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Abstract
This paper describes the design and implementation of ABASH, a
tool for statically analyzing programs written in the bash scripting
language. Although it makes no formal guarantees against missed
errors or spurious warnings (largely due to the highly dynamic na-
ture of bash scripts), ABASH is useful for detecting certain common
program errors that may lead to security vulnerabilities. In experi-
ments with 49 bash scripts taken from popular Internet repositories,
ABASH was able to identify 20 of them as containing bugs of vary-
ing severity while yielding only a reasonable number of spurious
warnings on both these scripts and the generally bug-free initial-
ization scripts of the Ubuntu Linux distribution. ABASH works by
performing abstract interpretation of a bash script via an abstract
semantics that accounts for shell variable expansion. The analysis
is also parameterized by a collection of signatures that describe ex-
ternal program interfaces (for Unix commands, etc.), yielding an
easily configurable and extensible framework for finding bugs in
bash scripts.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Symbolic execution

General Terms Languages, Security, Experimentation

Keywords Bash, Scripting Languages, Abstract Interpretation

1. Introduction
Scripting languages are everywhere. For example, a typical Unix
system employs dozens of shell scripts in the bootup process alone,
and many more are used for everything from configuring firewall
filters (e.g. via iptables under Linux) to processing CGI requests
in web servers. Shell scripts are also an indispensable tool used by
system administrators for routine maintenance and auditing.

Unfortunately, scripting languages are often designed for con-
venience over security. Their highly dynamic nature, their need for
significant amounts of string processing, and their many interac-
tions with external programs and system commands make scripts
error-prone and difficult to debug. Most Unix systems wisely forbid
scripts written in the traditional shell scripting languages (sh, csh,
etc.) from being run setuid-root in order to avoid problems that may
be caused by running buggy—or even perfectly well functioning—
scripts. In practice, simple workarounds, such as writing a C wrap-
per program that calls the desired script, are sometimes used to
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sidestep this restriction; while the wrapper solution avoids certain
bugs by running a script in a clean environment, it does not by any
means eliminate all possibility of trouble. We are left in an unsatis-
factory situation in which shell scripts are widely deployed despite
widespread acknowledgment that they are prone to bugs that could
lead to security problems.

This research aims to improve the situation with tools to help
find bugs in shell scripts. To that end we present ABASH, a system
for analyzing scripts written in bash (a common variant of the stan-
dard Unix sh). ABASH tracks abstract properties associated with
program values, simulating an execution of the script; these proper-
ties can then be used to check both user-specified and automatically
determined safety conditions. In particular, ABASH looks for situ-
ations where runtime string expansions might violate assumptions
made by the script writer; such bugs could be used by an attacker
to cause an external program to perform unexpected (and perhaps
arbitrary) functions. This relatively simple analysis has allowed us
to find many bugs in real-world bash scripts. Other static analyses
can also fit into this framework; ABASH currently supports optional
taint checking, allowing an administrator to specify that certain ar-
guments to certain external programs must not be under direct user
control, and other similar analyses could easily fit into this frame-
work.

To summarize, this paper makes these two main contributions:

• We describe the design and implementation of ABASH, a tool
for finding bugs in bash programs. Although ABASH does not
guarantee the presence of errors or provably assert their ab-
sence, it still provides useful feedback that can point out com-
mon scripting errors. Implementation details are described in
Section 3.

• We validate our implementation by running ABASH on a
testbed of 49 bash scripts obtained from popular Internet reposi-
tories. In these experiments, we found 20 of these scripts to con-
tain bugs of varying degrees of severity, suggesting that these
bugs are indeed common in the wild. By contrast, a testbed
consisting of initialization scripts from the Ubuntu Linux distri-
bution exhibited no genuine bugs under our analysis, confirm-
ing the intuition that these are well-tested, carefully analyzed
scripts. In both cases the number of spurious warnings is not
unreasonable. These experiments are described in Section 4.

Of course, ABASH is not the first tool for analyzing scripting
languages. Much of the related work has concentrated on languages
for web scripting; Xie and Aiken’s analysis of PhP [12] scripts is
perhaps the closest to ours. That work and additional related work
is discussed in Section 5.

Before diving into the technical details of our approach, we first
present a brief overview of bash, focusing on the kinds of bugs
detectable by ABASH.



2. Background: The bash scripting language
The bash (Bourne again shell) language is a member of the sh, csh,
and ksh family of scripting languages, designed for automating rou-
tine tasks and “piping” together simple utility programs to create
more complex behaviors. Bash is the default shell on most Linux
systems as well as Macintosh OS X; it is available on Windows
machines through the popular Cygwin POSIX emulation environ-
ment.

As with most shell scripting languages, Bash provides a “fork
and exec” model of computation. After reading a line of text from
the script (or from user input), bash breaks the text up into words
following fairly complex quoting conventions that determine word
boundaries. These words undergo a series of expansions that substi-
tute values for variables and parameters, replace aliases with their
definitions, interpret special characters (like ~, which stands for the
user’s home directory), and split strings into words at white space.
The shell then interprets the resulting words as commands followed
by their arguments. Commands are either builtin bash operations,
which are directly interpreted within the shell, or calls to external
programs—perhaps other shell scripts—which are found by search-
ing the PATH environment variable and run via the exec system
call or its analog on the system in question. The inputs and out-
puts of the commands executed by the shell can be redirected to
the terminal, files, or other processes to form pipelines of compu-
tations. Bash supports a standard suite of programming constructs:
loops, conditionals, functions, arrays, variables, arithmetic opera-
tions, strings, and a limited form of pattern matching.

For the purposes of our work, the most significant step in the ex-
ecution model described above is the expansion phase. The quoting
mechanisms provided by bash interact with the expansion and sub-
stitution steps to determine whether any whitespace encountered
should be included in the current word or seen as an indicator that
the word is to be split into smaller words. If quotes are not used
properly, a script may be vulnerable to attacks in which string val-
ues are interpreted in surprising ways, leading to unintended behav-
ior; even non-malicious users may be surprised should they violate
a script’s unwritten assumptions.

As an example, consider a shell script that is intended to create a
tar file of the directory dir and store it in the file named by variable
$1 with

tar czf $1 dir

If $1 expands to the string name.tar dir2—that is, it expands
to two words instead of one—the resulting command will be inter-
preted as:

tar czf name.tar dir2 dir

When executed, this command will include both dir2 and dir in
the resulting file name.tar; if this script were to be used, perhaps
indirectly, by a web server in order to archive a pre-determined
directory on a user’s behalf, a malicious user could thus trick
the script into producing an archive that also contained sensitive
information from anywhere on the system that was accessible by
the web server process.

This potentially serious flaw may be fixed quite easily be quot-
ing he variable $1; the resulting script

tar czf "$1" dir

is now safe from this attack.
It is most certainly not the case that every variable should be

quoted, however; often variables are meant to be split into multiple
words. When moving a list of files specified by $FILES to a direc-
tory $DIR, mv $FILES "$DIR" works as one would hope, while
mv "$FILES" "$DIR" is certainly wrong—in the latter case, the
mv command would look for a single file with a name match-

ing the space-separated concatenation of the intended filenames.
As discussed in Section 3.4, the absence of such implicit typing
information—in this case, whether the programmer intended a vari-
able to represent a single file or a list of files—necessitates that
we determine whether an expansion is intentional or accidental
through heuristic means.

As a second, even more sinister example, consider the following
invocation of the Perl interpreter1:

perl -e ’<regexp> ’ $1

This example is a simplification of one found in one of our test
cases, which attempts to extract timestamp information from files
by matching against the elided regular expression. The problem is
that the variable $1 could potentially contain additional arguments
that would be passed to perl—including a second -e, which could
be used to execute arbitrary perl code embedded in $1. Simply
quoting $1 will not help in this case, as -e does not require a space
before its code argument. The proper way to write this command in
bash is as

perl -e ’<regexp> ’ - "$1"

Here the - argument indicates that none of the arguments that
follow should be interpreted as options; most programs for which
this is relevant use either - or -- for this purpose. However, shell
scripts seen in the wild rarely use this safeguard, as we observe in
Section 4.1.

In the main body of a bash script, the variable $1 represents the
first command line argument; thus, if a script containing either of
the preceding examples were allowed to executed with privileges
exceeding those of the person supplying the script’s arguments—
even if it was executed with a clean environment—it would present
a security vulnerability that could lead to problems ranging from
innocuous but unexpected behavior to the leakage or corruption
of important files. In the case of the second example the situation
might be even worse.

2.1 Challenges
Dynamic languages like bash are by their nature inclined to make
static analysis difficult, but bash complicates with its simplicity
in addition to complicating with its complexity. Intended more as
“glue” than as a full-fledged programming language, bash scripts
offload tasks to external programs as a matter of course, so, at
some level, we must concern ourselves with the behavior of these
programs.

Additionally, many syntactic elements of bash prove highly
frustrating to the traditional lex-and-yacc-based approach to pars-
ing source files. For example, most bash keywords are only treated
specially in particular contexts, and one must at times track the
depth of nested parentheses in order to understand how to correctly
lex the current token. It is for this reason that, while ABASH han-
dles quite a few constructs not found in other languages, we do not
claim to support the entire bash language. We support a substantial
subset of the language, however, and hope to expand to cover the
corner cases in time.

3. Implementation
Our goal is to extract useful results from real-world bash scripts
rather than to establish with certainty the soundness of scripts
written in a limited subset of the language. Bash is a very dynamic
language, and most, if not all, bash scripts exploit this; attempting
to guarantee that a script is completely free of bugs—even if we

1 Although Perl is a full-featured language in its own right, it is not uncom-
mon to see it used this way from within scripts written in other languages.



s ::= string literals
v ::= variables

c ::= concrete words
sc strings
${v}c variables
"q"c quoted concrete words
‘script‘c command substitution
· empty

q ::= quotable concrete words
sq strings
${v}q variables
‘script‘q command substitution
· empty

script ::= bash scripts
stmt; script statement sequence
ε end of script

stmt ::= statements
v="q" variable assignment
c args command

args ::= arguments
c args argument sequence
ε end of arguments

Figure 1. Syntax for concrete words and simplified bash scripts

limit our attention to the class of bugs described previously—
would likely overwhelm the user with spurious warnings. We do
not attempt to mitigate this problem with programmer annotations,
in part because we want ABASH to be applicable to preexisting
bash scripts, and in part because the effort required to add useful
annotations may well exceed the effort required to identify and fix
by hand the bugs that ABASH might discover. Instead, we identify
expansion behavior that the programmer likely did not intend by
using simple heuristics described in Section 3.4. It is our experience
that these heuristics themselves are rarely responsible for spurious
warnings; as noted in Section 4, ABASH’s precision could be better
improved by giving it more detailed knowledge of the intricacies of
bash or by allowing it to reason about the output of various external
commands.

Since our analysis focuses on a script’s interaction with external
programs, we would also like it to scale gracefully with the amount
of effort administrators are willing to put into describing their
systems. While a sysadmin may wish to manually annotate certain
requirements of a few sensitive commands, it is unreasonable to
expect this to be done for even a significant fraction of the programs
on a typical Unix system. As we discuss in Section 3.4, ABASH
evaluates the correctness of a call to an external program based on
a signature; while signatures may be manually generated or edited,
we provide both a simple utility that guesses signatures from man
pages as well as a permissive default signature. ABASH generates
reasonable output even when every external program is associated
with the default signature, but adding explicit signatures allows us
to identify more bugs.

3.1 Technical challenges and focus
Bash presents several challenges to formal analysis beyond those
common to most scripting languages. In addition to those discussed
in Section 2.1, bash deals largely with unquoted strings—which
we refer to as words in keeping with the conventions of bash—

e ⊆ {0, 1, 2+} expansion levels
t ::= Tainted | Untainted taint levels
l ::= 〈t, e〉 labels

a ::= abstract words
sa strings
${v}a variables
"r"a quoted words
?l unknown words
· empty

r ::= quotable abstract words
sr strings
${v}r variables
?l unknown words
· empty

cmd ::= abstract commands
a command name
cmd a argument

Figure 2. Syntax for labels and abstract words.

and these may expand in a wide variety of ways with sometimes
surprising results.

Figure 1 gives a simplified syntax of bash words, which con-
sist of concatenations of strings s, variable accesses ${v}, quoted
words, and embedded bash scripts. For the purposes of explaining
our analysis, we restrict the set of scripts we consider to be se-
quences of simple statements, where a simple statement is either
a variable assignment or a command invocation. (Loops and other
more complex statement forms are discussed below.)

Our analysis focuses primarily on parameter expansion; that is,
the replacement of variables by their values. Given that any vari-
able not defined by the script itself may be inherited from the en-
vironment with an arbitrary value, this can be a major source of
errors when the environment violates whatever assumptions the
script writer might have been making. We alert the user to situa-
tions where potential parameter expansions are likely to violate the
programmer’s intent; we also optionally support taint checking, al-
lowing certain arguments to an external program to be flagged if
they might be unduly influenced by external sources.

Other varieties of expansion that seem unlikely to yield errors in
our model receive less extensive treatment; while we do implement
a simple evaluator for the expansion of arithmetic expressions,
we assume that any command substitution (appearing in ‘back
quotes‘) yields a completely arbitrary (and tainted) result, and we
currently ignore brace and pathname pattern expansion. (The latter
two would seem easy enough to handle given the correct separation
of our analysis into multiple passes, but more accurately modeling
command substitution requires reasoning about the output behavior
of external programs, a thorny issue discussed further in Section 6.)

3.2 Implementation details
Our general approach has much in common with standard works
in abstract interpretation [3], although rather than concerning our-
selves with the final value of an abstract computation, we wish to
extract from bash scripts a list of abstract commands. An abstract
command in this case is simply one or more abstract words, the first
denoting the command to be executed and the others its arguments.
The syntax for abstract words is shown in Figure 2. An abstract
word is a sequence of string literals, environment variables (which,
unlike in concrete words, represent the initial value of that vari-



Tainted {0, 1, 2+}

{0, 1}

ooooo
{0, 2+} {1, 2+}

OOOOO

{0}

oooooo
{1}

OOOOOO
oooooo
{2+}

OOOOO

Untainted

×

{}

ooooooo

OOOOOOO

Figure 3. ABASH’s label model: the product of an integrity lattice
(left) and the expansion lattice (right).

able), and quoted abstract words ending in either the empty word ·
(which we will omit when it is unambiguous to do so) or an un-
known word ?l, where l is a label. Note that a single abstract word
may correspond to zero or more concrete words at execution time.

Labels are drawn from a simple product lattice, shown in Fig-
ure 3, with the first component being either Tainted or Untainted
and the second a subset of {0, 1, 2+}.2 The first component is
standard for taint checking—tainted values are those which might
be influenced in arbitrary ways by the user and thus cannot be
trusted—while the second denotes the expansion properties of an
abstract word. For example, an abstract word labeled with expan-
sion component {1} is guaranteed to correspond to exactly one
concrete word at runtime, while an abstract word labeled with
{0, 1, 2+} may expand to a single concrete word, multiple con-
crete words, or no concrete words at all. We write > for the la-
bel (Tainted, {0, 1, 2+}), describing tainted words with arbitrary
expansion behavior; the corresponding ⊥ = (Untainted, {}) de-
scribes no words due to its empty expansion component, but it is
still useful in certain computations.

In addition to appearing within unknown words, a label describ-
ing a given word can be arrived at in a fairly straightforward man-
ner; · has label (Untainted, {0}), ?l has label l, string literals have
label (Untainted, {1}) (a literal containing whitespace will not be
parsed as such unless the whitespace is properly escaped.), and "a"
has the same taintedness as a but an expansion component of {1}.
Environment variables are by default labeled with >, although in
practice we allow the user to specify more precise labels for partic-
ular variables should this be appropriate. We write label(a) for the
label of abstract word a, defined formally in Figure 4. It is these la-
bels of abstract command arguments that are checked against com-
mand signatures as discussed in Section 3.4.

The extraction of abstract commands from our simplified bash
scripts is for the most part straightforward; Figure 5 shows this
process. The function [[script]]E yields that abstract interpretation
of a given script in an abstract environment E mapping variables
to quotable abstract words. The output of this function is a pair
(cmds, E ′) consisting of the list of abstract commands cmds and
a new environment E ′. This interpretation function simply threads
the state of the environment through the sequence of statements
that make up the script, updating the environment contents when a
variable assignment is reached. We use the notation cmds1++cmds2
to indicate the result of appending two lists of commands, and we
use [] for the empty list.

The abstraction of a concrete word in environment E is given
by a function [[c]]E , which yields a pair consisting of a list of ab-
stract commands (arising because of embedded statements within

2 In practice each component of a label is also annotated with a set of
environment variables whose initial values went into the computation of the
label. This provides users with valuable feedback about where the errors
ABASH reports come from.

label(?l) = l label(${v}) = >

label(s) = (Untainted, {1}) label(·) = (Untainted, {0})

label(a) = (t, e)

label("a") = (t, {1})
label(a1) = l1 label(a2) = l2

label(a1a2) = l1 ⊕ l2

(t1, e1)⊕ (t2, e2) = (t1 t t2, e1 ⊕ e2)

e1 ⊕ e2 = {max (n1, n2) | n1 ∈ e1, n2 ∈ e2}

Figure 4. Labeling of abstract words

the word) and a list of abstract words that abstracts the concrete
word itself. This definition is also straightforward. As ABASH does
not currently model the output of external programs, the case for
embedded statements simply extracts the underlying list of abstract
commands and returns the single abstract word ?>. Note that em-
bedded statements that modify variables change only local copies
of the variables, so the resulting environment is discarded.

The abstraction must also deal properly with quoting. The con-
tents of variables that are mentioned outside of quotes must be split
along whitespace boundaries; we write this function as split(a),
which takes a single abstract word to a list of abstract words. It is
used in the variable case of the [[c]]E function. Abstracting a quoted
concrete word requires another function, [[q]]qE . It is defined simi-
larly to [[c]]E , except that it returns only a single abstract word (not
a list) and the contents of variables read from the environment are
not split at whitespace boundaries (since they are within quotes).
The interesting case is for word concatenation: if the left word is
statically known (i.e. its abstract value is not ?l), the result is a con-
catenated abstract word. If the left word is not statically known,
however, the abstract word resulting from concatenation is itself
unknown. This operation, written a1 :: a2 is defined by:

?l :: a = ?l⊕label(a)

a1 :: a2 = a1a2 when a1 6= ?l

To concatenate two lists of abstract words, written as1 a as2,
(needed in the definition of [[c1c2]]E ), we merge the last element
of the first list with the first element of the second list using the ::
operation defined above:

as1 a [] = as1

[] a as2 = as2

a0 . . . an a an+1 . . . am = a0 . . . (an :: an+1) . . . am

As we can see, it is not always straightforward to determine
whether what is written as a single word is guaranteed to remain
a single word at runtime. For simplicity we have chosen to require
quotes around words assigned to variables, but in reality bash has
no such requirement. Any such quotes, however, serve only to
disambiguate parsing; one cannot, at the assignment of a string to
a variable, protect the contents of a string from further splitting
when the variable is used. This can come as quite a surprise to the
novice bash programmer and can lead to exactly the sort of bugs
that ABASH hopes to find.

To find these bugs, ABASH compares each abstract command
in the interpretation of a script against command signatures that
describe both the allowable expansion behaviors and desired taint
restrictions for options and arguments to a given command; it also
checks these arguments using heuristics assumed to be valid for all
Unix commands. This process is described in Section 3.4.



[[·]]qE = ([], ·) [[s]]qE = ([], s) [[${v}]]qE = ([], E(v))
[[script]]E = (cmds, E ′)

[[‘script‘]]qE = (cmds, ?>)

[[q1]]
q
E = (cmds1, r1) [[q2]]

q
E = (cmds2, r2)

[[q1q2]]
q
E = (cmds1 ++ cmds2, r1 :: r2)

[[·]]E = ([], ·) [[s]]E = ([], s) [[${v}]]E = ([], split(E(v)))
[[q]]qE = (cmds, r)

[["q"]]E = (cmds, "r")
[[script]]E = (cmds, E ′)

[[‘script‘]]E = (cmds, ?>)

[[c1]]E = (cmds1, as1) [[c2]]E = (cmds2, as2)
[[c1c2]]E = (cmds1 ++ cmds2, as1 a as2)

[[q]]qE = (cmds, r)
[[v="q"]]E = (cmds, E [v → r])

[[c0]]E = (cmds0, as0) . . . [[cn]]E = (cmdsn, asn)

[[c0 c1 . . . cn]]E = (cmds0 ++ . . . ++ cmdsn ++ (as0 . . . asn), E)

[[ε]]E = ([], E)
[[stmt]]E = (cmds, E ′) [[script]]E′ = (cmds′, E ′′)

[[stmt; script]]E = (cmds ++ cmds′, E ′′)

Figure 5. The translation of concrete words to abstract words and the extraction of abstract commands

3.3 Technicalities
The full bash language introduces complications not present in
the simple formalism described above. Therefore, before delving
into the details of error detection, we first describe how the actual
ABASH implementation deals these additional language constructs
when creating the list of abstract commands for a given bash script.

Control and loops We have omitted control structures from our
formalism, and, for the most part, they present no additional com-
plications. The analysis of conventional conditionals (if state-
ments, etc.) and less conventional features such as pipes be-
tween external commands proceeds structurally and in a generally
straightforward manner. Bash does include several looping con-
structs, however, and like all static analysis tools ABASH must
have some answer for blocks which may be executed an unknown
number of times.

We choose to overapproximate the possible ramifications of a
loop as follows: each loop bodies is analyzed twice; the first pass
records any variables assigned to within the loop, and the second
analyzes the body as normal under the assumption that all such
variables evaluate to to ?l for some placeholder label l. Commands
are extracted normally in this second pass, which also constructs
a directed graph of potential interdependencies among assigned-to
variables. Labels are propagated along this graph, with > being
used in the case of a cycle; the placeholder labels present in the
extracted abstract commands are then replaced by labels taken from
the graph.

Note that this is not the only possible approach to handling
loops; rather than soundly overapproximating their effects, as we
are, one could, for example, unroll loops a fixed (and small) number
of times and assume that all relevant effects are accounted for. In
practice, however, we have found that our approach does not lead
to an unacceptable loss of precision—loops in bash scripts tend
to be simple, and the ability to recognize variables with invariant
labels despite their changing contents seems to be sufficient for our
purposes. We have yet to see a real script in which greater precision
in analyzing loops could lead to more accurate results.

ABASH does, in fact, perform loop unrolling when analyzing
bash’s for var in list loops, but only for the statically known
prefix of list. This feature is disabled, however, when list consists
entirely of values with the same label. In these cases loop unrolling

is less likely to provide us with new information than it is to fill our
output with repeated warnings3.

Irrelevant commands In an effort to reduce spurious warn-
ings from commands that cannot lead to security vulnerabil-
ities, ABASH excludes from consideration several uninterest-
ing commands along the lines of, for example, echo; the ex-
act list may be specified by the user. We must take care, how-
ever, for while most uses of echo may be innocuous, others, like
echo -n 0 > /sys/some/kernel/module, are most definitely
not. Thus we ignore commands from our uninteresting set only
when their output is not redirected and when they do not occur
before any interesting commands in a pipeline. This allows us to
ignore, for example, the tee command—used to send output to
both standard out and and a file—and any uninteresting commands
piped to it, which allows ABASH to produce much more readable
output on scripts that employ this idiom.

Functions We defer interpretation of functions to their use sites,
effectively inlining them everywhere. Although this does cause
some repeated warnings, in our experience this redundancy is
relatively minor in almost all cases—Section 4 describes the
exceptions—and doing so allows us to easily and precisely an-
alyze the effects of function calls. Functions in bash are bound
dynamically and there are no restrictions on recursion, so it is quite
possible to define functions that ABASH would be unable to ana-
lyze. Fortunately, these sorts of functions do not seem to appear in
practice.

Builtins Bash has a multitude of builtins—commands that are
executed by the shell directly and not spawned off as separate
processes—some of which require attention in our analysis. Thank-
fully, most of these are relatively simple from our perspective. For
example, local declares a local variable, while read assigns to
variables from standard input (represented, of course, as ?>). Oth-
ers are more troublesome, however; the set builtin enables or dis-
ables a wide variety of options that alter bash’s behavior, while
eval treats an arbitrary string as bash syntax to be executed. Once
again we are lucky in that these features are seldom used in real

3 One script in our testbed iterates over each of 100 SCSI device nodes in
the /dev filesystem on Solaris, running several commands on each node.



sig ::= name args opts signatures

args ::= argument schemas
arg args single argument
arg* infinite arguments
ε no further arguments

arg ::= Tainted | Untainted arguments as partial labels

opts ::= opt opts | ε option lists

opt ::= options
-name free-standing option (flag)
-name arg option taking a parameter

Figure 6. Grammar for command signatures

world bash scripts—many of the troublesome builtins are meant
for interactive use, or for inclusion in configuration files. (eval is
used in practice, and we hope to eventually support it in ABASH;
the main obstacle seems to be bash’s varied and complex quoting
conventions. At present ABASH simply warns unconditionally on
any use of eval.)

Expansion Finally, bash’s parameter expansion features a fair
number of subtleties. Most important is the fact that "$@" (one
way of referring to every parameter passed to a script or function)
and "${a[@]}" (for array variables a) in fact expand to multiple
quoted words whenever the array in question has more than one
element. This breaks the invariant that a single quoted concrete
word will necessarily be represented by a single quoted abstract
word; ABASH tries to handle these cases properly, introducing a
fair bit of complexity into the implementation.

3.4 Error detection
ABASH’s error detection strategy uses a combination of heuristics
and comparison of an abstract command and its list of abstract
arguments against a signature that describes the expected expansion
behavior and taint level for the arguments. This section describes
the heuristics we use for error checking and for generating the
command signatures.

Unfortunately, it can be difficult to tell whether a script writer
expected a single source-level word to ever expand to multiple
words at runtime. For example, splitting on the spaces present in
$FILES may well be expected behavior, while similar splitting
on $FILE is not; the latter should almost certainly be quoted.
What then are we to make of $FOO? Although we are unable to
address this problem in the general case, we do observe that, for
example, $FOO/$BAR is almost certainly intended to expand to a
single word. In fact, ABASH currently assumes that any static word
formed directly from the concatenation of several word fragments
is intended to expand to only a single dynamic word, and it warns
when it cannot verify that such a word will not be split. In practice
we have found that this is a very safe assumption to make; as seen
in Section 4, spurious warnings due to intentional expansions of
such words are extremely rare.

We also recognize that a concrete word appearing as the argu-
ment to an option should not expand such that only part of the word
is taken as the option’s argument; this allows us to rule out, for ex-
ample, the misuse of tar seen in Section 1. In order to do this, how-
ever, we must know something about the external program in ques-
tion. For example, gcc -o $FOO may go wrong if $FOO is split,
but ls -l $BAR should elicit no such concern.

mkdir Tainted Tainted*
-Z Untainted
--context Untainted
-m Untainted
--mode Untainted
-p
--parents
-v
--verbose
--help
--version

Figure 7. Signature for mkdir

To this end, ABASH understands command signatures, which
consist of the command name, a list of recognized options (and
the parameters they may carry), and a schema for the remaining
arguments to the command. The formal grammar for command
signatures can be seen in Figure 6. Arguments may be annotated
with the taintedness component of a label, but as each argument is
meant to represent a single concrete word at runtime, the expansion
component is superfluous. At present, an argument schema consists
of a list of arguments optionally terminated by an indicator that an
unbounded number of further arguments is permissible; one can
imagine allowing more complex schemas, although it is unclear
how helpful this would be in practice.

As an example, a signature for the GNU version of mkdir is
given in Figure 7. Aside from the --help and --version options
(which are recognized by nearly all GNU utilities), mkdir supports
both long and short names for each of its options. The first two
option pairs take arguments representing respectively a security
context (applicable only under certain variants of Linux) and a Unix
permission mask; it might be reasonable for a sysadmin to require
these arguments be untainted, forbidding user input from directly
determining the permissions at which a directory is created.4 By
contrast, disallowing users from naming the directories they wish to
create seems too restrictive, so the main arguments to the command
(of which there must be at least one) are labeled as tainted.

ABASH understands the GNU option convention, which in-
cludes both short options, e.g. -o (which may be grouped; -abc
is equivalent to -a -b -c as long neither -a nor -b may take a pa-
rameter), and long options, e.g. --option. Option arguments may
be optional or mandatory; in the case of mkdir all option argu-
ments were mandatory, but when an option is permitted to appear
with or without an associated argument it may simply be listed in
both forms. We also handle variations on this convention; for ex-
ample, some commands perform no grouping and thus make no
distinction between short and long options, while others (like ps
and tar) do not mandate the leading dash. Our approach cannot,
however, be easily extended to programs with their own unique ar-
gument conventions, such as find; we return to this problem in
Section 6.

As simple as our signature syntax may appear, writing signa-
ture files for many standard Unix utilities, which have evolved over
the years to accept vast numbers of options, would still be a te-
dious task. It is for this reason that we also provide a simple Perl
script5 which is able to generate signature files from man pages.
It is of course quite dependent on heuristics, and since it simply
scans for options and attempts to determine whether they take pa-

4 In a system which tracked implicit taint flow this might seem too restric-
tive, but as ABASH does no such tracking, there remain many ways in which
user input may indirectly affect such an argument without triggering a warn-
ing. We argue that this is quite desirable, at least in this context.
5 Perhaps illustrating the value of scripting languages.



Internet repositories init.d
Total scripts 49 60

Average number of lines per script 109.2 77.6
Average number of warnings per script† 7.6 1.9

Scripts with expansion bugs 20 0
Minor 10 0
Major 13 0

Scripts giving spurious warnings 11 11
Shallow 5 6
Deep 7 6
Intentional 1 0

Scripts vulnerable to option insertion 39 31
†Calculated over scripts with at least one warning.

Figure 8. Experiment results

rameters, it never requires that a parameter be untainted, and it al-
ways provides the most general label scheme (allowing any number
of Tainted? words) for the remaining arguments. Finally, we pro-
vide a permissive default signature for use when no signature file is
present, which accepts any option with or without a parameter.

Given an appropriate signature, ABASH identifies the options
and option parameters to an abstract command; for example, if -o
or --option may carry a parameter, then FOO is identified as that
parameter in -oFOO or --option=FOO, but it is only identified as
such in -o FOO or --option FOO if said option must be given an
parameter. These option parameters and the remaining arguments
to the command are checked against the labels in the signature,
and a warning is raised whenever the label of the abstract word in
question is not compatible with the label in the signature; that is, if
the label of the abstract word is not less than (t, {1}), where t is
the taintedness component taken from the signature.

In addition, the process of signature checking may reveal other
potentially problematic situations. One of these, the presence of
variables that may or may not be interpreted as options, is of special
concern and discussed in detail in Section 4.1.

4. Evaluation
We have tested ABASH on a testbed of 109 bash scripts; 60 of these
are init scripts from the Ubuntu Linux distribution6, while the re-
maining 49 were obtained from the popular free software reposito-
ries SourceForge7 and freshmeat8. The first set we believe to be
relatively bug-free; initialization scripts are often fairly straight-
forward, and these in particular come primarily from well-tested
and long-standing software packages. The second set seemed more
likely to yield errors, and we believe it to be more indicative of
“custom utility” shell scripts in the wild. It is our guess that wrap-
per scripts for complex applications fall somewhere between these
extremes; they are most likely better tested than custom-made util-
ity scripts, but they are often much more complex than simple ini-
tialization scripts.

We ran our tests using a set of signature files obtained by run-
ning our heuristic signature generator on 85 standard Unix utili-
ties as well as on those commands that we manually determined
were responsible for the main functions of the scripts in question
for which man pages were available. It is possible that we could
identify more potential option argument errors by writing custom
signature files; in particular, such custom signatures might require
untainted values at certain locations, while our automatically gener-

6 http://www.ubuntu.com/
7 http://sourceforge.net/
8 http://freshmeat.net/

ated signatures do not make use of this aspect of ABASH. We hope,
however that our results show first that minimal administrator effort
is needed before our ABASH can be of use.

It is interesting to note that option argument errors were rather
less frequent than expansion errors detected by our concatenation-
based heuristic; only 3 of the 20 erroneous scripts suffered from po-
tentially problematic option expansion. It is difficult to tell whether
this is due to the relative infrequency of option arguments (as com-
pared to other arguments) or simply because programmers are less
likely to make this sort of mistake. Additionally, none of these er-
rors were due to incorrect usage of standard Unix utilities; they oc-
curred only in invocations of the commands we manually selected.
This may be due to the simplicity of the options usually passed to
common utilities, to the fact that script writers are less likely to
misuse the commands with which they are most familiar, or simply
to the kinds of scripts present in our data.

We classify as shallow any spurious warning that could be elim-
inated by minor improvements to ABASH’s logic. Observing the
harmless nature of a deep misclassification, by contrast, requires
an understanding of either the filesystem or the output behavior of
external programs. An intentional spurious warning represents a
situation in which the usually erroneous possible behavior seems
to be intended by the script writer. Similarly, we classify as minor
any potential error that could nonetheless be avoided by assuring
that environment variables are set to sane values before the script is
run, or that depends on portions of the filesystem normally writable
only by the super-user; major errors are those that depend directly
on user input or parts of the filesystem under user control.

Our results can be seen in Figure 8. Because of our treatment
of function calls as everywhere inlined, a single logical error can
lead to multiple reported errors, and even without functions there is
often great similarity between the errors in a given script; we thus
give our results in terms of simply the number of offending scripts.
However, in no case was the number of warnings too great for the
classification of warnings to be done by hand. The average number
of warnings per script was calculated over only those scripts which
exhibited at least one warning; there were two outliers among the
web scripts which yielded 42 and 74 warnings—in both cases due
to repeated function calls—aside from which nearly every script
produced fewer than 10. Such outliers could be rectified with a
more refined treatment of functions, perhaps caching warnings pro-
duced by each function body and suppressing warnings sufficiently
similar to ones already seen, but as it stands ABASH remains quite
usable.

Figure 9 shows the expansion warnings given by analyzing a
script from GeDI9, a diskless image management tool; it also shows
the abstract commands run by the script, which ABASH prints to aid
in debugging. The variable $IMAGE is set to $IMAGE/$1 at the top
of the script, and some of the listed commands are in conditionals
which fail harmlessly if $1 expands to multiple words—although
in bash this does not cause a script to terminate early without
an explicit test and exit statement. Some, however, are not, and
rm -rf $IMAGE/var/tmp is among those. One can imagine that
this script (which is actually an example included with the GeDI
distribution) might be run by a setuid wrapper which clears the
environment and sets $IMAGE to a safe initial value. A system
administrator who set up such a wrapper, intending that certain
users be able to administer these disk images without root access
to the system, would have unwittingly give these users the ability
to delete any file accessible by root, simply by passing the script an
argument containing whitespace.

We observe that, as expected, the init scripts appear to be free
from errors detectable by our analysis; the 11 spurious warning

9 http://gedi-tools.sourceforge.net/



warning: ‘${IMAGE}/etc/hosts’ (as ‘${IMAGE}/${1}/etc/hosts’) looks more expansive than intended [1 vs. 1+]
warning: ‘${IMAGE}/etc/’ (as ‘${IMAGE}/${1}/etc/’) looks more expansive than intended [1 vs. 1+]
warning: ‘${IMAGE}/var/tmp’ (as ‘${IMAGE}/${1}/var/tmp’) looks more expansive than intended [1 vs. 1+]
warning: ‘${IMAGE}/var/tmp’ (as ‘${IMAGE}/${1}/var/tmp’) looks more expansive than intended [1 vs. 1+]
warning: ‘${IMAGE}/root/’ (as ‘${IMAGE}/${1}/root/’) looks more expansive than intended [1 vs. 1+]

cmp -s /etc/hosts ${IMAGE}/${1}/etc/hosts
cp /etc/hosts ${IMAGE}/${1}/etc/
rm -rf ${IMAGE}/${1}/var/tmp
ln -sf ../tmp ${IMAGE}/${1}/var/tmp
cp /root/.X* ${IMAGE}/${1}/root/

Figure 9. Example output

cases could be reduced somewhat by minor improvements to our
tool, but are not cumbersome to check by hand. Bugs are more
prevalent in the scripts obtained from web repositories. In addition
to 11 more cases of spurious warnings, we detect 20 scripts with
actual errors that could be exploited to cause unintended behavior;
13 of these scripts remain exploitable even in a clean environment.
Most of these errors are found by exploiting our heuristic for
identifying words that are most likely not intended to expand.
Signature checking finds argument option errors in only 3 scripts,
but it is worth noting that those errors are not trivial—that is, they
affect the behavior of commands that are important to the script
in which they appear—and only one of them can be eliminated by
enforcing a clean environment.

4.1 A trickier case
ABASH emits warnings other than the expansion notices discussed
above; while most of these are primarily for diagnostic purposes at
the moment, there is one that can be indicative of serious security
violations. ABASH warns whenever an argument to a command
may contain unknown options; this alerts us, for example, to the
perl -e exploit discussed in Section 2. Unfortunately, it is tedious
to make use of these warnings; they are raised by nearly every
bash script, and often overshadow all other output. The last line
in Figure 8 indicates just how prevalent they are; all but 10 of our
sample scripts from web repositories yield this alert, generally quite
often, although it is not the case that all—or even most—of these
warnings represent actual exploitable bugs.

That these warnings are so common is not an artifact of ABASH.
Although several of the init scripts correctly make use of the -
and -- arguments to denote that what follows should not be inter-
preted as containing options, only 2 of the rest of our testbed do so.
Thus, in almost every case where a command takes a non-constant
argument, that argument is reported by ABASH as potentially hid-
ing one or more options; whenever such an argument is controlled
by the user (which is very often the case), this represents a legiti-
mate source of modified behavior.

Sometimes, of course, this is intentional; a variable $OPTIONS,
for example, is probably meant to provide this functionality. Quite
often it is not, however, and while not all of these unintended open-
ings for additional options are quite as damaging as the example
from Section 2, they still represent real potential bugs. But with
a space of real bugs so large it becomes imperative to reduce the
number of non-useful instances of this warning. We discuss some
ideas on how to do this in Section 6.

4.2 Performance
ABASH is implemented in OCaml, and comes in at just over 4500
lines of code. One source of significant complexity in the code is
the difficulty of parsing bash: parenthesis matching must be taken
into account during the lexing phase, and the set of recognized key-

words is context sensitive—resulting in a convoluted and incom-
plete parser.

Although ABASH is not optimized for speed, it performs quite
well, checking our entire testbed of 109 scripts (from parsing to
signature checking) in under 5 seconds on a 2 GHz Pentium M
laptop.

5. Related work
The research most closely related to the ABASH system is Xie and
Aiken’s algorithm for statically detecting security vulnerabilities
in PHP scripts [12]. Their approach also uses abstract interpreta-
tion [3] to approximate the behavior of PHP scripts, focusing on a
taint analysis. In contrast to our approach, in which we treat func-
tions as though they are inlined at their call sites, Xie and Aiken’s
PHP analysis computes summaries of the functions and uses call-
graph information to perform interprocedural analysis. In theory,
the summary approach should be more scalable (and it also elim-
inates the possibility of the analysis going into an infinite loop),
but we have found that our simple inlining approach works well in
practice. The abstract values used in ABASH use a simple represen-
tation of the expansion levels to detect likely bugs in bash scripts,
but, unlike Xie and Aiken’s approach, it does not attempt to identify
where “sanitization” of tainted inputs occurs (typically by match-
ing against a regular expression). It is likely that ABASH would pro-
duce fewer spurious warnings when doing its taint-checking analy-
sis by adopting this strategy. Ultimately, the motivations and goals
for static analysis of PHP and bash are quite similar, and, although
there are significant differences between these scripting languages,
we feel that techniques developed in one context are likely to be
applicable in the other.

There have been many other applications of static analyses (in
the form of type checking or model checking) to find security flaws
in software. Some prominent examples of C analysis tools include
CQual [7] and SLAM [1], and there has also been work on analyz-
ing Java to find security vulnerabilities (see, for example the work
by Livshits and Lam [8]), for static verification (ESC/Java [6]), and
to enforce information flow policies (see Jif, for example [9]). Su
and Wasserman provide a semantic, language-independent assess-
ment of command injection attacks based parse trees [11]. Their
work has been applied in the context of SQL injection attacks
against web applications. Chen and Wagner [2] encode security
properties as safety properties and use push-down automata and
model checking to verify the absence of certain kinds of security
problem.

General idea of static information-flow analysis dates back to
Denning [4, 5]. See Sabelfeld and Myers’ survey for an overview
of this related work [10]. Most of these approaches rely on explicit
code annotations and concentrate on sound enforcement of confi-
dentiality properties. Here, we’re concerned with integrity proper-
ties, and, since our analysis would have to be too conservative oth-



erwise, ABASH’s approximations to information flows are unsound
(largely due to the lack of precise specifications for information-
flow in commands external to bash).

Other, more full-featured scripting languages like Perl and Ruby
include forms of dynamic taint checking that can prevent unsafe ar-
guments from reaching critical functions. A similar approach could
be adopted by modifying the bash interpreter, but our experience
suggests that there would be a large number of spurious warnings
without providing some means of untainting inputs (as is provided
automatically by Perl’s pattern matching, for example).

As far as we are aware, no other research has attempted to stati-
cally analyze bash programs for security problems, but others have
used proposed dynamic techniques for debugging bash scripts. The
bash interpreter itself can be run with the -x flag set, which causes
the interpreter to print a trace of each command’s arguments before
executing it. There is also an open source project called bashdb10

that provides a gdb-style stepping debugger for bash scripts. Both
of these approaches go some way towards making it easier to write
correct bash scripts, but they don’t provide explicit support for taint
analysis or detecting the variable-expansion problems that ABASH
does.

6. Discussion and conclusions
As noted in Section 4, ABASH is able to find bugs—many of
which cannot be eliminated simply by running the scripts in a
clean environment—in quite a few bash scripts distributed via pop-
ular free software repositories, without burdening the user with too
many spurious warnings. It is not an entirely satisfying story, how-
ever; as noted in Sections 3.4 and 4.1, there are varieties of bugs
that ABASH cannot reliably identify without also flagging far too
many legitimate cases, and it is not at all obvious what might be
done about this.

It is tempting to declare that these bugs—along with perhaps all
of those that can be discovered with ABASH—can be avoided by
following rather simple rules when writing scripts. In many cases
this is true; putting a - or -- before all non-constant arguments
that are not intended to be options and quoting all non-constant
arguments that are not intended to expand is a very good idea when
when using bash. Unfortunately, this is not always possible; nesting
of quotes, and especially of embedded commands11 can make it
difficult to reason about when quotation is required, and ruling
out options in the remainder of the arguments is not possible with
commands dependent on argument order.

It is also tempting to declare that the use of bare, unquoted
strings in bash—and the ease at which they expand in such a wide
variety of ways—is a mark of poor language design, but while
these features do make bash difficult to analyze and bash scripts
prone to error, the value of their convenience, especially when using
the shell interactively, cannot be understated. Experience using
the top-level loops of safer languages seems to confirm that such
convenience is important; interaction with the system is much less
convenient when every filename must be quoted and every string
expansion must be made explicit.

We seem forced, then, to reexamine the basic idea of using
exactly the same language scripting the system as for interacting
with the system. There are clearly advantages for doing so—bash
remains in use even given the widespread availability of scripting
languages like Perl and Python—but could there be an unexplored
middle ground that manages the best of both worlds? That is, could
a single language have both an interactive variant and a scripting

10 http://bashdb.sourceforge.net/
11 Bash allows the syntax $(...) as a less confusing alternative to ‘...‘
when it comes to the treatment of nested quotes, but many scripts continue
to use the older syntax.

variant such that the interactive variant achieves the convenience
of bash, the scripting variant is better suited to writing correct
programs, and each variant feels natural to users used to the other?
It seems that this could be achieved by choosing a scripting syntax
that seems enough like a natural elaboration of the interactive
syntax, but striking just the right balance is doubtless no easy task.

6.1 Future considerations
There are many corner cases to consider when analyzing bash, and
ABASH does not yet cover them all. This lack of coverage is re-
sponsible for the shallow spurious warnings discussed in Section 4;
additionally, we excluded from our testbed those scripts that could
not be handled at all due to their reliance on unsupported features.
Dealing with these problems, while sometimes an engineering chal-
lenge, is primarily a matter of committing the time to working out
the details.

Beyond such concerns, there are several directions along which
ABASH could be expanded.

Finding more bugs ABASH does not yet consider many sources
of surprising behavior in bash scripts. For example, while some
environment variables absolutely must be set to known values for a
script to be secure—for example, the $IFS variable, which defines
the characters to be considered as whitespace—others, like $PATH,
are safe when under user control provided certain invariants are
maintained. Giving ABASH the ability to track the current path—
especially when this knowledge is not complete—would allow it to
ascertain how much a script’s behavior can be altered by the $PATH
variable.

ABASH also does not handle many of the builtin commands
that alter various aspects of bash’s behavior. As mentioned in Sec-
tion 3.3, many of the most frustrating of these builtins (from our
standpoint) relate primarily to bash’s interactive behavior, but there
are still those that might conceivably be used within a script, and
modeling them could allow for the detection of more potential bugs.

Limiting spurious warnings While the shallow warnings may
simply be a matter to be overcome with sufficient programmer
hours, the deep warnings generally stem from unknown invariants
held by either the file system or external programs. It is easy to
imagine augmenting the signature system to reflect this informa-
tion, but this runs into several problems.

To begin with, describing the output behavior of a program may
be tantamount to reimplementing it in many cases, so it is not obvi-
ous how descriptive of a language should be used for these output
signatures. One would hope for the ability to specify dirname’s
behavior to at least some degree, but perl is certainly out; what,
then, of sed? It is also difficult to see how these signatures might
be automatically generated, as the formatting conventions of man
pages would not be there to assist us.

Describing invariants on trusted parts of the filesystem would
run into similar problems, but there is also the issue of less trusted
portions of the file system that may nevertheless be relied on by
scripts. For example, a script may write a process ID to a file in
/tmp then read it in later without performing any validation. Even
ignoring the question of whether this is safe—discussed shortly—
understanding the behavior being relied upon requires an abstract
model of the filesystem and the effects external programs have upon
it, raising the similar questions over the right level of descriptive
power and the difficulty of automatic generation.

Finally, the particularly prevalent warning discussed in Sec-
tion 4.1 cries out for more detailed analysis; if ABASH were able
to better understand the degree of risk posed by potential option
insertions, it could focus in on only the most dangerous cases and
hopefully provide much a user with much better guidance. To ac-
complish this, we might extend our signatures to indicate whether



a certain command should be protected from externally provided
options, or we could imagine specifying degrees of taintedness—
with, for example, script parameters like $1 ranking higher than the
output of external commands—and warn only the most tainted of
values might introduce an unexpected option.

We might also look for patterns in the use of particular vari-
ables (such as always being passed to a given command before any
other arguments) or apply language-based heuristics (e.g., noting
variables that contain the string OPT) in order to identify certain
variables as permissible sources of options. This approach, while
admittedly rather ad-hoc12 does have the added advantage of ap-
plying equally well to the problem of determining whether the pro-
grammer meant or did not mean for a given variable always to ex-
pand to a single word.

Expanding ABASH’s scope ABASH currently looks for errors
that may occur when bash scripts are run with input or in an
environment other than what the script writer expected. Another
possibility, especially when considering the filesystem, is that the
environment is changing as the script is run. Indeed, it is well
known that shell scripts are vulnerable to race conditions—for
example, one may guard a sensitive file operation performed by
a system maintenance script with if [[ ! -L ]], intending that
it will not be run on symbolic links, but a malicious user might still
be able to replace a regular file with a link (perhaps to a file that
the user could not normally access) between the execution of the
test and the sensitive operation. Given the lack of atomicity in shell
scripting, these attacks can in general be difficult to deal with.

However, unlike in the traditional programming setting, race
conditions in shell scripts stem much less frequently from concur-
rency than they do from an environment shared by untrusted par-
ties. Thus, given an abstract model of the filesystem, we can imag-
ine extending ABASH with an understanding of trust relationships
between users—as a simple example, it may be the case that root
trusts no-one, other system users trust each other and root, and
standard users trust only themselves and system users—allowing
it to warn about potential race conditions involving untrusted par-
ties. While reaching this level of understanding of bash would be
no small task, it does not seem too burdensome in this case to ask
for some amount of assistance from the programmer, as the benefit
would likely outweigh the cost in a way that it does not for the sorts
of errors ABASH currently looks for.

On a less ambitious note, ABASH currently has a very limited
understanding of the argument conventions employed by external
commands. Such conventions can sometimes be rather complex
and subtle, and expanding ABASH’s ability to understand the con-
ventions of arbitrary commands that do not follow any particular
standard—like the Unix find command—could allow it to dis-
cover bugs that might otherwise be particularly difficult to track
down. One can also imagine combining such a detailed understand-
ing of command arguments with some of the ideas discussed previ-
ously; although this would only compound the issues surrounding
their realization, having a simple abstract model of the relation be-
tween input and output of standard Unix commands could allow
ABASH to employ the something approximating the same reason-
ing as a human script writer. The ability to see a command as a sim-
ple unit with definite meaning and automatically reason accurately
about several such commands strung together is precisely what we
would hope for in an ideal analysis of shell scripts.
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