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ABSTRACT 

A NOTCH ABOVE BOWL: SPECIFICATION OF NICHE CELLS IN THE 

DROSOPHILA TESTIS 

Tishina Charnell Okegbe 

Stephen DiNardo 

 

 Niche cells exercise elaborate control over the behavior of many tissue-specific 

stem cells. However, in no system do we fully understand how niche cells are specified, 

develop and then begin producing the signals necessary to properly regulate stem cells. 

Here, we take advantage of the paradigmatic stem cell-niche system of the Drosophila 

testis to address these fundamental questions. We first find that the Notch signaling 

pathway is necessary for niche cell specification and that its activity in precursor cells 

prevents those cells from adopting the alternative somatic cyst cell fate. We also discover 

that the Notch-activating ligand, Delta, is presented from the neighboring endoderm, 

rather than from within the gonad “proper.”  Moreover, we show that niche specification 

occurs very early during gonadogenesis, before the expression of extant niche cell 

markers.  

We also uncover a role for the bowl pathway in influencing niche cell 

specification, where bowl promotes niche cell fate, while its antagonist, lines, promotes 

cyst cell fate. Additionally, we present data suggesting that bowl functions as a 

transcriptional repressor to restrict cyst cell gene expression in precursor cells, thereby 

inducing niche cell specification. Ultimately since niche cells influence stem cell 

behavior, understanding how niche cells develop and dissecting the interactions between 
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niches and their resident stem cells is paramount if we seek to use stem cells as tools in 

regenerative medicine. 
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Overview 
 
 At its core, the field of developmental biology seeks to understand how a cell, a 

tissue, and an organism come to be. Fascinatingly, the development of most multicellular 

organisms begins with a single cell zygote, which divides mitotically to give rise to all of 

the cells within the body. These initially equivalent cells must eventually differentiate to 

contribute to the distinct tissues and organs that make up the body. The question of how 

this is accomplished has intrigued developmental biologists for centuries and has led to a 

series of sub-questions including: how does morphogenesis (the creation of ordered form) 

proceed, how is cell growth and division regulated, how do the egg and sperm become 

specialized cell types, how do changes in development drive evolution and how do 

environmental cues influence development? 

 Historically, model organisms have been used to address some of these 

fundamental questions. Using simple model systems, great advances in our understanding 

of basic developmental principles have occurred. For example, early studies on the chick 

embryo in the 1800’s revealed that vertebrate embryos contain three germ layers, the 

endoderm, the ectoderm and the mesoderm, which produce the distinct organ systems of 

all three-layer organisms [Reviewed in (148)]. Additional studies on organisms as diverse 

as the frog, worm, mouse and fly have provided insight on topics as distinct as patterning 

of a body plan to the development and regulation of various tissues and organs to 

understanding diseases caused by genetic mutations. 

 One aspect of development that is particularly interesting is that some tissues and 

organ systems never stop developing, even after an adult organism is fully formed. In 

humans, for example, skin cells are replenished daily. Similarly, a continuous source of 
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blood cells must be supplied from the bone marrow to sustain life. In addition, simpler 

organisms, such as planaria, or amphibians such as the salamander, can regenerate 

severed body parts [Reviewed in (86)]. It is now appreciated that these phenomena are 

due to a pool of stem cells that have the capacity to self-renew and produce 

differentiating daughter cells throughout the course of an organism’s lifetime. These adult 

stem cells are distinct from embryonic stem cells, which give rise to all of the cells of the 

body during development (Figure 1.1; from nih.gov) [Reviewed in (192)]. In my 

discussion below, I will focus on the increasingly studied branch of stem cell biology 

concerning adult stem cells. 

 

Stem cells 

 Stem cells have been heralded as a potential cure-all for numerous diseases and 

maladies. However, we are just truly beginning to uncover the mechanisms that govern 

stem cells. Adult stem cells have the long-term capacity to self-renew, and in doing so 

maintain the integrity of many tissues and organs by replenishing lost cells [Reviewed in 

(56)]. Stem cells that give rise to all the cell types of a particular tissue are known as 

multipotent, such as hematopoietic stem cells (HSC), which produce all blood cells 

(Figure 1.2) [Figure taken from (7); (74)]. Unipotent stem cells give rise to only one cell 

type. A prime example are male germline stem cells, which only produce sperm (see 

Figure 1.1, lavender box) [Reviewed in (114)]. Both stem cell types reside in specialized 

microenvironments known as niches and must delicately balance the process of self-

renewal− to produce more stem cells, with differentiation− to produce lineage-committed 

daughter cells (Figure 1.3) [Reviewed in (156)].  
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Defining stem cells in vivo 

Historically, in mammalian systems, stem cells were proposed based on how well 

the cells retained label after being pulsed with a marker of DNA replication and chased 

for a number of weeks (41). This technique relied on the presumption that true stem cells 

divide infrequently and therefore would retain label. These cells came to be classified as 

label-retaining cells (LRC). However, there were several caveats associated with this 

methodology. First, if presumptive stem cells were quiescent during the pulse, the dye 

would not be incorporated into the cell. Second, since cells had to be permeabilized to 

allow for quantitative measurements of dye retention, the cells could not be studied 

further [Reviewed in (56)]. Now, with advances in genetic lineage-tracing, this new 

method has become the gold standard in defining previously unidentified or ambiguous 

stem cell populations in vivo in Drosophila as well as mice. By genetically marking stem 

cells and their descendants, this methodology has led to the unearthing of mammalian 

spermatagonial stem cells, muscle satellite cells, epidermal stem cells and intestinal stem 

cells, among others (15, 40, 104, 127).  

Since invertebrate systems are typically simpler, it has proven easier to identify 

stem cells within a single-cell resolution, compared to mammalian systems with more 

complicated tissue architecture. For some invertebrate models, including the Drosophila 

ovarian and testis germline system, the Drosophila intestine and the germline of 

C.elegans, we can now define stem cells based on gene expression markers coupled with 

knowledge of their anatomical location [Reviewed in (126); (12, 42, 88, 95, 134)]. 

Taking into account the anatomical location of stem cells is important since transit-
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amplifying daughter cells may share a similar gene expression pattern for a time shortly 

after division [Reviewed in (126)].  

Cell divisions in stem cell systems 

During steady-state operation of a stem cell system, stem cells balance self-

renewal with differentiation through asymmetric cell division to properly maintain tissue 

homeostasis [Reviewed in (189)]. Typically, a stem cell division produces a 

differentiating daughter cell, which is displaced from the self-renewing source, while the 

other cell remains close to the niche cells and thus maintains stemness (Figure 1.4 A) 

(104, 139, 190). Asymmetric division can also be achieved via asymmetric segregation of 

molecular determinants into daughter cells, whereby a set of differentially inherited 

molecular cues promotes stemness (129). This is thought to occur during neuroblast 

division in Drosophila where one daughter cell remains a self-renewing neuroblast while 

the other daughter cell becomes a terminally differentiated glial or neuronal cell 

[Reviewed in (198)]. 

Stem cells also have the potential to divide symmetrically, giving rise to two stem 

cells or alternatively to two daughter cells (Figure 1.4 B). An asymmetric division that 

produces two stem cells is thought to occur when stem cell numbers need to be increased, 

namely during embryonic development and tissue repair (125). However, this mechanism 

is also likely to be causative in inducing cancer, where stem cells divide unregulated, 

forming tumors. In fact, so called “cancer stem cells” share many similarities with normal 

somatic stem cells, such as maintaining an undifferentiated state and the ability to 

produce lineage-committed daughter cells (Figure 1.4 C) [Rev in (20); (39)].  



	  

	   6	  

Another interesting quality of some stem cell systems is the ability of transit-

amplifying daughter cells to de-differentiate to return to a stem cell-like state (Figure 1.4 

D). This has been found to occur under experimentally induced conditions in both the 

male and female Drosophila germline systems as well as in the murine germline (25, 87, 

128, 152). This reveals the potential plasticity of a stem cell system, whereby daughter 

cells can repopulate an empty niche if stem cells are lost. This also has a strong 

implication about the differentiated state: that at least early on, daughter cells from the 

stem cell are not irreversibly committed to differentiate. This mechanism could contribute 

to the replenishment of stem cells damaged or destroyed by environmental toxins, harsh 

chemical treatments or during the aging process (87). 

Intrinsic and extrinsic self-renewal requirements 

 The process of stem cell self-renewal requires both intrinsic and extrinsic inputs 

(Figure 1.5). As such, stem cell self-renewal is a result of an intrinsic gene expression 

program that is modulated by extrinsic cues from the local microenvironment. We are 

just beginning to uncover factors necessary for intrinsic self-renewal and it appears that 

these regulators may function in a cell-type specific manner. A classic example for the 

requirement of intrinsic inputs for self-renewal lies in the Drosophila central nervous 

system (CNS) [Reviewed in (193)]. In the developing CNS, a neuroblast asymmetrically 

divides to produce a neuroblast daughter cell as well as a differentiating daughter cell. 

These distinct cell fates are determined based on the asymmetric segregation of a number 

of cell fate determinants, such as Prospero and Numb (99, 144). Cells that receive 

Prospero and Numb differentiate into a ganglion mother cell, which ultimately give rise 

to neurons or glia. Cells that do not accumulate these proteins remain as neuroblasts and 
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continue to divide in a stem cell-like fashion. Though studies of Drosophila neuroblasts 

may offer some insight, for many stem cell systems, the molecular mechanisms required 

for intrinsic self-renewal still remain a mystery. Understanding the principles that guide 

intrinsic self-renewal is key if we seek to use stem cells as therapeutic tools.  

Finally, extrinsic cues emanate from supportive niche cells, which typically reside 

adjacent to the stem cell populations they support. These extrinsic cues can take the form 

of soluble signaling factors, membrane-bound factors or even the extracellular matrix 

[Reviewed in (154)]. I will discuss stem cell niches and their regulation of stem cells in 

further detail below.  

 

Stem cell niches 
 
 Stem cell niches have recently been uncovered for numerous stem cell systems. A 

niche consists of the surrounding microenvironment where stem cells reside and acts to 

direct stem cell behavior and maintain tissue homeostasis [Reviewed in (126, 178)]. A 

niche typically produces several signals that are necessary to promote stem cell 

maintenance and self-renewal. Due to this, niche cells are critically important in 

maintaining the integrity of a stem cell system.  

 To date, two types of stem cell niches are thought to exist based on the physical 

relationship with the resident stem cells: “stromal” niches and “epithelial” niches (Figure 

1.6) [Reviewed in (126)]. Stromal niches tend to develop independently of stem cells and 

maintain their morphology even in the absence of stem cells. These niches develop in 

precise anatomical locations adjacent to stem cells and provide short-range signals 

important for self-renewal. An example of such a niche can be found in the germlines of 
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both the Drosophila female and male in the form of cap cells in the ovary and hub cells in 

the testis (93, 157, 172, 182). In contrast, an epithelial niche is typically devoid of distinct 

niche cells and instead the stem cells contact the basal lamina, and/or other mature cells 

of the lineage, which regulate stem cell self-renewal. Mammalian muscle satellite cells 

reside in epithelial niches, such that the cells directly contact the basal lamina and the 

muscle fiber [Reviewed in (103)]. The basal lamina− a major component of the 

extracellular matrix, consists of mainly collagen, laminin and proteoglycans− and 

provides largely undefined, but important regulatory cues for these stem cells. 

In many cases, the niche is not simply static, but is dynamic. The niche must 

respond to changes in the stem cell environment, such as in the case of tissue damage and 

subsequent regeneration. For example, in mammals, most hematopoietic stem cells 

(HSCs) are normally localized to the bone marrow, which acts as its niche. However, it 

has been shown that HSC number and hematopoiesis can drastically increase in other 

organs, such as the spleen and liver, in response to stress or bone marrow malignancies to 

produce more circulating blood cells (92). Additionally, researchers have shown that hair 

follicles can form de novo after wounding by establishing a stem cell population and co-

opting neighboring cells to function as the niche (80). These examples exemplify the idea 

of a facultative niche, whereby the surrounding microenvironment takes on niche fate to 

support a new stem cell population (126). More work is still needed to be done, however, 

to fully understand how cells are transformed to function as facultative niche cells. 

Defining the niche in vivo  

 Although supporting niche cells were proposed to exist since the 1970’s (149), 

only recently do we have the tools necessary to prove their existence in some stem cell 
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systems. Therefore, recent work has hinged upon identifying the precise locations of 

niche cells using genetic manipulations and laser ablation techniques. The germline of the 

nematode, C.elegans, has emerged as a useful model. The distal tip cell (DTC) functions 

as the niche in the germline and signals via the Notch pathway to maintain germline stem 

cells (GSCs) (10, 42). Laser ablation of this single niche cell results in the loss of 

adjacent GSCs, proving its important role in regulating stem cell behavior (95).  

Recent work has shown just how important niche cells are to regulate stem cell 

behavior. Studies in the Drosophila testis that genetically manipulate the number of niche 

cells, modulate the amount of signal produced from the niche cells, or assay changes in 

the niche in aging flies have confirmed that these cells directly regulate the number of 

stem cells present (23, 93, 97, 98, 111, 112, 172, 180). Furthermore, similar types of 

manipulative experiments have been performed in the hematopoietic stem cell (HSC) 

system, where osteoblasts are thought to comprise a critical component of the support 

niche (31, 194). In instances where the number of osteoblasts is increased, a larger 

population of HSCs is maintained. Even with evidence that osteoblasts contributed to the 

HSC niche, the definitive identity of all the cells that make up the niche remained unclear 

in this system. Recently, however, another piece of the puzzle has been solved, in that 

mesenchymal stem cells also regulate HSCs and are thought to form an important 

component of the HSC niche (122). Identifying all the cells that make up this niche will 

be necessary to have a complete understanding of the signals that regulate HSCs. 

An aberrant niche: The cancer stem cell niche 

 Since the niche functions as the master regulator of stem cells, its activity must be 

tightly regulated to maintain tissue homeostasis and to prevent aberrant stem cell 
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behavior. As mentioned above, the ideas of a “cancer stem cell” (CSC) as well as a 

“cancer stem cell niche” have recently been proposed whereby a stem cell transforms and 

divides unregulated and can thus populate an abnormal niche [Reviewed in (20)].  

Interestingly, the CSC niche appears to play a dual role in relation to CSCs. 

Similar to a normal niche, the CSCs rely on its extrinsic cues to maintain stemness (20). 

In addition, however, the CSC niche can play a protective role by sheltering the CSCs 

from toxic insults, associated with extant cancer therapies. This protection likely 

contributes to the therapy resistance found in some patients (53, 77). Although in most 

cancers it is unclear which cells make up the CSC niche, it is hypothesized that this tumor 

microenvironment also promotes metastasis by inducing an epithelial-to-mesenchymal 

transition in CSCs, allowing for tumor cell invasion throughout the body [Reviewed in 

(20)]. Thus it will be interesting to determine the mechanism of how the CSC niche 

permits or directs tumorigenesis by regulating CSCs. Elucidating the cells which function 

as the niche as well as the self-renewal signals they provide to CSCs could aid in 

developing more effective and targeted cancer therapeutics. 

 

Signaling pathways in stem cell-niche systems 

 Although stem-cell niche systems vary from the simple to the complex many 

systems share common signaling pathways. I will explore the role of the four most 

commonly employed pathways- Notch, Wnt, Hegdgehog (Hh), and bone morphogenetic 

protein (BMP) -below. 

Signaling within stem cell-niche systems is important since signals that emanate 

from niche cells regulate stem cell behavior. In fact, integrin- and cadherin-mediated 
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adhesion of stem cells to the niche cells is critical to ensure that the stem cells receive the 

proper self-renewal signals both in fly stem cell systems (23, 79, 111) as well as in 

mammalian systems. One prime example of a mammalian stem cell system that requires 

integrin-mediate adhesion is in the niche of epidermal stem cells− cells that eventually 

give rise to the epidermis [Reviewed in (117); (137)]. In instances where adhesion is lost 

in these systems, signaling is interrupted, stem cells differentiate and the integrity of the 

stem cell system is compromised.  

Some signaling pathways that are commonly employed in stem cell systems 

include the Notch, Wnt (known as Wingless in Drosophila), Hedgehog (Hh) and bone 

morphogenetic protein (BMP) pathways [Reviewed in (132)]. In addition to localized 

signals emanating from niche cells, signaling can occur across cell types in stem cell 

niches where multiple cell types coexist. Since there are numerous regulatory pathways 

employed in stem cell systems, even within a single niche, it is critical to understand the 

crosstalk that occurs in vivo to specify and maintain a properly functioning system. 

Although the field has uncovered some roles for these pathways, more work still needs to 

be done to fully understand how these pathways function in stem cell-niche systems. 

Below, I will briefly highlight what is known and try to point out gaps in our knowledge. 

The Notch pathway 

 Notch signaling is a developmentally conserved pathway in metazoans that 

mediates cell-cell interactions via a transmembrane receptor and ligands, Delta and 

Serrate [Reviewed in (9)]. Upon ligand binding, the Notch receptor is cleaved allowing 

the intracellular domain (Nicd) to translocate into the nucleus. Nicd can then bind to the 

Notch responsive transcription factor, Su(H) and activate target gene expression 
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[Reviewed in (27)]. Notch signaling ultimately regulates binary cell fate choices and 

allows the induction of numerous gene expression programs (51).  

This pathway is necessary for stem cell maintenance and differentiation in several 

mammalian systems, including the neural, hematopoietic, and hair follicle (bulge cells) 

stem cell systems [Reviewed in (37); (8, 30)]. For example, in the adult brain, Notch is 

required to regulate the cell cycle to balance neural stem cell maintenance with daughter 

cell production [Reviewed in (1)]. However, although the vasculature likely contributes, 

it still remains unclear which cells make up the definitive niche for these neural stem 

cells (59). In flies, Notch is required for the maintenance of intestinal and germline stem 

cells (134, 157). Even so, from these studies it still remains unclear how the Notch 

pathway initially becomes activated in these systems. 

  Furthermore, distinct from its role in maintaining stem cells cell-autonomously, 

Notch signaling is also necessary for niche cell formation in the Drosophila ovarian niche 

(157, 182). Although this is true, in this system, it still remains ambiguous which tissue 

provides the Notch-activating ligand, when the niche cells are specified and how they 

begin to regulate their resident stem cells.  

The Wnt pathway 

 The Wnt family of secreted proteins consists of growth factors that bind to and 

activate cell surface receptors of the Frizzled family [Reviewed in (141)]. During 

canonical Wnt signaling, β-catenin accumulates in the nucleus, interacts with the 

TCF/LEF family of transcription factors and is then able to promote target gene 

expression. Recent studies have shown that canonical Wnt signaling can direct HSC self-

renewal in vivo as well as in vitro (142, 187). Similarly, Wnts play an important role in 
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maintaining and regulating stem cells in the crypts of mammalian intestines [Reviewed in 

(191)]. Although the intestinal stem cell (ISC) niche had been studied for a number of 

years, due to complicated tissue architecture only recently do we have an idea of which 

cells are “true” stem cells and which cells make up the supportive niche (15, 146). 

Interestingly, recent work has suggested that mammalian ISCs give rise to their niche 

cells, in the form of differentiated daughter cells, known as Paneth cells (146). Even so, it 

remains to be determined how Paneth cell number and their slow turnover rate is 

regulated.  

Moreover, the Wnt pathway has been found to be deregulated in many cancers, 

including colon cancer, indicating its profound affect on stem cell behavior [Reviewed in 

(143); (174)]. In fact, adenomas were found to develop in intestinal crypts when stem 

cells were hyperactivated for the Wnt pathway in a murine model (14). Additionally, 

although a role has yet to be uncovered for Wnts in the Drosophila testis stem cell niche, 

Wingless protein accumulates in somatic stem cells adjacent to the niche (48, 112). 

 Lastly, in addition to its role in stem cells, Wnt signaling is also required to 

specify the niche in the nematode, C.elegans. Wnt signaling and the coordinate 

expression of the transcription factor Nkx2.2 is essential for the specification of the distal 

tip cell (DTC), which functions as the niche. However, the source of the Wnt ligand 

remains unknown (109).  

The Hedgehog pathway 

 The Hh pathway plays an essential patterning role during the development of 

many organisms, as diverse as Drosophila and humans [Reviewed in (57)]. When the 

pathway is active, the Hh ligand binds to the cell surface transmembrane protein, Patched 
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(Ptc). This binding inhibits Ptc activity, allowing the transmembrane receptor, 

Smoothened (Smo) to accumulate and thus preventing the degradation of the pathway 

responsive transcription factor, Cubitus interruptus (Ci). Ci is then able to accumulate in 

the nucleus and promote target gene expression. Work from the Drosophila ovary has 

shown that Hh produced from the niche cells is necessary for follicle stem cell 

proliferation (196). Additionally, Sonic Hedgehog (Shh), the mammalian homolog of Hh, 

regulates neural stem cells in the adult mouse brain (5). Hh activation in these systems is 

important for proper stem cell regulation, yet how the Hh pathway becomes activated is 

unknown. 

We also find that Hh protein accumulates in niche cells of the Drosophila testis 

(48, 54). However, it still remains unclear what role Hh is playing in this system. Finally, 

Hh signaling has also recently been implicated in tumor progression in lung cancer as 

well as intestinal cancer (17, 183). Although the exact mechanism has not been 

elucidated, tumors likely result due to abnormal activation of the pathway, which allows 

normal stem cells to adopt cancer stem cell fate [Reviewed in (57)].  

The BMP pathway 

 Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of ligands 

[Reviewed in (3)]. Signal transduction begins when BMPs bind to a type II receptor, 

which recruits and phosphorylates a type I receptor. The type I receptor then 

phosphorylates a SMAD, which forms a complex with a co-SMAD. This complex can 

then translocate into the nucleus and activate downstream target genes. The BMP 

pathway has been shown to promote the self-renewal of mouse embryonic stem cells, but 

repress the proliferation of intestinal stem cells (67, 75, 138). 
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Additionally, the BMP pathway plays a critical role in promoting the self-renewal 

of somatic stem cells (SSCs) and germline stem cells (GSCs) in the Drosophila ovary 

(34, 96, 158). In GSCs, BMP activity acts to repress the expression of differentiation 

genes, such as bag of marbles (34, 158). However, the BMP targets necessary for SSC 

self-renewal remain largely unknown. Similarly, BMP activity is necessary to maintain 

germline stem cells in the Drosophila testis hinting that conserved mechanisms may be at 

play in the two germline stem cell systems (90, 111, 155). Although this is true, BMP 

does not seem to regulate somatic stem cell maintenance in the testis, also illustrating 

differences (111). Furthermore, in the testis niche, a few issues remain unclear. It is 

unknown which Drosophila BMP ligand(s) are required for GSC maintenance, how the 

BMP ligands are regulated and which cells produce the necessary pathway activating 

ligands. 

 

Though, it is clear that we have uncovered many principles guiding stem and 

niche cell biology, there are still very large gaps in our current knowledge of stem cell-

niche systems. As stated previously, though niche and stem cell identification still 

remains a difficult task in most mammalian systems, we now have the capacity to 

identify niche and stem cells at a single cell resolution in invertebrate model organisms, 

such as the fly and worm. Given these tools, we can delve deeper into understanding the 

mechanisms within these systems and perform experiments on a finer scale. In our lab, 

we therefore take advantage of the well-characterized Drosophila male germline system 

to further our understanding of stem cell and niche cell biology.  
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The Drosophila male germline system: A model niche 

The adult testis niche 

The Drosophila male germline has emerged as an excellent model system to study 

in vivo adult stem cells. The testis is a stem cell-based tissue, operating at steady state to 

sustain spermatogenesis. The niche is localized to the apical tip of the testis and is 

comprised of two distinct populations of stem cells, germline stem cells (GSCs) and cyst 

stem cells (CySCs), which cluster around a population of terminally differentiated 

somatic cells, called the hub (Figure 1.7) (68). There are typically 10-15 GSCs, 20-30 

CySCs and 10-12 hub cells. A GSC usually divides asymmetrically through an oriented 

division giving rise to a daughter cell that remains adjacent to the self-renewal source, 

and thus a stem cell, and a daughter that is displaced from the niche and differentiates as 

a gonialblast (GB) (190). GBs then undergo four rounds of transit amplification giving 

rise to spermatogonia that differentiate and enter meiosis to produce a mature population 

of sperm. The CySCs appear to also have an oriented division and produce both stem 

cells and somatic daughter cells (36). These daughter cells encyst the differentiating 

germline cells and provide key signals for progression through spermatogenesis (50, 68, 

94, 120, 150, 171). 

Several signals implicated in stem cell maintenance and self-renewal emanate 

from hub cells. The ligand Unpaired (Upd) activates the Jak-STAT pathway in the 

immediately adjacent tier of germline and cyst cells. STAT activation in a cell, which 

promotes adhesion to the hub, is essential for its maintenance as a GSC or CySC (79, 93, 

112, 172). Not only is STAT required, but its activation is sufficient for the renewal of 
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CySCs (93, 112, 172). In contrast, STAT activation is not sufficient for GSC renewal, 

suggesting another signal at play.  

In fact, it appears that both the hub cells and CySCs function as the niche for 

GSCs (111). The BMP ligands decapentaplegic (dpp) and glass bottom boat (gbb) might 

regulate GSC self-renewal since they are both produced by hub cells and CySCs. BMP 

pathway activation is essential in maintaining GSCs and acts to repress the expression of 

the gene bag of marbles (bam), which promotes GSC differentiation (111). Loss of 

critical BMP pathway components in GSCs results in de-repression of bam, precocious 

differentiation and a loss of stem cells (90, 150, 155). 

Though the adult testis has been studied for a number of years and is one of the 

most well understood stem cell-niche systems, we in no way have a complete grasp on all 

the signaling interactions or mechanisms necessary that allow this tissue to be 

maintained. Furthermore, we are just beginning to understand the development of this 

testis niche and uncover the signals required to establish each of the cell populations. In 

the next section I will describe what is known about gonad formation and initial niche 

specification, as well as highlight gaps in our current knowledge. 

Gonad formation and niche specification 

In order to truly understand how a stem cell-niche system is organized, one must 

study the development of the organ. This germline stem cell-niche system is established 

during embryogenesis in the male gonad, the developmental precursor to the adult testis. 

Although the adult testis stem cell niche has been studied in greater detail, there is a 

similar structural architecture found within the gonadal stem cell niche (Figure 1.8) (110). 

Bilaterally symmetric gonads are formed during mid-embryogenesis from two distinct 
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lineages: primordial germ cells (PGCs) and mesodermally-derived somatic gonadal 

precursor cells (SGPs) (2). Germ cells develop at the posterior pole of the embryo and are 

internalized in the posterior midgut (PMG) during gastrulation (32). They then migrate 

through the endoderm to reach the mesoderm. While germ cells are migrating, the SGPs 

are specified from the lateral mesoderm in parasegments 10-12, and begin associating 

with germ cells at stage 11 (Figure 1.9) (21, 22, 29, 159). The SGPs and the germ cells 

then migrate together anteriorly, arrest and finally coalesce at stage 14 within 

parasegment 10 (21, 22, 38). Although activity of the homeotic gene, abdominal A, is 

necessary to halt migration in PS10, it is not clear what guidance cues prompts these cells 

to migrate (22). SGPs then extend cellular processes to ensheath the germ cells, resulting 

in a spherical, compacted gonad (84).  

Though hub cells were identified as the regulators of GSCs some years prior, only 

recently do we have an idea of where these cells originate. Lineage-tracing experiments 

have demonstrated that hub cells derive from the anterior two-thirds of SGPs, definitively 

from parasegment (PS) 11. The remaining hub cells likely derive from parasegment 10, 

given that the hub eventually compacts in PS10 (110). Since hub cells derive (at least) 

from PS11, these hub-specified cells must migrate anteriorly to properly coalesce and 

compact with other hub-specified cells in PS10. The mechanisms by which this guided 

migration and hub cell compaction occur still remain unclear.  

Only some of the PS10 and PS11 SGPs become hub cells, while the remainder 

likely adopt cyst cell fate (48). This suggests that SGPs give rise to both hub and cyst 

cells, although, it is not known which signaling pathways are responsible for inducing 

these differential cell fates. It has been shown, however, that receptor tyrosine kinase 
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(RTK) signaling mediated by the Boss/Sevenless and Epidermal growth factor receptor 

(EGFR) pathways inhibit hub cell formation among posterior SGPs, while permitting 

formation in the anterior (97, 98). Even so, it is not clear how these pathways become 

activated among posterior cells and how they act to prevent hub cell specification.  

As mentioned above, SGPs also give rise to cyst cells. Cyst cells initially 

specified during gonadogenesis can remain as cyst cells or adopt cyst stem cell (CySC) 

fate. Cyst cells that lie adjacent to the hub and therefore the self-renewing ligand, upd, 

likely adopt CySC fate; those further away from the source of upd, remain as cyst cells 

and begin to differentiate. Although no marker currently exists to unambiguously identify 

CySCs during gonadogenesis, we know that upd activates the Jak-STAT pathway in 

germline cells adjacent to the hub prompting them to adopt GSC fate (153). Since both 

stem cell types rely on Jak-STAT pathway activity for proper maintenance in the testis, it 

is likely that it is also necessary for initial stem cell specification (111, 112). 

Hub cells have been thought to be specified late in embryogenesis, since they are 

not visible until near hatching of the first larval instar (110). Hub cells can then be 

visualized as a tight cluster of somatic cells at the anterior end of each gonad, by using 

either cell surface or gene expression markers, such as Drosophila E-cadherin or upd (46, 

63, 110, 165, 184). Although we could visualize hub cells once the stem cell-niche 

system had been established, it was unclear how hub cells were specified. Until recently, 

no pathway necessary to promote hub cell fate had been identified (97). In that study, the 

authors showed that the Notch pathway was necessary for hub cell specification. 

However, it still remained unclear when hub cells were specified, how hub cell number 

was tightly regulated, how hub cells aggregated at the anterior, what genes are activated 
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downstream of Notch signaling, how hub cells begin to upregulate the expression of the 

extant hub cell markers and how they begin to express factors that ultimately regulate 

stem cell behavior.  

Given the importance of hub cells to stem cell survival, it is important to know 

how they become specified during embryogenesis. Additionally, given the developmental 

relationship between hub cells, which function as the niche, and cyst cells, a subset of 

which can function as stem cells, how hub cells come to be specified is important to 

understand. Essentially, a single developmental pathway could control niche versus stem 

cell fate in the Drosophila testis and this balance must be maintained to ensure a properly 

functioning stem cell-niche system. 
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Project Summary 

 Through my thesis work, I have sought to understand what signaling pathways are 

important for specifying a critical component of the Drosophila testis niche, the hub 

cells. Previous microarray expression data from our lab allowed me to take a candidate 

approach to identify pathways involved in hub cell specification. In Chapter 2, I show 

that the Notch signaling pathway is necessary for this process. Surprisingly, I found that 

hub cells were specified much earlier than previously presumed and before the expression 

of extant markers. I further show that the Notch-activating ligand, Delta, is presented 

from a tissue source outside of the gonad: the neighboring endoderm. Chapter 3 reveals 

that the bowl pathway also influences hub cell specification, although its exact 

relationship to the Notch pathway still remains ambiguous. Finally, in Chapter 4 I 

provide an extensive summary and discussion of my work as a whole and attempt to 

place my data into the context of the stem and niche cell biology field.  

Overall, our data provides key insight into the specification of an in vivo niche. 

Understanding which signaling pathways specify niche cells and by extension regulate 

stem cells in vivo is paramount if we seek to use stem cells as tools in regenerative 

medicine.  
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Figure 1.1: 
 
 

 
 
Figure 1.1: Differentiation of human tissues 
 
In the first few hours after fertilization, the single cell zygote divides, giving rise to 

identical cells. These cells begin to specialize, forming the blastocyst. Inside the hollow 

sphere of the blastocyst lies a cluster of cells called the inner cell mass (light blue). The 

inner cell mass can give rise to germ cells (lavender box) as well as specialized cells 

derived from the three germ layers (endoderm, yellow box; mesoderm, green box; 

ectoderm, blue box). (Figure taken from NCBI/NIH) 
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Figure 1.2: 
 
 

 
 
 
 
Figure 1.2: A scheme of hematopoiesis  
 
The multipotent hematopoietic stem cell normally divides infrequently to generate more 

multipotent stem cells or to give rise to committed progenitors. These progenitors give 

rise to all the specialized cell types of the blood lineage. [Figure taken from (7)] 
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Figure 1.3: 
 
 

                  
 
 
Figure 1.3: Stem cells balance self-renewal with differentiation 
 
Stem cells must balance the process of self-renewal, to produce more stem cells, with 

differentiation, to produce lineage-committed daughter cells. 
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Figure 1.4: 
 

 
 
 
Figure 1.4: Modes of stem cell division 

(A) A stem cell (green) can divide asymmetrically to give rise to a stem cell and a 

differentiating daughter cell (blue), which produces lineage-committed progeny. Often 

times, asymmetrical segregation of cell fate determinants (small dots) into one cell lead to 

this asymmetric division. (B) A stem cell undergoes a symmetric division, giving rise to 

two stem cell progeny. Note that a stem cell can also divide symmetrically to give rise to 

two differentiating daughter cells. (C) A normal stem cell (green) is transformed into a 

malignant cell and a cancer stem cell (CSC, orange) is born. Similar to normal stem cells, 

a CSC can divide to produce a self-renewing stem cell daughter or differentiating 

malignant progeny (purple). (D) Instead of producing lineage-committed progeny, if 

necessary, the daughter of a stem cell division can de-differentiate to adopt stem cell fate. 

This illustrates the plasticity of transit-amplifying daughter cells. 
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Figure 1.5: 

 

 
 
 
Figure 1.5: Intrinsic versus extrinsic cues for stem cell renewal 
 
Stem cells are depicted in green. (A) Intrinsic cues, in the form of asymmetrically 

segregated proteins (red dots) are necessary for proper regulation of stem cell self-

renewal. For example, Drosophila neuroblasts divide asymmetrically by segregating cell 

fate determinants, such as Numb and Prospero. These proteins determine which daughter 

cell self-renews and which daughter cell differentiates. (B) Extrinsic cues emanate from 

neighboring niche cells (blue) and are required to regulate stem cell behavior. 
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Figure 1.6:  
 

 
 
Figure 1.6: The two basic types of niches 
 
In an epithelial niche (left), the stem cell is in direct contact with the underlying basal 

lamina and contacts neighboring cells (blue). In a stromal niche (right), the stem cell 

contacts a support cell that contacts the basal lamina. [Modified from (118)] 
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Figure 1.7: 
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Figure 1.7: The Drosophila testis stem cell niche 
 
(A) In a wild type testis bright DNA-positive cells are found at the testis apex (bracket). 

Note that there are also DNA-bright cells at the other end of the testis (center of image), 

which are compacted haploid sperm nuclei. Scale bar is 150 µm. (B) Model of the testis 

stem cell niche. At the testis tip, germline stem cells (GSCs, magenta) and cyst stem cells 

(CySC, dark blue) circumscribe the hub (green). A GSC and its associated CySCs divide 

to produce a differentiating daughter cell, known as a gonialblast (GB, red), which is 

encysted by daughter cyst cells. The GB then mitotically divides four times producing 

spermatagonia, which eventually produce mature sperm, all the while encysted by 

supporting cyst cells. 
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Figure 1.8: 
  
 

          
 
 
Figure 1.8: Model of the Drosophila gonadal stem cell niche 

Note that similar cell types are found in the gonadal stem cell niche, the precursor of the 

adult testis niche. Stromal hub cells (green) are anchored at the anterior pole of the gonad 

and are surrounded by germline stem cells (GSCs, magenta) and likely cyst stem cells 

(CySCs, dark blue), although no markers exists to conclusively identify CySCs at this 

early stage. GSCs divide to produce gonialblast daughters and differentiating 

spermatagonia (red) encysted by support cyst cells (light blue), which eventually populate 

the adult testis niche. Only the 1st tier of germline cells receive the self-renewing signal, 

Unpaired, from the hub and are fated as GSCs. 
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Figure 1.9: 
  

                   
 
Figure 1.9: The stages in Drosophila gonad formation 
 
In each panel, the lower boxes represent the ectoderm of parasegments (PS) 9-13, while 

the black solid area above represents the overlying mesoderm. (A) During stage 11, 

somatic gonadal precursors (SGPs, gray) are specified in PS10 through PS13. (B) After 

germ cells (white circles) exit the midgut, they associate with SGPs. (C) SGPs and germ 

cells migrate anteriorly. (D) SGPs and germ cells arrest migration in PS10. (E) SGPs and 

germ cells coalesce as a gonad at stage 14, within PS10. SGPs extend cellular processes 

to ensheath germ cells, resulting in a spherical, compacted gonad. [Figure taken from 

(22)] 
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Chapter Two:  
 
 

THE ENDODERM SPECIFIES THE MESODERMAL NICHE 
FOR THE GERMLINE IN DROSOPHILA VIA DELTA-NOTCH 

SIGNALING* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Portions of this chapter were published as: Okegbe, T.C. and DiNardo, S. (2011) The 
endoderm specifies the mesodermal niche for the germline in Drosophila via Delta-Notch 
signaling. Development. 138, 1259-1267. 
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Summary 
 

Interactions between niche cells and stem cells are vital for proper control over 

stem cell self-renewal and differentiation. However, there are few tissues where the initial 

establishment of a niche has been studied. The Drosophila testis houses two stem cell 

populations, which each lie adjacent to somatic niche cells. Although these niche cells 

sustain spermatogenesis throughout life, it is not understood how their fate is established.  

Here we show that Notch signaling is necessary to specify niche cell fate in the 

developing gonad. Surprisingly, our results indicate that adjacent endoderm is the source 

of the Notch-activating ligand, Delta. We also find that niche cell specification occurs 

earlier than anticipated, well before the expression of extant markers for niche cell fate. 

This work further suggests that endoderm plays a dual role in germline development. The 

endoderm assists both in delivering germ cells to the somatic gonadal mesoderm, and in 

specifying the niche where these cells will subsequently develop as stem cells. Since in 

mammals primordial germ cells also track through endoderm on their way to the genital 

ridge, our work raises the possibility that conserved mechanisms are employed to 

regulate germline niche formation.  
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Introduction 
 

Interactions of tissue-specific stem cells with their local microenvironment, or 

niche, are vital for proper stem cell self-renewal and differentiation [Reviewed in (126)]. 

Although rough locations for numerous stem cell niches have been elucidated in 

mammals and invertebrates, in many cases we do not understand how the niche is 

specified, nor can we molecularly identify niche cells in vivo (126). An understanding of 

the principles of niche cell development will be key in order to use stem cells effectively 

in therapeutics, as niche cells regulate important aspects of stem cell behavior. For 

example, in the absence of a self-renewal signal from niche cells, Drosophila germline 

cells differentiate, preventing stem cell maintenance and proper tissue homeostasis (93, 

98, 158, 172, 182). Similarly, when ectopic or excess niche cells are induced, extra cells 

adopt stem cell characteristics, leading to the proliferation of stem-like cells, and 

potentially tumors (182). Therefore, it is important to fully understand which signaling 

pathways are necessary to establish a niche. 

We have a partial understanding of niche cell development in two tissues 

maintained by germline stem cells, however unanswered questions remain. Studies from 

the Drosophila ovary have shown that Notch signaling is required during development to 

properly specify cap cells, which function as the niche (157, 182). However, it remains 

ambiguous how the cap cells become activated for Notch and which neighboring cells 

present the signaling ligand. In the development of the C.elegans germline, the distal tip 

cell (DTC) functions as the niche (18, 95). Although it appears that Wnt signaling and the 

coordinate expression of the transcription factor Nkx2.2 is essential for DTC 

specification, the source of the Wnt ligand remains unknown (109). 
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As the Drosophila testis stem cell-niche is amenable to the study of signaling 

pathways (93, 98, 172) we have chosen to investigate how the niche is specified in this 

model system. To understand what signaling pathways are at play in vivo, a microarray 

experiment was previously performed in our lab using testes genetically enriched for the 

niche and its stem cells (169). In examining the list for coordinate enrichment among 

components of a given signaling pathway, the Notch pathway emerged as one candidate 

to explore.  This was promising because Notch has been implicated in various stem cell 

systems (134, 147, 157, 182). 

Preliminary data from our lab suggested a role for Notch signaling in the somatic 

cell population of the Drosophila adult testis stem cell-niche. Importantly, Notch reporter 

expression is detected in somatic cell types and is lost within the hub cell population 

when Notch signaling is inactivated indicating that this pathway acts within the hub 

(Terry, unpublished result). Furthermore, overexpression of the Serrate ligand induces 

ectopic hub cell formation (Terry and Kelliher, unpublished results). However, our lab 

was unable to uncover a requirement for continual Notch signaling in the adult steady-

state niche. Since it is possible that one pathway can play a distinct role in the 

development versus the maintenance of a system, we wondered whether Notch had an 

earlier role during the formation of the niche. 

The Notch signaling pathway is an evolutionarily conserved developmental 

pathway that mediates cell-cell interactions [Reviewed in (9)]. Notch signaling is 

mediated through the Notch receptor, which is a single-pass membrane tethered receptor 

containing a large extracellular domain with 36 EGF-like repeats (186). In Drosophila, 

there is one Notch receptor and two ligands, Delta and Serrate, which are similarly single 
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pass transmembrane proteins that interact and activate the Notch receptor through their 

extracellular DSL (Delta/Serrate/Lag-2) domain (52, 166). Notch activation, which 

occurs when the receptor and ligands interact on adjacent cells, mediates three well-

studied development processes: lateral inhibition, boundary formation and cell fate 

assignment [Reviewed in (26)]. Ligand activation of the receptor leads to Notch cleavage 

in the signal-sending cell, allowing its intracellular domain (Nicd) to translocate into the 

nucleus. Nicd then binds to Su(H), the Notch responsive transcription factor, permitting 

this complex to activate downstream target genes.  

Here we show that Notch signaling is required for niche cell specification, 

exemplifying its role in the developmental process of cell fate assignment. We uncover a 

key role for Notch signaling in the initial allocation of SGPs to hub cell fate [see also 

(97)]. Additionally, our results suggest that the posterior midgut cells are the source of 

the ligand, Delta, which induces hub cell fate. Finally, we show that a subset of SGPs is 

activated to take on hub cell fate shortly after initial SGP specification and before gonad 

coalescence, much earlier than previously thought.  

 

Results 

Notch signaling specifies hub cell fate 

To test whether the Notch pathway was necessary to specify hub cell fate, we 

examined Notch mutants. We scored hub cell number shortly after larvae hatch, in 

animals aged 22-25 hours after egg lay (AEL; see Materials and Methods) (110). Gonads 

were stained for germ cells (Vasa), for somatic cells (Traffic jam) and for hub cells, using 

either a cytoskeletal or gene expression marker. For instance, in wild type gonads, hub 

cells accumulate high levels of the f-actin-binding protein, Filamin (165), and are 
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circumscribed by a rosette of germ cells (Figure 2.1 B, green). We quantitated total hub 

cell number by stepping through z-slices in the image stack (see Materials and Methods). 

In controls, we observed an average of 11 hub cells per gonad (11 ± 0.3 (s.e.m.); n=12; 

Figure 2.1 B). However, Filamin-positive hub cells were not detected in gonads from 

N264.39 mutant larvae (n=35; Figure 2.1 C). In addition, larvae carrying a hypomorphic 

mutation of Notch, Nts1, exhibited reduced hub cell number when grown at non-

permissive temperature compared with controls (Figure 2.1 H; 8 ± 0.6 versus 12 ± 0.4, 

respectively; p<0.0001; we consistently found slight differences in the average hub cell 

number among various control genotypes, and attribute this variation to differences in 

genetic background. Consequently, we always report the data compared to sibling 

controls). Importantly, in Notch mutants the proper number of somatic gonadal precursor 

cells (SGPs) were specified as stage-matched N264.39 mutants and wild-type embryos had 

comparable numbers of Tj-positive cells (Figure 2.1 A; averaging 39 ± 2.3 versus 42 ± 

0.9, respectively; p=0.3). This indicates that although the precursor population is properly 

specified, SGPs cannot adopt hub cell fate in the absence of Notch. Additionally, Notch 

mutations did not affect the specification of posterior male-specific SGPs (data not 

shown). This reveals that SGPs can properly differentiate into other specialized somatic 

cell types within the gonad. Thus, Notch signaling appears to be specifically required for 

hub cell specification. 

As an additional test for a role of Notch in hub cell specification, we assayed 

larval gonads using an enhancer trap at escargot (esg), a gene expression marker of hub 

cell fate (110). In control gonads, all Filamin-enriched cells were esg-positive (Figure 2.1 

D). In contrast, we observed a drastic reduction in the number of esg-expressing cells 
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specified in N264.39 mutant gonads. Approximately 50% of gonads exhibited no esg-lacZ 

expression (8/17), while the remainder had two or fewer esg-lacZ-expressing cells 

(Figure 2.1 E). It is known that esg is detected in a number of anterior SGPs before its 

expression becomes restricted down to the hub during late embryogenesis (63, 110). 

Given this, it is possible that the absence of Notch activity results in the loss of some 

early expressing esg-positive cell types, but there exist no specific markers for such cells 

to definitively establish this.  

Finally, hub cells express Unpaired (93, 172) which activates the Jak-STAT 

pathway in adjacent somatic and germline cells (152). One readout of pathway activation 

is the stabilization and accumulation of STAT protein (35). In controls, STAT protein 

accumulated at high levels in somatic and germline cells adjacent to the hub, as well as in 

hub cells themselves (Figure 2.1 F) (152). In contrast, in N264.39 mutant gonads, STAT 

accumulation was undetectable (Figure 2.1 G). Taken together, we conclude that Notch 

signaling is necessary for proper hub cell specification. 

 

Notch is activated within the SGP population       

To determine if SGPs within the developing embryonic gonad were activated for 

the Notch pathway, and whether such cells eventually contribute to the hub, we employed 

a Notch reporter. We used a reporter construct encoding a chimeric Notch-GAL4-VP16 

receptor (under control of a hsp70 promoter) (162). Upon heat shock, the chimera will be 

expressed on all cells. Subsequently, in any cells activated for Notch, processing of its 

intracellular domain will also release Gal4-VP16, which can induce expression of a UAS-

lacZ transgene. By the time of gonad formation during embryonic stage 13, we were able 
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to detect reporter activation in a subset of SGPs (Figure 2.2 A). Indeed, if such embryos 

were aged until the hub formed, and stained for LacZ protein, we found that Notch-

activated SGPs could become hub cells (Figure 2.2 B, arrows; 50% of hub cells were 

lacZ-positive; n=16). These data showed that Notch is activated in a subset of SGPs, and 

that such cells can contribute to the hub. Interestingly, we also noted that Notch-activated 

cells were not restricted to the anterior of the developing gonad, but were also found in 

the middle and posterior (Figure 2.2 A). However, receptor tyrosine kinase (RTK) 

pathways active in the posterior of the gonad antagonize Notch, likely preventing these 

middle and posterior activated cells from adopting hub cell fate [see Discussion; (97)]. 

 

Hub cells are specified before gonad coalescence  

We next wanted to identify the stage of gonadogenesis at which Notch is required 

to specify hub cell fate. It was previously thought that hub cell specification occurred 

after gonad coalescence, once germ cells and SGPs had formed a contiguous tissue (110). 

To perform our experiments, we again took advantage of the hsp70-Notch-GAL4-VP16 

chimera, which functions as a wild-type receptor. In fact, delivering three heat shocks 

was sufficient to rescue formation of the ventral epidermis in Notch mutant embryos 

(162). We expressed the transgene in a Notch mutant background and assayed for the 

rescue of hub cell specification in larval gonads. To activate the receptor globally we 

delivered three 40 min heat shocks, each followed by a 45 min recovery period at 25°C. 

Embryos that received the first heat pulse at 8-9 hours AEL (mid-stage 12) appeared 

similar to non-heat shocked controls. In both cases, more than two-thirds of the gonads 

analyzed lacked any hub cells (Figure 2.3, compare yellow with blue bars). Note that a 
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few hub cells were observed among non-heat shocked Notch null embryos that carried 

the hsp70-Notch transgene (never more than 7 specified per gonad). As this is the same 

Notch null allele as in Figure 2.1, the occasional hub cell was likely due to leaky 

expression of the hsp70-Notch transgene. The slightly different distribution we observed 

comparing non-heat shocked and late heat shocked embryos (8-9 hrs AEL) is likely 

attributable to subtle variation in the leaky transgene expression. In contrast, we found 

that embryos that received the first heat pulse at 5-6 hours AEL (early-mid stage 11) 

exhibited significant rescue of hub cells (Figure 2.3, red). In fact, 65% of gonads had 5 or 

more hub cells specified (19/29 gonads), and almost half reached our observed wild type 

range of hub cells (9-14 hub cells, 13/29 gonads; Figure 2.3, red). The fact that 

significant rescue only occurred upon early expression of Notch, suggested that hub cell 

specification occurred much earlier than previously appreciated, likely late-stage 11 and 

12.  

 

Serrate and Delta both contribute to hub cell fate  

In Drosophila, there are two ligands that can activate the Notch receptor, Delta 

and Serrate. To determine their respective contribution to hub specification, we assayed 

larval gonads singly mutant for either ligand. We could not confidently score hub cell 

number in doubly mutant embryos due to a severe germ cell migration defect. Germ cell 

migration was also severely disrupted in Delta null mutant embryos, preventing the 

confidant analysis of hub cell phenotypes (124, 175). We therefore assayed larval gonads 

that were homozygous for a hypomorphic mutation in Delta, DlRF. Delta-deficient larvae 

had a 70% reduction in hub cell number compared with control gonads (Figure 2.4 A-C; 
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averaging 5 ± 0.8 versus 14 ± 0.6, respectively; p<0.0001). The effects of Serrate 

mutations were more modest in our hands, exhibiting a 30% decrease in hub cell number 

(Figure 2.4 D-F; averaging 8 ± 0.4 for SerRX106 versus 12 ± 0.3, respectively, p<0.0001; 

data not shown for SerRX82). This suggests that while both ligands contribute to hub cell 

specification, Delta has a more prominent role in this process. Furthermore, we find that 

reducing the protein levels of neuralized, an E3 ubiquitin ligase important for ligand 

endocytosis and productive Notch signaling (106-108), in heterozygous animals results in 

a decrease in hub cell number (Figure 2.5; averaging 11 ± 0.5 versus 13 ± 0.5 in controls, 

p= 0.01). This further confirms the role of Serrate and Delta in this process. 

 

The posterior midgut activates Notch in developing SGPs  

We next attempted to identify the source of the Notch ligand(s).  We observed 

that forced expression of Delta using a mesodermal driver, Twist-Gal4, led to a 14% 

increase in hub cell number compared with controls (averaging 14 ± 2.2, n=30 versus 12 

± 2.5, n=18; p=0.027). Similarly, misexpressing Serrate from germ cells using the Nanos-

Gal4 driver led to an increase in hub cell number compared with controls (averaging 14 ± 

1.5 versus 11 ± 1.3, respectively; p=0.01). While these gain-of-function experiments 

supported the notion that activation of the Notch pathway among SGPs could direct them 

to select hub cell fate, they do not establish which cells normally express the ligand(s). In 

fact, in our hands, neither Serrate nor Delta expression was detectable within the gonad 

(Figure 2.6) [see, however (97)]. We thus turned our attention to adjacent tissues as 

potential sources. 
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Beginning at stage 13, the gonad coalesces in very close proximity to the 

developing trachea, which expresses a high level of both Delta and Serrate mRNA and 

protein (Figure 2.6). We found, however, that the loss of the trachea in trachealess or 

breathless mutants did not appear to affect hub cell number (data not shown). This 

suggests that signaling from the trachea is not necessary to specify hub cell fate.  

It is known that Delta is highly expressed in the posterior midgut (PMG; Figure 

2.7, arrows) (168). SGPs, as identified by the nuclear protein eyes absent (eya) (21), are 

positioned very close to the PMG beginning at stage 11 when they are initially specified 

and through the end of germ band retraction at late stage 12 (Figure 2.7 D). During this 

period, the SGPs passively move past the gut, and PMG cells and SGPs are found in the 

same focal plane (Figure 2.7 D). The SGPs closest to the PMG are only three to six µm 

away, well within the range of distances reported for productive Delta-Notch signaling 

(up to 15µm) (45). This data suggests that the PMG cells are close enough to activate 

Notch in SGPs. 

We first attempted an endoderm-specific knockdown of Delta. Driving Delta 

dsRNA using either a midgut (Figure 2.7 H) or an endoderm driver (data not shown) led 

to an approximately 20% reduction in hub cell number. This small decrease was perhaps 

due to the inefficiency of knockdown, as we observed residual Delta protein on gut cells 

(data not shown). For example, embryos expressing dsRNA to Delta driven by Drm-Gal4 

averaged 13 ± 0.4 hub cells compared with 16 ± 0.7 for Uas-Dl-RNAi alone, and 15 ± 0.6 

for Drm-Gal4 alone (Figure 2.7 H; p<0.05). 

As an independent test whether Delta-expressing PMG cells contribute to hub cell 

specification, we assayed folded gastrulation (fog) mutants (168). In fog mutant embryos 
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the posterior midgut is not internalized and instead develops on the exterior of the 

embryo (Figure 2.7 B), although all other cell types develop normally. Such fog mutant 

gonads displayed a 70% decrease in hub cell number, scored using either Filamin or esg-

lacZ (Figure 2.7 E-G; 12 ± 0.4 versus 3 ± 0.9, respectively; p<0.0001; data not shown). 

Importantly, the phenotype was selective for hub cells, as a distinct intragonadal cell 

type, msSGPs, were specified normally in fog mutants (Figure 2.7 C). In addition, normal 

numbers of SGPs were specified, as sibling controls and fog mutant embryos at stage 13 

had a similar number of Traffic jam-positive SGPs (32 ± 1.5 versus 31 ± 0.9, 

respectively; p = 0.71). Thus, the absence of hub cells in fog mutants was consistent with 

the proposal that the proximity of endoderm to the SGPs was essential for hub 

specification. Furthermore, overexpressing Delta from the endoderm resulted in a 20% 

increase in hub cell number over controls (Figure 2.7 I; averaging 16 ± 1.8 versus 13 ± 

1.6, respectively; p<0.005). This indicates that Delta specifically expressed from the 

PMG is not only necessary for hub cell specification, but its overexpression can cause an 

increase in hub cell number. Additionally, we attempted to rescue the hub cell defect in 

Delta mutant larvae by restoring Delta specifically to the endoderm. However, since the 

endoderm is not properly specified in Delta mutant embryos (135), no significant rescue 

in hub cell number was observed (data not shown). Taken together, our findings 

implicate the endoderm in delivery of Delta to activate Notch for hub cell specification 

among SGPs.  
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Figure 2.1:  
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Figure 2.1: Notch signaling specifies hub cell fate  

Anterior is to the left in each panel. Gonads were stained with Vasa (red, germ cells). (A, 

A’) Stage 13 male embryos showing Traffic jam (white, SGPs) at the onset of 

coalescence. (A) Controls, +/Y (n=18) and Notch mutants, N264.39/Y, (n=14) have a 

similar number of SGPs specified (41.5 and 39.3, respectively; p = 0.30). (B-C’’) 1st 

instar larval gonads showing Filamin (green, hub) and Traffic jam (white, somatic cells). 

In controls, +/Y (B-B’’; D-D’’; F-F’’) the hub is outlined by Filamin. In N264.39/Y gonads 

(C-C’’) the hub is absent (C’); however somatic cells are still present (C, C’’). (D’-E’’) 

+/Y and N264.39/Y larval gonads expressing an esgG66B enhancer trap. Gonads were stained 

with Filamin (white) and anti-βgal (green). Note that in control gonads both Filamin and 

esg detect hub cells. However, in N264.39/Y gonads (E-E’’), most esg-positive cells are lost 

and Filamin staining is rarely observed. (F-G’’) Gonads were stained with Filamin 

(green) and Stat (white). In +/Y gonads, (F-F’’) Stat protein accumulates in neighboring 

somatic and germline cells and in the hub. In N264.39/Y gonads (G,G’’) Stat accumulation 

decreases drastically, indicating the lack of productive upd signaling. Scale bar is 10µm. 

(H) The distribution of the number of Filamin positive hub cells per gonad. Note the 

significant shift to lower hub cell numbers under non-permissive conditions for Nts (red) 

compared to control gonads (blue) raised at the permissive temperature (p<0.0001). The 

average number of hub cells per gonad ± s.e.m. and the number of gonads (n) observed is 

also shown. 
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Figure 2.2: 
                                       

       
 
 
Figure 2.2: Notch-activated SGPs contribute to the hub 
 
(A, A’) Stage 13 male embryonic gonad. Notch reporter activation was assessed using the 

hsp70-Notch–Gal4-vp16; Uas-lacZ-nls reporter construct. Gonad showing Notch-

activated lacZ positive cells (green) that co-stain with Traffic jam (white) (arrows, figure 

A, A’) and Vasa (red, germ cells). Note that lacZ-positive cells are dispersed throughout 

the gonad. (B, B’) Cells activated for Notch during embryogenesis (green) contribute to 

the hub (Filamin, white) in the 1st larval instar gonad. Arrows denote lacZ-positive cells. 

Arrowhead denotes lacZ-negative hub cells. Note that a lacZ-positive cell is also found at 

the posterior of the gonad. Thus, it is possible that Notch signaling also contributes to 

some gonadal sheath cells. Scale bar is 10µm. 
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Figure 2.3: 

 

Figure 2.3: Notch activity is required before gonad coalescence to specify hub cell 
fate 
 
A graph of the number of N264.39/Y; hsp70-Notch-Gal4-VP16 gonads with Filamin-

positive hub cells. In this background, control gonads receiving no heat shock (blue, 

n=25) still have a small number of hub cells specified, indicating leaky transgene 

expression. The rescuing heat shock began at 5-6 hours (red, n=29) or 8-9 hours (yellow, 

n=19) after egg lay (AEL). Note that there is a significant rescue of hub cells when the 

heat shock occurs at 5-6 hours AEL (red). 
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Figure 2.4: 

 
 
Figure 2.4: Serrate and Delta both contribute to hub cell fate 
 
(A, B, D, E) 1st larval instar gonads from (A) DlRF/+, (B) DlRF/DlRF, (D) Ser106/+ and (E) 

Ser106/Ser106 raised at 25°C. Filamin (green, hub) and Vasa (red, germ cells). Scale bar is 

10µm. (C, F) Distribution of the number of hub cells in DlRF/+ (blue) and DlRF/DlRF (red) 

gonads (C, p<0.0001 by Student’s t-test) and Ser106/+ (blue) and Ser106/Ser106 (red) 

gonads (F, p<0.0001) is shown. The average number of hub cells per gonad ± s.e.m. and 

the number of gonads (n) observed is also shown.  
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Figure 2.5: 

 

Figure 2.5: Ligand endocytosis is necessary for proper hub cell specification 

The distribution of the number of Filamin positive hub cells per gonad. Note the shift to 

lower hub cell numbers in neur/+ heterozygotes (red) compared to Tm6/+ control gonads 

(blue) (p=0.01). The average number of hub cells per gonad ± s.e.m. and the number of 

gonads (n) observed is also shown. 
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Figure 2.6: 
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Figure 2.6: Notch ligands are expressed on neighboring tracheal cells 
 
(A-D) Wild type male gonads showing Vasa (white) to reveal germ cells. Ligand-

expressing tracheal cells are highlighted with white lines. (A, A’) A stage 14 male gonad 

showing Vasa and fluorescent in situ hybridization to Serrate mRNA (red). (B, B’) A 

stage 15 male gonad showing Vasa, Traffic Jam (green, somatic cells) and Serrate (red). 

(C, C’) A stage 14 male gonad showing Vasa and fluorescent in situ hybridization to 

Delta mRNA (red). (D, D’) A stage 14 male gonad showing Vasa and Delta (red). Note 

that Serrate mRNA (A), Serrate protein (B), Delta mRNA (C) and Delta protein (D) are 

not detected within the gonad proper, but are expressed from an adjacent stripe of 

tracheal cells in a different focal plane (A’, B’, C’, D’). Scale bar is 10µm. 
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Figure 2.7: 
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Figure 2.7: The posterior midgut (PMG) is necessary for proper hub cell 

specification 

(A, B) Lateral view of a Z-slice through stage 12 male embryos from (A) wild type and 

(B) fog showing Delta (red, PMG; arrows) and zfh-1 (green, somatic cells). Note that in 

the fog mutant (B) the PMG develops on the exterior of the embryo. Scale bar is 100µm 

in A-B. (C) Stage 16 fog mutant male embryo showing Sox100B (red, msSGPs) and 

Traffic jam (white, SGPs). Scale bar is 10µm. (D, D’) Lateral view of a Z-slice through a 

stage 12 wild type male embryo showing Delta (red, PMG; arrows) and eyes absent 

(green, SGPs; encircled in white). Z-slice= 0.7µm. Scale bar is 100µm. (E, F) 1st larval 

instar male gonads from +/Y (D) and fog/Y (E). Filamin (green, hub cells) and Vasa (red, 

germ cells). One gonad is outlined in E; a second lies just up and to the right. Note that 

fewer germ cells contribute to the fog/Y larval gonad. Scale bar is 10µm in D and 5µm in 

E. (G) Distribution of the number of hub cells in +/Y (blue) and fog/Y (red) is shown 

(p<0.0001). The average number of hub cells per gonad ± s.e.m. and the number of 

gonads (n) observed is also shown. (H) Distribution of the number of Filamin positive 

hub cells in Uas-Dl-RNAi (blue), Drm-Gal4 (yellow) and Drm-Gal4; Uas-Dl-RNAi (red) 

gonads is shown. Note the decreased hub cell number in Drm-Gal4; Uas-Dl-RNAi 

gonads (p < 0.05) compared to controls, Drm-Gal4 and Uas-Dl-RNAi gonads. The 

average number of hub cells per gonad ± s.e.m. and the number of gonads (n) observed is 

also shown. (I) Distribution of the number of hub cells in cyo;Uas-Dl (blue) and 

Endoderm-Gal4;Uas-Dl (red) is shown (p<0.005) . The average number of hub cells per 

gonad ± s.e.m. and the number of gonads (n) observed is also shown. 
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Figure 2.8: 
 

 
 
 
Figure 2.8: Model for hub cell specification in the male gonad 

(A) SGPs (white) that originate from parasegments (PS) 10-12 become Notch-activated 

as they passively travel by Delta-expressing PMG cells (orange) during germ band 

retraction. (B) During early gonad coalescence as germ cells (red) and SGPs form a 

contiguous tissue, SGPs begin to differentiate into either hub (green) or cyst cells (light 

blue). (C) During late gonad coalescence, Notch-activated hub cells must migrate 

towards the anterior. Sox100B-positive male-specific SGPs (brown) join the gonad. (D) 

During the last stage of embryogenesis, stage 17, the hub cells execute a mesenchymal-

to-epithelial transition, upregulate cell adhesion molecules and induce Unpaired 

expression, establishing germline stem cells (GSC, purple) and possibly cyst stem cells 

(CySC, dark blue). 
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Discussion 

Stem cell niches are inferred to exist for many tissues. However, the difficulty in 

unambiguously identifying niche cells has left unanswered when and how these niches 

are specified. Here, we have identified the Notch pathway as key in the specification of a 

crucial component of the Drosophila male testis niche, the hub cells. We find that hub 

cells are specified before gonad coalescence, earlier in development than previously 

appreciated. Furthermore, our data suggest that Delta-expressing endoderm cells are 

critical for proper hub cell specification. This demonstrates tissue non-autonomous 

regulation of this niche. 

 

The role of Notch signaling in hub cell specification 

Our data reveal that Notch signaling is necessary to specify hub cell fate. A 

similar conclusion has recently been reached by Kitadate and Kobayashi (97). It is 

interesting to note that in three well-characterized stem cell-niche systems in Drosophila, 

including the transient niche for adult midgut progenitors, the female gonad and now the 

developing male gonad, Notch signaling is directly responsible for niche cell 

specification (97, 119, 157, 182). Moreover, Notch has been found to play a role in the 

maintenance of various mammalian stem cell populations, including neural stem cells, 

HSCs and hair follicle stem cells [Reviewed in (37); (30, 147, 176)]. However, due to 

difficulty in performing lineage-specific knockouts in these systems, it remains unclear 

which cells require Notch activity. Since the various cases in Drosophila all require direct 

Notch activation for niche cell specification, perhaps this reveals a conserved role for 

Notch signaling in other, more complex stem cell systems.  
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Notch signaling specifies niche cells in both the male and female Drosophila 

gonad, however, it is important to note that there are still some differences. For the ovary, 

only Delta is required to activate the Notch receptor for proper niche cell specification 

(157, 182). For the testis, we find that both ligands contribute to the process, although, 

here, too, it appears that Delta is the dominant ligand employed (Figure 2.4).  

Interestingly, depleting Delta or (genetically) separating the endoderm from SGPs both 

led to a 70% reduction in hub cell number, while depleting Serrate yielded a 30% 

reduction. Perhaps Delta-Notch signaling from the endoderm accounts for two-thirds of 

hub cell specification while Serrate-Notch signaling accounts for only one-third of this 

process. Although we were unable to identify the source of Serrate, Kitadate and 

Kobayashi (97) have shown that Serrate mRNA is expressed from SGPs after gonad 

coalescence. Perhaps, this late expression accounts for the modest role Serrate plays in 

hub specification.  Those authors did not explore in detail a potential role for Delta in hub 

specification, and our data suggests that that role is carried out at earlier stages, and from 

outside the gonad proper. 

Secondly, in the ovary, cells within the developing gonad appear to present the 

Notch-activating ligand, although it is unclear whether germ cells or somatic cells are the 

source of Delta (157, 182). Here, our data suggests that cells from a distinct germ layer, 

the endoderm, present Delta to SGPs in the male gonad. These differences may indicate 

distinct evolutionary control over gonadal niche development between the sexes.  
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Hub cell specification occurs early, before gonad coalescence 

While the gonad first forms during mid-embryogenesis, hub cells only become 

identifiable just prior to hatching of the larvae, some 6 hours later (110). At that time, hub 

cells begin to tightly pack at the anterior of the gonad, upregulate several cell adhesion 

and cytoskeletal molecules (Fascilin 3, Filamin, DN-Cadherin, DE-Cadherin) as well as 

induce Upd expression and other markers of hub fate (110, 165). Surprisingly, our data 

reveal that most hub cells are specified well before these overt signs of hub cell 

differentiation, as judged by Notch reporter activation and Notch rescue (Figure 2.2 and 

2.3). While it was previously thought that SGPs were equivalent at the time of gonad 

coalescence (110) it is now clear that due to Notch activity, the SGPs are parsed into a 

group of either hub cells or cyst cells before gonad coalescence occurs.  

Thus, we believe that a series of steps must occur before the hub can function as a 

niche. First, the PMG presents Delta, leading to Notch activation in some SGPs as they 

are carried over these endodermal cells during germ band retraction (Figure 2.8). 

Activation might be dependent on, for instance, length of time in contact with passing 

PMG cells. At the present time, it is unclear if all SGPs are activated for Notch (97), or 

only some (this work). Second, after gonad coalescence, activated SGPs must then 

migrate anteriorly (this work) (97, 110). While it is known that integrin-mediated 

adhesion is required to maintain the hub at the anterior (165), no cues have been 

identified that could guide the migration of the Notch-activated SGPs. Third, as the cells 

reach the anterior of the gonad they must execute a mesenchymal-to-epithelial transition, 

as evidenced by the upregulation of cell adhesion molecules and preferential associations 

between hub cells (46, 110). This step occurs independently of the integrin-mediated 
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anchoring at the anterior. Finally the hub cells must induce Upd expression and recruit 

neighboring cells to adopt stem cell fate (152). The apparent delay between the activation 

of the Notch pathway and the initiation of the hub cell gene expression program might 

suggest that initiating that hub program first requires that the cells coalesce into an 

epithelium. Such a mechanism would prevent precocious or erroneous stem cell 

specification within the gonad.  

Although our data reveal Notch-activated SGPs at all positions within the gonad 

and that some of these become hub cells, it is unclear how hub cell number is tightly 

regulated. Potentially, SGP migration over endodermal cells could induce Notch 

activation among SGPs throughout the forming gonad, potentiating these cells to become 

hub cells. However, solely relying on that mechanism could lead to the specification of 

too many hub cells. It appears, though, that specification is regulated by EGFR pathway 

activation (97). The authors have recently shown that EGFR protein is observed on most 

SGPs throughout the embryonic gonad beginning at gonad coalescence (stage 13). The 

EGFR ligand, Spitz, is expressed from all germ cells during gonad coalescence and 

activates EGFR among posterior SGPs. This activity antagonizes Notch and that appears 

to regulate final hub cell number. How EGFR activation is restricted or enhanced only 

among posterior SGPs is at present unclear [see Discussion in (97)]. 

Given that we find that hub cell specification occurs prior to gonad coalescence, it 

is also possible that Notch and EGFR act in a temporal sequence. In this case, early 

Notch-activated SGPs, perhaps even those in the posterior will adopt hub cell fate. But, 

as EGFR becomes activated, further induction of the Notch pathway in the posterior is 

antagonized, prohibiting the specification of too many hub cells. Such a temporal 
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inhibition might be important as Serrate is expressed on the SGPs (97) both Delta and 

Serrate are robustly expressed on tracheal cells (Figure 2.6), whose activity might 

otherwise lead to excess hub cell induction. Lastly, perhaps during later stages of 

gonadogenesis (stages 14-16) a small number of anterior SGPs become Notch-activated 

due to the activity of Serrate-Notch signaling from other SGPs, supplementing the hub 

cells previously specified by Delta-Notch signaling. 

 

Endoderm induction of hub cells 

Given that niche cells in the Drosophila ovary become activated via Delta-Notch 

signaling by neighboring somatic cells, we initially expected that Notch would be 

activated in a subset of SGPs by ligand presented from other SGPs (157). However, we 

could not detect Delta nor Serrate expression among SGPs. Furthermore, although nearby 

tracheal cells expressed both ligands robustly, that expression appears later than our 

Notch rescue suggests would be necessary, and genetic ablation of tracheal cells did not 

influence hub cell number.  

Instead, we found that a critical signal for niche cell specification is presented 

from the endoderm, as Delta is expressed robustly on posterior midgut cells, at a time 

consistent with the requirement for Notch function. Furthermore, these endodermal cells 

are close enough to SGPs for productive Delta-Notch signaling to occur (Figure 2.7 D). 

While visceral mesodermal cells are also close to the PMG and the SGPs (11, 21, 28, 

168), this tissue does not affect hub specification, as we found that brachyenteron 

mutants exhibited normal hub cell number (data not shown). In contrast, in mutants that 
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do not internalize the gut (fog), and thus would not present Delta to SGPs, we found a 

drastic reduction in hub cell number.  

Additionally, we note that absolute hub cell number varies amongst animals, and 

by genetic background (this work) (98, 180). We attribute this to normal biological 

variation, just as germline stem cell number varies (180). Potentially, this variation could 

be caused by how robustly the Notch pathway is activated in SGPs as they are carried 

over the midgut cells. It will be interesting to test this hypothesis by genetically 

manipulating the number of midgut cells or the time of contact between endoderm and 

SGPs. Additionally, the antagonistic effects of EGFR signaling might account for some 

of the observed variation. In fact, gonads heterozygous for Star, a component of the 

EGFR pathway, exhibit increased hub cell number (97). 

Finally, it is interesting to consider why the endoderm would be critical for the 

proper specification of the GSC niche. In Drosophila, as in many animals, there is a 

special relationship between the gut and the germ cells. Primordial germ cells in 

mammals and in Drosophila must migrate through the endoderm to reach the gonadal 

mesoderm [Reviewed in (145)]. In fact, in Drosophila, the gut exercises elaborate control 

over germ cell migration. As the germ cells begin their transepithelial migration and exit 

from the midgut pocket, tight connections between midgut cells are dissolved, allowing 

for easy germ cell passage (82, 83). Germ cells then migrate on the basal surface of 

endodermal cells and midgut expression of wunens (encoding lipid phosphate 

phosphatases) repels germ cells, driving them into the mesoderm (161, 195). Thus, the 

endoderm not only delivers germ cells to the somatic mesoderm, but our work reveals 

that the same endoderm specifies niche cells from among the somatic mesoderm wherein 
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germ cells can subsequently develop into stem cells. In mammals, while the exact make-

up of the spermatogonial stem cell niche has not been determined, it must (in part) derive 

from cells of the genital ridge. It will be interesting to determine if proximity to the gut 

endoderm is important for the specification of this niche.  

 

Material and Methods 

Fly Stocks 

Heterozygous siblings or w1118 were used as controls as appropriate. We analyzed 

gonads from the following mutants, or involving these transgenic lines: N264.39 

(FBal0029934), Nts1 (FBal0012887), paired-Gal4 (FBal0048793), DlRF (135), SerRX82 

(FBal0030223), SerRX106 (FBal0030221), nanos-Gal4-vp16 (Erica Selva), DlRev10SerRX82 

(FBal0029366/FBal0030223), neur11 (FBal0012950), trachealess10512 (FBal0009624), 

trachealess2 (FBal0017037), fogS4 (168), hsp70-Notch-Gal4-VP16 (146), hsp70-Dl (Gary 

Struhl), Uas-lacZ-nls (Bloomington Stock Center), esg-lacZ (63), Uas-Dl-dsRNA 

(FBgn0000463), drm-Gal4 (64), P[GawB]48Y-Gal4 for endoderm expression 

(FBti0004594), Twist-Gal4 (FBal0040491). Stocks were balanced over CyO P[w+ Ubi-

GFP] or TM6 Hu P[w+ Ubi-GFP].   

 

Immunostaining 

Embryos were collected on apple agar plates and aged 22-24 hours in a 

humidified chamber to 1st instar larvae. Hatched larvae were dissected in half with 

tungsten needles in Ringers solution and the internal organs were gently massaged out. 

Unhatched larvae were dechorionated, hand-devitellinized and dissected as above. Tissue 

was fixed in 4% formaldehyde, Ringers and 0.1% Triton-X-100 for 15 minutes, washed 
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in PBTX and blocked one hour at room temperature in 2% normal donkey serum/normal 

goat serum. Primary antibodies were used overnight at 4°C. Secondary antibodies were 

used at 1:400 (Alexa488, Cy3 or Cy5; Molecular Probes; Jackson Immuno Research) or 

1:1000 (biotinylated; Invitrogen) for 1 hour at room temperature. DNA was stained with 

Hoechst 33342 (Sigma) at 0.2 µg/ml for 2 minutes.  

 Immunostaining for testes was performed as previously described except 1X PBS 

was substituted for Buffer B (169). For embryo studies, embryos were collected, aged for 

the appropriate time in a humidified chamber, fixed in 4% paraformaldehyde and heptane 

for 15 minutes and devitellinized with methanol. 

 The following primary antibodies and concentrations were used: rabbit anti-Vasa 

1:5000 (R. Lehmann), goat anti-Vasa 1:400 (Santa Cruz), chick anti-Vasa 1:5000- 10,000 

(K. Howard), guinea pig anti-Traffic Jam 1:10,000 (Dorothea Godt), mouse anti-βgal 

1:10000 (Promega), rabbit anti-STAT 1:1000 (Erica Bach), rat anti-Filamin-N terminal 

1:1000 (Lynn Cooley; recognizes full length isoforms), rat anti-Filamin-C terminal 

1:1000 (Lynn Cooley; recognizes C-terminal isoform), rat anti-Serrate 1:1000 (K. Irvine), 

mouse anti-Delta C594.9B (Developmental Studies Hybridoma Bank), , Streptavidin-

HRP 1:400 (Chemicon), mouse-anti Biotin 1:1000, rabbit anti-Sox100B 1:1000 (S. 

Russell), mouse anti 1B1 1:20 (DSHB); mouse anti-Sxl 1:25 (DSHB). 

 Tyramide amplification was used to increase the anti-lacZ staining. Samples were 

incubated with a biotinylated secondary antibody for 1 hour, washed and followed by a 

25-minute incubation in SA-HRP.  After a final washing, a 15-minute incubation in 

tyramide-Fluorescein was employed (PerkinElmer). 
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Sex identification, genotyping and staging of embryos 

Male embryos and larvae without a gonad coalescence defect were unambiguous 

due to larger size of the gonad. For other cases, embryo or larvae sex was determined by 

immunostaining with Sex lethal. Balancer chromosomes containing a GFP-transgene 

P[w+ TM6 Hu Ubi-GFP] or P[w+ Ubi-GFP] were used to distinguish between 

heterozygous and homozygous mutant larvae. Larvae and embryos mutant for Notch or 

Delta were identified by their obvious neurogenic phenotype. Embryos were staged 

according to Campos-Ortega and Hartenstein (32). 

 

In situ hybridization 

Biotin-labeled probes (not size-reduced) were synthesized from cDNA plasmids 

obtained from the BDGP collection or the DGRC. In situ hybridizations were performed 

as described in Terry et al. (169). Hybridization signal was revealed by 

immunofluorescent detection using anti-Biotin (1 hour), washed four times (20 minutes 

each) in PBS containing 0.1% Tween-20, and incubated in a Cy3 secondary antibody (1 

hour). Embryos were then blocked for at least 30 minutes and then immunostained for 

various antigens.  

 

Counting the number of hub cells and germline stem cells 

To count hub cell number, larval gonads were stained as needed, and also with 

anti-Filamin and Hoechst, and z-stacks were obtained through the depth of the gonad 

using a Zeiss Axioplan with an ApoTome attachment. Nuclei that were surrounded by a 

Filamin signal were counted as hub cells. 
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To count germline stem cells, larval gonads were double stained with anti-Vasa 

and anti-STAT or anti-1B1 antibodies. Germ cells that were directly adjacent to the hub 

and that accumulated STAT protein or had a dot spectrosome were scored as stem cells.  

 

Notch rescue  

We noticed that in the absence of a heat shock, hub cells were specified at a low 

frequency, indicating that there is leaky expression of the hsp70-Notch-Gal4-VP16 

transgene. We therefore delivered a set of three heat shocks to induce robust expression 

of the receptor.  Embryos were collected for 1 hour and aged at 25°C until the heat shock. 

Heat shocks at 37°C were delivered to embryos beginning at either 5-6 hours after egg 

lay (AEL) or 8-9 hours AEL. A recovery period of 45 minutes followed each 40-minute 

heat shock. Embryos were processed after aging at 25°C until they reached hatching 

stage. 

 

Measuring cell size and distance 

SGP cell nuclei and cell distances between SGPs and PMG cells were measured 

by using the Length tool in AxioVision. During stages 11-12, the diameter of the SGP 

nucleus is approximately 5-6µm in size. 
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Summary 
 
 In chapter two we show that Notch signaling is necessary to specify hub cell fate 

in the Drosophila testis. Given that Notch is a master regulator of gene expression, we 

were interested in identifying potential targets of the pathway that also function in this 

process. Here, we have identified another factor that promotes hub cell specification: 

bowl.  

Somatic gonadal precursors (SGPs) are thought to give rise to both hub cells and 

cyst cells, however it is not understood how this binary cell fate decision is made. Here 

we show that the bowl signaling pathway influences hub cell specification during 

gonadogenesis. Our data reveal that a bowl antagonist, lines, acts to promote cyst cell 

fate. Conversely, we find that bowl acts to promote hub cell fate, while likely restricting 

cyst cell fate. Furthermore, our data suggests that bowl functions as a repressor to limit 

cyst cell gene expression by recruiting the general co-repressor, groucho (gro). Since a 

subset of cyst cells can eventually take on CySC fate given their proximity to the hub, 

this pathway may function to ultimately distinguish niche versus stem cell fate.  
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Introduction 

 Our lab previously carried out a microarray experiment to identify genes that were 

enriched within the testis stem cell niche (169). Brother of odd with entrails limited 

(bowl) was one such gene we found to be upregulated in testes genetically enriched for 

stem cells, their amplifying daughters and niche cells compared to wild type testes. bowl 

encodes for a Zinc-finger protein and is a member of the odd-skipped family of 

transcription factors, which includes odd-skipped (odd), sister of odd and bowl (sob), and 

drumstick (drm) (24, 43, 73, 81, 85). The family members share significant homology 

within their zinc finger domains (64, 69). These genes function in a post-translational 

relief-of-repression hierarchy, along with an antagonist of bowl, lines. It has been shown 

that the odd family members odd, sob and drm share a similar expression pattern and can 

function redundantly in some tissues, while bowl appears to act uniquely as evidenced by 

its broader expression domain (43, 85). Similarly, no such redundancy has been observed 

for lines (69, 73).  

The most common form this hierarchy takes is as the drm/lines/bowl regulatory 

cassette, whereby drm activity sequesters lines in the cytoplasm thereby relieving its 

repression of bowl, allowing nuclear bowl accumulation and the expression of target 

genes. For example, bowl is active when it is nuclear. However, when drm is absent, lines 

is able to shuttle from the cytoplasm (where it is non-functional) into the nucleus where it 

can repress bowl activity (73). Therefore, lines also accumulates in the nucleus when it is 

functional.  

The bowl pathway is employed reiteratively throughout development in several 

Drosophila epithelia. During gut development, the drm/lines/bowl cassette regulates 
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morphogenesis by controlling the spatial expression of unpaired, the ligand for the Jak-

Stat pathway (81, 85). In the eye disc, the pathway regulates proper retinogenesis by 

controlling the activation of hedgehog (Hh) protein (24). In the Drosophila embryo, it is 

required for proper epidermal cell differentiation (73). Finally, during imaginal disc 

development the pathway is required downstream of Notch activation in the leg disc (43, 

66). Given the myriad roles of this pathway in regulating tissue morphogenesis, our lab 

previously tested the role of this regulatory cassette in the testis stem cell niche. 

Mosaic analyses indicated that lines was required for CySC maintenance in the 

adult testes (48). In fact, CySCs depleted for lines activity began to aggregate, 

accumulate bowl protein and take on hub cell characteristics. For instance, lines mutant 

aggregates upregulated several markers of hub cell fate, including Hh and Cactus (112). 

Aside from the induction of markers of hub cell fate, these lines-depleted cells acted like 

functional niche cells as they recruited neighboring cyst cells to adopt CySC fate.  

We next pondered why lines-depleted CySCs would adopt hub cell fate. We had 

shown that there was a lineage relationship between hub cells and CySCs: SGPs could 

generate both cell types. This, in turn suggested that lines was acting in the assembly of 

the niche during gonadogenesis. To investigate this further, we turned our attention to the 

Drosophila gonad. Here, we show that the bowl pathway influences hub cell 

specification. More specifically, we find that bowl promotes this process, while the bowl 

antagonist, lines, restricts hub cell fate. Finally, our data suggests that bowl functions as a 

repressor by recruiting the co-repressor, groucho, and restricts the cyst cell gene 

expression program in SGPs.  
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Results 

The bowl pathway influences hub cell specification 

 To determine whether the bowl pathway contributes to hub cell specification, we 

examined mutants of each component of the circuit: drumstick, lines and bowl. We 

scored hub cell number in larval gonads shortly after hatching (see Materials and 

Methods) by staining with the cytoskeletal marker, Filamin, which accumulates in hub 

cells (165). Larval gonads were also stained with Vasa to recognize germ cells and 

Traffic jam to recognize somatic cells. We quantitated total hub cell number by stepping 

through z-slices in the image stack (see Materials and Methods) and in each instance 

compared the mutants to heterozygous sibling controls. As drm positively regulates the 

accumulation of bowl (81, 85), we expected to observe a decrease in hub cell number in 

drm mutants, as well as bowl mutants. Indeed, we found that drm mutant larval gonads 

exhibited a significant reduction in hub cell number compared with controls (Figure 3.1; 

averaging 7 ± 0.5 versus 10 ± 0.7, respectively, p=0.005). Furthermore, in bowl mutant 

larval gonads, we detected a 50% reduction in hub cell number in mutants compared with 

sibling controls (Figure 3.2; averaging 6 ± 0.5 versus 13 ± 0.2, respectively, p<0.0001). 

Finally, this reduction in bowl mutants was confirmed by assessing hub cell number using 

two gene expression markers of hub fate, esg and upd (Figure 3.2 C-D, F; data not 

shown).  

Conversely, as lines normally antagonizes bowl function (16, 69, 73, 81, 130), we 

hypothesized that in the absence of lines, which would lead to excess bowl, hub cell 

number would be increased. Indeed, we observed a substantial increase in hub cell 

number in lines mutants compared with controls (Figure 3.3, from Sarah Freilich; 
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averaging 14 ± 0.8 versus 10 ± 0.3, respectively, p<0.001). Moreover, this increase in hub 

cell number was confirmed by assessing upd- and esg-positive hub cells in lines mutant 

gonads compared with controls (data not shown; Figure 3.3 C-D). Lastly, to confirm that 

the epistatic relationship previously observed in other tissues for lines and bowl holds 

true in the gonad (73, 81, 85, 130), we analyzed linesbowl double mutants. In these 

mutants, we would expect to observe a similar reduction in hub cell number as observed 

in bowl mutants. We found that compared to sibling controls, hub cell number in 

linesbowl mutants was decreased (Figure 3.4; averaging 12 ± 0.7 versus 7 ± 0.8, 

respectively, p<0.001), implying that bowl is epistatic to lines in the Drosophila gonad as 

well. Altogether, these data indicate that the bowl pathway contributes to the process of 

hub cell specification. More specifically, it suggests that bowl and drm function as 

positive regulators of this process, promoting hub cell fate, while lines functions to 

restrict hub specification and instead promotes cyst cell fate.  

 

Modulation of bowl pathway activity affects GSC number 

 Given that the hub functions as a critical component of the germline stem cell 

(GSC) niche and fluctuations in niche cell number can disrupt normal tissue homeostasis 

(25, 93, 172) we wanted to assess the affect on GSC number when components of the 

bowl pathway were compromised. Unpaired-producing hub cells normally recruit 

adjacent first tier germline cells to become GSCs (93, 172). These hub cells activate the 

Jak-STAT pathway in neighboring germline cells (93, 153, 172) allowing them to adopt 

stem cell fate (153). Upon Jak-STAT pathway activation, STAT protein accumulates and 

is stabilized in the nucleus and this accumulation serves as a useful readout for pathway 
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activation and a marker for GSCs (35). However, although STAT also accumulates in 

neighboring cyst cells, we do not have a unique marker for cyst stem cells (CySCs) 

during gonadogenesis, so changes in CySC recruitment could not be analyzed. 

 Since the hub is smaller in bowl mutants, we expected to observe a correlative 

decrease in GSC number given that fewer stem cells could potentially be accommodated 

around a smaller hub. Overall, we found that there were fewer first-tier germline cells 

recruited in bowl mutants compared with controls (Figure 3.5 A-C; averaging 7 ± 0.6 

versus 10 ± 0.6, respectively, p<0.001). Moreover, among the first-tier germline cells, the 

number of STAT-positive germline cells adjacent to the hub was also reduced in bowl 

mutants compared with sibling controls (Figure 3.5 D; averaging 4 ± 0.7 versus 9 ± 0.6, 

respectively, p<0.001). These data indicate that a significant reduction in GSC number 

results from compromised bowl pathway activity, such that when hub cell number 

decreases, GSC number follows. Furthermore, it suggests that the physical space around 

the hub may account for the number of GSCs recruited. If fewer hub cells are specified, 

fewer cells can receive an upd signal and thus be recruited as stem cells.  

 

Determining the localization of bowl pathway components in the gonad 

Since the bowl pathway is required for proper hub cell specification, we next 

sought to determine the protein and mRNA localization of pathway components to 

further understand their roles in this process. To elucidate the mRNA expression patterns 

of drm, lines, and bowl we performed RNA in situ hybridizations to each using mid-to-

late stage wild type embryos. Unfortunately, however, we were unable to detect mRNA 
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expression of any of the pathway components within the embryonic gonad (data not 

shown).  

We also attempted to assess the localization of drm using a reporter construct 

consisting of the endogenous promoter of drm fused to Gal4 (drm-Gal4) (64). We drove 

nuclear localized gfp (Uas-gfp-nls) and assessed embryonic and first instar larval gonads 

for gfp expression. Since drm positively regulates bowl accumulation, we expected to 

observe drm expression in a subset of SGPs: those that are presumptive hub cells. 

Unfortunately however, we did not detect any gonadal drm expression using this reporter 

assay (data not shown).  

Given that drm and bowl belong to the odd-skipped gene family, whose family 

members odd-skipped (odd) and sister of odd and bowl (sob) can function redundantly 

with drm (43, 69), we wanted to similarly assess their mRNA localization pattern. 

Therefore, we performed in situ hybridization to odd and sob, again using mid-to-late 

stage wild-type embryos. Here, as well, we were unable to detect any expression within 

the embryonic gonad (data not shown). 

We next turned our attention to understanding the protein localization of the 

pathway components. As these proteins are only active when localized in the nucleus, 

determining the sub-cellular localization of the pathway components could indicate the 

cells where these proteins are functionally required (73). We performed a series of 

antibody stains against bowl in wild-type embryonic and larval gonads, as well as in adult 

testes. In embryonic gonads prior to niche (hub) compaction, we expected to observe 

nuclear bowl accumulation in a subset of anteriorly-localized SGPs− those SGPs that 

would presumably take on hub cell fate. In larval gonads and the adult testis, we expected 
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to detect nuclear bowl accumulation in hub cells. Again however, we were unable to 

detect any protein expression in any of the tissues (data not shown). We took advantage 

of the fact that lines normally represses bowl and we examined lines mutants, which 

would presumably express ectopic bowl. However, we were still unable to detect 

endogenous bowl protein in lines mutant gonads, although we observed robust expression 

in other embryonic tissues where bowl is known to accumulate (data not shown). 

Although we were unsuccessful in our attempts to detect endogenous protein or mRNA 

in the Drosophila gonad and testes, we were comforted by the fact that historically it has 

been difficult to detect these components in various tissues (73). Presumably, this is 

because they are expressed at very low levels, undetectable even to our most sensitive 

assays.  

Since it proved difficult to detect either endogenous protein or mRNA, we took 

advantage of a series of bowl pathway reporters. We began by examining the expression 

of lines in embryonic gonads using an epitope-tagged version of the protein, Uas-lines-

myc (73) driven by the SGP driver, Traffic jam-Gal4 (Tj-Gal4). Although misexpressing 

this construct does not indicate the endogenous protein expression domain, the sub-

cellular localization could suggest where this protein is normally required. For example, 

in cells where lines is active, the protein would accumulate in the nucleus. Conversely, in 

cells where lines is inhibited by drm activity, the protein would accumulate in the 

cytoplasm. In Tj-Gal4>Uas-lines-myc gonads, by stage 13, we were able to detect 

nuclearly localized lines-myc, suggesting that lines could be active in a subset of SGPs 

(Figure 3.6 A-A’’).  
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In a similar fashion, we probed the sub-cellular localization of bowl in embryonic 

gonads using an epitope-tagged version of the protein, Uas-bowl-flag (73). We found that 

a fraction of SGPs in Tj-Gal4>Uas-bowl-flag gonads also accumulated nuclear bowl-flag 

beginning at stage 13 (Figure 3.6 B-B’’). This data suggests that bowl could function in 

some SGPs to specify hub cell fate. Although this is true, we were unsuccessful in our 

attempts to assess the localization of both epitope-tagged proteins within the same gonad, 

therefore it is difficult to conclude which SGPs normally show a requirement for either 

protein. Assessing the co-localization of the proteins would allow us to determine which 

subset of cells accumulate nuclear bowl and have cytoplasmic lines− these would be 

presumptive hub cells. Conversely, those cells that only accumulate nuclear lines would 

eventually adopt cyst cell fate. These results could predict which cells normally require 

the activity of either protein for eventual hub or cyst cell differentiation. 

 

bowl is required within SGPs to specify hub cells 

Although endogenous bowl is undetectable in the gonad, it is robustly expressed 

in the Drosophila hindgut and its activity is necessary to properly pattern a hindgut 

derivative, the small intestine (81). Though the published literature mostly shows bowl 

gut expression restricted to the hindgut (81, 85), our antibody staining suggests that bowl 

could also be expressed in the endodermally-derived posterior midgut (PMG; data not 

shown). Additionally, the positive bowl regulator drm accumulates in PMG cells during 

embryonic stages 11-13 and its expression is subsequently lost in this tissue (64). Given 

the close proximity of the PMG to the developing gonad (see Figure 2.7 D) and the fact 

that the Notch-activating ligand Delta is employed from the PMG, we wanted to 
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definitively exclude the PMG as a candidate source of bowl. We therefore sought to 

knock down bowl expression from the endoderm. We misexpressed Uas-lines, using 

Endoderm-Gal4, in an attempt to inhibit bowl accumulation. We found that a comparable 

number of hub cells was specified in control gonads compared with Endoderm-

Gal4>Uas-lines larval gonads, in which endodermal bowl was inhibited (Figure 3.7 A; 

averaging 14 ± 0.4, n=10 versus 12 ± 0.6, n=20, respectively, p=0.17). These data 

strongly suggest that bowl activity is not required within the neighboring endoderm for 

proper hub cell specification.  

To address whether bowl was required within the gonad proper, and specifically 

within SGPs, we first inhibited bowl by overexpressing Uas-lines within SGPs, using 

Twist24B-Gal4 (110). Compared to control gonads, inhibiting bowl within the SGP 

population yields a small, but statistically significant decrease in hub cell number (Figure 

3.7 B; averaging 15 ± 0.4 versus 13 ± 0.5, respectively, p=0.02). This small decrease 

could be attributed to the fact that endogenous drm may yet be present within cells. In 

this case, it is possible that overexpressing lines is not sufficient to override the inhibitory 

influence of drm.  

To conclusively determine if bowl is required within SGPs, we attempted to 

rescue the hub cell defect in bowl mutant gonads by restoring bowl to a subset of SGPs. 

SGPs are derived from the lateral mesoderm within parasegments (PS) 10-12 (21, 22, 29, 

159). We took advantage of the Prd-Gal4 driver, which drives selective expression within 

PS11 SGPs. Recent lineage-tracing experiments in the adult testis have shown that PS11 

SGPs can give rise to either hub cells or CySCs (48, 110). 
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 We first wanted to determine whether overexpressing Uas-bowl using Prd-Gal4 

was sufficient to increase hub cell number. We found that Prd-Gal4>Uas-bowl larval 

gonads that had sustained bowl misexpression throughout embryogenesis did not show a 

statistically significant increase in hub cell number compared to controls (11 ± 0.4 versus 

11 ± 0.5, respectively, p=0.3). Intriguingly however, we found that 85% of bowl mutant 

larval gonads expressing the Prd-Gal4>Uas-bowl rescue construct exhibited a wild-type 

spread of hub cell number, ranging from 9-14, with an average of 11 hub cells per gonad 

compared to bowl mutant controls (without bowl restoration) which averaged only 6 hub 

cells per gonad (Figure 3.8; averaging 11 ± 0.7 versus 6 ± 0.5, respectively, p<0.001). 

These results indicate that bowl is required within SGPs for proper hub cell specification. 

In addition, it appears that simply overexpressing bowl is not sufficient to increase hub 

cell number. Furthermore, the data suggests that bowl is responsible for specifying hub 

cell fate primarily within PS11 SGPs, since wild-type hub cell number is virtually 

restored in rescued gonads.  

 

Towards understanding the interplay between the Notch and bowl pathways 

Given that the Notch and bowl pathways both positively regulate hub cell 

specification, we sought to more fully understand the relationship between the two. In 

particular, we wanted to elucidate the epistatic relationship between Notch and bowl in 

the gonad. bowl is required downstream of Notch signaling to properly specify tarsal 

segments of the Drosophila leg during development (43, 65, 66). Even so, bowl has also 

been shown to regulate Notch pathway activity by regulating the expression of both 

pathway-activating ligands, Serrate (81) and Delta (65). The fact that bowl can sometimes 
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act upstream of Notch signaling in some tissues, but downstream in others made 

understanding this complex relationship even more intriguing. Unfortunately, due to 

complications associated with unhealthy fly stocks, we were unable to address whether 

bowl was required downstream of Notch signaling to properly specify hub cells.  

We then set out to test whether Notch activity was required downstream of bowl 

by performing a rescue experiment. Similar to above, we first wanted to determine 

whether overacting the Notch pathway by expressing a constitutively active version of 

the Notch intracellular domain, UasNICD, during embryogenesis could lead to an increase 

in hub cell number. We found that Prd-Gal4>UasNICD larval gonads did show a 

statistically significant increase in hub cell number compared to controls (16 ± 1.3 versus 

13 ± 0.5, respectively, p<0.001). Furthermore, in preliminary data we found that hub cell 

number was virtually restored to the wild-type range in bowl mutant larval gonads 

expressing the Prd-Gal4>UasNICD rescue construct, with an average of 10 hub cells per 

gonad compared to bowl mutant controls which averaged only 6 hub cells per gonad 

(Figure 3.9; averaging 10 ± 0.8 versus 6 ± 0.5, respectively, p<0.001).  

Since bowl is presumably absent from these PS11 cells in this experiment, this 

data suggests that Notch is able to engage the unknown pathway, “pathway X,” 

downstream to induce hub cell fate. However, given that pathway X has yet to be 

identified and because we cannot assess bowl pathway accumulation in SGPs, it still 

remains unclear where these proteins are normally required for proper hub cell 

specification. Finally, since Notch activation is presumably able to engage pathway X, 

given this data it is difficult to interpret the relationship of Notch relative to bowl. 
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bowl and Su(H) genetically interact  

 Our data indicate that there are at least two important transcriptional regulators 

functioning within the hub: bowl and Su(H). Su(H) is an integral part of the Notch 

signaling pathway and it activates downstream target genes in response to Notch 

activation (13). Considering that both the Notch and bowl pathways positively influence 

hub specification, we wanted to confirm that the transcriptional regulators displayed a 

genetic interaction.  

To assess the genetic interaction, we analyzed hub cell number in bowl and Su(H) 

heterozygous adults compared to bowl/Su(H) transheterozygotes. Fortuitously, hub cells 

are a post-mitotic population (68). Due to this, the number of hub cells specified during 

larval stages remains relatively static during adulthood. Either bowl or Su(H) 

heterozygous testes averaged 14 hub cells (Figure 3.10; 14 ± 0.6 and 14 ± 0.4, 

respectively, p>0.05). As predicted, we observed a synergistic decrease in hub cell 

number in bowl;Su(H) transheterozygotes, such that only 11 hub cells were specified on 

average (Figure 3.10; 11 ± 0.4, p<0.001 compared to either heterozygous condition). This 

data indicates that the transcriptional regulators, bowl and Su(H), genetically interact and 

are both positive-acting factors promoting hub cell specification.  

 

bowl and groucho interact to properly specify hub cells 

Although Bowl is a known transcriptional regulator (69, 181), it remains unclear 

whether it functions as an activator or a repressor in the process of hub cell specification. 

Bowl contains three putative transcriptional activation domains (181). Additionally, it 

also contains an engrailed homology 1 (eh1) domain that recruits the general co-
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repressor, Groucho (Gro), to mediate the repressive affect of Bowl (60). Given this, we 

wanted to understand whether Bowl was acting in SGPs as an activator− to promote hub 

cell gene expression, or as a repressor− to restrict the cyst cell gene expression program. 

 Groucho is a ubiquitously expressed co-repressor that silences gene expression 

when it is recruited to target promoters. It cannot bind DNA itself and thus must interact 

with a number of DNA-binding transcriptional regulators to induce its repressive affect. 

Gro functions in multiple signaling pathways, including Wnt (Wingless in the fly), Hh, 

EGFR, Dpp and Notch (72). When these pathways become activated via ligand 

induction, Gro and its associated co-repressors are replaced on target DNA by an 

activator complex. As mentioned above Gro also forms a repressor complex with Bowl 

and acts to repress Bowl targets. Since Gro interacts with diverse pathway regulators, 

mutations in this gene can lead to ectopic target gene expression and pleiotropic affects.   

 To determine if Bowl was functioning as an activator or a repressor, we tested 

whether the Bowl interaction with Gro was necessary for proper hub cell specification 

(60). We hypothesized that if Bowl interaction with Gro was necessary for proper hub 

number, Bowl would function as a repressor in this system. We took advantage of a Bowl 

protein that has a deleted eh1 domain, Uas-bowleh1-, and thus does not interact with Gro 

(16). Driving expression of the native Bowl protein as a control using the SGP driver, 

Twist24B-Gal4, led to a statistically significant increase in the number of hub cells 

specified compared to the Uas-only and the driver-only controls (Figure 3.12 A; 16 ± 0.7 

versus 10 ± 0.5 and 11 ± 0.6, respectively, p<0.0001 for both). If the Bowl interaction 

with Gro was necessary for this increase in hub cell number, we would expect no change 

in hub number when misexpressing Uas-bowleh1-. Surprisingly however, we found that 
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there was a decrease in hub cell number in Twist24B-Gal4>Uas-bowleh1- gonads 

compared to the Uas-only control (Figure 3.12 B; 12 ± 0.7 versus 15 ± 0.5, respectively, 

p=0.003). We interpret this to mean that this Uas-bowleh1- protein is behaving as a 

dominant negative and as such, is interfering with the normal repressive function of wild-

type Bowl in SGPs. bowleh1- is able to bind to target DNA in place of wild-type Bowl, but 

without the eh1 domain, Gro is not recruited to Bowl repressor complexes. This suggests 

that the normal role of Bowl may be to restrict cyst cell fate in SGPs by repressing the 

cyst cell gene expression program. The repression of cyst cell fate in turn promotes hub 

cell specification.  

 

lines and groucho genetically interact 

Our data shows that Notch and bowl activity in a subset of SGPs ultimately leads 

to hub cell specification. Presumably, those SGPs that remain inactive for Notch also 

accumulate nuclear lines, which prevents hub specification, and instead promotes cyst 

cell fate. Given that the absence of lines results in increased hub number and that 

depletion of gro can lead to derepression of Notch target genes, we wanted to determine 

if lines and gro genetically interacted. We therefore compared lines and gro heterozygous 

adult testes to lines/+;gro/+ transheterozygotes. If these two genes interact, we would 

expect to observe a synergistic increase in hub cell number because SGPs that would 

normally be inactive for Notch and bowl are now able to accumulate ectopic Notch target 

genes and ectopic bowl. Indeed, we found that there was a strong genetic interaction 

between lines and gro as hub cell number increased to an average of 16 per testes (Figure 

3.11; 16 ± 0.5) compared to an average of 10 (10 ± 0.3, p<0.0001) for lines heterozygotes 
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and 11 for gro heterozygotes (11 ± 0.2, p<0.0001). This data indicates that lines and gro 

genetically interact and suggests that some SGPs that would normally be cyst cells, 

instead developed as hub cells.  
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Figure 3.1: 
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Figure 3.1: drm contributes to hub cell specification 

Anterior is to the left in each panel. (A, B) 1st larval instar male gonads from control (A; 

drm/+) and drm mutants (B) were stained with Vasa (red, germ cells) and Filamin (green, 

hub cells). (B) Hub cell number is decreased in this focal plane compared to A. Scale bar 

is 10µm. (C) The distribution of the number of Filamin positive hub cells per gonad. Note 

the significant shift to lower hub cell numbers in drm mutants (red) compared to control 

gonads (blue; p=0.005). The average number of hub cells per gonad ± s.e.m. and the 

number of gonads (n) observed is also shown. 
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Figure 3.2: 
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Figure 3.2: bowl mutant gonads exhibit a reduced hub cell number 

1st larval instar gonads were stained with Filamin (green, hub cells). (A, B) Control 

(bowl/+) and bowl mutant gonads were stained with Vasa (red) to detect germ cells. Note 

the decrease in hub cell number in a bowl mutant (B) compared to a control gonad (A, C). 

(D, E) Control (bowl/+) and bowl mutant gonads expressing an esgG66B enhancer trap. 

Gonads were stained with anti-βgal (red) to detect hub cells and Vasa (green) to detect 

germ cells. The decrease in hub number in bowl mutants (E) compared to controls (D) 

was confirmed by this enhancer trap. An arrow denotes an esg-positive hub cell away 

from the main hub, which lies in another focal plane. Single hub cells are observed at a 

low frequency in bowl mutants. Scale bar is 10µm. (C, F) The distribution of the number 

of Filamin positive (C) and esg-positive (F) hub cells per gonad is shown. There is a 

significant shift to lower hub cell numbers in bowl mutants (red) compared to control 

gonads (blue) (p<0.0001) in both. The average number of hub cells per gonad ± s.e.m. 

and the number of gonads (n) observed is also shown. 
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Figure 3.3: 
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Figure 3.3: lines mutant gonads contain excess hub cells 

(A, B) 1st larval instar gonads from control (lines/+) and lines mutant gonads were stained 

with Vasa (red, germ cells), Fascilin 3 (green) to detect hub cells and Hoechst (blue, 

DNA). Note the increase in hub cell number in this focal plane of a lines mutant (B) 

compared to a control gonad (A). (C, D) Control (lines/+) and lines mutant gonads 

expressing an esgG66B enhancer trap. Gonads were stained with anti-βgal (green) to detect 

hub cells. The increase in hub number in lines mutants (D) compared to controls (C) was 

confirmed by this enhancer trap. Scale bar is 10µm. (E) The distribution of the number of 

Fascilin 3 positive (E) hub cells per gonad is shown. Note the significant shift to higher 

hub cell numbers in lines mutants (red) compared to control gonads (blue) (p<0.001). The 

average number of hub cells per gonad ± s.e.m. and the number of gonads (n) observed is 

also shown. [Sarah Freilich, (48)] 
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Figure 3.4: 

 

Figure 3.4: bowl is epistatic to lines in the gonad 

The distribution of the number of Filamin positive hub cells per gonad in controls 

(linesbowl/+; blue) compared to linesbowl mutant (red) gonads is shown. Note that the 

reduction in hub cell number in linesbowl mutant gonads is similar to the reduction 

observed in bowl mutants (p<0.001). The average number of hub cells per gonad ± s.e.m. 

and the number of gonads (n) observed is also shown. 
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Figure 3.5: 
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Figure 3.5: GSC number is reduced in bowl mutant gonads 

(A, B) 1st larval instar male gonads from control (A; bowl/+) and bowl mutants (B) were 

stained with Filamin (red, hub cells) and STAT (green). Note that there are fewer first tier 

germline cells (B). Circles highlight GSCs. Scale bar is 10µm. (C) The distribution of the 

number of first tier germline cells per gonad in controls (bowl/+; blue) compared to bowl 

mutant (red) gonads is shown (p<0.001). (D) The distribution of the number of STAT-

positive GSCs per gonad in controls (bowl/+; blue) compared to bowl mutant (red) 

gonads is shown (p<0.001). The average number of hub cells per gonad ± s.e.m. and the 

number of gonads (n) observed is also shown. 
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Figure 3.6: 

 

Figure 3.6: Epitope-tagged lines and bowl protein accumulate in the nucleus of SGPs 

Stage 15 male embryonic gonads were stained for Vasa (red, germ cells) and a nuclear 

SGP marker, Traffic jam (Tj, white). (A-A’’) A Tj-Gal4>Uas-lines-myc embryonic 

gonad accumulates nuclear lines-myc (A’, green) and co-stains with Tj. (B-B’’) A Tj-

Gal4>Uas-bowl-flag embryonic gonad accumulates nuclear bowl-flag (B’, green) and co-

stains with Tj. Scale bar is 10µm. Arrows highlight a few cells that accumulate both 

nuclear Tj and the epitope-tagged proteins. A circle outlines the gonad.  
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Figure 3.7: 
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Figure 3.7: Inhibiting bowl in SGPs, but not in the endoderm reduces hub cell 

number 

(A) The distribution of the number of Filamin positive hub cells per gonad in controls 

(Uas-lines/CyO; blue) compared to Endoderm-Gal4>Uas-lines (red) gonads is shown 

(red; p=0.17). (B) The distribution of the number of Filamin positive hub cells per gonad 

in controls (Uas-lines; blue) compared to Twist24B-Gal4>Uas-lines (red) gonads is 

shown. Note that there is a modest decrease in hub cell number when bowl is inhibited in 

SGPs (red; p=0.02). The average number of hub cells per gonad ± s.e.m. and the number 

of gonads (n) observed is also shown. 
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Figure 3.8: 

 

 

Figure 3.8: Restoring bowl in PS11 SGPs rescues the hub cell defect 

The distribution of the number of Filamin positive hub cells per gonad in heterozygous 

siblings (bowl/+; blue), bowl mutant (red) and bowl, Prd-Gal4>Uas-bowl (yellow) gonads 

is shown. Note that there is a significant rescue of hub cell specification to almost wild 

type numbers (blue) in bowl, Prd-Gal4>Uas-bowl gonads (yellow) compared to bowl 

mutants (red; p<0.001). The average number of hub cells per gonad ± s.e.m. and the 

number of gonads (n) observed is also shown. 
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Figure 3.9:  

 

Figure 3.9: Constitutively activating Notch in PS11 SGPs rescues the hub cell defect 

The distribution of the number of Filamin positive hub cells per gonad in heterozygous 

siblings (bowl/+; blue), bowl mutant (red) and bowl, Prd-Gal4>UasNICD (yellow) gonads 

is shown. Note that there is a significant rescue of hub cell specification to almost wild 

type numbers (blue) in bowl, Prd-Gal4>UasNICD gonads (yellow) compared to bowl 

mutants (red; p<0.001). The average number of hub cells per gonad ± s.e.m. and the 

number of gonads (n) observed is also shown. 
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Figure 3.10: 

 

Figure 3.10: bowl and Su(H) genetically interact and promote hub cell specification 

The distribution of the number of Filamin positive hub cells per testes. Note the shift to 

lower hub cell numbers in bowl/Su(H) transheterozygotes (yellow) compared to Su(H)/+ 

(blue) and bowl/+ (red) control testes (p<0.001 for both heterozygous conditions). The 

average number of hub cells per testis ± s.e.m. and the number of testes (n) observed is 

also shown. 
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Figure 3.11: 
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Figure 3.11: lines and gro show a genetic interaction 

(A, B) Adult testes from control (A; gro/+) and lin/+;gro/+ transheterozygotes (B) were 

stained with Vasa (red, germ cells), Traffic jam (Tj, white, somatic cells) and Filamin 

(green, hub cells). Note the expanded hub size in lin/+;gro/+ transheterozygotes testes 

(B) compared to controls (A). Scale bar is 30µm. (C) The distribution of the number of 

Filamin positive hub cells per testes. Note the shift to higher hub cell numbers in 

lin/+;gro/+ transheterozygotes (yellow) compared to lin/+ (blue) and gro/+ (red) control 

testes (p<0.0001 for both heterozygous conditions). The average number of hub cells per 

testis ± s.e.m. and the number of testes (n) observed is also shown. 
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Figure 3.12: 
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Figure 3.12: bowl recruits gro to regulate hub cell specification 

(A) The distribution of the number of Filamin positive hub cells per gonad in controls 

Uas-bowl (blue) and Twist24B-Gal4 (red) compared to Twist24B-Gal4>Uas-bowl 

(yellow) gonads is shown (p<0.0001). Note that there is a significant increase in hub cell 

number in Twist24B-Gal4>Uas-bowl gonads. (B) The distribution of the number of 

Filamin positive hub cells per gonad in controls (Uas-bowleh1-/CyO; blue) compared to 

Twist24B-Gal4>Uas-bowleh1- (red) gonads is shown. Surprisingly, there is a considerable 

decrease in hub cell number when the eh1 domain is deleted (red; p=0.003) indicating 

that the bowl/gro interaction is necessary for proper hub specification. The average 

number of hub cells per gonad ± s.e.m. and the number of gonads (n) observed is also 

shown. 
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Figure 3.13: 

 

 

 

Figure 3.13: Model for bowl pathway activity in the gonad 

In step 1, SGPs (white) that originate from PS10-12 are initially equivalent. In step 2, 

activation of drumstick (drm) positively regulates the nuclear accumulation of Bowl in a 

subset of SGPs by inhibiting Lines, fating them to become hub cells (green). Those cells 

that remain inactive for drm, accumulate nuclear Lines and adopt cyst cell fate (blue). In 

step 3, drm/bowl-positive SGPs differentiate as mature hub cells (green), while lines-

positive SGPs differentiate as mature cyst cells (blue). Note that since bowl activity only 

accounts for ~50% of hub cells specified, hub cells specified by an unknown pathway, 

presumably downstream of Notch activation, are depicted in black. Also note that for the 

sake of simplicity, stem cells nor male-specific SGPs are highlighted in this diagram. 
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Discussion 

Here we show that the bowl pathway influences hub cell specification in the 

Drosophila testis. We find that the genes drm and bowl function as positive acting factors 

promoting hub specification, while the gene lines represses hub cell fate. Furthermore, a 

genetic interaction is observed between bowl and the Notch responsive transcription 

factor Su(H), confirming that these two pathways both promote hub fate. Lastly, our data 

suggests that bowl may function as a repressor, restricting cyst cell fate in SGPs, while 

allowing hub cell specification. This data furthers our understanding of how a crucial 

component of the niche, the hub, is initially specified in this classical model system.  

 

The role of the bowl pathway in hub cell specification 

 The components of the bowl pathway influence hub cell specification: drm and 

bowl promote hub cells, while lines restricts hub cell fate, instead promoting alternative 

cyst cell fate. This leads to an interesting possibility, whereby these factors parse out 

SGPs to differentiate as either hub or cyst cells. Since both cell types, cyst and hub, are 

derived from SGPs (48, 110), it is not difficult to imagine that this circuit could direct 

eventual cell fate. In fact, the bowl pathway is commonly employed to regulate binary 

cell fate decisions (81, 85, 130). Further support for this idea comes from work recently 

published by our lab. We showed that CySCs mutant for lines in the adult testes 

accumulate bowl protein, begin to dedifferentiate and take on characteristics of hub cells 

(48). Taken together, we propose the following model. Initially, it is possible that all 

SGPs are equivalent (Step 1). However, activation of an antagonist of lines, drm for 

example, leads to nuclear accumulation of bowl in a subset of SGPs (Step 2). Those SGPs 
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active for bowl are fated to differentiate as hub cells, while cells that retain lines activity 

differentiate as cyst cells (Step 3; Figure 3.13).  

 

Residual hub cells are present in bowl mutant gonads 

Interestingly, we find that there is an ~50% reduction in hub cell number in bowl 

mutants and that those remaining cells appear compromised for normal hub function. 

This is intriguing for two reasons. First, there was only a 30% reduction in hub number in 

gonads mutant for the positive bowl regulator, drm. This may indicate that another 

member of the odd-skipped family, either sob or odd, functions redundantly with drm in 

this tissue to regulate bowl activity. Although there are no extant mutant alleles for sob, a 

deficiency line exists which uncovers drm, sob and odd (64). It would be of interest to 

determine if gonads mutant for all three genes exhibit a greater reduction in hub cell 

number, comparable to bowl mutant gonads.  

Second, in chapter two we show that Notch signaling is necessary for this process 

and that in its absence, neither hub cells nor GSCs are specified. Considering this, it is 

interesting that there is only a 50% reduction of hub cell number in bowl mutants. This 

suggests that another signaling pathway, possibly functioning downstream of Notch 

activation, accounts for the remainder of hub cells specified. In fact, our preliminary data 

suggests just that (Figure 3.9). In an attempt to rescue hub cell number in bowl mutant 

gonads, we misexpressed a constitutively active version of the Notch receptor, UasNICD, 

solely in PS11 SGPs using Prd-Gal4. We found that hub cell number was virtually 

restored to wild-type numbers, implying that Notch was able to engage “pathway X” 

downstream to induce hub cell fate. However, this data does not define where pathway X 
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is normally required; it only demonstrates that it can be activated in PS11 cells when the 

Notch pathway is constitutively activated. At present, though it remains unclear what 

other pathway could be required for this process, elucidating it will be paramount to have 

a complete understanding of hub cell specification.  

Furthermore, this data could also suggest that constitutive activation of the 

receptor in PS11 SGPs forces cells that would normally be unresponsive to Notch, to 

become Notch-activated. Kitadate and Kobayashi have shown that hub cell fate is 

inhibited by the activity of EGFR signaling (97), and it is known that Notch and EGFR 

commonly antagonize each other (163). Perhaps constitutive activation of the Notch 

receptor is able to override the inhibitory affect of EGFR activity. This Notch activity 

could force cells that would normally develop as cyst cells to instead develop as hub 

cells, by engaging pathway X. 

 

Does bowl solely govern hub cell specification in PS11 SGPs?  

From our work and others, we have uncovered several new principles guiding hub 

cell specification in the Drosophila testis. First, hub cells derive from both PS10 and 

PS11 (48, 110). Second, Notch activity is required for this process and pathway 

activation in a subset of SGPs potentiates them to differentiate as hub cells [this work; 

(97)]. Finally, our work suggests that bowl activity contributes to ~50% of hub cells 

specified.  

In an attempt to rescue the hub cell defect in bowl mutants, we restored bowl 

expression uniquely to PS11 SGPs, using Paired-Gal4. We found that bowl supplied 

solely to PS11 SGPs is sufficient to rescue the hub cell defect in bowl mutants (Figure 
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3.8). Interestingly however, we found that overexpressing bowl from PS11 was not 

sufficient to increase hub cell number. This suggests that simply overexpressing bowl in 

SGPs is insufficient to alter cell fate, likely because the bowl antagonist, lines, is still 

present within a subset of cells. Those cells that express lines will still differentiate as 

cyst cells. The data also implies that bowl is normally required to specify hub cell fate 

specifically in PS11 SGPs. It appears that restoring bowl to those SGPs that would 

normally accumulate it allows the proper number of hub cells to be specified. This is an 

unexpected result because we hypothesized that, similar to Notch activation, bowl would 

stochastically accumulate among some PS10 and PS11 SGPs directing them toward hub 

fate, rather than its effect being confined to only one parasegment.  

To clarify whether bowl is required solely in PS11 or in both PS10 and PS11, we 

could perform a lineage-tracing experiment in bowl mutant gonads where PS10 cells are 

GFP-labeled. If we find a similar number of GFP+ hub cells specified in bowl mutants 

compared to controls when PS10 SGPs are indelibly marked, this would suggest that 

bowl activity within PS10 is not responsible for hub cell fate, and bowl acts solely among 

PS11 cells. If however, there is a reduction in the number of GFP+ hub cells in bowl 

mutants compared to controls, this would suggest that bowl activity is also required 

within PS10 cells for proper hub specification. This would clarify whether bowl is 

required solely in PS11 or if its activity in both PS10 and PS11 SGPs contributes to 

proper hub cell specification.  

Finally, if we find that Bowl is only required in PS11, it still remains unclear how 

a subset of these SGPs begin to accumulate Bowl. It is possible that regional parasegment 

identity set up during early embryogenesis is responsible for the differential accumulation 
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of Bowl. We could test a series of downstream targets of these early embryonic 

regulators to determine if they influence Bowl accumulation uniquely in PS10 versus 

PS11 SGPs. If however, we find that both PS10 and PS11 SGPs require bowl activity to 

become hub cells, it is possible that Notch activation triggers Bowl accumulation in those 

cells fated to become hub. However, given the difficulty in detecting bowl protein and 

mRNA expression in the gonad, these predictions are difficult to test with current tools.  

 

bowl likely functions as a repressor  

 Bowl is a known transcriptional regulator and can potentially function as an 

activator or a repressor. Although its role as an activator has yet to be functionally 

proven, it has been shown to function as a repressor by recruiting the co-repressor, 

Groucho (60). We examined the relationship between bowl and gro in the process of hub 

cell specification by analyzing testes partially depleted for lines (therefore excess Bowl) 

and gro. We observed a significant increase in hub cell number in lines/+;gro/+ 

transheterozygotes and found that there was a genetic interaction between the two (Figure 

3.11). Since more hub cells are specified in this partially depleted genetic background 

with excess Bowl, our data could suggest that Bowl normally functions as a repressor to 

restrict cyst cell fate. 

To determine if bowl was functioning as a repressor we tested whether the 

interaction between Bowl and Gro was necessary for hub cell specification. Surprisingly, 

we found that overexpressing a Bowl missing its Gro interaction domain led to a 

statistically significant decrease in hub cell number (Figure 3.12 B). Upon closer 

examination, we believe that bowleh1- may function as a dominant negative, interfering 
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with the normal activity of Bowl. It is thought that Bowl recruits Gro to silence gene 

expression (60). In the absence of this gro-interacting domain, bowleh1- binds to DNA, 

potentially supplanting normal Bowl. As a consequence, such target genes are no longer 

repressed and therefore more cyst cells are specified instead of hub cells. It is interesting 

that both hub cells and cyst cyst cells derive from the same precursor pool, since hub 

cells eventually function as the niche inducing some cyst cells to adopt stem cell fate. 

Thus, our data suggests that we have identified a pathway that regulates the early niche 

versus stem cell decision.  

 

Dissecting the interaction between the Notch and bowl pathways 

Although we were unable to confirm that Notch signaling regulates bowl activity 

in the gonad, this is still a very attractive and simple model. Since both pathways 

positively regulate hub cell specification, it is easy to speculate that Notch activity leads 

to bowl accumulation and therefore repression of cyst cell gene expression. In fact, bowl 

is required downstream of Notch to properly pattern the Drosophila leg (43, 65, 66). 

Even so, recent work from the Guerrero lab has shown that the two pathways can 

intersect indirectly at the level of the general co-repressor, gro (16).  

According to this alternative sequestration model, bowl binds gro via its eh1 

domain and can titrate it away from co-repressor complexes of the Notch, Hh and Wg 

pathways, causing derepression of target genes (16). Therefore, lines activity is critical to 

modulate proper nuclear bowl accumulation. In lines/+;gro/+ transheterozygous testes, 

we find that there is a strong genetic interaction, yielding a 50-60% increase in hub cell 

number (Figure 3.11). A simple way to interpret this data under the sequestration model 
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is that reduced gro sensitizes Notch target genes towards derepression, and that excess 

bowl accumulation then titrates residual gro definitively shifting the balance to 

derepression. Moreover, since it is not known what other pathway contributes to the 

process in addition to bowl and Notch, it is possible that ectopic expression of Hh or Wg 

targets, due to depleted gro, also promotes hub specification. This is especially 

interesting to posit since both Hh and Wg accumulate in this system, yet functional roles 

for the pathways have yet to be uncovered. Ultimately, although bowl could function as a 

repressor, given our data, we cannot rule out this potential secondary role of bowl in 

regulating hub specification: by modulating the amount of gro bound to repressor 

complexes.  

Finally, hub cells upregulate numerous genes, including upd and hh (48, 54, 93, 

172). Intriguingly, bowl regulates the expression of upd during gut morphogenesis and hh 

during retinogenesis (24, 81, 85). Therefore, it will be of interest to determine which 

genes are regulated by bowl in this system and how this regulation leads to differential 

cell fate specification. 

 

Materials and Methods 

Fly stocks 

Heterozygous siblings or w1118 were used as controls as appropriate. We analyzed 

gonads and testes from the following mutants, or involving these transgenic lines: gro1 

(FBal0005217), lines2 (FBal0011651), linesG2 (FBal0117449), drm3 (Fbal0121796), 

bowl1 (Fbal0051737), esgG66 (63), bowl1esgG66, lines2esgG66, Uas-lines-myc #8 III, 

Uas-bowl-flag, Uas-bowl-flag #21 (Victor Hatini, Tufts University), upd-Gal4 Uas-GFP 
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(Erika Bach, NYU), paired-Gal4 (FBal0048793), UasNICD (58), Twist24B-Gal4 (A gift 

from Ruth Lehmann, Skirball Institute), Tj-Gal4 (DGRC, Kyoto Institute of Technology, 

Japan). Stocks were balanced over CyO P[w+ Ubi-GFP] or TM6 Hu P[w+ Ubi-GFP]. 

 

Immunostaining 

Embryos were collected on apple agar plates and aged 22-24 hours in a 

humidified chamber to 1st instar larvae. Hatched larvae were dissected in half with 

tungsten needles in Ringers solution and the internal organs were gently massaged out. 

Unhatched larvae were dechorionated, hand-devitellinized and dissected as above. Tissue 

was fixed in 4% formaldehyde, Ringers and 0.1% Triton-X-100 for 15 minutes, washed 

in PBTX and blocked one hour at room temperature in 2% normal donkey serum/normal 

goat serum. Primary antibodies were used overnight at 4°C. Secondary antibodies were 

used at 1:400 (Alexa488, Cy3 or Cy5; Molecular Probes; Jackson Immuno Research) for 

1 hour at room temperature. DNA was stained with Hoechst 33342 (Sigma) at 0.2 µg/ml 

for 2 minutes.  

 Immunostaining for testes was performed as previously described except 1X PBS 

was substituted for Buffer B (169). For embryo studies, embryos were collected, aged for 

the appropriate time in a humidified chamber, fixed in 4% paraformaldehyde and heptane 

for 15 minutes and devitellinized with methanol. 

 The following primary antibodies and concentrations were used: rabbit anti-Vasa 

1:5000 (Ruth Lehmann, Skirball Institute), goat anti-Vasa 1:400 (Santa Cruz), chick anti-

Vasa 1:5000- 10,000 (K. Howard, University College London), guinea pig anti-Traffic 

Jam 1:10,000 (Dorothea Godt, University of Toronto), mouse anti Fascilin III 1:25 

(Developmental Studies Hybridoma Bank), mouse anti-flag 1:1000 (Sigma, pre-absorbed 
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on embryos for 1 hr at RT), mouse anti-βgal 1:10000 (Promega), chick anti-GFP 1:1000 

(Aves Labs), rabbit anti-myc 1:1000 (Santa Cruz), rabbit anti-bowl 1:5000 (Victor Hatini, 

Tufts University, pre-absorbed on embryos for 1 hr at RT); rabbit anti-bowl 1:2000 

(Sarah Bray, University of Cambridge), guinea pig anti-oddskipped 1:1000 (John Reintiz, 

SUNY); rabbit anti-STAT 1:1000 (Erica Bach, NYU), rat anti-Filamin-N terminal 1:1000 

(Lynn Cooley, Yale University; recognizes full length isoforms), rat anti-Filamin-C 

terminal 1:1000 (Lynn Cooley; recognizes C-terminal isoform), mouse anti-1B1 1:20 

(DSHB). 

 

Sex identification, genotyping and staging of embryos 

Male embryos were unambiguous due to larger size of the gonad. Balancer 

chromosomes containing a GFP-transgene P[w+ TM6 Hu Ubi-GFP] or P[w+ Ubi-GFP] 

were used to distinguish between heterozygous and homozygous mutant larvae. Embryos 

were staged according to Campos-Ortega and Hartenstein (32).  

 

In situ hybridization 

Digoxigenin-labeled probes (not size-reduced) were synthesized from cDNA 

plasmids obtained from the BDGP collection or the DGRC. In situ hybridizations were 

performed as described in Terry et al. (169). An anti-dig-AP antibody 1:1000 (Roche, 

pre-absorbed on embryos for 1 hr at RT) was used and the signal was developed with 

NBT/BCIP. 

 

Counting the number of hub cells and germline stem cells 

To count hub cell number, larval gonads were stained as needed, and also with 

anti-Filamin and Hoescht, and z-stacks were obtained through the depth of the gonad 
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using a Zeiss Axioplan with an ApoTome attachment. Nuclei that were surrounded by a 

Filamin signal were counted as hub cells. 

To count germline stem cells, larval gonads were double stained with anti-Vasa 

and anti-STAT or anti-1B1 antibodies. Germ cells that were directly adjacent to the hub 

and that accumulated STAT protein or had a dot spectrosome were scored as stem cells.  
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Summary 

The studies presented here provide greater insight into the initial specification of 

niche cells in an in vivo stem cell system. The stem cell biology field has just begun to 

truly appreciate the importance of niche cells in regulating stem cell behavior. Although 

it is appealing to study niche cells in mammalian systems, complicated tissue architecture 

has proven difficult in the quest to unambiguously identify stem cells and their supportive 

niche cells. Therefore, seminal studies expanding our knowledge of stem cell-niche 

systems have been carried out in invertebrates, such as C.elegans and Drosophila. Here, 

we have taken advantage of the Drosophila male germline system to conclusively 

identify two pathways necessary to promote niche cell fate: the Notch and bowl 

pathways. Given the evolutionary conservation of the pathways employed in specifying 

hub cells in the Drosophila testis, basic principles learned may be applicable to the 

development of niche cells in higher organisms, once they have been conclusively 

identified. In the following discussion, I will attempt to place my work into the greater 

context of the field and provide a series of follow-up studies targeted to address a number 

of remaining questions in the future.  
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A model for niche cell specification in the Drosophila testis 

 From my work, we have established a working model of hub cell specification in 

the Drosophila testis (Figure 4.1). First, the endodermally-derived posterior midgut 

(PMG) presents Delta, leading to Notch activation in some SGPs as they are carried over 

these endodermal cells during germ band retraction. At present, the mechanism guiding 

Notch activation remains unclear as well as how many SGPs become Notch-activated 

during this activation process [this work; (97)]. Given the lack of conclusive localization 

data for bowl, it is difficult to determine when bowl is required in this system for hub cell 

specification and its relationship to the Notch pathway. However, for the sake of a 

simplified model, we propose that it is required in SGPs after Notch activation, in the 

second step of this process. Interestingly, however, bowl activity only appears to 

contribute to ~50% of the total number of hub cells specified. This may indicate that 

another pathway is required downstream of Notch activation.  

Third, after gonad coalescence the Notch-activated cells must then migrate 

anteriorly (97, 110). No cues have yet been identified that guide this anterior migration. 

In the fourth step of this process, Notch-activated cells compact at the anterior of the 

gonad and are anchored at the anterior pole via integrin-mediated adhesion (165). These 

cells also undergo a mesenchymal-to-epithelial transition (MET), as evidenced by the 

upregulation of cell adhesion molecules and preferential associations between hub cells 

(46, 110). However, it remains unclear if this MET is required for hub cells to terminally 

differentiate and to express genes indicative of niche cell fate. Finally, as the stem cell-

niche system is established, the hub cells induce Upd expression and recruit neighboring 
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cells to adopt stem cell fate (153). It remains unclear, however, how upd gene expression 

is initiated in hub cells. 

 

Endoderm induction of mesodermal SGPs 

 Presentation of Delta from neighboring PMG cells activates Notch in a subset of 

SGPs inducing hub cell specification. Since the PMG is an endoderm derivative and 

because SGPs are mesodermally-derived, this indicates that a cross-germ layer signaling 

mechanism is at play. In vertebrates, such as the mouse, zebrafish and Xenopus, as well 

as in Drosophila, it is known that conserved signaling inputs from the mesoderm induce 

endoderm specification and differentiation [(33); Reviewed in (164)]. Now it also appears 

that the reverse is true: an inductive signal from the endoderm can cause mesodermal 

cells to differentiate into a specialized cell type: hub cells.  

In fact, recent work in the chick shows that endoderm and mesoderm reciprocal 

signaling establishes pancreatic progenitor cells, those cells that will differentiate into 

mature cells of the pancreas (89). In the chick embryo, angioblasts (the cells from which 

blood vessels arise) reside in the mesoderm and adjacent to the gut endoderm from which 

pancreatic progenitors arise. Angioblasts, which are attracted to the endoderm via 

chemokine signaling, signal back to the gut endoderm inducing the expression of Pdx1, 

and establish the pancreatic cell fate. In the absence of proper signaling, neither the 

pancreas nor blood vessels develop normally. This work indicates that cross-germ layer 

signaling may be a more common phenomenon than previously appreciated. 

 Interestingly, our work may have parallels in regards to development of the 

mammalian spermatagonial stem cell niche. Similar to Drosophila, in mammals, the 
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primordial germ cells must migrate through the endoderm to reach the gonadal mesoderm 

(Figure 4.2) [Figure adapted from (105); Reviewed in (145)]. In Drosophila, this involves 

a series of steps that ultimately results in germ cells being repelled from the midgut and 

driven into the neighboring mesoderm (82, 83, 161, 195). Thus it appears that in fruitflies 

the endoderm plays two important roles in respect to germ cells. First, the endoderm 

delivers the germ cells to the somatic gonadal mesoderm. Second, this same endoderm 

specifies niche cells from among the somatic mesoderm wherein germ cells can 

subsequently develop into stem cells.  

Although the exact makeup of the mammalian spermatagonial stem cell niche has 

yet to be uncovered, it must in part derive from cells of the genital ridge, the mesodermal 

precursor to somatic gonads. In fact, undifferentiated spermatagonia (among which are 

spermatagonial stem cells, SSCs) lie along the basement membrane of seminiferous 

tubules and in close contact with somatic Sertoli cells (167). This hints that important 

regulatory cues emanate from at least a subset of these mesodermally-derived Sertoli 

cells to maintain SSCs. Given that the endoderm also exercises elaborate control over 

germ cell migration in mammals, it will be interesting to determine if it plays an 

additional role in specifying the niche cells for this germline stem cell system.  

 

Notch signaling regulates a binary cell fate decision to specify hub cells 

Our data, as well as work from Kitadate and colleagues (97), show that Notch 

signaling is necessary to specify hub cell fate during gonadogenesis. In the absence of 

Notch activity we find that only cyst cells are specified, suggesting that these cells are the 

default cell fate. Since SGPs give rise to both hub cells and cyst cells, Notch activity acts 
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to regulate this binary cell fate decision. This is not a novel role for Notch, as it regulates 

cell fate choices in many developing systems. One of the most well studied examples is 

found in the Drosophila peripheral nervous system (PNS).  

In the fruitfly PNS, a sensory organ precursor (SOP) cell ultimately gives rise to 

four daughter cells: shaft, socket, sheath and neuron (Figure 4.3) [Reviewed in (26); 

(71)]. Notch activity is required to regulate the two lineage decisions in this process. Its 

activity first distinguishes the “a” versus “b” cell fate in daughter cells arising from the 

SOP, and then it is necessary for one of the progeny resulting from a “b” cell division to 

develop as a glial cell. At each step, Notch is activated in only one daughter cell, due to 

the activity of the asymmetrically inherited protein, Numb (144, 173). Numb antagonizes 

the Notch receptor, so that in its presence, Notch activity is inhibited (55, 160). The 

absence of Notch activity at any point in this process results in the specification of the 

default cell fate. 

Although the two systems are similar in that a lineage decision occurs, there are 

also some differences observed. First, SGPs do not undergo cell divisions to give rise to 

daughter cells that will adopt differential fate, as SOPs do. Instead, Notch is 

stochastically activated in a subset of cells among the pool of initially specified SGPs. 

Second, given that SGPs do not divide, asymmetric segregation of Numb may not occur. 

It is possible that Numb accumulates in some SGPs, however, to date, Numb has only 

been observed during asymmetric cell divisions [Reviewed in (62)]. Interestingly though, 

recent work in the murine neural stem cell niche (4) has shown that EGFR antagonizes 

Notch activity by upregulating Numb protein cell autonomously. Given that EGFR 

signaling acts to restrict hub cell specification (97), this may hint that it does so by 
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upregulating Numb protein in EGFR-activated SGPs. This will be an interesting idea to 

test in the future.  

 

Developmental relationship between hub cells and cyst cells 

The early developmental decision initiated by Notch and bowl signaling is critical 

because it ultimately determines whether SGPs will eventually adopt niche fate− as hub 

cells, or stem cell fate− as cyst stem cells. During niche establishment, hub cells coalesce 

as an epithelium at the anterior of the gonad and induce Upd expression and other 

markers of hub cell fate (110, 153, 165). Those cyst cells that lie adjacent to the hub, and 

thus closest to the upd signal, likely adopt cyst stem cell (CySC) fate. Although likely to 

be induced by Jak-STAT pathway activity, it remains an open question how and when 

CySCs are specified in this system. Even so, the need for tight regulation of hub cell 

number remains, so as not to induce the specification of too many stem cells. 

The developmental relationship between a stem cell and its supportive niche cell 

is interesting. Recent work has shown that several stem cells can give rise to their niche 

cells. Examples include the production of transient niche cells in the Drosophila intestine 

and the production of Paneth cells in the mammalian intestine (119, 146). In our system, 

the developmental relationship between hub and CySC could hint at the plasticity of 

these cells in the adult testes, where they could replenish each other, if necessary. The 

hub cells and CySCs reside in close proximity to each other at the testis tip, therefore it is 

not hard to imagine that they could signal to each other, prompting a cell fate switch to 

properly maintain the tissue. In fact, a recent study from Voog et al., suggested that 

CySCs could generate new hub cells in adult testes under wild-type conditions (177). 
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However, follow-up studies from our lab show that this phenomenon is rare in wild type 

testes (48). Moreover, decreasing the gene dose of lines (which promotes cyst cell fate), 

also does not affect CySC conversion to hub cells. However, it is important to note that 

CySCs depleted for lines in the adult testis revert to partial hub character (48). Therefore, 

hub-to-cyst cell or cyst cell-to-hub conversion could still potentially occur in extreme 

cases of tissue damage. It will be interesting to test this hypothesis in the future. 

 

Hub cell number regulation 

How hub cell number is tightly regulated remains an open question. Interestingly, 

it appears that Notch-activated SGPs are found at all positions within the gonad and are 

not simply confined to PS10 or PS11. Our work suggests a “salt and pepper” speckling of 

Notch-activated SGPs, while Kitadate et al., report that all SGPs become activated for 

Notch (97). Whatever the case, this data still suggest that a regulatory mechanism is in 

place to limit the number of SGPs that take on hub cell fate.  

In our hands, we find that only a subset of SGPs become Notch-activated and 

therefore adopt hub fate. Perhaps, hub cell number is initially limited by the number of 

SGPs that can be activated as they transiently pass the Delta-expressing posterior midgut 

(PMG) cells. In this regard, the surface area of the PMG or the amount of time SGPs are 

in contact with PMG cells might account for the normally observed fluctuations in hub 

cell number. We can test this hypothesis by analyzing mutants that affect the size of the 

PMG. One such candidate is a caudal mutant.  

In Drosophila, the digestive system is divided into three parts: the foregut, the 

midgut and the hindgut (Figure 4.4) [Figure adapted from (70); Reviewed in (113)]. 
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Caudal is initially expressed in the primordia that gives rise to both the midgut and 

hindgut but is only necessary for the internalization and maintenance of the hindgut 

primordium, which lies adjacent to the developing PMG (188). Perhaps, the absence of 

the hindgut in these mutants would lead to an increase in the size of the PMG. A larger 

PMG (and therefore more PMG cells) could lead to an increase in the number of SGPs 

that encounter Delta, and thus become Notch-activated. Decreasing the size of the PMG 

and therefore the number of PMG cells encountering SGPs could have the reciprocal 

affect, in reducing hub cell number. In fact, our data already show that preventing the 

internalization of the PMG and thus contact with SGPs, in fog mutants, leads to a 

decrease in hub cell number. 

Although, it may prove difficult to modulate the contact time between PMG cells 

and SGPs and still maintain the integrity of the tissue, this remains a plausible hypothesis 

for regulating hub cell number. Increased contact time between cells would allow for 

more productive signaling and potentially an increase in Notch-activated SGPs, resulting 

in higher hub cell number.  

However, even with a PMG-specific regulatory mechanism in place, too many 

hub cells could still be specified. As mentioned above, active EGFR signaling in 

posterior SGPs acts to restrict hub cell fate. Therefore, it is likely that the antagonistic 

affects of EGFR signaling accounts for some of this observed variation. Although it is not 

clear how EGFR becomes activated in posterior SGPs or how pathway signaling 

antagonizes Notch activity (97), it is clear that in the absence of EGFR pathway activity, 

a substantial increase in hub number is observed. It will be important to dissect the 

interactions between the pathways in the future.  
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Is bowl required specifically in PS11 SGPs for hub cell specification? 

 Our data reveal that there is an ~50% reduction in hub cell number in bowl 

mutants. Furthermore, preliminary data suggests that bowl activity is required specifically 

within PS11 SGPs for proper hub cell specification. Given that hub cells derive from both 

PS10 and PS11, this would also suggest that these parasegments contribute a relatively 

equal number of SGPs for eventual hub cell fate. If bowl is indeed only required in PS11, 

then it is interesting to ponder how bowl is uniquely regulated in this subset of SGPs.  

 One way to address this question is to assess the upstream regulators in each of 

the parasegments and determine if differential regulatory mechanisms result in distinct 

gene expression. The fly body is patterned as a series of segmental units (Figure 4.5) 

[Figure taken from (7)]. A host of genes control early embryonic development and are 

required to lay out a properly segmented body plan, which consists of fourteen 

parasegments [Reviewed in (136)]. One such class of genes is the pair-rule genes, which 

act to define alternating parasegments in the embryo (Figure 4.6) [Figure taken from (6); 

(131)]. 

The fact that hub cells derive from both an even (PS10) and an odd (PS11) 

parasegment may indicate that they initially have distinct cellular identities, controlled by 

the expression of the pair-rule genes. For example, the pair-rule gene paired (prd) is 

responsible for establishing odd-numbered parasegments, while fushi tarazu (ftz) is 

responsible for establishing even-numbered parasegments (78, 131). Perhaps, expression 

of distinct target genes downstream of these pair-rule genes in the parasegments accounts 

for bowl repression in PS10, but accumulation in PS11. If this is indeed the case, this 

could suggest that bowl accumulation in SGPs is independent of Notch activation. It 
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would also suggest that this separate and earlier input is ultimately required for hub cell 

specification. If, however, bowl does accumulate in response to Notch activation, it still 

remains possible that a uniquely expressed factor in PS10 SGPs represses bowl activity or 

that a uniquely expressed factor in PS11 SGPs allows bowl activity. In the future, it 

would be of interest to assay downstream targets of the pair-rule genes to determine if 

this early regional identity potentiates hub cell fate. 

 

Niche cell migration  

 The hub is found at a stereotyped position at the anterior of the gonad and is 

anchored there via integrin-mediated adhesion (110, 165). Since Notch-activated SGPs 

−presumptive hub cells− are found in all positions throughout the gonad, these cells must 

migrate to the anterior and compact to form a functional niche. The cues that guide this 

anterior migration and compaction have yet to be identified. Recent live imaging data 

from our lab show that at least PS11 SGPs migrate anteriorly to join the hub, confirming 

that a directed migration indeed occurs (Wingert, unpublished results). It also appears 

that the presumptive hub cells migrate individually, rather than as a collective unit, 

suggesting that the cells are mesenchymal in nature. Perhaps, a combination of attractive 

cues from the anterior pole and repulsive cues from the posterior pole promote the 

directed migration of Notch-activated cells. I will discuss potential guidance cues in the 

next section.  

 Typically, in cell migration, remodeling of the actin cytoskeleton occurs. Actin-

rich protrusions extend from the front of the cell in the direction of the gradient, driving 

migration, and actomyosin filaments generate contractile forces at the sides and rear of a 
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cell [Reviewed in (19)]. A recent model predicts that actin polymerization at the front of 

a cell is regulated by Rac, while actomyosin contractility at the rear is regulated by Rho, 

two members of the Rho family of GTPases (140). It would be interesting to assess the 

localization of Rac and Rho in migrating Notch-activated cells via live imaging of the 

fluorescently-labeled proteins. Stereotypical accumulation of the proteins in migrating 

cells should hint at the direction and/or location of the guidance cue. It would also be of 

interest to assess the migration of Notch-activated cells in these mutants via live imaging 

to determine if Rac and Rho GTPases are indeed necessary for this process.  

 

Potential cues guiding hub cell migration 

A recent mutagenesis screen performed by the Van Doren lab has uncovered 

several previously unknown genes required for proper gonad formation (185). One 

particularly interesting finding is that the Slit/Roundabout (Robo) pathway plays an 

essential role in this process, promoting the fusion of the three SGP clusters, from PS10-

12, and gonad compaction. The Slit/Robo pathway is best known for its role in regulating 

axon guidance in Drosophila, but also regulates cell migration in the trachea, salivary 

gland and heart tube (49, 91, 101, 116). Slit, a secreted protein, can act as an attractive or 

repellant signal and functions as a ligand for the three Robo receptors in Drosophila, 

Robo, Robo2 and Robo3 (91).  

In Weyers et al., the authors observed Robo and Robo2 accumulation on SGPs in 

the gonad beginning at stage 13, with the levels increasing as gonad coalescence 

proceeded (185). Intriguingly however, Slit does not accumulate in the gonad or in 

immediately surrounding tissues, so the source of Slit still remains unclear. Potential 
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sources of Slit, identified by immunostaining and enhancer trap analysis, include the CNS 

midline, the ectoderm at muscle attachment sites and the gut. This is interesting because 

the gut already plays a critical role in hub cell specification by presenting the Notch-

activating ligand, Delta. Perhaps, the gut also secretes the ligand, Slit, and provides a 

directional cue to guide Robo-expressing, Notch-activated cells to the anterior of the 

gonad. Additionally, since the affect on hub cell specification was not assayed in these 

mutants, it will be interesting to determine if loss of Slit or the Robo family of receptors 

influence hub cell number.   

 

A delay in niche cell gene expression 

SGPs become Notch-activated during stages 11 and 12 of embryogenesis, yet the 

hub cell gene expression program is not initiated until several developmental stages (and 

hours) later. This data suggests that the identity of early Notch-activated cells is slightly 

different than the identity of terminally differentiated hub cells, which express markers of 

niche cells (such as upd and escargot) (110). However, it is not understood how early 

Notch-activated cells transition to fully functional niche cells and why there is a delay in 

the initiation of hub cell gene expression. 

It is interesting to ponder what these cells are doing after they become Notch-

activated, but before functioning as a niche. It is possible that Notch activation leads to a 

series of downstream events that prepares these cells for their eventual hub fate, which 

happens over a course of a few hours. Once it is time for the cells to function as a niche, 

an internal signal simply induces the hub cell gene expression program. Alternatively, 

maybe Notch-activation potentiates these cells to develop as hub, but only contact with 
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other Notch-activated cells allows them to differentiate as functional niche cells. This is 

an intriguing thought, because data show that hub cell gene expression only occurs after 

cells compact at the anterior of the gonad and upregulate several cell adhesion and 

cytoskeletal molecules, such as Fascilin 3, Filamin, DN-Cadherin and DE-Cadherin (110, 

165). The upregulation of these molecules hints at a mesenchymal-to-epithelial transition 

(MET) occurring within hub cells.  

 It is possible that hub-hub association could initiate intercellular signaling and 

lead to a MET. If epithelialization is a prerequisite for hub cell gene expression, we could 

assay a series of mutants that disrupt MET, such as β-catenin −a known adherens 

junction protein− to determine if the transition is required for terminal hub 

differentiation. In mutants where MET is disrupted, we would assay escargot or upd 

expression as a readout of functional niche cells. A mechanism such as this, where 

Notch-activated cells first have to find each other, adhere, and coalesce at the anterior 

before the hub can function as a “true” niche, would prevent precocious or erroneous 

stem cell specification within the gonad.  

 

Identifying Notch target genes required for hub cell specification 
 

Now that we know that Notch activity specifies hub cells, we can begin to look 

for Notch targets, which function downstream of the pathway and which might also serve 

as useful markers for early hub cells. Our data show that Notch activity is absolutely 

necessary for hub cell specification, while bowl contributes to ~50% of this process. 

Although it remains unclear in our system if bowl accumulates downstream of Notch, it is 

a plausible hypothesis since it does so in other developmental contexts (43, 66). Even so, 
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this data suggests that there is another pathway at play, and that this pathway should act 

downstream of Notch for hub specification.  

Given that Suppressor of Hairless (Su(H)), functions as the Notch responsive 

transcription factor, it would be fruitful to scan a list of Su(H) targets to determine if any 

function downstream of Notch in hub cell specification (151). The Enhancer of Split, 

E(spl), complex of genes are probably the best characterized Notch targets. The E(spl) 

locus includes seven genes that encode related basic helix loop helix proteins (47, 100). 

During neurogenesis, these genes function as repressors and primarily act by suppressing 

genes of the achaete-scute pro-neural complex (76, 133). Given the characteristic 

upregulation of E(spl) complex genes downstream of Notch, it would therefore be 

interesting to determine if these genes play a role in hub specification. A deficiency line 

exists which uncovers all seven genes of the cluster. Analyzing this line first would easily 

allow us to determine if the complex plays a role. If we find that hub cell number is 

affected, we can then scan individual E(spl) complex mutants to narrow down the 

responsible gene.   

Additionally, recent chromatin immunoprecipitation (ChIP) data, published by the 

Bray lab, identifies a number of direct Su(H) target genes, some previously known and 

many unknown (102). The short-term transcriptional response to Notch activation was 

assessed in DmD8, a Drosophila adult muscle progenitor cell line. Over 200 genes were 

found to be upregulated in response to Notch activation in these cells. Scanning this list 

may allow us to identify and test promising candidates that regulate hub cell specification 

downstream of Notch signaling. This could also aid in the recognition of individual 

presumptive hub cells before they coalesce into an epithelium at the anterior. 
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Interestingly, both positive and negative regulators of the EGFR pathway were found to 

be upregulated. This may suggest that in our system, Notch activated cells directly inhibit 

EGFR pathway activity, allowing hub cell fate.  

 

Does Bowl function as a repressor to regulate hub cell specification? 

 Our data suggest that Bowl functions as a repressor to regulate hub cell 

specification. We arrived at this preliminary conclusion given the result of 

overexpressing a bowl protein with a deleted eh1, groucho-interacting domain. We found 

that overexpression of this protein within SGPs caused a decrease in hub cell number, 

while overexpressing a wild-type version of bowl increased hub cell number. This 

suggested that under normal circumstances, the interaction with the co-repressor gro was 

necessary for hub cell fate. It also suggested that the bowl-eh1- protein was potentially 

behaving as a dominant negative and interfering with normal Bowl activity. To confirm 

these results, it would be necessary to assess the behavior of bowl-eh1- in another tissue. 

A prime candidate tissue is the Drosophila dorsal epidermis. In this tissue, bowl regulates 

the proper specification of three dorsal cell fates (73). If overexpressing this protein leads 

to a dominant negative phenotype, we would observe a dorsal epidermal cell pattern that 

looks more similar to a bowl null mutant.  

 If Bowl does indeed function as a repressor −to restrict cyst cell gene expression 

and to promote hub cell fate− it will be clarifying to determine its downstream targets. In 

several tissues, bowl positively regulates the expression of genes such as unpaired and 

hedgehog, however, it remains unclear which genes bowl directly regulates (24, 81, 85). 

Given that Bowl likely functions as a repressor, it may be difficult to narrow down direct 
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targets that promote hub cell fate, since Bowl will probably repress the expression of a 

repressor of a hub gene. Still, it remains interesting that upd and hh are regulated by bowl 

in other contexts, since they are both expressed uniquely in hub cells. Moreover, it would 

be useful to identify the targets that Bowl represses to prevent cyst cell fate, since this 

regulation may be more direct. Potential candidate genes include Traffic jam (Tj) and 

Zinc-finger homeodomain-1 (Zfh-1). These proteins, which are initially expressed in all 

SGPs, are downregulated in the hub and become restricted to cyst cells in the mature 

adult niche (28, 112). Perhaps, Bowl represses the expression of Tj and Zfh-1, allowing 

hub cells to be specified. 

 

Potential applications in regenerative medicine 

 Ultimately, researchers seek to apply the knowledge learned from stem cell model 

systems to develop therapeutic treatments for a number of diseases. Therefore, an 

understanding of the basic principles guiding stem cell biology is critical. Since many 

signaling pathways are conserved from flies to humans, the pathways that I have 

uncovered that regulate niche cell specification in the Drosophila testis may also act to 

specify niche cells in the mammalian testis. If so, these signaling pathways could be 

targeted by pharmacological agents to stimulate stem cell production or continued stem 

cell self-renewal in male patients suffering from infertility. 

 

Concluding Remarks 

In this work, I have taken advantage of the Drosophila germline stem cell niche to 

understand the development and specification of an in vivo stem cell-niche system. 
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Though this story is far from complete, our work provides an in-depth mechanistic 

insight into the specification of niche cells in a stem cell system. In the future, it will be 

of great interest to understand how these niche cells begin expressing factors critical to 

specify and maintain stem cells. Although, the exact make-up of stem cell-niche systems 

vary from tissue to tissue and among organisms, basic principles learned here may be 

applicable to the process of niche cell specification in higher organisms.  
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Figure 4.1: 
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Figure 4.1: A model for niche cell specification in the Drosophila testis 

(A) SGPs (white) that originate from parasegments (PS) 10-12 become Notch-activated 

as they passively travel by Delta-expressing PMG cells (orange) during germ band 

retraction. (B) During early gonad coalescence, germ cells (red), Notch-activated SGPs 

(black) and non-Notch-activated SGPs (white) form a contiguous tissue. During the 

transition from early to late gonad coalescence, it is possible that components of the bowl 

pathway become active. Drumstick activity in a subset of Notch-activated cells allows 

nuclear bowl accumulation and these SGPs begin to differentiate into hub cells (green). 

The activation of a yet unidentified pathway, likely downstream of Notch, also allows 

SGPs to differentiate into hub cells (yellow). Those cells that accumulate the bowl 

antagonist, lines, differentiate as cyst cells (light blue). (C) During late gonad 

coalescence, hub cells (green and yellow) must migrate towards the anterior and are 

anchored at the anterior pole via integrin-mediated adhesion. Sox100B-positive male-

specific SGPs (brown) also join the gonad. (D) During the last stage of embryogenesis, 

stage 17, the hub cells (green and yellow) execute a mesenchymal-to-epithelial transition, 

upregulate cell adhesion molecules and induce Unpaired expression, establishing 

germline stem cells (GSC, purple) and possibly cyst stem cells (CySC, dark blue).  
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Figure 4.2: 

 

 

Figure 4.2: Germ cell migration in mammals and Drosophila 

Mammals and flies share strikingly similar mechanism of germ cell migration and gonad 

formation. Germ cells are shown in yellow, the endoderm in orange and the somatic 

mesoderm in green. In mammals after germ cells are specified, they migrate from the 

primitive streak to the endoderm. They then migrate bilaterally towards the body wall and 

finally reach the genital ridge (somatic mesoderm) where they form a gonad. In 

Drosophila after specification, primordial germ cells are carried into the embryo by the 

midgut primordium. The germ cells then migrate through the endoderm (specifically the 

midgut) and reorient on the midgut towards the mesoderm. The germ cells then migrate 

bilaterally towards the somatic gonadal precursors (SGPs, mesoderm derivatives) and 

finally coalesce with SGPs to form the gonad. [Modified from a figure in (105)] 
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Figure 4.3: 

                    

 

Figure 4.3: Asymmetric division in the SOP lineage 

The adult mechanosensory lineage in Drosophila. A sensory organ precursor (SOP) 

undergoes a series of asymmetric divisions to give rise to four differentiated daughter 

cells: a socket, shaft, sheath and neuron. This asymmetric division is mediated by lateral 

inhibition of the Notch pathway, such that cells that receive Numb (red dots) remain 

unresponsive to Notch activation, while those that do not accumulate Numb become 

Notch-activated. At each stage, this lateral inhibition mediates a competitive interaction 

that forces adjacent cells to adopt different cell fates. 
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Figure 4.4: 

Figure 4.4: The Drosophila digestive system 

The Drosophila digestive system through stages 7-13 of embryonic development. The 

digestive system is divided into three parts: the foregut (in stages 11-13, blue at the 

anterior), midgut (red) and hindgut (in stages 7 & 9, blue; in stages 11-13, blue at the 

posterior). The midgut and hindgut primoridia, which lie adjacent to each other, begin 

invaginating during stage 7 and complete this process by stage 9. The foregut primordial 

invaginates during stage 10 (not shown) and attaches to the midgut at the anterior. During 

stages 11-13, migration and reorganization of the gut structures occur. According to our 

model, somatic gonadal precursors migrate past midgut cells and are activated for Notch 

during germ band retraction (stages 11 and 12). [Figure modified from (70)] 
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Figure 4.5: 

        

Figure 4.5: Segmentation of the Drosophila embryo and larva 

The parts of the embryo that become organized into segments are shown in color and 

their corresponding segments are shown in the larva. The embryo can be divided into 

segments as well as parasegments, which often correspond to patterns of gene expression. 

The relationship between the two is shown in the middle of the diagram. [Figure taken 

from (7)] 
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Figure 4.6: 

 

 

Figure 4.6: Pair-rule gene expression defines segments in the Drosophila embryo 

Subdivisions of segments and parasegments are illustrated across the top of the diagram. 

The diagram shows the pattern of transcription for four of eight known pair-ruled genes, 

which are required in alternating parasegments for proper embryo segmentation. The 

shaded grey regions illustrate where transcription of these genes occur. The combination 

of pair-rule gene activity regulates segment polarity genes, such as engrailed (green), 

which allows for finer patterning of individual segments. [Figure taken from (6)] 
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TOWARDS UNDERSTANDING HUB CELL GENE 
EXPRESSION IN THE DROSOPHILA TESTIS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

	   141	  

Summary 

 We have shown that both the Notch and bowl pathways influence hub cell 

specification in the Drosophila gonad. However, it still remains unclear how the hub cell 

gene expression program is initiated in newly specified hub cells. In an attempt to 

understand hub cell gene regulation, we have identified an ~1.5kb region of the hedgehog 

(hh) promoter, which drives selective hub expression. Within this stretch of DNA exist 

four evolutionarily conserved regions, which could control hh expression in the hub. To 

narrow down the DNA regions critical for selective hub expression, we have made a 

series of transgenic fly strains, individually deleting each conserved region. This analysis 

will hopefully allow us to define smaller DNA regions responsible for hh hub expression, 

which could ultimately implicate regulatory transcription factors.  

 In a complementary approach we sought to identify candidate transcription factors 

that may bind to and regulate hub-expressed genes. One such transcription factor that 

could regulate hub cell gene expression is bowl. Two hub-expressed genes, unpaired 

(upd) and hh, are regulated by bowl in other contexts during Drosophila development. 

Moreover, preliminary data suggests that bowl regulates the expression of upd in hub 

cells. In the future, it will be of interest to further define the role of bowl and other 

transcription factors in regulating the hub cell gene expression program. 
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Introduction 

 Niche cells play a critically important role in regulating stem cell behavior in all 

stem cell-niche systems [Reviewed in Morrison (126)]. These cells produce various 

signals that activate pathways in neighboring stem cells allowing them to self-renew and 

to be maintained within the niche. Although these niche cells have a fundamental 

supporting role for stem cells, we are just beginning to understand how these cells are 

specified and develop. I have identified two signaling pathways that are necessary for 

proper niche cell specification in the Drosophila testis: Notch and bowl. However, it 

remains unclear how the hub cell gene expression program is initiated once these niche 

cells are specified.  

 To date, we have identified three genes that appear to be selectively expressed in 

hub cells in the male germline niche: pentagone (pent), unpaired (upd), and hedgehog 

(hh) (48, 54, 93, 172, 197). Pent encodes a putative secreted protein that regulates cell-

matrix interactions (179). It acts as a modulator of the BMP pathway to control GSC 

maintenance, such that pent mutant testes exhibit reduced GSC number (197). Although 

the exact mechanism of pent action in the testis niche is unknown, the role of upd in this 

system is well understood. 

The chemokine, upd, is secreted from hub cells and activates Jak-STAT signaling 

in neighboring germline and somatic cells, allowing them to be maintained as germline 

stem cells (GSCs) and cyst stem cells (CySCs), respectively (93, 153, 172). STAT 

activation in stem cells is necessary to ensure proper adhesion to the hub and in instances 

where it is lost, stem cells differentiate (79, 111). Given this important role in activating 
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the Jak-STAT pathway, functional hub cells have historically been defined by upd 

expression [Reviewed in (44)].  

Hh protein also accumulates in hub cells, however its role in the male germline 

niche has remained elusive (48, 54). Recently, the Schulz lab began studying the role of 

hh in the Drosophila hematopoietic niche (170). In an effort to identify and characterize 

the transcriptional enhancer that controls hh expression in the hematopoietic stem cell 

(HSC) niche, the authors developed a series of transgenic reporter fly lines encompassing 

DNA that spanned the entire hh gene as well as intragenic and upstream sequence. We 

obtained these fly lines from the Schulz lab and similarly tested each for selective hub 

expression. Intriguingly, we identified a hub-specific enhancer. The enhancer appears to 

lie within two overlapping regions of DNA that drive hh robustly within the hub. 

Although upd has a functionally important role in this system, we have not yet tried to 

narrow down an upd transcriptional enhancer region specific for hub cells. Therefore, we 

have chosen to explore the regulatory region of hh in an effort to identify the regions of 

DNA that might be necessary for selective hub cell expression. This approach would 

potentially allow us to determine which transcription factors bind and regulate hh gene 

expression. This knowledge could be extended to other hub-expressed genes since genes 

expressed in the same tissue are usually regulated through similar mechanisms (115). 

 To complement the aforementioned approach, we have also decided to take a 

candidate approach. Since bowl is a known transcription factor and is expressed in hub 

cells, we wondered whether bowl could regulate a suite of hub-specific genes. It is 

important to note that this would be a distinct role for bowl, separate from its requirement 

in specifying hub cells. Interestingly, bowl regulates the spatially localized expression of 
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upd during Drosophila gut morphogenesis and it controls the proper activation of hh 

protein during retinogenesis, though direct regulation has yet to be shown (24, 81, 85). 

Given the regulatory role bowl possesses over these genes in other developmental 

contexts, we wondered whether bowl also regulates the expression of these genes within 

the hub. Here, we show preliminary genetic data that suggests that bowl does indeed 

regulate upd expression. Although it still remains unclear if this regulation it direct, this 

provides a first step towards understanding the initiation of hub cell gene expression in 

the testis and provides promising insight into niche cell biology. 

 

Results 

Narrowing down the hh hub-specific enhancer region 

 Since we knew from previous work that hh  accumulates in hub cells (48, 54), we 

scanned transgenic reporter fly stocks that encompass 21kb of hh upstream and intragenic 

sequence, in an attempt to define a hub-specific transcriptional enhancer element (170). 

The 21kb region was split into seven 3kb intervals and each DNA fragment was fused to 

a GFP reporter (Figure A.1 A) (170). To determine if there was hub-specific hh 

expression in any of the reporter fly lines, we stained adult testes with Vasa to label germ 

cells and an antibody against GFP to detect reporter expression. We identified two 

overlapping regions of DNA that drove selective expression in the hub cells of adult 

testes, hhF5 and hhF6 (Figure A.1 B). These two 3kb regions lie within hh intragenic 

sequence between exon one and two and overlap by 1531 nucleotides (nt) precisely. I 

will refer to this overlapping region as simply hh1.5 for the remainder of the narrative.  
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 We hypothesized that a hub-specific enhancer existed within the hh1.5 fragment 

of DNA and decided to further define the enhancer element by comparing this sequence 

to other Drosophilid species using BLAST (Basic Local Alignment Search Tool). The 

genomes of twelve Drosophila species, ranging from ~2 to almost 40 million years in 

divergence, have been sequenced. It has been shown that conservation of particular 

regions of DNA among Drosophilids tend to be functionally important in controlling 

tissue-specific gene expression (61). In general, we expect to observe sequence 

conservation among closely related Drosophila species, while nucleotide conservation 

decreases as you scan more divergent Drosophilids. Typically however, conserved 

regions of DNA remain, even in divergent species, hinting that these sequences are 

constrained from diverging and thus functionally important. We therefore searched for 

blocks of DNA conservation in the hh1.5 fragment BLAST report that would imply that a 

region serves an important regulatory role in controlling hub-specific hh gene expression. 

We found that four regions were highly conserved among the Drosophila species (Figure 

A.2). The regions were 33 nt, 42 nt, 54 nt and 39 nt in length, respectively. 

 To further narrow down the DNA region responsible for hub-specific hh 

expression, we decided to make a series of transgenic GFP-reporter flies (Figure A.3). To 

first confirm that we could recapitulate hub Hh reporter expression as seen in the fly lines 

from the Schulz lab, we made a hhF6-GFP transgenic fly. Next, to determine if the hh1.5 

fragment was sufficient to drive selective hub expression, we also made a hh1.5-GFP 

transgenic fly. Within this hh1.5 fragment, we then constructed a series of deletions 

constructs by individually deleting each of the four conserved regions. We made the 

transgenic DNA constructs and these were sent off for injection to establish fly lines. 
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In the future, it will be of interest to test all of these lines and to determine which 

conserved regions within hh1.5, if any, control selective hh hub cell gene expression.  

 

bowl regulation of a hub-expressed gene 

 Given that bowl is a known transcriptional regulator and functions to regulate the 

expression of upd and hh in other developmental contexts, we decided to determine if 

bowl plays a role in regulating upd expression in the hub. We assayed the expression of 

upd using a reporter construct in larval gonads mutant for bowl compared to 

heterozygous sibling controls. We used an enhancer trap at the upd locus, upd-Gal4 Uas-

GFP, and stained larval gonads with Vasa to recognize germ cells, Filamin to recognize 

hub cells and an antibody against GFP. We then quantitated upd reporter expression by 

measuring the average pixel intensity of hub cells (see Materials and Methods). We found 

that there was a statistically significant decrease in upd hub expression in bowl mutant 

gonads compared to controls (Figure A.4). This data suggests that bowl regulates the 

expression of upd in hub cells during gonadogenesis. However, it still remains unclear if 

this regulation is direct. This role appears similar to bowl regulation of upd during gut 

development. Similar analysis with a hh reporter will be undertaken in the near future.  
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Figure A.1: 
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Figure A.1: A hh transcriptional enhancer drives selective hub expression 

(A) Location of overlapping hh-GFP test DNAs. Blue boxes represent exons and the 

arrow denotes the transcription start site. The red rectangle indicates the ~1.5kb 

overlapping region that likely drives selective hub cell expression. (B) Anterior is to the 

left. An adult testis (hhF6 #135) stained with Vasa (red, germ cells) shows selective GFP 

reporter expression (green) in hub cells. Scale bar is 100 µm. 
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Figure A.2: 

 

         1          2         3          4 

 
Figure A.2: The hh1.5 DNA fragment harbors four evolutionarily conserved regions  

The BLAST report shows that there are four regions evolutionarily conserved among 

Drosophilids (species names appear in abbreviations on the left). The four regions are 

each highlighted by a black rectangle and are numbered accordingly. The regions vary in 

nucleotide length and are as follows from region 1-4: 33 nt, 42 nt, 54 nt and 39 nt.  
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Figure A.3:  

 
 

 
 
 
 
Figure A.3: Schematic of hh-DNA-GFP constructs 

Schematics of the hh-DNA-GFP constructs are shown for hhF6, hh1.5 and deletions 1-4. 

Colored boxes with numbers represent the conserved regions found within the ~1.5kb 

DNA fragment.  
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Figure A.4: 
 

 

        
 
 
Figure A.4: bowl regulates upd hub expression 
 
Anterior is to the left in each panel. (A-B) 1st larval instar male gonads from control (A; 

bowl/+) and bowl mutants (B) were stained with Vasa (red, germ cells), Filamin (white, 

hub cells) and an antibody against GFP to detect upd reporter expression (green). Note 

that in addition to a reduction in hub cell number, there is a significant decrease in 

reporter expression detected in bowl mutants (B) compared to heterozygous controls (A). 

Scale bar is 10 µm. 
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Discussion 
 
 With this work, we have sought to further define niche cells in the Drosophila 

testis by understanding how the hub cell gene expression program is initiated. Here, we 

have potentially identified a hub-specific transcriptional enhancer element that lies within 

~1.5kb of hh intragenic sequence. Furthermore, we identified four evolutionarily 

conserved regions within hh1.5 and have made a series of transgenic flies harboring 

individual deletions to determine the necessity of each in driving selective hub 

expression. Additionally, in a complementary approach, we identified bowl as a candidate 

transcription factor that could control some hub cell gene expression. In fact, it appears to 

regulate the expression of at least one hub-specific gene, upd. With these combined 

approaches, we hope to identify additional transcriptional regulators that control hub cell 

gene expression and by extension, stem cell self-renewal. 

 

Identification of a transcriptional enhancer controlling hh expression in hub cells 

There are several potential outcomes from this work. First, given that 

evolutionary conservation of particular DNA sequences typically correlates with an 

important regulatory role (61), we believe that at least one of the conserved regions will 

be necessary for selective hub expression. Therefore, we would expect to identify at least 

one deletion line that completely abrogates hh hub expression. This would suggest that a 

hub-specific cis-regulatory element lies with that region of DNA. However, if we find 

that hub expression is maintained in all four individual deletion lines, it is possible that 

two or more of the regions function redundantly and that multiple regions can initiate hub 

gene expression. If that is indeed the case, we could make a series of deletions in tandem, 
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for example, deleting regions one and two, one and three and so on. Hopefully, this 

would allow us to identify the regions of DNA that drive hub expression.  

Furthermore, identifying DNA regions that drive hh would potentially allow us to 

identify the transcription factors that bind to these sequences and regulate hub gene 

expression. Several computational programs exist to identify putative transcription factor 

binding sites within cis-sequences, such as PROMO or TRANSFAC (121, 123). Any 

putative transcription factor binding sites, and thus transcription factors, could be tested 

for functionality by either mutating the binding sites within the hh regulatory region and 

assaying reporter expression or examining hh hub gene expression in a background 

mutant for the particular transcription factor. If the transcription factor positively controls 

hh hub expression we would expect to observe a complete loss of hub expression. These 

analyses should prove fruitful in our attempt to understand hh hub expression. Lastly, 

although it is presently unclear what functional role hh plays in this system, it would still 

be interesting to narrow down potential downstream targets genes in the hub.  

Additionally, these analyses could be extended to other hub-expressed genes, 

since tissue-specific genes are usually regulated in a similar manner. By scanning the 

regulatory regions of other hub-expressed genes and determining if similar cis-sequences 

exist, this work could also shed light on the transcription factors that regulate the 

expression of upd and pent. 

 

bowl regulates the expression of a hub-expressed gene 

 Our preliminary genetic data reveal that bowl regulates the expression of one hub-

expressed gene, upd. This role for bowl is distinct from its role in properly specifying hub 
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cells that I have previously identified. We find that in scoring individual hub cells, upd 

reporter expression decreases significantly in bowl mutants compared to sibling controls 

(Figure A.4). This is interesting since upd activates the Jak-STAT signaling pathway, 

which is necessary and sufficient for stem cell self-renewal in the testis (93, 172). It thus 

appears that bowl has two critical roles in this system: it influences initial hub cell 

specification and also initiates the expression of the ligand upd within some hub cells, 

and by extension ultimately regulates the specification of stem cells.  

 This is a key finding as it may shed light onto general hub regulation of gene 

expression. It is highly possibly that bowl will also regulate the expression of hh in the 

hub, as it does during Drosophila retinogenesis (24). To assess this, similar analysis will 

be undertaken by examining hh reporter expression in bowl mutants compared to sibling 

controls. Furthermore, bowl regulation could also be extended to a third hub-expressed 

gene, pent. It is important to note though, that our evidence for bowl regulation of upd is 

genetic in nature, and therefore indirect. It is useful to look for hints from other tissues, 

but to date, direct regulation of hh and upd by bowl has not been tested in any context 

(24, 81, 85). 

Since bowl typically functions as a transcriptional repressor, it is likely that bowl 

regulation of hub-expressed genes is indirect (60). This may mean that bowl activity 

represses the expression of a hub-gene repressor, ultimately allowing the accumulation of 

a positive-acting transcription factor and thus the expression of upd, hh and pent. Bowl is 

negatively regulated by an upstream antagonist, lines (73). While bowl promotes hub cell 

specification, we have shown that lines instead promotes cyst cell fate (48). Therefore, 

we would expect that in instances where bowl is inactive, due to repression by lines, the 
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hub cell gene expression program would not be initiated and SGPs would instead develop 

as cyst cells. By combining a candidate approach with cis-regulatory element analyses, 

we should be able to identify the transcriptional network necessary for hub cell gene 

expression.  

 

Materials and Methods 
 
Fly stocks 

Heterozygous siblings were used as controls as appropriate. We analyzed gonads 

and testes from the following mutants, or involving these transgenic lines: bowl1 

(Fbal0051737), hhF5-GFP (lines #228 and #211, A gift from Robert Schulz, University 

of Notre Dame), hhF6-GFP (lines #135 and #230, Robert Schulz), bowl1 hhF6-GFP 

#135, upd-Gal4 Uas-GFP (Erika Bach, NYU), bowl1 upd-Gal4 Uas-GFP. Stocks were 

balanced over CyO P[w+ Ubi-GFP]. 

 

Immunostaining 

Embryos were collected on apple agar plates and aged 22-24 hours in a 

humidified chamber to 1st instar larvae. Hatched larvae were dissected in half with 

tungsten needles in Ringers solution and the internal organs were gently massaged out. 

Unhatched larvae were dechorionated, hand-devitellinized and dissected as above. Tissue 

was fixed in 4% formaldehyde, Ringers and 0.1% Triton-X-100 for 15 minutes, washed 

in PBTX and blocked one hour at room temperature in 2% normal donkey serum/normal 

goat serum. Primary antibodies were used overnight at 4°C. Secondary antibodies were 

used at 1:400 (Alexa488, Cy3 or Cy5; Molecular Probes; Jackson Immuno Research) for 
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1 hour at room temperature. DNA was stained with Hoechst 33342 (Sigma) at 0.2 µg/ml 

for 2 minutes.  

 Immunostaining for testes was performed as previously described except 1X PBS 

was substituted for Buffer B (169). The following primary antibodies and concentrations 

were used: rabbit anti-Vasa 1:5000 (Ruth Lehmann, Skirball Institute), guinea pig anti-

Traffic Jam 1:10,000 (Dorothea Godt, University of Toronto), mouse anti-βgal 1:10000 

(Promega), chick anti-GFP 1:1000 (Aves Labs), and rat anti-Filamin-C terminal 1:1000 

(Lynn Cooley, Yale University; recognizes C-terminal isoform). 

 

Sex identification, genotyping and staging of embryos 

Male embryos were unambiguous due to larger size of the gonad. Balancer 

chromosomes containing a GFP-transgene P[w+ Ubi-GFP] were used to distinguish 

between heterozygous and homozygous mutant larvae. Embryos were staged according 

to Campos-Ortega and Hartenstein (32).  

 

Identification of evolutionarily conserved regions 

 The ~1.5kb region of hh that we believe drives selective hub expression was 

BLASTed against the genomes of other sequenced Drosophilids. By this method, we 

found three regions to be conserved among all 13 species, while the fourth region was 

conserved among 12 of the 13 species.  

 

 

Quantifying pixel intensity 

 All images were exposure matched, with an exposure of ~100 ms. Pixel intensity 

was quantified using the Axiovision software by measuring the intensity of gene 
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expression in approximately 5 hub cells per gonad. These measurements were averaged 

for each genotype and a p-value was calculated by Student’s t-test. 

 

Generation of transgenic Drosophila strains 

 To generate the hhF6-GFP and hh1.5-GFP constructs, genomic DNA was PCR 

amplified from a pH stinger clone (A gift from Robert Schulz) using Phusion polymerase 

(Finnzymes), with the addition of NotI and XbaI restriction sites on the forward and 

reverse primers, respectively. The fragments were TOPO cloned using the TOPO TA 

Cloning Kit Dual Promoter (Invitrogen), digested using the aforementioned restriction 

sites, gel purified (Geneclean II Kit) and directionally cloned into the pEGFP.attB (A gift 

from Konrad Basler) vector which was similarly linearized by NotI and XbaI. Fly lines 

were then established (BestGene, Inc.) after germline transformation of the constructs. 

The following oligonucleotide sequences were used for PCR amplification: 

NotI-hhF6-GFP For   5’ ATAAGAATGCGGCCGCGCGATACAGCACCCTTAATC 3’ 

(forward primer used to clone both hhF6 and hh1.5); 

XbaI-hhF6-GFP Rev  5’ ATGCTCTAGATGCAAAAGAGGGCAGAGAAC 3’; 

XbaI-hhF5-GFP Rev  5’ ATGCTCTAGATTATACCCATAGCCATAGCC 3’ 

(reverse primer used to clone hh1.5) 

 

Deletion constructs 

hh1.5-GFP deletion constructs were generated by outward directed PCR amplification, 

using Phusion polymerase, from the hh1.5-GFP-TOPO clone. Forward and reverse 

primers were made to flank each of the four conserved regions. PCR products were DpnI-

treated (NEB) to eliminate template DNA and PNK-treated (NEB) to phosyphorylate 
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product ends. PCR products were then ligated, yielding a hh1.5-GFP-TOPO clone minus 

the deleted conserved region (hh1.5-GFP-TOPOΔ 1-4). Each of the four hh1.5-GFP-

TOPOΔ clones was digested with NotI and XbaI to cut out the deletion fragments. 

Deletion fragments were gel purified and then directionally cloned into the pEGFP.attB 

vector, which was similarly linearized, by NotI and XbaI. Fly lines were then established 

after germline transformation of the constructs. The following oligonucleotide sequences 

were used for PCR amplification: 

Del 1 For   5’ GATCCAGCTGGAGCTGCGGATTGGCATTGC 3’; 

Del 1 Rev  5’ CATCGCTTCATTAGAATTAGCGGCGGTCTTTGATT 3’; 

Del 2 For  5’ TGCGATCTCAATCAGTGCCGGGAATCAAAG 3’; 

Del 2 Rev  5’ GTCGAAAAAATACGAGTTGAAACTCTGAAGAAATCACG 3’; 

Del 3 For  5’ TATAAAAAAAGGGGTGACTCCCCTGGCAGC 3’; 

Del 3 Rev 5’ GCTGCCAGGGGAGTCACCCCTTTTTTTATA 3’; 

Del 4 For 5’ CGCCTTTTTCGGGGTAATGGCTGAAGAAAA 3’; 

Del 4 Rev 5’ TTTTCTTCAGCCATTACCCCGAAAAAGGCG 3’ 
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