
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

3-2014

A Layered Approach for Testing Timing in the
Model-Based Implementation
BaekGyu Kim
University of Pennsylvania, baekgyu@seas.upenn.edu

Hyeon I. Hwang
Daegu Gyeongbuk Institute of Science & Technology

Taejoon Park
Daegu Gyeongbuk Institute of Science & Technology

Sang H. Son
Daegu Gyeongbuk Institute of Science & Technology

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/775
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
BaekGyu Kim, Hyeon I. Hwang, Taejoon Park, Sang H. Son, and Insup Lee, "A Layered Approach for Testing Timing in the Model-
Based Implementation", Design, Automation, and Test in Europe (Date 2014), Dresden, Germany . March 2014. http://dx.doi.org/
10.7873/DATE.2014.202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/129586301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.7873/DATE.2014.202
http://dx.doi.org/10.7873/DATE.2014.202
http://repository.upenn.edu/cis_papers/775
mailto:libraryrepository@pobox.upenn.edu

A Layered Approach for Testing Timing in the Model-Based
Implementation

Abstract
The model-based implementation is to derive an implementation from a model that has been shown to meet
requirements. Even though this approach can be used to guarantee that an implementation satisfies functional
requirements that are shown to be correct at the model level, it is still challenging to assure timing
requirements at the implementation level. We propose a layered approach in testing timing requirements
conformance of implemented systems developed by model-based implementation. In our approach, the
abstraction boundary of the implemented system is formally defined using Parnas' four-variables model. Then,
the proposed approach tests timing aspects of the interaction between the auto-generated code and the target
platform-dependent code based on the four-variables. This approach aims at not only detecting the timing
requirement violation, but also at measuring delay-segments that contribute to the timing deviation of the
implemented system w.r.t. the model. We show the case study of testing timing requirements of an infusion
pump system to illustrate the applicability of the proposed framework.

Keywords
abstraction boundary, autogenerated code, functional requirements, infusion pump system, model based
implementation, target platform dependent code, testing timing

Disciplines
Computer Engineering | Computer Sciences

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/775

http://repository.upenn.edu/cis_papers/775?utm_source=repository.upenn.edu%2Fcis_papers%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages

A Layered Approach for Testing Timing in the
Model-Based Implementation

BaekGyu Kim* Hyeon I Hwang** Taejoon Park** Sang H. Son** Insup Lee*

*University of Pennsylvania
**Daegu Gyeongbuk Institute of Science & Technology

Abstract—
The model-based implementation is to derive an implementa-

tion from a model that has been shown to meet requirements.
Even though this approach can be used to guarantee that an
implementation satisfies functional requirements that are shown
to be correct at the model level, it is still challenging to assure
timing requirements at the implementation level. We propose a
layered approach in testing timing requirements conformance of
implemented systems developed by model-based implementation.
In our approach, the abstraction boundary of the implemented
system is formally defined using Parnas’ four-variables model.
Then, the proposed approach tests timing aspects of the interac-
tion between the auto-generated code and the target platform-
dependent code based on the four-variables. This approach aims
at not only detecting the timing requirement violation, but also at
measuring delay-segments that contribute to the timing deviation
of the implemented system w.r.t. the model. We show the case
study of testing timing requirements of an infusion pump system
to illustrate the applicability of the proposed framework.

I. INTRODUCTION

The model-based implementation is to derive an implemen-
tation from a model that has been shown to meet requirements.
Even though this approach has been shown to be effective in
correctly implementing functional requirements, it is still chal-
lenging to assure timing requirements at the implementation
level. Such a timing assurance gap mainly originates from the
fact that models abstract timing aspects of implementations
and target platforms. Abstracting timing dependent details is
necessary to facilitate system design and verification while
keeping the size of state space reasonable for model checking.
It is also necessary since platform details are not available
during the modeling phase. This introduces a challenge in how
to validate the timing behavior of an implementation derived
from a model. For example, input and output actions in many
timed modeling languages employ instantaneous transition
semantics in which transitions associated with input and output
are assumed to take zero time. We propose a testing framework
that can be used to measure the actual execution time of
an implementation derived from models with such semantics
and to reason about how measured time-bounds affect the
adherence of the timing requirement at the implementation
level.

There are several existing works for testing the final imple-
mented systems in the model-based implementation. Software-
in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing is
used to test whether the source code matches the desired
behavior developed and specified in the Simulink/Stateflow
model [1]. Even though tools are available to test functional
conformance, they lack an ability to test timing aspects of
the code running on a target platform. [2] proposed a tool for
online black-box testing for real-time embedded systems using
UPPAAL specifications. This work also focuses on testing
timing aspects by generating test cases from the UPPAAL

*This research was supported in part by the DGIST Research and Develop-
ment Program of the Ministry of Science, ICT and Future Planning of Korea
(CPS Global Center) and NSF CNS-1035715.

*978-3-9815370-2-4/DATE14/ c©2014 EDAA

model that describes the expected timing behavior of the
implemented system under a certain environmental behavior;
however, it lacks the ability to measure internal time-delays
occurring in the implemented system such as input and output
delay during the execution of test scenarios. In comparison, our
work focuses on precisely defining segmented factors (e.g.,
input/output delays, transition delays) that contribute to the
timing-deviation of an implemented system, and how to test
the time-delay caused by these factors.

We propose a layered testing approach that enables such
a timing analysis to be performed in a systematic way. In
this approach, the implemented system is a composition of
the automatically generated code (e.g., C code) from the
model and the target platform (e.g., sensors, actuators and
accompanied device drivers). Our approach is to consider
these two aspects separately in the testing framework using
Parnas’ four-variables model [3], which we use to charac-
terize the abstraction boundary of the implemented systems.
In the four-variables model, monitored (m) and controlled
(c) variables characterize changes of physical environmental
quantities; on the other hand, input (i) and output (o) variables
characterize software behavior that interact with the physical
environment through input/output devices. In our proposed
testing framework, the four-variables (m, i, o, c) are used
separately to reason about timing aspects of the generated code
and the target platform. Two different levels of testing are
proposed using the four variables. R-testing checks whether
the implemented system conforms to the timing requirements.
In this phase, test cases are generated using the input and
output provided from the target platform only. If the testing
result shows that a timing requirement is violated in the
implemented system, then, M-testing is followed. In this phase,
testing points are generated by segmenting several delays, such
as input delay or output delay, in order to quantify timing
deviation between the model and its implemented system. The
proposed framework is applied to the infusion pump system
to illustrate the applicability of our framework in testing the
timing requirements.

The rest of the paper is organized as follows: we explain the
timing assurance gap in Section II. Our testing framework is
detailed in Section III. Section IV shows the case study using
the infusion pump system, and concludes in Section V.

II. TIMING ASSURANCE GAP IN THE MODEL-BASED
IMPLEMENTATION

In this section, we introduce the overall process of the
model-based implementation and highlight the timing assur-
ance gap between a model and an implemented system. We use
a PCA (Patient-Controlled Analgesia) infusion pump system
as an example to explain the problem.

A PCA infusion pump system is a safety-critical medical
device that physically interacts with a patient by injecting
medication in a controlled manner for pain-relief purposes.
A bolus is a small amount of medication that is injected when
a bolus-request button is pressed. An infusion administration

Timing
Requirements

Modeling
&Verification

Code
Generation

Platform
Integration

Model (M)

CODE (M)

[Artifacts]

(a) Model-level timing conformance

(b) Implementation-level timing conformance (Our goal)

[Process]

(1)

(2)

Environment
Model

Output
Device

Input
Device

CODE (M)

Hardware Platform

i o

m c

(3)

Real
Environment

input output

Fig. 1. The goal of the testing framework in the model-based implementation.

is controlled using several sensors and actuators. A pump-
motor (actuator) is used to apply force to the syringe so that
medication can flow from the syringe to the patient through
intravenous tubes. Abnormal conditions, such as empty reser-
voirs and occlusions, are detected using various sensors and,
when detected, caregivers are notified by buzzers and alarm
LEDs (actuator).

Fig. 1 shows the model-based implementation process that
we have used to develop infusion pump software. To illus-
trate the need for timing requirement validation, consider the
following requirement from the GPCA safety requirements
that list general requirements for the safe operation of PCA
infusion pumps [4]; an explicit timing information is added to
the original requirement in order to explain our work:
• (REQ1) A bolus dose shall be started within 100ms when

requested by the patient.
The modeling and verification phase aims at creating a

model (Fig. 1-(1)) that interacts with the environment model.
For example, Fig. 2 is a Stateflow model that captures the
software behavior of the infusion pump, and the timing re-
quirement of REQ1 can be verified; the details of Fig. 2 are
explained later in this paper.

Code generation aims at automatically generating source
code that preserves the model behavior. Note that the generated
code (denoted as CODE (M) in Fig. 1-(2)) is assured to
conform to the model structure through this process. For
example, the code generator used in [5] is able to generate
C source code that implements transition tables, boolean (or
integer) variables to represent input and output occurrences,
and execution logic (switch-case or if-then-else statements),
which maps to the model structure of Fig. 2.

Platform integration aims at adding interfacing code that is
necessary for CODE (M) to be executed on the target platform.
For example, input/output interfacing code bridges physical
input/output (denoted as m and c variables in Fig. 1-(3)) and
abstracted input/output of CODE (M) (denoted as i and o vari-
ables in Fig. 1-(3)). In this example, input interfacing code
converts pressing the bolus request button, which generates an
electrical signal change, into updating the generated boolean
variable of CODE (M), that is mapped to the i-BolusReq
input in Fig. 2. Our goal is to characterize such a potential
source of timing gaps precisely so that the timing testing
can be performed to identify timing violations in the final
implemented system.

III. THE LAYERED APPROACH IN TIMING TESTING

This section explains Parnas’ four-variables model that our
testing framework relies on. We introduce a layered testing
approach in which conformance to a timing requirement is
first checked. Then, if the timing requirement is violated,
then several delay-segments that contribute to the violation
are measured. The measured delay-segments are used as useful
information in debugging the timing requirement violation of
the implemented systems.

Idle

Bolus
Requested Infusion

Empty
Alarm

i-BolusReq
[function1]

Before(100, E_CLK)

o-MotorState:=1
[function2]

At (4000, E_CLK)
o-MotorStatus:=0

i-ClearAlarm
o-BuzzerState:= 0

i-EmptyAlarm
o-MotorState:=0
o-BuzzerState:=1

Fig. 2. The example Stateflow model for infusion pump software

A. Mapping the four-variables to the implemented system

To test the timing requirements in the implemented system
(Fig. 1-(3)), we precisely identify the relevant input and output
of the implemented system with associated timing constraints.
One assumption made in the model in Fig. 1-(1) (and its
example in Fig. 2) is that the model of the system and the
environment processes their input and output instantaneously
(i.e., zero processing time for input and output). However, this
assumption creates uncertainty when reasoning about the exact
timing of the input and output in the implemented system since
several different interpretations are possible. For example,
the input timing can be considered to be when a physical
event happens at the boundary between the hardware plat-
form and the real environment (e.g., electrical signal changes
when pressing the bolus request button). Another possible
interpretation is that the input timing is when CODE (M)
reads the input event that is pre-processed by some input
processing mechanism (e.g., sampling routines) executing on
the hardware platform. We believe that uniform interpretation
is necessary for precise timing testing of the input and output
of an implemented system.

Parnas’ four-variables model is a well-known technique
in requirement engineering and has been used to precisely
describe safety-critical system requirements [3]. The system
requirements are described in the form of monitored (m), input
(i), output (o), and controlled (c) variables with which interac-
tion among Input-Device, Output-Device, and Software system
can be captured. We use this concept in order to formally define
different abstraction boundaries of the implemented system.
Fig. 1-(3) illustrates the implemented system that shows the
mapping with the four variables (m, i, o, c).
Monitored and Controlled variables: monitored variables
(m) and controlled variables (c) are used to express physical
environmental changes that can be observed and enforced by
the hardware platform. A monitored variable (m) character-
izes physical environmental changes and a hardware platform
typically uses sensors to observe the status of m variable.
For example, m-BolusReq is a monitored Boolean variable
that captures the events, pressed or released, associated with
the bolus request button (e.g., [m-BolusReq==True] implies
the bolus request button is in a pressed state). A controlled
variable (c) characterizes physical environmental changes, and
a hardware platform uses actuators to enforce changes in
physical dynamics. For example, c-PumpMotor variable may
have a range of integer values in order to specify the speed
associated with the pump motor (e.g., [c-PumpMotor == 10]
implies the pump-motor rotates at a speed level of 10). From
now on, we use m-event and c-event to refer to any changes
in m-variable and c-variable, respectively.
Input and Output variables: input variables (i) and output
variables (o) are used to express the input and output of
CODE (M). An input variable (i) characterizes events that are
read by CODE (M). For example, CODE (M) that is generated
from the model in Fig. 2 has three i-variables; i-BolusReq,
i-EmptyAlarm, i-ClearAlarm. Input-Device in Fig. 1-(3) is

responsible for converting the events in m-variable into the
events in i-variable. Sensors and their accompanied device
drivers are the example of Input-Device. An output variable
(o) characterizes events that are written by CODE (M). For
example, CODE (M) has two o-variables; o-MotorState and
o-BuzzerState. Output-Device in Fig. 1-(3) is responsible for
converting the events in o-variable into the events in c-variable.
Actuators and their accompanied device drivers are examples
of Output-Device. We use i-event and o-event to refer to any
changes in i-variable and o-variable, respectively.

Note that the four-variable mapping enables the imple-
mented system to separate the input and output in the boundary
between CODE (M) and the target platform from those in
the boundary between the target platform and the physical
environment. We next explain the testing framework based on
the four-variable mapping.

B. Testing Objectives and R-M testing
In the model-based implementation as shown in Fig. 1, the

timing requirements that were verified in the model (Fig. 1-(1))
can become violated in the implemented system (Fig. 1-(3)).
Such a violation can be due to many different possible sources
of timing deviation in an implemented system. Our proposed
testing framework is to deal with such timing deviation and
aims at achieving the following two separate goals:
(G1) The implemented system is checked whether the timing

requirements are violated or not.
(G2) The implemented system is measured as to how much

it deviates from the timing behavior of the model.
The outcome from (G1) is a pass-fail testing result after
performing a series of test cases extracted from a given timing
requirement; we call this R-testing. The outcome from (G2) is
a quantitative measurement (e.g., 10 ms or 100 ms) of delay-
segments extracted from the model; we call this M-testing.
R-Testing: The conformance of the implemented system w.r.t.
the timing requirements is checked through R-testing. In this
testing, test cases are generated from the timing requirements
in the form of m-variable and c-variable. For example, REQ1
can be expressed using a pair of m and c variables with its
timing constraint:
• (REQ1-a) {(m-BolusReq, tm1), (c-BolusStart, tc1)}
• (REQ1-b) tc1 - tm1 ≤ 100ms

where i) m-BolusReq is an m-event (value changes in m-
variable) that can be observed from the hardware platform of
the infusion pump; the timing of the m-event occurrence is
denoted as tm1, and ii) c-BolusStart is a c-event (value changes
in c-variable) that is expected to be visible from the hardware
platform upon receiving the prior m-event (m-BolusReq); the
timing of the c-event occurrence is denoted as tc1. The timing
constraint required in REQ1 is specified by REQ1-b; that is,
the time difference from tm1 to tc1 should be within 100 ms.
Given the timing requirement, R-test cases are generated in
order to check whether the implemented system conforms to
the requirement using m and c variables only. For example,
consider the following test sequence of input events generated
from REQ1-a:
{(m-BolusReq, 10ms), (m-BolusReq, 300ms), (m-BolusReq,

500ms), }
Then, the expected output timing of c-BolusStart event should
be within 110 ms, 400 ms, 600 ms, ... according to REQ1-b.
If all measured time differences from the implemented system
conforms to this timing constraint, then R-testing passes;
otherwise, R-testing fails.
M-Testing: If the R-testing result is false, the timing re-
quirement verified at the model level does not hold in the
implemented system that executes CODE (M) (i.e., the auto-
matically generated code from the same model). For example,
a bolus infusion is not started within 100 ms upon a patient’s

Time
Model

Behavior

R-testing

M-Testing
(Transition delay)

Input event
(i-BolusReq)

Output event
(o-MotorState)

Time

m-BolusReq c-BolusStart

[]

[] Verified <= 100ms (Yes)

Testing <= 100ms (Yes or No)

Time

o-MotorState i-BolusReq

[] CODE(M) delay (ms)] [[] Input
Delay

Output
Delay

Time

m o i c

Trans1
Start

Trans1
Finish

Trans2
Start

Trans2
Finish

[] [] Trans1
Delay

Trans2
Delay

M-Testing
(I/O delay)

(a)

(b)

(c)

(d)

c-BolusStart m-BolusReq

Fig. 3. The illustration of the timing testing in the R-M testing framework

request in the infusion pump system even though it is shown
to be satisfied by the model. The purpose of M-Testing is to
measure delay-segments that constitute the timing deviation of
the implemented system.

Given the timing requirement of REQ1, Fig. 3 illustrates the
timing behavior of the model (Fig. 3-(a)), and its implemented
system using four-variables (Fig. 3-(b),(c),(d)). In Fig. 3-(a),
when i-BolusReq event is provided to the model of Fig. 2,
the o-MotorState event is produced within 100 ms. Fig. 3-
(b) shows the timing behavior of the implemented system
captured through R-testing. Suppose the R-testing result shows
that REQ1 does not conform in the implemented system (i.e.,
the delay is greater than 100 ms). Fig.3-(c) and (d) illustrate
several delay-segments that constitute the requirement viola-
tion, which are introduced below:
(1) Input-Delay is defined as a time passage from the oc-
currence of m-event to i-event. That is, it measures a delay
from the physical input occurrence accepted by the hardware
platform until CODE (M) actually reads the input (after
being processed by Input-Device). For example, Input-Delay
in Fig. 3-(c) illustrates the time delay associated with the (m-
BolusReq, i-BolusReq) pair.
(2) Output-Delay is defined as a time passage from the
occurrence of o-event to c-event. That is, it measures a delay
from when CODE (M) writes the output until the moment the
output becomes actually visible to the physical environment.
For example, Output-Delay in Fig. 3-(c) illustrates the time
delay associated with the (o-MotorState, c-BolusStart) pair.
(3) CODE (M)-Delay is defined as a time passage from the
occurrence of i-event to o-event. That is, it measures a delay
from when CODE (M) reads an i-event until the moment an
o-event is produced. For example, CODE (M)-Delay in Fig. 3-
(c) illustrates the time delay associated with the (i-BolusReq,
o-MotorState) pair.
(4) Transition-Delay is defined as a time passage for executing
transitions from the occurrence of i-event to o-event. Multiple
transitions can occur during this period due to internal transi-
tions, and each transition delay is separately measured in our
testing framework. For example, two transitions constitute a
pair of (i-BolusReq, o-MotorState) events in Fig. 2: transition
from Idle to BolusRequested and transition from BolusRe-
quested to Infusion. Fig. 3-(d) shows two transition delays
{Trans1-Delay (e.g., 11 ms), Trans2-Delay (e.g., 20 ms)}. The
time difference from the start to the end of each transition is
measured and this set of delays is called the transition delay
of the (i-BolusReq, o-MotorState) pair.

IV. CASE STUDY: TIMING TESTING FOR INFUSION PUMPS

In this case study, we use the model-based implementation
of an infusion pump system and apply the proposed testing
framework to detect the timing requirement violation of the
implementation, and how to measure the timing deviation from
the model.

Case-Study Setting: The GPCA reference implementation
project aims at improving software safety of PCA infusion
pump systems by developing open-source artifacts through the
model-based implementation [6]. In this project, the GPCA
safety requirements are used, which contain general require-
ments that should be guaranteed for safe operation of PCA
infusion pumps. The GPCA model written in Simulink/State-
flow is also used to capture generic software behavior of the
infusion pumps from which the safety requirements can be
formally verified. The code generation process automatically
generates code that can work on infusion pump hardware
platforms. The example requirements and the model used in
our case study utilize a part of these open-artifacts in order to
show the applicability of the proposed approach.

We consider REQ1 to be a timing requirement that needs
to be satisfied in both the model and the implemented system.
A model (Fig. 1-(1)) is created using Stateflow, and a part
of this model is shown in Fig. 2. The timing requirement is
verified in the model using the Simulink Design Verifier [7].
That is, the value of o-MotorState changes from zero to one
within 100 ms when i-BolusReq is triggered while the system
is in Idle state. RealTimeWorkshop [5] is used to automatically
generate C source code (Fig. 1-(2)) from the verified model.

The generated code (CODE (M)) is then interfaced with
the platform-dependent Input-Device and Output-Device on
the infusion pump hardware used for the GPCA reference
implementation. We use a Baxter PCA Syringe Pump as an
infusion pump hardware and interface sensors and actuators
to ARM7 micro-controller that runs the FreeRTOS real-time
operating system.
Case-Study Scenarios: This case study shows how the pro-
posed testing framework can be used to detect the requirement
violation, and to measure timing deviation of different imple-
mented systems.

We consider three representative implementation schemes
to integrate CODE (M) with the target platform. The three
implementation schemes are as follows:
Implementation Scheme 1 (Single-threaded implementation):
The implementation, CODE (M), is executed by a single thread
that is invoked periodically. In our case study, CODE (M) is
invoked every 25 ms to read m-events from the sensors (e.g.,
bolus-request button); and to write c-events to the actuators at
the end of CODE (M) computations (e.g., pump motor).
Implementation Scheme 2 (Multi-threaded implementation):
This implementation uses multiple threads to read m-events
from sensors and to write c-events to actuators. In addition,
a thread that executes CODE (M) is separately run to read i-
events from the sensing threads, and to write o-events to the
actuation threads. Therefore, it is possible to sample sensor
values, and to give commands to actuators at a different
frequency from that of the CODE (M) execution. In our
case study, the summation of the thread periods along the
path of sensing-CODE (M)-actuation routines is less than
100 ms in order to make sure that any c-event is produced
within 100 ms after an m-event is accepted by the sensing
threads. The communication among sensing/actuation threads
and CODE (M) threads is implemented using FIFO queues.
Implementation Scheme 3 (Multi-threaded implementation with
other threads): Often, there are additional threads in addition to
threads used by the model-based implementation (e.g., network
drivers on infusion pump systems). This scheme aims to allow
non-stand-alone implementation with additional functionalities
executed by threads in addition to sensing, actuation, and
CODE (M) threads of the implementation scheme 2. In our
case study, three additional threads are scheduled. One of the
threads has the same priority with the CODE (M) thread,
and the other two threads have a higher and a lower priority
than the CODE (M) thread respectively. These threads do
not communicate with the CODE (M), but execute their own

TABLE I. TESTING RESULTS: MEASURED TIME-DELAYS FOR THE
BOLUS REQUEST SCENARIO IN REQ1

independent tasks.
Table I is the experimental results that show the time delays

measured while each implemented system processed the bolus
processing scenario in REQ1. Ten test samples obtained from
each implemented system are shown in the table to explain
how our testing framework works. The results of R-testing
and M-testing are separately shown for each implemented
system. Note that R-testing measures the time delay between
m-event and c-event, and compares it to REQ1 in order to
check the requirement violation; here, the numbers in R-
testing columns imply the time delay between m-BolusReq
event and c-BolusStart in milliseconds (ms). Red numbers in
the R-testing columns imply that these test samples violate the
timing requirement of REQ1 (i.e., the delays are greater than
100 ms). MAX implies that c-BolusStart was not observed
until time-out after providing the m-BolusReq event. For those
test cases that violate the timing requirement in R-testing,
M-testing is followed to measure the specific delay-segments
that constitute the requirement violation. The measured delay-
segments can be used as useful information in debugging the
timing requirement violation in the implemented system.

V. CONCLUSION

We propose a timing testing framework for the model-based
implementation based on Parnas’ four-variables model. The
test framework measures the time delay between the auto-
generated code and Input/Output devices. The four-variable
model is used to partition timing testing into R-resting and M-
testing. R-testing measures the time difference of the input and
output events occurring at the boundary of the Input/Output
devices and the environment. R-testing enables the imple-
mented system to check a timing requirement violation. M-
testing measures the delay-segments that constitute the timing
deviation of the implemented system w.r.t. the model using the
input and output events occurring at the boundary of the auto-
generated code and Input/Output devices. This testing frame-
work can be used to quantify timing deviation of implemented
systems. In future work, we plan to study test coverage and
test sufficiency from which test cases can be systematically
generated in order to automate the proposed R-M testing.

REFERENCES

[1] J. F. Brett Murphy, Amory Wakefield, “Best practices for verification,
validation, and test in model-based design,” 2008.

[2] K. Larsen, M. Mikucionis, and B. Nielsen, “Online testing of real-time
systems using uppaal,” in Formal Approaches to Software Testing, 2005,
pp. 79–94.

[3] D. L. Parnas and J. Madey, “Functional documents for computer sys-
tems,” Science of Computer Programming, vol. 25, pp. 41–61, 1995.

[4] “Safety requirements for the generic patient controlled analgesia pump,”
http://rtg.cis.upenn.edu/gip.php3.

[5] MathWorks, “Simulink coder - generate c and c++ code from simulink
and stateflow models.”

[6] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley,
“Safety-assured development of the GPCA infusion pump software,” in
EMSOFT, 2011.

[7] MathWorks, “Simulink design verifier - identify design errors, generate
test cases, and verify designs against requirements,” 2012.

	University of Pennsylvania
	ScholarlyCommons
	3-2014

	A Layered Approach for Testing Timing in the Model-Based Implementation
	BaekGyu Kim
	Hyeon I. Hwang
	Taejoon Park
	Sang H. Son
	Insup Lee
	Recommended Citation

	A Layered Approach for Testing Timing in the Model-Based Implementation
	Abstract
	Keywords
	Disciplines

	tmp.1410713561.pdf.KEcpZ

