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Bubble and Pattern Formation in Liquid Induced by an Electron Beam

Abstract
Liquid cell electron microscopy has emerged as a powerful technique for in situ studies of nanoscale processes
in liquids. An accurate understanding of the interactions between the electron beam and the liquid medium is
essential to account for, suppress, and exploit beam effects. We quantify the interactions of high energy
electrons with water, finding that radiolysis plays an important role, while heating is typically insignificant. For
typical imaging conditions, we find that radiolysis products such as hydrogen and hydrated electrons achieve
equilibrium concentrations within seconds. At sufficiently high dose-rate, the gaseous products form bubbles.
We image bubble nucleation, growth, and migration. We develop a simplified reaction-diffusion model for the
temporally and spatially varying concentrations of radiolysis species and predict the conditions for bubble
formation by . We discuss the conditions under which hydrated electrons cause precipitation of cations from
solution, and show that the electron beam can be used to “write” structures directly, such as nanowires and
other complex patterns, without the need for a mask.
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Abstract: Liquid cell electron microscopy has emerged as a powerful technique for in situ 

studies of nanoscale processes in liquids. An accurate understanding of the interactions between 

the electron beam and the liquid medium is essential to account for, suppress, and exploit beam 

effects. We quantify the interactions of high energy electrons with water, finding that radiolysis 

plays an important role, while heating is typically insignificant. For typical imaging conditions, 

we find that radiolysis products such as hydrogen and hydrated electrons achieve equilibrium 
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concentrations within seconds. At sufficiently high dose-rate, the gaseous products form bubbles. 

We image bubble nucleation, growth, and migration. We develop a simplified reaction-diffusion 

model for the temporally and spatially varying concentrations of radiolysis species and predict 

the conditions for bubble formation by H2. We discuss the conditions under which hydrated 

electrons cause precipitation of cations from solution, and show that the electron beam can be 

used to “write” structures directly, such as nanowires and other complex patterns, without the 

need for a mask. 

 

Liquid cell electron microscopy is a new technique that provides unique capabilities for in situ 

imaging and control of nanoscale phenomena in liquid media with the high resolution of the 

transmission (TEM) and scanning transmission (STEM) electron microscopes.1,2 The liquid cell 

confines a layer of liquid between two membranes and is hermetically sealed from the high 

vacuum of the microscope. The membranes and liquid are sufficiently thin (tens of nanometers 

to a few micrometers) to transmit electrons (Figure 1a). Liquid cell (S)TEM provides insights, 

not readily accessible by other means, into phenomena such as electrochemical processes;3–6 

motion, aggregation, and assembly of nanoparticles;7–12 nucleation and growth of 

nanoparticles;13–18 interactions between particles and interfaces;19 boiling;20 macromolecular 

conformations;21 and biological processes in cells.22–24 

During imaging, the electron beam interacts with the sample. Many nanoscale crystallization 

and growth processes occur only in the beam’s presence.13–18 The beam can be used to charge 

nanoparticles and affect their motion.11 Microstructural changes25 as well as formation and 

dynamics of bubbles or voids due to the beam have been reported.20,26–28 Amongst a variety of 

potential beam effects,29 radiation chemistry, or interaction of ionizing radiation with the fluid 
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medium, is critically important. Although the existing knowledge of electron beam interactions 

with solid matter provides useful insights;30 the effects in liquids are quite different because of 

the high mobility of species in the liquid. Here we examine two beam-induced nanoscale 

phenomena, bubble nucleation and growth and beam induced nanostructure formation. We 

develop a simple reaction-diffusion radiolysis model for the conditions common to electron 

microscopy, and compare theoretical predictions with experimental observations. We then show 

that the beam can be used as a “pen” to write nanowires with complex patterns without the need 

for a mask.  

Experiments were performed in our custom-made liquid cell, the nanoaquarium (Figure 1a).31 

In Figure 1b and Supplementary Video 1, we show the formation of nanoscale bubbles during 

irradiation of an aqueous solution. In this experiment, bubbles form periodically at a 

serendipitous imperfection on a silicon nitride membrane. The bubble formation occurred while 

imaging an aqueous solution of gold nanorods (pH	~	7) with a trace amount of the surfactant 

cetrimonium bromide (CTAB) with TEM at 300	keV, beam current � = 1 − 10	nA, and beam 

radius �	~	2	μm. Figure 1c depicts the bubbles’ radii as a function of time. Note the highly 

regular periodic nucleation, growth, and detachment of the bubbles. 

A second mode of bubble formation is shown in Figure 2a-b and Supplementary Video 2. 

These larger bubbles are observed after irradiating liquid cells for time intervals ranging from 

minutes to hours. The bubble in Supplementary Video 2 formed after nearly an hour of 30	keV 

STEM imaging of nanoparticle growth in an aqueous solution of 20	mM HAuCl4 (pH < 2) at a 

beam current � = 0.05 − 1.2	nA, beam radius �	~	0.5 − 1.5	nm, and raster area of ~	1	μm�. 
Supplementary Video 3 shows another large bubble that formed under similar circumstances. 

The data of Figure 2c shows that the bubble growth rate increases as the beam current increases. 
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Large bubbles also form in other solutions: gold nanorods with CTAB (as used in Figure 1) 

under similar STEM imaging conditions, and various solutions including DI water (pH	~	7) 

irradiated in the TEM at 300	keV with beam current � = 40 − 50	nA and beam radius 

�	~	500	nm. 

We consider two possible mechanisms for this beam-induced bubble formation: radiation 

chemistry (radiolysis) and heating. Both rely on energy transfer from the beam to the sample. 

Liquid molecules subjected to radiation become excited and ionized, and the resulting radicals, 

ions, molecular species, and hydrated electrons react chemically to yield byproducts. For water, 

the primary species generated32 are eh (the hydrated electron),	H3O+, H, OH, H2, and H2O2. 
Energy transfer that does not exceed the ionization and excitation potentials converts into heat.  

To estimate the beam-induced temperature increase, we balance beam-induced heat generation 

with conductive heat dissipation away from the irradiated region.7,30 The heat generation is given 

by 

! = 10"	#	$					%W m3⁄ ', (1) 

where 

$ = 10)	*	�+	�� 					%Gy s⁄ '	 (2) 

is the volumetric dose-rate, # is the density of the irradiated medium %g cm3⁄ ', I is the beam 

current %C s⁄ ', * is the density-normalized stopping power %MeV	cm2 g	electron⁄ ', and � is the 

radius of the beam %m'. The factors 10"	%cm3	J g	m3	Gy⁄ '	and 

10)	%m2	electron	Gy	g cm2	MeV	C⁄ ' convert units customary to radiation chemistry to SI units. 

The stopping power * is the average energy loss due to Coulomb interactions per unit path length 

of a charged particle moving through matter, and it has been tabulated as a function of the 
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incident energy and particle type for various materials.33 The thermal energy balance leads to a 

temperature rise of just a few degrees Celsius for typical imaging conditions (see Supporting 

Information for a detailed derivation), unlikely to produce bubbles by boiling.  

In liquid cell experiments, gaseous products of radiolysis are a possible explanation for bubble 

formation, while the other species produced by radiolysis are strong oxidizing and reducing 

agents capable of driving or modifying other nanoscale reactions. The amount, or yield, of each 

species produced (+) or destroyed (−) per 100	eV absorption from ionizing radiation is 

quantified with an empirical parameter, the 5-value (molecules 100	eV⁄ ).32 For irradiation of 

neat water with high energy electrons or positrons, X-rays, γ-rays, and the like, typical values are 

5%H2' = 0.44	molecules 100	eV⁄  and 5%eh' = 2.7	molecules 100	eV⁄ .32 The volumetric 

production rate  

67 = #	$	 5%8'9		:; 					%M s⁄ ', (3) 

of any species 8 is a function of the rate of energy transfer from the beam and 5%8'. In the 

above,  9 is the electron charge %C electron⁄ ', and :A is the Avogadro number. 

Byproduct concentrations do not grow unabated. As is evident from the highly regular bubble 

formation of Figure 1, under continuous irradiation a steady state is reached. Reverse reactions 

play a key role, competing with production to yield eventually a steady-state chemical 

equilibrium with time-invariant product concentrations.34 To determine the concentration 

distribution of radiolytic byproducts such as H2 and eh, we must account for reverse reactions. 

We find it convenient to work with a “concentration-dependent effective production rate” <7 

which accounts for the rate of formation and the reverse reactions of species 8. Importantly, the 
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production rate <7 slows down as the concentration =X approaches the steady state concentration 

=steady-7. Within the irradiated region  

<7 =  67 B1 − =7=steady-7C
DE 										if =7 < =steady-7 

<7 = 0										if =7 ≥ =steady-X. 
(4) 

Solutions of the multiple kinetic equations for the radiolytic products indicate that the steady-

state concentrations can be correlated with the volumetric dose-rate using a power law34 of the 

form 

=steady-7 = GX		$HE . (5) 

For example, GH2 	~	9.3 × 10KL	M	%s Gy⁄ 'KMH2 , NH2 	~	0.44, Geh 	~	1.2 × 10
KOO	M	%s Gy⁄ 'KMeh , 

and Neh 	~	0.59 for deaerated water at pH	6.34 By matching the predictions of equation (4) with 

available experimental data, we find that QH2 	~	2 provides a good fit between our theoretical 

predictions and published experimental data.34 

Outside the irradiated region, the rate of extinction of reactive species is modeled with an 

expression of the form: −=7 R7⁄ , where R7  is the relaxation time. For example, for hydrated 

electrons Reh 	~	50	μs, while for the relatively non-reactive hydrogen RH2 	→ ∞.35 

Equations (4) and (5) give us a simple framework with which to predict the concentration 

distributions of radiolysis byproducts as functions of time, position, irradiation dose rate, and 

electron beam position and size, using them as the source terms in reaction-diffusion equations. 

We carried out finite element calculations to predict the concentration distribution of two 

species, H2 and eh, using equation (4) as the production term in a two-dimensional reaction-

diffusion equation within the geometry of the liquid cell (Figure 3a and Supporting Information). 

Figure 3b depicts the H2 concentration =H2 at the center of the beam as a function of time when 
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the beam current is 0.1, 1, and 10	nA. The concentration initially increases rapidly upon 

irradiation and then the concentration-dependent effective production rate decays. A key result is 

that it only takes a few seconds of irradiation for =H2 to asymptotically approach its dose-rate 

dependent steady-state value =steady-H2. This is shorter than the timescale of most in situ 

experiments. Figure 3c depicts =H2 at the center of the beam as a function of beam current at 

various times. The dashed lines in Figure 3b and c correspond to the saturation concentration at 

atmospheric pressure. Figure 3d depicts the spatial distribution of the normalized concentrations 

of H2 and eh at various times. 

We can now relate these estimates of H2 concentration to the observations of bubbles in 

Figures 1 and 2. To form a bubble from gas dissolved in liquid, the dissolved gas concentration 

must significantly exceed the saturation concentration (=sat), which depends on the pressure of 

the system. Using Henry’s Law36 for H2 in water, we estimate =sat%100	kPa'	~	0.77	mM and 

=sat%400	kPa'	~	3.15	mM (reasonable values for the pressure in a liquid-cell). Homogeneous 

nucleation requires a large supersaturation, experimentally measured to be 

=homogeneous	~	190	mM for H2 at 100 − 400	kPa.37 Heterogeneous nucleation can occur 

stochastically at any concentration between =sat and =homogeneous. Indeed, for the conditions of 

our experiments, Figure 3 predicts that =sat < =H2 < =homogeneous. Thus, supersaturated radiolytic 

H2 is likely the main contributor to bubble nucleation during liquid cell (S)TEM imaging of 

aqueous solutions. O2 is predicted to form as a secondary byproduct with steady-state 

concentration that can approach that of H2.
34,38 With a strong dependence on solution 

composition, a longer timescale compared to the primary byproducts, and an aqueous solubility 

that is greater than that of H2, O2 is less likely to be the cause of bubble nucleation.36 However, 

once a bubble is formed, O2 will contribute to its growth. The important prediction that 
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continuous irradiation leads to a steady-state H2 concentration is validated by the periodic, 

regular nanoscale bubble formation shown in Figure 1 and Supplementary Video 1. The 

observations indicate that the system is, indeed, in a state of equilibrium, with rates of nucleation 

and growth that do not vary significantly with time. 

The model also explains the role of irradiation time. When =steady-H2 > =sat, supersaturated H2 

spreads by diffusion from the beam region to the rest of the liquid cell (Figure 3d). With time, 

this increases the probability of heterogeneous nucleation and provides more H2 molecules to 

feed a bubble once formed. Bubble-free imaging requires conditions such that =steady-H2 does not 

greatly exceed =sat (dashed lines in Figure 3b and c). Had we not modified equation (3) to 

consider the concentration-dependent effective production rate, the model would have predicted 

=H2 	~	264	mM (> =homogeneous) after only 60	seconds for 300	keV electrons with � = 500	nm 

and � = 40	nA. The fact that we, and others,16 are able to image at a high dose-rate for moderate 

time intervals without observing bubbles suggests that the effective H2 production rate is indeed 

reduced as radiolytic byproducts accumulate. 

Our model for the temporal and spatial variation of radiolytic byproducts suggests an 

important application of the electron beam to form nanoscale structures controllably. Highly 

reactive radiolysis products such as the hydrated electron have short diffusion distances and are 

therefore present at high concentrations only in the irradiated region (Figure 3d). Thus, reactions 

mediated by hydrated electrons can, in principle, be localized to the irradiated (beam) area. An 

interesting application is shown in Figure 4. The reduction of Au ions to neutral Au is known to 

be mediated by hydrated electrons.39 Scanning a focused electron beam over a region containing 

a thin film of HAuCl4 solution resulted in the precipitation of gold and the formation of gold 

nanowires, making up nanoscale letters, in this case the names of the authors’ institutions (Figure 
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4a). The structures appeared robust. Bubble motion tossed the features about, indicating that they 

could be detached by surface tension forces without damage (Figure 4b). This liquid-phase 

electron beam induced deposition is an intriguing technique for generating micro- and nanowires 

with controlled sizes and patterns without the use of a mask and has been explored in this and 

other materials.40,41 

We now briefly discuss the limitations of the model. The data used in developing equations (4) 

and (5) were measured for low dose-rate irradiation (< 1000	 Gy s⁄ ). However, the dose-rates in 

liquid cell (S)TEM experiments are often orders of magnitude higher than those considered by 

radiation chemists. For example, a 300	keV electron beam with � = 500	nm and � = 1	nA in 

water corresponds to 3 × 10W 	Gy s⁄ . It is therefore necessary to consider the consequences of a 

high dose-rate irradiation. Increasing the dose-rate increases the likelihood that radical 

byproducts will interact to yield molecular species, which for neat water include H2, H2O2, and 

recombined H2O.38 We estimate that under typical imaging conditions, these non-linear effects 

are unlikely in the TEM but possible in the STEM (Supporting Information), potentially 

changing concentrations by large amounts. 

Our model also ignores the effect of solution composition (e.g., additives and pH). It is known 

that =steady-H2 depends strongly – changing by orders of magnitude – on the degree of aeration 

and pH of the solution.34 Even at low concentration, a solute (e.g., N2 and O2 due to aeration) 

may react with radiolysis byproducts to affect the chemistry of the system. At a high 

concentration, a solute may fundamentally alter the production rate of radiolysis byproducts by 

scavenging radicals. Since all the species in a system are interrelated via coupled reactions, 

predictive calculations of transient and steady-state behavior require analysis of the complete 

chemical kinetics. Future analysis will provide insight into whether, or how, these dependencies 
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on solution composition might apply at the high dose-rates of liquid-cell (S)TEM. We have 

assumed that equations (4) and (5) can be applied to radiolysis in both TEM and STEM for the 

solutions we have discussed above.  

In summary, liquid cell electron microscopy is a powerful in situ technique that provides a 

unique insight into processes in liquid media. The electron beam affects the chemistry and 

behavior of the solution under observation, however. Our experimental data indicates that the 

concentrations of the radiolysis products reach equilibrium when subjected to the high dose 

radiation common in electron microscopy. We have imaged nucleation and measured the growth 

rate of nanoscale bubbles and microscale “explosive” bubbles. We have also developed a simple 

quantitative model for the concentrations of radiolysis products, such as H2, as functions of space 

and time. The model predictions are consistent with our experimental observations. A central 

feature of this model is the concentration-dependent effective production rate, which allows the 

concentrations of radiolysis products to reach a steady state chemical equilibrium. The key 

predictions of the model are that this steady-state is reached rapidly, within seconds; and that 

when bubbles are observed, the predicted concentrations are consistent with those required to 

nucleate bubbles. For example, H2 can exceed its saturation concentration within seconds to 

minutes of imaging with only moderate beam current. The temporally and spatially varying 

concentrations of other radiolysis byproducts can be calculated in a manner analogous to what 

we have described for H2. We have shown that one species, the hydrated electron, will be 

strongly confined to the irradiated area, making it possible to write nanoscale features such as 

letters from gold and other metallic solutions. Other highly reactive radical and ionic byproducts 

should follow trends similar to that of eh. 
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Radiolysis is of key importance in nuclear science, medical imaging and therapeutics, food 

preservation, and other manufacturing processes. Knowledge acquired in these fields is 

applicable to liquid cell electron microscopy. Conversely, the liquid cell provides a useful tool to 

study radiation effects. We believe that the fundamental beam-sample interactions discussed here 

are relevant to chemical reaction processes that occur during liquid cell (S)TEM in media other 

than water, and environmental scanning electron microscopy (ESEM) where water vapor is 

present and the sample may be fully hydrated or enveloped with a water layer. Radiation 

chemistry must be considered in all liquid cell experiments. For example, the increase in the ion 

concentration in an irradiated colloidal suspension may reduce the thickness of the Debye 

screening length and induce aggregation, and hydrated electrons may neutralize cations and 

allow precipitation. Even if there are no bubbles, one cannot dismiss the invisible beam effects; 

highly reactive species are continuously produced during beam irradiation. A detailed 

understanding of radiation chemistry is essential to predict, account for, mitigate, and harness 

beam effects in the rapidly growing field of liquid cell electron microscopy.  
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Figure 1. A schematic of a liquid cell and observations of small bubbles. (a) A schematic 

illustration of a sealed liquid cell cross-section, not drawn to scale. ℎSi = 300	μm. ℎSiN =

50	nm. ℎliq is nominally 100 − 300	nm, though membrane bowing can result in ℎliq of a few 

μm.31 (b) Frames from a video sequence (Supplementary Video 1) of heterogeneous bubble 

nucleation, growth, and migration during TEM imaging (300	keV, � < 1	nA, beam radius 

�	~	2	μm). A bubble nucleates on the membrane, grows, and detaches. Another bubble nucleates 

at the same spot and the process repeats. Observed bubble radii ranged from 20 to 200	nm. (c) 

Mean bubble radius as a function of time (example 1 of Supplementary Video 1'. Colored 

circles represent experimental data and lines are linear fits. On average, bubbles grew at a nearly 

constant rate of ]̂	~	70	 nm s⁄ , nucleated at a frequency _	~	0.3	Hz, and reached a maximum 

radius ]amax	~	190	nm in 3.1 seconds before detaching and migrating out of the field of view. 
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Figure 2. Observations of “explosive” bubbles in 20	mM HAuCl4 (pH < 2) by STEM. (a) A 

large bubble occupying most of the membrane window. Liquid is pushed to the periphery 

(Supplementary Video 2). Prior to the formation of this bubble, various parts of the window were 

irradiated for periods lasting from tens of seconds to a few minutes at each location. The small 

black dots are gold nanoparticles nucleated by the beam during this time. (30	keV, � = 0.05 −

1.2	nA, beam radius �	~	0.5 − 1.5	nm, raster area ~	1	μm�). The four grey circles are SiO2 

pillars that were designed to hold the top and bottom membranes together to reduce membrane 

deflection. (b) A schematic of the liquid cell cross-section with a large bubble in the imaging 

window. A thin film of liquid remains on the membranes, as shown by continued nucleation of 

nanoparticles in the illuminated region. Subsequent inspection with a light microscope revealed 

that the membranes were bowed out by several μm. (c) The projected bubble area as a function 

of time (Supplementary Video 3). The beam current alternated between 0.05	nA and 0.75	nA, 

which affected the bubble growth rate. The bubble’s approximate area growth rate (μm2 s⁄ ) is 

indicated in the plot. The growth rate decreases as the bubble displaces liquid and fills more of 

the imaging window. 
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Figure 3. Modeling the concentration of radiolysis products in the liquid cell. (a) A schematic 

illustration of the liquid cell geometry used in the simulation. Impermeable boundaries are 

specified at 2cO = 100	μm and 2c� = 8	mm to reflect the dimensions of our device. The red 
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dot, representing the beam, is located at the center of the imaging window. Placing the beam off-

center does not change the results substantially. The predicted H2 concentration at the center of 

the beam or raster area is depicted as a function of irradiation time for various beam currents (b) 

and as a function of beam current for various times (c). The black dashed line corresponds to the 

saturation concentration =sat%100	kPa' = 0.77	mM. The region under the dashed line provides a 

conservative estimate of the range of currents and time intervals for bubble-free operation. (d) 

The predicted concentration =7 =steady-7⁄  of H2 (right) and eh (left) in and around the irradiated 

area of radius 1	μm (grey stripe) as a function of distance from the beam center at various times 

(seconds). 
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Figure 4. Beam-induced precipitation of gold from 20	mM	HAuCl4 solution. (a) By controlling 

the dose-rate and exposed area in the liquid cell, precipitation of Au at the liquid/SiN interface 

was controlled in order to “write” nano-letters. The letters were written following the generation 

of the large bubble in Supplementary Video 2 (30	KeV	STEM with 20	mM	HAuCl4), after which 

a thin liquid layer remained wetting the membrane (as in Figure 2). (b) Following the collapse 

and reformation of a large bubble, the beam-induced letters were dislodged from the membrane 

surface, but remain intact. 
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