
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

2010

Expressiveness of Streaming String Transducers
Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/776
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Rajeev Alur, "Expressiveness of Streaming String Transducers", IARCS International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2010) 8, 1-13. January 2010. http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/129586302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://repository.upenn.edu/cis_papers/776
mailto:libraryrepository@pobox.upenn.edu

Expressiveness of Streaming String Transducers

Abstract
Streaming string transducers define (partial) functions from input strings to output strings. A streaming string
transducer makes a single pass through the input string and uses a finite set of variables that range over strings
from the output alphabet. At every step, the transducer processes an input symbol, and updates all the
variables in parallel using assignments whose right-hand-sides are concatenations of output symbols and
variables with the restriction that a variable can be used at most once in a right-hand-side expression. It has
been shown that streaming string transducers operating on strings over infinite data domains are of interest in
algorithmic verification of list-processing programs, as they lead to Pspace decision procedures for checking
pre/postconditions and for checking semantic equivalence, for a well-defined class of heap-manipulating
programs. In order to understand the theoretical expressiveness of streaming transducers, we focus on
streaming transducers processing strings over finite alphabets, given the existence of a robust and well-studied
class of ``regular'' transductions for this case. Such regular transductions can be defined either by two-way
deterministic finite-state transducers, or using a logical MSO-based characterization. Our main result is that
the expressiveness of streaming string transducers coincides exactly with this class of regular transductions.

Keywords
streaming string transducer, list processing, heap manipulation, monadic second-order transduction

Disciplines
Computer Engineering | Computer Sciences

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/776

http://repository.upenn.edu/cis_papers/776?utm_source=repository.upenn.edu%2Fcis_papers%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages

Expressiveness of streaming string transducers

Rajeev Alur1 and Pavol Černý2

1 University of Pennsylvania
2 IST Austria

Abstract
Streaming string transducers [1] define (partial) functions from input strings to output strings.
A streaming string transducer makes a single pass through the input string and uses a finite
set of variables that range over strings from the output alphabet. At every step, the transducer
processes an input symbol, and updates all the variables in parallel using assignments whose
right-hand-sides are concatenations of output symbols and variables with the restriction that
a variable can be used at most once in a right-hand-side expression. It has been shown that
streaming string transducers operating on strings over infinite data domains are of interest in
algorithmic verification of list-processing programs, as they lead to Pspace decision procedures
for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of
heap-manipulating programs. In order to understand the theoretical expressiveness of streaming
transducers, we focus on streaming transducers processing strings over finite alphabets, given the
existence of a robust and well-studied class of “regular” transductions for this case. Such regular
transductions can be defined either by two-way deterministic finite-state transducers, or using
a logical MSO-based characterization. Our main result is that the expressiveness of streaming
string transducers coincides exactly with this class of regular transductions.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.1

1 Introduction

Deterministic finite-state automata are a canonical model for finite-state acceptors of strings,
since many variations turn out to be equally expressive and the resulting class of regular
languages enjoys a number of desirable theoretical properties. In this paper, we focus on
transducer models that define (partial) functions from input strings to output strings. The
most natural model for a finite-state transducer is a finite-state machine that, at each
step, reads an input symbol and produces zero or more output symbols. If we restrict
such a machine to read the input string only once from left to right, then the model is
too restrictive: while “delete all a symbols” can be implemented, “delete all a symbols,
if the input string contains a b symbol” cannot be implemented. However, the two-way
deterministic finite-state transducers have appealing theoretical properties: the equivalence
problem is decidable, they are expressively equivalent to MSO (monadic second-order logic)
definable transductions, and this class of “regular” transductions is closed under operations
such as sequential composition [2, 4, 3].

Recently, we proposed the model of streaming string transducers for algorithmic verification
of single-pass list processing programs [1]. A streaming string transducer makes a single pass
through the input string to produce an output string. It uses a finite set of variables that
range over strings from the output alphabet. At every step, the transducer processes an input
symbol, and updates all the variables in parallel using assignments whose right-hand-sides
are concatenations of output symbols and variables with the restriction that a variable can
be used at most once in a right-hand-side expression. For example, with two variables x
and y, the update (x, y) = (x.y, a) sets x to the concatenation of x and y, and sets y to the
constant a. While such an update is permitted, the update (x, y) = (x.y, y) is not, since

© Rajeev Alur and Pavol Černý;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Expressiveness of streaming string transducers

y appears twice in the right-hand-sides, and would amount to “copying”. The output in a
given state is specified as a concatenation of output symbols and variables with a similar
no-copy restriction. Unlike classical tape-based models, the streaming string transducer is
not constrained to add output symbols only at the end, and can compute the output in
multiple chunks that can be extended and concatenated as needed.

Streaming string transducers have been shown to be useful for algorithmic verification of
list processing programs [1]. The problems of checking functional equivalence of two streaming
transducers, and of checking whether a streaming transducer satisfies pre/post verification
conditions specified by streaming acceptors over input/output strings, are decidable with
Pspace complexity. There is an expressively equivalent class of imperative programs that
manipulate heap-allocated single-linked list data structure, as well as a corresponding class of
list-processing functional programs with syntactic restrictions on recursive calls. These results
lead to algorithms for checking functional equivalence of two programs, written possibly in
different programming styles, for commonly used routines such as insert, delete, and reverse.

A goal of this paper is to study the expressiveness of streaming string transducers in
order to gain better theoretical insights into their computing power. The transducers in
[1] process strings over a potentially infinite data domain that supports the operations of
equality and ordering. Given that the notion of regular transductions is well-understood in
the context of strings over finite alphabets, we restrict our attention to streaming transducers
that process strings over finite alphabets. The main result of the paper is that streaming
string transducers exactly capture regular transductions, and thus, are equivalent to two-way
transducers as well as MSO-definable string transductions.

In order to develop our results, we consider another single-pass transducer model called
heap-based string transducer that reads the input string from left to right in a single pass,
and computes the output using a heap of cells each of which can store an output symbol
and has a next pointer. The next-pointers induce an (unranked) forest structure over cells.
The transducer accesses the heap using a finite number of pointer variables, and can change
next-pointers of cells referenced by these variables. It can also add new cells to the heap.
The sequence of symbols labeling the cells accessible from a state-dependent output-pointer
is the output of the transducer. For example, to output the reverse of the input string, the
heap-based transducer, at each step, reads the next input symbol, and adds a cell containing
this input symbol to the front of the output list being computed, exactly the same way
as a C program would reverse a linked-list in a single pass. While proving assertions of
programs manipulating heaps is typically undecidable [6], the key restriction for our model of
a heap-based transducer is that it can update, but not traverse, the next-pointers of the cells
referenced by its pointer variables (that is, an assignment of the form next(x) = y is allowed,
but x = next(y) is not). Heap-based transducers can be viewed as syntactically restricted
and abstract version of imperative single-pass programs studied in [1].

We first show that given a two-way transducer, one can construct an equivalent one-way
heap-based transducer. The proof builds on the classical simulation of a two-way acceptor by
a one-way acceptor [7], but needs new insights in order to maintain the potentially needed
output segments in a shared heap that can be modified using a bounded number of updates at
each step. The fact that a streaming string transducer can simulate a heap-based transducer
is a corollary of a result of [1] that shows that single-pass list processing programs can be
simulated by streaming transducers. Finally, we establish that a streaming string transducer
can be captured by an MSO-definable string transformation, thereby establishing equivalence
of all the transducer models.

We also show that streaming string transducers are closed under sequential composition.

Rajeev Alur and Pavol Černý 3

This result follows from the MSO characterization, but we give a direct proof using summaries
of a computation of a streaming string transducer. Finally, we show that extending heap-based
transducers by allowing the traversal instruction that updates a pointer to the next-pointer
of a referenced cell, leads to a strictly more expressive model than the class of regular
transductions.

2 Regular String Transductions

A deterministic transduction from an input alphabet Σ to an output alphabet Γ is a partial
function from Σ∗ to Γ∗. We briefly review two equivalent ways of defining deterministic
transductions using two-way finite-state transducers and using monadic second-order logic
(MSO), and some known results (the details can be found in [3]). We will use the following
three transductions throughout the paper. Let Σ = Γ = {a, b}. The transduction f1
rewrites an input string to the string followed by its reverse: f1(w) = w.rev(w). For the
transduction f2, if the input string ends with the letter b, then f2 deletes all occurrences
of a, otherwise it leaves the input unchanged: if w ∈ Σ∗b then f2(w) = bk where k is the
number of b’s in w, else f2(w) = w. The transduction f3 replaces each symbol b by as
many b’s as there are a’s between this occurrence of b and the previous occurrence of b:
f3(ai1bai2b · · · aikbaik+1) = ai1bi1ai2bi2 · · · aikbikaik+1 .

A two-way deterministic (finite-state) transducer M from input alphabet Σ to output
alphabet Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a final state qf ∈ Q,
and a transition function δ from Q × (Σ ∪ {`,a}) to Q × {−1, 0,+1} × Γ∗. The symbols
` and a are used to mark the two ends of the input. Given an input string w ∈ Σ∗, the
transducer M starts in state q0 with the input tape containing the string ` w a, scanning the
left-most symbol. At every step, based on the current state q and the current input symbol
a, the machine updates the state (as specified by the first component of δ(q, a)), moves the
read-head (as specified by the second component of δ(q, a), where −1 means move left, 0
means stay put, and +1 means move right), and outputs a sequence of symbols in Γ (as
specified by the third component of δ(q, a)). If the current state is the final state qf , the
machine stops, and in this case, the output [[M]](w) corresponding to the input string w is
the concatenation of outputs emitted along the run. If the machine never enters the final
state, or tries to move left while reading `, or tries to move right while reading a, then this
is an error, and [[M]](w) is undefined. This partial function [[M]] defines the semantics of the
machine M , and is a deterministic transduction from Σ to Γ.

To illustrate the definition of a two-way transducer, let us consider how to implement
the example transductions by two-way transducers. To implement the transduction f1, the
two-way transducer reads the string in one left-to-right pass followed by one right-to-left
pass, emitting the symbol read from the input at every step. The two-way transducer for f2,
first moves all the way to the right. If the last symbol is b, then while moving right to left it
outputs b for every b symbol it reads, while ignoring a symbols. If the last symbol is not b, it
moves all the way to the left, and using a final left-to-right pass, it outputs every symbol
it reads. The transducer for f3 starts moving to the right emitting an a symbol for each a
symbol read. If it encounters the right end-marker, it halts, If it encounters a b symbol, it
emits the empty string and starts moving left. For every a symbol it reads, it emits b, and
keeps moving left. When it encounters a b symbol or the left end-marker, it starts moving
right again skipping over the a’s until it encounters a b, emitting the empty string at each
step. Then the whole cycle repeats.

For defining transductions using monadic second-order logic, a string w = w1w2 . . . wk

FSTTCS 2010

4 Expressiveness of streaming string transducers

is viewed as a (string) graph Gw with k + 1 vertices v0v1 . . . vk, with an edge from each
vi to vi+1 labeled with the symbol wi. Then, an MSO formula over an alphabet Σ, to be
interpreted over such a graph Gw, consists of Boolean connectives, quantifiers, first-order
variables that range over vertices of Gw, monadic second-order variables that range over
sets of vertices of Gw, and atomic formulas of the form a(x, y), for a ∈ Σ, meaning that the
vertex x has an a-labeled edge to the vertex y. A deterministic MSO transducer T from
input alphabet Σ to output alphabet Γ consists of a finite copy set C, vertex formulas ϕc(x),
for each c ∈ C, each of which is an MSO formula over Σ with one free first-order variable x,
and edge formulas ϕc,da (x, y), for each a ∈ Γ and c, d ∈ C, each of which is an MSO formula
over Σ with two free first-order variables x and y. Given an input string w, consider the
following output graph: for each vertex x in Gw and c ∈ C, there is a vertex xc in the output
if the formula ϕc(x) holds over Gw, and for all such vertices xc and yd, there is an a-labeled
edge from xc to yd if the formula ϕc,da (x, y) holds over Gw. If this graph is the string graph
corresponding to the string u over Γ then [[T]](w) = u, and if this graph is not a string graph,
then [[T]](w) is undefined.

Let us revisit our example transductions. To define the transduction f1, we choose the
copy set C = {1, 2}. The output graph retains both copies of each vertex in input graph,
except the last one. When a(x, y) holds in the input graph a(x1, y1) and a(y1, x1) holds in
the output graph (the last vertex needs to be handled specially to connect the two copies).
For the transduction f2, we need only one copy of each vertex. The formula ϕ1 is defined so
that ϕ1(x) holds precisely when either the position x corresponds to a b-symbol in the input
graph, or if the last symbol in the input is b (such “regular” look-ahead is easily definable
using MSO formulas). The output graph has an edge from x to y if ϕ1(x) holds, y is the least
position following x for which ϕ1(y) holds, and the label is the same as the input symbol
corresponding to position x. The transduction f3 can be defined by a deterministic MSO
transducer with the copy set C = {1, 2}, where both output copies of a vertex are retained,
or omitted, depending on whether the corresponding symbol in the input string is a, or b,
respectively. The edge formulas are slightly complicated, but can be defined in MSO [3].

The two frameworks are equally expressive [3], and this class of transductions is called
regular string transductions. The class of regular transductions is closed under sequential
composition [2], and it is decidable to check whether two such transductions, presented by,
say, two two-way deterministic transducers, are equivalent [4]. Observe that for any regular
transduction, the ratio of the length of the output string to the length of the input string is
bounded by a constant, namely, the size of the copy set C of the corresponding deterministic
MSO transducer.

3 Streaming Transducer Model

A (deterministic) streaming string transducer W from input alphabet Σ to output alphabet
Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a finite set of variables X, a
partial output function F from Q to (Γ ∪X)∗ such that for each q ∈ Q and x ∈ X, there is
at most one occurrence of x in F (q), a state-transition function δ1 from Q× Σ to Q, and a
variable-update function δ2 from Q×Σ×X to (Γ∪X)∗ such that for each q ∈ Q and a ∈ Σ
and x ∈ X, there is at most one occurrence of x in the set of strings {δ2(q, a, y) | y ∈ X}.

To define the semantics of such a transducer, consider configurations of the form (q, s),
where s is a valuation from X to Γ∗. A valuation from X to Γ∗ is extended to a valuation from
(X ∪ Γ)∗ to Γ∗ in the natural way. The initial configuration is (q0, s0) where s0 maps each
variable to the empty string. The transition function is defined by δ((q, s), a) = (δ1(q, a), s′)

Rajeev Alur and Pavol Černý 5

where for each variable x, s′(x) = s(δ2(q, a, x)). For an input string w ∈ Σ∗, if δ∗((q0, s0), w) =
(q, s), then if F (q) is undefined then so is [[W]](w), otherwise [[W]](w) = s(F (q)).

The transduction f1 can be implemented by a streaming string transducer Wrev with
a single state and two variables x and y. Each symbol a is processed by the update
(x, y) = (xa, ay), and the output function is xy.

The transduction f2 can be implemented by a streaming string transducer with two states
q0 and q1, and two variables x and y. Initially the state is q0, and the transducer is in state
q1 precisely when the most recent input symbol is b (it goes to state q1 on reading b and to
state q0 on reading a). At every step, x contains the input string read so far, and y contains
only b’s encountered so far (the variable-update function on reading a is (x, y) = (xa, y), and
on reading b is (x, y) = (xb, yb)). In state q1 the output function returns y, in state q0 the
output function returns x.

The transduction f3 can be implemented by a streaming string transducer Wcp with a
single state and two variables x and y. The symbol a is processed by the update (x, y) =
(xa, yb), the symbol b is processed by (x, y) = (xy, ε), and the output function is x.

The following proposition states that streaming string transducers are closed under
sequential composition. Note that streaming data string transducers [1] are not closed under
sequential composition.
I Proposition 1. Given a streaming string transducer W1 from input alphabet Σ1 to output
alphabet Σ2 and a streaming string transducerW2 from input alphabet Σ2 to output alphabet
Σ3, one can effectively construct a streaming string transducer W from input alphabet Σ1 to
output alphabet Σ3, such that for all strings w in Σ∗1, we have that [[W]](w) = [[W2]]([[W1]](w))
if [[W1]](w) and [[W2]]([[W1]](w)) are both defined, and [[W]](w) is undefined otherwise.

Proof. We first define a notion of a summary of a computation for a streaming string
transducer on an input string w. We then show how the transducer W can compute the
sequential composition by simulatingW1 and keeping track of summaries ofW2 corresponding
to string variables of W1.

Given a string w, a summary of a finite state automaton is just a pair of states (q, q′),
indicating that if the automaton starts reading w in a state q, it finishes in state q′. For a
deterministic streaming string transducer U from Σ to Γ, a summary for a given start state
q and a string w includes not only an end state q′, but also a string variable summary, that
is, a description of how the contents of the string variables get updated while processing w.
Let X be the set of string variables of U . A string variable summary is a function κ from X

to strings in (Γ ∪X)∗, with the same restrictions of copyless assignments as in the definition
of streaming string transducers. For every valuation s from X to Γ∗, if the configuration of
U is (q, s), then after processing the input string w, the configuration of U is (q′, s′) where
s′(x) = s(κ(x)). Note that the computation of U , and hence the summary, is not influenced
by the valuation s of string variables at the start of the computation on w.

A key observation is that a string variable summary can be represented by a set X ′ of
2× k string variables, where k is the number of string variables in X, in addition to finite
bookkeeping information which is also independent in size from w. For instance, if X consists
of two variables, the function κ can be κ(x) = αxβyγ, κ(y) = ι, or κ(x) = αyβ, κ(y) = δxι,
or a similar combination, where α, β, γ, ι are strings over Γ. The summary can be represented
by X ′ containing in this case four string variables (that will store α, β, γ, ι), and a bounded
amount of bookkeeping information to store how κ is constructed from X and X ′.

We now describe the construction of the streaming string transducerW that computes the
sequential composition of W1 and W2. The transducer W simulates W1 processing the input
string, and for every string variable x of W1, it maintains a summary of W2. It is easy to see

FSTTCS 2010

6 Expressiveness of streaming string transducers

how summaries for string variables of W1 are maintained: for example, consider the case
when W1 executes an assignment z = az1z2. First, we construct a string variable summary
for computation of W2 on processing the letter a. Then we compose this summary with
summaries for strings stored in string variables z1 and z2. We explain how string variable
summaries are composed on the following example. Let κ1 be a string variable summary of
a computation of W2 on z1 defined by κ1(x) = xαy, κ1(y) = β. Let κ2 be a string variable
summary of a computation of W2 on z2 defined by κ2(x) = ε, κ2(y) = xγyι. Note that each
of the strings α, β, γ, ι can be stored in a string variable. Then the string variable summary
κ after processing z1z2 is defined by κ2(x) = ε, κ2(y) = xαyγβι (where the string γβι can be
stored in one string variable). This finishes the construction. The number of string variables
of W is m1 × n2 × (2 ×m2), where m1 is the number of string variables of W1, n2 is the
number of states of W2 and m2 is the number of string variables of n2. J

As the following proposition shows, streaming string transducers are closed under con-
ditional composition, where the condition is given as a regular language over the input
alphabet. The proof is based on product construction and is similar to the proof of closure
under conditional composition for streaming data string transducers [1].
I Proposition 2. Given two streaming string transducers W1 and W2 from input alphabet
Σ to output alphabet Γ and a regular language L over Σ, there exists a streaming stream
transducer W such that for all strings w ∈ Σ∗, (i) if w ∈ L, then [[W]](w) = [[W1]](w) if
[[W1]](w) is defined and is undefined otherwise, and (ii) if w 6∈ L, then [[W]](w) = [[W2]](w) if
[[W2]](w) is defined, and is undefined otherwise.

4 Heap-based Transducer Model

A heap-based (finite-state) deterministic string transducer H from input alphabet Σ to output
alphabet Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a finite set of pointers
X, an output function F from states Q to variables X, and a transition function δ from
Q× Σ to Q×A∗X , where the set AX of atomic actions consists of x := ν(a) and η(x) := y,
for x, y ∈ X and a ∈ Γ.

Given an input string over Σ, the transducer computes the output by maintaining a heap.
A heap h consists of a finite set C of cells, a mapping ` from C to Γ (`(c) denotes the output
symbol stored in the cell c), a mapping η from C to C⊥, where C⊥ denotes the set C ∪ {⊥}
(η(c) denotes the cell that the next-pointer of the cell c points to, with ⊥ denoting the null
value), and a mapping µ from X to C⊥ (µ(x) is the cell that the pointer x points to). A
configuration of the transducer H consists of a state q ∈ Q and a heap h. Initially, the state
is q0 and in the initial heap h0, C is empty and µ(x) = ⊥ for each x. The action x := ν(a)
creates a new cell labeled by a symbol a ∈ Γ and makes x point to the new cell. The action
η(x) := y modifies the next pointer of the cell pointed to by x to make it point to the cell
pointed to by y, if x is not nil; if x is nil, the action has no effect. More formally, each action
in AX updates the heap as follows: (C, `, η, µ) x:=ν(a)−→ (C ′, `′, η′, µ) holds where C ′ = C ∪ {c},
with c 6∈ C 1, `′(c) = a, η′(c) = ⊥ and `′ and µ′ agree with ` and µ, respectively, on cells in
C; (C, `, η, µ) η(x):=y−→ (C, `, η′, µ) holds where if µ(x) = c then η′(c) = µ(y) and η′ agrees with
η for cells other than c (if µ(x) = ⊥, the action has no effect). This transition relation can be
lifted to configurations: for an input symbol a ∈ Σ, (q, h) a−→ (q′, h′) if δ(q, a) = (q′, α) and

1 The behavior of the transducer is deterministic as long as the choice of this new cell c is according to
some deterministic naming policy.

Rajeev Alur and Pavol Černý 7

h
α−→ h′. For an input string w, if (q0, h0) w−→ (q, h) then h is the output heap corresponding

to w. In the output heap h = (C, `, η, µ), if µ(F (q)) = ⊥ then [[H]](w) is the empty string. If
the sequence of next-pointers starting from the cell µ(F (q)) contains a cycle, then [[H]](w) is
undefined. Otherwise, let c0c1 . . . cn be the unique sequence of cells such that c0 = µ(F (q)),
η(ci) = ci+1 for i < n, and η(cn) = ⊥. Then [[H]](w) is defined to be `(c0)`(c1) · · · `(cn).

Such a transducer can implement the transduction f1 as follows. After processing an
input string w, suppose the current heap is a linear sequence of cells storing w.rev(w) such
that the pointer x0 points to the first cell, the pointer x1 points to the last cell corresponding
to w and x2 points to the first cell holding rev(w), with an additional auxiliary pointer x3.
When the transducer reads the next input symbol, say a, it adds two new a-labeled cells in
the middle of the current output, by executing the sequence x3 := ν(a); η(x1) := x3;x1 :=
ν(a); η(x3) := x1; η(x1) := x2. In the updated heap, x3 and x1 point to the two middle cells,
and x2 can be used as an auxiliary pointer. The result is given by the output pointer x0.

To implement f2, the heap-based transducer maintains two lists with pointers to the
two ends of both the lists. An input symbol a is added to the end of only the first list by
creating one new a-labeled cell, while an input symbol b is added to the end of both the
lists by creating two new b-labeled cells. The transducer needs two states, and the state
remembers whether the last symbol is b or not, and the state is used to return the pointer
that points to the head of the appropriately chosen list.

To implement f3, the heap-based transducer again maintains two lists with pointers to
the two ends of both the lists. The output pointer points to the head of the first list. To
process the input symbol a, it adds a a-labeled cell at the end of the first list, and a b-labeled
cell at the end of the second list. To process the input symbol b, the first list is updated to
the concatenation of the two (which can be implemented by changing the next-pointer of the
last cell of the first list point to the first cell of the second list) and the second list is set to
empty.

The two types of pointer manipulating instructions (node creation and next-pointer
modification) are expressively adequate for our purpose. The class of programs in [1] allows
a more general set of instructions for manipulating pointer variables (such as testing whether
two pointers point to the same cell, testing whether a pointer is null, checking and updating
the symbol stored at a cell pointed to by a pointer, assigning one pointer to another). From
the results of this paper and the compilation of such programs into streaming transducers
described in [1], it follows that such extensions do not add to expressiveness. The key missing
instruction is the traversal assignment x := ν(y). Consider the transduction merge: given
an input u1u2 . . . um#v1v2 . . . vm, output u1v1u2v2 . . . umvm. Adding traversal assignments
would allow the heap-based transducer to define the merge transduction by using two traversal
pointers, one traversing the u part of the input and the other traversing the v part of the input.
The next proposition establishes that this transduction cannot be captured by a streaming
string transducer. As we show later in this paper that heap-based string transducers and
streaming string transducers exactly define regular transductions, the proposition implies
that adding the traversal assignment strictly increases the expressiveness of heap-based string
transducers.
I Proposition 3. The transduction merge is not definable by a streaming stream transducers.

Proof. Let us consider a streaming string transducer W with n states and k string variables
and let us assume that W defines merge. We derive a contradiction as follows. Consider the
set of inputs Im where m is the length of the sequence u = u1u2 . . . um (resp. v = v1v2 . . . vm),
and where ui is in {a, b} for all i such that 1 ≤ i ≤ m, and vj is in {c, d}, for all j such that
1 ≤ j ≤ m.

FSTTCS 2010

8 Expressiveness of streaming string transducers

Intuitively, the proof is simple: if x1,..., xk are values of string variables after reading
the first part of the input, u#, then these will appear (each at most once) as substrings
in the final output. Assuming that x1, . . . , xk contain only a’s and b’s after processing u#,
and that while processing the second part of the input, v, W adds only c’s and d’s to the
string variables, it is clear that the final output can contain at most a bounded number of
alternations of letters in {a, b} with letters in {c, d}. The transducer W therefore does not
implement merge. We now formalize this argument.

Let us consider the set of inputs Im as above, with m such that 2m > n ∗ k ∗ 2r, where r
is such that 2r > k. A string w is called short if |w| ≤ r. Let us call a short-configuration of
W the pair (q, ρ) where q is a state of W and ρ is a valuation of string variables, where each
variable is assigned either a short string or a ∗. A short-configuration is an abstraction of a
configuration of W , where a variable x keeps its original value if its value is a short string,
otherwise it is abstracted by ∗. If we prove the following claim, we have that W does not
define merge, and we obtain the desired contradiction.

Claim: There exist two different strings w1 or w2 from Im such that (i) either the output
on both w1 and w2 is the same, (ii) or the output on one of the strings w1 and w2 is incorrect.

To prove the claim, consider two different strings u1 and u2 in {a, b}m such that that W
is in the same short configuration after processing u1 and u2. Such strings exist, as 2m is
more than the number of short configurations (n × k × 2r). We now construct a string v
in {c, d}m such that the claim holds for u1#v and u2#v. Let us look at non-short strings
that W stores after processing u1 or u2. If these are to be used in the output, they have to
have c or d on every other position. These strings thus contain guesses for the v part of the
whole input string. As the length of these strings is greater than r, W cannot have stored all
the possible guesses for v (as it has k string variables, and 2r > k). We consider v that does
not contain any sequence contained in a non-short string stored by W . Thus for u1#v and
u2#v we have that if W uses in the output a string variable with a non-short string stored
after processing u1 (or u2), then the output is incorrect. If it does not use any such string
variable, the output will be the same in both cases (as W is deterministic). J

5 Expressiveness

5.1 From Two-way Transducers to Heap-based Transducers
I Theorem 1. For every two-way deterministic transducer M with n states, there exists a
deterministic heap-based transducer H with O(nn) states and O(n) pointer variables such
that [[M]] = [[H]].
Proof: The proof is an extension of Shepherdson’s proof [7] for standard two-way finite
automata to the case of transducers. We start by describing the main ideas of the proof.
The heap-based transducer has only a single (left-to-right) pass on the input string. It thus
needs to precompute information on possible back-and-forth traversals. More precisely, at
each position p of w and for each state u of M , the information needed by H is captured by
a pair (qu, wu) such that

if M reads the symbol at position p in state u, the first time M reaches the position p+ 1,
it will be at state qu, having produced output wu along this stretch. We show how such
pair can be updated, even in the presence of left moves. Let us suppose that the symbol at
position p is the symbol a and that in state u, M moves left to state v and outputs string α.
Furthermore, let us assume that for state v, a pair (qv, wv) was stored in the previous step;
and that in state qv the machine M moves right on a to qu, outputting β. Then for state u,
we need to store the pair (qu, αwvβ). The situation is depicted in Figure 1.

Rajeev Alur and Pavol Černý 9

We need to add a few important details to this intuitive explanation. First, H can store
strings wu (possible partial outputs of M) only on the heap. In order to store a string wu, it
will store two pointers, xbu and xeu. The two pointers will point to the first and last position
of the string. Second, H cannot copy arbitrarily long strings, but it can instead use the fact
that suffixes of strings represented on the heap can be shared. Third, in order to model the
first forward traversal of M , we add a state m to the set of states of M . For each position p
the pair (qm, wm) represents the situation that the first time M reaches p+ 1, it will be in
state qm and the output will be wm. Fourth, it is possible that M never reaches the position
p+ 1, either because it reached a final state and stopped, or because an error occurred, for
example if M tried to move left on `. If, for example, after a left move from a state u at
position p, M reaches the final state qf (and outputs w) before arriving at p+1, H represents
this by the pair (qf , w). On the other hand, if an error occurred, then H represents this
by a pair (qerr , ε), where qerr is a special state. Fifth, note that H (as opposed to M) does
not see the symbols `,a. This can be remedied by H having two copies of possible outputs
of M as described above, with the additional copy assuming that the next character is a
and simulating M on this symbol. The final output is the string starting at x, with x being
the pointer variable representing the first forward traversal of M in the second copy of the
possible outputs of M .

We now present the construction in more details. The heap-
a

pp−1 p+1

uv
α

βwv

qv qu

Figure 1 Representing
the computation of M

based transducer H that we construct uses pointer-assignment
instructions of the form x = y, where x and y are pointer variables.
Such a heap-based transducer can be easily converted to a heap-
based transducer H ′ which does not use such instructions. The
state of H ′ records, in addition to the state of H, for every pair
of pointers whether they are equal, and for every class such equal
pointers, which pointer accesses the heap content. Then, to
simulate the pointer assignment instruction x = y in H, H ′ does
not update x, but simply records that x and y are equal, and

the pointer y points to the desired content. The construction does not change the number of
pointers, but blows up the number of states by a factor of the number of possible partitions
of the pointers. Since H has pointer assignment instructions, it suffices for H to have a single
pointer variable xo to be the output pointer in every state. The output function of H ′ maps
a state to the pointer that is equal to xo and accesses the actual content.

Let M be defined by the tuple (Σ,Γ, QM , qM0 , δM). The heap-based transducer H is
defined by the tuple (Σ,Γ, QH , qH0 , X, xb2m , δH). Let QH be the set of functions from QM∪{m}
to QM ∪ {m, qerr}. Initial state is one which represents the identity function. The set of
pointers contains four pointers xbu, xeu, xb2u , xe2

u for each state u in QM ∪ {m}. (The pointers
xb2u , xe2

u point to the beginning and end of the second copy of wu.)
We explain the definition of the transition function δH using an example. Let us consider

a state g of H such that g(v) = qv and a transition δM (u, a) = (v,−1, α) in δM . Let us
suppose that δM (qv, a) = (qu,+1, β). Then δH(g, a) = (f,A∗), for some state f such that
f(u) = qu. Recall that H stores the string wv that M produced while moving from v to
qv on the heap, between pointers xbv and xev. We have that while moving from u to qu, M
produces αwvβ. The sequence of actions A∗ puts α on the heap, make xbu point to the first
node of α, and connects the last node of α to the node pointed to by xbv. Similarly, β is
appended at xev. So far, we have assumed that M moves right from qv on the symbol a. If it
moves left, we can again use the the information that H stores in the finite-state control and
on the heap to find the state in which it will return to the current position and the string it

FSTTCS 2010

10 Expressiveness of streaming string transducers

will output in the process. Note that the process may repeat several times, and potentially
even cycle. However, H has all the necessary information stored locally. If it discovers a
cycle (this happens for example if qv = u), then the value of f(u) will be qerr .

We describe how copying arbitrarily long strings on the heap is avoided by exploiting
the fact that M is deterministic and the fact that suffixes of strings on the heap can be
shared. Let us suppose that there are two states u and t of M such that M moves left on a
symbol a to v from both u and t. Let us also suppose that at the previous step, H stored
the information that from v, the first time H will move to the right it will be in state qv and
produce wv in between. Using the idea described above, we obtain that we need to store the
pair (qu, αuwvβu) for the state u, and the pair (qt, αtwvβt) for the state t. As the string wv
cannot be copied, it must be shared. As the heap is singly-linked, this would not be possible
if βu was different from βt. However, since M is deterministic, we have that the execution
from v will be identical in both cases — we have that βu = βt (and qu = qt).

5.2 From Heap-based Transducers to Streaming Transducers
I Theorem 2. For every deterministic heap-based string transducer H with n states and m
pointer variables, there exists a deterministic streaming transducer W with O(n2m) states
and O(n) string variables such that [[H]] = [[W]].

Proof: The heap-based transducer and the streaming transducer both traverse the string
only once. The difference between the two models is that one uses the heap, which allows
sharing of suffixes of represented strings, whereas the other uses string variables, and thus
sharing is not possible. The proof is the same as the compilation from imperative single-pass
list-processing programs into streaming transducers described in [1], we describe it here for
the sake of completeness.

The heart of the proof is therefore to show that the streaming

zy

x

t

v0 v1 v2 v3

v4 v5 v6

Figure 2 Singly-linked
heap

transducer can represent the heap of the heap-based transducer
using a bounded number of string variables. In order to achieve
this, we adapt the approach (and terminology) of [5] for repre-
senting a singly-linked heap. A node v is called an interruption
if it is either pointed to by a program variable or there are at
least two distinct nodes with edges to v. An uninterrupted list
segment is a finite sequence of nodes where: (i) the first node

is an interruption, (ii) the next pointer of each node (except the last) points to the next
node in the sequence, (iii) the last node is either an interruption or the value of its next
pointer is nil, and (iv) no other node is an interruption. Consider the heap in Figure 2. The
nodes v0, v1, v4, v5, v6 are interruptions. The sequence of nodes v1v2v3 is an uninterrupted
list segment. It can be easily seen that for a heap-based transducer with k pointer variables,
there can be at most 2k − 1 interruptions and 2k − 1 uninterrupted list segments. The heap
can be compressed by replacing uninterrupted list segments by strings (to be stored in string
variables of W).

The number of compressed heaps is exponential in the number of interruptions, and thus
exponential in the number of pointer variables of H. The heap can therefore be stored by
the streaming automaton W as follows: each uninterrupted list segment will be represented
by a string variable. The shape of the heap (a forest) and the information on where the
pointer variables of H point will be represented in the finite-state control of W . The number
of states of W will be therefore linear in the number of states of H and exponential in the
number of pointer variables of H.

Rajeev Alur and Pavol Černý 11

It remains to show that the semantics of each instruction of the heap-based transducer
can be modeled effectively on the representation described above. Let us consider the heap
in Figure 2 and the action η(y) := x. The shape of the heap changes in two ways: first, the
node pointed to by y points to the node pointed to by x (this information is kept in the
finite-state control of W); second, there will be an uninterrupted list segment starting at
the node pointed to by x containing the list segment v0v1v2v3. The (labels of nodes in) this
list segment will be stored in a string variable. The string variable that in the previous step
represented the list segment v1v2v3 can be freed (and reused).

5.3 From Streaming Transducers to MSO
I Theorem 3. For every deterministic streaming string transducer W there exists a deter-
ministic MSO transducer T such that [[W]] = [[T]].

Proof. The proof is based on the idea that the computation of the streaming string transducer
W can be represented in the copy set (from the definition of the MSO transducer). The
unique sequence of states of W over a given input string w can be captured in MSO using
second order existential quantification. Given a state of W and a letter in Σ, the function δ2
is a function from the string variables to sequences in (Γ ∪X)∗. This function is what is
represented using the copy set. The last step then consists of “reading out” the final output
string from this representation.

We explain the encoding on an example. Let us consider the

b ba

ba b

a b b

⊳

Figure 3 Representing
the computation of W

transduction f1 and the streaming transducer Wrev defined in
Section 3. The top of Figure 3 contains the input string abb.
Recall that Wrev has only one state. The columns below each
letter of the input string represent the assignments to the string
variables: the top three nodes in a column represent the right-
hand side (RHS) of the assignment x := xa (resp. x := xb), the
bottom three nodes represent the RHS of the assignment y := ay

(resp. y := by). The representation of an RHS with two symbols
has three nodes. A symbol in Γ is represented by a marked edge,
a variable z is represented by two nodes. The first of these nodes
links to the previous column to where the representation of z
begins. The second of these two nodes will be linked to from
the last node representing z from the previous column. Such
“linking” edges are represented by dashed (ε) lines in Figure 3.
In the first column, we connect the two nodes representing a variable in a right-hand side by
a dashed (ε) line, as the string variables are initially empty. The last column is not used
(and not pictured in Figure 3). In the column before last (the column that correspond to
the last character of the input string), we also represent the effect of the output function
F (q0) = xy. We mark the first edge of x by a special symbol / to indicate where the output
starts, and we connect the last symbol of x to the first symbol of y.

Note that the graph representing the computation of Wrev is not a string graph (there are
disconnected nodes in the last column, not pictured), and it contains ε edges. We thus need
to use an MSO transducer that deletes unused nodes (nodes unreachable from the marked
node) and removes ε edges. Such a transducer is easily defined. We can then use the result
that MSO transducers are closed under sequential composition [2] to conclude.

Details of the concrete MSO formulas are straightforward. We only note that the copy set
of T needs to represent the right-hand side of any possible assignment to a string variable of

FSTTCS 2010

12 Expressiveness of streaming string transducers

W , therefore (the upper bound on) the size of the copy set is n ∗ d, where n is the number of
pointer variables of W and d is the maximal length of the string δ(q, a, x), over all q (states
of W), a ∈ Σ and x (string variables of W).

6 Conclusions

The model of streaming string transducers is of potential interest for algorithmic verification
of list-processing programs due to decidability of equivalence problem and correspondence
to restricted classes of imperative heap-manipulating programs [1]. In this paper, we have
established that its expressiveness coincides with the classical model of two-way transducers.
This suggests robustness of their computing power. It also justifies the choice of primitive
instructions in the corresponding class of heap-based transducers, which model single-pass
programs that transform the input list using updates to a “traversal-free” heap consisting of
singly-linked cells. A number of theoretical directions are worth pursuing. These include
minimization of streaming string transducers, learning such transducers from input-output
examples, synthesis of streaming transducers, extension to nondeterministic transducers, and
extension to streaming transducers for tree-structured data.

References

1 R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass list
processing programs. In Proceedings of the 38th Annual ACM Symposium on Principles of
Programming Languages, 2011.

2 M. Chytil and V. Jákl. Serial composition of 2-way finite-state transducers and simple
programs on strings. In Automata, Languages and Programming: Proceedings of Fourth
International Colloquium, ICALP’77, LNCS 52, pages 135–147. Springer, 1977.

3 J. Engelfriet and H. Hoogeboom. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.

4 E. Gurari. The equivalence problem for deterministic two-way sequential transducers is
decidable. SIAM J. Comput., 11(3):448–452, 1982.

5 R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. In Verification, Model Checking, and Abstract Interpre-
tation, 6th International Conference, LNCS 3385, pages 181–198. Springer, 2005.

6 G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, 1994.

7 J. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3:198–200, 1959.

	University of Pennsylvania
	ScholarlyCommons
	2010

	Expressiveness of Streaming String Transducers
	Rajeev Alur
	Recommended Citation

	Expressiveness of Streaming String Transducers
	Abstract
	Keywords
	Disciplines

	Introduction
	Regular String Transductions
	Streaming Transducer Model
	Heap-based Transducer Model
	Expressiveness
	From Two-way Transducers to Heap-based Transducers
	From Heap-based Transducers to Streaming Transducers
	From Streaming Transducers to MSO

	Conclusions

