIC formation. We estimate this distance reduction as ~ 12 Å (eq 3); i.e., 

from 72 Å to 60 Å.  

R = Ro(
1

E
−1)1/ 6(3) 

Scheme 1 is a minimal kinetic scheme that accounts quantitatively for the results 

presented in Figure 3.5. It is fully consistent with the more complete scheme for 70SIC 

formation that we proposed earlier (Grigoriadou et al., 2007; Grigoriadou et al., 2007b), 

with the one minor change that the binding of 30SICCy3 to 50SCy5 is 2 - 3 fold weaker 

than to wt-50S. This earlier work, which employed a coumarin derivative of Bst-IF2, 
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labeled at position 451, and fMet-tRNAfMet(prf) (Figure 3.2D), demonstrated that 

conversion of the initially formed 70S complex to 70SIC required two conformational 

changes, corresponding approximately to steps 2 and 3 in Scheme 1, with step 2 

involving a change in IF2 fluorescence and step 3 involving a change in fMet-tRNAfMet 

fluorescence.  

Results presented in Figure 3.7 show that FRET changes can be used to demonstrate 

the ability of IF3 to discriminate between a canonical (AUG) and a non-canonical (AUU) 

initiation codon in 70SIC formation and are consistent with the notion, proposed by us 

earlier (Grigoriadou et al., 2007b), that such discrimination occurs during 70SIC 

formation. This notion has recently received direct support from some rate measurements 

of Milon et al. 2008 showing that 70S formation from 30SIC precedes IF3 dissociation, 

and contrasts with results of Antoun et al. (Antoun et al., 2006) indicating that IF3 

dissociation from 30SIC precedes 70S formation. It is likely that the reason for this 

apparent disagreement has to do with the strong dependence of the rates of these two 

processes on mRNA sequence. Thus, both our earlier (Grigoriadou et al., 2007b) and 

current studies and those of Milon et al. 2008 employed ribosomes programmed with 

022mRNA, which has a relatively short Shine–Dalgarno sequence (4 nt) separated from 

the AUG initiation codon by a long spacer (9 nt) and affords relatively rapid 70SIC 

formation. However, Milon et al. also found that use of 002mRNA, which has a long 

Shine–Dalgarno sequence (9 nt) and a shorter spacer (5 nt), leads to much slower 70S 

formation, which proceeds at the same rate as IF3 dissociation, consistent with the results 
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of Antoun et al. 2006, who used an mRNA similar to 002mRNA. 

The 70S ribosome is a labile structure that undergoes conformational changes on the 

binding of the G-proteins EF-G and IF2. Cryoelectron microscopy studies (Myasnikov et 

al., 2005; Allen et al., 2005) have shown not only that G-proteins bind to the same site on 

the 70S ribosome via their G(GTPase)-domains, but also that the conformational changes 

that result from G-protein binding as a GTP complex and from hydrolysis of the 

ribosome-bound GTP to GDP are similar for such proteins. This has led to the suggestion 

that ribosomal GTPases take advantage of the intrinsic flexibility of the ribosome to 

induce conformational changes that promote movement of mRNA and tRNA across the 

ribosome surface during the various steps of the protein synthesis cycle (Myasnikov et 

al., 2005; Frank et al., 2007; Cornish et al., 2008).  

Our current and earlier related studies provide strong evidence that the analogy 

between the structures of the complexes that at least two G-proteins, IF2 and EF-G, make 

with the ribosome is maintained on a dynamic level as well. In particular, the kinetics of 

FRET efficiency increase between fluorescent derivatives of L11-NTD and either IF2 

(labeled in the G1 domain, this work) or EF-G [labeled in the G’-domain (Seo et al., 

2006) have two important points in common: 1) FRET efficiency increases, indicating a 

movement of the G-proteins toward L11-NTD, following GTP hydrolysis and prior to Pi 

release (Figure 3.5); and 2) the rate of attainment of the higher FRET efficiency state is 

considerably decreased on substitution of a nonhydrolyzable analogue for GTP, although 

the total increase in FRET efficiency is maintained (Figure 3.6C). These two points 
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provide strong evidence that at least some of the conformational changes attributed to 

GTPase activity are triggered by the hydrolysis step itself, in accord with earlier 

suggestions (Tomsic et al., 2000; Rodnina et al., 1997; Savelsbergh et al., 2003), that the 

high FRET efficiency state is the preferred mode of G-protein binding to the 70S 

ribosome, and that the conformational change necessary for the attainment of that state is 

accelerated by GTP hydrolysis rather than by Pi release.  
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Figure 3.1. Distance between L11 residue 38 and IF2 residue 378 in a 

70S.IF2.GMPPCP fMet-tRNAfMet.mRNA complex. According to a cryoelectron 

microscopy structure (EMD-1172, Myaniskov et al., 2005). 
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Figure 3.2. Measures of 70SIC formation and reactivity using different 30SICs. (A) 

Light scattering. (B) GTP hydrolysis; (C) Pi release; (D) fMet-tRNAfMet(prf) fluorescence; 

(E) fMetPhe-tRNAPhe formation. Experiments in (A), (C), and (D) were carried out by 

rapid mixing of the various 30SICs with wt-50S subunits in a stopped-flow 

spectrofluorometer. In all experiments except those in (E) with pre-formed 70SIC, 30S 

and 50S subunits were present in final concentrations of 0.3 µM and 0.5 µM, respectively. 

Preformed 70SIC in (E) was present at 0.3 µM. Other final concentrations were: IF2: 

0.15 µM (A), (E); 0.45 µM (B) – (D). GTP: 100 µM (A), (C), (D); 36 µM (B); 200 µM 

(E). TC: 1.0 µM (E). 
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Figure 3.3. Measures of 70SIC formation and reactivity using different 50S 

subunits. (A) GTP hydrolysis; (B) fMetPhe-tRNAPhe and fMet-puromycin formation; (C) 

Poly (U)-dependent polyPhe synthesis. fMetPhe-tRNAPhe formation was carried out by 

rapid mixing of 30SICCy3 with 50S subunits and Phe-tRNAPheEF-Tu.GTP ternary 

complex. Final concentrations were: 50S, 0.5 µM; 30S, 0.3 µM; IF2, 0.15 µM. Other 

final concentrations were: GTP: 36 µM (A); 200 µM (B); puromycin, 2.5 mM (B). (C) 

see Materials and Methods. Results with wt-50S and 50S-L11 parallel those reported 

earlier. 
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Figure 3.4. FRET between L11Cy5 and Bst-IF2Cy3 in the 70SIC complex. (A) After 

70SIC formation. (B) During 70SIC formation. Excitation was at 540 nm. DA samples 

contain 30SICCy3 and 50SCy5; D samples contain 30SICCy3 and 50SL11; A samples 

contain 30SICBst and 50SCy5. In (A) 30SIC and 50S subunits were incubated at 37 oC for 

15’ prior to the taking of fluorescence spectra. Final concentrations were: 30S, 0.3 µM 

(hatched lines) or 0.6 µM (smooth lines); Bst-IF2 or Bst-IF2Cy3, 0.15 (hatched lines) or 

0.3 µM (smooth lines); 50SL11 or 50SCy5, 0.14 µM; GTP, 100 µM. In (B) 30SICs were 

rapidly mixed with 50S subunits. The D and A samples were monitored at 567 nm and 

670 nm, respectively. The DA samples were monitored at both wavelengths, as 

indicated. Final concentrations were: 30S, 0.30 µM; IF2, 0.25 µM; 50S, 0.18 µM; GTP, 

100 µM. 
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Figure 3.5. Measures of 70SIC formation on combining 30SICCy3 and 50SCy5: 

FRET, light scattering, and Pi formation. (A) Direct comparison of FRET (green 

trace, acceptor fluorescence – excitation 540 nm; monitoring 670 nm) and light 

scattering (blue trace – irradiation at 436 nm; monitoring via a 455 nm cutoff filter) 

changes during 70SIC formation. Both traces were determined for an identical solution 

having the following final concentrations: 30S, 0.3 µM; Bst-IF2Cy3, 0.45 µM; 50SCy5, 

0.60 µM. For ease of comparison, the changes in each value were normalized to the total 
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change seen at the plateau for each measurement (~ 10 s). The ratio of normalized FRET 

change to normalized light scattering change is plotted in the inset. When fMet-tRNAfMet 

was omitted, virtually no changes were seen in either FRET (red trace) or light scattering 

(yellow trace). (B) FRET changes (green, red, and blue traces) and Pi formation (orange 

trace). Final concentrations employed: green and orange traces: 30S, 0.3 µM; Bst-IF2Cy3, 

0.45 µM; 50SCy5, 0.60 µM; blue trace: 30S, 0.6 µM; Bst-IF2Cy3 0.50 µM; 50SCy5, 0.18 

µM; red trace: 30S, 0.3 µM; Bst-IF2Cy3 0.25 µM; 50SCy5, 0.50 µM. FRET changes are 

normalized for the total change seen at the plateau for the green trace, as in (A). The Pi 

release is normalized for the total change seen at the plateau, achieved at ~ 5s. Final GTP 

concentration in (A) and (B), 100 µM.  All solid black lines are fits of the data to 

Scheme 1. (C) Scheme 1, the minimal scheme accounting quantitatively for 70SIC 

formation in the presence of GTP.  
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Figure 3.6. Measures of 70SIC formation when GDPNP replaces GTP. (A) Light 

scattering increase during 70SIC formation (blue trace, GTP; green trace, GDPNP). 

Inset: extension of results to 10 s. (B) FRET efficiency and light scattering increases 

during 70SIC formation measured in the presence of GDPNP.  FRET efficiency, blue 

and red traces in the presence or absence of fMet-tRNAfMet, respectively. Light 

scattering, green and yellow traces in the presence or absence of fMet-tRNAfMet, 

respectively.  (C) FRET efficiency increases during 70SIC formation. Blue trace: higher 

30SIC concentration in the presence of GTP; green and orange traces, higher 30SIC 

concentration in the presence of GDPNP in the presence or absence of fMet-tRNAfMet, 
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respectively; red trace, lower 30SIC concentration in the presence of GDPNP. Inset: 

Expanded time scale. Final concentrations in (A) and (B) were 30S, 0.3 µM; Bst-IF2Cy3, 

0.45 µM; 50SCy5, 0.60 µM. Final concentrations in (C) were 30S, 0.6 µM; Bst-IF2Cy3, 0.5 

µM; 50SCy5, 0.18 µM (blue and green traces –higher 30SIC) or 30S, 0.3 µM; Bst-IF2Cy3, 

0.25 µM; 50SCy5, 0.18 µM (red trace – lower 30SIC). Final GTP or GDPNP 

concentration in (A) – (C), 100 µM. Solid black lines are fits of the GDPNP results to 

either a two-phase (light scattering) or three-phase (FRET) reaction. Fitted parameter 

values are: light scattering - kapp1, 35 ± 5 s-1, kapp2, 1.10 ± 0.03 s-1; FRET, higher 30SIC - 

kapp1, 20 ± 1 s-1, kapp2, 2.2 ± 0.1 s-1, kapp3, 0.19 ± 0.01 s-1: relative FRET efficiency 

amplitudes; phase 1, 0.46 ± 0.05: phase 2, 0.51 ± 0.05: phase 3, 1.00. FRET, lower 

30SIC - kapp1, 16 ± 1 s-1, kapp2, 1.9 ± 0.1 s-1, kapp3, 0.19 ± 0.01 s-1: relative FRET 

efficiency amplitudes; phase 1, 0.64 ± 0.08: phase 2, 0.47 ± 0.06: phase 3, 1.00. 
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Figure 3.7. FRET monitoring of the fidelity function of IF3. The effect of IF3 on the 

rate and extent of FRET efficiency increase when the AUG initiation codon is replaced 

by AUU. 022AUG-mRNA, +IF3, blue trace; 022AUG-mRNA, -IF3, orange trace; 

022AUU-mRNA, +IF3, green trace; 022AUU-mRNA, -IF3, red trace. Final 

concentrations were: IF2Cy3, 0.15 µM; 30S, 0.3 µM; 50SCy5, 0.14 µM; GTP, 100 µM.  
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Table 3.1. Functionality of different 30SICs with respect to 70SIC formation and 

reactivitya 

 

a reaction conditions as described in the legend to Figure 3.2 

b dipeptide formation, rapid mixing of 30SIC with 50S subunits and cognate TC  

c dipeptide formation, rapid mixing of 70SIC with cognate TC  

 

 

 

Apparent rate 

constant (s-1) 

30SICEco 30SICBst 30SICCy3 

LS1  61 ± 5 82 ± 5  65 ± 3 

LS2  10 ± 1  8 ± 1 10 ± 1 

GTP1  64 ± 13  53 ± 8  40 ± 2  

fMet1 4.1± 0.4 5.2 ± 0.5 - 

fMet2 1.6 ± 0.3 2.1 ± 0.2 - 

Pi1 7.0 ± 0.5 7.0 ± 0.5 7.0 ± 0.5 

Pi2 1.5 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 

k’dp
b 0.28 ± 0.06 0.14±0.03 0.18±0.06 

k* dp
c 1.6 ± 0.2 0.12±0.02 - 
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Table 3.2. 50S subunit function in 70SIC formation: apparent rate constants and 

reaction stoichiometries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter wt-50S 50S-L11 50SL11 50SCy5 

GTP1 (s-1) 41 ± 3 23 ± 6 37 ± 9 29 ± 6 

Pi/IF2  0.85 ± 0.05 0.48± 0.04 0.83 ± 0.07 0.83± 0.04 

k’ ’dp(s
-1) 0.18 ± 0.06 - - 0.07 ± 0.01 

fMetPhe/IF2  0.65 ± 0.07 - - 0.66± 0.04 

k’puro(s
-1) 0.42 ± 0.05 - - 0.33 ± 0.04 

fMet-puro/IF2   0.75 ± 0.03 - - 0.65 ± 0.03 
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CHAPTER 4 

SIMULTANEOUS BINDING OF G-PROTEINS TO THE 

RIBOSOME 
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4.1 ABSTRACT 

 Procaryotic ribosomal protein synthesis is carried out with the aid of four G-proteins 

(IF2, EF-Tu. EF-G, RF3) which share a common binding locus within the 70S ribosome 

that includes protein L11. Such sharing has lead to the commonly held view that 

simultaneous stable binding of two G-proteins to the ribosome is impossible, and that a 

ribosome-bound G-protein must dissociate before a second G-protein can bind. Here we 

use FRET experiments that measure IF2–L11 interaction within the ribosome as well as 

ribosome:G-factor co-sedimentation experiments to demonstrate that IF2 and EF-Tu can 

coexist stably on the ribosome, and that IF2 and EF-G can coexist at least transiently. We 

present a three-dimensional model demonstrating how such coexistence could be 

achieved and consider the role that multiple copies of ribosomal protein L7/L12 may play 

in multiple G-protein binding to the ribosome and G-factor exchange during polypeptide 

elongation. 
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4.2 INTRODUCTION 

  Procaryotic ribosomal protein synthesis is carried out with the aid of four G-proteins, 

initiation factor 2 (IF2), elongation factors EF-Tu and EF-G, and ribosomal release factor 

3 (RF3). These factors participate in each of the four distinct stages of protein synthesis: 

initiation (IF2), culminating in the formation of 70S initiation complex (70SIC); 

elongation, proceeding via an alternation between pre-translocation (PRE) complex 

formation (EF-Tu) and post-translocation (POST) complex formation (EF-G); 

termination (RF3), involving the hydrolytic cleavage of complete polypeptide from 

peptidyl tRNA bound to the ribosome; and ribosome recycling (EF-G), resulting in the 

reformation of 50S and 30S subunits, the latter capable of re-initiation on a new mRNA. 

Cryoelectron microscopic (cryo-EM) structures (Agrawal et al., 1998; Klaholz et al., 

2004; Stark et al., 2000; Stark et al., 2002; Valle et al., 2003a,b; Myasnikov et al., 2005; 

Allen et al., 2005) show these four protein factors to share a common binding locus, 

mainly located at the intersubunit space of the 70S ribosome and spanning two adjacent 

but distinct sites on the 50S subunit, the so-called GTPase associated center (denoted 

GAC and including 23S rRNA helices 42-44 and the associated proteins L11, L10, and at 

least one of the four L7/L12 proteins) and the sarcin-ricin loop (SRL) comprising 23S 

rRNA nucleotides (2646-2674) (Li et al.,  2006; Connell et al., 2007). 

 An important and currently unresolved question is the mechanism by which one G-

protein is exchanged for another as protein synthesis moves between these four stages, or, 
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during the elongation stage, as EF-Tu and EF-G bind alternatively to the ribosome. It has 

long been accepted that simultaneous stable binding of two G proteins to the ribosome is 

impossible. Thus, the failure of early attempts to obtain evidence for a stable complex 

containing both EF-Tu and EF-G (Richman and Bodley, 1972; Mesters et al., 1994) and 

the strong overlap between the binding sites for EF-G and EF-Tu seen by cryo-EM 

(Agrawal et al., 1998, 1999a; Stark et al., 2000; Valle et al., 2003a,b; Mitra and Frank, 

2006; Connell et al., 2007) have led to current models of the elongation stage [e. g., 

Sergiev et al., 05a; Berk and Cate, 2007] in which EF-G must dissociate from the 

ribosome before EF-Tu, in the form of a ternary complex (TC) (aa-tRNA.EF-Tu.GTP) 

can bind. Similarly, the release of IF2 from the 70S ribosome following GTP hydrolysis 

has been deemed essential by some workers for formation of the first peptide bond 

(Lockwood et al., 1972; Caldas et al., 2000; Myasnikov et al., 2005), which requires TC 

binding, with comparison of cryo-EM structures of initiation and elongation complexes 

indicating an incompatibility for simultaneous binding of IF2 and EF-Tu (Myasnikov et 

al., 2005).  

 Each of the four G-protein proteins binds to the ribosomes more tightly as a GTP 

complex than as a GDP complex (IF2: La Teana et al., 1996; Luchin et al., 1999; 

Myasnikov et al., 2005; Grigoriadou et al., 2007), (EF-Tu: Pape etal., 1998) (EF-G: Pan 

et al., 2007) (RF3: Gao et al., 2007, Zavialov et al., 2003), leading to the plausible 

hypothesis that such weakened binding allows dissociation of one G-protein  from the 
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ribosome prior to the association of another. Cryo-EM structures of ribosome complexes 

containing either IF2.GDPCP (a non-hydrolyzable analog of GTP) or IF2.GDP are 

consistent with this hypothesis (Myasnikov et al., 2005).  

 On the other hand there is some evidence that two G proteins can bind simultaneously 

to the 70S ribosome, IF2 and EF-G, from the work of Lockwood and Maitra (1974), and 

two copies of EF-G, from rapid kinetics results of our own (Seo et al., 2004).  In addition, 

the fact that the first peptide bond can be formed regardless of GTP hydrolysis (Tomsic et 

al., 2000) led Brandi et al. (2004) to speculate that IF2 and EF-Tu could be bound 

simultaneously to the ribosome, with IF2 sliding or turning so as to occupy a position in 

which no steric clash with EF-Tu would occur. 

 Here we use results from FRET and co-sedimentation experiments to demonstrate 

that neither added TC nor EF-G displaces IF2 from the ribosome as it transitions from the 

70S initiation complex (70SIC) to the elongation stage of polypeptide synthesis, and that 

EF-Tu and IF2 are able to bind simultaneously in a stable fashion to the ribosome. The 

implications of these findings for the general question of G-protein factor exchange are 

considered. 

 

4.3 RESULTS 

4.3.1 FRET evidence for simultaneous binding to 70S ribosomes of Bst-IF2 and 

either EF-Tu or EF-G 
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 Elsewhere (Qin et al., 2009) we have shown that formation of functional 70SIC 

from 30SIC complexes containing Bst-IF2 labeled with Cy3 (Bst-IF2Cy3) at position 378 

in the G1 domain (Marzi et al., 2003), denoted 30SICCy3, with 50S subunits containing 

ribosomal protein L11 labeled in position 38 within the N-terminal domain (L11-NTD), 

denoted 50SCy5, is accompanied by the generation of a FRET signal, diagnostic of IF2 

interaction with L11-NTD within the 70S ribosome, which persists even after GTP bound 

to Bst-IF2 is hydrolyzed and Pi is released, with an estimated fluorophore-fluorophore 

distance of ~ 60 Å. Sample results demonstrating decreased donor (Cy3) fluorescence 

coupled with enhanced acceptor fluorescence (Cy5) are shown in Figure 1A. These 

results indicate that Bst-IF2Cy3.GDP is stably bound to 70SIC, consistent with recent 

direct visualization of this complex obtained by cryo-EM (Myasnikov et al., 2005). 

Ribosome-bound Bst-IF2Cy3 can be readily exchanged with Bst-IF2 in solution, as 

evidenced by the large increase in donor fluorescence and decrease in acceptor 

fluorescence on Bst-IF2 addition (Figure 4.1B). However, both donor and acceptor 

fluorescence change to only minor extents, on addition of even large molar excesses of 

Phe-tRNAPhe.EF-Tu.GTP ternary complex (TC) (Figure 4.1B, Figure 4.4). Although such 

addition has been shown to afford dipeptide formation (Qin et al., 2009), leading to PRE 

complex formation, the results in Figure 4.1B do not rule out the possibility that IF2 first 

dissociates from the ribosome, permitting TC binding, and then reassociates with the 

ribosome following EF-Tu.GDP dissociation. 
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 To investigate this point further, we determined the dynamics of both FRET 

change, as monitored by acceptor fluorescence, on rapid mixing of 30SICCy3 with 

solutions of 50SCy5 containing varying quantities of TC and EF-G, and, in parallel, of 

fMetPhe and fMetPhe-puro formation, using rapid quench assays. These experiments 

were conducted in two buffers that have been used extensively in studies of ribosome 

function, Buffer W (Figure 4.1C), a relatively high Mg2+ (7 mM) buffer which allows for 

high stoichiometries of tRNA binding (Pape et al., 1998; Savelsbergh et al., 2003; Pan et 

al., 2006, 2007) and polyamine buffer (Figure 5.1D), which employs a lower Mg2+ 

concentration in the presence of spermine and spermidine, and increases the accuracy of 

tRNA recognition (Rheinberger and Nierhaus 1987) and stabilizes the binding of E-site 

tRNA (Agrawal et al., 1999b; Dinos et al., 2005). 

In the experiment shown in Figure 4.1C in Buffer W, the rapid rise in acceptor 

fluorescence corresponding to 70SIC formation, seen in the absence of TC, is followed 

by a small decrease for reactions carried out in the presence of saturating TC, which 

results in fMetPhe formation and PRE complex formation. The apparent rate constant for 

this decrease, 0.076 ± 0.003 s-1, is essentially identical to the apparent rate constant for 

fMetPhe formation, 0.08 ± 0.01s-1, suggesting that Bst-IF2Cy3 re-orients within the 70S 

ribosome on TC binding, permitting dipeptide formation and PRE complex formation. 

Added TC has almost no effect on the rise in acceptor fluorescence in the first phase of 

reaction, and does not lead to a sharp transient drop in fluorescence thereafter, strongly 
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suggesting that IF2 remains bound to the ribosome throughout the process. For 

experiments conducted in polyamine buffer (Figure 4.1D), neither added TC, nor the 

combination of added TC and EF-G, which moves fMetPhe-tRNAPhe to the puromycin-

reactive P- position as a result of POST complex formation, have appreciable effects on 

the change in acceptor fluorescence that accompanies 70SIC formation. These results 

strongly suggest that IF2 remains bound to the ribosome throughout the first elongation 

cycle, which involves 70SIC conversion to PRE complex, which is in turn converted to 

POST complex.  

Overall, the experiments presented in Figure 4.1 presenting compelling evidence 

that either EF-Tu or EF-G can coexist on 70S ribosomes with IF2, at least transiently, but 

leave open the question of whether either EF-Tu or EF-G can stably co-exist with IF2 on 

the ribosome. This point is addressed directly below.  

 

4.3.2 Co-sedimentation evidence for stable simultaneous binding to 70S ribosomes of 

IF2 and EF-Tu 

Direct evidence for stable simultaneous binding of IF2 and EF-Tu to the ribosome 

was obtained by sucrose cushion co-sedimentation experiments, in which quantitative 

SDS-PAGE analysis was performed on the proteins extracted from ribosomal pellet. 

Shown in Figure 4.2 are results from 5 separate experiments, in which the pre-incubated 

ribosomal sample, prior to ultracentrifugation, contained: 1) 70SIC; 2) 70SIC + TC; 3) 
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70SIC + TC + kirromycin; 4) 70SIC + TC + EF-G.GTP; and 5) 70SIC + TC + EF-G.GTP 

+ fusidic acid + puromycin. Here, kirromycin or the combination of fusidic acid and 

puromycin is added to stabilize EF-Tu.GDP (Wolf et al., 1977; Parmeggiani et al., 1985) 

or EF-G (Seo et al., 2006) binding to the ribosome, respectively. In the absence of these 

added antibiotics, neither EF-Tu nor EF-G is bound to the ribosome stably enough to be 

retained on ultracentrifugation. These experiments permit the conclusions that i) IF2 

within 70SIC is bound tightly enough to cosediment with the ribosome (lane 1); ii) EF-Tu 

binding to the ribosome in the presence of kirromycin does not displace bound IF2 (lane 

3); and iii) EF-G binding in the presence of fusidic acid leads to a weakening of IF2 

binding but not a complete removal (lane 5).  

More quantitative conclusions can be made for these and related experiments from 

the results summarized in Table 4.1. The results show that using ≥ 1.5-fold excess of Bst-

IF2 in forming 70SIC results in stoichiometric retention of Bst-IF2 in the pelleted 

ribosome (experiment #9) and this stoichiometry is little affected by addition of excess 

TC in either the presence or absence of kirromycin (experiment #s 3, 4, 10). Futhermore, 

the sum of the stoichiometries of Bst-IF2 and EF-Tu that co-sediment with the ribosome 

clearly exceeds 1.0 (1.3 – 1.6 for experiment #s 2 – 4), demonstrating clearly that at least 

some of the sedimented ribosomes must contain both bound EF-Tu and bound Bst-IF2. 

The failure of added TC to displace Bst-IF2 from the ribosome in the co-sedimentation 

assay contrasts with the ability of Bst-IF2 added from solution to displace ribosome 
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bound Bst-IF2.  This is shown by a large reduction in the amount of Bst-IF2Cy3 co-

sedimenting with ribosomes, as determined by A554nm, in the presence of added Bst-IF2 

(Table 4.2), in results paralleling those presented in Figure 4.1B.   

In contrast to the high retention of Bst-IF2 (experiment #1), no detectable IF2 co-

sediments with 70SIC made with Eco-IF2.GTP, with or without added TC and 

kirromycin (experiment #s 5 and 6). Since GTP bound with IF2 is rapidly hydrolyzed to 

GDP with release of Pi (Tomsic et al., 2000; Grigoriadou et al., 2007), the co-

sedimentation results clearly demonstrate that Bst-IF2.GDP is more stably bound to 70S 

ribosomes than Eco-IF2.GDP, as suggested by other studies (La Teana et al. 1996; Qin et 

al., 2008). However, when 70SIC is made with GDPNP in place of GTP, Eco-IF2 is 

stoichiometrically retained (0.9 per ribosome). This result recalls those of Luchin et al. 

(1999) showing that, although wt-IF2 does not cosediment with 70S following GTP 

hydrolysis, such co-sedimentation is found for Eco-IF2 variants with inhibited GTPase 

activity. Strikingly, the high stoichiometry of co-sedimenting IF2.GDPNP is not reduced 

in the presence of added TC and kirromycin, which results in the co-sedimentation of 0.5 

equivalents of EF-Tu (experiment # 8).  Thus, Eco-IF2 or Bst-IF2 can be bound to the 

70S ribosome simultaneously with EF-Tu.  

Although binding of EF-G.GTP to the ribosome during translocation has no 

apparent effect on the IF2-L11 FRET signal (Figure 4.1D), it does lead to a clear 

decrease in the stoichiometry of co-sedimenting IF2 (experiment #s 11, 12 and 13). We 
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interpret the two sets of results as indicating that IF2 and EF-G can bind concurrently to 

the ribosome, but that bound EF-G weakens IF2 binding such that it is not fully retained 

during ultracentrifugation through a sucrose cushion. This interpretation is supported by 

the lack of effect on retained IF2 of using a large excess of EF-G (experiment #s 12 and 

13), or of adding fusidic acid and puromycin (experiment #13). However, because EF-G 

is less well retained during ultracentrifugation than is EF-Tu in the presence of 

kirromycin, we lack the clear-cut proof of this interpretation that would be provided by a 

combined stoichiometry of co-sedimented IF2 and EF-G in excess of 1.0/ribosome.  

 

4.3.3 A model for simultaneous binding of IF2 and EF-Tu to the ribosome. 

 Comparison of the observed 70S binding sites of EF-Tu (as a kirromycin-stalled 

complex, Valle et al., 2003a) and IF2.GDP (Myasnikov et al., 2005) shows there to be 

substantial steric overlap, leading the the conclusion that their mutual positions on the 

ribosome are incompatible (Figure 4.3A). However, there are several possibilities for 

how the binding site of IF2 might be rearranged to allow coexistence with EF-Tu in a 

mixed complex on the ribosome. One attractive model is shown in Figure 3B, in which 

the electron density map obtained by Valle et al. (2003a) (emd-1055 in the EM-Database) 

is used as a framework in which to position IF2 so as to avoid steric clashes with either 

ribosomal components or EF-Tu. Here, relatively minor movements of the IF2 G2-G3, 

C1 and C2 domains (for IF2 nomenclature see Simonetti et al., 2008) allow IF2 to be 
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bound simultaneously with EF-Tu, while retaining its general position within the 

intersubunit space. Such minor movements are consistent with the at most minor changes 

seen in IF2Cy3-L11Cy5 FRET efficiency on either TC or EF-G binding (Figure 4.1). In the 

model EF-Tu makes strong contacts with the GAC, the SRL, and presumably at least one 

CTD of L7/L12 (Valle et al., 2003a).  IF2 retains its strong contacts with the 30S subunit 

via its NTD (Caserta et al., 2006) and contacts several regions of the 50S subunit, 

including H69, L14, and L19/H95 via the C2, C1, and G domains, respectively. 

H69 of 23S rRNA is believed to assist tRNA movement from A- to P- and P- to 

E-site during translocation (Yusupov et al., 2001; Valle et al., 2002; Valle et al., 2003a; 

Schuwirth et al., 2005; Korostelev et al., 2006; Selmer et al., 2006; Yusupova et al., 

2006; Li and Frank, 2007). Within the A/T site tRNA, adopting a bent conformation, 

contacts only the tip of H69 via its hinge region between the D and anticodon stems 

(Valle et al., 2003a). A particularly interesting feature of the model is that it positions the 

C2 domain of IF2 as a virtual continuation of H69, where it is well-positioned to assist 

movement of tRNA from the A/T site to the A site following GTP hydrolysis and EF-Tu 

dissociation.  Here the charge distribution of IF2-C2, in which a continuous negative 

surface is surrounded by patches of positive residues (Figure 4.3C), would allow sliding 

of the tRNA in place.  

 

4.4 DISCUSSION 
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 The experiments displayed above provide compelling evidence that IF2 and EF-Tu 

can coexist stably on the ribosome, and that IF2 and EF-G can coexist at least transiently. 

Stable coexistence of IF2 and EF-Tu, in the presence of the antibiotic kirromycin, is 

demonstrated by the co-sedimentation experiments in Figure 4.2. Transient coexistence 

for both elongation factors is demonstrated by the failure of either the TC or EF-G.GTP 

to substantially decrease the IF2-L11 FRET signal, which occurs exclusively via IF2 

interaction with L11 as part of a 70S complex (Qin et al., 2009), while at the same time 

affording both EF-Tu-dependent fMetPhe formation and EF-G dependent translocation 

(Figures 4.1C, 4.1D). Here it is worth emphasizing that the co-sedimentation assay, 

though quite rigorous in providing clear stoichiometric evidence for G cofactor 

coexistence on the ribosome, is likely to be overly stringent as an indicator of what 

complexes exist in solution, since more labile and/or thermodynamically weaker 

complexes that do not survive ultracentrifugation will not be seen in this way. Thus, a 

longer-lived ribosome complex containing both IF2 and EF-G is not excluded by our 

results. 

 The FRET experiments demonstrating transient coexistence were carried out with a 

Cy3-labeled variant of Bst-IF2 rather than of Eco-IF2. However, Bst-IF2 is functionally 

interchangeable with Eco-IF2 in in vitro assays (Brombach et al., 1986; Qin et al., 2009), 

and has recently been shown to complement an E. coli infB null mutation in vivo (E. 

Caserta and C. Gualerzi, private communication). Thus, although the complexes that Bst-
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IF2 forms with E. coli ribosomes and ribosomal subunits are somewhat more stable than 

those formed by Eco-IF2, they are unlikely to be artifactual, and in fact allow translation 

intermediates involving IF2 to be studied more easily, both in the present case and in 

earlier studies (La Teana et al., 1996; Marzi et al., 2003). 

Since IF2 remains bound to the ribosome during at least one complete elongation 

cycle, it is reasonable to expect that it may survive several such cycles, raising the 

question of the functional significance of such binding. The model presented in Fig. 3 

shows how bound IF2 could facilitate tRNA movement from the A/T- to the A-site 

during elongation. In addition, Caserta et al. (2006) have hypothesized that anchoring IF2 

to the ribosome could ensure the exercise of its functions in favoring 70S formation 

initiator and fMet-tRNAfMet binding to the P-site (Grigoriadou et al., 2007 and references 

therein), even when the number of ribosomes in the cell is drastically reduced, as in time 

of famine. It has also been shown that IF2, acting in concert with IF1, catalyzes peptidyl-

tRNA release from the P-site of ribosome, an activity which decreases with increasing 

length of nascent polypeptide and is especially marked in the presence of low 

concentrations of TC cognate for the codon in the A-site (Karimi et al., 1998). Such 

activity could liberate ribosomes trapped at the initial stages of protein synthesis 

elongation by ``hungry codons'' or for other reasons (Karimi et al., 1998), and would be 

expected to be enhanced by IF2 already bound to the ribosome as compared with IF2 

coming from the cytosol.  
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 The structural model shown in Figure 5.3B shows one possibility for how the 

ribosome could accommodate both IF2 and EF-Tu (parallel models could be constructed 

for simultaneous binding of IF2 and EF-G), but leaves open the question of the 

mechanism by which such accommodation is achieved. Here the results of Kothe et al. 

(2004) and Diaconu et al. (2005) are pertinent. These workers have obtained strong 

evidence that the highly mobile L7/12 C-terminal domains [CTDs] that are proximal to 

the GAC promote recruitment of G-protein factors to the ribosome. Helgstrand et al. 

(2007) has shown that these CTDs, of which there are four copies on an E. coli ribosome, 

can each bind to all four G-protein translation cofactors, possibly via interaction with a 

site or sites that the G proteins have in common, although this latter point has been 

questioned (Nechifor et al., 2007). Ultimately, these  cofactors form additional contacts 

with the GAC and the SRL, as well as with other regions of the ribosome that might be 

specific for each factor, such as the 30S binding site of the N-terminus of IF2 (Marzi et 

al., 2003; Allen et al., 2005, 2007; Caserta et al., 2006) and the A-site interaction of 

domain IV of EF-G (Valle et al., 2003b) Helgstrand et al. (2007) have suggested that 

some copies of L7/L12 could potentially interact with G-protein factors not yet 

positioned in their final binding sites on the ribosome.  

 Taking this suggestion one step further, we hypothesize that binding of an incoming 

TC to a 70SIC proceeds via an initial contact with an L7/L12 CTD not involved in IF2 

binding. In vivo, where ribosome concentration is ~ 20 µM (Lambert et al., 1983; Caldas 
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et al., 2000), even weak binding should suffice for substantial complex formation. 

Displacement of IF2 from the GAC and SRL to allow “canonical” EF-Tu binding in the 

position seen by cryo-EM (Figure 4.3B) would then take place via a concerted series of 

reactions from this initially formed complex. Experiments are underway to test this 

hypothesis, as well as to determine whether, during normal protein elongation, when both 

EF-Tu and EF-G binding to the ribosome are transient, EF-G binding precedes EF-Tu 

release (and vice-versa), via initial contact with an L7/L12 CTD as described above. 
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Figure 4.1. Monitoring IF2 binding to the ribosome by FRET between L11Cy5 and 

IF2Cy3 A. In the 70SIC. FRET is indicated by the decrease in donor emission and the 

increase in acceptor emission in the doubly-labeled (DA, donor-acceptor) sample, as 

compared with the singly labeled samples, D, donor alone or A, acceptor alone on 

excitation at 540 nm. The corrected acceptor fluorescence due to FRET is obtained by 

subtracting out contributions from the D and A samples to the DA sample (Seo et al., 

2006). B.  Effect of added TC (0.375 µM) or excess Bst-IF2 (1.0 µM) on the DA FRET 

signal seen in part A. Further increases in TC concentration up to 1.5 µM led to only 

slight additional decreases in FRET efficiency (Figure 5.4). C. and D. Kinetics of FRET 

acceptor fluorescence change, fMetPhe formation (∆), and fMetPhe-puromycin formation 

(▲) during formation of 70SIC, PRE and POST complexes. A split time scale is 

employed in part D to make clear the persistence of acceptor emission during fMetPhe-

puromycin formation. 30SICCy3 was rapidly mixed with 50SCy5 and varying TC and EF-G 

concentrations, as indicated. Experiments in parts A – C and D were carried out in W and 

polyamine buffers, respectively. All experiments contained: IF1, IF3, fMet-tRNAfMet 

0.45µM; 022mRNA 0.9 µM; 30S 0.3 µM. In addition, experiments in parts A and B 

contained Bst-IF2Cy3 or Bst-IF2, 0.25 µM; 50SCy5 or 50S, 0.18 µM; GTP 100 µM: 

experiments in parts C and D contained IF2Cy3 0.15 µM; 50SCy5, 0.5 µM; GTP, 200 µM. 

In part D in the absence of EF-G, similar fluorescence traces were obtained at 0.5 µM or 

2.0 µM TC. fMetPhe formation was carried out at 1 µM TC. fMetPhe-puromycin 

formation was carried out at 1 µM of both TC and EF-G and 2.5 mM puromycin.  
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Figure 4.2. Cosedimentation of ribosomes and factors through a sucrose cushion. A. 

SDS-PAGE analysis of pelleted samples. Lanes 1 and 4: 70SIC alone; Lanes 2 and 3: 

70SIC preincubated with TC in the absence and presence of kirromycin (0.2 mM), 

respectively; Lane 5: 70SIC preincubated with TC and EF-G (3 µM) in the presence of 

fusidic acid (1 mM) and puromycin (0.3 mM). All preincubations contained, in Buffer W: 

IF1, IF3, fMet-tRNAfMet, 0.45 µM; mRNA 0.9 µM; 70S 0.3 µM, GTP 200 µM, TC 0.6 

µM, and either 0.33 µM Bst-IF2 (lanes 1 – 3) or 0.45 µM Bst-IF2 (lanes 4, 5). Lanes 1 – 

3, 14% acrylamide gel, lanes 4 and 5, 8% acrylamide gel. B. Lanes 1 and 3 -5 scanned 

using ImageJ. Lane 2 gave results identical to Lane 1. C. Sample standard lines from 

intensity of gel staining for proteins Bst-IF2 (square), EF-Tu (diamond) and S1 (triangle), 

giving the following values (in arbitrary units) per pmol, based on three independent 

measurements: Bst-IF2, 93 ± 7; S1, 57 ± 6; EF-Tu, 46 ± 8. The value for Eco-IF2 was 

essentially identical to that for Bst-IF2. The concentrations of proteins were determined 

as follows: Bst-IF2 and Eco-IF2, Bradford assay (Bradford ,1976); S1, set equal to the 

ribosome concentration from which protein was extracted (1A260 unit equals 26 pmole); 

EF-Tu, determined from the EF-Tu:[3H-GDP] binding filter assay (Arai et al., 1972). 

This value corresponds to about 60% of the value obtained by Bradford assay. 
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Figure 4.3.  A plausible model for simultaneous binding of EF-Tu and IF2 to the 70S 

ribosome. A. Steric clash between IF2.GDP and kirromycin-stabilized TC bound to the 

70S complex, using previously determined positions of IF2.GDP and P-site tRNA 

(Myasnikov et al., 2005) and of  the TC complex (Valle et al., 2003a). B.  A plausible 

model for simultaneous binding of both factors, in which the position of TC and P-site 

tRNA are unchanged from A., and IF2, while relocated within the 70S, with movements 

of the order of 10 - 30 Å of the G1-G2-G3, C1 and C2 domains, is still retained within 

the intersubunit space. C. As for B with the surface charge distribution of the C2 domain 

of IF2 colored from red-negative to blu-positive. The C2 domain in this position forms an 

ideal prolongation of H69. This may help the A/T tRNA to be accommodated into the 

A/A site. The figure has been produced using Pymol (DeLano, W.L. “PyMOL” (2002) 

www.pymol.org) and the pdb files 2HGR_C for the fMet-tRNA (Yusupova et al., 2006), 

2HGU_A for the H69 and 1LS2 for the EF-Tu-Phe-tRNA complex (Valle et al., 2002).  
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Figure 4.4.  Titration of DA FRET signal with excess added TC, as indicated. All 

experiments contained: IF1, IF3, fMet-tRNAfMet 0.45µM; 022mRNA 0.9 µM; Bst 

IF2Cy3 or BSt IF2, 0.25 µM; 30S 0.3 µM; 50SC5 or 50S, 0.18 µM; GTP 100 µM in 

Buffer W. 
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 Table 4.1. Co-sedimentation of IF2 and EF-Tu with 70S ribosomesa  

Preincubation Co-sedimentation Experi- 

ment # IF2  GXP IF2/70S TC/70S EF-G/70S Antibiotic(s)b IF2/70S EF-Tu/70S 

1 Bst GTP 1.0 - - - 0.7 - 

2 Bst GTP 1.0 3.0 - kirro 0.7 0.6 

3 Bst GTP 2.0 3.0 - kirro 0.9 0.5 

4 Bst GTP 3.0 3.0 - kirro 1.1 0.6 

5 Eco GTP 3.0 - - - n.d.c - 

6 Eco GTP 3.0 3.0 - kirro n.d. 0.5 

7 Eco GDPNP 2.0 - - - 0.9 - 

8 Eco GDPNP 2.0 3.0 - kirro 0.9 0.5 

9 Bst GTP 1.5 - - - 1.0 - 

10 Bst GTP 1.5 3.0 - - 0.8 n.d. 

11 Bst GTP 1.5 3.0 3.0 - 0.5 n.d. 

12 Bst GTP 1.5 3.0 9 - 0.5 n.d. 

13 Bst GTP 1.5 - 9 puro + FA  0.4 - 

a Samples of 70SIC, formed as described in Materials and Methods, were preincubated 

with varying amounts of EF-Tu, EF-G, and antibiotics and complexes formed were 

collected by ultracentrifugation through a sucrose cushion. IF2 and EF-Tu contents of 

complexes were determined by SDS-PAGE analysis (Figure 4.2).  

b kirro: kirromycin, 0.2mM; puro: puromycin 0.3 mM; FA: fusidic acid 1.0mM  

c not detectable 
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 Table 4.2: Co-sedimentation results from Bst-IF2Cy3 chasing by TC or Bst-IF2a.  

Preincubation Co-sedimentation 

Experiment IF2C3/70S TC/70S IF2/70S IF2C3/70S 

1 1.5 - - 0.94 

2 1.5 2.0 - 0.85 

3 1.5 - 4.5 0.33 

a 70SIC was made as in Materials and Methods except that Bst-IF2Cy3 was used in place 

of Bst-IF2. Subsequently either TC or Bst-IF2 was added as indicated prior to pelleting. 
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CHAPTER 5 

IF2 INTERACTION WITH INITIATIOR tRNA DURING 30S 

AND 70S INITIATION COMPLEX FORMATION 
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5.1 ABSTRACT 

 How the interaction between IF2 and fMet-tRNAfMet dynamically changes during 

the formation of 30S initiation complex and 70S initiation complex remains elusive. Here 

I present stopped flow FRET experiments between Cy3-IF2 as a donor and Cy5- fMet-

tRNAfMet designed to answer this question. A FRET signal arising from Cy3-IF2 and 

Cy5- fMet-tRNAfMet demonstrated that IF2 and fMet-tRNAfMet forms as a binary 

complex. The decrease of FRET signal seen upon the binary complex mixing with 30S-

preinitiation complex indicated an adjustment of the interaction during this process. 

Future studies looking at 70SIC formation would be worth pursing.   
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5.2 INTRODUCTION 

 IF2 forms a well-characterized binary complex with the acceptor end of fMet-

tRNAfMet via its C2 domain (Figure 5.1) (Guenneugues et al., 2000; Meunier et al., 2000). 

This interaction is maintained during part of the process of 70S initiation complex 

(70SIC) formation (Allen et al., 2005; Allen et al., 2007), but is lost within the fully 

formed 70SIC as fMet-tRNAfMet occupies the 70S P-site, permitting reaction with aa-

tRNA to form dipeptide as part of elongation cycle. We have shown that during 70SIC 

formation, fMet-tRNAfMet(prf20) undergoes a marked increase in fluorescence (Figure 

5.2) and fluorescent IF2 (IF2C) undergoes a small decrease in fluorescence, both with a 

rate constant of 2.3 s-1, a value that is consistent with step 4 in Scheme 1 (Figure 5.3) 

being essentially rate-limiting for dipeptide formation (Grigoriadou et al., 2007a; Qin et 

al., 2009).  The questions that remain open are whether step 4 or a preceding step 

corresponds to the required separation of IF2 from fMet-tRNAfMet, and, if so, how large a 

separation is entailed.  

 Ultimately we plan to carry out stopped-flow FRET experiments to answer this 

question, using IF2 Cys derivatives labeled in positions that are close to the interaction 

region between IF2 and fMet-tRNAfMet. According to Marzi et al. 2003, in the binary IF2: 

fMet-tRNAfMet complex, the residues within GII peptide Asn 611-Arg 645 of E. coli IF2, 

corresponding to Asn 464-Glu 498 of Bst IF2, are close to the elbow region of fMet-
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tRNAfMet. Consequently Cy5-D20- fMet-tRNAfMet and Cy3-V451C-IF2 were chosen as a 

FRET pair and utilized in the following studies.   

 

5.3 RESULTS 

5.3.1 Initial work from fMet-tRNA fMet (rhd) and Cy3-660C-IF2 

 Before the Cy5 hydrazide was successfully attached to initiator tRNA, the 

prepared fluorescent derivatives fMet-tRNAfMet(prf) and fMet-tRNAfMet(rhd) were used 

as fluorescent donors to the S660C-IF2 labeled with Cy3, within the CII domain. The 

time dependencies of the fluorescence changes of these two tRNAs and of Cy3-S660C-

IF2 during 70SIC formation were similar to the published data (Figure 5.4) (Grigoriadou 

et al., 2007a; Qin et al., 2009). However, due to the significant interference with the 

donor’s emission from Cy3 fluorophore, as shown in Figure 5.5, it was hard to reliably 

analyze the signal generated between fMet-tRNAfMet(prf) or fMet-tRNAfMet(rhd) and 

Cy3-S660C-IF2. We thus switched to fMet-tRNAfMet(cy5) when this material became 

available. However, no significant FRET signal was observed between fMet-

tRNAfMet(cy5) and Cy3-S660C-IF2 studied as the binary complex. As a result, a second 

switch was to replace Cy3-S660C-IF2 with Cy3-V451C-IF2, which did yield a FRET 

signal with fMet-tRNAfMet(Cy5) when studied as the binary complex, as described below.  
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.5.3.2 Characterizations of Cy5-fMet-tRNAfMet derivative and Cy3 labeled IF2 

derivative 

The 30SIC consists of a 30S subunit containing bound mRNA, charged and 

formylated initiator tRNA (fMettRNAfMet), and initiation factors IF1, IF2, and IF3. We 

have shown that the rate of 30SIC formation can be monitored by changes in 

fluorescence on ligand binding to the 30S subunit, using either a proflavin derivative of 

fMet-tRNAfMet, prf-fMet-tRNAfMet (Grigoriadou et al. 2007a,b), or a coumarin 

(Grigoriadou et al. 2007a) or Cy3 (Qin et al., 2009) derivative of IF2. Here, using Cy5-

fMet-tRNAfMet we obtained a rate of 30SIC formation essentially the same as that 

measured with IF2Cy3 (Fig. 5.6), suggesting that Cy5-fMet-tRNAfMet is fully functional in 

formation of 30SIC. 

V451C in the GII domain of Bst IF2 is proximal to the Asn 464-Glu 498 region of 

Bst IF2, experimentally shown to be near the elbow region of fMet-tRNAfMet (Marzi et 

al., 2003).  This variant was labeled by Cy3 maleimide as described in Chapter 2, to a 

stoichiometry of 1.0/protein. The activity of Cy3-V451C-IF2 was examined by formation 

of 30S initiation complex, giving an apparent rate constant of 21 ± 2 sec−1, as shown in 

Figure 5.6.  

 

5.3.3 Interaction of IF2 and fMet-tRNAfMet
 as a binary complex 

The experiments described above establish the basic functionality of IF2Cy3 and Cy5-

fMet-tRNAfMet
 in 30SIC formation, making it likely that the FRET experiments described 
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below that measure FRET during the combination of these derivatives will be relevant for 

understanding the process of 30SIC formation from native, unmodified components. A 

fluorescence donor IF2Cy3 (D), with a fluorescence acceptor Cy5-fMet-tRNAfMet (A) 

results in formation of the double-labeled binary complex (DA sample) and the 

generation of a strong FRET signal (Figure 5.7A), with considerable decreases and 

increases in donor and acceptor fluorescence signals, respectively, as compared with the 

fluorescence of the D (IF2Cy3 plus fMet-tRNAfMet) and A (IF2 plus Cy5-fMet-tRNAfMet) 

samples. As the fMet-tRNAfMet is a limiting factor in the experiment, the corrected 

acceptor fluorescence change was considered as a reflection of FRET signal. As indicated 

in Figure 5.7B, the addition of two equivalents of IF2Cy3 was enough to lead to a saturated 

FRET signal at the equilibrium state, with a Kd ~0.1µM. 

The fast kinetic study was further performed to reveal how IF2 interacts with the 

initiator tRNA. Figure 5.8 clearly shows that the FRET change is biphasic: a rapid initial 

binding with an apparent rate constant of 170 ± 6 sec-1 followed by a slow conformational 

change with an apparent rate of 0.34 ± 0.01 sec-1. The experiments were repeated using 

the new KinTek stopped flow instrument.  This instrument allows tracking the donor and 

acceptor fluorescence changes at the same time, as shown in Figure 5.9. As a 

consequence of no noticeable fluorescence change in the D or A sample, the fluorescence 

changes at 580 nm and 680 nm in the DA sample directly reflected the FRET change, 

with similar first apparent rate constants of 76 ± 2 sec-1 and 89 ± 3 sec-1, respectively, and 

second apparent rate constants of 0.67 ± 0.01 s-1 and 0.61 ± 0.02 s-1, respectively. The 
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lower concentrations of materials used in the new instrument account for the lower initial 

binding rates. The same second apparent rate constant from both donor and acceptor 

fluorescence changes in DA sample (Figure 5.9) supported that the second phase was 

induced by a conformational change between IF2 and initiator tRNA. 

 

5.3.4 Interaction of IF2 and fMet-tRNAfMet during 30SIC formation 

The kinetic pathway of 30S initiation complex formation hasn’t been fully explored. 

It was reported that the 30S ribosomal subunit with a full complement of each initiation 

factor interacts in stochastic order with the first ligand, either mRNA or fMet-tRNA, to 

yield two binary complexes which, upon binding the second ligand, form an unstable 

“pre-ternary complex” consisting of a 30S subunit bearing two noninteracting ligands 

(mRNA and initiator tRNA) (Gualerzi et al., 2001, Figure 1.1). This complex is a kinetic 

intermediate of the bona fide 30S initiation complex which is formed through a ribosomal 

conformational rearrangement that induces the mRNA start codon and the anticodon of 

fMet-tRNA to base-pair in the P site (Gualerzi and Pon 1990; Gualerzi et al. 2000). All 

the steps preceding the formation of the 30S initiation complex are believed to be in rapid 

equilibrium, and its formation occurs through an isomerization of the preternary complex. 

This isomerization consists of at least two first-order rearrangements kinetically 

controlled by the initiation factors.  

To find out how the interaction of IF2 and fMet-tRNAfMet changes during 30SIC 

formation, the binary complex of IF2Cy3 and fMet-tRNAfMet(cy5) was rapidly mixed with 
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pre-30S initiation complex containing IF1, IF3, mRNA and 30S subunit in the presence 

of GTP. A significant decrease of FRET signal was observed (Figure 5.10), which may 

be triggered by an adjustment of fMet-tRNAfMet within the P site of the ribosome 

(Gualerzi and Pon 1990). The decrease of FRET signal was also consistent with the latest 

reported 30SIC structure (Figure 5.11), showing IF2 and fMet-tRNAfMet were getting 

further, compared to the structure of a free binary complex (Figure 5.1).  

The experiments were also conducted in the stopped flow instrument. The acceptor 

fluorescence in the doubly labeled sample dramatically decreased upon rapid mixing with 

the pre-30SIC with an initial apparent rate constant of 46 ± 1 sec-1 and a second phase 

constant of 0.90 ± 0.04 s-1 (Figure 5.12). When the concentration of the binary complex 

was kept the same, doubling the concentration of the pre-30SIC had little effect on these 

constants and led to only with a slight increase in amplitude (Figure 5.12, Table 5.4). The 

phenomenon indicated that the experimental condition is saturated for the binary complex 

binding the pre-30SIC and that neither the first or second step seen in Figure 5.12 

corresponds to a binding event.  

 

5.4 DISCUSSION AND FUTURE WORK 

 It was proposed that fMet-tRNAfMet and mRNA randomly bound to pre-30SIC 

without direct interaction and then with help of initiation factors the active 30SIC was 

formed (Figure 1.1). Our data has provided another possible route to form 30SIC. Based 

on Figure 5.12, IF2 and fMet-tRNAfMet as a binary complex bind to pre-30SIC and, 
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during this binding process, IF2 and fMet-tRNAfMet quickly come apart and rearrange 

themselves within the 30S subunit to form a functional 30SIC.  

In light of the preliminary work here, the following work should be conducted in the 

future. The interaction of IF2 and fMet-tRNAfMet during 70SIC formation should be 

investigated to determine whether the FRET signal would further decrease or increase 

due to the rearrangement of IF2 and fMet-tRNAfMet on the 70S initiation complex.  

It is known that IF1 can aid IF2 in facilitating fMet-tRNAfMet binding to the P site of 

the ribosome and that IF3 is a fidelity factor and an anti-70S association factor that is 

important for supplying the subunit pool. But how these two factors kinetically impact 

the formations of 30SIC and 70SIC remain unclear. Implementation of the FRET system 

would provide insight into how IF1 and IF3 modulate 30SIC and 70S formation. 

The non-cognate messenger RNA such as 022 AUU mRNA can replace the 

canonical AUG mRNA to explore how sensitive the interaction of IF2 and fMet-

tRNAfMet would be when the system encounters AUU starting codon. It is reported that 

no appreciable difference was observed during 30SIC formation but distinct difference 

was captured during 70S formation (Grigoriadou et al., 2007b). Therefore, it would be 

intriguing to track the underlying changing by means of FRET.  

From a different perspective, the effects of antibiotics of FRET change kinetics may 

be investigated to determine how these compounds modulate 30SIC and 70SIC 

formation.  
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Figure 5.1. The modeled structures of C2 domain and CCA acceptor of fMet-tRNA 

(Meunier et al., 2000). The -strands are coloured in cyan and the coils and turns in grey. 

The size of the ribbon is proportional to the r.m.s.d. of the ensemble of 20 structures 

when superimposed on the mean structure. The side chain of the residues that might be 

involved in the recognition are displayed for the 20 structures. The conserved residues 

C714 and G715 are indicated in blue. The residues surrounding the pocket are indicated 

in yellow. 
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Figure 5.2. The fMet-tRNA fMet(prf20) fluorescence change during 70SIC formation.  

30S initiation complex containing fMet-tRNAfMet(prf20) was rapidly mixed with 50S 

subunit. IF1, IF2, IF3, 0.45 µM; fMet-tRNAfMet (prf20) 0.18 µM; mRNA, 0.9 µM; 30S, 

0.3 µM; 50S, 0.5 µM; GTP, 100 µM. 
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Figure 5.3. A quantitative kinetic scheme for 70 S translation initiation complex 

formation (Grigoriadou et al., 2007). GXP is either GTP or GDPCP; F is IF2; M is fMet-

tRNAfMet; 30S is 30S containing IF1, IF3, and mRNA; and TC is ternary complex (Phe-

tRNAPhe.EF-Tu.GTP).The subscripts A-F and N-P refer to different conformations of 

IF2C and fMettRNAfMet(prf20), respectively, that have different fluorescent intensities. 
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 A                                                                   B 

                               

C                                                                      D 

 

 

Figure 5.4. The fluorescence change of fMet-tRNAfMet(prf20), fMet-

tRNA fMet(rhd20), or Cy3-S660C-IF2 during 70SIC formation. 30S initiation complex 

containing fMet-tRNAfMet(prf20), fMet-tRNAfMet(rhd20), or IF2Cy3 was rapidly mixed 

with 50S subunit. (A) and (B): The fluorescence changes of fMet-tRNAfMet(prf20) and 

fMet-tRNAfMet(rhd20). Blue trace: fMet-tRNAfMet(rhd20), excited at 480nm and 

monitored via a 520nm bandpass filter; green trace: fMet-tRNAfMet(prf20), excited at 

462nm and monitored through a 480nm bandpass filter. IF1, IF2, IF3, 0.45 µM; fMet-

tRNAfMet(rhd20) or fMet-tRNAfMet(prf20) 0.18 µM; mRNA, 0.9 µM; 30S, 0.3 µM; 50S, 
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0.5 µM; GTP, 100 µM. (C) and (D): Cy3-IF2 fluorescence change during 70SIC 

formation, excited at 540nm and monitored by a 570nm bandpass filter. The 

concentrations are as above except that 0.15 µM Cy3-IF2 and 0.45 µM fMet-tRNAfMet. 

The curves are fitted by a triple-exponential equation and the apparent rates are shown in 

Table 5.1.  
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A            B 

      

 

Figure 5.5. Emission spectra examined under donor alone, doubly labeled and 

acceptor alone samples during 30SIC formation. (A) The emission spectra from fMet-

tRNAfMet(prf20) and Cy3-S660C-IF2. (B) The emission spectrums from fMet-

tRNAfMet(rhd20) and Cy3-S660C-IF2. IF1, IF2, Cy3-IF2, IF3, 0.45 µM; fMet-tRNAfMet, 

fMet-tRNAfMet(prf20), fMet-tRNAfMet(rhd20), 0.18 µM; mRNA, 0.90 µM; 30S, 0.30 µM; 

50S, 0.50 µM; GTP, 100 µM.  
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Figure 5.6. Rapid formation of 30SIC. Stopped-flow fluorescence measurements using 

limiting amounts of either  IF2Cy3 (prepared as in Qin et al., 2009) or fMet-tRNAfMet (cy5), 

were carried out at 20°C with 0.3 µM 30S subunits and 3.0 equivalents of mRNA022, 

essentially as described (Grigoriadou et al. 2007b). For the IF2Cy3 binding experiment, 

0.5 equivalent of IF2Cy3.GTP was rapidly mixed with a 30S subunit solution containing 

1.5 equivalents of IF1, IF3, and fMet-tRNAfMet. For the fMet-tRNAfMet (cy5)binding 

experiment, fMet-tRNAfMet (cy5) (0.6 equivalent) was rapidly mixed with 30S subunit 

solution containing 1.5 equivalents of IF1, IF2, and IF3. Both 30S-containing solutions 

were preincubated for 15 min at 37°C prior to rapid mixing. Excitation was at 530 nm or 

650 nm and fluorescence was monitored through a bandpass filter (550 ± 10 nm or 680 

±10 nm) for IF2Cy3 or fMet-tRNAfMet (cy5), respectively. Each trace was fit to a single-

exponential equation, giving apparent rate constants of 20.7 ± 1.3 sec-1 (IF2Cy3) and 

20.9±0.5 sec-1 fMet-tRNAfMet (cy5). 
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Figure 5.7. The steady-state FRET signal between IF2Cy3 and Cy5-fMet-tRNA fMet. 

The samples were measured at 20 oC. (A) Emission spectra of D, DA and A samples 

when excited at 530nm. IF2, IF2Cy3, 0.50 µM; fMet-tRNAfMet (cy5), fMet-tRNAfMet, 0.50 

µM. (B) The corrected emission spectra of DA. The concentration of IF2Cy3 is increasing 

from 0.5 µM up to 4.0 µM.  
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Figure 5.8. Fast kinetic study of IF2 interaction with fMet-tRNA fMet at a short scale 

(A) and a long scale (B). IF2 was rapidly mixed with fMet-tRNAfMet by stopped flow 

instrument. Blue trace: doubly labeled; green trace: acceptor alone. IF2, IF2Cy3, 1.0 µM; 

fMet-tRNAfMet (cy5), fMet-tRNAfMet, 0.50 µM. The curves are fitted by a double-

exponential equation.  
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Figure 5.9. Measures of the fluorescence changes in the doubly labeled sample over 

0.2 sec (A) or 2.0 sec (B). IF2 was rapidly mixed with fMet-tRNAfMet by Kinteck 

instrument. Blue trace: donor fluorescence decrease in DA sample, monitored via a 

580±10nm bandpass filter; green trace: acceptor fluorescence increase in DA sample, 

monitored via a 680±10nm bandpass filter. IF2, IF2Cy3, 0.6 µM; fMet-tRNAfMet (cy5), 

fMet-tRNAfMet, 0.30 µM. The curves are fitted by a double-exponential equation.  
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A                                                                 B 
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Figure 5.10. Equilibrium study of the transition from a binary complex to a 30SIC. 

(A) The binary complex of IF2 and fMet-tRNAfMet or (B) the 30S initiation complex was 

examined under D, DA and A samples. Blue trace: donor alone sample; green trace: 

doubly labeled sample; red trace: acceptor alone sample. (C): Comparison of corrected 

acceptor fluorescence emissions from the binary complex, 30SIC and acceptor alone 

sample. IF1, IF2, IF2Cy3, IF3, 2.25 µM; fMet-tRNAfMet (cy5), fMet-tRNAfMet, 0.50 µM; 

mRNA, 4.5 µM; 30S, 1.5 µM; 50S, 3.0 µM; GTP, 1000 µM. 
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Fiugre 5.11. View of the IF2–fMet-tRNAfMet sub-complex on the 30S initiation 
complex adapted from Simonetti et al., 2008. 
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Figure 5.12. The acceptor fluorescence change of DA sample when the binary 
complex was rapidly mixed with the pre-30SIC. The concentration of each component 
of pre-30SIC in the blue trace is double that in the green trace. In the green trace, IF1, 
IF2Cy3, IF3, 0.45 µM; fMet-tRNAfMet (cy5), 0.15 µM; mRNA, 0.90 µM; 30S, 0.30 µM; 
GTP, 100 µM. 
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Table 5.1: Apparent rate constants (s-1) for Figure 5.4.  

 

  Rhd-tRNA  Prf-tRNA  Cy3-IF2 
kapp1 187 ± 27 148 ± 9 237 ± 15 

kapp2 17.4 ± 1.2 9.7 ± 0.5 7.5 ± 0.19 

kapp3 1.44 ± 0.11 0.89 ± 0.03 0.16 ± 0.01  

Amp1 0.21 ± 0.02 0.25 ± 0.01 0.13 ± 0.01 

Amp2 0.19 ± 0.01 0.14 ± 0.01  0.21 ± 0.01 

Amp3 0.094 ± 0.004 0.166 ± 0.002 0.164 ± 0.007 

Endpoint 0.46  ± 0.01 0.54 ± 0.01 1.49 ± 0.01 
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Table 5.2: Apparent rate constants (s-1) for Figure 5.8.   

 

kapp1 170±6 
kapp2 0.34±0.01 
Amp1 0.128±0.001 
Amp2 0.118±0.001 

Endpoint 0.377±0.0.001 
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Table 5.3: Apparent rate constants (s-1) for Figure 5.9.   

 

  
Donor fluorescence 

decrease  
Acceptor fluorescence 

increase 
kapp1 75.5 ± 0.9 89.5 ± 2.0 
kapp2 0.67 ± 0.01  0.61 ± 0.02  
Amp1 0.106 ± 0.001  0.005 ± 0.001 
Amp2 0.026 ± 0.001 0.0012 ± 0.001 

Endpoint 2.14 ± 0.01 0.031 ± 0.001 
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Table 5.4: Apparent rate constants (s-1) for Figure 5.12.  

 

   Green trace Blue trace 
kapp1  46 ±1 48 ± 2  
kapp2 0.90 ± 0.04  1.04 ± 0.04 
Amp1 0.040 ± 0.001 0.057  ± 0.001 
Amp2 0.019 ± 0.001 0.018  ± 0.001 

Endpoint 0.109  ± 0.001  0.095 ± 0.001 
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CHAPTER 6 

IDENTIFICATION OF NOVEL THIOPEPTIDE-

ANTIBIOTIC PRECURSOR LEAD COMPOUNDS USING 

TRANSLATION MACHINERY ASSAYS 
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6.1 ABSTRACT 

Most thiopeptide antibiotics target the translational machinery: Thiostrepton (ThS) 

and nosiheptide (NoS) target the ribosome and inhibit translation factor function, whereas 

GE2270A/T binds to the elongation factor EF-Tu and prevents ternary complex 

formation. We have utilized several in vitro translational machinery assays to screen a 

library of thiopeptide antibiotic precursor compounds and identified four families of 

precursor compounds that are either themselves inhibitory or are able to relieve the 

inhibitory effects of ThS, NoS, or GE2270T. Some of these precursors represent novel 

compounds with respect to their ability to bind to ribosomes. The results provide not only 

insight into the mechanism of action of thiopeptide compounds, but also demonstrate the 

potential of such assays for identifying novel lead compounds that might be missed using 

conventional inhibitory screening protocols.  
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6.2 INTRODUCTION 

The translational machinery represents one of the major targets within the cell for 

antibiotics (reviewed by Spahn and Prescott, 1996; Wilson, 2004). Many clinical 

important classes of antibiotics, such as the tetracyclines, phenylpropanoids 

(chloramphenicol), macrolides (erythromycin), and aminoglycosides (gentamycin) inhibit 

translation by binding to the ribosome. Despite the potency of many of these drug classes, 

antibiotic resistance among clinically relevant pathogens is an increasing problem and 

thus the need for new antibiotics is more urgent than ever before. One class of antibiotics 

that has received renewed interest in the recent years is the thiopeptide family (reviewed 

by Bagley et al., 2005; Nicolaou et al., 2009), because of their effectiveness against 

Gram-positive bacteria, in particular, methicillin-resistant Staphlococcus aureus (MRSA), 

as well as against the malarial parasite Plasmodium falciparum (McConkey et al., 1997). 

Thiopeptide antibiotics are composed of sulphur- and nitrogen-containing heterocycles as 

well as non-natural amino acids that are linked together to form complex macrocyclic 

frameworks (Figure 6.1A-D). 

 Two distinct families of thiopeptide compounds target the translational apparatus, 

one that targets the ribosome, referred to here as Class I thiopeptides, and the other, 

referred to as Class II thiopeptides, which targets the elongation factor EF-Tu. The best 

characterized of the Class I compounds include thiostrepton (ThS) and nosiheptide (NoS) 

(Figure 6.1 A, B), both of which have been crystallized bound to the large ribosomal 

subunit (Harms et al., 2008) (see later Figure 6.6A, B and G). These structures reveal that 
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the Class I thiopeptides bind within a region of the ribosome is part of the GTPase 

associated center (GAC), so-named because it is involved in translation G-protein factor 

binding and stimulation of GTPase activity (Wilson and Nierhaus, 2005). Biochemically, 

Class I thiopeptides have been shown to inhibit 70S initiation complex (70SIC) formation, 

by interfering with the initiation G-protein IF2 (Brandi et al., 2004) and references 

therein; (Grigoriadou et al., 2007) as well as elongation, by interfering with both the G-

proteins EF-Tu (Gale et al., 1981; Gonzalez et al., 2007; Modelell et al., 1971) necessary 

for rapid cognate aminoacyl-tRNA binding to the ribosome, and EF-G, which catalyzes 

translocation of the tRNA2-mRNA complex from the A and P sites to the P and E-sites 

(Pan et al., 2007; Pestka, 1970; Rodnina et al., 1999; Seo et al., 2006; Weisblum and 

Demohn, 1970). In contrast, the structurally similar Class II thiopeptides (Figure 6.1D) 

do not bind to the ribosome, but instead interact directly with EF-Tu (reviewed by 

Parmeggiani and Nissen, 2006). The crystal structure of the Class II thiopeptide 

GE2270A bound to EF-Tu reveals that the drug binds within a cleft between domains I 

and II of EF-Tu and directly overlaps with the binding site of the terminal end of the 

aminoacyl-tRNA (Parmeggiani et al., 2006; Parmeggiani and Nissen, 2006) (see later 

Figure 6.7A-C). Binding of the drug has been proposed to prevent the closing of domain I 

and II, which is necessary for the induced-fit binding of EF-Tu to the tRNA, and thus the 

drug prevents ternary complex formation (Parmeggiani and Nissen, 2006).   

Although ThS is already in veterinary usage, its low water solubility and poor  

bioavailability has so far precluded its use in human medicine. Recent success has been 
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reported in the total synthesis of a number of Class I and II thiopeptides (reviewed by 

Hughes and Moody, 2007; Nicolaou et al., 2009), including amongst others ThS 

(Nicolaou et al., 2005a; Nicolaou et al., 2005c), and GE2270A (Nicolaou et al., 2008b; 

Nicolaou et al., 2006). Such synthetic studies pave the way to generating improved 

thiopeptide derivatives by identifying synthetic fragments (or derivatives thereof) that 

display biological activity or can act as new lead compounds. 

We have utilized a series of translation machinery assays to screen a library of 

thiopeptide antibiotic precursor compounds. Unlike the parent antibiotics thiostrepton, 

nosiheptide and GE2270T, only a few of the precursor compounds display any significant 

inhibitory properties, even at high concentrations. Instead, however, four structurally 

distinct families of precursor compounds (Figure 6.1E-H) were discovered that relieve 

the inhibitory effect imparted by the parent compounds. The different precursor families 

exhibit differential effects with respect to the inhibitory antibiotic that is counteracted, as 

well as the target whether the ribosome or EF-Tu. Two of the families represent 

completely new compounds with respect to their ability to bind to ribosomes and thus 

open the path to the development of novel antimicrobials. The application of such 

screening strategies will enable the identification of new lead compounds that are not 

detected using conventional inhibitory screening protocols. 

   The work presented here is a collaborating effort by our group and Dr. Wilson’s group. 

Specifically the experiments in Figs 6.2, 6.3C, and 6.3D are completed by our group and 

the rest of the data is accomplished by Dr. Wilson’s group. 
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6.3 MATERIALS AND METHODS 

6.3.1 Component preparation 

GE2270A, T and C1 and the library of thiopeptide precursor compounds were 

synthesized as described previously (Nicolaou et al., 2005b; Nicolaou et al., 2008a; 

Nicolaou et al., 2008b; Nicolaou et al., 2006). Thiostrepton was purchased from Sigma, 

while nosiheptide was the kind gift from Prof. Floss and micrococcin P1 was supplied by 

Dr. Torsten Stachlhaus. With an extinction coefficient of 27,000 cm-1 M-1 at 280 nm in 

DMSO (Bausch et al., 2005), the concentration of ThS is higher by weight than by 

absorbance but the difference within a 10-20% range is acceptable. Northcote et al. 1994 

reported the UV spectrum (in methanol) of glycothiohexide has extinction coefficients at 

296 nm (33,200 cm-1 M-1) and 349 nm (23,800 cm-1 M-1). Because of the structural 

similarity between glycothiohexide and nosiheptide, it is reasonable to estimate the 

concentration of nosiheptide, in the same magnitude with one by weight. 

The tetM gene (Tn916) cloned into the pET24b vector was the kind gift from Prof. V. 

Burdett. Tet(M) protein was expressed in BL21 (DE3) pRIL cells in 20 °C with 0.2 mM 

IPTG. E. coli EF-G cloned into pQE70 vector was expressed in XL1 blue cells. Both 

proteins were purified using Ni-NTA metal-affinity chromatography (Qiagen), followed 

by gel-filtration chromatography on a HiLoad 26/60 Superdex 75 prep grade column 

(Amersham-Pharmacia). For the experiments described in Figures 2 and 5, ribosomes, 

IF2Cy3, IF1, IF3, 30S subunits, MDCC-labeled phosphate-binding protein (PBP), 
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022AUG mRNA, and fMet-tRNAfMet, were prepared as described previously (Qin et al., 

2009) as was EF-G (Pan et al., 2007).  

 

6.3.2 IF2Cy3 fluorescence change assay 

 Reactions were carried out in a 384-well assay plate. 50S subunits were 

preincubated (15 min at 37 °C) with a series of concentrations of the test compounds in 

DMSO that are transferred from a premade compound plate to the assay plate by a 

Perkin-Elmer Evolution P3 liquid handler. Reaction was initiated by addition of 30S 

initiation complex (30SIC) to each well of the plate. Fluorescence (579 nm) was read 

with a 2103 EnVision Multilabel Plate Reader on excitation at 550 nm. For the reversal 

experiment, 30SIC was preincubated with ThS (10 min, 37 °C), followed by a second 

preincubation with test compounds (10 min, 37 °C), and reaction was initiated by 50S 

addition. 

 

6.3.3 GTPase activity assays 

For both assays described below, reactions performed in the absence of ribosomes 

were used as a background signal to account for the intrinsic GTPase activity of EF-G or 

Tet(M). 

By Malachite Green. GTPase activity was measured using the Malachite Green 

Phosphate Kit (BioAssay) that quantifies the green complex formed between Malachite 

Green, molybdate and free orthophosphate. All reactions contained 30 nM E. coli 70S 
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ribosomes, 20 µM GTP and 60 nM protein in the presence or absence of antibiotics as 

necessary. Reactions were transferred into 96-well microtiter plates and color formation 

was measured on Tecan - Infinite M1000 microplate reader at 650 nm. 

By MDCC-labeled PBP. GTPase activity was measured using the MDCC-labeled PBP 

complex, which measures free phosphate release as an increase in fluorescence, and 

utilizes a Pi-MOP system to minimize the background due to phosphate present in the 

original medium (Brune et al., 1994; Seo et al., 2006). Reactions were carried out in a 

384-well assay plate. Ribosomes were preincubated (15 min at 37 °C) with a series of 

concentrations of the test compounds in DMSO that are transferred from a premade 

compound plate to the assay plate by a Perkin-Elmer Evolution P3 liquid handler. 

Reaction was initiated by addition of an ice-cold solution containing EF-G, PBP-MDCC, 

and GTP to each well of the plate, a process that was completed in under 30 sec. 

Fluorescence (450 nm) was read within 1 min using a 2103 EnVision Multilabel Plate 

Reader, on excitation at 405 nm. For the reversal experiment, ribosomes were  

preincubated with ThS (10 min, 37 °C), followed by a second preincubation with test 

compounds (10 min, 37 °C), and reaction was initiated by EF-G, PBP-MDCC, and GTP 

as above. 

 

6.3.4 In vitro transcription-translation assay 

All coupled transcription-translation experiments were performed using an E. coli 

lysate-based system in the presence and absence of antibiotics as described previously 
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(Dinos et al., 2004; Szaflarski et al., 2008). Reactions were transferred into 96-well 

microtiter plates and the GFP fluorescence was measured with a Typhoon Scanner 9400 

(Amersham Bioscience) using a Typhoon blue laser module (Amersham Bioscience). 

Images were then quantified using ImageQuantTL (GE Healthcare) and represented 

graphical using SigmaPlot (Systat Software, Inc.). 

 

6.3.5 Modeling and figure preparation 

Chemical structures for the precursor compounds were drawn and converted to 3D 

coordinates using ChemDraw (Advanced Chemistry Development, Inc. Toronto, Canada). 

PA2 models utilized the thiostrepton binding position on the Deinococcus radiodurans 

50S (D50S) subunit (PDB ID 3CF5) (Harms et al., 2008), whereas PD1 and PD2 were 

based on the D50S-nosiheptide complex (PDB ID 2ZJP) (Harms et al., 2008). PyMol 

(http://www.pymol.org) was used to model the PB1 and PC compounds, align EFTu 

●GE2270A (yellow; PDB ID 2C77; Parmeggiani et al., 2006) and EF-Tu●tRNA (blue; 

PDB ID 1TTT; Nissen et al., 1995) on basis of domain II, as well as prepare all  gray-

traced figures. 

 

6.4 RESULTS 

 Several assays were used to examine thiopeptide precursor compounds for their 

abilities to bind to the thiostrepton binding site, either by mimicking ThS inhibition of 

specific ribosomal functions, or by protecting the ribosome against the inhibitory effects 

of ThS via a competition effect. These assays, which are discussed in turn below, 



 147 

measure (i) IF2 conformational change during the conversion of 30S initiation complex 

(30SIC) to 70S initiation complex (70SIC), (ii) ribosome-dependent stimulation of the 

GTPase activity of EFG and (iii) the cell-free synthesis of green fluorescent protein (GFP) 

using an Escherichia coli in vitro coupled transcription-translation (TT) assay. 

 

6.4.1 The thiopeptide precursor PA1 inhibits 70SIC formation. 

The initiation factor IF2 is essential for 70SIC formation from 30SIC and 50S 

subunits (Antoun et al., 2003; Grigoriadou et al., 2007). Elsewhere we have shown that 

the fluorescence of a Cy3 derivative of IF2 (IF2Cy3) increases on 70SIC formation 

resulting from the binding of a 50S subunit to a 30SIC containing IF2Cy3 (Qin et al., 

2009). This increase is inhibited by both ThS and NoS (Figure 6.2A), largely as a result 

of the effect of these antibiotics in inhibiting both the rate and extent of 70SIC formation 

(Grigoriadou et al., 2007) and data not shown. Measuring the extent of fluorescence 

change is thus a convenient way of monitoring thiopeptide precursor effects on 70SIC 

formation. A library of thiopeptide precursor compounds, as well three forms of the EF-

Tu inhibitor GE2270 (A, T, and C1) were screened for this activity, along with ThS and 

NoS as positive controls. Only one precursor, denoted PA1 (Figure 6.2B), showed any 

measurable activity in inhibiting the fluorescence change, with an apparent Ki, 25 µM, 

some 60 – 400-fold higher than for ThS or NoS, respectively. Although PA1 does not 

bind with very high affinity, it apparently does so with considerable structural specificity, 

since the inhibitory effect was not seen for compounds PA2-PA3 which have only minor 
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structural differences from PA1 (Figure 6.1E). The thiopeptide precursors were also 

screened for their abilities to reverse ThS inhibition of the IF2Cy3 fluorescence increase on 

70SIC formation. In no case was such reversal observed. 

 

6.4.2 Differential effects of precursor compounds on factor-dependent GTPase 

assays 

Vacant 70S ribosomes are known to stimulate the GTPase activity of EF-G via 

formation of a 70S•EF-G•GTP complex. Such stimulation is strongly inhibited by ThS 

(Pestka, 1970; Weisblum and Demohn, 1970). We used two multiple turnover GTPase 

assays to screen thiopeptide precursors for inhibitory activity. 

The first assay measured EF-G GTPase activity, via formation of a Malachite Green 

complex, for hundreds of turnovers. Under conditions for which ThS (1 µM) almost 

completely abolished such activity, we identified three distinct classes of precursor 

compounds (PA-PC; Figure 6.1E-G) that exhibited modest inhibitory effects when added 

at 50 µM (Figure 6.3A). However, we note that none of these compounds added at 10 µM 

showed appreciable inhibition (data not shown). As expected, the negative control, 

GE2270T, had no effect at a concentration of 50 µM (Figure 6.3A). In order to determine 

whether the modest inhibitory effects seen in Figure 6.3A were specific for EF-G, we 

next checked whether these compounds could also inhibit the ribosome-dependent 

stimulation of the Tet(M) GTPase. Tet(M) is a GTPase that binds to the ribosome 

analogously to EF-G, and confers resistance to the antibiotic tetracycline by weakening 



 149 

its binding to the ribosome (reviewed by Connell et al., 2003). Similar to the results for 

EF-G,  representatives of the PA and PC families exhibited modest inhibitory effects on 

Tet(M) GTPase at high concentration (100 µM) (Figure 6.3B). However, in contrast to 

EF-G, little or no inhibition was observed for the PB family, suggesting that it is specific 

for EF-G. 

The second assay measured EF-G GTPase activity from the fluorescence increase of 

released Pi binding to the fluorescent phosphate binding protein MDCC-PBP (He et al., 

1997; Seo et al., 2006). This assay, which can in principle be used for single turnover 

measurement, was here employed to measure several turnovers, as determined by the 

stoichiometric ratio (5:1) of MDCC-PBP to ribosome. As performed, this assay could 

only detect very potent inhibitors of EF-G GTPase, since fluorescence wasn’t measured 

until 1 min after initiation of reaction, whereas in the absence of inhibition the full 

fluorescence change is complete within 5 – 10 sec (data not shown). It is thus no surprise, 

given the results presented in Figure 6.3A, that although ThS inhibited this assay with an 

apparent Ki of 1.1 µM, neither any of the precursors tested, nor even NoS or MiC, 

showed measurable inhibition up to a concentration of 100 µM (Figure 6.3C). In contrast, 

both NoS and MiC added at very low concentration protected against inhibition by 1.2 

µM ThS, with half-maximal effects seen at 0.04 µM and 0.11 µM, respectively (Figure 

6.3D). However, none of the precursor compounds afforded similar protective effects up 

to 50 – 100 µM of added precursor. 
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6.4.3 Protective effects of precursor compounds on thiopeptide-mediated translation 
inhibition 

Although as expected, ThS, NoS and GE2270T were potent inhibitors of GFP 

synthesis using an in vitro TT assay (Figure 6.4, lanes 2-4), none of the precursor 

compounds tested displayed any significant inhibitory activity in this assay (Figure 6.4, 

white bars), even at high concentrations (50-100 µM). In contrast, addition of 50 µM of 

representatives precursor compounds from four structural distinct classes PA-PD (Figure 

6.1E-G), could reverse the inhibitory effect of 5 µM ThS (Figure 6.4, grey bars). The 

most effective protection was seen with PA2, which restored translation back to levels 

observed in the absence of antibiotic (Figure 6.4, lane 6), whereas in comparison, PB1, 

PC1 and PD1 restored translation to 40-60% (Figure 6.4, lanes 13-28). Additionally, we 

find that the 5S, 6R stereoisomer of PA2 (PA4) exhibited some protective properties 

(~35% compared to 100% for PA2). The structural specificity of these effects is clear 

from the failure of precursors that are chemically related to exhibit similar protective 

effects against ThS inhibition. These include PA3, (Figure 6.4, lanes 6 and 8), which 

differs from PA2 by lacking only a double bond within the central piperidine ring (Figure 

6.1E), and PD2 (Figure 6.4, lanes 26 and 28) which, with respect to PD1, has an altered 

side-chain on one of the thiazole rings (Figure 6.1H). 

Interestingly, PA2, PB1, PC1 and PD1 displayed marked differences in their abilities 

to reverse the inhibitory effects of NoS (5 µM) and GE2270T (25 µM), as compared to 

the inhibitory effects of ThS. Thus, as shown in Figure 6.5, PA2 was an omnipotent 

protector of translation, restoring translation levels in the presence of all three thiopeptide 
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inhibitors, with the following order of efficiency: ThS (100 %) > GE2270T (80 %) > NoS 

(60 %), PD1 rescued translation in the presence of ThS and GE2270T, but not NoS, and 

PB1 and PC1 efficiently rescued translation only against ThS. As was true for ThS, 

neither PA3, PB2, PC2, nor PD2 were able to reverse inhibition by NoS or GE2270T 

(data not shown). 

 
 
6.4.4. Interaction of thiopeptide precursors with the ribosome 

The specific protective effect of the precursor compounds against ThS suggests that 

these compounds specifically compete with ThS for binding to the ribosome. Structural 

(Harms et al., 2008; Jonker et al., 2007) and biochemical data (Spahn and Prescott, 1996; 

Xing and Draper, 1996) for ThS suggests that the high affinity of this drug for the 

ribosome results from cooperative interaction between nucleotides in H43/44 of the 23S 

rRNA and the L11-NTD (Figure 6.6A, B). Given the structural similarity between PA2 

and ThS, it is possible to model the position of this compound bound to the ribosome 

(Figure 6.6C, Harms et al., 2008). The substitution of the double-bond in the piperidine 

ring of PA2 to generate PA3 abolishes the protective effect of the compound (Figure 6.4). 

The chemical structure of PA3 suggests that the piperidine ring would not be planar as in 

PA2. This in turn changes the relative position (by 0.5 Å) of the attached thiazole moiety 

(data not shown), which based on the model would shift it towards Pro27 of L11-NTD 

and thus encroach on the thiopeptide binding site. Such modest displacements within 
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drug binding sites have been shown to have dramatic effects on the affinity of compounds, 

and often lead to antibiotic resistance (Blaha et al., 2008; Tu et al., 2005). 

Although it is more difficult to model the PB and PC series of compounds based on 

the available structures, it is clear that the aromatic rings within these families suggest a 

potential mode of binding that establishes simultaneous stacking interactions with both 

H43/44 and L11-NTD (Figure 6.6D, E). Alterations that disrupt these rings, as seen for 

PC2 (Figure 6.6F), could explain a reduced binding and corresponding loss in protection 

(Figure 6.4). The PD class of precursors is structurally most similar to the pyridine core 

of NoS (Figure 6.1). NoS is oriented differently on the ribosome compared to ThS, 

establishing stacking interactions with Pro22 but not Pro26 (Figure 6.6G; Harms et al., 

2008). Based on our modeling, PD1 can make analogous interactions with Pro22 as 

nosiheptide (Figure 6.6H), whereas the inactive PD2 cannot (Figure 6.6I). 

 

6.4.5 Interaction of thiopeptide precursors with EF-Tu 

The thiopeptide GE2270A has been crystallized in complex with EF-Tu, revealing 

the drug binds within a covered groove in domain II, as well as spanning across the active 

site cleft of EF-Tu to interact with the domain I, the G domain (Figure 6.7A; Parmeggiani 

et al., 2006). GE2270A overlaps the binding site of the terminal A76 and aminoacyl 

moiety of the tRNA (Figure 6.7B) and is proposed prevent the closing of domains I and II 

necessary for the induced fit binding of aa-tRNA (Figure 6.7C), and thereby preventing 

ternary complex (EFTu• GTP•tRNA) formation (reviewed by Parmeggiani and Nissen, 
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2006). The structural similarity between the PA and PD with GE2270A (Figure 6.1) 

suggests that these compounds would also bind within the groove of domain II of EF-Tu 

(Figure 6.7D) and overlap with the A76 of the tRNA (Figure 6.7E). However, the 

truncated nature of these compounds prevents them from establishing additional 

interactions with domain I, even in the closed tRNA-bound ternary complex state of EF-

Tu (Figure 6.7F). 

 

6.5 DISCUSSION 

Here we present several translation-related assays utilizing high-throughput 96- or 

384-microtiter plate formats that have been used to screen a library of thiopeptide 

precursor compounds for their abilities to inhibit one or more aspects of translation 

and/or reverse the inhibition of known thiopeptide antibiotics. These screens identified 

four distinct families of precursor compounds, termed PA-PD, which could act as 

potential lead compounds for development of novel antimicrobials.Two of the families 

identified, PA and PD, contain a six-membered nitrogen heterocycle core (PA, 

dehydropiperidine; PD, pyridine) analogous to the thiopeptide antibiotics thiostrepton and 

GE2270A (Figure 6.1). The crystal structures of thiopeptides bound to the ribosome 

(Harms et al., 2008) and of GE2270A bound to EF-Tu (Parmeggiani et al., 2006) reveal 

the importance of the heterocycle core of these compounds for interaction with their 

respective targets, and enables a model to be presented for how PA and PD members are 

likely to interact with the ribosome and/or EF-Tu (Figure 6.5 and 6.6). Such models are 
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consistent with the fact that both families have members, such as PA2 and PD2, which 

can rescue translation in the presence of ThS and GE2270T, probably by direct 

competition for binding between the precursor compound and the thiopeptide antibiotic. 

In addition, PA1 and PA2 displayed inhibitory activity against translational GTPases IF2 

(Figure 6.2B), and EF-G and Tet(M) (Figure 6.3A,B), respectively. However, compared 

to the parent thiopeptide compounds, much higher concentrations of the precursor 

compounds were necessary to exhibit similar effects, most likely indicating the much 

lower binding affinity of the precursors. The ineffectiveness of precursor compound PA2 

as a direct inhbitor was surprising, since this compound has been previously reported to 

exhibit antimicrobial activity against methicillin-resistance Staphlococcus aureus and 

vancomycin-resistant Enterococcus faecalis with a minimal inhibitory concentration 

(MIC) of 5 µM (Nicolaou et al., 2005b). Our results suggest therefore that the inhibitory 

effect of PA2 in vivo may in fact not be related to translation, but verification of this point 

will require further investigation. 

 The other two families identified in our screen, PB and PC, to our knowledge 

have not been previously reported to target the translational machinery. PB1 is 

chemically similar to the thiazolidine precursor compound used to generate the pyridine 

core of amythiamicins (Nicolaou et al., 2008a), which target EF-Tu analogously to 

GE2270A (Parmeggiani et al., 2006; Parmeggiani and Nissen, 2006), whereas the PC 

series of compounds contain a protected β-hydroxy-α-aminoacid, which is a precursor in 

the synthesis of GE2270A/T/C1. Curiously, the PB and PC families display much higher 
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specificity for the ribosome than for EF-Tu, as evidenced by the ability of PB1 and PC1 

to restore translation more efficiently in the presence of ThS, as compared with GE2270A 

(Figure 6.5). Although PB1 and PC1 are structurally distinct (Figure 6.1), we believe the 

common aromatic/cyclic nature of both these compounds is important for ribosome 

binding. Accommodation of EF-G on the ribosome involves the insertion of domain V of 

EF-G into the crevice between H43/44 and L11-NTD. Inhibition by Class I thiopeptides 

has been proposed to stem in part from their physically linking L11-NTD to H43/44, 

thereby locking the cleft shut (Harms et al., 2008). We suggest that PB1 and PC1 can also 

span the L11-rRNA crevice (Figure 6.6D, E) and perform this locking function, 

analogous to ThS/PA1 (Figure 6.6B, C) and NoS/PD1 (Figure 6.6G, H). Similarly to 

PA/D, the high concentrations of PB/C required to inhibit the ribosome-dependent 

GTPase activity of EF-G \ indicative of their low binding affinities for the ribosome. 

Such low affinity may allow translation factors, such as IF2 or EF-G, to displace the 

precursor from the drug binding site during accommodation on the ribosome, or for EF-

Tu binding to tRNA during ternary complex formation, thus explaining the absence of 

any direct inhibitory effect of any of the precursors on GFP synthesis. The differential 

effects of the precursors on the GTPase assays compared to the TT assay is probably 

related to the ribosome concentrations in the GTPase assays being ~10x - 100x less (30 - 

300 nM) compared to the TT assay (~2 µM) and to the putative higher affinity of EF-G 

for translating rather than empty ribosomes (Sergiev et al., 2005). 
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The majority of clinically used antibiotics targeting the ribosome bind either to the 

decoding region on the small subunit or within either the peptidyltransferase center or the 

adjacent peptide exit tunnel of the large subunit, where they interact almost exclusively 

with ribosomal RNA (Spahn and Prescott, 1996; Wilson, 2004). The Class I thiopeptide 

compounds, however, are distinct in that they target a different region of the ribosome, 

namely the GTPase-associated region or translation-factor binding site, where they 

interact with both rRNA and ribosomal protein L11. As a consequence, no cross-

resistance has been found between thiopeptide antibiotics and other clinically important 

drugs. Therefore, the identification of compounds such as PA-PD provides a good base as 

lead compounds for the development of novel antimicrobial agents that target this region 

of the ribosome. Furthermore, the ability of some precursor compounds, such as PA1 and 

PD1, to bind both EF-Tu and the ribosome suggests the feasibility of developing 

antimicrobials that are dual inhibitors of ribosomes and ternary complex formation. 

 

6.6 SIGNIFICANCE 

We present a series of translation machinery assays that can be used to screen for 

novel lead compounds that not only inhibit specific steps of translation, but also relieve 

the inhibitory effects of other inhibitory compounds. Using these assays to screen a 

library of thiopeptide precursor compounds, we have identified four distinct families of 

compounds that inhibit either IF2, EF-G and/or Tet(M), as well as confer protective 

effects against thiopeptide translation inhibitors of both the ribosome and EF-Tu. Our 
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findings not only elucidate the mechanism of action of thiopeptide compounds, but also 

illustrate the potential of such highthroughput assays to identify novel lead compounds 

that might be missed using conventional inhibitory screening protocols. Whereas the IF2 

and EF-G GTPase assays are specifically useful for screening antibiotics interfering with 

translation G-factor proteins, the TT assay is generally applicable for screening all classes 

of translation inhibitors, including those targeting the peptidyltransferase and decoding 

centers of the ribosome, and other novel ribosomal sites, in addition to those interfering 

with translation G-factor proteins. 
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Figure 6.1. Chemical structures of thiopeptide antibiotics and precursor families 

PA–PD 

Chemical structures of the thiopeptide antibiotics (A) thiostrepton (ThS), (B) nosiheptide 

(NoS), (C) micrococcin (MiC), and (D) GE2270A/T/C1, and precursor families (E) PA1-

5, (F) PB1-3, (G) PC1-3, and (H) PD1-2. 
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Figure 6.2. The IF2 fluorescence change assay. 

(A) Emission spectra of IF2Cy3-containing 30S initiation complex mixed with 50S 

subunits in the presence of ThS or NoS. 50S was pre-incubated with antibiotics for 5 min 

at 37 oC and then rapidly mixed with 30S initiation complex at 20 oC, followed by 5 min 

incubation before measurements. Black solid trace: no antibiotics; gray dashed trace: 

thiostrepton; gray solid trace: nosiheptide; black dashed trace: 30S initiation complex 

alone. The final concentrations are IF1, IF3, fMet-tRNAfMet, 0.45 µM; IF2Cy3, 0.15 µM; 

mRNA, 0.90 µM; 30S, 0.30 µM; 50S 0.30 µM; GTP, 100 µM and ThS, MiC, NoS, 1.5 
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µM. (B) Dose response curves for the inhibition of fluorescence change on mixing 

IF2Cy3-containing 30S initiation complex with 50S subunits in the presence of 

thiopeptide compounds. The Y-axis indicates the % ∆F in the presence of added 

compound relative to the ∆F in the absence of added compound relative to the 

fluorescence of 70SIC by itself. Final concentrations are IF2Cy3, 0.15 µM; IF1, IF3, 

fMet-tRNAfMet, 0.45 µM; 022AUGmRNA, 0.9 µM; 30S, 0.30 µM; 50S, 0.30 µM; GTP, 

100 µM. 
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Figure 6.3. Effect of thiopeptides and precursor compounds on GTPase activity of 

EF-G and Tet(M) 

(A) Inhibition of uncoupled ribosome-dependent EF-G GTPase by thiopeptides ThS (1 

µM), GE2270T (25 µM) and precursors PA2, PB2, PC1 and PC2 (50 µM). Closed circles 

indicate GTPase activity of EF-G in the absence of antibiotic. (B) Inhibition of uncoupled 

ribosome-dependent TetM GTPase by ThS (1 µM) and precursors PA2, PB1 and PC2 

(100 µM). Closed circles indicate GTPase activity of TetM in the absence of antibiotic. 

(C) The dose response curves of Pi release in the presence of ThS, NoS, MiC or precursor 

compounds. The Y axis indicates the % ∆F due to Pi release in the presence of added 

compound relative to the ∆F in the absence of added compound relative to the 
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fluorescence from EF-G interaction with the ribosome in the absence of any compound. 

The final concentrations are 70S, 0.3 µM; EF-G, 0.75 µM; MDCC-PBP, 1.5 µM; 

GTP,100 µM;7-methylguanine, 200 µM; nucleotide phosphorylase, 0.3 unit/ml. (D) Dose 

response curves for reversal of ThS inhibition of Pi release by NoS, MiC, or precursor 

compounds. The final concentrations for each component are 70S, 0.3 µM; EF-G, 0.75 

µM; ThS, 1.2 µM; MDCC-PBP, 1.5 µM; GTP, 100 µM; 7-methylguanine, 200 

µM;nucleotide phosphorylase, 0.3 unit/ml. 
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Figure 6.4. Precursor compounds protect translation from thiostrepton inhibition 

In vitro transcription-translation of GFP in the absence or presence of ThS 25 µM 

GE2270T, 5 µM NoS and 5 µM ThS (black bars), or in the presence (50 µM) of precursor 

families PA2-5, PB1-3, PC1-3 and PD1-2 (-ThS, white bars) or with additional presence 

of 5 µM thiostrepton (+ThS, grey bars). GFP fluorescence from microtiter plate wells 

shown above each lane were quantified and represented as bars, with the fluorescence 

detected in the absence of antibiotic assigned to 100 %. 
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Figure 6.5. Differential protective effects of precursors against thiopeptide 

inhibition. Protection profiles of representative precursors from all described groups 

against chloramphenicol (Cam, 10 µM), nosiheptide (NoS, 5 µM), GE2270T (25 µM) and 

thiostrepton (ThS, 5 µM). GFP fluorescence in the absence of antibiotic assigned to 100 

%, whereas the precursor results are presented as the % protection, given as the 

difference between the inhibition of translation by the active compound (Cam, NoS, 

GE2270T or ThS) in the presence and absence of the precursor compound (50 µM). 
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Figure 6.6. Binding site of precursor compounds on the ribosome 

(A) Overview of thiopeptide binding site on the large ribosomal subunit. Interface view 

with helix 43 and 44 (H43/44, orange), L11 (yellow) and thiostrepton (green) highlighted 

with surface representation (from PDB ID 3CF5) (Harms et al., 2008). (B) The thiazole 

rings of ThS (green) interact with the RNA bases at the tips of H43/44 as well as the 

Prolines in the Nterminal domain of L11 (yellow). (C) Model for precursor PA2 bound to 

the ribosome, based on the position of ThS. PA1, but not PA3 (see text), bind similarly. 

(D-F) Possible modes of binding for precursors PB1 and PC1 based on ring stacking 

interactions with RNA and protein components of the ribosome, whereas PC2 lacks one 
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phenyl ring compared to PC1. (G) Nosiheptide (pink) interacts with the RNA bases at the 

tips of H43/44 as well as the N20 terminal domain of L11 (yellow), but in a distinct 

manner compared to ThS (using PDB ID 2ZJP; Harms et al., 2008). (H-I) Model for 

precursor PD1 and PD2 bound to the ribosome, based on the position of nosiheptide. PD2 

lacks one ring moiety, suggesting binding would be destabilized. 
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Figure 6.7. Binding site of precursor compounds on EF-Tu 

(A) Structure of the thiopeptide GE2270A (green) bound to EF-Tu (yellow), with 

domains I, II and III indicated (PDB ID 2C77) (Parmeggiani et al., 2006). (B) GE2270A 

overlaps the binding position on EF-Tu of the terminal A76 and aminoacyl moiety of 

tRNA. Inset shows overview of EF-Tu●tRNA ternary complex (PDB ID 1TTT) (Nissen 

et al., 1995) with superimposition of GE2270A. (C) Superimposition of EF-

Tu●GE2270A (yellow) and EFTu ●tRNA (blue), aligned on basis of domain II. Note that 

GE2270A (green) clashes with domain I of EF-Tu from the ternary complex (blue). (D) 

Model for precursor PD1 bound to EF-Tu based on EF-Tu●GE2270A complex (PDB ID 

2C77) (Parmeggiani et al., 2006). (E) PD1 (pink) overlaps the binding position on EF-Tu 

of the terminal A76 and aminoacyl moiety of tRNA (blue). (F) as (C) but with PD1 

instead of GE2270A. Note that PD1 does not clash with domain I of EF-Tu from the 

ternary complex (blue) 
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