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Wrestling With Issues in Scale Development Using Joint Latent Variable
Methods

Abstract
Many applications of biomedical science involve unobservable constructs, from measurement of health states
to severity of complex diseases. In this dissertation I utilize joint latent variable methods to combine item
selection and validation to identify significant items in a symptom scale and determine how these symptoms
relate to "gold standard" diagnostic measures. Joint latent variable models eliminate bias inherent in traditional
two-stage methods and provide a global test of the association between the underlying construct and a clinical
measure. In Chapter 1, a review of latent variable methods for multivariate outcomes is provided. Chapter 2
proposes a Multiple Indicator Multiple Cause (MIMIC) model to perform item reduction and validation
simultaneously. A modified Score test for individual factor loadings in the MIMIC model is derived. The
methods are motivated by an example from a premenstrual syndrome (PMS) clinical trial in which one
objective was to determine a reduced number of core symptoms in the diagnosis of severe PMS and to
compare patient-reported symptom information to a clinician-rated "gold standard" diagnostic measure.
Chapter 3 applies an extension to the MIMIC model to patient-reported outcomes (PROs) from the Physical
Activity and Lymphedema (PAL) clinical trial. PROs are a potentially less expensive and time-consuming
measure of diagnosis than some clinical measures. An extension of the MIMIC model for ordered categorical
outcomes determines which symptoms are important indicators of lymphedema and how these symptoms
compare to clinical endpoints. Finally, in Chapter 4, a multivariate zero-inflated proportional odds (MZIPO)
model is proposed to account for excess symptom non-response at baseline. This model adds a latent class
component to the traditional MIMIC model. The MZIPO model is applied to the PAL data to obtain more
accurate estimates of the latent construct and its association with current measures of lymphedema severity.
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ABSTRACT

WRESTLING WITH ISSUES IN SCALE DEVELOPMENT USING JOINT

LATENT VARIABLE METHODS

Steffanie M. Halberstadt

Mary D. Sammel, Advisor

Many applications of biomedical science involve unobservable constructs, from mea-

surement of health states to severity of complex diseases. In this dissertation I utilize

joint latent variable methods to combine item selection and validation to identify

significant items in a symptom scale and determine how these symptoms relate to

“gold standard” diagnostic measures. Joint latent variable models eliminate bias

inherent in traditional two-stage methods and provide a global test of the associ-

ation between the underlying construct and a clinical measure. In Chapter 1, a

review of latent variable methods for multivariate outcomes is provided.

Chapter 2 proposes a Multiple Indicator Multiple Cause (MIMIC) model to

perform item reduction and validation simultaneously. A modified Score test for

individual factor loadings in the MIMIC model is derived. The methods are moti-

vated by an example from a premenstrual syndrome (PMS) clinical trial in which

one objective was to determine a reduced number of core symptoms in the diag-

nosis of severe PMS and to compare patient-reported symptom information to a

clinician-rated “gold standard” diagnostic measure.
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Chapter 3 applies an extension to the MIMIC model to patient-reported out-

comes (PROs) from the Physical Activity and Lymphedema (PAL) clinical trial.

PROs are a potentially less expensive and time-consuming measure of diagnosis than

some clinical measures. An extension of the MIMIC model for ordered categorical

outcomes determines which symptoms are important indicators of lymphedema and

how these symptoms compare to clinical endpoints.

Finally, in Chapter 4, a multivariate zero-inflated proportional odds (MZIPO)

model is proposed to account for excess symptom non-response at baseline. This

model adds a latent class component to the traditional MIMIC model. The MZIPO

model is applied to the PAL data to obtain more accurate estimates of the latent

construct and its association with current measures of lymphedema severity.

Key Words: Factor analysis, Latent class, Latent variable, Multiple indicator mul-

tiple cause, Multivariate, Zero-inflation.
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Chapter 1

Introduction

Many applications of biomedical science involve unobservable constructs, from the

measurement of health states to the severity of complex diseases. From a statisti-

cal perspective, the goal of measurement is often to combine important pieces of

information in a way that thoroughly describes an unobservable construct.

In the scale development process, item selection or reduction determines which

items best exemplify the construct of interest. It is undesirable to include “junk”

items, any items that fail to contribute useful information about the hypothetical

construct, because they obscure the final scale score. The process of removing un-

necessary items ultimately improves scale accuracy, reduces burden to participants,

and decreases research costs. Next, validation establishes the relationship between

a particular scale and other measures of the unobservable concept of interest. Typ-

ically item selection and validation are performed separately using methods from
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psychometric research. Joint latent variable methods are proposed here to combine

item reduction and validation into a single statistical model.

This dissertation is presented as an illustration of the advantages of joint latent

variable models and as an example of the applicability of these models to biomedical

research. The methods are applied to data from innovative clinical trials in women’s

health. The first application involves the Penn Daily Symptom Report from a

clinical trial for premenstrual syndrome (PMS) at the University of Pennsylvania.

The second application involves the Norman Lymphedema Survey from the Physical

Activity and Lymphedema (PAL) clinical trial at the University of Pennsylvania.

Both motivating examples seek to evaluate current diagnostic tools and incorporate

patient-reported symptom information into the diagnostic process.

1.1 Motivation: Symptom Scale Data in Clinical

Trials

PMS

PMS is described as a collection of physical and emotional symptoms that

present at the luteal phase of the menstrual cycle. Over 200 symptoms of PMS

have been previously identified, yet there is no universal diagnosis criteria. There-

fore, a variety of “gold standard” measures are used to diagnose PMS. Some include

summary measures from patient-reported daily symptom diaries, while others are

2



based on clinician ratings of PMS severity. In Chapter 2, I identify and evaluate a

core set of symptoms from a larger battery to thoroughly describe severe PMS and

establish criterion validity by comparing this reduced set of symptoms to a “gold

standard” diagnostic measure of PMS using data from a University of Pennsylvania

PMS clinical trial directed by Dr. Ellen Freeman.

Lymphedema

For breast cancer survivors, lymphedema is a debilitating chronic condition re-

sulting from the surgical excision of lymph nodes as part of cancer treatment. Its

significant impact of daily functioning and quality of life makes lymphedema a se-

rious concern for women recovering from breast cancer. Similar to PMS research, a

complication in the study of lymphedema is that the estimates of incidence among

breast cancer survivors in the literature vary dramatically, ranging from as small

as 6% to as large as 70%. This discrepancy is likely due to the variety of diagnos-

tic measures that are used, many of which may not necessarily capture the same

attributes of lymphedema. Furthermore, patient-reported symptoms that could

potentially prove useful as indicators of lymphedema are not typically used as diag-

nostic measures. The objective of Chapter 3 is to determine which items from the

Norman Lymphedema Survey are the most important indicators of lymphedema

and whether they perform as well as current “gold standard” diagnostic measures.

Chapter 4 focuses on how to identify important lymphedema symptoms while si-

multaneously accounting for significant symptom non-response at baseline.

3



1.2 Latent Variable Models for Multivariate Out-

comes

Although latent variable models originated in psychometrics and education research,

their utility has increased recently in biomedical research. The following literature

review provides a general overview of classic latent variable methods.

A latent variable is defined as a random variable that cannot be directly mea-

sured and instead is inferred through the measurement of other observable variables.

Latent variables often represent underlying constructs that are difficult or impossi-

ble to quantify. The use of latent variables in the study of immeasurable constructs

is extensive in education, psychometrics, and econometrics. For example, latent

variable models are used in scale development and revision for high-stakes edu-

cational assessment; scales assessing constructs such as personality, happiness, or

depression; and as a representation for paradigms like permanent income. Recent

examples of biomedical applications for latent variable models include research on

diagnostic tests, health-related quality of life scales, and even genetics. These mod-

els are flexible in that they accommodate a variety of observed response types and

different types of latent variables. They provide a means of aggregating multiple

observed variables in a single model and relating them to an intangible construct.

4



1.2.1 Latent Variable Models for Continuous Observed Out-

comes

Factor analysis and structural equation models are two popular latent variable

models for multivariate continuous observed variables. Used to describe variability

among a set of continuous observed variables, the factor analysis model separates

variance among observed variables into variance due to a common factor, or un-

observed latent construct, and the residual variance due to the specific observed

manifest variables. The classic factor analysis model assumes the latent variable is

a continuous, normally distributed random variable. Observed variables are mod-

eled as a linear combination of latent factors and error terms for specific variance.

Factor analysis is commonly used to determine which items are the strongest in-

dicators of a particular construct. Factor loadings, the parameters of interest in

the factor analysis model, measure the association between an item and the latent

factor. Large standardized factor loadings are desired because they indicate that

the item is strongly associated with the underlying construct. Other measures in-

volving factor loadings can also help to determine the value of an item, such as

the proportion of variance in the outcome explained by the latent variable. This

measure can be calculated for each item and provides an estimate of the item’s

importance in a manner not dependent on the scale.

Factor analysis can be exploratory or confirmatory in nature, and the difference

lies in the assumptions made about the structure of the latent factors. Exploratory

5



factor analysis (EFA) identifies the number and nature of the factors. The ultimate

purpose of factor analysis is often to reduce the number of observed variables, so

EFA is a natural choice for item selection. Confirmatory factor analysis (CFA)

serves as a separate validation procedure once the factor structure has been estab-

lished. CFA differs from EFA in that it allows for more constraints on the factor

structure. For example, in multifactor CFA models, a “clean” solution is frequently

assumed where certain factor loadings are set to zero such that each manifest vari-

able loads on only one latent factor. In the methods developed in Chapter 2 and

applied in Chapter 3, a CFA model is one of two components of a joint latent

variable model developed for item selection and validation.

Structural Equation Modeling

Structural equation modeling extends the factor analysis model to include structural

relations among latent variables as well as covariates on latent or observed variables.

Originally developed for continuous observed outcomes, structural equation models

(SEMs) are two-part models containing both a measurement and a structural model.

The measurement model is simply a CFA model with one or more continuous latent

variables measured by several continuous items. The structural model specifies

associations of latent variables with other observed or potentially latent variables.

SEMs feature both latent exposure variables and latent outcome variables, as well as

observed exposure and outcome variables. Structural relationships among the latent

variables may be formulated as a regression relationship or in terms of correlated

6



residuals among the latent variables. The models proposed in Chapter 2 can be

thought of as an example of an SEM with a single latent variable.

1.2.2 Latent Variable Models for Categorical Observed Out-

comes

Latent Class Models

A common latent variable for categorical observed outcomes, the latent class

model classifies subjects into unobserved subgroups. In comparison to latent vari-

able models with continuous latent variables like the factor analysis model or SEM,

the latent class model contains a discrete latent variable with C categories. Useful

for describing population heterogeneity, latent class models assume that any ob-

served responses originate from an underlying discrete latent class. These models

have particular relevance to clinical studies because diagnostic decisions can po-

tentially be made based on subgroup classification. In Chapter 4, a latent class

component is incorporated into the model to classify subjects into subpopulations

based on symptom response or non-response.

1.2.3 Extensions to Classical Latent Variable Models

The models presented above represent the most basic latent variable models that

set the foundation for the many advanced latent variable models that have been de-

veloped over the past several decades. Extensions to classical models have been for-

7



mulated for a variety of response types including multilevel, longitudinal, survival,

or mixed outcome types. Of particular relevance to this dissertation is the class of

latent variable models known as latent variable hybrid models. The confluence of

a continuous latent variable model and a latent class model, these models accom-

modate both cross-sectional and longitudinal outcomes and allow for covariates.

Crucial features of these models are that they allow for classification of subjects

into unobserved subgroups and also provide factor scores, estimates of the latent

variable, within the subgroups. In this dissertation I extend the latent variable

hybrid literature in the situation of zero-inflated outcomes.

The remainder of the dissertation is structured as follows: Chapter 2 presents

a joint latent variable model for continuous data. A multiple indicator multiple

cause model is employed to perform item reduction and validation simultaneously,

and a modified Score test for individual factor loadings is developed. This work is

illustrated with an example from a University of Pennsylvania PMS clinical trial.

Chapter 3 presents an application of an extension to the MIMIC model for ordered

categorical outcomes and is illustrated with an example from the PAL clinical trial.

Chapter 4 proposes a new joint latent variable model for item reduction and valida-

tion in the presence of zero-inflation, which is also applied to the PAL data. Finally,

Chapter 5 presents conclusions and future work.

8



Chapter 2

A Joint Latent Variable Model for

Item Reduction and Validation

using Continuous Scale Items

2.1 Introduction

This chapter presents a joint latent variable approach to item reduction and vali-

dation for continuous data. I employ a multiple indicator multiple cause (MIMIC)

model with the objective of identifying important items in a symptom scale and

comparing these items to a physician-rated “gold standard” diagnostic measure.

The methods in this chapter are illustrated with an example from PMS.

Methods for item reduction originated in psychometrics and education where

9



constructs such as depression and intelligence provided motivation for the develop-

ment of measurement techniques to quantify and explain these entities via multiple

items in a scale. The literature in these fields offers a variety of latent variable

methods that utilize the correlation among items to define a construct. Classical

test theory (CTT), a popular psychometric method for item selection, employs mea-

sures such as item-total correlations and Cronbach’s alpha to judge items (Nunnally

et al., 1967; Clark and Watson, 1995). Item-total correlation measures the corre-

lation of a particular item with the scale total when that item is omitted from the

scale. High item-total correlations are desired and it is advised that items whose

item-total correlation is less than 0.2 be dropped from the scale (Streiner and Nor-

man, 1994). Cronbach’s alpha is another popular measure of reliability and it is

often advised that alpha be between 0.7 and 0.9. Values of alpha below 0.7 indicate

that the items may not be homogeneous and values above 0.9 can be indications of

several problems with the scale, such as item redundancy or the presence of more

than one distinct construct.

Perhaps the most common statistical model for item reduction is the factor anal-

ysis model (Spearman, 1904). As described in Chapter 1, the model separates the

variance among a set of observed variables into variance due to a latent factor and

variance due to individual observed variables. Item reduction in factor analysis is

done by evaluating factor loadings across multiple factors or analyzing the loadings

within a particular factor. Factor loading parameters yield information about the

10



strength of the relationship between an individual item and the underlying con-

struct.

Creating decision rules presents a unique challenge in item selection. Although

many arbitrary rules exist, there seems to be little quantitative justification for what

constitutes a sufficiently high factor loading, item-total correlation, or Cronbach’s

alpha. I focus on factor loadings as a primary measure of interest because they are

natural measures of the contribution of an item to the latent construct.

Item selection in factor analysis is performed by assessing the magnitude of factor

loadings, but a challenge is determining when they are sufficiently large. A review

of the literature reveals many different methods, some of which are contradictory

to one another. Shortly after the development of factor analysis, Thurstone (1938)

proposed to interpret factor loadings on the correlation scale greater than 0.40 as

significant and to disregard loadings less than 0.20. Comrey and Lee (1992) offered

the following scale: loadings greater than 0.71 are excellent, 0.63 are very good, 0.55

are good, 0.45 are fair, and loadings less than 0.32 are poor. More recently, several

authors suggested treating loadings greater than 0.30 as significant (Tabachnick

et al., 2001). Cudeck and O’Dell (1994) mentioned that it is common in factor

analysis studies with more than one factor to examine the loadings for each item,

choose the largest one for each item and disregard the others in order to obtain

a “clean” solution. Similarly, Clark and Watson (1995) suggested that items that

load highly on the first factor and weakly on subsequent factors are ideal candidates

11



for consideration and should be chosen after a further correlational and reliability

analysis is performed to identify redundant pairs of items. Clearly there is little

agreement on what constitutes a significant loading. Furthermore, papers that

suggest reference values generally do not provide justification for these choices.

In an effort to make the process of analyzing factor loadings more statistically

rigorous, standard errors for factor loadings have been derived to allow for the assess-

ment of variance in the estimated loadings. Lawley and Maxwell (1962) developed

asymptotic variances and covariances for unrotated factor loadings for maximum

likelihood factor analysis. Subsequently, formulas for various types of unrotated

(Jennrich, 1974; Jennrich and Thayer, 1973) and rotated (Archer and Jennrich,

1973; Jennrich and Thayer, 1973; Jennrich, 1974; Cudeck and O’Dell, 1994) load-

ings were developed. There is a substantial amount of literature devoted to the

topic of standard errors in factor analysis and structural equation models given

varying assumptions about the distribution of the data, the number of underlying

factors and whether the loadings are rotated or unrotated.

Cudeck and O’Dell (1994) proposed one of the few methods of developing a

statistical test using standard errors of factor loadings. They provided a thorough

review of methods for estimating standard errors and provided some new results for

standard errors of rotated loadings. Ogasawara (1996, 1998, 1999) provided stan-

dard error estimates for orthomax, promax, and procrustes rotations in a method

similar to Jennrich (1974) assuming normality and using an augmented information
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matrix. Using a new approach, Hayashi and Kumar Sen (1998) found a matrix form

for the covariance matrix of factor loading estimates under the normality assump-

tion. Furthermore, Hayashi and Yung (1999) developed standard errors for factor

loadings with an orthomax rotation using the delta method. In addition to the de-

velopment of standard errors in the case of normal data, Yuan et al. (2002) reviewed

standard errors for factor loadings in the presence of missing data, non-normal data,

and outliers.

Unfortunately, in most studies that employ factor analysis as a main statistical

method, the use of standard errors in determining the significance of factor loadings

is far less popular than other ad hoc techniques. Furthermore, conventional Wald

tests using the standard errors are not always valid. In the model presented in

this chapter, factor loadings were required to be non-negative so that items only

contributed positively to the estimate of the latent variable. Consequently, the

statistical test of a factor loading amounted to a test of a variance component on

the boundary of the parameter space. The traditional Wald test was no longer

appropriate in this case. This issue is described in detail in Section 2.2.

Once the selection of important items is complete, a process of validation deter-

mines how well the scale measures the intended construct of interest. Establishing

validity in scale development can be performed in a number of ways, including

comparing the model to other models measuring the same construct or comparing

a single model on different samples. In this dissertation, establishing criterion va-
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lidity was desired. Streiner and Norman (1994) describe criterion validity as the

correlation of a scale with another measure of the underlying construct, such as a

“gold standard” that has been previously studied or is accepted in the field. Fre-

quently, validation is performed separately from item selection. Unfortunately, the

two-stage procedure of item selection and validation ignores additional measure-

ment error inherent in the estimation of the factor (Sammel and Ryan, 1996). In

comparison to other approaches such as a multivariate linear mixed model, there is

evidence that a two-stage approach leads to bias toward the null.

A structural equation model can be used to combine item selection and vali-

dation. It is not only possible to model the association between items and a la-

tent construct but also associations between the validation measure and individual

items. To explore the efficiency of performing item selection and validation in a

single model, I employed a MIMIC model (Joreskog and Goldberger, 1975) in this

chapter. This flexible model is an example of a general structural equation model

with one latent variable. As in factor analysis, factor loading estimates from the

model provide information on how closely the items are correlated with the latent

construct. Additionally, information about the relationship between the items and

the validation metric is revealed through the regression parameter on the latent vari-

able. In order to identify unimportant items, I developed a univariate Score test

for estimated factor loadings of the MIMIC model. There are several advantages

to this model. First, validation is incorporated directly into model development as
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opposed to CTT, IRT, or simple factor analysis models where validation occurs as

in a second stage. Second, the statistical test of individual factor loadings derived

here reflects the assumed model constraints.

A University of Pennsylvania PMS clinical trial was considered as a motivating

example. The MIMIC model allowed for both the identification of symptoms from

a scale that were ultimately important contributors to a latent measure of PMS

severity and the comparison of this core set of symptoms to the “gold standard”

diagnostic measure. The primary aim was to produce a clinically relevant set of

symptoms that discriminated subjects with severe PMS from those without.

The remainder of this chapter is outlined as follows. Section 2.2 illustrates

the MIMIC model and describes model constraints, Section 2.3 describes the PMS

clinical trial, Section 2.4 presents results of the PMS example, Section 2.5 presents

simulations and results, and Section 2.6 describes our conclusions.

2.2 Methods

An extension to the factor analysis model, the MIMIC model consists of a system

of structural equations including both observed indicators and observed causes of a

hypothesized latent variable. Observed indicators are random variables assumed to

have been generated by the latent variable, similar to the items or manifest variables

in a factor analysis model. Observed causes are either fixed or random variables that

influence the latent variable, similar to covariates in a regression setting. The single
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latent variable is measured by the set of observed indicators and is regressed on the

set of observed causes (Zellner, 1970; Hauser and Goldberger, 1971; Sammel and

Ryan, 1996). Sammel and Ryan (2002) demonstrate that a test of the regression

parameter is a global test of the observed cause on all observed indicators. The

MIMIC model can be considered an extension to the factor analysis model because

it allows for the inclusion of covariates that serve to validate the latent variable. The

model also measures the relationship between covariates and indicator items through

the latent variable. In the motivating example, the MIMIC model is formulated such

that the single latent variable is interpretable as a continuum of PMS severity. It is

natural to constrain factor loading parameters to be non-negative so that each item

is a positive addition to the severity score. Allowing negative factor loadings would

obscure the interpretation of the severity score allowing it to be a combination of

positive and negative standardized items.

A modified Score test was developed to evaluate the significance of individual

factor loadings of the MIMIC model under model constraints. Unlike traditional

ad hoc methods of assessing factor loadings, this statistical test was chosen because

it not only accounts for the estimate of the factor loading but also for its variance.

A Score test was chosen over a Wald test provided by standard software because

a Wald test is no longer appropriate given the model was constrained to allow for

positive factor loadings only. Because of this constraint, the test is considered a

test of a variance component on the boundary of the parameter space. Details of
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the Score test are described below.

2.2.1 MIMIC Model Specification

There are two components to the general MIMIC model: a measurement model

that specifies the factor analysis model and a structural model that specifies the

regression of the latent variable on the observed causes (see Figure 2.1). Consider a

sample of n individuals from whom a set of m outcome measurements, yi1, ..., yim,

and one validation measurement, zi, are taken. The MIMIC model is written as

follows. For subject i = 1, ..., n and outcome measurements j = 1, ..,m the mea-

surement model is specified as

yi(m×1) = µ(m×1) + λ(m×1)bi(1×1) + εi(m×1) (2.2.1)

where µ is a vector of means, λ is a vector of factor loading parameters, bi is the

latent variable, and εi is a vector of specific variances. The structural model with

a single “gold standard” is specified as

bi(1×1) = β(1×1)zi(1×1) + δ(1×1) (2.2.2)
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where β is the regression coefficient for the “gold standard” and δ is an error term

for the latent variable. Additional assumptions include

E(ε) = 0, Cov(ε) = Ψ, Cov(b, ε) = 0, E(δ) = 0,

V ar(δ) = σ2, Cov(δ, z) = 0, Cov(δ, ε) = 0, Cov(z, ε) = 0

where Ψ is a diagonal matrix. This model assumes that the error terms in the

measurement model are uncorrelated with the observed causes in the structural

model and with the error term in the structural model. Additionally, the error

term in the structural model is uncorrelated with the observed causes. Equations

(2.2.1) and (2.2.2) imply the following marginal model for yi

f(yi|µ,λ, β,Ψ) ∼MVN(µ+ λβzi,Σ = λλ> + Ψ). (2.2.3)

Additionally, the constraint that each of the factor loadings must be non-negative,

i.e., λj > 0, is placed on the model.
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Figure 2.1: Path diagram of general MIMIC model for m continuous observed
indicators and one observed cause. Boxes denote observed variables and oval denotes
latent variable.
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2.2.2 Likelihood and Score Function

For the set of parameters θ = (µ,λ, β,Ψ)>, the log-likelihood for the model from

Equation (2.2.3) is expressed as

lnL(y;θ) =
np

2
ln (2π)− n

2
ln (|Σ|)

−1

2

n∑
i=1

[{yi − (µ+ λβzi)}>Σ−1{yi − (µ+ λβzi)}]. (2.2.4)

Taking the partial derivative of the log likelihood with respect to λ, the vector of

factor loadings, yields the following portion of the score function

Uλ =
∂l(y; θ)

∂λ
= −n

2
[2Σ−1 −Σ−1 ◦ Im] ? [E(m,1)λ

> + Im ⊗ λ]

−1

2

n∑
i=1

2[Σ−1βzi{yi − (µ+ λβzi)}

−{((yi − (µ+ λβzi))
> ⊗ Im)(Σ−1 ⊗ Im)×

(E(m,1)λ
> + Im ⊗ λ)Σ−1(yi − (µ+ λβzi)}] (2.2.5)

where (Σ−1 ◦ Im) denotes the elementwise Hadamard product (Styan, 1973). The

star product, ? , is used as in MacRae (1974), and E(m,1) refers to a permuted

identity matrix (Rogers, 1980). The Fisher information matrix was derived by

evaluating the negative expectation of the matrix of second partial derivatives. The

information matrix was simplified by assuming the null hypothesis H0 : λj = 0 was

true.
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2.2.3 Score Test

The strength of the relationship between each observed indicator and the underlying

latent construct was evaluated by testing each of the factor loadings in the MIMIC

model. The null hypothesis can be written as

H0 : λj = 0|µ, β,Ψ,λj 6=k. (2.2.6)

The Score test for the null hypothesis resulted in the univariate test statistic

Tλj = U2
λj

(0)Vj,j|β=β̂,µ=µ̂,Ψ=Ψ̂,λj 6=k=λ̂j 6=k
, (2.2.7)

where U2
λj

(0) is the square of the score function of λj evaluated under the null

hypothesis and Vj,j is the element of the inverse of the Fisher information matrix

corresponding to λj evaluated under the null hypothesis. The parameters β̂, µ̂, Ψ̂

and λ̂j 6=k were estimated using maximum likelihood.

Because of the constraint that λj must be non-negative, the parameter space

for λj was [0,∞). The test of H0 : λj = 0 was considered a test of a variance

component on the boundary of the parameter space. Therefore, a one-sided Score

test that did not have the traditional chi-square distribution was used (Zhang and

Lin, 2008). The asymptotic null distribution of the test statistic was a mixture of
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chi-square distributions; that is,

P (Tλj > c|H0) =
1

2
P (χ2

1 > c) +
1

2
P (χ2

0 > c) (2.2.8)

(Verbeke and Molenberghs, 2003, p. 256). Testing each of the factor loadings

allowed for the assessment of whether an item appeared to be uncorrelated with

the latent variable and could be considered for removal from the scale. In order

to develop a Score test for the MIMIC model, the score function and information

matrix of the MIMIC model were derived (see Appendix A) and SAS 9.2 IML was

used to evaluate the inverse of the information matrix.

2.3 Application to Premenstrual Syndrome Clin-

ical Trial

Currently, there is little consensus among the medical community regarding a defi-

nition of PMS. There are differences in the diagnostic criteria given by the American

College of Obstetricians and Gynecologists, the World Health Organization, and the

American Psychological Association. A literature review found over 200 symptoms

cited as indicators of PMS. One aim of a University of Pennsylvania PMS clinical

trial was to reduce the set of symptoms in the Penn Daily Symptom Report (DSR),

a validated scale that measures the severity of 17 PMS symptoms (Freeman et al.,

1996). Item reduction was an important step in determining a symptom profile for
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PMS that discriminated well among patients with differing levels of severity. Fur-

thermore, identifying the core symptoms that describe severe PMS could be useful

in clinical practice, but only if symptoms could be shown to be as effective a means

of diagnosis as the current “gold standard” diagnosis for severe PMS. Traditional

methods (factor analysis, IRT models) base selection on the correlations among a

set of variables and do not consider how the proposed latent constructs relate to

a “gold standard” or other known variables. It is proposed here that better con-

structs are developed by combining the identification and validation stages into a

joint model.

The sample for the study came from N = 684 women with complete data who

participated in one of three similar PMS clinical trials at the University of Pennsyl-

vania between 1994 and 2007. Women sought medical treatment for PMS symptoms

and were screened for inclusion in the trials. The data presented here came from

the screening pre-treatment portion of the trials, which included three standard-

ized menstrual cycles for each woman. PMS symptoms were measured using the

DSR. Each symptom was measured on a 5-point Likert scale from 0 = None to 4

= Severe. Symptoms included irritability/anger, mood swings, anxiety/tension,

depression, feeling out of control, feeling worthless/guilty, decreased interest in

usual activities, poor coordination, insomnia, difficulty concentrating/confusion,

fatigue, aches, headache, cramps, breast tenderness, swelling/bloating, and food

cravings/increased appetite. The scale aimed to measure several domains of symp-
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tom severity, including physical, emotional, and behavioral. Premenstrual symptom

scores were calculated by summing the daily symptom score over the 6-day premen-

strual period for each symptom and were treated as normally distributed continuous

measures.

The “gold standard” severe PMS outcome measure was created using data from

the second untreated menstrual cycle. A woman was considered to have severe PMS

based on her scores of the clinical global impression (CGI) scale (Guy, 1976). CGI

is reported as a secondary outcome in many clinical trials of PMS (Freeman et al.,

1999, 2001, 2004) and incorporates a variety of information into a single global

measure meant to reflect the overall status of the patient. CGI is measured on

a Likert scale with seven categories with higher scores indicating greater severity.

PMS diagnosis was based on having a CGI score of five or greater. In the MIMIC

model analysis, this “gold standard” PMS diagnosis served as the observed cause

and the 17 summed DSR symptom scores served as the observed indicators. We as-

sumed V ar(δi) = 1, allowing the latent variable to be interpreted on a standardized

scale. All analysis was performed on the covariance scale, not the correlation scale.

Parameter estimates for the MIMIC model were obtained using PROC CALIS in

SAS 9.2.
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2.4 Results

The prevalence of PMS as measured by the “gold standard” was about 70% in the

sample (N = 476). For the full sample, mean item DSR scores ranged from 4.45

for cramps to 12.28 for anxiety (See Table 2.1). Generally larger mean DSR scores

were found among mood items, including irritability (mean DSR = 12.17) and

mood swings (mean DSR = 12.10). Smaller average DSR scores were found among

physical symptoms, such as headaches (mean DSR = 5.70) and lack of coordination

(mean DSR = 5.06). There were significant differences in the symptom means

between those with severe PMS and those without across all 17 symptoms. Average

DSR scores were significantly greater in the severe PMS group. When considered

individually, all symptoms were significantly associated with the “gold standard”

in univariate linear regressions (p<0.0001 for all).

Correlations among all items were moderate, ranging in size from ρ=0.233 be-

tween anxiety and cramps to ρ=0.791 between anxiety and irritability. The largest

correlations were found among mood items, while the correlations between mood

and physical items tended to be smaller. In general, correlations between two phys-

ical items were not as large as the correlations between two mood items.

Table 2.2 provides standard psychometric measures for DSR items. Item-total

correlations ranged in magnitude from 0.467 for breast tenderness to 0.749 for mood

swings. According to the 0.2 criteria (Streiner and Norman, 1994) none of the items

were immediately be candidates for removal. All Cronbach’s alpha values were
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Table 2.1: Descriptive statistics of Daily Symptom Report stratified by PMS diag-
nosis.

Full Sample PMS No PMS
(N=684) (N=476) (N=208)

Symptom Mean SD Mean SD Mean SD P

Fatigue 11.25 6.193 13.116 5.743 6.981 4.955 <0.0001
Poor Coordination 5.063 6.187 6.347 6.656 2.125 3.494 <0.0001
Hopeless 9.958 6.785 12.013 6.332 5.255 5.286 <0.0001
Guilty 7.202 6.845 8.884 6.972 3.351 4.653 <0.0001
Headache 5.703 5.909 6.857 6.183 3.063 4.174 <0.0001
Anxiety 12.279 6.467 14.319 5.761 7.611 5.509 <0.0001
Aches 7.297 6.798 8.721 6.967 4.038 5.078 <0.0001
Irritability 12.165 6.374 14.143 5.750 7.639 5.351 <0.0001
Mood Swings 12.095 6.730 14.275 5.980 7.106 5.608 <0.0001
Weight Gain 11.133 7.093 12.868 6.809 7.163 6.070 <0.0001
Food Cravings 10.994 6.922 12.710 6.761 7.067 5.559 <0.0001
No Interest in Activities 8.444 6.906 10.391 6.783 3.990 4.812 <0.0001
Cramps 4.446 5.964 5.361 6.43 2.351 4.016 <0.0001
Depression 9.921 6.970 11.918 6.731 5.351 5.117 <0.0001
Breast Tenderness 8.558 7.485 9.849 7.680 5.606 6.078 <0.0001
Insomnia 7.171 6.931 8.578 7.184 3.952 5.011 <0.0001
Difficulty Concentrating 7.950 6.858 9.754 6.893 3.822 4.643 <0.0001

similar to one another and all exceeded 0.9. Although this is a common occurrence,

it could indicate the presence of item redundancy.

Table 2.3 displays the results of the full MIMIC model for all 17 symptoms.

Estimates of factor loadings, on the covariance scale, ranged from 2.14 for cramps to

4.45 for mood swings. As seen in previous results, estimates for anxiety, irritability

and mood swings were larger than the estimates for many of the physical symptoms.

The estimate of the regression coefficient on the latent variable, β̂, was 1.55. This

estimate can be interpreted as the mean of the latent variable, PMS severity, for

subjects with diagnosed severe PMS according to the “gold standard” measure. The

latent variable was standardized such that V ar(δi) = 1, which implies that subjects
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Table 2.2: Standard psychometric measures of item selection for DSR symptoms.
Symptom Item-Total Correlation Cronbach’s Alpha

Fatigue 0.7083 0.9243
Poor Coordination 0.6538 0.9256
Hopeless 0.7208 0.9240
Guilty 0.6468 0.9258
Headache 0.5024 0.9292
Anxiety 0.7103 0.9242
Aches 0.5845 0.9273
Irritability 0.7173 0.9241
Mood Swings 0.7491 0.9233
Weight Gain 0.6167 0.9265
Food Cravings 0.5802 0.9274
No Interest in Activities 0.7251 0.9239
Cramps 0.4782 0.9298
Depression 0.6956 0.9246
Breast Tenderness 0.4666 0.9301
Insomnia 0.5782 0.9274
Difficulty Concentrating 0.7151 0.9241

without severe PMS had a mean latent severity score of 0.

Table 2.3: Full MIMIC model for continuous items applied to PMS data.

Symptom λ̂j Tλj Corrected P

Fatigue 3.631 127.009 <0.0001
Poor Coordination 3.310 1.697 0.0963
Hopeless 4.390 57.488 <0.0001
Guilty 3.888 3.208 0.0366
Headache 2.342 0.003 0.4765
Anxiety 4.176 242.999 <0.0001
Aches 3.006 8.185 0.0021
Irritability 4.112 239.628 <0.0001
Mood Swings 4.447 242.065 <0.0001
Weight Gain 3.429 162.829 <0.0001
Food Cravings 3.294 144.294 <0.0001
No Interest in Activities 4.188 17.345 <0.0001
Cramps 2.137 0.163 0.3431
Depression 4.209 66.623 <0.0001
Breast Tenderness 2.727 48.008 <0.0001
Insomnia 3.212 6.210 0.0064
Difficulty Concentrating 4.132 12.945 0.0002

Although most items in the full model were highly significant according to the

corrected p-value, several items were candidates for elimination based on the Score
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test. In particular, lack of coordination (T = 1.697, p = 0.0963), headaches (T =

0.003, p = 0.4765), and cramps (T = 0.163, p = 0.3431) were all non-significant

in the full model. The most significant items in the full model were anxiety (T =

242.9, p <0.0001), irritability (T = 239.6, p <0.0001), and mood swings (T = 242.1,

p <0.0001).

2.5 Simulations

Simulations were performed to assess the behavior of the Score test of the MIMIC

model in comparison to the Wald test given by PROC CALIS under several con-

ditions. A smaller set of items was chosen for simulations due to computing time.

This set of items was chosen to represent three highly correlated and significant

mood items and one “junk” item that was a candidate for elimination. The MIMIC

model also included the “gold standard” diagnosis measure for PMS. Simulation 1

investigated the performance of the Score test under the null hypothesis, in which

the “junk” item truly contributed no information to the model. In this simulation,

three multivariate normal random variables were generated using the observed mo-

ments of anxiety, irritability, and mood swings from the original sample. Simulated

data were generated such that there was a one standard deviation shift in the mean

of the latent variable between subjects with PMS and no PMS to reflect the asso-

ciation between the correlated items and the gold standard. An additional normal

random variable was generated with the mean and standard deviation of cramps
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in the original sample. This item was uncorrelated with the simulated mood items

and was not associated with the gold standard. In each simulation, 1000 bootstrap

samples were taken from a simulated dataset of N = 684. Type I error of the Score

and Wald tests for the simulated “junk” item was calculated for various levels of

correlation among the simulated mood items.

Table 2.4: Simulation 1 results. Data generated under null hypothesis.
Score Test Wald Test

ρMood Type I Error Rate Type I Error Rate

0.8 0.011 0.062
0.6 0.021 0.077
0.5 0.061 0.058
0.4 0.095 0.075
0.3 0.101 0.079
0.15 0.187 0.110
0.075 0.241 0.091

Simulation 2 investigated the performance of the Score and Wald tests under the

alternative hypothesis, where the “junk” item was truly correlated with the latent

variable and was associated with the “gold standard.” For this simulation four

multivariate normal random variables were generated with the means and standard

deviations of the items from the original dataset. Each of the simulated items was

associated with the gold standard such that there was a 0.5 standard deviation

increase in the mean of the latent variable for those with severe PMS. Similar

to Simulation 1, for each simulation, 1000 bootstrap samples were taken from the

simulated dataset and MIMIC models were fit to each. Power of the Score and Wald

tests was calculated for each simulation. Correlations among the simulated mood

items and between the junk item and the mood items were varied for Simulation 2.
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Table 2.5: Simulation 2 results. Data generated under the alternative hypothesis.
ρMood ρJunk Score Test Wald Test

Power Power

0.6 0.60 1.000 1.000
0.6 0.30 1.000 1.000
0.6 0.15 1.000 1.000
0.6 0.10 1.000 1.000
0.6 0.05 0.727 0.588
0.6 0.00 0.855 0.763

0.3 0.60 1.000 1.000
0.3 0.30 1.000 1.000
0.3 0.15 1.000 1.000
0.3 0.10 1.000 1.000
0.3 0.05 1.000 1.000
0.3 0.00 0.853 0.844

Table 2.4 displays results from Simulation 1, where the “junk” item was not

correlated with the mood items or associated with the gold standard. When the

correlation between the mood items was set relatively high, at ρMood = 0.6 or

above, Type I error rate of the Score test was much better than that of the Wald

test. For example, at ρMood = 0.6, the Type I error for the Score test was only 0.021

as compared to 0.077 for the Wald test. As the correlation among mood items

decreased, the Type I error for the Score test increased significantly. For example,

when ρMood = 0.3, the Type I error for the Score test was 0.101 as compared to 0.079

for the Wald test. The Type I error of the Wald test was always larger than the

nominal level and increased as the correlation among the items decreased. However,

Score test Type I error performance was influenced more by the correlation among

the other items than was the Wald test.

Table 2.5 presents results from Simulation 2, where the “junk” item was corre-
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lated with the mood items and associated with the “gold standard.” Power remained

high under most conditions. For both ρMood = 0.6 and ρMood = 0.3, power did not

drop substantially until ρJunk reached below 0.1. For ρMood = 0.6 and ρJunk = 0.05,

power for the Score test was 0.727 and power for the Wald test was 0.588. For

ρMood = 0.3 and ρJunk = 0.0, power for the Score test was 0.853 and power for the

Wald test was 0.844, illustrating that the Score test was more powerful than the

Wald test. The power of both tests remained high unless ρJunk was quite small.

Also notable is that power for the Score test was consistently higher than power

for the Wald test under the condition that ρJunk was small. Finally, it seemed that

power was affected not only by small values of ρJunk, but also by the magnitude of

the difference between ρMood and ρJunk. This was evidenced in that for ρMood = 0.6

and ρJunk = 0.05, power dropped below 1.0. However, for ρMood = 0.3 and ρJunk =

0.05, power remained at 1.0. In sum, both the Score and the Wald test were robust

to changes in correlations of the mood and junk items.

2.6 Discussion

The objective of this chapter was to evaluate items under consideration for inclusion

in a scale while simultaneously comparing the scale under development to a “gold

standard” measure. The results of our evaluation of the 17 DSR items showed that

the MIMIC model can be useful to inform item reduction. Three of the DSR items

in the full MIMIC model were identified as potential items for removal according
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to the Score test. Removing these items could help to create a stronger core set of

symptoms for PMS diagnosis.

It is not entirely surprising that headaches, lack of coordination, and cramps

were nonsignificant in the full model. While premenstrual headaches exist, they are

not limited to the premenstrual period, and this could be why the symptom is not

able to discriminate between PMS and non PMS groups. Further, poor coordination

is considered to an indicator of major depression as well as a potential symptom of

PMS. Cramps are diagnostically an indication of dysmennorhea rather than PMS.

Thus, it is reasonable to believe that poor coordination and cramps are not the best

indicators of PMS for these data but instead other related conditions.

Standard psychometric measures did not provide a clear picture of which items

were most important. Item-total correlations displayed a range of values and allowed

ranking of items in terms of importance to the scale, but none of the item-total

correlations fell below the standard guideline of 0.2. Cronbach’s alpha values were

all above the suggested guideline of 0.9, which suggested general item redundancy

but did not provide any indication of which particular items were redundant. The

MIMIC model provided clearer results as well as an objective test of the significance

of the items. Including the validation component into the model indicated that

several items could be considered for removal.

In addition to using the MIMIC model generally, the use of the Score test derived

in this paper for the MIMIC model is advocated for a number of reasons. Under the
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constraint that factor loadings must be non-negative, the statistical test of a factor

loading is a test of a variance component on the boundary of the parameter space.

As a result, it is important to take into account that the Score test statistic no longer

follows the traditional chi-square distribution and that the conventional Wald test is

invalid. Instead, the test statistic follows a mixture of chi-square distributions, and

the use of the modified Score test is more appropriate because it uses the correct

chi-square distribution for this situation. Furthermore, simulations showed that

when the null hypothesis was true the Score test performed better than the Wald

test in the presence of a set of moderately correlated items and a true uncorrelated

“junk” item. When the alternative hypothesis was true and the suspected junk

item was actually a meaningful part of the model, although the Score and Wald

tests generally yielded high power, the Score test performed better in proximity to

the null hypothesis (i.e. when the correlation, ρJunk, was very small). The Score

test presented here provides a preferable alternative to the Wald test for performing

item reduction.

Item reduction and validation are common procedures for scale development.

Rather than performing these processes separately, it has been demonstrated that

it is advantageous to combine them into a single latent variable model. This model

eliminates the potential bias induced by using separate item selection and validation

procedures with better precision. While latent variable models such as the MIMIC

model are more complex than simple factor analysis or psychometric measures such
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as Cronbach’s alpha, there is software available to estimate these types of latent

variable models. An impartial method of analyzing items that is justifiable from

a statistical perspective could add credibility to the usually subjective process of

item selection, and adding a validation metric to the same model allows for the

estimation of the relationship between the items and a “gold standard” measure.
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Chapter 3

Application of Joint Latent

Variable Model for Item

Reduction and Validation for

Ordered Categorical Scale Items

3.1 Introduction

As shown in the previous chapter, joint latent variable methods such as the MIMIC

model for continuous observed outcomes can be useful in combining item reduc-

tion and validation. Fortunately, extensions to classic latent variable models for

continuous outcomes are available for other types of responses as well. Symptom
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scales often involve Likert scale data that can be modeled as ordered categorical.

In this chapter we focus on methods for categorical observed outcomes in which

we assume that all observed responses originate from a continuous latent variable.

Several extensions to classic latent variable models are highlighted below and an

ordered categorical extension to the MIMIC model is presented with an illustration

from the PAL clinical trial.

An extension of unidimensional factor analysis for dichotomous or ordered cate-

gorical items, item response theory (IRT) is widely used in educational testing and

is becoming more prevalent in health measurement (Rasch, 1960). IRT models use

a latent variable framework to explain the probability of “correctly” answering test

items. Similar to factor loadings for continuous outcome factor analysis, discrimi-

nation parameters in IRT models are often used as metrics for item reduction.

Multi-trait multi-method (MTMM) models offer an alternative approach to eval-

uating measurement error (Campbell and Fiske, 1959). The most basic method, the

MTMM matrix, consists of correlations of several concepts or traits measured by

each of several methods. This correlation matrix provides estimates of reliability

for each trait and method pair as well as estimates of validity for different mea-

sures of the same trait. While the MTMM matrix allows for useful estimates of

reliability and validity, limitations of the MTMM matrix include the lack of rig-

orous statistical tests associated with correlation coefficients and the inability of

the MTMM matrix to separate method variance from random error. ANOVA and
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latent variable models like confirmatory factor analysis are proposed to account for

these issues. ANOVA partitions variance into groups defined by person, method,

and trait and provides a global estimate of each type of variance (Guilford, 1954).

Repeated measures are needed to estimate trait-method interactions. The confirma-

tory factor analysis model provides estimates of correlation among observed traits

and methods through factor loadings (Werts and Linn, 1970). The model contains

several components: a trait component, a method component and a random error

component. Overall, MTMM models provide an additional approach to assessing

validity and can be useful in evaluating a “gold standard.”

As in the previous chapter, to explore the efficiency of performing item selection

and validation in one model, we employed a MIMIC model (Joreskog and Gold-

berger, 1975). An extension to the MIMIC model for categorical items assumes

that ordinal items originate from underlying unobserved continuous, normally dis-

tributed items. The model relates observed items with underlying unobserved items

through a series of threshold relationships (Muthén, 1984a).

Data from the PAL clinical trial was considered as a motivating example (Schmitz

et al., 2009, 2010). The primary aim was to identify important and clinically rele-

vant symptoms from ordered categorical items in a scale and to demonstrate that

this set of symptoms had a strong association with the “gold standard” arm vol-

ume difference. The remainder of the chapter is outlined as follows. Section 3.2

illustrates the MIMIC model and its formulation for Likert scale data, Section 3.3
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describes the PAL sample, Section 3.4 presents results of the example, and in Sec-

tion 3.5 I draw some conclusions.

3.2 Methods

Similar to Chapter 2, the MIMIC model was formulated such that the single latent

variable is interpretable as a continuous measure of lymphedema severity. As a

means of comparison, lymphedema symptoms were also analyzed using standard

psychometric techniques such as item-total correlation and Cronbach’s alpha. The

relationship between individual symptoms and the “gold standard” diagnostic mea-

sure of lymphedema was assessed with cumulative probit models.

3.2.1 MIMIC Model Specification

Consider a sample of n individuals from whom a set of m ordered categorical Lik-

ert scale outcome measurements (items), yi1, ..., yim, and one continuous validation

measurement (“gold standard”), zi, are taken. The ordinal items are assumed to

have originated from continuous, normally distributed items y∗i1, ..., y
∗
im. For sub-

ject i = 1, ..., n and outcome measurements j = 1, ..,m, the measurement model is

specified as

y∗i(m×1) = µ(m×1) + λ(m×1)bi(1×1) + εi(m×1) (3.2.1)
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where µ is a vector of means, λ is a vector of factor loading parameters, bi is the

latent variable (lymphedema severity), and εi is a vector of specific variances. In

the classical MIMIC model y∗i is assumed to be directly observed, but here it is

unobserved. Instead, the relationship between unobserved y∗i and observed yi is

specified by

yi = C − 1 if τC−1 < y
∗
i

= C − 2 if τC−2 < y
∗
i ≤ τC−1

=
...

= 1 if τ1 < y
∗
i ≤ τ2

= 0 if y∗i ≤ τ1

where the τ ’s are threshold parameters defining category intervals on y∗i . The

structural model with a single “gold standard” is specified as

bi(1×1) = β(1×1)zi(1×1) + δi(1×1) (3.2.2)

where β is the regression coefficient measuring the association between the latent

variable and the “gold standard.” The random variable δi is an error term for

the latent variable, and we assumed V ar(δi) = 1, allowing the latent variable to

be interpreted on a standardized scale. Estimation of the model was performed

using the mean and variance adjusted weighted least squares estimator and Delta

parameterization in Mplus Version 6.1. Example code for the ordinal version of the
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MIMIC model is provided in Appendix B.

3.3 Application to Physical Activity and Lym-

phedema Clinical Trial

A prominent fear for many breast cancer survivors, lymphedema is a debilitating

chronic disease that results from surgical excision of lymph nodes as part of breast

cancer treatment. In addition to swelling, lymphedema can cause skin changes,

reduction of limb function, and loss of sensation as well as depression, decreased

quality of life, decreased physical self-esteem and other physical and psychological

morbidities (Ahmed et al., 2008; Cormier et al., 2009; Shih et al., 2009).

Until recently, women at risk for or diagnosed with lymphedema have been en-

couraged to limit physical activity, even such mundane tasks as lifting grocery bags.

This guideline has the effect of inhibiting everyday activities and may even slow

physical recovery from cancer. However, results of the PAL trial contradicted these

guidelines, showing that a progressive weight-training program was safe for breast

cancer survivors. Among women diagnosed with lymphedema, the trial showed that

a weight-training intervention was not only safe in that it did not significantly affect

lymphedema severity, but it also was shown to effectively reduce the number and

severity of arm and hand symptoms and the incidence of lymphedema exacerbations

(Schmitz et al., 2009). A subsequent follow-up study indicated that in breast cancer
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survivors who were at risk for lymphedema but who had not yet been diagnosed, a

much larger group, the same weight-training intervention was not associated with

an increased incidence of lymphedema (Schmitz et al., 2010). That weight-lifting

was shown to be safe for both women at risk for lymphedema and women already

diagnosed with lymphedema was revolutionary as great benefits such as increased

muscle strength, decreased weight gain, and increased quality of life have been

shown to result from increased physical activity (Schmitz et al., 2010).

Incidence of lymphedema in the literature varies dramatically with estimates

between 6% to 70% (Schmitz et al., 2009). One factor attributed to the differ-

ence is the criteria used for diagnosis of lymphedema. Several diagnostic measures

include: water displacement volumetry, extracellular water in the arm measured

by multi-frequency bioelectrical impedance analysis, serial circumference measure-

ments and truncated cone volumetry. Initial evidence indicates that self-reported

lymphedema symptoms can be as useful as objective diagnostic measures in dis-

criminating women with lymphedema from those without (Norman et al., 2001).

Self-report of symptoms could be a useful measure in diagnosing lymphedema be-

cause patients are more aware of acute changes in swelling, skin tone, and function.

Furthermore, it is argued that patient pain or distress should be incorporated in

the diagnosis of lymphedema and that swelling alone is not sufficient for diagno-

sis. We explored the relationship among symptoms and a limb volume difference

“gold standard” measure to determine the utility of this information in summarizing
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lymphedema severity.

Outcome measures included self-reported lymphedema symptoms and an objec-

tive “gold standard” measure of lymphedema severity. The self-reported symptoms

were measured using the validated Norman Lymphedema Survey (Norman et al.,

2001). The severity of 13 symptoms was assessed: rings too tight, watch too tight,

bracelets too tight, clothing too tight, puffiness, knuckles not visible, veins not vis-

ible, skin feels leathery, arm feels tired, pain, pitting, swelling after exercise, and

difficulty writing. Symptoms were measured on a 5-point Likert scale with responses

ranging from 0 (no symptom) to 4 (very severe). Water displacement volumetry

was chosen as the “gold standard” and was measured as the percent difference in

volume between the lymphedema-affected and unaffected arms.

EFA models for ordered categorical outcomes revealed three distinct factors from

the Norman Lymphedema Survey items. One symptom, swelling after exercise, did

not load strongly on any factor. This symptom was chosen as a “junk” item, po-

tentially eligible for removal from the scale. The factor representing tissue, swelling

and function was chosen for further investigation. This factor included the fol-

lowing symptoms: clothing too tight, puffiness, skin feels leathery, arm feels tired,

pain, and difficulty writing. In the MIMIC model, Norman lymphedema symptoms

served as observed indicators and volume difference served as the observed cause.
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3.4 Results

Data for the example came from a subset of the PAL trial. The sample comprised

N = 141 women diagnosed with lymphedema at baseline. The average volume

difference, defined as the percent difference in arm volume between affected and

unaffected arms, for the sample was 16.11 percent [95% C.I. (13.59, 18.65)]. Figure

3.1 illustrates the association between individual symptom response categories and

average percent volume difference. For clothing too tight, puffiness, skin feels leath-

ery, and arm feels tired, there was a general increase in mean volume difference

with increasing levels of symptom severity. Because of the small sample sizes in

response category of very severe for pain and difficulty writing (n = 2 and n = 3,

respectively), responses severe and very severe were combined. There did not ap-

pear to be a trend in the association between mean volume difference and symptom

severity for pain, difficulty writing, or swelling after exercise.

Polychoric correlations among the symptoms are presented in Table 3.1. Cor-

relations among the items in the swelling/function factor were generally moderate

to strong, ranging from ρPain, Clothing = 0.222 to ρPuffiness, Clothing = 0.742. Corre-

lations among the junk item and other items were much smaller, ranging from

ρPuffiness, Swelling = −0.002 to ρWriting,Exercise = 0.220. These correlations provided ini-

tial evidence that swelling after exercise could be a candidate for removal because

it did not correlate highly with the other items.

Standard psychometric techniques also identified swelling after exercise as po-
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Figure 3.1: Mean volume difference plots with error bars for Norman Lymphedema
Survey items.

tential “junk” (see Table 3.2). Item-total correlations when all items were included

in the scale ranged from ρ = 0.111 for swelling after exercise to ρ = 0.666 for arm
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Table 3.1: Polychoric correlations of Norman Lymphedema Survey items.
Clothing Puffiness Skin Feels Arm Feels Pain Difficulty Swelling
too tight Leathery Tired Writing

Clothing Too Tight 1.0000
Puffiness 0.7422 1.0000
Skin Feels Leathery 0.5219 0.5814 1.0000
Arm Feels Tired 0.4514 0.6718 0.5426 1.0000
Pain 0.2217 0.4231 0.3323 0.5455 1.0000
Difficulty Writing 0.2408 0.4141 0.2257 0.5687 0.3858 1.0000
Swelling 0.0322 -0.0017 0.1966 0.2169 -0.0112 0.2197 1.0000

Table 3.2: Standard psychometric measures of Norman Lymphedema Survey items.
Symptom Item-total Correlation Alpha
Clothing Too Tight 0.474 0.687
Puffiness 0.636 0.647
Skin Feels Leathery 0.495 0.682
Arm Feels Tired 0.666 0.639
Pain 0.382 0.709
Difficulty Writing 0.358 0.715
Swelling After Exercise 0.111 0.769

feels tired. According to the ρ = 0.2 guideline (Streiner and Norman, 1994), swelling

after exercise could potentially be considered for removal. The overall Cronbach’s

alpha assuming all seven items in the scale was α = 0.727, indicating that the

removal of swelling after exercise is unwarranted.

Results from univariate cumulative probit models are featured in Table 3.3.

According to these models, there was a statistically significant relationship between

volume difference and increasing item severity for clothing too tight and puffiness

(p < 0.001 for both). In both of these models, the cumulative probability starting

at the severe end of the scale increased with higher levels of volume difference

(βClothing too tight = 0.030, S.E. = 0.006, βPuffiness = 0.029, S.E. = 0.007). In other

words, symptom severity for clothing too tight and puffiness tended to be more

intense as volume difference increased. All other items identified in the exploratory
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model as well as the potential “junk” item were not significantly associated with

volume difference when considered individually.

When symptoms were considered jointly, factor loadings from the ordinal MIMIC

model indicated a strong relationship among the candidate items and the latent

measure of lymphedema severity (see Table 3.4). For these items identified by EFA,

factor loadings exceeded 0.5 and ranged from λPain = 0.512 to λPuffiness = 0.906. All

factor loadings for candidate items were statistically significant (p < 0.001). The

factor loading for swelling after exercise was small (λSwelling = 0.145) and the test

for the factor loading was not statistically significant (p = 0.132), indicating that

this item did not contribute to the underlying measure of lymphedema severity.

The coefficient for the regression of the latent lymphedema severity on volume dif-

ference was β = 0.020 and was statistically significant (p = 0.001). This represents

a global test of the significance of the relationship between volume difference and

all items in the MIMIC model. The regression coefficient can be interpreted as

follows: every 1% change in volume difference corresponded to a β = 0.020 change

in latent lymphedema severity on the standard normal scale. In other words, a clin-

ically meaningful change in volume difference of 5% would correspond to a change

of β = 0.10, an effect size of 0.1 standard deviation units in the latent measure of

lymphedema severity.
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Table 3.3: Univariate cumulative probit models.
Symptom Estimate SE P
Clothing too tight
α1 0.356 0.150 0.017
α2 0.723 0.153 <0.001
α3 1.746 0.199 <0.001
α4 2.797 0.396 <0.001
β 0.030 0.006 <0.001

Puffiness
α1 -0.503 0.156 0.001
α2 0.106 0.146 0.467
α3 1.260 0.176 <0.001
α4 2.363 0.259 <0.001
β 0.029 0.007 <0.001

Skin feels leathery
α1 0.431 0.157 0.006
α2 0.796 0.169 <0.001
α3 1.452 0.206 <0.001
α4 1.940 0.255 <0.001
β 0.007 0.006 0.260

Arm feels tired
α1 -0.394 0.151 0.009
α2 -0.032 0.146 0.829
α3 0.963 0.159 <0.001
α4 1.771 0.211 <0.001
β 0.007 0.006 0.243

Pain
α1 0.138 0.148 0.352
α2 0.399 0.151 0.008
α3 1.140 0.170 <0.001
α4 2.161 0.286 <0.001
β -0.002 0.006 0.751

Difficulty writing
α1 0.905 0.178 <0.001
α2 1.014 0.180 <0.001
α3 1.503 0.206 <0.001
α4 2.227 0.320 <0.001
β 0.002 0.008 0.771

Swelling after exercise
α1 0.632 0.175 <0.001
α2 0.847 0.192 <0.001
α3 1.497 0.219 <0.001
α4 NA NA NA
β -0.002 0.008 0.842
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Table 3.4: Ordered categorical MIMIC model applied to PAL data.
Symptom Estimate SE P
Factor Loadings

Clothing too tight 0.709 0.051 <0.001
Puffiness 0.906 0.038 <0.001
Skin feels leathery 0.631 0.057 <0.001
Arm feels tired 0.779 0.038 <0.001
Pain 0.512 0.069 <0.001
Difficulty writing 0.526 0.075 <0.001
Swelling after exercise 0.145 0.096 0.132

Regression Coefficient
β 0.020 0.006 0.001

Thresholds
Clothing too tight
α1 0.356 0.150 0.017
α2 0.723 0.153 <0.001
α3 1.746 0.199 <0.001
α4 2.798 0.396 <0.001

Puffiness
α1 -0.503 0.156 0.001
α2 0.106 0.146 0.467
α3 1.260 0.176 <0.001
α4 2.363 0.259 <0.001

Skin feels leathery
α1 0.431 0.157 0.006
α2 0.796 0.169 <0.001
α3 1.452 0.206 <0.001
α4 1.940 0.255 <0.001

Arm feels tired
α1 -0.394 0.151 0.009
α2 -0.032 0.146 0.829
α3 0.963 0.159 <0.001
α4 1.771 0.211 <0.001

Pain
α1 0.138 0.148 0.352
α2 0.399 0.151 0.008
α3 1.140 0.170 <0.001
α4 2.161 0.286 <0.001

Difficulty writing
α1 0.905 0.178 <0.001
α2 1.014 0.180 <0.001
α3 1.503 0.206 <0.001
α4 2.228 0.320 <0.001

Swelling after exercise
α1 0.632 0.175 <0.001
α2 0.847 0.192 <0.001
α3 1.497 0.219 <0.001
α4 NA NA NA
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3.5 Discussion

In terms of the motivating example, standard psychometric techniques, univariate

models, and the MIMIC model provided somewhat conflicting results. Item-total

correlations identified swelling after exercise as a potential junk item. While psycho-

metric techniques took into account the relationship among symptoms, they did not

take into account the relationship between items and “gold standard” volume differ-

ence. Cumulative probit models revealed a significant relationship between volume

difference and only two of the items: clothing too tight and puffiness. These mod-

els were useful for describing the relationship between volume difference and item

severity scores in the univariate setting but did not consider the correlation among

the items and how all the items together are associated with volume difference. The

MIMIC model showed that six of the seven items in the model were significant com-

ponents of latent lymphedema severity. The MIMIC model is advocated because

it takes into account the correlation among the items as well as the relationship

between the latent measure of severity and the “gold standard.” Unlike the stan-

dard psychometric techniques, which assume an underlying normal distribution of

the items, the categorical formulation of the MIMIC model is an appropriate choice

for ordinal data. The results of our evaluation of the Norman symptoms showed

that the MIMIC model can be useful to inform item reduction. The MIMIC model

suggested that the potential junk item was not statistically significant and could be

considered for removal. There are several directions for future work based on the
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methods investigated in this chapter. Of particular interest is the influence of scale

item distributions on MIMIC model estimates. I noticed that there was a significant

proportion of non-response for many of the Norman Lymphedema Survey items. In

Chapter 4 I investigate the effects of skewed item distributions and propose a new

model to account for significant symptom non-response.
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Chapter 4

A Joint Latent Variable Model for

Item Reduction and Validation in

the Presence of a Preponderance

of Zeros

4.1 Introduction

In this chapter I propose an extension to the ordered categorical MIMIC model

presented in Chapter 3. In the case of highly skewed item distributions it is possible

that estimates from a standard MIMIC model are not entirely accurate, and in

the motivating example the Norman Lymphedema Survey scale items exhibited a
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preponderance of zeros. The methodological objectives in this chapter are two-

fold: First, simultaneously and efficiently perform item reduction and validation

using a joint latent variable model, and second, determine a method to account

for the excess zeros in item distributions. In this chapter I propose a multivariate

zero-inflated proportional odds (MZIPO) model, a joint latent variable model that

accomplishes both tasks simultaneously. The MZIPO model yields more accurate

estimates both of the relationship between individual symptoms and the latent

variable and the relationship between the latent variable and the gold standard

diagnostic measure than if a standard MIMIC model were used.

The proposed MZIPO model can be thought of as an extension of several sta-

tistical models. This section highlights several models that motivate the MZIPO

model. Several previous latent variable models formulated for ordered categorical

data establish a foundation for the MZIPO model. As discussed in Jóreskog and

Moustaki (2000), latent variable models for ordered categorical items are generally

framed either from an underlying response function approach where it is assumed

that an observed ordered categorical item is a manifestation of an underlying con-

tinuous latent variable (Muthén, 1984b; Jóreskog, 1994), or a response function

approach, which was originally developed in item response theory (IRT) as de-

scribed by the graded response model (Samejima, 1970). Extensions to the graded

response model accommodate multiple latent variables and a variety of link func-

tions. Moustaki (2000) presents a general class of latent variable models for ordinal
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items in a regression framework similar to McCullagh (1980).

Other extensions allow for mixed observed outcome types. Sammel et al. (1997)

propose a latent variable model for mixed discrete and continuous outcome types

that also allows for the inclusion of covariates. This model accommodates any type

of observed outcome that can be framed as a generalized linear model. The estima-

tion method presented in Sammel et al. motivated the EM estimation procedure

used in the MZIPO model, which is described in Section 4.3.

In addition to models for mixed observed outcome types, a general class of latent

variable models allows for mixed latent variable types. Proposed by Muthén (2008),

latent variable hybrid models contain discrete and continuous latent variables and

accommodate cross-sectional or longitudinal data. The cross-sectional formulation

of these models, also known as factor mixture models (FMMs), combines the classic

factor analysis model and the classic latent class model to cluster items into a

smaller set of dimensions and subjects into unobserved subpopulations. The main

objective of FMMs is to determine structural relations between latent and observed

variables in the presence of unobserved population heterogeneity. If subjects could

be classified into any number of observed groups then multiple group latent variable

methods could be used. However, when population heterogeneity is unobserved,

latent classes can be used to infer subpopulations of interest. Additionally, FMMs

allow for the inclusion of covariates, which can help to explain the unobserved

heterogeneity present in the data. The MZIPO model fits in the framework of
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FMMs, but the model is distinct because the latent classes have a slightly different

form than FMMs. In the MZIPO approach it is assumed that one of the classes

has a degenerate distribution. In the motivating example it was of interest to

determine, among subjects who did not experience symptoms at baseline, who was

truly susceptible to experiencing lymphedema incidence or exacerbations.

Statistical models that accommodate both continuous and discrete latent vari-

ables have been described elsewhere (Arminger et al., 1999; Dolan and van der

Maas, 1998; Yung, 1997) but until recently have lacked popularity in psychometrics

and biomedical research. These models are extremely useful for our application

because they will allow us to distinguish between groups of patients who are truly

at a greater risk for lymphedema from those whose symptoms do not indicate a

substantial risk. Factor mixture models to accommodate sample heterogeneity for

quantitatively measured outcomes are described generally in Muthén and Shedden

(1999) and Lubke and Muthén (2005). Several other articles have assessed model

performance of the factor mixture model under various conditions (Lubke and Neale

(2006), Lubke and Muthén (2007)). Lubke and Neale (2008) builds on Lubke and

Neale (2006) by extending the model to deal with binary and ordinal outcomes. In

general, FMMs will be useful in comparing the symptom profiles of those at risk to

an objective “gold standard” measure of lymphedema severity.

In addition to FMMs, one particular statistical model served as motivation for

the MZIPO model. In the motivating example, I utilize the latent class to account
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for zero inflation in the symptom battery, thus extending the work of Kelley and

Anderson (2008) who addressed this issue in a univariate setting. Their model, a

univariate zero-inflated proportional odds (ZIPO) model, is a mixture model that

incorporates the probability of non-response into an ordinal regression model. Simi-

lar to the zero-inflated Poisson model, the ZIPO model accounts for non-responders

using a mixture model approach but is intended for ordered categorical observed

outcomes. The ZIPO model is particularly useful because it allows for the simultane-

ous modeling of symptom frequency and severity in the presence of a preponderance

of zeros.

The rationale of the ZIPO model is that the mixture distributions come from a

population that can be divided into two unobserved states. The unsusceptible state

includes those subjects who experience “true” symptom non-response. On the other

hand, the susceptible state includes subjects for whom a particular symptom may

not present at the time of data collection but who is still susceptible to experiencing

the symptom at a different time or under different conditions. As a result, the

conditional distribution for the ordinal regression may still contain some observed

zeros.

Building on the papers cited above, the MZIPO model fits into the general class

of factor mixture models as it combines a classic factor analysis model and latent

class model components. It is unique from the traditional factor mixture model,

however, in that the latent class component is used to account for zero-inflation
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in the data, so that one of the mixture distributions is assumed to be degenerate.

The MZIPO model can be thought of as an extension to the ZIPO model in several

ways. First, we are extending the ZIPO model to accommodate multiple observed

ordinal outcomes. This extension allows for the evaluation of an entire battery of

symptom items simultaneously rather than each item individually. Next, in order

to model the multivariate ordinal outcomes the model also includes a continuous

latent variable. Including the continuous latent variable provides a single weighted

summary measure of the multivariate outcomes, or latent factor score, for each

individual. The MZIPO model incorporates useful features of previously proposed

latent variable models to accomplish the objectives set for the motivating example.

The rest of the chapter is outlined as follows: Section 4.2 specifies the MZIPO

model, Section 4.3 outlines estimation via the EM algorithm, Section 4.4 describes

the motivating example, Section 4.5 presents results of the application of the MZIPO

model, and finally conclusions are given in Section 4.6.

4.2 Model Specification

Let yij be an ordered categorical measure for subject i = 1, ..., n on item j = 1, ...,m

where each item contains k = 1, ..., Kj response categories.
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4.2.1 Measurement Model

The measurement model is an ordered categorical factor analysis model assuming

a proportional odds structure for observed ordinal items as described by Jóreskog

and Moustaki (2000). The model measures the relationship between individual

scale items and the continuous latent disease severity measure. This model can

be thought of as a latent variable formulation of a multivariate generalized linear

model. Similar models with a variety of link functions can be found in Moustaki

(2000). For a model with a single continuous latent variable and a logit link, the

measurement model is specified as

ln

[
γ

(j)
k (b)

1− γ(j)
k (b)

]
= α

(j)
k − βjbi
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where Ψ(.) is the distribution function of the logistic distribution. Therefore, the

conditional distribution of (yij | bi) is given by
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I[yij = k] is an indicator function that equals 1 if yij = k and 0 otherwise.

4.2.2 Structural Model

The structural model measures the relationship between the continuous measure of

latent disease severity and the “gold standard” diagnostic measure. The model is

a simple linear regression model

bi = τTi + δi

where τ is the coefficient for the regression of the latent variable on the gold stan-

dard, Ti is the gold standard covariate measure, and δi is the error term for the

latent variable. The test of the regression coefficient in the model serves as an

indicator of criterion validity in that it measures the strength of the relationship

between the “gold standard” diagnostic measure and disease severity as measured

by the observed scale items. For purposes of identifiability it is assumed in this case

that Var(δi) = 1, although other constraints are possible (Muthén and Shedden,

1999).
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4.2.3 Latent Class Model

Define latent class ci as a categorical latent variable with two classes to represent

the susceptible and unsusceptible states such that

ci =


1, if yi is in the unsusceptible state

0, if yi is in the susceptible state.

Note that latent class membership is based on the entire vector of observed item

responses.

Observed Response and Latent Class Assignment

As described in the introduction to this chapter, it is assumed that the unobserved

unsusceptible state contains only “true” symptom non-response. Define observed

responders as those subjects who have a non-zero response to at least one of the

scale items. An observed non-responder is then defined as a subject who exhibits

a zero response to all scale items. An important element in the MZIPO model

is that the classification in the observed responder group means that a subject

will automatically be assigned to the susceptible state. The MZIPO model then

classifies all observed non-responders into either the unsusceptible or susceptible

state. A comparison of observed response and latent class assignment is presented

later.
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4.2.4 Complete Data Likelihood

For the purpose of model building the latent class assignment is treated as missing

data. Suppose it was possible to know which subjects came from the unsusceptible

state and which came from the multinomial distribution (susceptible state). Latent

class assignment could be defined as zi = 1 when the observed responses for subject

i (yi) came from the unsusceptible state and zi = 0 when the responses came from

the multinomial distribution. For parameter vector Θ = [α
(j)
k ,β, τ, p] a complete-

data likelihood could be constructed as

L =
n∏
i=1

f(yi, zi, bi | Θ) =
n∏
i=1

Pr(yi = 0, zi = 1)zi Pr(yi = k, zi = 0, bi)
(1−zi).

Because the unsusceptible class includes only zero responses on all observed out-

comes,

Pr(yi = 0, zi = 1) = Pr(yi = 0 | zi = 1)Pr(zi = 1)

= p.

Note that Pr(zi = 0) = 1 − p,Pr(zi = 1) = p because the prevalence of the

unsusceptible and susceptible states is of interest. In other formulations of factor

mixture models and the ZIPO model, it is possible to allow for covariates to explain

the probability of latent class membership.
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An important assumption in the MZIPO model is that the latent class and the

continuous latent variable are independent of one another, i.e. bi ⊥⊥ zi . This

assumption allows for the separation of components in the model likelihood and

facilitates estimation of the model.

For subjects in the susceptible state,

Pr(yi = k, zi = 0, bi) = Pr(yi = k | zi = 0, bi) Pr(zi = 0 | bi)f(bi)

= Pr(yi = k | zi = 0, bi) Pr(zi = 0)f(bi)

= Pr(yi = k | zi = 0, bi)(1− p)f(bi),

where

Pr(yi = k | zi = 0, bi)

=
M∏
j=1

Kj∏
k=0

Pr(yij = k | zi = 0, bi)
I[yij=k]

=
M∏
j=1

Kj∏
k=0

[γ
(j)
k (b)− γ(j)

k−1(b)]I[yij=k]

=
M∏
j=1

Kj−1∏
k=0

[
Ψ
[
α

(j)
k − βjbi

]
−Ψ

[
α

(j)
k−1 − βjbi

]]I[yij=k][
1−Ψ

[
α

(j)
K−1 − βjbi

]]I[yij=K]

.

The final element of the complete data likelihood arises from the structural

model in which we assume the continuous latent variable to be normally distributed

f(bi) =
1√
2π
e
−(bi−τTi)

2

2
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Given the components defined above, the log-likelihood is given by

` = lnL =
n∑
i=1

zi ln p+ (1− zi) ln(1− p)

+
n∑
i=1

(1− zi)
M∑
j=1

[
K−1∑
k=0

I[yij = k] ln
[
Ψ
[
α

(j)
k − βjbi

]
−Ψ

[
α

(j)
k−1 − βjbi

]]
+ I[yij = K] ln

[
1−Ψ

[
α

(j)
K−1 − βjbi

]]]

+
n∑
i=1

(1− zi)
[

ln
1√
2π
− 1

2
(bi − τTi)2

]

which, for the purpose of estimation, can be separated into three distinct portions

with parameters for the latent class, the measurement model, and the structural

model.

4.3 Model Estimation

The EM algorithm is a natural choice for estimation of the MZIPO model because

both types of latent variables can be considered missing data. Little and Rubin

(1987) demonstrated for data Y = (Yobs, Ymis), the EM algorithm proceeds by

first factoring the complete data log-likelihood into one piece for the marginal log-

likelihood of the observed data and one piece for the log-likelihood of the missing

data conditional on the observed data

`(θ | Y ) = `(θ | Yobs, Ymis) = `(θ | Yobs) + ln f(Ymis | Yobs, θ).
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Solving for `(θ | Yobs) yields

`(θ | Yobs) = `(θ | Y )− ln f(Ymis | Yobs, θ). (4.3.1)

As in Little and Rubin, the expectation of both sides of Equation 4.3.1 with respect

to the distribution of missing data given observed data is given by

E`(θ | Yobs) = Q(θ | θ(t))−H(θ | θ(t))

for

Q(θ | θ(t)) =

∫ ∞
−∞

[`(θ | Yobs, Ymis)]f(Ymis | Yobs) dYmis.

In the MZIPO model, define Y obs = (yi) and Y mis = (zi, bi) for Θ = [α
(j)
k ,β, τ, p]

so that

Q(Θ | Θ(t)) =

∫ ∞
−∞

[`(Θ | yi, Ti, zi, bi)]f(zi, bi | yi, Ti,Θ(t)) d(zi, bi)

where

`(Θ | yi, Ti, zi, bi) =
n∑
i=1

[
ln f(yi | zi, bi,Θ) + ln f(zi | Θ) + ln f(bi | Θ)

]
.
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In the M-step of the EM algorithm Q(Θ | Θ(t)) is maximized such that

∂

∂Θ
Q(Θ | Θ(t)) = 0.

Under certain regularity conditions (Little and Rubin, 1987, p. 136), met in our

example because the distribution of yi is multinomial, the order of integration and

differentiation can be reversed and the following equation can be solved

∂

∂Θ
Q(Θ | Θ(t)) =

∫ ∞
−∞

∂

∂Θ
[`(Θ | yi, Ti, zi, bi)]f(zi, bi | yi, Ti,Θ(t)) d(zi, bi) = 0.

Define h(bi, zi | yi) = f(zi, bi | yi,Θ(t)), the posterior distribution of the missing

data. Solving Q(Θ | Θ(t)) is equivalent to solving for the expected score function

S(θj) with respect to the posterior distribution of missing data given observed data

Eb,zSi(Θj) =

∫ ∞
−∞

∑
z

Si(Θj)h(b, z | yi) dbi. (4.3.2)

Because closed form solutions for Eb,zS(Θj) = 0 are not available, a Fisher scoring

algorithm is used to iteratively update estimates of Θj . Sammel et al. (1997)

and others showed that assuming conditional independence of the observed items

given the continuous latent variable, the parameter space can be separated into

components corresponding to each outcome. The expectation step, approximating

the integral Eb,zS(Θj), will also yield estimates of bi and zi by setting Eb,zS(Θj)=0,
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and solving for each parameter in the maximization step will give iterative estimates

of each parameter.

4.3.1 Expectation Step

Expectation of zi

A natural first step of the EM algorithm is the estimation of latent class membership.

An estimate of the expected value of zi given the posterior distribution is computed

as

Eh(b,z)(zi) =

∫ ∞
−∞

1∑
zi=0

zih(bi, zi | yi,θ) dbi,

=

∫∞
−∞
∑1

zi=0 zif(yi | bi, zi)f(bi | zi)f(zi) dbi∫∞
−∞
∑1

zi=0 f(yi | bi, zi)f(bi | zi)f(zi) dbi
. (4.3.3)

Considering the components separately, the numerator can be re-expressed as

∫ ∞
−∞

1∑
zi=0

zif(yi | bi, zi)f(bi | zi)f(zi) dbi

=

∫ ∞
−∞

(0)f(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi

+

∫ ∞
−∞

(1)f(yi | bi, zi = 1)f(bi | zi = 1)f(zi = 1) dbi

= p ∗ Pr(yi = 0 | zi = 1)

∫
b

f(bi | zi = 1) dbi

= p,

(4.3.4)
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and the denominator as

∫ ∞
−∞

1∑
zi=0

f(yi | bi, zi)f(bi | zi)f(zi) dbi

=

∫ ∞
−∞

f(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi

+

∫ ∞
−∞

f(yi | bi, zi = 1)f(bi | zi = 1)f(zi = 1) dbi

=

∫ ∞
−∞

(1− p)f(yi | bi, zi = 0)f(bi | zi = 0) dbi + p.

(4.3.5)

Putting Equation 4.3.4 and 4.3.5 together, zi can be estimated by

Eh(b,z)(zi) =
p

p+
∑T

t=1(1− p) wt exp(b2
t ) f(yi | bt, zi = 0) f(bt | zi = 0)

. (4.3.6)

Note that Eh(b,z)(zi) = 0 for subjects with non-zero observed yi values because by

definition they cannot be part of the unsusceptible class. Furthermore, a dichoto-

mous estimate of Eh(b,z)(zi) for each subject is created at each iteration such that

(ẑi)
(s)

=1 if Eh(b,z)(ẑi) > 0.5 at iteration (s) and 0 otherwise.

Approximating Expectations using Gauss-Hermite Quadrature

Expectations of expected score functions and sufficient statistics necessary for the

estimation of the MZIPO model parameters cannot be directly evaluated because

the solutions are not available in closed form, so the Gauss-Hermite quadrature

method (Abramowitz and Stegun, 1964) was used. This method is often used to

solve complicated integrals involving the normal distribution. Though the continu-
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ous latent variable in the MZIPO model is normally distributed, the Gauss-Hermite

quadrature method will require a change of variables because the latent variable is

not distributed as standard normal. Many of the expectations required for estima-

tion contain the integral

∫ ∞
−∞

f(yi | bi, zi = 0)f(bi | zi = 0) dbi (4.3.7)

where f(bi) is given in Equation 4.2.1.

Using a change of variables such that

xi =
bi − τTi√

2

which implies

bi = τTi +
√

2xi,

Equation 4.3.7 can be written

∫ ∞
−∞

f(yi | bi = τTi +
√

2xi, zi = 0)
1√
2π

exp
(
−x2

i

) dbi
dxi

dxi

=

∫ ∞
−∞

f(yi | bi = τTi +
√

2xi, zi = 0)
1√
π

exp(−x2
i ) dxi

given dbi
dxi

=
√

2. This equation is in the form of integrals given in Liu and Pierce
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(1994) and can be approximated by

T∑
t=1

wt√
π
f(yi | τ̂Ti +

√
2xt, zi = 0)

where xt is the tth node of the Hermite polynomial and wt is the corresponding

weight. Gauss-Hermite approximation for Equation 4.3.6, the expected value of zi,

is given by

Eh(b,z)zi ≈
p

p+ (1− p)
∑T

t=1
wt√
π
f(yi | τ̂Ti +

√
2xt, zi = 0)

and expected score functions (see Equation 4.3.2)

Eh(b,z)Si(Θ) =

∫ ∞
−∞

1∑
zi=0

Si(Θ)h(bi | yi) dbi

=

∫∞
−∞ Si(Θ)f(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi

=

∫∞
−∞ Si(Θ)f(yi | bi, zi = 0)f(bi | zi = 0)(1− p) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0)(1− p) dbi

can be approximated by

Eh(b,z)Si(Θ) ≈
∑T

t=1
wt√
π
Si(Θ)f(yi | τ̂Ti +

√
2xt, zi = 0)∑T

t=1
wt√
π
f(yi | τ̂Ti +

√
2xt, zi = 0)

. (4.3.8)
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4.3.2 Maximization Step

Estimation of Parameters in Latent Class

The expected score function for p can be written as

Eb,zSi(p) =

∫ ∞
−∞

∑
z

zi − p
p(1− p)

h(bi, zi | yi)dbi.

=
Eb,z(zi)− p
p(1− p)

Solving
∑n

i=1 Si(p) = 0 results in a closed form solution

p̂ =

∑n
i=1Eb,z(zi)

n
,

the estimate of the probability of membership in the unsusceptible class.

Estimation of Class-Specific Parameters

As demonstrated above, parameters in the measurement model and structural

model are only estimated in the susceptible class.
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Estimation of parameters in the structural model

For the estimation of τ , define

Eh(b,z)(Si(τ))

=

∫ ∞
−∞

1∑
zi=0

Si(τ)h(bi, zi | yi,θ)dbi

=

∫ ∞
−∞

1∑
zi=0

(1− zi)Ti(bt − τTi)h(bi, zi | yi,θ)dbi

=

∫ ∞
−∞

(1− 0)Ti(bt − τTi)h(bi, zi = 0 | yi,θ)dbi

+

∫ ∞
−∞

(1− 1)Ti(bi − τTi)h(bi, zi = 1 | yi,θ) dbi

= Ti

∫ ∞
−∞

bih(bi, zi = 0 | yi,θ)dbi − τT 2
i

∫
h(bi, zi = 0 | yi,θ)dbi.

(4.3.9)

The first component of Equation 4.3.9 is

∫ ∞
−∞

bih(bi, zi | yi,θ)dbi =

∫∞
−∞ bif(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0)f(zi = 0) dbi

=
(1− p)

∫∞
−∞ bif(yi | bi, zi = 0)f(bi | zi = 0) dbi

(1− p)
∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0) dbi

=

∫∞
−∞ bif(yi | bi, zi = 0)f(bi | zi = 0) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0) dbi

and

∫ ∞
−∞

h(bi, zi | yi,θ)dbi = 1;
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therefore

Eh(b,z)(Si(τ)) =
Ti
∫∞
−∞ bif(yi | bi, zi = 0)f(bi | zi = 0) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0) dbi

− τT 2
i .

Solving for τ we obtain

τ̂ =

∑n
i=1 Ti

∫∞
−∞ bif(yi|bi,zi=0)f(bi|zi=0) dbi∫∞

−∞ f(yi|bi,zi=0)f(bi|zi=0) dbi∑n
i=1 T

2
i

.

Estimation of parameters in the measurement model

Recall that the measurement model specifies the relationships between individual

scale items and the continuous latent variable. The estimation of the α
(j)
k and

βj parameters, thresholds and factor loadings in the measurement model, involves

the expectations of score functions and elements of the information matrix with

respect to the posterior distribution. Expected score functions and second partial

derivatives of class-specific parameters in the MZIPO model can be expressed in

the form

Si(θj) = (1− zi)S∗i (θj).

For zi = 0, the susceptible class,

Eh(bi,zi=0)(Si(θj)) =

∫∞
−∞ S

∗
i (θj)f(yi | bi, zi = 0)f(bi | zi = 0) dbi∫∞
−∞ f(yi | bi, zi = 0)f(bi | zi = 0) dbi

.
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For example, the score function of α
(j)
k is given by

Si(α
(j)
k ) = (1− zi)

[
I[yij = k]

[
Ψ[α

(j)
k − βjbi]

[
1−Ψ[α

(j)
k − βjbi]

]
Ψ[α

(j)
k − βjbi]−Ψ[α

(j)
k−1 − βjbi]

]

−I[yij = k + 1]

[
Ψ[α

(j)
k − βjbi]

[
1−Ψ[α

(j)
k − βjbi]

]
Ψ[α

(j)
k+1 − βjbi]−Ψ[α

(j)
k − βjbi]

]]
.

If we define

S∗i (α
(j)
k ) =

[
I[yij = k]

[
Ψ[α

(j)
k − βjbi]

[
1−Ψ[α

(j)
k − βjbi]

]
Ψ[α

(j)
k − βjbi]−Ψ[α

(j)
k−1 − βjbi]

]

−I[yij = k + 1]

[
Ψ[α

(j)
k − βjbi]

[
1−Ψ[α

(j)
k − βjbi]

]
Ψ[α

(j)
k+1 − βjbi]−Ψ[α

(j)
k − βjbi]

]]

then Eh(b,z)(Si(α
(j)
k ) can be approximated using Equation 4.3.8. The remaining score

functions and second partial derivatives (shown in Appendix C) for parameters in

the measurement model can be approximated similarly.

Fisher Scoring Algorithm for Estimation of Parameters in Measurement

Model

For parameters in the measurement model, the solution to Eb,zSi(αj) = 0 is not

available in closed form. Therefore, a Fisher scoring algorithm is used. For the
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estimation of βj, we first consider a Taylor series expansion of the expected score

Eb,zSi(β̂j) ≈ Eb,zSi(βj) + (β̂j + βj)
∂

∂βj
Eb,zSi(βj)

≈ (β̂j + βj)Ii(βj)

because Eb,zSi(β̂j) = 0 and under regularity conditions expectation and differenti-

ation can be interchanged.

Note that

Ii(βj) = − ∂

∂βj
Eb,zSi(βj) (4.3.10)

is the ith individual’s contribution to the observed Fisher information. Taking the

expectation of the observed Fisher information with respect to yi yields

Ji(βj)

= −Eyi ∂
∂βj
EbSi(βj)

= −Eyi
∫∞
−∞
∑

z
∂
∂βj
Si(βj)h(b, z | yi)dbi

= −Eyi
∫∞
−∞
∑

z

{
∂
∂βj
Si(βj)

}
h(b, z | yi)dbi − Eyi

∫ ∑
z Si(βj)

{
∂
∂βj
h(b, z | yi)

}
dbi

= −
∫∞
−∞
∑

z Eyi

{
∂
∂βj
Si(βj)

}
h(b, z | yi)dbi −

∫ ∑
z EyiSi(βj)

{
∂
∂βj
h(b, z | yi)

}
dbi

= −
∫∞
−∞
∑

z Eyi

{
∂
∂βj
Si(βj)

}
h(b, z | yi)dbi.
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Replacing Ii(βj) with Ji(βj) and solving Equation 4.3.10 for βj yields

β
(l+1)
j = βlj + J−1(βj)Eb,zS(βj). (4.3.11)

The individual components in Equation 4.3.11 can be approximated using Gauss-

Hermite quadrature. A similar Fisher scoring algorithm for the estimation of α
(j)
j

is used. For categories k = 0, ..., K − 2

α
(j)(l+1)
kj

= α
(j)(l)
kj

+ J−1(α
(j)
kj

)Eb,zS(α
(j)
kj

) (4.3.12)

and for category k = Kj − 1

α
(j)(l+1)
Kj−1 = α

(j)(l)
Kj−1 + J−1(α

(j)
Kj−1)Eb,zS(α

(j)
K−1). (4.3.13)

The components of Equations 4.3.12 and 4.3.13 are approximated using Gauss-

Hermite quadrature. Estimation of the MZIPO model was performed using SAS

9.2 IML.

4.3.3 Predictive validity

An essential step in model checking for any latent class model is the evaluation

of latent class assignment. It is necessary to determine whether the model accu-

rately classifies subjects into unobserved subgroups. Although the MZIPO model
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is estimated using data from the baseline portion of the trial, assessing the pre-

dictive validity of class assignments in the model is performed by comparing the

“gold standard” diagnostic measure for the two latent classes at subsequent time

points in the study. Significant differences in the “gold standard” between the la-

tent classes at time points after baseline indicate the predictive validity of the class

assignment. The differences in the mean of the “gold standard” between the classes

are evaluated with t-tests.

4.4 Example

The motivating example for this chapter comes from the PAL clinical trial. As

described generally in Chapter 1 and more specifically in Chapter 3, a point of con-

tention in lymphedema research is that incidence of lymphedema varies drastically

in the literature, and one explanation is that a variety of diagnostic measures are

used. In addition to swelling, self-reported symptom items such as those in the

Norman Lymphedema Survey (Norman et al., 2001) could potentially be useful in-

dicators of lymphedema incidence or exacerbation. However, in the PAL study the

distribution of self-reported severity symptoms in the Norman Lymphedema survey

was substantially zero-inflated. The PAL trial was designed such that half of the

participants were previously diagnosed with lymphedema and half were not, which

could partially explain the excess of zero responses. However, there is the potential

for undiagnosed lymphedema at baseline as well as the potential for exercise inter-
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vention to bring about lymphedema symptoms. The objective of the analysis was to

use the MZIPO model to identify important Norman lymphedema symptoms and

establish criterion validity compared to objective measures while simultaneously

accounting for the zero-inflation that occurred in the Norman symptoms using a

latent class component.

The sample comes from N = 280 women with complete data from the baseline

portion of the PAL trial. Outcome measures included 7 severity items from the Nor-

man Lymphedema Survey, as described in Chapter 3. Six of the items were chosen

based on results of EFA models (clothing too tight, puffiness, skin feels leathery,

arm feels tired, pain, difficulty writing) and a seventh item (swelling after exercise)

was chosen from the scale as a potential “junk” item. Volume difference percentage

between affected and unaffected arms was considered the “gold standard” diagnos-

tic measure. In contrast to Chapter 3, the continuous volume difference measure

was recoded into seven ordered categories with 5 percentage points in each cate-

gory. This rescaling preserves the linear nature of the “gold standard” measure but

eliminates an identifiability issue in modeling limb volume difference as continuous.

4.5 Results

Frequency distributions for the Norman Lymphedema Survey items are shown in

Figure 4.1 for the full sample. Each item has an excess of zeros, with the percentage

of zeros for each item ranging from 53.24% (N=148) for puffiness to 88.49% (N=246)
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Table 4.1: Baseline characteristics for complete data sample of PAL data.
Stratified by Latent Class

Full Sample (N=278) Susceptible (N=217) Unsusceptible (N=61) P value

Age
Mean, SD 56.13 8.87 56.50 8.92 54.78 8.63 0.1825

Education (Freq., Percent)
High school or less 43 15.47 36 16.59 7 11.48 0.5994
Some college 95 34.17 74 34.10 21 34.43
College or postgraduate 140 50.36 107 49.31 33 54.10

Race
White 183 65.83 136 62.67 47 77.05 0.0592
Black 83 29.86 72 33.18 11 18.03
Other 12 4.32 9 4.15 3 4.92

Marital Status
Never married 31 11.27 24 11.21 7 11.48 0.2585
Currently married/living with partner 168 61.09 125 58.41 43 70.49
Divorced/separated 49 17.82 41 19.16 8 13.11
Widowed 27 9.82 24 11.21 3 4.92

Occupation
Professional 110 40.00 83 38.79 27 44.26 0.0632
Clerical or service 51 18.55 37 17.29 14 22.95
Homemaker, student, or unemployed 25 9.09 16 7.48 9 14.75
Other or unknown 24 8.73 21 9.81 3 4.92
Retired 65 23.64 57 26.64 8 13.11

Dominance
Yes 140 50.36 111 51.15 29 47.54 0.6182
No 138 49.64 106 48.85 32 52.46

Volume Difference
Mean, SD 7.57 13.74 9.60 14.68 0.36 5.13 <0.0001

Lymphedema Diagnosis at Baseline
Yes 133 47.84 126 58.06 7 11.48 <0.0001
No 145 52.16 91 41.94 54 88.52

for difficulty writing. In general there were more moderate responses than slight

responses, but fewer severe and very severe responses than moderate responses. The

potential “junk” item, swelling after exercise, demonstrated a similar distribution

although there were no very severe responses.

Table 4.1 summarizes baseline characteristics, presented for the complete data

sample and stratified by latent class as predicted by the MZIPO model. Average

age for the full sample was 56.13 (SD=8.87), and the majority of study partici-

pants were white (65.83%). About half of the sample (N=140, 50.36%) earned at
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least a college degree, and the majority were currently married or living with a

partner (N=168, 61.09%). Of the full sample, mean percent limb volume differ-

ence between affected and unaffected arms was 7.57 (SD=13.73). Almost half of

the complete data sample was diagnosed with lymphedema at baseline (N=133,

47.84%), by trial design. Table 4.1 also presents baseline characteristics stratified

by latent class assignment. The MZIPO model estimated that N=61 of the full

sample could be classified as unsusceptible, while N=217 were classified as suscepti-

ble to lymphedema symptoms. Most baseline characteristics were not significantly

different between the two groups with the exception of limb volume difference and

lymphedema diagnosis. Mean volume difference in the susceptible class was 9.60

percent (SD=14.68) while mean volume difference in the unsusceptible class was

0.36 percent (SD=5.13; p <0.001). Among subjects in the susceptible class, 58.06%

(N=126) were diagnosed with lymphedema at baseline compared to only 11.48%

(N=7) in the unsusceptible class (p <0.001).

4.5.1 Ordered Categorical MIMIC Models vs. MZIPO Model

Model results are featured in Table 4.2. This table compares an ordered categori-

cal MIMIC model from the full sample (Model 1), an ordered categorical MIMIC

model where observed non-responders have been removed (Model 2), and finally

the MZIPO model (Model 3). All models include the 7 symptom items chosen from

previous exploratory factor analysis.
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Figure 4.1: Histograms of Norman Lymphedema Survey items for N=278 complete
data sample.

Model 1 yielded particularly high factor loading estimates for clothing too tight

and puffiness (β=6.4971 and β=4.6258 respectively) and moderate factor loadings

79



Table 4.2: Ordinal MIMIC model vs. MZIPO model for Norman Lymphedema
Survey items.

Model 1: Ordinal MIMIC Model 2: Ordinal MIMIC Model 3: MZIPO
Full Sample (N=278) Observed Responders Only (N=170)

Proportion unsusceptible (p) NA NA 0.2194

Assoc. with “gold standard” (τ) 0.0707 0.0300 0.0759

Factor loadings (β)
Clothing too tight 6.4971 3.0118 6.4895
Puffiness 4.6258 3.4988 3.8520
Skin feels leathery 2.9493 1.5945 1.9964
Arm feels tired 2.5653 1.3328 1.7772
Pain 1.5514 0.5488 0.9159
Difficulty writing 1.8096 0.8798 1.3618
Swelling after exercise 1.4454 0.2382 0.9583

Thresholds (α)
Clothing too tight
α0 2.3622 -0.6503 1.8536
α1 3.8102 0.5207 3.4778
α2 8.3107 3.9043 8.3723
α3 11.6256 6.7411 13.0676

Puffiness
α0 -0.6084 -3.4946 -1.3867
α1 1.3499 -1.2159 0.6787
α2 4.9343 2.6984 4.0911
α3 8.2182 6.7802 7.5530

Skin feels leathery
α0 2.0497 0.4721 1.4489
α1 2.8585 1.2356 2.1731
α2 4.5022 2.8257 3.7168
α3 6.2383 4.4958 5.2374

Arm feels tired
α0 -0.0228 -1.5520 -0.5056
α1 0.9747 -0.4693 0.4815
α2 3.1981 1.7281 2.5479
α3 5.3502 3.8440 4.5403

Pain
α0 0.8382 -0.1197 0.4623
α1 1.2258 0.2998 0.8297
α2 2.9070 1.9455 2.4726
α3 5.5618 4.4901 4.9728

Difficulty writing
α0 2.3777 1.4241 1.9845
α1 2.5747 1.6366 2.1854
α2 3.7197 2.7146 3.2995
α3 5.6751 4.5897 5.2319

Swelling after exercise
α0 2.0808 1.1561 1.6648
α1 2.5138 1.5614 2.0909
α2 4.0007 2.9965 3.5533

Estimated latent lymphedema severity
Mean, SD 0.1955 0.8264 0.2024 0.8635 0.0922 0.8706

for other items. The smallest factor loading in Model 1 was β=1.4454 for the po-

tential “junk” item, swelling after exercise, but this loading was not much smaller

than the factor loadings for several other items. Factor loading estimates measure
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the strength of the relationship between an individual symptom and the continu-

ous measure of latent lymphedema severity, where larger factor loadings indicate

a stronger association between the item and the latent variable. The estimate of

the coefficient of the regression of latent lymphedema severity on volume difference

for Model 1 was τ=0.0707. As in Chapter 3, this is a global measure of the “gold

standard” on all Norman symptom items. The coefficient can be interpreted as

the average increase in latent lymphedema severity for each 5% increase in volume

difference. The regression coefficient allows us to evaluate criterion validity in that

if there is a strong relationship between the “gold standard” and the set of symp-

toms, this is an indication that these two measures are highly associated with one

another.

In Model 2 the ordered categorical MIMIC model was fit on the subset of the

sample classified as observed responders. Factor loadings from Model 2 were all

smaller than those in Model 1. Consistent with Model 1 results, clothing too tight

and puffiness still produced the highest factor loadings at β=3.0118 and β=3.4988.

One item whose factor loading changed dramatically from Model 1 to Model 2

was swelling after exercise. The smallest loading in Model 2, the factor loading

for swelling after exercise, β=0.2382, was markedly smaller than the factor loading

from Model 1. Furthermore, the estimate of the regression of latent lymphedema

severity on the gold standard, τ=0.03, decreased in Model 2 compared to Model 1.

Finally, Model 3 provides estimates from the MZIPO model. The predicted
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probability of membership in the unsusceptible class was 21.94% of the original

full sample. Conditional parameter estimates from the measurement model were

fit only on the susceptible class, which comprised 78.06% of the sample. Generally,

factor loading estimates for Model 3 were similar to those of Model 1, but most

were slightly smaller. Factor loadings ranged from β=0.915 for pain to β=6.490 for

clothing too tight. The estimate of the regression of latent lymphedema severity

on the “gold standard” was τ=0.076, similar to that of Model 1. One important

difference in Model 3 compared to Model 1 is that swelling after exercise no longer

had the smallest factor loading. This could be an indication that perhaps it is not

truly a “junk” item.

4.5.2 Predictive Validity

In this example, it was clinically useful to determine at baseline subgroups that

might or might not be susceptible to experiencing symptoms over time. Figure 4.2

presents a profile plot of mean volume difference at baseline, 3, 6, and 12 months for

each of the latent classes. In each group, mean volume difference remains constant

over time. However, means between the two classes differ at each time point. T-tests

of volume difference at time points after baseline show that these differences were

significant (p <0.0001). These tests provided an early indication of the predictive

validity of latent class assignment of the MZIPO model.
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Figure 4.2: Profile plot of mean volume difference by predicted latent class assign-
ment.

4.5.3 Evaluation of Observed Zeros and Latent Class Mem-

bership

Table 4.3 presents a cross-tabulation of latent class assignment as determined by

the MZIPO model and observed symptom response. As described in Section 4.2, if

a subject is in the observed response group, she cannot be assigned to the unsus-

ceptible class, so all N=170 subjects with a response were classified as susceptible.

Of the non-responders, 61 were classified as unsusceptible and 47 were classified as

susceptible, despite zero responses on all 7 symptom items.

Table 4.4 presents several baseline characteristics for these three groups. It

was expected that there would be differences among the three groups in terms of

volume difference and baseline lymphedema diagnosis, and these differences pro-
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Table 4.3: Comparison of latent class assignment and observed symptom response.
Observed Symptom Responses
Non-Response Response Total

Unsusceptible 61 0 61
Latent Class

Susceptible 47 170 217

Total 108 170 278

Table 4.4: Characteristics of predicted latent class assignment and observed symp-
tom response.

Stratified by Latent Class and Observed Response

NR/S (N=47) NR/UN (N=61) R/S (N=170) P value

Volume Difference
Mean (SD) 2.45 (7.22) 0.36 (5.13) 11.57 (15.61) <0.0001

Baseline Lymph. Diagnosis
Yes 8 17.02 7 11.48 118 69.41 <0.0001
No 39 82.98 54 88.52 52 30.59

NR/UN=Non-response, Unsusceptible class; NR/S=Non-response, Susceptible class;
R/S=Response/Susceptible class

vide an indication that the MZIPO model does sufficiently well in distinguish-

ing among subjects who are susceptible and unsusceptible. In particular, I ex-

pected the responder/susceptible group to have the highest average volume differ-

ence and greatest percentage of baseline diagnosis among the three groups, and

that proved to be the case. The responder/susceptible group had an average vol-

ume difference of 11.57 (SD=15.61) and 69.41% of that group was diagnosed with

lymphedema at baseline. Of particular interest was the comparison of the non-

responder/susceptible group and the non-responder/unsusceptible group. The non-

responder/susceptible group had an average volume difference of 2.45 (SD=7.22),

compared to 0.36 (SD=5.13) for the non-responder/unsusceptible group. Fur-

thermore, 17.02% of the non-responder/susceptible group and 11.48% of the non-
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responder/susceptible group were diagnosed with lymphedema at baseline. That the

non-responder/susceptible group had a higher mean volume difference and greater

percentage of lymphedema diagnosis at baseline than the non-responder/unsusceptible

provides an indication that latent class assignment is informative in distinguishing

among non-responders.

4.6 Discussion

As in many other applications measuring symptom scales at baseline, data from

the Norman Lymphedema Survey measured at baseline as part of the PAL trial

exhibited zero-inflation in the distribution of scale items. To correct for this, I

developed the MZIPO model, an intuitive model that exploits the use of two types

of latent variables in a single model. Building from recent work in the latent variable

literature as well as the univariate ZIPO model, the MZIPO model allows for the

estimation of a traditional joint latent variable model while accounting for the

presence of excess zeros with a latent class component. If I had employed a ZIPO

model to assess each item separately, this approach would have separated out some

of the observed non-responders. However, this method would not guarantee that the

subgroup removed from the original sample would be the same as if all items were

considered in a model together. In the case of multiple scale items, it was important

to consider not only the relationship between the items and the “gold standard”

diagnostic measure individually, but also the relationship among the items.
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In this chapter, I considered several approaches for the evaluation of multiple

items simultaneously and the evaluation of the relationship between those items

and the “gold standard” in the presence of zero-inflation. The simplest approach

was to fit an ordered categorical MIMIC model on the entire original sample (Model

1). While this approach incorporates all subject information, parameter estimates

may not be entirely accurate because of excess of zeros in the item distributions.

Another approach was to remove all observed non-responders from the sample and

fit an ordered categorical MIMIC model on this subset of the original sample. This

model had the advantage of less skewed item distributions, but in the example of the

PAL trial data almost 40% of the original sample was removed. I advocate the use

of the MZIPO model (Model 3) over a standard ordered categorical MIMIC model.

In the MZIPO model, 21.9% of the original sample was classified as unsusceptible

and therefore not included in the estimation of the conditional parameters in the

measurement and structural components of the model. The MZIPO model allowed

us to account for some of the zero-inflation in the item distributions while still

including useful information on the “gold standard” from more subjects than if all

observed non-responders were removed from the sample. Furthermore, the MZIPO

model provided predicted latent class assignments that could be clinically useful in

predicting lymphedema onset and flare-ups.

The use of the MZIPO model to define latent classes is particularly relevant

to the PAL trial application. Many women do not experience symptoms of lym-
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phedema at baseline, perhaps because they have not been diagnosed with lym-

phedema yet, are unable to identify lymphedema symptoms, or because they are

truly not susceptible to experiencing symptoms. The ability to classify women who

might be susceptible to symptoms at an early stage is essential because these women

may require extra clinical evaluations and careful monitoring for lymphedema on-

set or exacerbation. Therefore, latent classes that exhibit predictive validity could

have great clinical utility. The results from the MZIPO model and evaluation of the

latent classes at subsequent time points in the PAL trial indicated predictive valid-

ity for latent class assignments. T-tests of mean volume difference at time points

after baseline indicate predictive validity of the latent classes, which is significant

because baseline classification into the susceptible or unsusceptible group could be

useful in predicting who is likely to develop lymphedema exacerbations or flare-ups

in the future.

The comparison of baseline characteristics among the 3 observed response and

latent class groups also provides indication of the utility of the MZIPO model. A

particularly interesting group is the non-response/susceptible class group because

this group’s information is included in Model 3 but not Model 2. As shown in the

table, this group had a higher mean volume difference and a greater percentage of

baseline lymphedema diagnosis than the non-response/unsusceptible group. These

differences are an indication that this group was correctly classified into the suscep-

tible class. Even though the subjects in this group did not experience symptoms at
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baseline they may be susceptible to symptoms later on.

In sum, the MZIPO model is a complicated latent variable model and there

are several issues to consider that will require future work. The two most pressing

issues are statistical tests for parameter estimates and the evaluation of model as-

sumptions. First, a means of determining statistical significance for the parameter

estimates is necessary for model comparison. A likelihood ratio test could be a rea-

sonable option to test the regression coefficient in the model without deriving the

complicated standard error formulas necessary for the Wald or Score tests. Further-

more, testing the significance of factor loadings is an ultimate goal that will allow

for added objectivity in the item selection process. Next, simulations are needed

to assess the assumption that the latent class and the continuous latent variable

are independent of one another. This assumption facilitated model estimation, but

in some cases may not be valid. If simulations show that the MZIPO model is

not robust to violations of this assumption, it is possible that the model will have

to be reformulated to allow for the relationship between the latent class and the

continuous latent variable.

In sum, I have shown that the MZIPO model can be a useful tool in determining

the relationship among scale items and between scale items and a “gold standard” in

the presence of unobserved heterogeneity. While more work is required to assess the

practical utility of the MZIPO model, the work presented here illustrates a great

potential for clinical usefulness because of the model’s ability to identify patient

88



subgroups that require extra attention.
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Chapter 5

Conclusions

In this dissertation the aim was to investigate the use of joint latent variable mod-

els for multivariate outcomes in order to perform item selection and validation of

symptom scales simultaneously. It has been shown that using joint latent variable

models as an alternative to the typical two-stage process of item selection and val-

idation is preferable because joint models eliminate the bias inherent in estimating

the continuous latent variable. Joint latent variables provide estimates of the rela-

tionship between items in a scale as well as the relationship between the items and

“gold standard” diagnostic measures. These models are particularly flexible as they

accommodate a variety of response types and allow for covariates on the observed

or latent variables.

In Chapter 2, I utilized a joint latent variable model, the MIMIC model, to

simultaneously identify important indicators of PMS severity and to compare these
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indicators to a clinician-rated “gold standard” measure. I developed a Score test

for individual factor loadings in the MIMIC model subject to the model constraint

that factor loadings be non-negative. Using this statistical test I determined that

three items in the PMS symptom scale could be considered for removal from the

scale, which could ultimately improve scale accuracy.

Chapter 3 featured an application of an extension to the traditional MIMIC

model for ordered categorical scale items. This model was applied to data from the

Norman Lymphedema Survey in the PAL clinical trial to evaluate symptom items

at baseline and compare them to a current “gold standard” diagnostic measure.

The ordered categorical formulation of the MIMIC model identified a potential

“junk” item as not statistically significant, providing an indication that this item

could indeed be “junk.” An investigation of the item distributions in the Norman

Lymphedema Survey revealed a substantial amount of symptom non-response at

baseline, which served as motivation for the development of the MZIPO model

proposed in Chapter 4.

In order to account for zero-inflation in the item distributions of the Norman

Lymphedema Scale, in Chapter 4 I proposed a new joint latent variable model

that extended the ordered categorical MIMIC model to incorporate a latent class

component to classify subjects as either susceptible or unsusceptible. The MZIPO

model predicted that 21% of the original complete data sample from the PAL trial

were in the unsusceptible class and provided estimates of factor loadings and the
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coefficient of the regression on the latent measure of lymphedema severity for the

susceptible class. This model was preferable to fitting the MIMIC model on the

complete sample because it reduced the skewness of the item distributions, and it

was also a preferable alternative to simply removing all observed non-responders

from the sample because it allowed more subjects (i.e., all those with information

on limb volume difference) to remain in the sample.

Overall, I have shown in this dissertation the utility of a variety of latent vari-

able methods for scale development. These models have a number of advantages

compared to traditional procedures. First, latent variable models in general can be

considered dimension reduction techniques for multivariate outcomes. Many times

in clinical research a biological process is measured by multiple physical responses,

and latent variable models provide a means of summarizing these measures in a

single model. Next, joint latent variable models in particular can yield greater scale

accuracy and reduced participant burden by identifying the most important indi-

cators of the latent variable and eliminating “junk” information. Finally, in terms

of statistical modeling, using latent variable models for multiple observed outcomes

is advantageous because of the conditional independence assumption that is often

made. This assumption states that given the underlying constructs, the individual

observed outcomes are independent of one another, an incredibly useful assumption

that we took advantage of in order to ease estimation of the MZIPO model.

Although the general use of latent variable methods is highly recommended in
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this dissertation, there are some drawbacks to these types of models that should be

considered. First, the models are highly parameterized. Identifiability is a signifi-

cant hurdle in many latent variable models, and most of the time it is necessary to

place constraints on the model that may or may not be valid in order to get around

this issue. Next, latent variable models require an in depth understanding of the

confirmatory framework among variables. In models such as the MIMIC model

or the MZIPO model, there are strong assumptions made about the nature and

direction of the relationship between observed variables. Using these models ap-

propriately in clinical research requires comprehensive knowledge of the substantive

application. Finally, reproducibility is a critical concern in latent variable modeling.

Factor structures, either in a factor analysis model or in the measurement model of

a joint latent variable, are sometimes not easily reproduced given a different sample.

For this reason, validation is extremely important when using these types of latent

variable models.

Several issues presented in this dissertation warrant further consideration. First,

it is of interest to further investigate the modified Score test for factor loadings in

the MIMIC model presented in Chapter 2. There is a possibility that simulating

data with an association between latent lymphedema severity and the “gold stan-

dard” diagnostic measure induces correlation among the items. If this is the case,

we cannot separately assess the effect of correlation among items and association

between items and the gold standard. In future work I will perform simulations to
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look at the effect of both of these separately on the performance of the Score test for

a potential “junk” item. Additionally, I will perform simulations to determine how

the modified Score test performs in the presence of non-normally distributed scale

items. If the modified Score test is robust to departures from normality, this will be

another reason why it may be preferable to the traditional Wald test. Furthermore,

in many clinical examples data are less than perfect, so it is important to determine

how a statistical test will behave when scale item distributions are skewed. Overall,

further simulations will provide a better idea of how useful the modified Score test

will be in practice.

In addition to further evaluation of the modified Score test for factor loadings

in the MIMIC model, I will also continue to build on the MZIPO model. After

assessing the model assumptions and deriving standard errors for statistical tests,

as described in Chapter 4, I would like to expand the MZIPO model to include

covariates on the latent class assignment. Extending the model to include covari-

ates will be particularly relevant to applications of the model to clinical research,

where demographic characteristics or comorbidities may influence subgroup classi-

fication. The ultimate goal of this future work is to obtain latent class assignments

that can accurately predict at baseline those subjects who are susceptible to future

lymphedema exacerbations or onset.

In conclusion, the joint latent variable methods that I have proposed and im-

plemented in this dissertation provide flexible approaches for scale development.
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Future research will help to further elucidate the complexities of these methods

with the ultimate goal of producing clinically relevant models that are useful in

practice.

95



Appendix A

Derivations for Score Test of

Factor Loadings in MIMIC Model

A.1 Score Function for λ

dl(y; θ)

dλ
=

d

dλ

[
−n

2
ln (|Σ|)− 1

2

n∑
i=1

{(yi − (µ+ λβzi))
>Σ−1(yi − (µ+ λβzi))}

]
,

where

d ln (|Σ|)
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=
d ln (|Σ|)
dΣ

?
dΣ

dλ

and ? refers to the star product (MacRae, 1974).

d ln (|Σ|)
dΣ

= [2Σ−1 − Σ−1 ◦ Im]

where ◦ refers to the Hadamard product.

dΣ

dλ
= E(m,1)λ

> + Im ⊗ λ
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so

d ln (|Σ|)
dλ

= [2Σ−1 − Σ−1 ◦ Im] ? [E(m,1)λ
> + Im ⊗ λ].
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A.2 Information Matrix

The information matrix for parameters in the MIMIC model is given by

I(θ) = −E d2l

dθdθ>
=


Iββ Iβµ IβΨ Iβλ
I>βµ Iµµ IµΨ Iµλ
I>βΨ I>µΨ IΨΨ IΨλ

I>βλ I>µλ I>µΨ Iλλ


and we are most interested in the element Iλλ. The second partial derivative with
respect to λ is given by

∂2`
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Negative Expectation of Second Partial Derivative

From Weller we know that

ABC = B ? {(yi − [µ+ λβzi])(yi − [µ+ λβzi])
> ⊗ I(m,m)},

so

E(ABC) = B> ? {(yi − [µ+ λβzi])(yi − [µ+ λβzi])
> ⊗ I(m,m)}

= B> ? {Σ⊗ I(m,m)}.
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Appendix B

Example Mplus Code for Ordered
Categorical MIMIC Model

TITLE: MIMIC Model for Categorical Data;

DATA: FILE IS example.dat;

VARIABLE:

NAMES ARE item1 item2 item3 item4 item5 goldstandard;

USEVARIABLES ARE item1 item2 item3 item4 item5 goldstandard;

CATEGORICAL ARE item1 item2 item3 item4 item5;

ANALYSIS:

ESTIMATOR=WLSMV;

PARAMETERIZATION=DELTA;

MODEL:

*This specifies the measurement model;

FACTOR1 BY item1* item2 item3 item4 item5;

*This specifies the structural model;

FACTOR1 ON goldstandard;

*This specifies factor variance at 1;

FACTOR1@1;
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Appendix C

Derivations for MZIPO Model

C.1 Score Function

The score function for τ can be written as

∂`τ
∂τ

=
∂

∂τ

n∑
i=1

(1− zi)
[
− ln(

√
2π)− 1

2
(bi − τTi)2

]
= −1

2

n∑
i=1

(1− zi)
∂

∂τ
(bi − τTi)2

=
n∑
i=1

(1− zi)Ti(bi − τTi),

and the score function for p can be written as

∂`p
∂p
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∂

∂p
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i=1

zi ln p+
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(1− zi) ln(1− p)
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zi
p
−
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(1− zi)
(1− p)
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zi − p
p(1− p)

.
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C.2 Information Matrix

Notation and Definitions

Important Derivatives
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