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Statistical Methods for Non-Ignorable Missing Data With Applications to
Quality-of-Life Data.

Abstract
Researchers increasingly use more and more survey studies, and design medical studies to better understand
the relationships of patients, physicians, their health care system utilization, and their decision making
processes in disease prevention and management. Longitudinal data is widely used to capture trends
occurring over time. Each subject is observed as time progresses, but a common problem is that repeated
measurements are not fully observed due to missing response or loss to follow up. An individual can move in
and out of the observed data set during a study, giving rise to a large class of distinct "non-monotone"
missingness patterns. In such medical studies, sample sizes are often limited due to restrictions on disease
type, study design and medical information availability. Small sample sizes with large proportions of missing
information are problematic for researchers trying to understand the experience of the total population. The
information in the data collected may produce biased estimators if, for example, the patients who don't
respond have worse outcomes, or the patients who answered "unknown" are those without access to medical
or non-medical information or care. Data modeled without considering this missing information may cause
biased results.

A first-order Markov dependence structure is a natural data structure to model the tendency of changes. In my
first project, we developed a Markov transition model using a full-likelihood based algorithm to provide
robust estimation accounting for "non-ignorable'' missingness information, and applied it to data from the
Penn Center of Excellence in Cancer Communication Research. In my second project, we extended the
method to a pseudo-likelihood based approach by considering only pairs of adjacent observations to
significantly ease the computational complexities of the full-likelihood based method proposed in the first
project. In my third project, we proposed a two stage pseudo hidden Markov model to analyze the association
between quality of life measurements and cancer treatments from a randomized phase III trial (RTOG 9402)
in brain cancer patients. By incorporating selection models and shared parameter models with a hidden
Markov model, this approach provides targeted identification of treatment effects.
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ABSTRACT

STATISTICAL METHODS FOR NON-IGNORABLE MISSING DATA WITH

APPLICATIONS TO QUALITY-OF-LIFE DATA.

Kaijun Liao

Andrea B. Troxel

Researchers increasingly use more and more survey studies, and design medical studies

to better understand the relationships of patients, physicians, their health care system

utilization, and their decision making processes in disease prevention and management.

Longitudinal data is widely used to capture trends occurring over time. Each subject is

observed as time progresses, but a common problem is that repeated measurements are not

fully observed due to missing response or loss to follow up. An individual can move in and

out of the observed data set during a study, giving rise to a large class of distinct “non-

monotone” missingness patterns. In such medical studies, sample sizes are often limited

due to restrictions on disease type, study design and medical information availability. Small

sample sizes with large proportions of missing information are problematic for researchers

trying to understand the experience of the total population. The information in the data

collected may produce biased estimators if, for example, the patients who don’t respond

have worse outcomes, or the patients who answered “unknown” are those without access to

medical or non-medical information or care. Data modeled without considering this missing

information may cause biased results.

A first-order Markov dependence structure is a natural data structure to model the tendency

of changes. In my first project, we developed a Markov transition model using a full-

likelihood based algorithm to provide robust estimation accounting for “non-ignorable”

missingness information, and applied it to data from the Penn Center of Excellence in Cancer

Communication Research. In my second project, we extended the method to a pseudo-
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likelihood based approach by considering only pairs of adjacent observations to significantly

ease the computational complexities of the full-likelihood based method proposed in the

first project. In my third project, we proposed a two stage pseudo hidden Markov model to

analyze the association between quality of life measurements and cancer treatments from

a randomized phase III trial (RTOG 9402) in brain cancer patients. By incorporating

selection models and shared parameter models with a hidden Markov model, this approach

provides targeted identification of treatment effects.
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CHAPTER 1 : Introduction

In chronic disease studies, questionnaires are an often primary source of information to

measure changes in attitude or compliance with treatment or medical advice. More and

more survey studies focus on questionnaires of patients with different health issues, stages of

disease, types of cancer, and other medical/non-medical information so that health providers

or decision makers can better understand patient behavior and the estimates of treatment

effects. The underlying structure of the quality and quantity of information that can be

collected from each participant can be complicated due to the fact that during follow-up,

the occurrence of observations at a given time depends on many observed or unobserved

factors. Intuitively, patient behavior involves attitudes and knowledge. So questionnaires,

health-related attitudes and information clearly are relevant. It is reasonable to expect that

patients’ responses could be lower for those with worse health, or could be a function of

all health information, such as disease type, how actively patients seek medical help, and

their supporting environment; this makes the missingness more likely to be informative.

Longitudinal data is widely used to monitor disease progression, or investigate changes over

time in a characteristic which is measured repeatedly for each study participant. Missing

information is typically inevitable in longitudinal studies, and can result in biased estimates

and a loss of power when the missingness is informative.

In Chapter 2, we propose a full-likelihood based transition model and apply it to data from

the Penn Center of Excellence in Cancer Communication Research, a cancer-related survey

study recently conducted at the University of Pennsylvania. One of the research goals of

the study was to examine how the Patient-Clinician Information Engagement (PCIE) score

affects cancer patients’ attitudes and behaviors in breast, prostate, and colorectal cancers;

in particular, researchers were interested in the amount of exercise the patients were engaged

in. Decisions people choose to follow will impact their health status. For example, patients

decide whether to increase exercise, to get radiation therapy, or to choose surgery after

seeking out treatment information from their physicians. The decision making process may

1



be influenced by both medical and non-medical information. A random sample was selected

in fall 2006 from the Pennsylvania Cancer Registry (PCR). Patients had to have one of the

above three cancers, diagnosed in 2005. There were a total of 2010 cancer patients who

responded to at least one of three surveys, including 650 patients with prostate cancer, 682

patients with colorectal cancer, and 678 patients with breast cancer. The study included

three longitudinal surveys. Surveys were initially conducted in fall 2006, with the second

and third waves conducted in fall 2007 and fall 2008. The response rate for PCIE scores

were 99.00% for wave one, 63.28% for wave two, and 55.67% for wave three. Clearly this

study resulted in a large amount of missing data for unknown reasons, and thus requires

careful attention to the issue of missingness.

We use a full-likelihood based method to analyze continuous longitudinal responses with

non-ignorable non-monotone missing data, and consider a transition probability model for

the missingness mechanism. A first-order Markov dependence structure is assumed for

both the missingness mechanism and observed data. This process fits the natural data

structure in the longitudinal framework. Instead of using logistic regression to model the

missing mechanism, we propose a beta-binomial distribution to model the probability of

non-response. The beta-binomial distribution can be extended to the multivariate Polya

distribution when there are more than two types of responses; our main interest is in esti-

mating the parameters of the marginal model and evaluating the MAR (missing at random)

assumption in the Effects of Public Information Study. We also present a simulation study

to assess model performance in small samples, addressing the basic issues of bias in the

parameter estimates and computing coverage probabilities, while varying the covariance

structure of the longitudinal outcomes. The marginal effects are estimated well even when

the underlying data distribution is not normal. However, full-likelihood based methods

require integration over the unobserved data. The parameter estimation has to be done

numerically, and this can be computationally prohibitive due to the complicated joint like-

lihood function, especially when the number of repeated assessments is large.
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Pseudo-likelihood methods (Gong and Samaniego, 1981; Parke, 1986) and composite marginal

likelihood methods (Cox and Reid, 2004; Varin et al., 2011) are widely used to ease the com-

putational complexities of the conventional likelihood-based method. The pseudo-likelihood

methods can be viewed as an extension of composite marginal likelihood methods, which can

be transferred into the non-ignorable non-monotone missing data framework. In Chapter

3, we propose a pseudo-likelihood method based on the conditional density of all adjacent

pairs of assessments, with a first-order auto-regressive covariance structure to account for

the correlation of the repeated observations within subjects. Estimation proceeds using

the pseudo-score vector, which guarantees a consistent estimator. Although the pseudo-

likelihood method achieves asymptotically unbiased estimators of the regression parame-

ters and missingness parameters if the model is correctly specified, these estimators can be

highly inefficient in the case of faulty assumptions about the covariance structure across

measurement times. A sandwich estimator is used to obtain correct inference for variance

parameters. We fitted the proposed method to the same data from the Penn Center of

Excellence in Cancer Communication Research as in project one. A simulation study in-

vestigates the empirical behavior of the proposed models, compared to the full-likelihood

method proposed in Chapter 2. The simulation study shows that this approach can handle

longitudinal data with various covariance structures well and is no more computationally

intensive than the independent pseudo-likelihood model (Troxel et al., 1998b). This ap-

proach can handle a mis-specified correlation to some extent. In simulation studies with

a variety of mis-specified correlation structures, the marginal effects and missingness ef-

fects consistently have high coverage probabilities as long as the correlation among pairs is

nonzero.

In Chapter 4, we extend our approach using a hidden Markov model framework. By

incorporating both selection models and shared parameter models, we can identify dif-

ferences among the transition processes with incomplete data simultaneously in both a

state-dependent model and a missingness mechanism model. The conditional indepen-

dence assumed in the hidden Markov model provides a simple framework for reducing the

3



multi-dimensional integration in traditional methods into one dimensional integration in

the observed likelihood. In addition, the proposed models avoid the problem of specifica-

tion of the correlation structure of repeated outcomes by instead emphasizing estimation

in Markov Chain parameters. We propose a generalized linear model and generalized lin-

ear mixed model framework, using a Baum-Welch algorithm (Baum et al., 1970; Rabiner,

1989; Welch, 2003) to update the Markov Chain parameters to provide efficient parame-

ter estimation in the general situation of non-ignorable non-monotone longitudinal missing

data. A two-stage pseudo-likelihood method is used to reduce the parameter space to make

this model more attractive. Our proposed method is applied to data from a randomized

phase III intergroup trial conducted by the Radiation Therapy Oncology Group (RTOG

9402) between 1994 and 2002, coordinated by the National Cancer Institute, in anaplastic

oligodendroglioma (AO) brain tumor, patients received either chemotherapy plus radiation

therapy (Arm 1) or radiation therapy alone (Arm 2), as previously described by Cairncross

et al. (2006) and Wang et al. (2010). Previous reports had shown that AO patients re-

spond to surgery and radiotherapy (RT) at diagnosis, as well as to procarbazine, lomustine,

and vincristine (PCV) chemotherapy; it was unclear whether patients would benefit from

combined PCV and RT therapy, compared to RT alone. Study reports also showed that

patients who lack the 1p and 19q chromosomes have significantly longer progression sur-

vival times when treated with PCV+RT, but this is associated with substantial toxicity. In

RTOG 9402, there was no significant difference in median survival times between the two

treatment arms in patients with only one co-deletion or no deletions of chromosomes. The

effect of toxicity and side effects from PCV chemotherapy and RT on patients’ neurologic

functioning and global quality of life remains unclear. Several measures were collected at

each visit to assess patients cognitive ability and attitudes on quality of life during the

study time period, including Karnofsky performance status (KPS), which measures phys-

ical well-being; the Mini-Mental Status Exam (MMSE), which measures cognitive ability

as assessed by a nurse, research associate, or physician to reflect the opinions of the health

care specialist; and the modified Brain Quality of Life Questionnaire (B-QLQ), which mea-

4



sures patient-reported quality of life. In this Chapter, we focus on the association between

patients’ MMSE/B-QLQ scores and treatment effect. By modeling the disease progres-

sion through different hidden states, our approach allows more precise identification of the

treatment effects.

5



CHAPTER 2 : A transition model for quality of life data with non-ignorable

non-monotone missing data

2.1. Introduction

In a longitudinal study, each subject is observed as time progresses. A common problem

is that repeated measurements are not fully observed due to missing responses or loss

to follow up. An individual can move in and out of the observed data set during the

study, giving rise to a large class of distinct “non-monotone” missingness patterns. The

appropriate statistical methods differ based on the nature of the data structure and missing

mechanism. The simplest types of incomplete data are when the missingness is MCAR

(missing completely at random) or MAR (missing at random). Little and Rubin (1987)

and Allison (2001) provide helpful terminology to describe missing data mechanisms and

a comprehensive overview of methods in this setting. Most approaches can be categorized

as selection models, pattern-mixture models or shared-parameter models depending on the

factorization of the joint likelihood of the outcomes and missingness indicators. This article

will focus on selection models.

Under the MCAR mechanism, the observed data can be viewed as a random subset of

the complete data. For the MAR assumption, the missingness mechanism depends only

on observed quantities. Both mechanisms can be treated as “ignorable” if the parameters

in the two parts of the model are distinct. For “ignorable” data, generalized estimating

equations (GEE) provide asymptotic unbiased estimation if the underlying data is MCAR

(Liang and Zeger, 1986). Weighted generalized estimating equations (WGEE) can provide

unbiased estimation if the underlying data is MAR (Robins and Rotnitzky, 1995). How-

ever, none of above methods can provide consistent unbiased estimators under informative

dropout or non-ignorable missingness. The approaches to modeling informative drop out

or non-ignorable missing data in the longitudinal setting depend on the nature of the data

structure, data type, variance/covariance structure, and proportion of missing data. Many

6



proposed methods assume a multivariate Gaussian distribution for the outcomes, with dif-

ferent specifications of the covariance structure; these include (Verbyla and Cullis, 1990;

Richard and Lynn, 1990; Munoz et al., 1992; Diggle and Kenward, 1994). Diggle and Ken-

ward (1994) proposed a likelihood-based method for continuous longitudinal outcomes with

non-ignorable or informative drop-out. They specified a multivariate Gaussian distribution

for the data and a logistic model for the probability of missing observations. Their model

allowed the missingness probability to depend on previous and current measurements, and

the likelihood was integrated over the range of the unobserved values. The likelihood in-

volved approximations with numerical integration and iterative computations. However,

their method required monotone missingness, also called informative drop-out.

Troxel et al. (1998a) extended the method to allow a non-monotone and non-ignorable

missingness mechanism. They proposed a logistic model that allowed the probability of non-

response to depend on the value of the current and/or previous measurement, allowing for

a non-ignorable missing data mechanism, and assumed multivariate Gaussian distribution

for the underlying outcomes. They assumed a first-order Markov dependence structure to

facilitate estimation.

Another way to attack the problem of non-ignorable non-monotone missingness in longitu-

dinal data is using pseudolikelihood methods to greatly ease the computational burdens of

the full-likelihood method, by setting the nuisance parameter at zero or some convenient

estimate. Troxel et al. (1998b), Sinha et al. (2010), and Parzen et al. (2007) used pseudolike-

lihood methods to deal with the binary case. Troxel et al. (2010) used an optimal weighted

combination of two pseudolikelihoods to increase the efficiency of the estimation. Tsonaka

et al. (2009) considered a semi-parametric shared parameter model without assuming any

parametric assumption for the random effects distribution.

Our method is an extension of the work of Troxel et al. (1998a). As in the earlier work

we adopt the multivariate Gaussian distribution assumption for the underlying data and

the first-order Markov dependence structure. Instead of using a logistic regression to model

7



the missing mechanism, we propose a beta-binomial distribution to model the probabil-

ity of non-response. The multivariate Polya distribution is a high-dimensional version of

the beta-binomial distribution; the beta and binomial distributions correspond to Dirichlet

and multinomial distributions, respectively, in the multivariate situation. Because of this

property, our approach can be easily extended into more than one state of missingness,

such as intermediate missingness, drop-out or even death if there is non-response due to

death. Because of the Gamma function and/or Beta functions involved, closed-form maxi-

mum likelihood estimates are impractical. We propose to use Gauss-Hermite quadrature as

suggested in Liu and Pierce (1994) to approximate the likelihood. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) (Nocedal and Wright, 2006) algorithm is applied to search for

optimal solutions. The beta-binomial model provides superior model fitting to the data

compared to a traditional logistic model, especially for binary data with unbalanced sparse

data. From a Bayesian perspective, the beta is the conjugate prior distribution for the

parameters of the binomial distribution. The parameters α and β of the beta distribution

can be thought of as pseudo-observations of “success” and “failure” to be added to the ac-

tual number of successes or failures observed. This helps to stabilize the estimation of the

missingness mechanism, especially when some time points have small amounts of missing

or no missing data. This mixture model also reduces multimodality in the likelihood.

The proposed methods were applied to the data from the Penn Center of Excellence in

Cancer Communication Research. Effectiveness of communication between patients and

their physicians is a very important factor in cancer research, and throughout the health

care system. Effective exchange of information between patients, physicians, health care

systems, and the environment surrounding them determines how active participants are

within the health care system. There are many studies showing a link between highly

isolated areas or individuals and worse outcomes in cancer research (Putt et al., 2009),

including shorter survival time, worse quality of life, and lower rates of participation in

recommended treatment programs. The rate of patient adherence to a recommended course

of treatment is normally higher in patients who actively seek information about their cancer
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treatment and quality of life from different channels (Tan et al., 2011). So it is crucial to

understand the relationship between patients, their physicians, and the health care system

around them, as well as the role of shared decision-making skills; how patients get, give,

and discuss information and make health care decisions is important in cancer research,

especially given the high demands that the healthcare system is facing.

There are a total of 2010 cancer patients who responded to at least one of three surveys,

including 650 patients with prostate cancer, 682 patients with colorectal cancer, and 678

patients with breast cancer. The study included three longitudinal surveys. Surveys were

initially conducted in fall 2006, with the second and third waves conducted in fall 2007

and fall 2008. The response rates of possible explanatory variables are listed in Table 2.2.

Clearly this study resulted in a large amount of missing data for unknown reasons, may

have an important impact on inference derived from this study.

The study sample was randomly selected in fall 2006 from the Pennsylvania Cancer Registry

(PCR). Patients had to have one of the above three cancers, diagnosed in 2005. The

American Association for Public Opinion Research (AAPOR, 2006) response rates for the

primary sample were 68%, 64%, and 61% for the respective cancer groups (Nagler et al.,

2010). Surveys were mailed to all participants using Dillman’s design method (Dillman,

2010). All patients were first mailed an introductory letter explaining the purpose of the

study and including instructions; the surveys were mailed in a subsequent packet with a

small monetary incentive ($3 or $5 for the short or long version of the survey). Reminder

letters were sent after 2 weeks for subjects who did not return the survey. Patient consent

was provided prior to participation, and the University of Pennsylvania Institutional Review

Board reviewed and approved this study.

One of the research goals of the study described here is to examine how the Patient-Clinician

Information Engagement (PCIE) score affects breast, prostate, and colorectal cancer pa-

tients’ attitudes and behaviors; in particular, researchers were interested in the amount of

exercise the patients engaged in. Decisions people choose to follow will impact their health
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status. For example patients decide whether to increase exercise, to get radiation ther-

apy, or to choose surgery after seeking treatment information from their physicians. The

decision making process may be influenced by both medical and non-medical information.

PCIE scores are measured from 8 items; for each item, patients think back to the first

few months of their cancer diagnosis and recall whether they have 1) sought information

about treatments from their treating physician; 2) sought treatment information from other

physicians or health professionals; 3) actively looked for information about their cancer from

their treating physician; 4) actively looked for information about their cancer from other

physicians or health professionals; 5) discussed information from other sources with their

treating physician; 6) received suggestions from their treating physician to get information

from other sources; 7) actively looked for information about quality of life issues from their

treating physician; and 8) looked for quality of life information from other physicians or

health professionals. Each of the eight items was transformed to a Z-score, and the average

of the eight Z-scores formed the PCIE scale.

We use the extent of exercise (“During an average week, how many days do you exercise?”)

as the primary outcome. The outcomes range from 0 to 7 by experimental design; we treat

these as continuous responses in this small interval. The Pearson correlation coefficients

in Table 2.4 suggest that the correlation between baseline and follow-up is greater than

the correlation among the follow-up assessments. We use the unstructured correlation

in the data analysis and simulation sections, and we extend the correlation into AR(1),

exchangeable and Toeplitz later in the simulation section for further model assessment.

The proposed methods are described in Section 2.2, and illustrated with an analysis of the

PCIE data in Section 2.3. A simulation study to address the performance of the methods

is presented in Section 2.4. Section 2.5 provides a discussion and ideas for future work.
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2.2. Methods and Notation

2.2.1. Notation and underlying assumptions

Given a longitudinal data set, let Yi = (Yi1, Yi2, . . . , YiT )
′

represent the vector of repeated

measurements for subject i (i = 1, . . . , n) with T measurement times. Let Xi be a vector of p

covariates observed on the ith subject. The covariate vector Xi could be either time indepen-

dent or time dependent. Because the repeated measurements are not fully observed at each

time point t = (1, . . . , T ), define a vector of missingness indicators Ri = (Ri1, Ri2, . . . , RiT )

to correspond with the outcome vector Yi = (Yi,obs,Yi,mis). Each element of Ri is defined

as

Rit =

 0 if missing

1 if observed
.

For each subject, the full data are given by the repeated measurements and missingness

indicators with joint distribution L(θ, β|Yi,Ri,Xi) ∝ P (Yi,Ri|Xi, θ, β). By partitioning

Yi into (Yi,obs,Yi,mis), we can rewrite the joint likelihood in several ways. θ is parameter

space associated with outcome process, and β is parameter space associated with missingness

mechanism. A selection model would specify the joint distribution using the marginal

distribution of the repeated outcomes and the conditional distribution of missing indicators:

P (Yi,Ri|Xi, θ, β) = P (Yi,obs,Yi,mis|Xi, θ)P (Ri|Yi,obs,Yi,mis,Xi, β).

A pattern-mixture model assumes the full data have different distributions across strata

determined by the pattern of missingness:

P (Yi,Ri|Xi, θ, β) = P (Ri|Xi, β)P (Yi,obs,Yi,mis|Ri,Xi, θ).

A shared-parameter model assumes independence between the complete data and missing
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indicators conditional on group of shared parameters γ:

P (Yi,Ri|Xi, θ, β) =

∫
P (Yi,obs,Yi,mis|γi,Xi, θ)P (Ri|γi,Xi, β)p(γi)dγi.

In our study, we focus on selection models, which are a natural way to factor the joint

likelihood function. The diagram below indicates the relationships among the variables

graphically. Each line indicates the dependence between the nodes.

Yi1 −→ Yi2 · · · Yi,T−1 −→ YiT

↓ · · · ↓ · · · ↓ · · · ↓

Ri1 −→ Ri2 · · · Ri,T−1 −→ RiT

We adopt a similar model to Troxel et al. (1998a), and assume Yi ∼ MVN(µi,Σ), where

the mean structure µi = (µi1, µi2, · · ·µiT ) depends on a p-dimensional covariate vector

Xi. We also assume a first-order Markov dependence structure for both the full out-

come data and the missingness indicators, so that f(Yit|Yi1, Yi2, . . . Yit−1) = f(Yit|Yit−1)

and f(Rit|Ri1, Ri2, . . . Rit−1) = f(Rit|Rit−1). Let σ2t = var(Yit) and ρt = corr(Yit, Yit+1).

Then we can denote the conditional likelihood as

Yit|Yi,t−1 ∼ N
{
µit + ρt−1

σt
σt−1

(Yi,t−1 − µi,t−1), σ2t (1− ρ2t−1)
}
.

For T = 3 the first-order ante-dependence structure is denoted as :

Σ =


σ21 σ1σ2ρ1 σ1σ3ρ1ρ2

σ2σ1ρ1 σ22 σ2σ3ρ1

σ3σ1ρ1ρ2 σ3σ2ρ2 σ23

 .
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2.2.2. Missingness mechanism model

Unlike other approaches to modeling the missingness mechanism, we are interested in the

transition probability of the missingness indicators Rit. Conditional on each time t, the

missingness mechanism becomes a two-state Markov chain. We model the transition prob-

abilities πjk = Pr(Rit = j|Ri,t−1 = k, Yit, Xit), j = 0, 1; k = 0, 1 as

 π00 π01

π10 π11


which satisfy the equation π00 + π01 = π10 + π11 = 1. We assume that the initial state is

independent, and define nj,k as the number of times in the whole sequence that k is followed

by j:

nj,k =
∑T

t=1 I(Rt = j|Rt−1 = k)

nj. =
∑

k nj,k, n.k =
∑

j nj,k.

Then the missingness mechanism can be written as

Li = πni00
00 πni01

01 πni10
10 πni11

11

=
∏T
t=2

∏1
j=0

∏1
k=0 πjk(t)

I(Ri,t=j|Ri,t−1=k).

This becomes a product of binomial distributions. Logistic regression has been used for this

type of problem but yield unstable estimates for binary outcomes near the boundary of the

parameter space. Thus we estimate the probability of missingness at each time t using a

joint beta-binomial distribution.

Given time t− 1, the missingness mechanism follows (Ri,t|Ri,t−1 = k) ∼ Bernoulli(πikt); we

impose a beta distribution on the missingness probability, πikt ∼ Beta(aikt, bikt) Then we
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have

f(Ri,t|Ri,t−1, yit, π) =
1∏

k=0

π
I(Rit=1)I(Rit−1=k)
k1 (1− πk1)[1−I(Rit=1)]I(Rit−1=k)

f(πk1|ak1, bk1) =
Γ(ak1 + bk1)

Γ(ak1)Γ(bk1)
× πak1−1

k1 (1− πk1)bk1−1.

Integrating the π out, the mixture function can be expressed as

f(Ri,t|Ri,t−1, aik1, bik1, yit) =

∫ 1

0
f(Ri,t|Ri,t−1 = k, πikt)f(πikt|aikt, bikt, yit)dπikt

=

1∏
k=0

Γ(aik1 + bik1)

Γ(aik1)Γ(bik1)

× Γ(aik1 + I(Ri,t = 1)I(Ri,t−1 = k))Γ(bik1 + [1− I(Ri,t = 1)]I(Ri,t−1 = k))

Γ(aik1 + bik1 + I(Rit−1 = k))

with aik1 = exp(ζ1Xit + ϑ1Yit + ψ1Ri,t−1) and bik1 = exp(ζ2Xit + ϑ2Yit + ψ2Ri,t−1).

However, the link function chosen could be different resulting in a different missingness

mechanism model. For given Ri,t−1 = 0, the transition probability can be denoted as

P (Rit = l|Rit−1 = 0, Yit, Xit) : =


1

1+exp((ζ1−ζ
′
2)Xit+(ϑ1−ϑ2)Yit)

if l = 1

1

1+exp(−(ζ1−ζ
′
2)Xit−(ϑ1−ϑ2)Yit)

if l = 0
.

For given Ri,t−1 = 1,

P (Rit = l|Rit−1 = 1, Yit, Xit) : =


1

1+exp((ζ1−ζ2)Xit+(ϑ1−ϑ2)Yit+(ψ1−ψ2))
if l = 1

1
1+exp(−(ζ1−ζ2)Xit−(ϑ1−ϑ2)Yit−(ψ1−ψ2))

if l = 0
.

Notice that if ϑ1 − ϑ2 6= 0 then the missingness mechanism is indeed non-ignorable since

the probability of missingness depends on the unobserved outcome Yit. In practice, only

the difference of each parameters are identifiable, not the individual parameters. We let

ζc = ζ1 − ζ2, ϑc = ϑ1 − ϑ2 and ψc = ψ1 − ψ2 be the final parameters in the missingness
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mechanism model, where ζc is the coefficient of the covariates, ϑc is the coefficient of the

current observation yit ,and ψc is the coefficient of the previous missingness indicator rit−1.

The link function for parameters aikt and bikt of the Beta distribution could be chosen

differently than a simple exponential function, and this will result a different missing-

ness mechanism model. The missingness mechanism model could be expanded, similar

to Dirichlet-Multinomial distribution, from the current Beta-Binomial distributions when

modeling a missing data indicator with more than two levels, such as “observed”, “inter-

mittently missing”, “drop out”.

2.2.3. Parameter estimation

The observed joint likelihood function can be denoted as

Li(µ,Σ, θ, β) = f(Yi,obs,Ri)

=

∫
. . .

∫
f(Yi,obs,Yi,miss,Ri)dYi,miss

=

∫
. . .

∫
f(Yi1)f(Ri1|Yi1)

T∏
t=2

f(Yit|Yi,t−1)f(Rit|Ri,t−1, Yit)dYi,miss.

There is no closed form for the observed likelihood function due to the complicated joint

likelihood; a numerical integration method will be applied to approximate the likelihood

function. The Gauss-Hermite quadrature rule is defined as

∫
R
f(t)dλ(t) =

∫
R
f(t)w(t)dt

=

∫
R
f(t) exp(−t2)dt =

m∑
k=1

wkf(τk) +Rm(f)

where m is the number of nodes, dλ(t) = w(t)dt = exp(−t2)dt is the measure with bounded

or unbounded support on R, wk is the weight of the Gauss-Hermite quadrature rule, τk

are the nodes (zero roots of the mth order Hermite polynomials) and Rm(f) is the error

term. The τk are symmetric about zero. The error term Rm(f) will be zero if f(t) is
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polynomial with degree less than 2m − 1. Let φ(t;µ, σ) be a normal density with mean µ

and standard deviation σ. Then for any given function f(t) we can approximate an integral

as a summation following the transfomation used in Liu and Pierce (1994).

∫ ∞
∞

f(t)φ(t;µ, σ)dt '
m∑
i=1

wi√
π
f(µ+

√
2στk).

For T = 3, we list all possible data patterns and the joint likelihood function in the Ap-

pendix.

Our model is likelihood based, so maximum likelihood theory holds for parameter estima-

tion. Letting η = (µ1, µ2, · · · , µT , σ1, σ2, · · · , σT , ρ1ρ2, · · · , ρt−1, , β, θ, ψ), we have

√
n(η̂ − η0) ∼MVN(∅, I−1)

The Fisher information matrix I is estimated using the observed information matrix Î. The

Hessian matrix can be calculated during the maximization step, and the inverted Hessian

matrix provides the observed Fisher information matrix .

2.3. Example: Analysis of PCIE Data

More and more survey studies focus on questionnaires returned by patients with different

health issues, stages of disease, type of cancer, and other medical/non-medical characteris-

tics, so that health providers and/or decision makers can better understand the changing

behavior of the patients. Intuitively, patients’ behaviors involving attitude change and

information seeking, as well as their propensity to respond to questionnaires, can be health-

related. It is reasonable to expect that patients are less likely to respond in cases of worsened

health, or that response propensity is a function of all health information, such as disease

type, how actively subjects seek medical help, and how they are affected by their supporting

environment, which makes the missingness more likely informative.

Table 2.1 lists the 8 missingness patterns in the PCIE data. In practice, pattern 1, in which
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subjects are missing data at all three waves, carries no information and will be excluded

from the study. We use the extent of exercise (“During an average week, how many days do

you exercise?”) as the primary outcome. The outcomes range from 0 to 7 by experimental

design; we treat these as continuous responses in this small interval. There were 85.66% of

patients who responded to the baseline survey, 61.75% who returned the survey in wave 2,

and 56.03% who answered the questions in wave 3. We calculate the Pearson correlation

coefficients, shown in Table 2.4, which suggests that the correlation between the baseline

and follow-up assessments is greater than the correlation among the follow-up assessments.

We use the unstructured correlation for data analysis and in the simulation section, and

we extend the correlation into AR(1), exchangeable and Toeplitz later in the simulation

section for further model assessment.

Table 2.3 lists all patient characteristics of interest for both the marginal model and the

missingness model. There are a total of 2010 cancer patients who responded to at least one

of three surveys, including 650 patients with prostate cancer, 682 patients with colorectal

cancer, and 678 patients with breast cancer. The study included three longitudinal surveys.

The cohort includes both male and female whose cancer stage ranges from mild (stage 0) to

severe (stage 4). The age at cancer diagnosis ranges from a minimum of 23 to a maximum of

103. PCIE scores are measured from 8 items; for each item, patients think back to the first

few months of their cancer diagnosis and recall whether they have 1) sought information

about treatments from their treating physician; 2) sought treatment information from other

physicians or health professionals; 3) actively looked for information about their cancer from

their treating physician; 4) actively looked for information about their cancer from other

physicians or health professionals; 5) discussed information from other sources with their

treating physician; 6) received suggestions from their treating physician to get information

from other sources; 7) actively looked for information about quality of life issues from their

treating physician; and 8) looked for quality of life information from other physicians or

health professionals. Each of the 8 items was transformed to a Z-score, and the average of

the 8 Z-scores formed the PCIE scale. The summary table provides the variation of the
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PCIE score at each times.

The parameters are estimated using the proposed method and compared to a GEE model,

which assumes MCAR missingness, and a WGEE (weighted GEE), which assumes MAR.

Both GEE and WGEE assume an “ignorable” mechanism. The traditional PCIE study

considered the missingness mechanism as either MAR or MCAR, possibly resulting in biased

results. We modify the standard GEE to address missingness in the data. The weighting

is calculated using the missingness mechanism model first, followed by inversion of the

observed probability to form the corresponding weights. The missingness mechanism model

used “cancer type”, “gender”, “age at diagnosis”, “cancer severity”, “PCIE score” and the

previous missingness indicator to predict the current missingness indicator. For “ignorable”

data, WGEE will have unbiased estimators if the underlying data is MCAR. GEE will have

a biased estimators if the underlying data is MAR.

Because missing covariate data was not of primary interest, a multiple imputation method

was used to complete the missing covariates. Rubin (1987) proposed a multiple imputation

method using a Monte Carlo approach in which the missing values are replaced by m > 1

simulated versions. We generated m = 20 replicates in our study. Each of the imputed

datasets is analyzed using the proposed method, the GEE model and two weighted GEE

models. The combined parameter estimates and confidence intervals from the m = 20 data

sets follows Rubin’s (Rubin, 1987) multiple imputation rule.

In Table 2.5, we list the parameter estimates after combined 20-fold imputation. The coeffi-

cient for Yi in the missingness model indicates if the probability of missingness is related to

the potentially unobserved values of the outcomes. A significant effect indicates that the lon-

gitudinal data is “non-ignorable”. The coefficient for Ri−1 indicates if the previous response

had an effect on patients current response. Ri−1 = 1 means that the previous response was

collected. Clearly there are statistically significant effects in the missingness model for the

coefficient of both Yi [−0.136(−0.216,−0.055)] and Ri−1 [−0.794(−0.955,−0.633)], which

indicates that the MCAR assumption is invalid. The coefficients for both Yi and Ri−1 are
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negative, indicating an inverse relationship with the missingness indicator. Patients who

exercise more tend to be more likely to respond to the survey. They also tend to answer

the questionnaire if they already answered the previous one. Patients who have prostate

cancer [−0.302(−0.595,−0.008)] are more likely to return the questionnaire. Severe cancer

stage (stage 4) [0.713(0.196, 1.230)] increases the missingness rate, which indicate that pa-

tients with advanced disease are less likely to respond to the survey. “Wave” has coefficient

[0.287(0.138, 0.424)] which suggests that patients tend to be less responsive to the survey

as time increases; this happens typically in repeated measures studies; in that participants

become less compliant as the study advances.

The marginal estimates from our proposed model are somewhat larger than the ones from

either GEE or WGEE model. However, the significance levels are consistent between the

models. Only “age at diagnosis” and “cancer stage” are statistically significant. “Age at

diagnosis” has coefficient 0.010 (0.003, 0.018) indicating that older patients engage in more

exercise then younger patients. The coefficient of “cancer stage” [−0.567(−1.075,−0.058)]

indicates a negative correlation with outcome. Patients tend to reduce the amount of exer-

cise when their cancer becomes more severe. PCIE did not show a statistically significant

effect in either model which suggests we did not have enough evidence to show the patients’s

exercise behavior will be affected by differences in the PCIE score.

Although the MCAR and MAR assumption is apparently invalid, both GEE and WGEE

models show similar trends to the proposed model; while most of the parameters estimates

are attenuated, the inferential conclusions are unchanged in this example. The weighted

GEE model provides similar results to the GEE model when the sample size large.

2.4. Simulation Study

2.4.1. Simulation results

In this section we use a simulation study to assess model performance in small samples,

addressing the basic issues of bias in the parameter estimates and computing coverage
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probabilities. We simulated N subjects with three potential measurement times, for N =

300, N = 400 and N = 500. For each setting of N , we increase the missing rate from low

to high. In the low missingness situation, there is about 10% missing at time 1, 20% −

25% at time 2 , and around 40% − 45% missing at time 3. In the higher missingness

setting, there is 30% − 35% missing at time 2 and 55% − 60% missing at time 3. The

true parameters were selected to fit the proportion of each missingness pattern. Both

the proposed method, the GEE model and weighted GEE model are applied in these six

data settings. 500 simulations have been run to assess the model’s performance; results

are displayed in Table 2.6. The data were generated as trivariate normal, with pairwise

correlation parameters ρ1,2 = 0.4 and ρ2,3 = 0.2. The variance for time 1 is σ1 = 1.2, for

time 2 is σ2 = 2.6 and for time 3 is σ3 = 3.0. The estimators are good for both the marginal

parameter and missingness mechanism model in Table 2.6. The bias is very small. Both

GEE and WGEE model consistently underestimate the parameters when the sample size is

small, and the bias is substantial. This becomes much more severe when the missingness

rate increases from low to high. For WGEE model, the weights are calculated through

the missingness mechanism model first, and inverse of the observed probability forms the

weights. “Intercept”, “time” and previous missingness indicator Ri−1 are used to predict

the observed probability. Consistently, WGEE provides better estimators than GEE model

across all data setting, although the bias are still substantial compared with the proposed

model. WGEE model performs better when the missing proportion increases than does the

GEE model.

2.4.2. Model Comparison

The proposed model is compared with the original model in Troxel et al. (1998a), which

used the same settings for the complete data and a different logistic model for the missing-

ness indicators denoted as logit(πrit=1) = β0t + β1Yit. In the Troxel et al. (1998a) model,

this missingness model did not include the previous missing indicator as a covariate. We

generated two data settings, one with our proposed model and one with the correctly spec-

20



ified Troxel et al. (1998a) model. The correctly specified original model from Troxel et al.

(1998a) will become a misspecified model if the coefficient of the previous missing indicator

is not zero. Our proposed model will be over-specified if the parameter of the previous

missing indicator is zero. Table 2.7 shows these comparison results. When the parameter

(ψ) of the previous missing indicator is not zero, the estimates from our transition model are

unbiased and have high coverage probabilities. The Troxel 1998 model has good estimation

in the marginal model and variance-covariance structure, but poor estimation in the miss-

ingness model. This is not surprising, since the missingness model is misspecified. When

the parameter (ψ) of the previous missing indicator is zero, both models have very good

estimation. The proposed model uses a small value to estimate the ψ with 95% coverage

rate including zero.

Next, we fit the proposed model with three different covariance structures to see how our

model handles a miss-specified correlation matrix. Our transition model uses ANTE(1)

(ante-dependence) structure denoted as σiσj
∏j−1
k=i ρk for the (i, j)th element. There are a

total of 2t − 1 parameters needed. This will become computationally burdensome when t,

the number of repeated times, increases. In practice the AR(1) (autoregressive(1)) structure

is widely used, denoted as σ2ρi−j for the (i, j)th element. There are only two parameters

needed. The Pearson coefficient matrix in Table 2.4 shows the correlation between baseline

and followup is 0.644, and 0.618 for followup2 and followup3. We also have the coefficients

from Table 2.4 for ρ1, 2 = 0.643(0.607, 0.678) and ρ1, 2 = 0.624(0.586, 0.662) are statistics

same which make the AR(1) structure reasonable choice. Another two correlation structures

used for comparison are exchangeable (σ2[ρ1(i 6= j) + 1(i = j)]) structure and TOEP(2)

(Banded Toeplitz σ2|i−j|+11(|i− j| < 2)) structure.
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The AR(1), exchangeable, and TOEP(2) structure for T = 3 are written respectively as:

Σ =


σ2 σ2ρ σ2ρ2

σ2ρ σ2 σ2ρ

σ2ρ2 σ2ρ σ2


AR(1)

; Σ =


σ2 σ2ρ σ2ρ

σ2ρ σ2 σ2ρ

σ2ρ σ2ρ σ2


Exch

; Σ =


σ2 σ1 0

σ1 σ2 σ1

0 σ1 σ2


TOEP (2)

The comparison table is listed in Table 2.8. The proposed model can handle the AR(1)

structure well since it is a special case of ANTE(1) structure. Our model still performs quite

well in estimating the marginal effects and missingness coefficients for both exchangeable

and TOEP(2) structure. The variances are estimated with high coverage probabilities. Both

correlation estimates are less efficient than for the AR(1) model.

2.4.3. Non-Normal Data

In this section we compared the proposed model to each other with different underlying

assumptions about the data distribution. We simulated two data sets with same true pa-

rameters with different distributions. One data set was simulated from a trivariate normal

distribution. Another was simulated from a trivariate Gamma distribution. A Clayton

copula, which is an asymmetric Archimedean copula, was used to generate the trivariate

Gamma data. This dependence structure of trivariate Gamma followed an exchangeable

correlation. We used Kendall’s formula (Kendall, 1976) to assure the same covariance struc-

ture between trivariate normal and trivariate Gamma data. We generate three correlation

structures with high (ρ = 0.707), low (ρ = 0.5) and zero (ρ = 0) intra-subject correlation

with sample sizes n = 300 and n = 500 to examine the models’ performance in Table 2.9.

Our proposed model performed quite well when the data are normally distributed. The

estimator becomes less efficient when the data are independent (ρ = 0), which makes sense

since the missingness model is miss-specified and thus the model is over-fitted. The marginal

effect and missingness models are still estimated well when the underlying data distribution

is not normal. However, the correlations are poorly estimated, although we still have quite

good estimation of the variance parameter. The estimation improves when the correlation

22



is strong and worsens when the correlation is weak in the dependent data.

2.5. Discussion

We have presented an extension of the full likelihood-based algorithm to handle non-

monotone and non-ignorable missing data. We assume a first-order Markov structure in

both the complete data and missingness mechanism which is a natural way to capture the

correlation among repeated measurements in a longitudinal data framework. The estima-

tion of marginal effects is generally robust to correct specification of the covariance matrix

and missingness mechanism.

As with any model-based approach to non-ignorable missing data, the current approach is

subject to unavoidable assumptions about the complete data distribution and the missing

data mechanism. It is important to consider all substantive information about the area of

application, prior experience with missing data in similar situations, and expert opinion

about the mechanism of missing data when building such models. In many areas, enough

knowledge and experience exists to justify the necessary assumptions, and the benefit in

terms of bias reduction can be significant.

Our transition model can be easily extended to model more than two states such as dropout

or intermittent missingness. The numerical integration provides an accurate approximation

but at the cost of increased computational complexity. We sometimes encountered a mul-

timodal likelihood surface in our study. A method to handle such surfaces is to choose a

vector of starting values and use GEE estimates to get the starting point as close to the

true values as possible. There are many classes of correlation structure; while we can not

explore all of them, the proposed model can handle the situation of a mis-specified correla-

tion as demonstrated by our simulations. The marginal effects and missingness effects are

consistently estimated with high coverage probability as long as the intra-subject correla-

tion is incorporated. For studies with more than 3 assessment times, it will be difficult to

examine complex correlation structures due to the increase in the number of parameters in
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the model.

There are increasing trends of more and more survey studies to better understand the rela-

tionship of patients, physicians, and the health care system. In most such studies, however,

sample sizes are limited due to restrictions on cancer type, study design and medical in-

formation availability. Small sample sizes with large proportions of missing information

become more and more concerning for researchers, and limit generalizability. When in-

formation is masked due to reasons relating to the patient-physician relationship, lower

response rates in patients with worse outcomes due to the disease or to accessibility to

medical information and care, special approaches are needed. If data are modeled without

considering this informative missing data, seriously biased inference may result.

Table 2.1: Missingness patterns in PCIE study

Pattern Number Pattern Number
of case of case

0 0 0 166 1 0 0 457
0 0 1 26 1 0 1 118
0 1 0 77 1 1 0 231
0 1 1 221 1 1 1 714

Table 2.2: Response rate for possible outcome

Response Rate Exercise PCIE Seeking

wave 1 75.62% 99.00% 98.76%
wave 2 61.84% 63.28% 63.63%
wave 3 53.68% 55.67% 55.87%
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Table 2.3: Characteristics of covariates

Type of cancer Frequency Percent
Cumulative Cumulative

Frequency Percent
Colorectal 682 33.93% 682 33.93%

Breast 678 33.73% 1360 67.66%
Prostate 650 32.34% 2010 100%

Gender Frequency Percent
Cumulative Cumulative

Frequency Percent
Male 987 49.10% 987 49.10%

Female 1023 50.90% 2010 100%

Stage Frequency Percent
Cumulative Cumulative

Frequency Percent
. 129 6.42% 129 6.42%
0 182 9.05% 311 15.47%
1 355 17.66% 666 33.13%
2 798 39.70% 1464 72.84%
3 243 12.09% 1707 84.93%
4 303 15.07% 2010 100%

Age at Diagnosis Mean Median Min Max

64.74 65 23 103

PCIE score at time Mean Median Min Max

Wave 1 0.00245 0.00811 -1.27416 1.24094
Wave 2 0.00063 -0.20160 -0.70182 1.88602
Wave 3 0.00167 -0.22578 -0.60372 2.04041

Table 2.4: Pearson correlation matrix of exercise score
Pearson Correlation Coefficients

Prob H0: ρ=0
Number of Observations

Wave 1 Wave 2 Wave 3
Wave 1 1 0.6438 0.5848

< .0001 < .0001
1520 945 832

Wave 2 0.6438 1 0.6184
< .0001 < .0001

945 1243 935

Wave 3 0.5848 0.6184 1
< .0001 < .0001

832 935 1079
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Table 2.6: Simulation study 500 replicates
N=300

Response Rate Time 1 Time 2 Time 3 Time 1 Time 2 Time 3
0.909 0.840 0.605 0.911 0.681 0.434

Full Liklihood GEE WGEE Full Liklihood GEE WGEE
TRUE E.est C.P Bias E.est Bias E.est Bias TRUE E.est C.P Bias E.est Bias E.est Bias

Intercept 6.800 6.793 0.950 0.007 6.308 0.492 6.393 0.407 5.600 5.604 0.948 0.004 4.996 0.604 5.134 0.466
Time 1.050 1.062 0.956 0.012 1.518 0.468 1.445 0.395 0.300 0.301 0.942 0.001 0.914 0.614 0.782 0.482

Missingness model
Intercept -0.800 -0.990 0.958 0.190 -0.800 -0.894 0.952 0.094

Time 1.250 1.103 0.952 0.147 1.250 1.213 0.956 0.037
yi(ϑc) -0.400 -0.404 0.936 0.004 -0.400 -0.412 0.950 0.012
ri−1(ψc) 2.500 2.676 0.976 0.176 2.500 2.628 0.962 0.128

π 2.314 2.326 0.934 0.012 2.314 2.363 0.946 0.049

Correlation structure
σ1 0.182 0.181 0.950 0.002 0.182 0.179 0.952 0.004
σ2 0.956 0.953 0.944 0.003 0.956 0.953 0.948 0.002
σ3 1.099 1.095 0.952 0.004 1.099 1.099 0.946 0.001
ρ1,2 0.847 0.849 0.922 0.002 0.847 0.853 0.952 0.006
ρ2,3 0.405 0.414 0.940 0.009 0.405 0.408 0.938 0.002

N=400
Response Rate Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

0.911 0.826 0.593 0.910 0.668 0.425

Full Liklihood GEE WGEE Full Liklihood GEE WGEE
TRUE E.est C.P Bias E.est Bias E.est Bias TRUE E.est C.P Bias E.est Bias E.est Bias

Intercept 6.400 6.402 0.942 0.002 5.913 0.487 6.001 0.399 5.400 5.402 0.930 0.002 4.788 0.612 4.919 0.481
Time 1.100 1.100 0.932 0.000 1.571 0.471 1.494 0.394 0.300 0.300 0.936 0.000 0.917 0.617 0.789 0.489

Missingness model
Intercept -0.800 -0.867 0.954 0.067 -0.800 -0.905 0.956 0.105

Time 1.250 1.224 0.960 0.026 1.250 1.205 0.942 0.045
yi(ϑc) -0.400 -0.410 0.920 0.010 -0.400 -0.407 0.940 0.007
ri−1(ψc) 2.500 2.600 0.950 0.100 2.500 2.612 0.948 0.112

π 2.314 2.340 0.960 0.027 2.314 2.339 0.972 0.025

Correlation structure
σ1 0.182 0.179 0.950 0.003 0.182 0.180 0.950 0.002
σ2 0.956 0.956 0.938 0.000 0.956 0.949 0.950 0.006
σ3 1.099 1.098 0.942 0.000 1.099 1.094 0.946 0.004
ρ1,2 0.847 0.854 0.942 0.007 0.847 0.846 0.954 0.001
ρ2,3 0.405 0.409 0.932 0.003 0.405 0.409 0.958 0.003

N=500
Response Rate Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

0.911 0.805 0.587 0.910 0.666 0.427

Full Liklihood GEE WGEE Full Liklihood GEE WGEE
TRUE E.est C.P Bias E.est Bias E.est Bias TRUE E.est C.P Bias E.est Bias E.est Bias

Intercept 5.600 5.591 0.940 0.009 5.111 0.489 5.202 0.398 5.400 5.404 0.952 0.004 4.787 0.613 4.918 0.482
Time 1.300 1.309 0.934 0.009 1.778 0.478 1.698 0.398 0.300 0.295 0.954 0.005 0.917 0.617 0.788 0.488

Missingness model
Intercept -0.800 -0.907 0.932 0.107 -0.800 -0.872 0.920 0.072

Time 1.250 1.164 0.938 0.086 1.250 1.226 0.940 0.024
yi(ϑc) -0.400 -0.403 0.946 0.003 -0.400 -0.410 0.962 0.010
ri−1(ψc) 2.500 2.606 0.952 0.106 2.500 2.600 0.964 0.100

π 2.314 2.334 0.938 0.020 2.314 2.347 0.936 0.033

Correlation structure
σ1 0.182 0.178 0.960 0.004 0.182 0.177 0.944 0.006
σ2 0.956 0.956 0.944 0.000 0.956 0.957 0.946 0.001
σ3 1.099 1.096 0.938 0.003 1.099 1.094 0.944 0.004
ρ1,2 0.847 0.850 0.958 0.002 0.847 0.845 0.948 0.003
ρ2,3 0.405 0.405 0.950 0.001 0.405 0.417 0.948 0.011

1 σi standard deviation of outcome at each time i. 2 C.P coverage probability. 3E.est Mean estimation.
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Table 2.7: Model comparison simulations, 1000 replicates
N=300

Res.Rate time 1 0.9095 0.9102
Res.Rate time 2 0.8395 0.8806
Res.Rate time 3 0.6042 0.6368

Transition Model Troxel 1998 model Transition Model Troxel 1998 model
correctly specified correctly specified

Parameter TRUE E.est C.P E.est C.P TRUE E.est C.P E.est C.P
Intercept 6.8 6.798 0.944 6.711 0.926 1.8 1.788 0.931 1.780 0.932

time 1.05 1.048 0.935 1.133 0.911 1.05 1.062 0.931 1.070 0.933
Missingness Model

Intercept -0.8 -0.948 0.954 0.721 0.575 -0.8 -1.115 0.941 -0.919 0.958
Time 1.25 1.145 0.943 2.397 0.852 1.25 1.022 0.944 1.190 0.949
yi(ϑc) -0.4 -0.410 0.932 -0.289 0.785 -0.4 -0.407 0.950 -0.396 0.942
ri−1(ψc) 2.5 2.674 0.963 - - 0 0.229 0.959 - -

π 0.91 0.910 1.000 0.910 1.000 0.91 0.914 1.000 0.916 1.000
Correlation

σ1 1.2 1.195 0.967 1.196 0.968 1.2 1.195 0.940 1.194 0.940
σ2 2.6 2.593 0.948 2.549 0.919 2.6 2.594 0.936 2.586 0.936
σ3 3 3.001 0.940 2.949 0.932 3 2.997 0.928 2.978 0.929
ρ1 0.4 0.398 0.953 0.400 0.950 0.4 0.400 0.948 0.402 0.948
ρ2 0.2 0.202 0.948 0.207 0.942 0.2 0.196 0.940 0.196 0.940

1 Simulation sample size n = 300. replicates 1000. Res.Rate: Response Rate 2 σi standard deviation of outcome at

each time i. 3 C.P coverage probability. 4 E.est Mean estimation.

Table 2.8: Simulation comparison study, 500 replicates
AR(1) Exchangable Toep(2)
σ2ρi−j σ2[ρ1(i 6= j) + 1(i = j)] σ2

|i−j|+1
1(|i− j| < 2)

Response Rate time 1 0.910 0.910 0.910
Response Rate time 2 0.844 0.844 0.844
Response Rate time 3 0.614 0.616 0.610

TRUE E.est C.P E.est C.P E.est C.P

Intercept 6.8 6.809 0.954 6.799 0.954 6.809 0.932
Time 1.05 1.047 0.952 1.055 0.970 1.037 0.920

Missing Data Model
Intercept -0.8 -0.841 0.962 -0.934 0.960 -0.749 0.944
Time 1.25 1.238 0.970 1.123 0.954 1.331 0.966
yi(ϑc) -0.4 -0.408 0.962 -0.397 0.952 -0.423 0.948
ri−1(ψc) 2.5 2.581 0.966 2.593 0.968 2.622 0.948

π 0.904 0.911 1.000 0.911 1.000 0.910 1.000

correlation
σy1 2.4 2.404 0.946 2.401 0.946 2.403 0.960
σy2 2.4 2.407 0.956 2.421 0.944 2.385 0.956
σy3 2.4 2.405 0.930 2.405 0.956 2.403 0.956
ρ1 0.6 0.600 0.954 0.613 0.932 0.583 0.920
ρ2 0.6 0.600 0.962 0.620 0.894 0.568 0.876

1 Simulation sample size n = 500. replicates R = 500. 2 σi standard deviation of outcome at each time i.
3 C.P coverage probability. 4 E.est Mean estimation.
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Table 2.9: Non-normal data, 500 replicates

Normal Gamma

Response Rate 0.910 0.855 0.613 0.910 0.855 0.609

TRUE E.est STD C.P TRUE E.est STD C.P

Intercept 6.800 6.795 0.142 0.958 6.800 6.846 0.155 0.950
Time 1.050 1.054 0.065 0.958 1.050 1.000 0.080 0.912

Intercept -0.800 -1.002 0.992 0.938 -0.800 -0.726 0.890 0.932
Time 1.250 1.055 1.063 0.946 1.250 1.417 0.988 0.916
yi(ϑc) -0.400 -0.398 0.078 0.934 -0.400 -0.450 0.097 0.892
ri−1(ψc) 2.500 2.662 0.805 0.972 2.500 2.760 0.640 0.972

π 2.314 2.337 0.205 0.930 2.314 2.336 0.205 0.956

Correlation structure
σ1 1.772 1.764 0.075 0.940 1.772 1.765 0.075 0.922
σ2 1.887 1.898 0.083 0.962 1.887 1.957 0.088 0.846
σ3 1.995 1.988 0.099 0.938 1.995 2.109 0.111 0.800
ρ1,2 0.707 0.716 0.079 0.930 0.707 0.637 0.078 0.470
ρ2,3 0.707 0.723 0.093 0.918 0.707 0.603 0.093 0.324

Normal Gamma

Response Rate 0.909 0.857 0.609 0.910 0.856 0.607

TRUE E.est STD C.P TRUE E.est STD C.P

Intercept 6.800 6.796 0.165 0.962 6.800 6.877 0.181 0.918
Time 1.050 1.056 0.086 0.970 1.050 0.967 0.106 0.866

Intercept -0.800 -1.178 1.293 0.954 -0.800 -0.291 1.150 0.876
Time 1.250 0.876 1.395 0.942 1.250 1.964 1.332 0.876
yi(ϑc) -0.400 -0.385 0.097 0.934 -0.400 -0.527 0.153 0.862
ri−1(ψc) 2.500 2.724 1.010 0.988 2.500 2.868 0.696 0.982

π 2.314 2.323 0.204 0.944 2.314 2.338 0.205 0.932

Correlation structure
σ1 1.772 0.572 0.075 0.958 1.772 1.763 0.075 0.924
σ2 1.887 0.635 0.086 0.958 1.887 1.966 0.094 0.840
σ3 1.995 0.691 0.106 0.954 1.995 2.145 0.127 0.762
ρ1,2 0.500 1.099 0.076 0.948 0.500 0.454 0.076 0.820
ρ2,3 0.500 1.099 0.092 0.932 0.500 0.410 0.095 0.704

Normal Gamma

Response Rate 0.910 0.857 0.600 0.910 0.857 0.600

TRUE E.est STD C.P TRUE E.est STD C.P

Intercept 6.800 6.784 0.228 0.934 6.800 6.996 0.229 0.710
Time 1.050 1.064 0.161 0.892 1.050 0.858 0.159 0.498

Intercept -0.800 -1.299 2.297 0.896 -0.800 1.267 2.702 0.538
Time 1.250 0.763 2.609 0.894 1.250 3.959 3.082 0.528
yi(ϑc) -0.400 -0.392 0.234 0.876 -0.400 -0.820 0.294 0.490
ri−1(ψc) 2.500 2.821 1.144 0.968 2.500 3.137 1.552 0.986

π 2.314 2.329 0.204 0.934 2.314 2.335 0.205 0.934

Correlation structure
σ1 1.772 1.767 0.076 0.958 1.772 1.761 0.075 0.934
σ2 1.887 1.896 0.103 0.926 1.887 2.033 0.116 0.648
σ3 1.995 2.000 0.144 0.940 1.995 2.294 0.182 0.562
ρ1,2 0.000 -0.002 0.066 0.946 0.000 -0.004 0.064 0.942
ρ2,3 0.000 0.004 0.081 0.932 0.000 -0.026 0.074 0.888

1 Simulation sample size n = 500. replicates R = 500.
2 σi standard deviation of outcome at each time i. 3 C.P coverage probability.
4E.est Mean estimation. STD Mean standard deviation
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CHAPTER 3 : Pseudo-likelihood methods for transition models in longitudinal

data with non-ignorable non-monotone missing data

3.1. Introduction

In a longitudinal study, subjects are observed as time progresses. A common problem is

that repeated measurements are not fully observed due to missing responses or loss to follow

up. Individuals can move in and out of the observed data set, giving rise to a large class of

distinct “non-monotone” missingness patterns. The appropriate statistical methods differ

according to the data structure and missing mechanism. When the missingness is MCAR

(missing completely at random) or MAR (missing at random), data analysis is the most

straightforward. Little and Rubin (1987) and Allison (2001) provide helpful terminology

to describe missing data mechanisms and a comprehensive overview of potential methods.

Most approaches can be categorized as selection models, pattern-mixture models or shared-

parameter models depending on the factorization of the joint likelihood of the outcomes

and missingness indicators. This chapter will focus on selection models.

Under the MCAR mechanism, the observed data can be viewed as a random subset of

the complete data. With MAR data, the missingness mechanism depends only on ob-

served quantities. Both mechanisms are termed “ignorable” if the parameters in the two

parts of the model are distinct. Unbiased parameter estimates can be guaranteed using

generalized estimating equations defined by Liang and Zeger (1986) when the missingness

mechanism is MCAR, and using weighted estimating equations defined by Robins and Rot-

nitzky (1995) when the missingness mechanism is MAR. Neither method provides consistent

unbiased estimators under informative dropout or non-ignorable (NI) missingess. The ap-

proaches to modeling longitudinal NI missing data depend on the data structure and type,

variance/covariance structure, and proportion of missing data. Many proposed methods

assume a multivariate Gaussian distribution for the outcomes, with different specifications

of the covariance structure; these include (Verbyla and Cullis, 1990; Richard and Lynn,
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1990; Munoz et al., 1992; Diggle and Kenward, 1994). However, all of these methods are

full-likelihood methods, which require integration over the unobserved data. The param-

eter estimation has to be done numerically, and this can be computationally prohibitive,

especially when the number of repeated assessments is large. Troxel et al. (1998b) pro-

posed a pseudo-likelihood method (Parke, 1986; Gong and Samaniego, 1981) for analysis of

continuous responses subject to non-ignorable non-monotone missing data. They treated

the pairwise correlation coefficients ρ as nuisance parameters fixed at zero, which results in

an independent likelihood over time. Specifically, their pseudo-likelihood assumed a sim-

ple Gaussian model for the outcome at each time, and also a marginal logistic regression

model for the missingness probability at a given time that depends only on the possibly

missing response at that time and the covariates, which are assumed to be fully observed.

This pseudo-likelihood method significantly eases the computational complexities of the

conventional likelihood-based method by reducing the high-dimensional integration to one-

dimensional integration. This class of method could be viewed as an extension of composite

marginal likelihood methods (Cox and Reid, 2004; Varin et al., 2011) which can be trans-

ferred into the non-ignorable non-monotone missing data framework.

Although this pseudo-likelihood method achieves asymptotically unbiased estimators of the

regression parameters and missingness parameters if the model is correctly specified, these

estimators can be highly inefficient due to the faulty assumption of independence of repeated

measures across all measurement times. Parzen et al. (2007) proposed an alterative pseudo-

likelihood method for binary data by using the joint distribution of all pairs of assessments

to yield more efficient estimates. However, for t = 1, 2, . . . , T repeated observed times,

there are a total of T∗(T−1)
2 joint pairs to be calculated, which is still computationally

impractical if T is large. Sinha et al. (2010) proposed a new bivariate pseudo-likelihood by

counting all pairwise associations between the baseline response (first observation) and all

subsequent responses. They assumed that baseline responses are always observed. However,

the pairwise association becomes weak when the assessment is far from the baseline. In this

article, we propose a new pseudo-likelihood that uses only adjacent pairs of observations.
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The first-order Markov dependence structure has been shown to be a natural way to capture

the correlation among repeated measurements in a longitudinal data framework. In practice,

the AR(1) structure is often used to simplify the likelihood function. We show also that

this method can be easily expanded to handle binary data.

The proposed methods were applied to data from the Penn Center of Excellence in Cancer

Communication Research. Effective communication between patients and physicians is very

important in cancer treatment and throughout the health care system. Effective exchange

of information between patients, physicians, health care systems, and the surrounding en-

vironment determines how active participants are within the health care system. Many

studies show a link between isolation and worse outcomes (Putt et al., 2009), including

shorter survival time, worse quality of life, and lower rates of participation in recommended

treatment programs. Patient adherence to treatment is normally higher in those who ac-

tively seek information about their treatment and quality of life from multiple channels

(Tan et al., 2011). It is crucial to understand the relationship between patients, physicians,

and the health care system, as well as the role of shared decision-making skills; how patients

get, give, and discuss information and make health care decisions is important in cancer

research, especially given the high demands that the health care system is facing.

The Effects of Public Information Study enrolled a total of 2010 patients diagnosed in

2005 with breast, colorectal, or prostate cancer selected from the Pennsylvania Cancer

Registry. Subjects responded to at least one of three surveys, including 1520 patients

who responded at wave 1, 1243 patients who responded at wave 2, and 1079 patients who

responded at wave 3; these three survey occurred at yearly intervals beginning in fall 2006.

The American Association for Public Opinion Research (AAPOR, 2006) response rates

for the primary sample were 68%, 64%, and 61% for the respective cancer groups (Nagler

et al., 2010); intermittent missingness patterns were common. Surveys were mailed to all

participants using Dillman’s design method (Dillman, 2010). All patients were first mailed

an introductory letter explaining the purpose of the study and including instructions; the
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surveys were mailed in a subsequent packet with a small monetary incentive ($3 or $5

for the short or long version of the survey). Reminder letters were sent after 2 weeks for

subjects who did not return the survey. At follow-up assessments, contact was attempted

with all patients, regardless of response to the prior year’s survey. Patient consent was

provided prior to participation, and the University of Pennsylvania Institutional Review

Board reviewed and approved this study.

One of the study’s research goals was to examine how the Patient-Clinician Information

Engagement (PCIE) score affects cancer patients’ attitudes and behaviors; in particular,

researchers were interested in the amount of exercise the patients engaged in. For example,

patients decide whether to increase exercise, to get radiation therapy, or to choose surgery

after seeking and considering treatment information with their physicians; the decision

making process may be influenced by both medical and non-medical information. The

PCIE score was designed to measure these constructs using 8 items assessing whether,

during the first few months of their cancer diagnosis, they had sought cancer, treatment, or

quality-of-life information their own or other physicians or from other sources. Each of the 8

“Yes/No” questions was transformed to a Z-score, and the average of the 8 Z-scores formed

the PCIE scale. We use the extent of exercise (“During an average week, how many days do

you exercise?”) as the primary outcome. The outcomes range from 0 to 7 by design; we treat

these as continuous responses in this small interval. The Pearson correlation coefficients

for the between-wave exerceise scores ranged from 0.58 to 0.64. We will assume that the

correlation between each pair of adjacent assessments is the same.

The rest of this chapter is presented as follows. The proposed methods are described in

Section 3.2, and illustrated with an analysis of the PCIE data in Section 3.3. A simulation

study to address the performance of the methods is presented in Section 3.4. Section 3.5

provides a discussion and ideas for future work.
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3.2. Model and Notation

Given a longitudinal data set, let Yi = (Yi1, Yi2, . . . , YiT )
′

represent the vector of repeated

measurements for subject i (i = 1, . . . , n) with T measurement times. Let Xi be a vector

of p covariates observed on the ith subject. Because the repeated measurements are not

fully observed at each time point t = (1, . . . , T ), define a vector of missingness indicators

Ri = (Ri1, Ri2, . . . , RiT ) to correspond with the outcome vector Yi = (Yi,obs,Yi,mis). Each

element of Ri is defined as

Rit =

 0 if missing

1 if observed

For each subject, the full data are given by the repeated measurements and missingness

indicators with joint distribution L(θ, β|Yi,Ri,Xi) ∝ P (Yi,Ri|Xi, θ, β). By partitioning

Yi into (Yi,obs,Yi,mis), we can rewrite the joint likelihood in several ways. θ is parameter

space associated with outcome process, and β is parameter space associated with missingness

mechanism.

A selection model would specify the joint distribution using the marginal distribution of

the repeated outcomes and the conditional distribution of missing indicators:

P (Yi,Ri|Xi, θ, β) = P (Yi,obs,Yi,mis|Xi, β)P (Ri|Yi,obs,Yi,mis,Xi, θ).

We can assume that the complete data come from a multivariate normal distribution, Yi ∼

MVN(µi,Σ), where the mean structure µi = (µi1, µi2, · · ·µiT ) depends on a p-dimensional

covariate vector Xi. We also assume a first-order Markov dependence structure for both the

full outcome data and the missingness indicators, so that f(Yit|Yi1, . . . Yi,t−1) = f(Yit|Yi,t−1)

and f(Rit|Ri1, . . . Ri,t−1) = f(Rit|Ri,t−1). Since our proposed pseudo-likelihood uses only

adjacent pairs of observations, we will let σ2 = var(Yit) and ρ = corr(Yit, Yi,t+1). Then we
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can denote the conditional likelihood as

Yit|Yi,t−1 ∼ N
{
µit + ρ(Yi,t−1 − µi,t−1), σ2(1− ρ2)

}
.

3.2.1. Missingness mechanism model

Unlike other approaches to modeling the missingness mechanism, we are interested in the

transition probability of the missingness indicators Rit given Rit−1. Conditional on each

time t, the missingness mechanism becomes a two-state Markov chain. We model the

transition probabilities πjk = Pr(Rit = j|Ri,t−1 = k, Yit, Xit), j = 0, 1; k = 0, 1 as

 π00 π01

π10 π11


which satisfy the equation π00 + π01 = π10 + π11 = 1. We assume that the initial state is

independent, and define nijk as the number of times in the whole sequence that k is followed

by j:

nijk =
T∑
t=1

I(Rit = j|Ri,t−1 = k)

nij. =
∑
k

nj,k, ni.k =
∑
j

nj,k.

Then the missingness mechanism can be written as

Li = πni00
00 πni01

01 πni10
10 πni11

11

=
T∏
t=2

1∏
j=0

1∏
k=0

πjk(t)
I(Rit=j|Ri,t−1=k).

This becomes a product of binomial distributions. To avoid the unstable estimation prob-

lems for binary outcomes near the boundary of the parameter space, we estimate the prob-

ability of missingness at each time t using a joint beta-binomial distribution instead of
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traditional estimation using logistic regression. From a Bayesian perspective, the beta dis-

tribution is the conjugate prior distribution for the parameters of the binomial distribution.

The parameters of the beta distribution can be viewed as pseudo-counts of “response” and

“non-response” to be added to the observed counts of responses and non-responses.

Given time t− 1, the missingness mechanism follows (Rit|Ri,t−1 = k) ∼ Bernoulli(πikt); we

impose a beta distribution on the missingness probability, πikt ∼ Beta(aikt, bikt) Then we

have

f(Rit|Ri,t−1, yit, π) =

1∏
k=0

π
I(Rit=1)I(Ri,t−1=k)
k1 (1− πk1)[1−I(Rit=1)]I(Ri,t−1=k)

f(πk1|ak1, bk1) =
Γ(ak1 + bk1)

Γ(ak1)Γ(bk1)
× πak1−1

k1 (1− πk1)bk1−1.

Integrating the π out, the mixture function can be expressed as

f(Rit|Ri,t−1, aik1, bik1, yit) =

∫ 1

0
f(Rit|Ri,t−1 = k, πikt)f(πikt|aikt, bikt, yit)dπikt

=

1∏
k=0

Γ(aik1 + bik1)

Γ(aik1)Γ(bik1)

× Γ(aik1 + I(Rit = 1)I(Ri,t−1 = k))Γ(bik1 + [1− I(Rit = 1)]I(Ri,t−1 = k))

Γ(aik1 + bik1 + I(Ri,t−1 = k))

with aik1 = exp(ζ1Xit + ϑ1Yit + ψ1Ri,t−1) and bik1 = exp(ζ2Xit + ϑ2Yit + ψ2Ri,t−1).

However, the link function chosen could be different, resulting in a different missingness

mechanism model. For given Ri,t−1 = 0, the transition probability can be denoted as

P (Rit = l|Ri,t−1 = 0, Yit, Xit) =


1

1+exp((ζ1−ζ2)Xit+(ϑ1−ϑ2)Yit)
if l = 1

1
1+exp(−(ζ1−ζ2)Xit−(ϑ1−ϑ2)Yit)

if l = 0

For given Ri,t−1 = 1,

P (Rit = l|Ri,t−1 = 1, Yit, Xit) =


1

1+exp((ζ1−ζ2)Xit+(ϑ1−ϑ2)Yit+(ψ1−ψ2))
if l = 1

1
1+exp(−(ζ1−ζ2)Xit−(ϑ1−ϑ2)Yit−(ψ1−ψ2))

if l = 0
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Notice that if ϑ1 − ϑ2 6= 0 then the missingness mechanism is indeed non-ignorable since

the probability of missingness depends on the unobserved outcome Yit. In practice, only

the difference of the parameters is identifiable, not the individual parameters. We let

ζc = ζ1 − ζ2, ϑc = ϑ1 − ϑ2 and ψc = ψ1 − ψ2 be the final parameters in the missingness

mechanism model, where ζc is the coefficient of the covariates, ϑc is the coefficient of the

current observed outcome yit, and ψc is the coefficient of the previous missingness indicator

ri,t−1. Note that the covariates Xit can include effects for time and/or interaction terms

between time and other variables, making it highly flexible and able to accommodate a wide

range of effects on the missing data probabilities.

The link function for parameters aikt and bikt of the beta distribution could be chosen as

something other than a simple exponential function, and this will result in a different miss-

ingness mechanism model. The missingness mechanism model could be expanded similarly

to a Dirichlet-multinomial distribution from the current beta-binomial distribution when

modeling more than two missingness states, such as “observed,” “intermediate missing,”

and “drop out.”

3.2.2. Independent Pseudo-likelihood (IPL)

Troxel et al. (1998b) proposed a pseudo-likelihood approach for the analysis of continuous

longitudinal responses subject to non-ignorable non-monotone missing data. They treated

the pairwise correlation coefficients ρ as nuisance parameters fixed at zero. Then they

modeled the repeated measurements independently over time after applying this working

independence assumption. To describe this pseudo-likelihood method, let f(yit, rit|xi, θ, β)

be the marginal distribution of (Yit, Rit) at each time t; then the observed pseudo-likelihood

can be denoted:

L(θ, β)obs =

N∏
i=1

T∏
t=1

f(yit, rit|xi, θ, β)rit

[∫
yit

f(yit, rit|xi, θ, β)dyit

]1−rit
.

Further, let f(yit|xi, θ) be a normal distribution with N(µit, σ
2), and f(rit|yit, xi, β) is
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Bernoulli distribution with probability of being observed. The above formula can be ex-

panded as:

L(θ, β)obs =
N∏
i=1

T∏
t=1

f(yit, rit|xi, θ, β)rit

[∫
yit

f(yit, rit|xi, θ, β)dyit

]1−rit

=

N∏
i=1

T∏
t=1

{f(yit|xi, θ)f(rit|yit, xi, β)}rit

×

[∫
yit

f(yit|xi, θ)f(rit|yit, xi, β)dyit

]1−rit

=
N∏
i=1

T∏
t=1

{f(yit|xi, θ)πit}rit

×

[∫
yit

f(yit|xi, θ)(1− πit)dyit

]1−rit

The estimators (θ̂, β̂) can be obtained by setting the log pseudo-score vector equal to zero

and solving:

S(θ, β) =
∂

∂(θ, β)
logL(θ, β)obs.

Using method of moments ideas, this estimator (θ̂, β̂) is consistent since it can be shown that

E[S(θ, β)] = 0, and the estimator (θ̂, β̂) is consistent for the true parameters θ, β (Troxel

et al., 1998b).

Although this pseudo-likelihood method achieves asymptotically unbiased estimators of

the regression parameters and missingness parameters if the model is correctly specified,

these estimators can be highly inefficient due to the faulty assumption of independence of

repeated measures across all measurement times, and this pseudo-likelihood method ignores

the covariance structure entirely.

3.2.3. Proposed Transition Pseudo-likelihood (TPL)

Instead of focusing on the marginal likelihood, we consider a pseudo likelihood based on the

conditional density of all adjacent pairs. Let J be the index set, J =
(
{1, 2}, {2, 3}, · · · , {T−
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2, T−1}, {T−1, T}
)
. To avoid the computational burden of the full likelihood approach and

take advantage of the pseudo-likelihood framework, we propose to use only T − 1 adjacent

pairs. A first-order Markov dependence structure is assumed for longitudinal data. We

re-write the joint density function as:

PLi =

n∏
i=1

p(yi1, ri1|xi, θ, β)

t∏
j=2

p(yij , rij |yi,j−1, ri,j−1, xi, θ, β)

=
n∏
i=1

p(yi1|xi, θ)p(ri1|yi1, xi, β)
t∏

j=2

p(yij |yi,j−1, xi, θ)p(rij |ri,j−1, yij , yi,j−1, xi, β)

=
n∏
i=1

p(yi1|xi, θ)p(ri1|yi1, xi, β)
t∏

j=2

p(yij |yi,j−1, xi, θ)p(rij |ri,j−1, yij , xi, β)

The proposed transitional pseudo-likelihood (TPL) method is to assume independence of

each time within subject and f(yit, rit|yi,t−1, ri,t−1) ⊥ f(yi,t−1, ri,t−1|yi,t−2, ri,t−2). The ob-

served pseudo-likelihood function is denoted as

PLobsi = L0 ∗ L1 ∗ L2 ∗ L3 ∗ L4

L0 =
n∏
i=1

[
p(yi1)p(ri1|yi1)

]ri1
∗
[ ∫

yi1

p(yi1)p(ri1|yi1)dyi1
]1−ri1

L1 =
t∏

j=2

[
p(yij |yi,j−1)p(rij |ri,j−1, yi,j)

]rijri,j−1

L2 =

[ ∫
yi,j−1

p(yij |yi,j−1)p(rij |ri,j−1, yij)p(yij−1)dyij−1
](1−ri,j−1)rij

L3 =

[ ∫
yij

p(yij |yi,j−1)p(rij |ri,j−1, yi,j)dyij
]ri,j−1(1−rij)

L4 =

[ ∫∫
yi,j−1,yij

p(yij |yi,j−1)p(rij |ri,j−1, yi,j)p(yij−1)dyij−1dyi,j
](1−ri,j−1)(1−ri,j)

.

For the conditional distribution of f(yit|yi,t−1), we impose the prior density of yi,t−1 to

integrate out time point t−1 if the data in t−1 is unobserved. This situation occurs in the

setting denoted as L2 and L4 above. Therefor we consider the yi,t−1 as a random variable

if the assessment is unobserved.
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The proposed TPL is for continuous outcomes; however, this can be easily extended for

binary outcomes as:

PLobsi = L0 ∗ L1 ∗ L2 ∗ L3 ∗ L4

L0 =

n∏
i=1

[
p(yi1)p(ri1|yi1)

]ri1
∗
[∑
yi1

p(yi1)p(ri1|yi1)
]1−ri1

L1 =

t∏
j=2

[
p(yij |yi,j−1)p(rij |ri,j−1, yi,j)

]ri,j−1rij

L2 =

[ ∑
yi,j−1

p(yij |yi,j−1)p(rij |ri,j−1, yi,j)p(yij−1)
](1−rij−1)rij

L3 =

[∑
yij

p(yij |yi,j−1)p(rij |ri,j−1, yi,j)
]ri,j−1(1−rij)

L4 =

[∑ ∑
yi,j−1,yij

p(yij |yi,j−1)p(rij |ri,j−1, yi,j)p(yi,j−1)
](1−rij−1)(1−ri,j)

.

The pseudo-score function is defined as:

ST (θ, β) =
n∑
i=1

ST i(θ, β) =
∂

∂(θ, β)
logPLobsi ,

and the maximum pseudo-likelihood estimate is the solution to ST (θ̂, β̂) = 0. Heuristically,

using method of moments ideas, the transition pseudo-score estimator is consistent if the

distributions f(yit, yi,t−1, rit, ri,t−1|Xi, θ, β) are correctly specified. Troxel et al. (1998b)

gave proof of the consistency of the pseudo-likelihood estimator. It can be shown that

E[ST (θ, β)] = 0 at the true (θ, β). In practice, we obtain (θ̂, β̂) by maximizing the log-

pseudolikelihood directly, but the solution satisfies ST (θ̂, β̂) = 0. The variance must be

adjusted to obtain correct inference because of the faulty independence assumption. We

accomplish this with the commonly-used sandwich estimator as in Liang and Zeger (1986):

Σ =
[ 1

n
E
{∂ST (θ, β)

∂(θ, β)

}]−1 1

n

n∑
i=1

E{ST i(θ, β)S ′T i(θ, β)}
[ 1

n
E
{∂ST (θ, β)

∂(θ, β)

}]−1
.

Furthermore, the variance estimate Σ̂, is obtained by simply replacing (θ, β) by (θ̂, β̂) in
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the above expression.

The Gauss-Hermite quadrature rule will be used to approximate the integration since there

is no closed form for the observed pseudo-likelihood function. For any given function f(t)

we can approximate an integral as a summation following the transformation of Liu and

Pierce (1994): ∫ ∞
∞

f(t)φ(t;µ, σ)dt '
m∑
i=1

wi√
π
f(µ+

√
2στk).

The above expression will be exact if the given function f(t) is polynomial with degree

less than 2m − 1. φ(t;µ, σ) is a normal density with mean µ and standard deviation σ.

(wk, τk) is the kth Gauss-Hermite weight and nodes (zero root of the mth order Hermite

polynomials).

3.3. Example: Analysis of PCIE Data

3.3.1. Application to PCIE Data sets

Survey studies increasingly focus on questionnaires from patients with different health issues,

stages of disease, types of cancer; both medical and more general non-medical information is

needed for health providers and decision makers to better understand the behavior changes

of subjects. Intuitively, patient behaviors involving attitude change, information seeking,

and willingness to respond to questionnaires are related to health status. It is reasonable to

expect that patients may be less likely to respond due to worsened health status; this may

be a function of different kinds of health information including disease type, patient self-

efficacy, and their surrounding environment, and may contribute to informative missingness.

Table 3.1 lists the missingness patterns in PCIE data; all eight possible patterns are rep-

resented in the data, including non-monotone patterns. In practice, pattern 1, which has

missing data at all three waves, carries no information and will be excluded from the study.

We use the extent of exercise (“During an average week, how many days do you exercise?”)

as the primary outcome. The outcome ranges from 0 to 7; we treat these as continuous re-
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sponses in this small interval. There were 85.66% of patients who responded to the baseline

survey, 61.75% who returned the survey in wave 2, and 56.03% who answered the questions

in wave 3; response rates for specific variables are given in Table 3.2. We calculated the

Pearson correlation coefficients for the exercise outcomes, which shows that the correlation

is 0.644 between waves 1 and 2, and 0.618 between waves 2 and 3; the correlation between

waves 1 and 3 is somewhat smaller at 0.585. We use an AR(1) correlation in the data

analysis and simulation sections since our proposed model only incorporates the correlation

of adjacent pairs of assessments.

Table 3.3 lists all patient characteristics of interest for both the marginal model and the

missingness model. There are a total of 2010 cancer patients who responded to at least

one of the three surveys, including 1520 patients who responded at wave 1, 1243 patients

who responded at wave 2, and 1079 patients who responded at wave 3; these three surveys

occurred at yearly intervals. The cohort includes both male and female patients with cancer

stage from mild (stage 0) to severe (stage 4). Age at cancer diagnosis ranged from 23 to

103. The PCIE score was measured using 8 items as described earlier, indicating whether

they had 1) sought information about treatment from their treating physician; 2) sought

treatment information from other physicians or health professionals; 3) actively looked for

information about their cancer from their treating physician; 4) looked for information

about their cancer from other physicians or health professionals; 5) discussed information

from other sources with their treating physician; 6) received suggestions from their treating

physician to get information from other sources; 7) actively looked for information about

quality of life issues from their treating physician; and 8) looked for quality of life infor-

mation from other physicians or health professionals. Each of the 8 “Yes/No” questions

was answered and was transformed to a Z-score, and the average of the 8 Z-scores formed

the PCIE scale. The summary in Table 3 provides the variation in the PCIE score at each

assessment time. Clearly patients with colorectal cancer were more likely to respond at

wave 1 and less likely at wave 3. Breast cancer and prostate cancer patients showed the

opposite pattern. Patients with severe cancer stage were less likely to respond to the survey

42



at wave 3 compared with wave 1.

The parameters are estimated using the proposed method and compared to full-likelihood

method, independent pseudo-likelihood, a GEE model which assumes MCAR missingness

and a weighted GEE (WGEE) which assumes MAR. Both GEE and WGEE can be treated

as “ignorable” mechanisms. The original PCIE study analysis considered the missingness

mechanism as either MAR or MCAR which may have resulted in biased estimates. Our

WGEE approach is a modification of the standard GEE to address missingness in the data.

The response probabilities are first calculated using a logistic model for the missingness

indicators; the inverse of these estimated probabilities form the corresponding weights. The

missingness mechanism model used “cancer type,” “gender,” “age at diagnosis,” “cancer

severity,” “PCIE score,” and the previous missingness indicator to predict current miss-

ingness indicators. For “ignorable” data, WGEE will produce unbiased estimators if the

underlying data is MAR or MCAR. GEE may have biased estimates if the underlying data

are MAR.

Because missing covariate data was not of primary interest, a multiple imputation method

was used to complete the missing covariates. Rubin (1987) proposed a multiple imputation

method using a Monte Carlo approach in which the missing values are replaced by m > 1

simulated versions. We generated m = 20 replicates in our study. Each of the imputed

datasets is analyzed using the proposed method, the full-likelihood method, the independent

pseudo-likelihood, the GEE model, and the weighted GEE model. The combined parameter

estimates and confidence intervals from the m = 20 data sets follow Rubin (1987)’s multiple

imputation rule.

Table 3.4, we list the parameter estimates after combined 20-fold imputation. The coefficient

for Yit indicates whether the missingness mechanism depends on the potentially unobserved

outcome; a test of this parameter represents a test for non-ignorability. The coefficient for

Ri,t−1 indicates whether the previous response has an effect on the likelihood of response

at the current assessment; Ri,t−1 = 1 indicates that the previous response was observed.
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Clearly, there is a statistically significant effect in the missingness model for the coefficients

of both Yit [−0.113 (−0.188,−0.037)] and Ri,t−1 [−0.802 (−0.938,−0.666)] in the TPL

model, which indicates that the MCAR assumption is invalid. The coefficients of Yit and

Ri,t−1 are both negative, indicating a negative relationship with the missingness indicator.

That is, patients who exercise more days per week are less likely to have missing survey

responses. They also tend to return the questionnaire if they have responded to previous

one. The full-likelihood model shows the same trend as well, and the IPL method is less

efficient for testing the coefficient of Yit, since the correlation is large (ρ = 0.629). The

coefficients for the other covariates indicate that patients who have prostate cancer [−0.304

(−0.623, 0.015)] are not statistically significantly different compared with the significant

result from the full-likelihood method [−0.301 (−0.595,−0.007)]; this may suggest loss of

efficiency with the TPL model. Unsurprisingly, patients with advanced cancer (stage 4)

[0.726 (0.191, 1.261)] are more likely to have a missing response. “Wave” has coefficient

[0.283 (0.161, 0.405)] which suggests that patients tend to be less responsive to the survey

as time passes; this is typical in repeated measures studies.

The marginal estimates from our proposed outcome model for exercise are somewhat larger

than the ones from either the GEE or WGEE approach. However, the significance levels are

consistent across the models. Only “age at diagnosis” and “cancer stage” are statistically

significant. “Age at diagnosis” has coefficient 0.010 (0.003, 0.018), indicating that older

patients engage in more exercise then younger patients. The coefficient of “cancer stage”

[−0.549 (−1.059,−0.040)] indicates a negative correlation with outcome. Patients tend

to reduce the amount of exercise when their cancer becomes more severe. PCIE did not

show a statistically significant effect in four of the models, with the exception of the IPL

model, suggesting that in this sample, patient health behaviors are not significantly affected

by patient engagement with the health care system as measured by the PCIE score. We

assessed interaction terms in this model as well, to check whether the relationship between

PCIE score and exercise might be changing over time, but found no evidence for this.
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Although the MCAR and MAR assumption is apparently invalid, both GEE and WGEE

models show similar trends to the proposed model; while most of the parameters estimates

are attenuated, the inferential conclusions are unchanged in this example. The weighted

GEE approach provides similar results to the GEE in this example, which may be due in

part to the large sample size. The coefficients from the independent pseudo-likelihood are

mostly consistent with results from the full-likelihood method and the transition pseudo-

likelihood method; however there are some small departures due to the high correlation

discussed in Troxel et al. (1998b), as expected.

3.4. Simulation Study

3.4.1. Simulation results

In this section we use a simulation study to assess model performance in small samples,

addressing the basic issues of bias in the parameter estimates and computing coverage

probabilities. We simulated N subjects with three potential measurement times, for N =

300, N = 500 and N = 1000. We compared the proposed model (TPL) and the independent

pseudo-likelihood model (IPL) using the correct non-ignorable missingness mechanism in

Table 3.5. There is about 10% missing at time 1, 25% at time 2, and around 35% missing at

time 3. The true parameters were selected to generate the same proportion of missing data

across multiple scenarios. The correctly specified original model for the IPL will become a

misspecified model since the coefficient of the previous missing indicator is not zero (e.g.,

ψc = 1.2). We restricted the number of occasions to T = 3 and consider a simple two-group

study design configuration with time interaction. However, the proposed TPL method has

the same computational requirements as IPL, which can be used in studies with many

repeated assessments.

Let xj = 0, 1 indicate treatment group. The continuous outcomes, denoted by (Yi1, Yi2, Yi3),
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are assumed to follow a multivariate normal distribution, with joint probabilities

f(Y) = (2π)−N/2 det(Σ)−1/2 exp
(
− 1

2
(Y − µ)TΣ−1(Y − µ)

)
where µit = α0 + α1t + α2xj + α3t ∗ xj , t = 1, 2, 3. For the simulation study, we choose

α0 = 11.5, α1 = 1.05, α2 = 0.25, α3 = 0.21. The correlation structure is TOEP(2) in

order to make the simulated covariance structure as close as possible to model assumptions.

Standard deviation σ and pairwise correlation ρ was set at ρt,t−1 = 0.4 and σ = 1.2. A

variety of different correlation structures were examined and the same overall pattern of

results was obtained in Table 3.6. The following true non-ignorable missingness mechanism

was applied:

logit[pr(Rit = 1|ri,t−1, yit, xi, zi)] = β0 + β1zi + β2xi + β3t+ β4t ∗ xi + β5yit + β6ri,t−1

where zi is a covariate only for the missingness model.

In the simulations reported in Table 3.5, both models show approximately unbiased estima-

tion of marginal parameters. TPL has consistently higher efficiency than IPL model. The

coverage probabilities are close to each other and the bias is small. The correctly specified

model for TPL becomes a miss-specified model for IPL method which is reflected in the

estimation of the missingness model. The bias becomes large for the parameters in the

missingness model in IPL model, and the coverage probability drops. Both methods can

have approximately unbiased estimation in variance, but only TPL can provide an estimate

of the correlation.

The correctly specified original model from IPL will become a mis-specified model if the

coefficient of the previous missing indicator is not zero. Our proposed model will be over-

specified if the parameter of the previous missing indicator is zero. Table 3.6 shows these

comparison results. When the parameter (ψc) of the previous missing indicator is not zero,

the estimates from our TPL model are unbiased and have high coverage probabilities. The
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IPL model has good estimation in the marginal model and variance-covariance structure,

but poor estimation in the missingness model. This is not surprising, since the missingness

model is miss-specified. When the parameter (ψc) of the previous missing indicator is zero,

both models have very good estimation. The proposed model uses a small value to estimate

the ψc with 95% coverage rate including zero.

Next, we fit the proposed model with three different covariance structures to see how our

model handles a miss-specified correlation matrix in Table 3.7. Our transition model uses

only adjacent pairs of observations. We assume all correlation between each adjacent pairs

of assessment are same, and assume same the variance over time to simplify the simulation.

In practice the AR(1) (first-order autoregressive) structure is widely used, with covariance

σ2ρi−j for the (i, j)th element. There are only two parameters needed. Another two cor-

relation structures used for comparison are the exchangeable (σ2[ρ1(i 6= j) + 1(i = j)])

structure and the TOEP(2) (Banded Toeplitz σ2|i−j|+11(|i− j| < 2)) structure, which is as

close as possible to our model assumptions.

The AR(1), exchangeable, and TOEP(2) structure for T = 3 are written respectively as:

Σ =


σ2 σ2ρ σ2ρ2

σ2ρ σ2 σ2ρ

σ2ρ2 σ2ρ σ2


AR(1)

; Σ =


σ2 σ2ρ σ2ρ

σ2ρ σ2 σ2ρ

σ2ρ σ2ρ σ2


Exch

; Σ =


σ2 σ1 0

σ1 σ2 σ1

0 σ1 σ2


TOEP(2)

The comparison table is listed in Table 3.7. The proposed model can handle the TOEP(2)

structure, as well as exchangeable and AR(1). Our model performs quite well in estimating

the marginal effects and missingness coefficients for a mis-specified correlation matrix. The

variances are estimated with high coverage probabilities. Simulations show that our pro-

posed method is robust to specification of the correlation matrix. However, the TPL model

can provide a estimation of correlation structure while IPL cannot.
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3.4.2. Non-normal data

In this section we compare the proposed models in cases with different underlying assump-

tions about the true data distribution. We simulated two data sets with the same expected

values but with different distributions. One scenario was simulated from a trivariate nor-

mal distribution. A second scenario was simulated using a trivariate gamma distribution.

A Clayton copula, which is an asymmetric Archimedean copula, was used to generate the

trivariate gamma data. The dependence structure of the trivariate gamma followed an

exchangeable correlation structure. We used Kendall (1976)’s formula to assure the same

covariance structure between the trivariate normal and trivariate gamma data. We gener-

ated three correlation structures, with high (ρ = 0.707), low (ρ = 0.5) and zero (ρ = 0)

pairwise correlation, with sample size n = 300 replications to examine the model’s perfor-

mance. We let the mean µit = α0 + α1t, t = 1, 2, 3 for both normal and gamma data.

The variance was calculated through the Clayton copula to match the normal distribution

data (σ1 = 2.145, σ2 = 2.241, σ3 = 2.332). Both our proposed model and the IPL model

assume the same variances over time. The comparison table is listed in Table 3.8. Our pro-

posed model performed quite well even with the mis-specified distribution compared as the

IPL model. The estimator becomes less efficient when the assesments are highly correlated

(ρ = 0.707); this is not surprising since in this scenario the variance-covariance structure

departs more drastically from the assumed structure. The marginal effects and missingness

model are still estimated well when the underlying data distribution is not normal. The

correlation coefficients are estimated well; however, the variance is estimated poorly.

3.5. Discussion

We have presented an extension of the pseudo-likelihood method to handle non-monotone

and non-ignorable missing data. We assume a first-order Markov structure in both the

complete data and missingness mechanism, which is a natural way to capture the correla-

tion among repeated measurements in a longitudinal data framework. The estimation of

marginal effects is generally robust to correct specification of the covariance matrix. Be-
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cause of the assumptions inherent in the models, the broad range of possible missing data

configurations and underlying probability distributions generating the data, it is difficult

to draw general conclusions from the limited simulation study. However, based on our sim-

ulation study, we have shown that our proposed TPL model can handle longitudinal data

with various covariance structures. Our proposed TPL model is no more computationally

intensive than the IPL model, which makes this model easily used in situations with a large

number of assessments.

Our transition model can be easily extended to model more than two states such as dropout

or intermittent missingness. The numerical integration provides an accurate approximation

but at the cost of increased computational complexity. We occasionally encountered a

multimodal likelihood surface in our study. A method to handle such as surface is to choose

a vector of starting values by using GEE estimates to get the starting point as close as the

true values as possible. There are too many classes of correlation structure to explore them

all; however, the proposed model can handle a mis-specified correlation to some extent.

In simulation studies with a variety of miss-specified correlation structures, the marginal

effects and missingness effects consistently have high coverage probabilities as long as the

correlation among pairs is nonzero.

Given the increasing interest in health care reform and structural changes in health care

systems, more and more survey studies are being designed to better understand the rela-

tionships among patients, physicians, and the broader health care system. In many such

studies, however, sample sizes are limited based on the disease under study, the geographic

area, and the availability of medical information. Small sample sizes with a large propor-

tion of missing information become a vexing problem for researchers trying to evaluate the

associations of interest. The missingness probability is often related to the very outcomes

under study, e.g., when patients fail to respond because of worse health outcomes. In the

example studied here, level of exercise may well serve as a proxy for general health status;

ignoring this information in the analysis can lead to seriously biased results.
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Table 3.1: Missingness patterns in PCIE study

Pattern Number Pattern Number
of cases of cases

0 0 0 166 1 0 0 457
0 0 1 26 1 0 1 118
0 1 0 77 1 1 0 231
0 1 1 221 1 1 1 714

Table 3.2: Response rates for possible outcomes

Response Rate Exercise PCIE Seeking

wave 1 75.62% 99.00% 98.76%
wave 2 61.84% 63.28% 63.63%
wave 3 53.68% 55.67% 55.87%

Table 3.3: Patient characteristics by response time

Response
Wave 1 Wave 2 Wave 3

(n=1520) (n=1243) (n=1079)
% N % N % N

Type of Cancer
Colorectal 35.26% 536 31.86% 396 30.21% 326

Breast 33.09% 503 34.92% 434 35.68% 385
Prostate 31.63% 481 33.23% 413 34.11% 368

Gender
Male 49.28% 749 48.83% 607 48.29% 521

Female 50.72% 771 51.17% 636 51.71% 558

Stage
. 6.05% 92 6.11% 76 6.21% 67
0 9.14% 139 8.21% 102 10.01% 108
1 17.11% 260 18.99% 236 19.18% 207
2 38.55% 586 42.24% 525 44.49% 480
3 12.11% 184 12.15% 151 11.49% 124
4 17.04% 259 12.31% 153 8.62% 93

Age Mean Median Mean Median Mean Median
(Range) (Range) (Range)

64.26 65 63.90 64 63.49 64
(23–98) (24–103) (27–103)

PCIE Score Mean Median Mean Median Mean Median
(Range) (Range) (Range)

-0.006 0.0006 -0.004 -0.212 0.007 -0.226
(-1.274–1.141) (-0.702–1.886) (-0.604 –2.040)
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Table 3.5: Simulation study of sensitivity to sample size, 1000 replicates

TPL IPL
N=300 Toep(2)

Resp Rate
0.911 0.747 0.650

True Bias Efficiency C.P Bias Efficiency C.P
α0 11.500 0.001 0.974 0.948 0.002 1.000 0.949
α1 1.050 0.014 0.984 0.948 0.001 1.000 0.952
α2 0.250 0.004 0.974 0.953 0.004 1.000 0.952
α3 0.210 0.001 0.979 0.946 0.001 1.000 0.947

β0 -14.500 0.017 1.080 0.940 1.876 1.000 0.856
β1 -0.150 0.004 1.258 0.944 0.009 1.000 0.805
β2 -0.550 0.056 0.940 0.951 0.082 1.000 0.948
β3 -0.200 0.044 0.897 0.945 0.337 1.000 0.927
β4 0.310 0.030 0.903 0.953 0.028 1.000 0.949

β5(yt) 1.450 0.008 0.941 0.938 0.033 1.000 0.918
β6(rt−1) 1.200 0.101 0.945

σ 1.200 0.006 0.968 0.940 0.005 1.000 0.945
ρ 0.400 0.003 0.955
π 0.910 0.001 1.000 0.957 0.001 1.000 0.957

N=500 Toep(2)
Resp Rate

0.910 0.746 0.650

True Bias Efficiency C.P Bias Efficiency C.P
α0 11.500 0.004 0.973 0.934 0.002 1.000 0.930
α1 1.050 0.016 0.984 0.932 0.000 1.000 0.946
α2 0.250 0.003 0.974 0.937 0.002 1.000 0.936
α3 0.210 0.000 0.978 0.931 0.000 1.000 0.931

β0 -14.500 0.187 1.080 0.942 2.059 1.000 0.834
β1 -0.150 0.001 1.264 0.951 0.012 1.000 0.779
β2 -0.550 0.054 0.941 0.948 0.006 1.000 0.948
β3 -0.200 0.049 0.899 0.955 0.329 1.000 0.898
β4 0.310 0.012 0.903 0.946 0.005 1.000 0.955

β5(yt) 1.450 0.013 0.942 0.932 0.055 1.000 0.923
β6(rt−1) 1.200 0.102 0.930

σ 1.200 0.005 0.967 0.937 0.003 1.000 0.942
ρ 0.400 0.002 0.932
π 0.910 0.000 1.000 0.956 0.000 1.000 0.956

N=1000 Toep(2)
Resp Rate

0.910 0.747 0.651

True Bias Efficiency C.P Bias Efficiency C.P
α0 11.500 0.003 0.973 0.944 0.001 1.000 0.948
α1 1.050 0.015 0.984 0.928 0.000 1.000 0.944
α2 0.250 0.001 0.974 0.953 0.000 1.000 0.951
α3 0.210 0.001 0.979 0.949 0.000 1.000 0.955

β0 -14.500 0.234 1.076 0.948 2.046 1.000 0.773
β1 -0.150 0.000 1.258 0.941 0.013 1.000 0.660
β2 -0.550 0.058 0.937 0.948 0.090 1.000 0.947
β3 -0.200 0.029 0.896 0.947 0.348 1.000 0.815
β4 0.310 0.021 0.899 0.949 0.023 1.000 0.944

β5(yt) 1.450 0.015 0.937 0.941 0.053 1.000 0.937
β6(rt−1) 1.200 0.110 0.912

σ 1.200 0.003 0.965 0.950 0.002 1.000 0.946
ρ 0.400 0.001 0.955
π 0.910 0.000 1.000 0.959 0.000 1.000 0.959

1 Resp Rate: response rate; C.P.: coverage probability.
2 σ standard deviation of outcome at each time.
3 ρ pairwise-correlation of outcome at each adjacent pairs.
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Table 3.7: Simulation study of sensitivity to different covariance structures, 1000 replicates
TPL IPL

AR1
Resp Rate

0.911 0.747 0.650
Coverage Coverage

True Bias Efficiency Prob Bias Efficiency Prob
α0 11.500 0.001 0.983 0.944 0.002 1.000 0.944
α1 1.050 0.014 0.977 0.951 0.001 1.000 0.947
α2 0.250 0.004 0.983 0.952 0.003 1.000 0.942
α3 0.210 0.000 0.972 0.945 0.001 1.000 0.947

β0 -14.500 0.034 1.068 0.945 1.866 1.000 0.859
β1 -0.150 0.004 1.252 0.948 0.009 1.000 0.824
β2 -0.550 0.051 0.941 0.945 0.074 1.000 0.936
β3 -0.200 0.049 0.896 0.942 0.336 1.000 0.932
β4 0.310 0.028 0.904 0.952 0.025 1.000 0.950

β5(yt) 1.450 0.006 0.932 0.935 0.033 1.000 0.927
β6(rt−1) 1.200 0.098 0.935

σ 1.200 0.006 0.966 0.935 0.005 1.000 0.941
ρ 0.400 0.003 0.952
π 0.910 0.001 1.000 0.957 0.001 1.000 0.957

TOEP(2)
Resp Rate

0.911 0.747 0.650
Coverage Coverage

True Bias Efficiency Prob Bias Efficiency Prob
α0 11.500 0.001 0.974 0.948 0.002 1.000 0.949
α1 1.050 0.014 0.984 0.948 0.001 1.000 0.952
α2 0.250 0.004 0.974 0.953 0.004 1.000 0.952
α3 0.210 0.001 0.979 0.946 0.001 1.000 0.947

β0 -14.500 0.017 1.080 0.940 1.876 1.000 0.856
β1 -0.150 0.004 1.258 0.944 0.009 1.000 0.805
β2 -0.550 0.056 0.940 0.951 0.082 1.000 0.948
β3 -0.200 0.044 0.897 0.945 0.337 1.000 0.927
β4 0.310 0.030 0.903 0.953 0.028 1.000 0.949

β5(yt) 1.450 0.008 0.941 0.938 0.033 1.000 0.918
β6(rt−1) 1.200 0.101 0.945

σ 1.200 0.006 0.968 0.940 0.005 1.000 0.945
ρ 0.400 0.003 0.955
π 0.910 0.001 1.000 0.957 0.001 1.000 0.957

EXCH
Resp Rate

0.911 0.748 0.650
Coverage Coverage

True Bias Efficiency Prob Bias Efficiency Prob

α0 11.500 0.001 0.999 0.946 0.002 1.000 0.950
α1 1.050 0.015 0.966 0.933 0.001 1.000 0.940
α2 0.250 0.001 0.998 0.942 0.001 1.000 0.941
α3 0.210 0.003 0.961 0.943 0.003 1.000 0.943

β0 -14.500 0.032 1.052 0.943 1.902 1.000 0.866
β1 -0.150 0.003 1.246 0.941 0.010 1.000 0.806
β2 -0.550 0.073 0.950 0.951 0.094 1.000 0.946
β3 -0.200 0.052 0.906 0.944 0.324 1.000 0.918
β4 0.310 0.038 0.914 0.952 0.035 1.000 0.952

β5(yt) 1.450 0.008 0.921 0.940 0.040 1.000 0.930
β6(rt−1) 1.200 0.099 0.928

σ 1.200 0.007 0.967 0.943 0.005 1.000 0.943
ρ 0.400 0.006 0.962
π 0.910 0.001 1.000 0.957 0.001 1.000 0.957

1 Simulation sample size N=500. Resp Rate: response rate.
2 σ standard deviation of outcome at each time. 3 ρ pairwise-correlation of outcome at each
adjacent pairs.
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Table 3.8: Simulation study of normal data vs gamma data, 500 replicates
ρ = 0

Resp.Rate 0.91 0.75 0.67
Normal Gamma

TPL IPL TPL IPL

TRUE E.est STD Cov.Prob E.est STD Cov.Prob TRUE E.est STD Cov.Prob E.est STD Cov.Prob
α0 11.500 11.502 0.346 0.964 11.503 0.346 0.962 11.500 11.494 0.346 0.946 11.495 0.346 0.944
α1 1.050 1.019 0.323 0.934 1.017 0.322 0.940 1.050 1.002 0.316 0.922 0.999 0.315 0.918

β0 -14.500 -15.048 1.911 0.936 -12.960 1.787 0.858 -14.500 -15.024 1.880 0.928 -12.856 1.751 0.832
β1 -0.150 -0.156 0.164 0.944 -0.143 0.153 0.870 -0.150 -0.149 0.162 0.894 -0.136 0.150 0.794
β2 -0.550 -0.593 1.445 0.954 -0.569 1.441 0.958 -0.550 -0.552 1.421 0.942 -0.541 1.417 0.952
β3 -0.200 -0.126 0.795 0.944 -0.457 0.791 0.934 -0.200 -0.173 0.784 0.952 -0.479 0.779 0.936
β4 0.310 0.317 0.900 0.956 0.305 0.903 0.954 0.310 0.306 0.886 0.942 0.298 0.889 0.954

β5(yt) 1.450 1.497 0.557 0.930 1.436 0.536 0.924 1.450 1.487 0.547 0.932 1.415 0.525 0.904
β6(rt−1) 1.200 1.255 0.762 0.946 1.200 1.217 0.751 0.950

π 0.910 0.910 0.128 0.946 0.910 0.128 0.946 0.910 0.911 0.128 0.938 0.911 0.128 0.938

σ1 2.145 2.214 0.253 0.792 2.214 0.253 0.790 2.145 2.156 0.252 0.950 2.155 0.252 0.948
σ2 2.241 2.241
σ3 2.332 2.332
ρ 0.000 0.000 0.222 0.950 0.000 -0.004 0.222 0.946

ρ = 0.5
Resp.Rate 0.91 0.75 0.67

Normal Gamma
TPL IPL TPL IPL

TRUE E.est STD Cov.Prob E.est STD Cov.Prob TRUE E.est STD Cov.Prob E.est STD Cov.Prob
α0 11.500 11.527 0.353 0.944 11.503 0.353 0.948 11.500 11.514 0.350 0.948 11.489 0.352 0.964
α1 1.050 1.089 0.287 0.918 1.024 0.289 0.924 1.050 1.046 0.273 0.948 0.995 0.276 0.892

β0 -14.500 -14.135 1.855 0.920 -12.214 1.753 0.816 -14.500 -13.141 1.768 0.850 -11.898 1.696 0.756
β1 -0.150 -0.150 0.157 0.904 -0.140 0.150 0.828 -0.150 -0.134 0.147 0.754 -0.130 0.143 0.706
β2 -0.550 -0.590 1.401 0.954 -0.614 1.414 0.950 -0.550 -0.436 1.350 0.972 -0.494 1.391 0.972
β3 -0.200 -0.139 0.770 0.936 -0.487 0.783 0.946 -0.200 -0.090 0.739 0.952 -0.464 0.766 0.936
β4 0.310 0.328 0.875 0.960 0.334 0.888 0.956 0.310 0.246 0.841 0.966 0.269 0.872 0.968

β5(yt) 1.450 1.437 0.533 0.906 1.377 0.528 0.886 1.450 1.314 0.501 0.814 1.327 0.508 0.864
β6(rt−1) 1.200 0.878 0.768 0.894 1.200 0.913 0.736 0.884

π 0.910 0.910 0.128 0.932 0.910 0.128 0.932 0.910 0.909 0.128 0.934 0.909 0.128 0.934

σ1 2.145 2.213 0.271 0.854 2.214 0.274 0.864 2.145 2.127 0.268 0.932 2.142 0.272 0.940
σ2 2.241 2.241
σ3 2.332 2.332
ρ 0.500 0.496 0.204 0.942 0.500 0.522 0.212 0.884

ρ = 0.707
Resp.Rate 0.91 0.75 0.67

Normal Gamma
TPL IPL TPL IPL

TRUE E.est STD Cov.Prob E.est STD Cov.Prob TRUE E.est STD Cov.Prob E.est STD Cov.Prob
α0 11.500 11.580 0.357 0.928 11.503 0.356 0.950 11.500 11.570 0.352 0.916 11.493 0.354 0.942
α1 1.050 1.083 0.258 0.916 1.022 0.272 0.928 1.050 1.039 0.246 0.944 1.001 0.259 0.866

β0 -14.500 -13.254 1.748 0.886 -11.753 1.745 0.752 -14.500 -12.339 1.669 0.788 -11.926 1.722 0.756
β1 -0.150 -0.143 0.146 0.858 -0.137 0.148 0.778 -0.150 -0.127 0.138 0.652 -0.131 0.146 0.698
β2 -0.550 -0.647 1.367 0.950 -0.695 1.402 0.952 -0.550 -0.506 1.316 0.952 -0.526 1.389 0.954
β3 -0.200 -0.080 0.748 0.952 -0.460 0.776 0.948 -0.200 -0.104 0.718 0.922 -0.479 0.769 0.922
β4 0.310 0.333 0.855 0.958 0.351 0.880 0.958 0.310 0.286 0.821 0.944 0.302 0.872 0.948

β5(yt) 1.450 1.355 0.492 0.836 1.331 0.526 0.858 1.450 1.251 0.466 0.726 1.331 0.518 0.860
β6(rt−1) 1.200 0.714 0.762 0.846 1.200 0.708 0.728 0.810

π 0.910 0.909 0.128 0.958 0.909 0.128 0.958 0.910 0.910 0.128 0.930 0.910 0.128 0.930

σ1 2.145 2.213 0.283 0.876 2.218 0.290 0.874 2.145 2.119 0.275 0.924 2.146 0.282 0.948
σ2 2.241
σ3 2.332
ρ 0.707 0.704 0.169 0.946 0.707 0.711 0.183 0.934

1 Simulation sample size N=300. 2 σj standard deviation of outcome at wave j. 3 ρ pairwise-correlation of outcome at
each adjacent pairs.
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CHAPTER 4 : A hidden Markov model for non-ignorable non-monotone missing

longitudinal data for medical studies of quality of life

4.1. Introduction

In a longitudinal study, subjects are observed as time progresses. A common problem

is that repeated measurements are not fully observed due to missing responses or loss to

follow up. Individuals can move in and out of the observed data set, giving rise to a large

class of distinct “non-monotone” missingness patterns. The appropriate statistical methods

differ according to the data structure and missingness mechanism. When the missingness

is MCAR (missing completely at random) or MAR (missing at random), data analysis

is the most straightforward. Little and Rubin (1987) and Allison (2001) provide helpful

terminology to describe missing data mechanisms and a comprehensive overview of potential

methods. Most approaches can be categorized as selection models, pattern-mixture models

or shared-parameter models depending on the factorization of the joint likelihood of the

outcomes and missingness indicators. Multi-state Markov models, on the other hand, are

commonly used to describe disease progression studies (Commenges et al., 2004; Jackson

et al., 2003), and observational studies in cancer (Sutradhar et al., 2010; Uhry et al., 2010).

Wall and Li (2009) and Cooper and Lipsitch (2004) extended multi-state Markov models

to hidden Markov models to obtain a more flexible transition matrix. Maruotti (2011) and

Altman (2007) provided a good review of methodology for use of hidden Markov models in

the longitudinal data framework.

In chronic disease studies, longitudinal data can be used to monitor disease progression. In

health care survey studies, longitudinal data can be used to measure changes in attitude

or compliance with treatment or medical advice. The underlying structure of longitudinal

data can be complicated due to the fact that during follow-up, the occurrence of obser-

vations at a given time depend on unobserved (hidden) states such as changes in disease

condition, recovery, progression, or better access to health care. Thus both repeated assess-
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ments and missingness could depend on the current hidden state. A common assumption

in these studies is that the missing assessment data at each time are non-informative. If

true, modeling observed data directly with assumption of MCAR data will provide unbiased

estimation. Scott et al. (2005) developed a hidden Markov model for medical longitudinal

data using k-means clustering analysis in a traditional health state model assuming an ig-

norable missingness mechanism. However, under a longitudinal scheme, observations are

recorded at periodic times, depending on hidden states which often do have a well defined

meaning at given time. The missingness mechanism may depend on recorded assessments,

the hidden states, or a combination of them. Modeling such data without considering

the missingness will result in a biased estimation (Ibrahim and Molenberghs, 2009; Troxel

et al., 1998b). Many proposed methods have been developed to deal with monotone miss-

ingness patterns (Spagnoli et al., 2011; Ie Cessie et al., 2009; Philipson et al., 2008), by

incorporating the missingness indicator into the transition matrix. However, there is little

work that addresses “non-monotone” and “non-ignorable” missingness in Markov process

models. Sweeting et al. (2009) presented a partially hidden Markov model using observed

auxiliary variables to model “non-monotone” and “non-ignorable” missingness patterns for

disease progression. This model is inefficient, however, if the correlation between the auxil-

iary variables and outcome becomes weak; often such auxiliary variables do not exist, and

the assumption itself is hard to examine. Chen et al. (2010) proposed a piecewise con-

stant transition model to address multi-state Markov model assuming non-homogeneous

Markov process. Their primary interest is in continuous-time multi-state model parameters

and transition intensities. Chen and Zhou (2011) extended the work to non-parametric

time-transformation models to make the model more flexible.

We propose a method assuming a time-homogeneous hidden Markov process and mainly

focus on discrete hidden states. We treat the initial probability and transition matrix as

nuisance parameters since the primary interest is in parameters in the state-dependent

model and the missingness mechanism model. The proposed two-stage pseudo-likelihood

method (Gong and Samaniego, 1981; Parke, 1986) updates the nuisance parameter using
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“convenient” estimation via the backward-forward algorithm (Baum et al., 1970; Rabiner,

1989; Welch, 2003). By employing the quasi-Newton algorithm, we maximize the pseudo-

likelihood function to update the estimation iteratively. The Levenberg-Marquardt algo-

rithm (Turner, 2008), a modified Newton’s method, is used to achieve better parameter

estimation accuracy. Sandwich estimators are used to recover robust covariance estimation

(Liang and Zeger, 1986) and confidence intervals. The AIC/BIC criterion could be used to

defined the “best” number of hidden states. However, caution is needed since this method

has not been justified theoretically in this context. MacKay (2002) gives a discussion and an

alternative model selection criterion in the simple hidden Markov model. Comparing with

other methods, our proposed method has no need to pre-specify the underlying transition

matrix. Guihenneuc-Jouyaux et al. (2000), and Sabin et al. (1996) showed the estimation

in the hidden Markov model can be inefficient if the pre-specified transition matrix departs

from the true underlying transition matrix. Secondly, our proposed model does not increase

the parameter space as fast as other methods when the number of hidden states increases,

which makes the model estimation more appealing.

In this paper, we will introduce a recent application in Section 4.2, describe the proposed

methods in Section 4.3, present a simulation study to address the performance of the meth-

ods in Section 4.4, and summarize our analysis of the data set in Section 4.5. Section 4.6

provides a discussion, some brief comments and ideas for future work.

4.2. Motivating Example

We consider data from a non-blinded randomized phase III intergroup trial (RTOG 9402)

evaluating the overall survival of patients with anaplastic oligodendroglioma (AO) brain

tumors who received either chemotherapy plus radiation therapy (Arm 1) or radiation ther-

apy alone (Arm 2), previously described by Cairncross et al. (2006) and Wang et al. (2010).

Studies show that AO patients respond to surgery and radiotherapy (RT) at diagnosis,

as well to procarbazine, lomustine, and vincristine (PCV) chemotherapy; it was unclear

whether patients would benefit from combined PCV and RT therapy, compared to RT only.
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Coordinated by the National Cancer Institute, the Radiation Therapy Oncology Group

(RTOG) conducted this randomized trial (9402) between 1994 and 2002. The study en-

rolled 289 eligible participants. Study reports showed that patients who have the 1p and

19q deletions receive significantly longer progression survival times regardless treatment,

but this is associated with substantial toxicity. There was no significant difference in me-

dian survival times between two treatment arms in patients with only one deletion or no

deletions of chromosomal segment.

The effect of toxicity and side effects from PCV chemotherapy and RT on patients’ neuro-

logic functioning and global quality of life remain unclear. Several measures were collected

at each visit to assess patients’ cognitive ability and attitude on quality of life during the

studying time period, including Karnofsky performance status (KPS), which measures phys-

ical well-being; the Mini-Mental status exam (MMSE), which measures cognitive ability as

assessed by a nurse, research associate, or physician to reflect the opinions of health care

specialist; and the modified Brain Quality of Life Questionnaire (B-QLQ), which measures

patient-reported quality of life. If a patient required help to finish the B-QLQ questionnaire,

the reasons were documented.

It makes sense that patients’ functional status may depend on their underlying health status.

For example, patients may feel better after their cancer responds to treatment. The outcome

process may be influenced by both known and unknown medical/non-medical information

(hidden states). A first-order hidden Markov dependence structure fits the natural data

structure in the longitudinal framework. For example, let S = 3 be the number of hidden

states, with 1 = stable, 2 = relapse, 3 = crisis; the MMSE and B-QLQ scores, can

depend on the actual states at a given time. The missingness mechanism is conditional on a

function of both assessments and unobserved hidden states S. The diagram below indicates

the possible relationships among different underlying hidden transition states associated
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with assessments.

1 2

3

1 2

3

1 2

3

Transition matrix Q for j, k ∈ (1, 2, 3)

Q1 =


q11 q12 q13

q21 q22 q23

q31 q32 q33


P6

Q2 =


q11 q12 0

q21 q22 q23

0 q32 q33


P4

Q3 =


q11 q12 q13

0 q22 q23

0 0 1


P3

with

S∑
k=1

qjk = 1, S ∈ Is Is = (1, 2, . . . , S)

Q1 is an unconstrained, fully connected or ergodic transition matrix in which transitions

are possible between any two states. Q2 is a first-order symmetric transition matrix, in

which transitions only occur between adjacent states. Q3 could be described as an illness

to death model, in which patients progress to the next state but never recover. Clearly the

estimation of Markov chain parameters becomes more complicated as the number of hidden

states increases. However, by modeling the disease progression through different hidden

states, our approach allows more precise identification of the treatment effect. On the other

hand, too many hidden states make the application difficult to estimate and interpret.
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4.3. Methods and Notation

4.3.1. Notation and underlying assumptions

Instead of observing all Yit, with t ∈ (1 · · ·T ) assessment times, we observe the below

pseudo-observations Oi = (Yi, Ri)

Oi1 · · · Oi2 · · · Oi,T−1 · · · OiT

↑ ↑ ↑ ↑
πij−→ Si1

qitjk−→ Si2 · · · Si,T−1
qitjk−→ SiT

.

The pseudo-observations Oi = (Yi, Ri) are conditionally independent, i.e., f(Ois|Sis = j) ⊥

f(Oit|Sit = k); as above i ∈ (1 · · ·N) denotes subjects, and j, k ∈ (1 · · ·S) denote hidden

states. Each element of the missingness indicator vector Ri is defined as

Rit =

 0 if missing Yit

1 if observed Yit

.

The simplest model in this framework is the homogeneous hidden Markov model, which

assumes a stationary Markov transition probability qitjk = qjk and a common initial prob-

ability πij = πj , where i ∈ (1, 2, · · ·N) denotes subjects, and j, k ∈ (1, 2, · · · , S) denote

hidden states. A simple two state transition matrix Q for j, k ∈ (1, 2) is

Q =

 q11 q12

q21 q22

 ,

with defined transition probability qjk = f(si,t+1 = k|si,t = j) = f(si,t+2 = k|si,t+1 = j)

and initial probability πj = f(si1 = j); these satisfy the conditions
∑S

k=1 qjk = 1 and∑S
j=1 πj = 1, where S ∈ Is, Is = (1, 2, . . . , S).

The conditional density f(Oit|Sit = j) follows an independent Bernoulli distribution with

61



density function

f(Oit|Sit = j) =


∫
Yit
f(Yit, Rit|Sit)dyit if Rit = 0

f(Yit, Rit|Sit) if Rit = 1
.

4.3.2. Selection hidden Markov model (SHMM)

Selection models (Little and Rubin, 1987; Allison, 2001) are a commonly used approach to

non-ignorable missingness in longitudinal data. Selection models can be written as the joint

distribution of Yi and Ri in the form

f(Yi,obs, Ri|Xi, ϑ) =

∫
f(Yi,obs, Yi,mis, Ri|Xi, ϑ)dYi,mis

=

∫
f(Yi,obs, Yi,mis|Xi, α)f(Ri|Yi,obs, Yi,mis, Xi, β)dYi,mis

where Yi = (yi1, yi2, · · · yit), Ri = (ri1, ri2, · · · rit), ϑ = (α, β). A selection model can be

easily combined with a hidden Markov model as described in the next section.

Outcomes dependent missingness

In this scenario, the missingness of an observation depends only on outcomes. We define

the conditional density of Yit, Rit|Sit as

f(Yit, Rit|Sit = j) = f(Yit|Sit = j) ∗ f(Rit|Yit).

The conditional observation {Yit|Sit = j} is i.i.d. from an exponential family where

f(yit|sit = j, α) = exp{(yitηitj − c(ηitj))/a(φ) + d(yiy, φ)}

ηitj = αj0 + α
′
jxit

62



with the missingness indicator {Rit|Yit} following a Bernoulli distribution modeled as

logit(Pr(Rit = 1|Yit)) = β0 + β
′
1xit + β2 ∗ Yit.

Here xit is a time dependent covariate matrix, and αj ,β1 are the corresponding parameter

vectors. Testing β2 6= 0 is equivalent to checking if the missing data are non-ignorable.

State dependent missingness

In this scenario, the missingness of an observation depends on a function of outcome and

hidden states. Define the conditional density of Yit, Rit|Sit as

f(Yit, Rit|Sit = j) = f(Yit|Sit = j) ∗ f(Rit|Yit, Sit = j)

As above the conditional observation {Yit|Sit = j} is i.i.d. from an exponential family where

f(yit|sit = j, α) = exp{(yitηitj − c(ηitj))/a(φ) + d(yiy, φ)}

ηitj = αj0 + α
′
jxit

with the missingness indicator {Rit|Yit, Sit = j} following a Bernoulli distribution modeled

as

logit(Pr(Rit = 1|Yit, Sit = j)) = βj0 + β
′
j1xit + βj2 ∗ Yit.

Clearly the parameters β0,β1, β2 are the average effects of the parameters βj0,βj1, βj2. We

can test each βj2 6= 0, j ∈ (1, 2, · · ·S) to check if the missing data are non-ignorable. In

practice, outcome dependent missingness models are likely more useful since the primary

interest here are the state-dependent model coefficients, and there are fewer parameters to

be estimated in the marginal model.
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4.3.3. Shared parameter hidden Markov model (SPHMM)

Shared parameter models (Gao, 2004; Alfo and Maruotti, 2009) form another class of ap-

proaches to dealing with non-ignorable missing data by introducing a shared latent quantity

to factorize the joint density, as follows:

f(Yi,obs, Ri|ϑ) =

∫
f(Yi,obs, Yi,mis, Ri|ϑ)dYi,mis

=

∫ ∫
f(Yi,obs, Yi,mis, Ri|bi, α, β) ∗ f(bi|ψ)dbidYi,mis

=

∫ ∫
f(Yi,obs, Yi,mis|bi, α)dYi,misf(Ri|bi, β) ∗ f(bi|ψ)dbi

=

∫
f(Yi,obs|bi, α)f(Ri|bi, β) ∗ f(bi|ψ)dbi

where Yi = (yi1, yi2, . . . yit), Ri = (ri1, ri2, . . . rit). Shared parameter models assume inde-

pendence between the outcome process and the missing indicators conditional on the shared

parameter bi. Similarly, shared parameter models can work with hidden Markov models

easily.

Let the conditional density f(Oit|Sit, bi) follow a Bernoulli distribution denoted as

f(Oit|Sit = j, bi) =


∫
Yit
f(Yit, Rit|Sit, bi)dyit if Rit = 0

f(Yit, Rit|Sit, bi) if Rit = 1

which can be simplified as

f(Oit|Sit = j, bi) =

 f(Rit|Sit, bi) if Rit = 0

f(Yit|Sit, bi) ∗ f(Rit|Sit, bi) if Rit = 1
.

To further simplify the model, we assume the shared latent variables (random effects bi)

are independent with hidden states

f(Sit = sit|bi) = f(Sit = sit) .
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Similarly, as in the SHMM, we can define the main model and missingness mechanism model

described in the next section.

Outcome dependent missingness

In this scenario, the missingness of observations depends on outcomes and the random

effect. We define the conditional density of Yit, Rit|Sit, bi as

f(Yit, Rit|Sit = j, bi) = f(Yit|Sit = j, bi) ∗ f(Rit|bi) .

The conditional observation {Yit|Sit = j, bi} is i.i.d. from an exponential family where

f(yit|sit = j, α, bi) = exp{(yitηitj − c(ηitj))/a(φ) + d(yiy, φ)}

ηitj = αj0 + α
′
jxit + bi

′
zit

with the missingness indicators {Rit|Yit, bi} following a Bernoulli distribution modeled as

logit(Pr(Rit = 1|Yit, bi)) = β0 + β
′
1xit + bi

′
zit .

Here xit and zit are time-dependent covariate matrices for fixed and random effects; αj ,βj ,bi

are the corresponding parameter vectors. Testing bi 6= 0 is equivalent to checking if the

missing data are non-ignorable.

State dependent missingness

In this scenario, the missingness of observations depends on a function of outcomes, hidden

states and the random effects. We define the conditional density of Yit, Rit|Sit, bi as

f(Yit, Rit|Sit = j, bi) = f(Yit|Sit = j, bi) ∗ f(Rit|Sit = j, bi) .
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The conditional observation {Yit|Sit = j, bi} is i.i.d. from an exponential family where

f(yit|sit = j, α, bi) = exp{(yitηitj − c(ηitj))/a(φ) + d(yiy, φ)}

ηitj = αj0 + α
′
jxit + bi

′
zit

with the missingness indicators {Rit|Yit, sit = j,bi} following a Bernoulli distribution

logit(Pr(Rit = 1|Yit, sit = j,bi)) = βj0 + β
′
j1xit + bi

′
zit .

Clearly the parameters β0 and β1 are the average effects of the parameters βj0 and βj1.

Testing bi 6= 0 is equivalent to checking if the missing data are non-ignorable. In practice,

the random effect can be treated as nuisance parameter, like the transition matrix and

initial probabilities.
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4.3.4. Parameter Estimation

Joint likelihood for selection hidden Markov model

The likelihood function for selection hidden Markov model (SHMM) in section 4.3.2 can be

described as

L =
∑
S

f(O|S, α, β)f(S)

=
∑
S

{
N∏
i=1

f(si1) ∗
T∏
t=2

f(sit|si,t−1) ∗
T∏
t=1

f(oit|sit, α, β)}

=

N∏
i=1

{
∑
S

f(si1)f(oi1|si1, α, β) ∗
T∏
t=2

f(sit|si,t−1) ∗ f(oit|sit, α, β)}

=

N∏
i=1

{
∑
S

πs1f(oi1|si1, α, β) ∗
T∏
t=2

Qsit−1,it ∗ f(oit|sit, α, β)}

=

N∏
i=1

{∑
S

πs1
{

(f(yi1, ri1|si1, α, β))ri1 ∗ (

∫
f(yi1, ri1|si1, α, β)dyi1)

1−ri1
}

×
T∏
t=2

Qsit−1,it ∗
{

(f(yit, rit|sit, α, β))rit ∗ (

∫
f(yit, rit|sit, α, β)dyit)

1−rit
}}

.

Two stage pseudo-likelihood procedure

For large S ∈ (1, 2, · · · ,m) hidden states, computation is impractical since it involves

O(TmT ) operations for each subject i and cannot be calculated directly. Baum et al.

(1970), Rabiner (1989), and Welch (2003) proposed a type of EM algorithm known as the

backward-forward or Baum-Welch algorithm to solve the estimation in hidden Markov mod-

els with discrete time applications, which enjoys the time complexity O(Tm2). We propose

a two stage pseudo-likelihood method to achieve computational feasibility with a high de-

gree of efficiency. In stage one, we treat the initial probability π and transition matrix Q as

nuisance parameters to simplify the maximum likelihood as a function of the parameters of

interest. We first replace all the nuisance parameters in maximum likelihood directly with
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their Baum-Welch algorithm estimates to form a pseudo maximum likelihood with lower

parameter dimensionality; in the second stage, a direct maximization method can be used

to maximize the pseudo-likelihood for the parameters of interest, and we continue to iterate

until the parameters converge.

We adopt a step by step Baum et al. (1970) procedure to update the nuisance parameters.

First we define the forward variables as

ait(j) = f(oi1, oi2, · · · , oit, sit = j), i = 1, · · · , N ; t = 1, · · · , T ; j ∈ S,

which denotes the probability of the partial sequence ending up in state j at time t for a

given object i. The forward variables ait(j) can be calculated recursively by

ai1(j) = πs1(j) ∗ f(oi1|si1 = j)

ai,t+1(k) =
m∑
j=1

ait(j) ∗ qjkf(oi,t+1|si,t+1 = k) ,

Finding the likelihood by calculating

L =
n∏
i=1

m∑
j=1

ai,T (j) , (4.1)

we define the backward variables

bit(j) = f(oi,t+1, oi,t+2, · · · , oiT |sit = j), i = 1, · · · , N ; t = 1, · · · , T ; j ∈ S,

which denotes the probability of the partial sequence in state j at time t from t+ 1 to the

end for a given subject i. The backward variables bit(j) can be calculated recursively by

biT (j) = 1

bi,t(j) =

m∑
k=1

qjk ∗ f(oi,t+1|si,t+1 = k) ∗ bi,t+1(k) .
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Define µ̂itj , and ν̂itj as

µ̂itj = P (Sit = j|oi,1, oi,2, · · · , oiT )

ν̂itjk = P (Sit = j, Si,t+1 = k|oi,1, oi,2, · · · , oi,T ) .

Then µ̂itj and ν̂itj can be updated using

µ̂itj =
ait(j)bit(j)∑m
j=1 ait(j)bit(j)

ν̂itjk =
ai,t(j)qjkf(oi,t+1|si,t+1 = k)bi,t+1(k)∑m
j,k=1 ait(j)qjkf(oi,t+1|si,t+1 = k)bi,t+1(k)

.

We update the transition matrix and initial probability with respect to the initial parameters

αl, βl, πlj , q
l
jk :

π̂j
l+1 =

∑n
i=1 µ̂

l
i1j

n

q̂l+1
jk =

∑n
i=1

∑T
1 ν̂

l
itjk∑n

i=1

∑T
1

∑m
k=1 ν̂

l
itjk

.

π̂j
l+1 is the expected frequency in state j at time t = 1, and ˆqjk

l+1 is the expected number

of transitions from state j to state k divided by the expected number of transitions from

state j. Substituting π̂j
l+1 and ˆqjk

l+1 into the likelihood function (4.1), we have the pseudo-

likelihood function

PL(α, β) =
n∏
i=1

m∑
j=1

ai,T (j|αl, βl, π̂j l+1, q̂l+1
jk ) . (4.2)

The quasi-Newton method can then be used to maximize the approximate pseudo-likelihood

for αl+1, and βl+1, and we continue the iterations until the parameters α and β converge.
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Joint likelihood for the shared parameter hidden Markov model

The likelihood function for the shared parameter hidden Markov model(SPHMM) in sec-

tion 4.3.3 can be described as

L =

∫
b

∑
S

f(O|S, b, α, β)f(S)f(b|ψ)db

=

∫
b

∑
S

{
N∏
i=1

f(si1) ∗
T∏
t=2

f(sit|si,t−1) ∗
T∏
t=1

f(oit|sit, b, α, β)}f(b|ψ)db

=

∫
b

N∏
i=1

{
∑
S

f(si1)f(oi1|si1, b, α, β) ∗
T∏
t=2

f(sit|si,t−1) ∗ f(oit|sit, b, α, β)}f(b|ψ)db

=

∫
b

N∏
i=1

{
∑
S

πs1f(oi1|si1, b, α, β) ∗
T∏
t=2

Qsit−1,it ∗ f(oit|sit, b, α, β)}f(b|ψ)db

=

∫
b

N∏
i=1

{∑
S

πs1
{

(f(yi1|si1, b, α) ∗ f(ri1|si1, b, β))ri1 ∗ (f(ri1|si1, b, β))1−ri1
}

×
T∏
t=2

Qsit−1,it ∗
{

(f(yit|sit, b, α) ∗ f(rit|sit, b, β))rit ∗ (f(rit|sit, b, β))1−rit
}}

× f(b|ψ)db .

For a simple random effects model, considering only one random effect bi associated with the

ith subject (i = 1, · · · , N), assume bi follows i.i.d. normal distribution. Then, assessments

are independent given the sequences of hidden states sit and the random effect bi. The
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one-dimensional random effect likelihood function can be simplified further as

L =

∫
b

∑
S

f(O|S, b, α, β)f(S)f(b|ψ)db

=

∫
bi

∑
S

{
N∏
i=1

f(si1) ∗
T∏
t=2

f(sit|si,t−1) ∗
T∏
t=1

f(oit|sit, bi, α, β)}f(bi|ψ)dbi

=
N∏
i=1

∫
bi

{∑
S

πs1
{

(f(yi1|si1, bi, α) ∗ f(ri1|si1, bi, β))ri1 ∗ (f(ri1|si1, bi, β))1−ri1
}

×
T∏
t=2

Qsit−1,it ∗
{

(f(yit|sit, bi, α) ∗ f(rit|sit, bi, β))rit ∗ (f(rit|sit, bi, β))1−rit
}}

× f(bi|ψ)dbi .

As in the previous section, forward and backward variables could help in evaluating the

likelihood function above and in obtaining parameter estimates. However, for a multi-

dimensional random effects model, the forward-backward algorithm is not appropriate since

it involves multi-dimensional integration.

A two stage pseudo likelihood procedure as described as section 4.3.4 is used to achieve

computational convenience with a high degree of efficiency. Again, first we define the

forward variables as

ait(j, bi) = f(oi1, oi2, · · · , oit, Sit = j, |bi), i = 1, · · · , N ; t = 1, · · · , T ; j ∈ S,

which denote the probability of the partial sequence ending up in state j at time t for a

given subject i. The forward variables ait(j, bi) can be calculated recursively by

ai1(j, bi) = πj ∗ f(oi1|si1 = j, bi)

ai,t+1(k, bi) =

m∑
j=1

ait(j, bi) ∗ qjkf(oi,t+1|si,t+1 = k, bi) ,
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leading to the likelihood

L =
n∏
i=1

∫
bi

m∑
j=1

αi,T (j, bi)h(bi|ψ)dbi, (4.3)

where h(·|ψ) is the density function of bi. Second, we define the backward variables

bit(j, bi) = f(oi,t+1, oi,t+2, · · · , oiT |Sit = j, bi), i = 1, · · · , N ; t = 1, · · · , T ; j ∈ S ,

which denote the probability of the partial sequence starting in state j at time t from t+1 to

the end for a given object i. The backward variables bit(j, bi) can be calculated recursively

by

biT (j, bi) = 1

bi,t(j, bi) =

m∑
k=1

qjk ∗ f(oi,t+1|si,t+1 = k, bi) ∗ bi,t+1(k, bi) .

Define µ̂itj , and ν̂itj as

µ̂itj = P (Sit = j|oi,1, oi,2, · · · , oiT )

ν̂itjk = P (Sit = j, Si,t+1 = k|oi,1, oi,2, · · · , oi,T ) .

These can be calculated directly by

µ̂itj =

∫
ait(j, bi)bit(j, bi)h(bi)dbi∫ ∑m

j=1 ait(j, bi)bit(j, bi)h(bi|ψ)dbi

ν̂itjk =

∫
ait(j, bi)qjkf(oi,t+1|Si,t+1 = k, bi)bi,t+1(k, bi)h(bi|ψ)dbi∫ ∑m

j,k=1 ait(j, bi)qjkf(oi,t+1|Si,t+1 = k, bi)bi,t+1(k, bi)h(bi|ψ)dbi
.

We then update the transition matrix and initial probability with respect to the initial
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parameters αl, βl, πlj , q
l
jk, ψ

l :

π̂j
l+1 =

∑n
i=1 µ̂

l
i1j

n

ˆqjk
l+1 =

∑n
i=1

∑T
1 ν̂

l
itjk∑n

i=1

∑T
1

∑m
k=1 ν̂

l
itjk

.

Substituting π̂j
l+1 and ˆqjk

l+1 into likelihood function (4.3), we have the pseudo-likelihood

function

PL(α, β, ψ) =

n∏
i=1

∫
bi

m∑
j=1

ai,T (j, bi|αl, βl, ψl, π̂l+1
j , q̂l+1

jk )h(bi|ψ)dbi . (4.4)

Quasi-Newton methods can then be used to maximize the approximate pseudo-likelihood for

αl+1, βl+1, and ψl+1. We continue the iteration until the parameters α, β, and ψ converge.

Variance-covariance estimation

The pseudo-score function is defined as

ST (α, β) =
n∑
i=1

ST i(α, β) =
∂

∂(α, β)
logPLi ,

and the maximum pseudo-likelihood estimate is the solution to ST (α̂, β̂) = 0. Heuristically,

using method of moments ideas, the pseudo-score estimator is consistent if the distributions

f(yit, rit|Xi,Sit, α, β) (SHMM), and f(yit, rit|Xi,Sit, α, β,bi) (SPHMM) are correctly spec-

ified. Troxel et al. (1998b) gave proof of the consistency of the pseudo-likelihood estimator.

It can be shown that E[ST (α, β)] = 0 at the true (α, β). In practice, we obtain (α̂, β̂) by

maximizing the log-pseudolikelihood directly, but the solution satisfies ST (α̂, β̂) = 0. The

variances have to be adjusted to obtain correct inference because of the assumptions about

the transition matrix. We accomplish this with the commonly-used sandwich estimator as
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in Liang and Zeger (1986):

Σ =
[ 1

n
E
{∂ST (α, β)

∂(α, β)

}]−1 1

n

n∑
i=1

E{ST i(α, β)S ′T i(α, β)}
[ 1

n
E
{∂ST (α, β)

∂(α, β)

}]−1
.

Furthermore, the robust variance estimate Σ̂ is obtained by simply replacing (α, β) by (α̂, β̂)

in the above expression.

4.3.5. Numerical integration

There is no closed form for the pseudo-likelihood function (4.2,4.4) due to the joint likeli-

hood; a numerical integration method will be applied to approximate the pseudo-likelihood

function (4.2,4.4). Laplacian, Gaussian Quadrature or Adaptive Gaussian Quadrature can

be used to approximate the integration numerically for low dimensional shared parameter

hidden Markov model (SPHMM) or the one dimensional selection hidden Markov model

(SHMM). For Gaussian data, Gaussian quadrature methods offer both accuracy and effi-

ciency. The quasi-Newton Method can then be used to maximize the approximate likeli-

hood. Unlike the EM algorithm, direct maximization of the log-pseudo-likelihood requires

good initial values of the parameters. One approach is to choose a vector of starting val-

ues and fit a HMM model assuming MCAR to get the starting points as close to the

true values as possible. On the other hand, for large numbers of random effects, numerical

integration methods are no longer appropriate for SPHMM. Then Monte Carlo expectation-

maximization (MCEM) algorithm or simulated maximum likelihood methods (McCulloch,

1997; Jank and Booth, 2003) are more feasible.

4.4. Simulation Study

In this section we define the following simulation study to investigate the empirical behavior

of the proposed models. To model continuous observations with Gaussian distribution we

generated 500 repeated samples of size n = 150, 300 and T = 3 according to the following

scheme.
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4.4.1. SHMM:

(yit|Sit = j) ∼ Normal(µitj , σ
2), j = 1, 2

where the following mean function holds:

µitj = αj0 + αj1xit1 + αj2(t− 1)

and for the outcome misssingess mechanism model:

logit(Pr(Rit = 1|Yit)) = β0 + β1xit1 + β2(t− 1) + β3 ∗ Yit .

The covariates xit1 were independently drawn from a Bernoulli distribution with p = 0.5

and Yit is the continuous outcome observed at time t on patient i with common standard

deviation σ = 0.35. Rit and Sit are the associated missingness indicator (1=observed,

0=missing) and hidden state (1=remission, 2=relapse). We assume the following true values

for the parameter vectors.

For the nuisance parameter:

π =

 π1

π2

 =

 0.65

0.35

 ,Q =

 q11 q12

q21 q22

 =

 0.40 0.60

0.35 0.65


and marginal effects:

α =


α10 α20

α11 α21

α12 α22

 =


0.65 −1.5

1.05 1.55

0.25 0.75


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β =



β0

β1

β2

β3


=



3.45

−0.55

−0.35

−1.55


.

4.4.2. SPHMM:

(yit|Sit = j, bi) ∼ Normal(µitj , σ
2), j = 1, 2

bi ∼ Normal(0, ψ2)

where the following mean function holds:

µitj = αj0 + αj1xit1 + αj2(t− 1) + bi

and for the misssingess mechanism model:

logit(Pr(Rit = 1|Yit, bi)) = β0 + β1xit1 + β2(t− 1) + bi .

The random effects bi are independently drawn fromN(0, 0.852) and all other parameters are

the same as in the SHMM model described in section 4.4.1. The simulation was conducted

to assess the behavior of the proposed model with respect to both sample size n and to

potential miss-specification, compared to the SHMM defined in (4.3.2) and the SPHMM

defined in (4.3.3).

Tables 4.2 and 4.3 give the sample mean, sample standard deviation, average asymptotic

95% confidence interval and coverage probability of the parameter estimates obtained based

on 500 simulations from each model. In the left column, we list the comparison of SHMM

and SPHMM with models correctly specified. In right column, we list the comparison of

SPHMM and SHMM with models miss-specified. The true parameters were selected to
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generate a substantial amount of missing response.

When the models are correctly specified, the mean values are close to the true parameter

values with high coverage probabilities; the “convenience” estimator of the mean of the

nuisance parameters obtained from the backward-forward algorithm is close to the true

Markov chain parameters as well. Increasing the sample size from n = 150 (Tables 4.2)

to n = 300 (Table 4.3) shows clear improvement in both the marginal model and Markov

chain parameters. Both models achieved better mean values, and narrower 95% confidence

intervals with higher coverage probability.

When the models are mis-specified, the mean values of the missingness mechanism model for

both SHMM and SPHMM are severely biased. The estimated parameters of the missingness

mechanism model tend to be overestimated strongly. The parameters in the state dependent

model become less efficient. However, SPHMM still provides much better estimators of both

state-dependent model and Markov chain parameters than SHMM. This is not surprising

since the random effect introduced in SPHMM provides more flexibility, and efficiency, and

relaxes the assumption that the observations are conditionally independent given the hidden

states, especially assuming hidden states as a category number. Simulations show that the

random effect bi introduced in SPHMM model handles the mis-specified situation better,

since the random effect itself absorbs the potential extra effects. However, SPHMM takes

substantially longer computational time than SHMM in this small simulation study.

4.4.3. Sensitivity analysis to transition matrix

The estimation of the marginal model suffers the issue of power loss when nuisance param-

eters are mis-specified (Gong and Samaniego (1981),Guolo (2011)). The inefficiency tends

to be more severe when the pre-specified transition matrix departs from the true underlying

structure. Simulations in this section follow the two schemes below with n = 500 sample

size and 500 replications. Conclusions are similar for both SHMM and SPHMM; we present

results only for the SHMM.
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Scheme QA has the true data generated considering a model for disease progression with no

recovery, and with the transition matrix as a fully connected or ergodic structure. Notice

that the SHMM model will estimate zero using q21.

QA =

 0.40 0.60

0 1


True

,

 q11 q12

q21 q22


Fitted

Scheme QB has the true data generated considering fully connected or ergodic SHMM

model, and fitted the transition matrix as a pre-specified disease progression model with no

recovery. Notice that the SHMM will fix the nuisance parameters q12 = 0 and q22 = 1. It

is clear this has no effect on the re-estimation procedure since any SHMM parameters set

to zero initially will remain at zero throughout.

QB =

 0.40 0.60

0.35 0.65


True

,

 q11 q12

0 1


Fitted

Tables 4.4 and 4.5 give the sample mean, sample standard deviation, average asymptotic

95% confidence interval and coverage probability of the parameter estimates obtained based

on 500 simulations from each transition matrix scheme. Clearly, these estimators become

inefficient due to the mis-specified transition matrix. However, the fully connected transition

structure QA in Table 4.4 provides more robust and flexible estimation than the strictly

constrained structure QB in Table 4.5. One should exercise caution when introducing zeroes

into the transition matrix; although it reduces the parameter space, it increases inefficiency

and leads to severely biased estimators.

4.5. Example: Analysis of RTOG Data

There were 289 eligible participants aged 18 years or older with newly diagnosed anaplastic

oligodendroglioma (AO) brain tumors. The eligibility criteria for RTOG 9402 were previ-

ously described by Cairncross et al. (2006) and Wang et al. (2010). Eligible participants
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were randomized to either procarbazine, lomustine, and vincristine (PCV) chemotherapy

plus radiation (arm 1) or radiation alone (arm 2). Patients had to begin the treatment

within 1 week of randomization. The chemotherapy regimen used in this study was inten-

sive PCV (I-PCV) which is 25% stronger than standard PCV. I-PCV was given in four

week cycles every six weeks followed by radiation. The radiation regimen used in this study

was external beam RT 59.4 Gy (1.8 Gy x 33 fractions, 5 days a week) to MR defined tu-

mor volume; radiation was given soon after surgery in arm 2 (within 8 weeks of diagnosis).

Patients were stratified by age (younger than 50 years vs over 50 years), Karnofsky perfor-

mance status (KPS) of 60-70 vs 80-100, and anaplastic tumor grade (2-3 vs 4-5). Table 4.1

gives the patients characteristics by each arm.

The mini-mental status exam (MMSE) is a well known tool used to assess mental status.

It is an 11-question measurement that tests five areas of cognitive function: orientation,

registration, and repetition; complex commands; attention and calculation; recall; and lan-

guage. MMSE scores range from 0 to 30 points. A score of 25 or lower indicates a cognitive

abnormality. The Quality of Life Questionnaire (QLQ) was developed by the European Or-

ganization for Research and Treatment of Cancer (EORTC) to assess the impact of cancer

and its treatment on patients’ lives. The B-QLQ, modified and developed by Mackworth

(1992) to apply to brain cancer patients, was used in RTOG 9402 to evaluate patients’

global quality of life and emotional well-being. This is a 100 point scale. Higher QLQ

scores, suggest better the quality of life. The MMSE form was completed by the nurse,

research associate, or physician, reflecting the opinion of the health care specialist; the

B-QLQ was reported by patients themselves, reflecting the patients’ point of view. The

MMSE and B-QLQ were assessed at baseline and each follow-up visit and then at yearly

intervals until the end of follow up.

Previous reports on RTOG 9402 showed that patients who have the 1p and 19q chromosomes

deletion had longer progression free survival times, but also substantial toxicity in PCV+RT

arm. Median survival time was improved in participants in the PCV+RT arm as opposed
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to the RT only arm (14.7 years vs. 7.3 years). There was no significant difference in median

survival times between the two treatment arms in patients with only one deletion or no

deletions of chromosomal segment. In this article, we focus on the association between

patients’ MMSE/B-QLQ scores and treatment effect. The MMSE and B-QLQ scores are

the primary outcomes.

4.5.1. Data analysis: 5 year followup with full data

In the first analysis, we include all 289 patients in the cohort. The missingness mechanism

model models the overall probability of response to the MMSE/B-QLQ; we do not distin-

guish between dropout due to death and dropout due to other reasons in order to take

advantage of the full sample size by including all patients who entered the trial. In reality,

patients who died probably differ systematically from patients who dropped out; to address

this, we conducted a second data analysis to evaluate the treatment effect in subjects who

survived at least two years, presented in Section 5.2. All models are estimated assuming

two hidden states (S = 2) due to the relatively limited sample size.

The outcomes MMSE and B-QLQ scores are highly skewed. We use a logarithm transforma-

tion for both outcomes to reduce the skewness. Figures 4.1 and 4.2 show the response rates

for MMSE and B-QLQ scores over the full five years of follow-up. Non-response includes

intermittent missing data, dropout (i.e., study withdrawal), and death. There are total of

101 (35%) patients who died during the 5 year follow-up; 111 (38%) patients dropped out

due to unknown reasons. For the MMSE, there are 41 (14%) patients who have at least one

intermittent missing value; only 29 (10%) completed all assessments. For the B-QLQ, 44

(15%) patients have at least one intermittent missing value; only 33 (11%) patients finished

all questionnaires. Patients who never completed a questionnaire are excluded from the

respective analyses.
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Figure 4.1: MMSE response rate for 5 years follow up.

Figure 4.2: B-QLQ response rate for 5 years follow up.

MMSE outcomes

The parameters are estimated using the proposed methods, comparing SPHMM and SHMM

in Table 4.6. The estimators are consistent if the model are correctly specified. SPHMM and

SHMM differ in how they relate the probability of the response process and the missingness

mechanism. SPHMM links the two by relating a subject’s outcome value to the propensity

to missingness, whereas SHMM directly models the probability of missingness as a function
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of the response. The choice of a modeling framework may depend on the data generating

process. Longitudinal data in which missingness is believed to be related to the disease

process and not to a particular realization of the outcome may be more appropriately

modeled by SPHMM than SHMM. In addition, the simulation study indicated that the

SPHMM performs better and is robust when the model is misspecified.

In the missingness models for SPHMM and SHMM, the parameter σbi (0.071, p < 0.001)

and the coefficient of Yi (5.805, p < 0.001), respectively, are significant, indicating that the

missingness is “non-ignorable.” In the SPHMM, the initial probability π1 = 0.972 for state

1 suggests that the hidden states S related to MMSE are most likely very homogeneous,

that is, the initial rating of cognitive ability by health care specialists are all very similar

at beginning of the trial. State 1 is likely a “stable” state: patients in state 1 have better

MMSE scores, and the PCV+RT arm does not significantly affect patients’ cognitive ability

compared to RT alone (0.000, p = 0.908). Only KPS level and age affect cognitive ability.

Patients with better KPS levels have better MMSE scores (0.047, p < 0.001), and older

(50 years plus) patients have worse MMSE scores than younger patients (50 years under)

(−0.038, p = 0.002). However, there are a few patients falling in state 2 (π2 = 0.028), which

is more likely a “responding” state. The patients in state 2 have lower initial MMSE scores

than patients in state 1. They do respond to the PCV+RT treatment (0.698, p < 0.001).

Patients in stage 2 who had total resection surgery do worse than patients who only had

biopsy or partial resection before treatment (−0.568, p < 0.001); KPS level and age do

not affect patients’ MMSE scores while in state 2 (the coefficients are not statistically

significant).

In the missingness mechanism model, the assessment time (−0.768, p < 0.001), KPS level

(0.452, p = 0.026) and patients’ age (−0.586, p = 0.003) are statistically significant. Pa-

tients tend to respond less as time increases, patients who have better KPS level tend to

have better MMSE scores, and younger patients (50 years under) tend to be more respon-

sive to the MMSE survey then older patients. The SHMM model is consistent with the
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SPHMM model for covariates with significant effects. However the result from SHMM may

be overestimated. The p-value were calculated from Wald statistics.

B-QLQ outcomes

In Table 4.7, we list the parameter estimates for the B-QLQ scores. B-QLQ scores are

patients’ self-report scores reflecting the impact of disease and treatment during the study.

The treatment may improve patients’ survival time but reduce quality of life dramatically,

especially for patients in Arm 1 with intensive PCV chemotherapy.

The parameter σbi (0.194, p < 0.001) and the coefficient of Yi (5.671, p < 0.001) in the

SPHMM and SHMM, respectively, are statistically significant which indicates that the miss-

ingness is “non-ignorable.” In the SPHMM, the initial probability π1 = 0.789 for state 1

shows the initial reporting of quality of life can be separated into two states. The state

1 is more likely a “deteriorating” stage. Patients in state 1 have slightly lower initial

B-QLQ scores than patients in state 2. There were no significantly different treatment ef-

fects on the study groups for patients in either state, (−0.044, p = 0.355) for state 1 and

(0.052, p = 0.310) for state 2. The assessment time, and KPS level affect the B-QLQ scores

for patients in state 1. Patients with better KPS levels (0.130, p = 0.008) experienced

better B-QLQ, and worse B-QLQ as time increase (−0.029, p = 0.017). State 2 is more

likely a “stable” state with slightly better initial B-QLQ scores. KPS level and age affect

the B-QLQ scores for patients in state 2. Patients with better KPS levels have better B-

QLQ scores (0.164, p = 0.018); older (50+) patients experienced worse B-QLQ scores than

younger patients (50−) −0.153, p = 0.004. This is similar to what we saw for the MMSE

outcome. The transition probabilities q12 = 0.499 and q21 = 0.489 indicate that these self-

reported B-QLQ scores were quite variable and move often between states. The B-QLQ

scores may be subject to patients’ mood or other unmeasured characteristics at the time.

In the missingness mechanism model, the assessment time (−0.702, p < 0.001), KPS level

(0.532, p = 0.009) and patients’ age (−0.587, p = 0.003) are statistically significant. Pa-
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tients tend to respond less as time increase, patients who have better KPS levels tend to

respond to the B-QLQ better, and younger patients (50 years under) tend to be more re-

sponsive to the B-QLQ than older patients (50 years plus). The coefficient of PCV+RT

(−0.322, p = 0.092) did not achieve statistical significance although the estimate suggestion

a negative effect. The SHMM model is consistent with the SPHMM model for covariates

with significant effect.

4.5.2. Data analysis: subject with at least 2 years of follow-up.

In the second analysis, we restricted the cohort to patients who survived to at least 2 years;

most patients who were excluded died within first year in this study. The results show

that patients who died experienced much worse cognitive ability and worse quality of life.

The outcomes (MMSE and B-QLQ) may not truly reflect the treatment effect in patients

with such short-term survival. Table 4.8 gives the patients characteristics by arm for the

restricted cohort. There are 201 (69.55%) patients included in this study cohort. The

proportion of subjects in each arm is similar to that in Table 4.1

Figures 4.3 and 4.4 give the plots for response rates of the MMSE and the B-QLQ scores

of patients who survived at least 2 years.

Figure 4.3: MMSE: response rate for at least 2 years survival.
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Figure 4.4: B-QOL: response rate for at least 2 years survival.

MMSE outcomes

In Table 4.9, we list the parameter estimates for the MMSE scores after limiting the cohort

to those surviving at least 2 years. The parameter σbi (0.029, p < 0.001) and the oefficient

of Yi (4.459, p < 0.001) in the SPHMM and SHMM, respectively, are statistically significant

which indicates the missingness is “non-ignorable.” In the SPHMM, the initial probability

π1 = 0.984 for state 1 is similar to the full data analysis. The initial rating of cognitive

ability by health care specialists most likely reflect one state. State 1 is a “stable” state.

Patients in state 1 have better MMSE scores, and the PCV+RT arm does not significantly

affect patients cognitive ability compared to RT alone (0.003, p = 0.708). The resection,

KPS level and age have statistically significant effects on patients’ cognitive ability. Patients

with better KPS levels do better (0.044, p < 0.001); those older than 50 years have worse

MMSE scores than younger patients (50−) (−0.024, p = 0.011); and patents undergoing

total resection experience worse MMSE scores (−0.016, p = 0.045). Similarly, there are few

patients starting in state 2 π2 = 0.016, which is more likely a “responding” state. Patients

in state 2 have lower initial MMSE scores than patients in state 1. The treatment effect

we saw in the full data analysis is no longer statistically significant (0.102, p = 0.079).
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However, the coefficient of the assessment time is positively associated with patients’ cog-

nitive ability (0.234, p < 0.001). This is consistent with the data. We see increased MMSE

scores on average in first the two years among surviving patients. The patients undergoing

total resection have worse MMSE scores than those undergoing biopsy or partial resection

(−0.127, p < 0.013). The resection effects are statistically significant in both states. Pa-

tients’ age (−0.2, p = 0.011) and grade (0.309, p < 0.001) are statistically significant. Older

(50+) patients have worse MMSE scores than younger patients (50−) (−0.02, p = 0.011).

The effect of grade reflects the trend which we saw in the data as well. There were increased

MMSE scores on average comparing severe grade 4− 5 to moderate grade 2− 3. This sug-

gests that the patients who initially had poor levels of cognitive ability actually show more

improvement in cognitive ability in the first two years. In the missingness mechanism model,

only the assessment time (−1.317, p < 0.001) is statistically significant. Patients tend to

respond less as time increase. The SHMM model is generally consistent with the SPHMM

model for effects in the outcome model.

B-QLQ outcomes

In Table 4.10, we list the parameter estimates for the B-QLQ scores after limiting the co-

hort to those who survive at least 2 years. The parameter σbi (0.188, p < 0.001) and the

coefficient of Yi (4.459, p < 0.001) in the SPHMM and SHMM, respectively, are statisti-

cally significant which indicates that the missingness is “non-ignorable.” In the SPHMM,

the initial probability π1 = 0.875 for state 1, which is again likely a “stable” stage. Pa-

tients in state 1 have higher initial B-QLQ scores, and PCV+RT arm does not significantly

affect patients’ B-QLQ scores compared to RT alone (−0.043, p = 0.215). Only KPS level

affect the B-QLQ scores. Patients with better KPS levels experienced better B-QOL scores

(0.116, p = 0.002). State 2 is more likely a “deteriorating” stage with a worse initial B-QLQ

scores than those in state 1. The assessment time, PCV+RT, resection, KPS level and grade

are all significantly associated with the B-QLQ score in state 2. Patients with better KPS

levels have better B-QLQ scores (0.734, p < 0.001); patients experienced worse B-QLQ as
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time passes (−0.177, p = 0.008); patients in the PCV+RT arm had worse B-QLQ scores

(−0.240, p = 0.021) than patients receiving RT alone; patients undergoing total resection

had better B-QLQ scores (0.229, p = 0.031); patients with severe grade (4− 5) experienced

worse B-QLQ scores than patients with moderate grade (2− 3) (−0.268, p = 0.001).

In the missingness mechanism model, assessment time (−0.811, p < 0.001) and grade

(0.550, p = 0.033) are statistically significant. Patients tend to be less responsive with

longer follow up, and patients who have severe grade initially tend to respond to the B-

QLQ form more often. Treatment arm does not significantly affect patients’ decision to

respond to the B-QLQ questionnaire (−0.379, p = 0.122).

Summary

We see some differences after excluding patients with short-term survival. This is what

we expected, since these patients have generally worse MMSE and B-QLQ scores. For the

MMSE scores, the treatment effect become less significant in state 2 after we excluded

those short-term survival patients; this makes intuitive sense since the restricted cohort

does not include as many patients with very poor cognitive function who have room for

considerable improvement. Those patients undergoing total resection had worse cognitive

ability. There is a suggestion that patients with initial worse health status respond better to

treatment than those patients with better baseline health status. For this restricted cohort,

our model results are consistent with the empiric data. We did see increased MMSE scores

on average as time passes, and increased MMSE scores on average comparing severe grade

(4 − 5) vs moderate grade (2 − 3). For the B-QLQ scores, the treatment effect become

more significant in state 2 after we excluded the short-term survival patients; this may

reflect the room for improvement in the small subset who start out with lower quality of

life. Patients in state 2 undergoing the PCV+RT treatment have statistically significantly

lower B-QLQ scores. From the health specialists’ point of view, radiation treatment is not

expected to improve cognitive ability. On the other hand, patients in the PCV+RT arm
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experienced decreasing quality of life, if they had poor initial health status. This may reflect

the different expectations of heath specialist and patients themselves about the potential

effects of chemotherapy. All the models we have seen suggest “non-ignorable” missing data,

that is, subjects with poor outcomes are more likely to have missing values. Thus it is

critical to treat the missingness model correctly in order to achieve valid estimates of the

effects of interest.

4.6. Discussion

We have presented an extension of a pseudo likelihood-based algorithm to handle “non-

monotone” and “non-ignorable” missing data. We assumed a hidden Markov structure,

which is a natural way to capture the changes in outcomes among repeated measurements

in a longitudinal data setting. The conditional independence assumed in the hidden Markov

model provides a simple framework for reducing the multi-dimensional integration in tra-

ditional methods into one dimensional integration in the observed likelihood. In addition,

the proposed models avoid the problem of specification of the correlation structure of re-

peated outcomes. By modeling the outcome progression through different hidden states,

our approach gives more targeted estimates of the covariate effects.

Our transition model can be easily extended to models with more than two states, such as

dropout or intermittent missingness. The numerical integration provides an accurate ap-

proximation but at the cost of increased computational complexity. Direct maximization of

the log-pseudo-likelihood, as used here, requires good initial values of the parameters. One

approach is to choose a vector of starting values and use GEE estimates to get the starting

points as close as the true values as possible. The main effects and missingness effects are

consistent with high coverage probabilities as long as the models are correctly specified. In-

creasing the sample size will help to stabilize the estimation of the initial probability of each

hidden state, and increasing the number of assessment times will facilitate estimation of the

transition matrix. Derived from theory of pseudo likelihood-based methods, the proposed

method requires a large sample size to perform better. In the shared parameter model, the
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normal assumption on both the outcomes and the random effect seems questionable, espe-

cially considering the highly skewed distribution of outcomes in our example. A Weibull

model with Gamma random effects (Chen et al., 2009) may be better suited to such highly

skewed longitudinal data. The distribution of the random effect assumed here may cause

some sensitivity in our result due to lack of information in the data. It is also possible to

extend this method to account for time effects in the Markov model. The optimal number

of hidden states can be selected based on AIC/BIC criterion. MacKay (2002) gives a dis-

cussion and an alternative model selection criterion for the simple hidden Markov model.

Shared parameter models and selection models are different in how they relate the outcome

process and the missingness mechanism. Shared parameter models link the two by relating

a subject’s outcome to the propensity for missingness; and selection models directly model

the probability of missingness as a function of the outcome. So the choice of a modeling

framework may depend on the data generating process. Longitudinal data in which miss-

ingness is believed to be related to the disease process and not to a particular realization

of this process may be more appropriately modeled by a shared parameter model than a

selection model.

As with any model-based approach to non-ignorable missing data, the current approach is

subject to unavoidable assumptions about the complete data distribution and the missing

data mechanism. It is important to consider all substantive information about the area of

application, prior experience with missing data in similar situations, and expert opinion

about the mechanism of missing data when building such models. In many areas, enough

knowledge and experience exists to justify the necessary assumptions, and the benefit in

terms of bias reduction can be significant.
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Table 4.1: Patients characteristics by arm

PCV+RT RT
% % p-value

147 50.87 142 49.13

Age 0.956
50 > 101 68.71 98 69.01
50 < 46 31.29 44 30.99

Resection 0.462
biopsy/partial 62 42.18 66 46.48
total resection 85 57.82 76 53.52

KPS 0.404
60–80 41 27.89 46 32.39

90–100 106 72.11 96 67.61

Grade 0.743
anaplastic (2-3 features) 80 54.42 80 56.34
anaplastic (4-5 features) 67 45.58 62 43.66
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Table 4.2: Simulation of model comparison n = 150: SHMM vs SPHMM

n=150
Rsp.Rate T1 = 0.817 T2 = 0.776 T3 = 0.617

SHMM SPHMM
Correctly specified Mis-specified

True Est 95% L 95% U C.P Est 95% L 95% U C.P
Parameters Parameters

α10 0.650 0.650 0.556 0.745 0.928 α10 0.642 0.550 0.734 0.924
α11 1.050 1.050 0.885 1.215 0.946 α11 0.956 0.816 1.097 0.726
α12 0.250 0.253 0.149 0.358 0.934 α12 0.223 0.136 0.311 0.878
α20 -1.500 -1.500 -1.602 -1.398 0.916 α20 -1.482 -1.583 -1.382 0.918
α21 1.550 1.546 1.431 1.660 0.962 α21 1.492 1.386 1.599 0.820
α22 0.750 0.750 0.677 0.823 0.932 α22 0.729 0.660 0.798 0.902
σ 0.350 0.345 0.292 0.398 0.914 σ 0.335 0.278 0.392 0.836

Missingness mechanism
β0 3.450 3.556 2.317 4.796 0.962 β0 3.030 2.412 3.649 0.684
β1 -0.550 -0.549 -1.801 0.704 0.968 β1 -2.112 -2.653 -1.571 0.000
β2 -0.350 -0.342 -0.700 0.017 0.964 β2 -0.634 -0.936 -0.332 0.540
β3 -1.550 -1.597 -2.887 -0.308 0.972 ψ 0.009 -0.323 0.341 0.480

Nuisance parameter
Markov Chain parameters

π π
π1 0.650 0.654 π1 0.592
π2 0.350 0.346 π2 0.408
Q Q
q11 0.400 0.383 q11 0.310
q12 0.600 0.617 q12 0.690
q21 0.350 0.374 q21 0.294
q22 0.650 0.626 q22 0.706

n=150
Rsp.Rate T1 = 0.945 T2 = 0.803 T3 = 0.516

SPHMM SHMM
Correctly specified Mis-specified

True Est 95% L 95% U C.P Est 95% L 95% U C.P
Parameters Parameters

α10 0.650 0.664 0.432 0.897 0.944 α10 0.607 0.279 0.936 0.892
α11 1.050 1.045 0.723 1.367 0.944 α11 1.156 0.714 1.598 0.892
α12 0.250 0.242 0.128 0.357 0.928 α12 0.191 0.036 0.345 0.842
α20 -1.500 -1.496 -1.751 -1.242 0.930 α20 -1.441 -1.900 -0.981 0.842
α21 1.550 1.552 1.228 1.876 0.942 α21 1.373 0.837 1.910 0.868
α22 0.750 0.752 0.642 0.861 0.930 α22 0.321 0.012 0.631 0.270
σ 0.350 0.343 0.258 0.428 0.918 σ 0.930 0.808 1.052 0.000

Missingness mechanism
β0 3.450 3.491 2.806 4.176 0.946 β0 6.446 3.451 9.441 0.478
β1 -0.550 -0.556 -1.135 0.023 0.918 β1 -3.458 -5.440 -1.475 0.098
β2 -1.550 -1.571 -1.937 -1.205 0.960 β2 -2.799 -3.961 -1.637 0.400
ψ 0.850 0.832 0.700 0.964 0.928 β3 1.909 0.842 2.975 0.048

Nuisance parameter
Markov Chain parameters

π π
π1 0.650 0.649 π1 0.605
π2 0.350 0.351 π2 0.395
Q Q
q11 0.400 0.377 q11 0.781
q12 0.600 0.623 q12 0.219
q21 0.350 0.370 q21 0.060
q22 0.650 0.630 q22 0.940

1 Simulation sample size n = 150. replicates R = 500.
2 σ standard deviation of outcome at each time, ψ standard deviation of random effect bi.
3 C.P coverage probability. 4 Rsp.Rate: response rate at each assessment time.
5 95% L: 95% lower confidence interval. 6 95% U: 95% upper confidence interval.
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Table 4.3: Simulation of model comparison n = 300: SHMM vs SPHMM

n=300
Rsp.Rate T1 = 0.817 T2 = 0.779 T3 = 0.615

SHMM SPHMM
Correctly specified Mis-specified

True Est 95% L 95% U C.P Est 95% L 95% U C.P
Parameters Parameters

α10 0.650 0.651 0.584 0.719 0.950 α10 0.643 0.577 0.709 0.938
α11 1.050 1.054 0.939 1.169 0.948 α11 0.961 0.861 1.060 0.590
α12 0.250 0.248 0.177 0.319 0.948 α12 0.219 0.158 0.281 0.830
α20 -1.500 -1.497 -1.569 -1.425 0.950 α20 -1.479 -1.550 -1.408 0.898
α21 1.550 1.552 1.471 1.632 0.944 α21 1.497 1.422 1.572 0.734
α22 0.750 0.746 0.694 0.797 0.944 α22 0.725 0.676 0.773 0.816
σ 0.350 0.348 0.310 0.385 0.940 σ 0.339 0.299 0.380 0.886

Missingness mechanism
β0 3.450 3.506 2.699 4.313 0.964 β0 3.038 2.600 3.476 0.544
β1 -0.550 -0.555 -1.387 0.278 0.972 β1 -2.111 -2.492 -1.729 0.000
β2 -0.350 -0.349 -0.596 -0.103 0.954 β2 -0.641 -0.855 -0.427 0.258
β3 -1.550 -1.570 -2.421 -0.719 0.980 ψ -4.781 -7.911 -1.651 0.520

Nuisance parameter
Markov Chain parameters

π π
π1 0.650 0.648 π1 0.585
π2 0.350 0.352 π2 0.415
Q Q
q11 0.400 0.379 q11 0.305
q12 0.600 0.621 q12 0.695
q21 0.350 0.374 q21 0.296
q22 0.650 0.626 q22 0.704

n=300
Rsp.Rate T1 = 0.945 T2 = 0.803 T3 = 0.515

SPHMM SHMM
Correctly specified Mis-specified

True Est 95% L 95% U C.P Est 95% L 95% U C.P
Parameters Parameters

α10 0.650 0.646 0.480 0.813 0.940 α10 0.580 0.344 0.817 0.868
α11 1.050 1.060 0.830 1.289 0.940 α11 1.182 0.867 1.496 0.848
α12 0.250 0.251 0.169 0.333 0.950 α12 0.186 0.080 0.293 0.764
α20 -1.500 -1.504 -1.685 -1.323 0.922 α20 -1.422 -1.752 -1.093 0.844
α21 1.550 1.559 1.328 1.790 0.950 α21 1.371 0.993 1.750 0.840
α22 0.750 0.750 0.672 0.828 0.952 α22 0.300 0.088 0.512 0.030
σ 0.350 0.348 0.286 0.409 0.944 σ 0.953 0.869 1.036 0.000

Missingness mechanism
β0 3.450 3.476 2.994 3.958 0.960 β0 6.080 4.285 7.876 0.122
β1 -0.550 -0.553 -0.961 -0.144 0.948 β1 -3.246 -4.445 -2.046 0.002
β2 -1.550 -1.566 -1.824 -1.307 0.948 β2 -2.657 -3.363 -1.951 0.068
ψ 0.850 0.845 0.751 0.939 0.954 β3 1.783 1.152 2.414 0.000

Nuisance parameter
Markov Chain parameters

π π
π1 0.650 0.650 π1 0.603
π2 0.350 0.350 π2 0.397
Q Q
q11 0.400 0.379 q11 0.795
q12 0.600 0.621 q12 0.205
q21 0.350 0.369 q21 0.050
q22 0.650 0.631 q22 0.950

1 Simulation sample size n = 300. replicates R = 500.
2 σ standard deviation of outcome at each time, ψ standard deviation of random effect bi.
3 C.P coverage probability. 4 Rsp.Rate: response rate at each assessment time.
5 95% L: 95% lower confidence interval. 6 95% U: 95% upper confidence interval.
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Table 4.4: Simulation of sensitivity analysis: transition matrix QA

n=500
Rsp.Rate T1 = 0.817 T2 = 0.809 T3 = 0.670

SHMM

True Est 95% L 95% U C.P
Parameters

α10 0.650 0.655 0.600 0.709 0.958
α11 1.050 1.035 0.943 1.128 0.942
α12 0.250 0.204 0.105 0.304 0.824
α20 -1.500 -1.491 -1.544 -1.437 0.938
α21 1.550 1.545 1.488 1.602 0.952
α22 0.750 0.735 0.700 0.770 0.850
σ 0.350 0.346 0.319 0.374 0.940

Missingness mechanism
β0 3.450 3.358 2.820 3.895 0.906
β1 -0.550 -0.773 -1.496 -0.050 0.906
β2 -0.350 -0.335 -0.511 -0.159 0.958
β3 -1.550 -1.357 -2.016 -0.698 0.892

Nuisance parameter
Markov Chain parameters

π
π1 0.650 0.645
π2 0.350 0.355
QA
q11 0.400 0.231
q12 0.600 0.769
q21 0.000 0.173
q22 1.000 0.827

1 Simulation sample size n = 500. replicates R = 500.
2 σ standard deviation of outcome at each time.
3C.P coverage probability. 4 Rsp.Rate: response rate at each assessment
time. 5 95% L: 95% lower confidence interval.
6 95% U: 95% upper confidence interval.
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Table 4.5: Simulation of sensitivity analysis: transition matrix QB

n=500
Rsp.Rate T1 = 0.815 T2 = 0.777 T3 = 0.613

SHMM

True Est 95% L 95% U C.P
Parameters

α10 0.650 0.655 0.585 0.725 0.962
α11 1.050 1.037 0.895 1.178 0.956
α12 0.250 0.179 0.007 0.350 0.872
α20 -1.500 -1.417 -1.489 -1.345 0.386
α21 1.550 1.487 1.405 1.569 0.674
α22 0.750 0.878 0.825 0.931 0.000
σ 0.350 0.523 0.461 0.584 0.000

Missingness mechanism
β0 3.450 3.258 2.665 3.851 0.808
β1 -0.550 -0.773 -1.427 -0.119 0.870
β2 -0.350 -0.383 -0.568 -0.198 0.948
β3 -1.550 -1.245 -1.900 -0.591 0.764

Nuisance parameter
Markov Chain parameters

π
π1 0.650 0.666
π2 0.350 0.334
QB
q11 0.400 0.422
q12 0.600 0.578
q21 0.350 0.000∗

q22 0.650 1.000∗

1 Simulation sample size n = 500. replicates R = 500.
2 σ standard deviation of outcome at each time.
3C.P coverage probability. 4 Rsp.Rate: response rate at each assessment
time. 5 95% L: 95% lower confidence interval.
6 95% U: 95% upper confidence interval. 7 *: parameter are fixed at the
number.
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Table 4.6: Analysis for 5 years data: MMSE

SPHMM SHMM
State 1 State 2 State 1 State 2

Est P-value Est P-value Est P-value Est P-value
Int 3.314 0.000 2.973 0.000 3.324 0.000 2.662 0.000

time 0.000 0.908 0.050 0.052 -0.002 0.274 -0.073 0.004
rx (PCV+RT) 0.000 0.964 0.698 0.000 0.003 0.699 0.405 0.000

resection (total resection) -0.004 0.651 -0.568 0.000 0.000 0.957 0.040 0.677
kps (90-100) 0.047 0.000 -0.212 0.077 0.033 0.004 -0.781 0.000

grade (4-5) 0.007 0.477 -0.092 0.317 0.002 0.802 0.126 0.260
age (50+) -0.038 0.002 -0.191 0.076 -0.032 0.006 -0.134 0.046

σ 0.065 0.000 0.090 0.000
Missingness mechanism

Int 1.910 0.000 -15.910 0.000
time -0.768 0.000 -0.689 0.000

rx (PCV+RT) -0.065 0.731 -1.073 0.057
resection (total resection) -0.137 0.474 0.127 0.782

kps (90-100) 0.452 0.026 1.153 0.007
grade (4-5) -0.237 0.214 -0.248 0.506
age (50+) -0.586 0.003 -0.332 0.431

ψ 0.071 0.000 Yi 5.805 0.000

Nuisance parameter
Markov Chain parameters

π1 π2 π1 π2
0.972 0.028 0.969 0.031
q.1 q.2 q.1 q.2

q1. 0.970 0.030 q1. 0.848 0.152
q2. 0.875 0.125 q2. 0.029 0.971

1 σ standard deviation of outcome at each time.
2 ψ standard deviation of random effect. 3 Est: Estimation 4 Category in parenthesis is of
interest: baseline is first value of each variables in Table 4.1
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Table 4.7: Analysis for 5 years data: B-QLQ

SPHMM SHMM
State 1 State 2 State 1 State 2

Est P-value Est P-value Est P-value Est P-value
Int 4.129 0.000 4.147 0.000 4.238 0.000 3.952 0.000

time -0.029 0.017 -0.010 0.622 -0.029 0.000 -0.275 0.000
rx (PCV+RT) -0.044 0.355 0.052 0.310 0.027 0.427 -0.014 0.834

resection (total) 0.066 0.093 -0.101 0.070 -0.036 0.313 0.010 0.878
kps (90-100) 0.130 0.008 0.164 0.018 0.161 0.001 0.139 0.028

grade (4-5) -0.045 0.412 0.043 0.539 -0.022 0.552 0.056 0.381
age (50+) -0.008 0.822 -0.153 0.004 -0.126 0.010 -0.001 0.995

σ 0.173 0.000 0.228 0.000
Missingness mechanism

Int 1.753 0.000 -20.545 0.000
time -0.702 0.000 -0.368 0.000

rx (PCV+RT) -0.322 0.092 -0.257 0.385
resection (total) -0.326 0.094 -0.486 0.132

kps (90-100) 0.532 0.009 -0.281 0.413
grade (4-5) -0.054 0.775 0.252 0.432
age (50+) -0.587 0.003 -0.496 0.129

ψ 0.194 0.000 Yi 5.671 0.000

Nuisance parameter
Markov Chain parameters

π1 π2 π1 π2
0.789 0.211 0.607 0.393
q.1 q.2 q.1 q.2

q1. 0.501 0.499 q1. 0.865 0.135
q2. 0.489 0.511 q2. 0.034 0.966

1 σ standard deviation of outcome at each time.
2 ψ standard deviation of random effect. 3 Est: Estimation. 4 Category in parenthesis is of
interest: baseline is first value of each variables in Table 4.1
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Table 4.8: Patients characteristics by arm for at least 2 years survival

PCV+RT RT
% % p-value

101 50.25 100 49.75

Age 0.553
50 > 72 71.29 75 75.00
50 < 29 28.71 25 25.00

Resection 0.1387
biopsy/partial 41 40.59 51 51.00
total resection 60 59.41 49 49.00

KPS 0.239
60–80 22 21.78 29 29.00
90–100 79 78.22 71 71.00

Grade 0.704
anaplastic (2-3 features) 61 60.40 63 63.00
anaplastic (4-5 features) 40 39.60 37 37.00
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Table 4.9: Data analysis for at least 2 years survival: MMSE

SPHMM SHMM
State 1 State 2 State 1 State 2

Est P-value Est P-value Est P-value Est P-value
Int 3.322 0.000 2.647 0.000 3.321 0.000 2.639 0.000

time 0.007 0.061 0.234 0.000 0.006 0.066 0.219 0.000
rx (PCV+RT) 0.003 0.708 0.102 0.079 0.004 0.552 0.113 0.031

resection (total) -0.016 0.045 -0.127 0.013 -0.013 0.062 -0.157 0.000
kps (90-100) 0.044 0.000 -0.077 0.157 0.042 0.000 -0.053 0.228

grade (4-5) 0.012 0.158 0.309 0.000 0.013 0.077 0.261 0.000
age (50+) -0.024 0.011 -0.200 0.011 -0.025 0.008 -0.145 0.008

σ 0.063 0.000 0.069 0.000
Missingness mechanism

Int 2.804 0.000 -11.549 0.005
time -1.317 0.000 -1.410 0.000

rx (PCV+RT) -0.145 0.606 -0.281 0.377
resection (total) -0.038 0.893 0.241 0.468

kps (90-100) 0.436 0.133 0.206 0.525
grade (4-5) 0.391 0.167 0.058 0.867
age (50+) -0.064 0.814 0.223 0.473

ψ 0.029 0.000 Yi 4.459 0.001

Nuisance parameter
Markov Chain parameters

π1 π2 π1 π2
0.984 0.016 0.985 0.015
q.1 q.2 q.1 q.2

q1. 0.946 0.054 q1. 0.927 0.073
q2. 0.350 0.650 q2. 0.003 0.997

1 σ standard deviation of outcome at each time.
2 ψ standard deviation of random effect. 3 Est: Estimation. 4 Category in parenthesis is of
interest: baseline is first value of each variables in Table 4.1
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Table 4.10: Data analysis for at least 2 years survival: B-QOL

SPHMM SHMM
State 1 State 2 State 1 State 2

Est P-value Est P-value Est P-value Est P-value
Int 4.167 0.000 3.853 0.000 4.143 0.000 3.830 0.000

time 0.020 0.106 -0.177 0.008 -0.014 0.481 -0.001 0.970
rx (PCV+RT) -0.043 0.215 -0.240 0.021 -0.069 0.135 -0.042 0.338

resection (total) -0.028 0.440 0.229 0.031 -0.004 0.925 0.007 0.828
kps (90-100) 0.116 0.002 0.734 0.000 0.096 0.051 0.606 0.000

grade (4-5) 0.033 0.324 -0.268 0.001 0.136 0.006 -0.425 0.000
age (50+) -0.030 0.442 -0.116 0.233 -0.055 0.307 0.034 0.466

σ 0.121 0.000 0.069 0.000
Missingness mechanism

Int 2.043 0.000 -11.549 0.005
time -0.811 0.000 -1.410 0.000

rx (PCV+RT) -0.379 0.122 -0.281 0.377
resection (total) -0.280 0.271 0.241 0.468

kps (90-100) 0.385 0.163 0.206 0.525
grade (4-5) 0.550 0.033 0.058 0.867
age (50+) -0.147 0.570 0.223 0.473

ψ 0.188 0.000 Yi 4.459 0.001

Nuisance parameter
Markov Chain parameters

π1 π2 π1 π2
0.875 0.125 0.771 0.229
q.1 q.2 q.1 q.2

q1. 0.831 0.169 q1. 0.847 0.153
q2. 0.711 0.289 q2. 0.062 0.938

1 σ standard deviation of outcome at each time.
2 ψ standard deviation of random effect. 3 Est: Estimation. 4 Category in parenthesis is of
interest: baseline is first value of each variables in Table 4.1
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CHAPTER 5 : Conclusion

In this dissertation, we have developed new statistical methods to handle non-monotone

and non-ignorable missing data in longitudinal studies. We assume a first-order Markov

structure in both the complete data and missingness mechanism, which is a natural way

to capture the changes in outcomes among repeated measurements in a longitudinal data

setting and to properly accommodate the variance-covariance structure. In Chapter 2, we

developed a full-likelihood method to analyze continuous longitudinal responses with non-

ignorable non-monotone missing data. This method is an extension of the work of Troxel

et al. (1998a). We adopt the multivariate Gaussian distribution assumption for the underly-

ing data and a first-order Markov dependence structure. Instead of using logistic regression

to model the missing mechanism, we propose a beta-binomial distribution to model the

probability of non-response. The multivariate Polya distribution is a high-dimensional ver-

sion of the beta-binomial distribution; the beta and binomial distributions correspond to

Dirichlet and multinomial distributions, respectively, in the multivariate situation. This

helps to stabilize the estimation of the missingness mechanism, especially when some time

points have small amounts of missing or no missing data. This mixture model also re-

duces multimodality in the likelihood. This method has better power and more robust

performance for parameter estimation. We conducted simulations to demonstrate the em-

pirical behavior of the proposed models as well. In Chapter 3, we developed a transition

pseudo-likelihood approach by considering only adjacent pairs of observations. This method

can be viewed as an extension of composite marginal likelihood methods (Cox and Reid,

2004; Varin et al., 2011) with application to the non-ignorable non-monotone missing data

framework. This pseudo-likelihood approach can significantly reduce the computational

complexities of the full-likelihood based method. The transition pseudo-score function is

used to obtain correct inference in spite of the independence assumption among the sets of

adjacent pairs. The simulation study shows that this approach can handle longitudinal data

with various covariance structures well and is no more computationally intensive than the
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independent pseudo-likelihood model (Troxel et al., 1998b), which makes this model attrac-

tive for situations with a large number of assessments. In Chapter 4, we further consider

a hidden Markov model incorporating both selection models and shared parameter models

to capture the disease progression through different hidden states. The conditional inde-

pendence assumed in the hidden Markov model provides a simple framework for reducing

the multi-dimensional integration in traditional methods into one-dimensional integration

in the observed likelihood. In addition, the proposed models avoid the problem of specifi-

cation of the correlation structure of repeated outcomes instead of emphasizing estimation

in Markov Chain parameters. A two stage pseudo-likelihood algorithm was used to reduce

the parameter space and obtain inference. This approach allows more precise identification

of the marginal effects. Simulation studies were conducted to investigate the empirical be-

havior of the proposed models. Sensitivity analyses were provided to evaluate the method’s

performance when Markov Chain parameters are mis-specified.

In summary, we have developed several novel statistical methods for handling non-monotone

and non-ignorable missing data in longitudinal studies. Model selection differs depend-

ing on the outcome process and the missingness mechanism. Derived from the theory of

pseudo likelihood-based methods, the proposed pseudo likelihood-based approach requires

a large sample size to improve the performance. As with any model-based approach to non-

ignorable missing data, the current approach is subject to unavoidable assumptions about

the complete data distribution and the missing data mechanism. It is important to consider

all substantive information about the area of application, prior experience with missing data

in similar situations, and expert opinion about the mechanism of missing data when build-

ing such models. In many areas, enough knowledge and experience exists to justify the

necessary assumptions, and the benefit in terms of bias reduction can be significant.
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APPENDIX

A.1. Conditional Density

For T = 3, assume the first observation does depend other covariate and is always observed.

For T=1 then

f(yi1) =
1√

2πσ21
exp(

1

2σ21
(yi1 − µi1)2)

f(Ri1|yi1) = πRi1i1 (1− πi1)1−Ri1

For T=2 then

f(yi2|yi1) =
1√

2πσ22(1− ρ21)
exp(

1

2σ22(1− ρ21)
(yi2 − µi2 − ρ1

σ2
σ1

(yi1 − µi1))2)

f(Ri2 = 1|Ri1, yi2) =
exp(β

′
1Xi2 + θ1Yi2 + ψ1Ri1)∑2

s=1 exp(β′sXi2 + θsYi2 + ψsRi1)
.

For T=3 then

f(yi3|yi2) =
1√

2πσ23(1− ρ22)
exp(

1

2σ23(1− ρ22)
(yi3 − µi3 − ρ2

σ3
σ2

(yi2 − µi2))2)

f(Ri3 = 1|Ri2, yi3) =
exp(β

′
1Xi3 + θ1Yi3 + ψ1Ri2)∑2

s=1 exp(β′sXi3 + θsYi3 + ψsRi2)
.

A.2. Joint Likelihood Function

For T = 3 there are 23 = 8 patterns, if don’t allow all points to be missing


∗ ∗ ∗

Ri1 Ri2 Ri3

0 0 0

 .

then we will have 7 patterns. I will list all possible patterns below.
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Pattern 1 P1 :=


Yi1 Yi2 Yi3

Ri1 Ri2 Ri3

1 1 1

 .

Lp1
i,obs

= Li

= f(yi1)f(yi2|yi1)f(yi3|yi2)f(Ri1|yi1)f(Ri2|Ri1, yi2)f(Ri3|Ri2, yi3)

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

exp(β
′
1Xi2 + θ1Yi2 + ψ1)∑2

s=1 exp(β
′
sXi2 + θsYi2 + ψs)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

exp(β
′
1Xi3 + θ1Yi3 + ψ1)∑2

s=1 exp(β
′
sXi3 + θsYi3 + ψs)

Pattern 2 P2 :=


Yi1 Yi2 ∗

Ri1 Ri2 Ri3

1 1 0

 .

Lp2
i,obs

=

∫
Lidyi3

=

∫
f(yi1)f(yi2|yi1)f(yi3|yi2)f(Ri1|yi1)f(Ri2|Ri1, yi2)f(Ri3|Ri2, yi3)dyi3

=

∫
f(Ri3|Ri2, yi3)f(yi3|yi2)dyi3

× f(yi1)f(yi2|yi1)f(Ri1|yi1)f(Ri2|Ri1, yi2)

= Ef3|2 (f(Ri3|Ri2, y
∗
i3))× f(yi1)f(yi2|yi1)f(Ri1|yi1)f(Ri2|Ri1, yi2)

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

exp(β
′
1Xi2 + θ1Yi2 + ψ1)∑2

s=1 exp(β
′
sXi2 + θsYi2 + ψs)

×
∫

1√
2πσ2

3(1− ρ22)
exp(

−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

exp(β
′
2Xi3 + θ2Yi3 + ψ2)∑2

s=1 exp(β
′
sXi3 + θsYi3 + ψs)

dyi3

=
1√

2πσ2
1

exp(
−1

2σ2
i1

(yi1 − µi1)
2
)πi1

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

exp(β
′
1Xi2 + θ1Yi2 + ψ1)∑2

s=1 exp(β
′
sXi2 + θsYi2 + ψs)

×
m∑
k=1

wk
√
π

exp(β
′
2Xi3 + θ2(µi3 + ρ2

σ3
σ2

(yi2 − µi2) +
√

2σ2
3(1− ρ22)τk) + ψ2)∑2

s=1 exp(β
′
sXi3 + θs(µi3 + ρ2

σ3
σ2

(yi2 − µi2) +
√

2σ2
3(1− ρ22)τk) + ψs)
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Pattern 3 P3 :=


Yi1 ∗ ∗

Ri1 Ri2 Ri3

1 0 0



Lp3
i,obs

=

∫ ∫
Lidyi2dyi3

=

∫ ∫
f(Ri3|Ri2, yi3)f(Ri2|Ri1, yi2)f(yi3|yi2)f(yi2|yi1)dyi2dyi3f(Ri1|yi1)f(yi1)

=

∫ ∫
f(Ri3|Ri2, yi3)f(Ri2|Ri1, yi2)f(yi3, yi2|yi1)dyi2dyi3f(Ri1|yi1)f(yi1)

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

×
∫ ∫

1√
2πσ2

2(1− ρ21)
exp(

−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

exp(β
′
2Xi2 + θ2Yi2 + ψ2)∑2

s=1 exp(β
′
sXi2 + θsYi2 + ψs)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

exp(β
′
2Xi3 + θ2Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

dyi2dyi3

=
1√

2πσ2
1

exp(
−1

2σ2
i1

(yi1 − µi1)
2
)πi1

×
∫ m∑
k=1

wk
√
π

exp(β
′
2Xi2 + θ2(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψ2)∑2

s=1 exp(β
′
sXi2 + θs(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψs)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
((µi2 + ρ1

σ2

σ1
(yi1 − µi1) +

√
2σ2

2(1− ρ21)τk)− µi2))
2
)

×
exp(β

′
2Xi3 + θ2Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

dyi3

=
1√

2πσ2
1

exp(
−1

2σ2
i1

(yi1 − µi1)
2
)πi1

×
m∑
k=1

wk
√
π

exp(β
′
2Xi2 + θ2(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψ2)∑2

s=1 exp(β
′
sXi2 + θs(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψs)

×
∫

1√
2πσ2

3(1− ρ22)
exp(

−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(ρ1

σ2

σ1
(yi1 − µi1) +

√
2σ2

2(1− ρ21)τk))
2
)

×
exp(β

′
2Xi3 + θ2Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

dyi3

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

×
m∑
k=1

wk
√
π

exp(β
′
2Xi2 + θ2(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψ2)∑2

s=1 exp(β
′
sXi2 + θs(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψs)

×
m∑
l=1

wl
√
π

exp(β
′
2Xi3 + θ2(µi3 + ρ2

σ3
σ2

(ρ1
σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) +

√
2πσ2

3(1− ρ22)τl))∑2
s=1 exp(β

′
sXi3 + θs(µi3 + ρ2

σ3
σ2

(ρ1
σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) +

√
2πσ2

3(1− ρ22)τl))

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

×
m∑
k=1

m∑
l=1

wkwl

π

exp(β
′
2Xi2 + θ2(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψ2)∑2

s=1 exp(β
′
sXi2 + θs(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψs)

×
exp(β

′
2Xi3 + θ2(µi3 + ρ2

σ3
σ2

(ρ1
σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) +

√
2πσ2

3(1− ρ22)τl))∑2
s=1 exp(β

′
sXi3 + θs(µi3 + ρ2

σ3
σ2

(ρ1
σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) +

√
2πσ2

3(1− ρ22)τl))

104



Pattern 4 P4 :=


Yi1 ∗ Yi3

Ri1 Ri2 Ri3

1 0 1

 .

Lp4
i,obs

=

∫
Lidyi2

=

∫
f(yi1)f(yi2|yi1)f(yi3|yi2)f(Ri1|yi1)f(Ri2|Ri1, yi2)f(Ri3|Ri2, yi3)dyi2

=

∫
f(Ri2|Ri1, yi2)f(yi3|yi2)f(yi2|yi1)dyi2

× f(yi1)f(Ri1|yi1)f(Ri3|Ri2, yi3)

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

exp(β
′
1Xi3 + θ1Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

×
∫

exp(β
′
2Xi2 + θ2Yi2 + ψ2)∑2

s=1 exp(β
′
sXi2 + θsYi2 + ψs)

1√
2πσ2

3(1− ρ22)
exp(

−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)dyi2

=
1√

2πσ2
1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)πi1

exp(β
′
1Xi3 + θ1Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

×
m∑
k=1

wk
√
π

exp(β
′
2Xi2 + θ2(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψ2)∑2

s=1 exp(β
′
sXi2 + θs(µi2 + ρ1

σ2
σ1

(yi1 − µi1) +
√

2σ2
2(1− ρ21)τk) + ψs)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
((µi2 + ρ1

σ2

σ1
(yi1 − µi1) +

√
2σ2

2(1− ρ21)τk)− µi2))
2
)

Pattern 5 P5 :=


∗ Yi2 Yi3

Ri1 Ri2 Ri3

0 1 1



Lp5
i,obs

=

∫
Lidyi1

=

∫
f(Ri1|yi1)f(yi2|yi1)f(yi1)dyi1f(Ri3|Ri2, yi3)f(Ri2|Ri1, yi2)f(yi3|yi2)

=
exp(β

′
1Xi3 + θ1Yi3 + ψ1)∑2

s=1 exp(β
′
sXi3 + θsYi3 + ψs)

exp(β
′
1Xi2 + θ1Yi2)∑2

s=1 exp(β
′
sXi2 + θsYi2)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

× (1− πi1)

∫
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

1√
2πσ2

1

exp(
1

2σ2
1

(yi1 − µi1)
2
)dyi1

= (1− πi1)
exp(β

′
1Xi3 + θ1Yi3 + ψ1)∑2

s=1 exp(β
′
sXi3 + θsYi3 + ψs)

exp(β
′
1Xi2 + θ1Yi2)∑2

s=1 exp(β
′
sXi2 + θsYi2)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)

×
m∑
k=1

wk
√
π

1√
2πσ2

2(1− ρ21)
exp(

−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
((µi1 +

√
2σ2

1τk)− µi1))
2
)
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Pattern 6 P6 :=


∗ Yi2 ∗

Ri1 Ri2 Ri3

0 1 0



Lp6
i,obs

=

∫ ∫
Lidyi1dyi3

=

∫ ∫
f(yi1)f(yi2|yi1)f(yi3|yi2)f(Ri1|yi1)f(Ri3|Ri2, yi3)dyi1dyi3f(Ri2|Ri1, yi2)

=

∫
f(Ri3|Ri2, yi3)f(yi3|yi2)dyi3 ×

∫
f(yi1)f(yi2|yi1)f(Ri1|yi1)dyi1 × f(Ri2|Ri1, yi2)

= (1− πi1)
exp(β

′
1Xi2 + θ1Yi2)∑2

s=1 exp(β
′
sXi2 + θsYi2)

×
∫

exp(β
′
2Xi3 + θ2Yi3 + ψ2)∑2

s=1 exp(β
′
sXi3 + θsYi3 + ψs)

1√
2πσ2

3(1− ρ22)
exp(

−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)dyi3

×
∫

1√
2πσ2

2(1− ρ21)
exp(

−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

1√
2πσ2

1

exp(
1

2σ2
1

(yi1 − µi1)
2
)dyi1

= (1− πi1)
exp(β

′
1Xi2 + θ1Yi2)∑2

s=1 exp(β
′
sXi2 + θsYi2)

×
m∑
k=1

m∑
l=1

wkwl

π

exp(β
′
2Xi3 + θ2(µi3 + ρ2

σ3
σ2

(yi2 − µi2) +
√

2σ2
3(1− ρ22)τk) + ψ2)∑2

s=1 exp(β
′
sXi3 + θs ∗ (µi3 + ρ2

σ3
σ2

(yi2 − µi2) +
√

2σ2
3(1− ρ22)τk) + ψs)

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 −
√

2ρ1σ2τl)
2
)

Pattern 7 P7 :=


∗ ∗ Yi3

Ri1 Ri2 Ri3

0 0 1

 .

Lp7
i,obs

=

∫ ∫
Lidyi1dyi2

=

∫ ∫
f(Ri1|yi1)f(Ri2|Ri1, yi2)f(yi1f(yi2|yi1)f(yi3|yi2)dyi1dyi2f(Ri3|Ri2, yi3)

=
exp(β

′
1Xi3 + θ1Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

(1− πi1)

∫ ∫
exp(β

′
2Xi2 + θ2Yi2)∑2

s=1 exp(β
′
sXi2 + θsYi2)

1√
2πσ2

1

exp(
−1

2σ2
1

(yi1 − µi1)
2
)

×
1√

2πσ2
2(1− ρ21)

exp(
−1

2σ2
2(1− ρ21)

(yi2 − µi2 − ρ1
σ2

σ1
(yi1 − µi1))

2
)

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(yi2 − µi2))

2
)dyi1dyi2

=
exp(β

′
1Xi3 + θ1Yi3)∑2

s=1 exp(β
′
sXi3 + θsYi3)

(1− πi1)

×
m∑
k=1

m∑
l=1

wkwl

π

exp(β
′
2Xi2 + θ2(µi2 +

√
2ρ1σ2τk +

√
2σ2

2(1− ρ21)τl))∑2
s=1 exp(β

′
sXi2 + θs(µi2 +

√
2ρ1σ2τk +

√
2σ2

2(1− ρ21)τl))

×
1√

2πσ2
3(1− ρ22)

exp(
−1

2σ2
3(1− ρ22)

(yi3 − µi3 − ρ2
σ3

σ2
(µi2 +

√
2ρ1σ2τk +

√
2σ2

2(1− ρ21)τl − µi2))
2
)
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