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Abstract

Complex real-time embedded systems should be compo-
sitional and deterministic in the resource, time, and value
domains. Determinism eases the engineering of correct sys-
tems and compositionality simplifies the assembly of complex
systems out of smaller modules. This paper describes the
PEACOD framework that is developed to support determin-
istic behavior for resource consumption, value passing, and
timing. The paper introduces the notions of determinism
in the context of the resource, value, and temporal do-
mains, and present the resource-scope language construct
that can be used to program such deterministic behaviors.
Furthermore, the paper also provides semantics for the
resource scope construct and uses these semantics to show
that the program behavior is preserved under composition.
The paper briefly describes the current implementation of
PEACOD.

1. Introduction

Predictability is a desirable system property. General
systems should, for example, be predictable with respect
to value behavior; given a set of operations and inputs,
the developer should be able to predict possible results
of these operations. Real-time embedded systems should
not only be predictable with respect to values, they should
also be predictable with respect to timing and resource
consumption. For one, embedded systems usually have tight
resource constraints in terms of memory and computation,
and real-time systems must meet specified deadlines for
input/output behavior, for instance, sampling sensors and
actuating motors.

One goal is to make a system predictable with respect to a
property, such as timing, is to make the system deterministic
with respect to this property. Determinism means that an
external observer can consistently predict the system’s future
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0721541, NSF CNS-0720703, NSERC DG 357121-2008, and by CIMIT
under U.S. Army Medical Research Acquisition Activity Cooperative Agree-
ment W81XWH-07-2-0011. The information contained herein does not
necessarily reflect the position or policy of the Government, and no official
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state including resource consumption, input/outputs, and
timing. For the value domain this means that an observer can
predict the future output values. For resources, this means
predicting the system’s resource consumption over time.

Compositionality is another desirable property that en-
ables composing a system from smaller parts. Embedded
software grows in functionality and complexity and com-
posing a system is one well-known and studied method to
cope with this. Compositionality means that the properties
of the complex system are determined by the properties of
its constituent modules and the rules used to combine them.
Similar to predictability, a system can be compositional with
respect to properties. We will inspect the value, resource, and
time domain.

In general, compositionality provides many new chal-
lenges and existing research looks at compositionality under
different directions, e.g., on the one hand, Shin et al. [1] and
Wandeler et al. [2] view it from the point of execution time
and scheduling (i.e., resources and timing). On the other,
Giotto [3] investigates compositionality with respect to value
behavior and timing. Each of these models/systems make
assumptions about the domains left out in the model (e.g.,
ignoring value behavior or assuming unlimited resources),
and this can cause problems when realizing a system with
these models such as too much resource overhead or cor-
rect scheduling but incorrect value behavior resulting from
vacant sampling. To date, no system offers one model that
provides a unified framework for the resource, value, and
temporal domain. In this work, we introduce our framework
and its main programming construct, the resource scope,
proposed to fill this gap.

PEACOD (Penn’s Abstraction for Compositional Deter-
minism) is a framework to simplify the development of com-
plex real-time embedded systems by providing determinism
and compositionality in the three mentioned domains. It also
includes a programming construct that enables the developer
to specify the behavior in the three domains.

In our framework, we extend the temporal scopes [4] to
resource scopes. A resource scope specifies the encapsulated
program’s behavior in the time, value, and resource domain.
In the time domain, the scope allows specifying temporal
constraints similar to temporal scopes. In the value domain,
the scope allows specifying input/output values. And in the



resource domain, the system allows declaring resource de-
mands necessary for the successful execution of the scope’s
mandatory part. Section 6 elaborates on this and introduces
the language construct for resource scopes.

Our notion of determinism is based on similar runs with
respect to a specific view. Whenever a scope is executed,
it generates a run that follows a specific behavior with
respect to timing, value behavior, and resource consumption.
Informally, a system is deterministic with respect to a
property, if that property holds each time it is executed with
the same (sequence of) input. For example, a system always
reacts to a particular event within five milliseconds. The five
millisecond bound on the reaction time is the property and if
the system is deterministic with respect to this property, then
the system will always react in less than five milliseconds
given the same input. Section 4 establishes this concept
of similar runs and defines what is necessary to specify
determinism in the time, value, and resource domain on the
basis of similar runs.

The PEACOD framework guarantees that resource scopes
behave the same way each time they execute w.r.t. timing,
value behavior, and resource consumption. In Section 6.2,
we specify the behavior of resource scopes in PEACOD and
prove in Section 3 that this behavior is met and preserved
under composition. For sake of brevity, we only specify
PEACOD’s behavior in terms of events, because a formal
description of the operational semantics is too long for this
format. Finally, we provide an implementation outline in
Section 7 on the basis of resource, value, and time mediators
that control each domain for the set of active, running
scopes. We also discuss how related work (Section 8)
provides approaches for determinism in a subset of the three
domains and put PEACOD in context of the related work.

2. Model and Assumptions

We make several assumptions in our framework to achieve
the objectives of determinism and compositionality. A real-
time embedded system consists of a set of resources and an
embedded program that consumes them during its execution.
We assume deterministic resources, which requires resources
to be measurable, reliable, and provide a continuous supply
in multiples of the their supply quantum. Each resource
comes with the necessary infrastructure to implement our
framework such as a programming interface.

We assume that an embedded program consists of a set
of periodic tasks. These tasks are preemptible and consist
of a period, an offset, and a deadline. The deadline can be
earlier than the period, but not later. We assume a static
task set with known arrival times. Tasks consume resources
such as CPU cycles for computation. A task can consume a
resource in a time-shared or exclusive fashion. To eliminate
precedence in resource consumption, at any time one task
accesses at most one resource in time-shared and all other
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Figure 1. Software modules of a soccer robot.

in exclusive fashion. We assume that each task’s resource
consumptions are measurable, bounded, known a priori, and
in multiples of the resources’ quantum.

We assume that time is given in discrete units. Further,
we assume the presence of a global clock and all times are
measured with respect to this clock.

We note that our approach is not necessarily to support
the fast execution of a real-time program or optimal re-
source utilization but to make it predictable. Further, the
framework allows the programmer to develop independent
software modules and compose them. It is our aim to provide
compositionality in the program’s value, time, and resource
domain.

3. Example

We use soccer playing robots [5] as an example to guide
through the concepts. A team of AIBO dogs is programmed
to play soccer. One team tries to score a goal, which is
defended by the opposing team and vice versa.

Figure 1 shows a subset of a soccer robot’s software
modules and their resource consumptions; for a full de-
scription see [5]. The application consists of three parts: the
planner, the motor control, and the data acquisition. Each
part consists of modules, which must complete within the
part’s period (e.g., the planner executes every 66 millisec-
onds and must run the world-model and the state-machine
module). Next to the modules’ names, we list their resource
consumption, e.g., the world-model modules requires three
kilobytes of memory, five milliseconds of full CPU time
(corresponding to roughly 600,000 instructions), and sends
one frame via the AIBO’s wireless link. We also list the
module’s frequency, e.g., the world module runs once every
period.

The functionality is as follows: the planner makes tactical
decisions, the world-model module locates the robot and
objects on the field, the state-machine module determines fu-
ture actions, and the referee module implements the referee-
control protocol. The motor control steers the motors and the



inverse-kinematics module translates Cartesian space into
joint space. The data acquisition collects data and prepares
information for the planner; the camera module senses a
208 × 176 image, the object-recognition module processes
the image and detects/recognizes objects, the tone-detection
module identifies sound commands by other team members.

The soccer robot example above represents a real-time
embedded application composed of multiple modules. The
modules communicate via a shared medium and several
modules together work towards a common goal. A de-
sired characteristic for such a setting is compositionality
and predictability, since it allows developing the modules
independently, composing them at the end, and keeping the
original properties, such as timing constraints. We under-
stand that the soccer robot is only a toy example, however,
in large systems such as an airplane or a car, several vendors
independently implemented components are composed and
distributed across different electronic control units. Regard-
ing compositionality, companies face the similar challenges
as in the compositional robot soccer example.

4. Definitions

In this section, we define the underlying terminology,
which is necessary for our understanding of determinism
introduced in Section 4.3. We will illustrate the concepts
with examples from the soccer robot. However, we omit the
units from all quantities for better presentation of the main
ideas.

4.1. Resources

A resource R is defined by the tuple 〈q, supply〉 where
(1) q is the quantum of utilization, and (2) supply is a
quadruple (cR, pR, oR, dR) such that the resource is sup-
plied for cR units every pR time units in the interval
(oR, dR]. In the soccer robot example, which is implemented
on a 120 MIPS processor, we have the resource CPU
cpur = 〈1, (120, 1, 0, 1)〉, the resource memory memr =
〈1, (64 ∗ 14, 1, 0, 1)〉, the resource Ethernet bus busr =
〈1, (70 000, 1, 0, 1)〉.

A resource consumption rc is defined by the tuple
〈q, demand〉 where (1) q is the quantum of utilization
and (2) demand is a quadruple (crc, prc, orc, drc) where
crc = k · q, k ∈ Z is resource demand every prc units of
time in the time interval (orc, drc].

A consumption configuration cc is a set of resource
consumptions RC and CC is the set of all possible
resource consumptions, P(RC). The CPU consumption
for the camera module is, cpucam = 〈1, (3, 44, 0, 44)〉,
the memory consumption memcam = 〈1, (81, 44, 0, 44)〉.
The consumption configuration of the camera module is
cc1 = {cpucam,memcam} and another is cc⊥ = {} (an

example of the idle consumption). For this case, CCcam =
{{cc1, cc⊥}, {cc1}, {cc⊥}}

4.2. Tasks and Systems

Thus far, we have defined resources, their supply and
consumption. Now we define how consumption is used in
tasks and composed into systems.

A task τ is defined as tuple 〈I,O, c, p〉 where (1) I are
input variables, (2) O are output variables, (3) a consumption
c, and (4) a period p. For example, the camera module task
has a 208 × 176 pixel array as output, the period is 44ms
and the earlier given consumption.

An embedded program is typically composed of several
tasks. A connector tells the runtime environment how dif-
ferent tasks are connected. The concept of a connector is
analogous to hardware connectors where the output of one
component are connected to the input of another component.

We define the connector as con = 〈o, i〉 where (1) o
is a task’s output variable and (2) i is a task’s input vari-
able. Given the camera module τcam with output variables
o1. . . . , o208×176 and the object-recognition module τor with
the input variables i

′

1. . . . , i
′

208×176, we can connect them by
a series of connectors, 〈(o1, i

′

1), . . . , (o208×176, i
′

208×176)〉.
Note that several connectors can connect one task’s output
variable with other task’s input variables.

We define a system as a set of tasks. To compose a system
from several parts, we need an abstraction to represent the
composed system. We will use the task abstractions to rep-
resent the whole system’s resource requirements. The task
abstraction of the system is composed from the individual
resource requirements of its constituent tasks.

We define resource abstraction as follows: Given a set
of resource consumptions 〈q, demand〉, an abstraction is a
tuple 〈qA, demandA〉 such that qA is the minimum quantum
of utilization and demandA is such that it preserves the
timing and resource demands of all the underlying demands.
For a more elaborate and formal discussion see [1].

In the example below, we have manually computed ab-
stractions and they are presented for purposes of illustration
only.

Example 1. Consider the CPU demands of the data ac-
quisition module of the robot-soccer example. The Object
Recognition module (ORM) is composed of Color Lookup
(CL), Run-length Encoding (RLE), Blob Formation (BF) and
Object Recognition (OR) sub-tasks. Let us first get an ab-
straction for the ORM module from each sub-task. For this,
we start with the resource demand functions for the CPU
of the four sub-tasks: (1, 66, 0, 6) for the CL, (1, 66, 6, 12)
for the RLE, (4, 66, 12, 36) for the Blob Formation and
(5, 66, 36, 66) for the OR. A possible supply of (1, 3, 0, 3)
can meet these demands and hence is an abstraction of the
sub-tasks (see Section 5 on how to prove this).



(a) Run tr1.
clk I O cc

0 0 0 cc⊥
5 1 0 cc1

10 1 1 cc1

15 1 1 cc2

20 1 1 cc⊥

(b) Run tr2.
clk I O cc

0 0 0 cc⊥
4 1 1 cc⊥
5 1 1 cc1

15 1 1 cc2

20 1 1 cc⊥

(c) Run tr3.
clk I O cc

0 0 0 cc⊥
5 1 0 cc1

7 1 0 cc2

10 1 1 cc1

20 1 1 cc⊥

(d) Run tr4.
clk I O cc

0 0 0 cc⊥
8 1 0 cc1

12 1 1 cc1

17 1 1 cc2

20 1 1 cc⊥

Table 1. Example runs.

4.3. Determinism

We now define the notion of determinism applicable to
values, resources, and time. We first define the task state and
run, which subsequently allows us to compare the different
tasks’ runs to check for deterministic behavior. For sake of
brevity, we use the abstract example of Table 1. It shows four
runs of the same task and we use it to discuss determinism.

A task state ts of a task τ is defined as 〈clk,Vi,Vo, cc〉
with (1) a clock value clk, (2) a valuation of input variables
Vi, (3) a valuation of output variables Vo, and (4) a consump-
tion configuration cc. Given a task τ1, with one input and
one output, one possible task state is ts(τ1) = 〈5, 1, 0, cc1〉
(see Table 1(a)).

A task run tr defines a total order on the set of task
states for a given task τ . tsi+1 is the successor state of tsi

denoted via tsi ` tsi+1 ` tsi+2. The successor state must
differ from the original state by at least one element other
than the clock value; otherwise, any two task states have an
infinite number of task states between them that are different
by clock values. Note that the task state remains valid over
time until the successor state.

A view v ⊆ {clk, I, O, cc} is a projection of a task state ts
on to certain elements of the tuple. We denote the projection
as v(ts). For example, a view could ignore inputs and only
show the elements clk,O, cc of task states.

Any two runs tr and tr′ are said to be similar with
respect to a selected view v denoted tr ∼v tr′ if at any
time t, the two task states defined by the runs are equiv-
alent with respect to the view v: ∀t : v(〈t,Vi,Vo, cc〉) =
v(〈t,V ′i,V ′o, cc′〉) where 〈t,Vi,Vo, cc〉 results from run tr
and 〈t,V ′i,V ′o, cc′〉 results from run tr′. We can easily check
similarity, since we only need to check similarity whenever
one run changes task state.

Now, based on the definition of similar runs, we can state
that if all runs of a task are similar to each other w.r.t. the
attributes of a view (e.g., values only, or values and timing

only), then it is deterministic w.r.t. those attributes.

Definition 1. (Types of Determinism) For a system produc-
ing runs tr, tr′, we define the following types of determinism
tr ∼v tr′ with the corresponding view v:

• value determinism with v = {I, O},
• time determinism with v = {clk},
• resource determinism with v = {cc},
• value–time determinism with v = {I, O, clk},
• resource–time determinism with v = {cc, clk},
• resource–value determinism with v = {I, O, cc}, and
• value–resource–time det. with v = {clk, I, O, cc}.

Example 2. Table 1 shows four task runs. Runs tr1 and tr2

are resource–time deterministic, tr1 and tr3 are value–time
deterministic, tr1 and tr4 are resource–value deterministic;
remember that timing does not matter for this type of
determinism. On the contrary, tr1 and tr3 are not resource–
time deterministic, because tr1 changes to cc2 at time 15
and tr3 changes to cc2 at time 7.

5. Schedulability

So far, we defined the terminology, the notions of deter-
minism and an abstraction with respect to values, time and
resources. We now briefly describe how we can calculate
the abstractions and check schedulability, to ensure that
sufficient resources are available for individual resource
scopes. Note that we apply existing approaches.

Example 1 shows that PEACOD needs to compute an ab-
straction for composing systems. In this section, we outline
how we compute this abstraction and check schedulability
under such an abstraction.

The problem of checking feasibility of a task set that
includes asynchronous periodic tasks is co-NP complete [6].
To simplify the analysis, we therefore suggest using a
periodic resource model [1] to get a synchronous periodic
abstraction for the set of tasks, which can then be checked
for feasibility in polynomial (linear) time.

Notation: we denote a task τ as a quadruple (c, p, o, d)
where c is the execution time, d is the relative deadline, p
is the period, and o, the offset. We assume that d ≤ p. We
assume that we are given a set of tasks T = {τ1, . . . , τn}
to be scheduled. We denote H = lcm(p1, . . . , pn) and Φ =
max(o1, . . . , on).

Checking feasibility of scheduling tasks in T is co-NP-
complete in the strong sense. This was originally shown by
Leung and Merill [6].

Theorem 1. The feasibility analysis for task systems T is
co-NP-complete in the strong sense.

Baruah et al [7] gave a feasibility test for EDF which does
not require computing the entire schedule. Their condition
is based on Processor Demand Function, η where ηi(t1, t2)



is defined as the total number of natural numbers k such
that,

1) t1 ≤ kpi +oi (a release occurs at or after time t1) and
2) oi + kpi + di ≤ t2 (the corresponding deadline falls

at or before t2).
More precisely, we can say that, ηi(t1, t2) =
max(

⌊
t2−di−oi

pi

⌋
−

⌈
t1−oi

pi

⌉
+ 1, 0)

Theorem 2. ([7]) EDF produces a valid schedule for T , a
task set with integer valued parameters iff,

1) U(T ) ≤ 1
2) df(t1, t2) =

∑n
i=1 ηi(t1, t2) ≤ t2−t1 for all 0 ≤ t1 <

t2 ≤ 2H + Φ

The above condition was shown to be equivalent to
checking all offset-deadline pairs in [1]. We will therefore
use this condition to check for feasibility of our resource
scopes.

A periodic resource model for compositional real-time
guarantees was proposed in [1]. We will use that model to
compute a composable abstraction for the tasks in T . The
periodic resource model Γ(Π,Θ) is a partitioned resource
that guarantees allocations of Θ time units every Π time
units where the resource period Π is a positive integer and
Θ is a real number in (0,Π]. A supply bound function (sbf)
is defined as the minimum resource supply of Γ during a
time interval t as follows: sbfΓ(t) =

⌊
t−(Π−Θ)

Π

⌋
· Θ + εs

where, εs = max
(
t− 2(Π−Θ)−Π

⌊
t−(Π−Θ)

Π

⌋
, 0

)
.

With the supply function, we can now synthesize an
abstraction for multiple tasks. This is done by choosing a
periodic resource model which will meet the demands of the
underlying tasks. For further details, we refer the reader to
Shin et al. [1]. Such an abstraction allows us to reason about
the composed system and check for schedulability without
having to dig into each of the underlying tasks.

Example 3. In Example 1 we noted that (1, 3, 0, 3) is an
abstraction for the object recognition module. The Tone
detection module consists of tone detection and cross cor-
relation tasks. These sub-tasks have demands (3, 22, 0, 13)
and (2, 22, 13, 22), respectively. One possible abstraction
for these tasks is (1, 4, 0, 4). The camera module demands
(3, 66, 0, 66), the world module demands (5, 50, 0, 50), the
state-machine module demands (2, 22, 0, 22), the referee
module demands (1, 22, 0, 22), and finally the inverse-
kinematics module demands (2, 33, 0, 33).

With these abstractions, every task in the system has a
periodic resource demand which we can use to check the
overall schedulability of the system by an EDF scheduler:
The utilization is, ( 1

3+ 1
4+ 3

66+ 5
50+ 2

22+ 1
22+ 2

33 ) = 0.9257 ≤
1 and therefore it is schedulable. Note that we can use the
principle for other resources, because at most one resource
is time shared while the others are used exclusively.

6. PEACOD Language Construct

So far, we defined determinism and our abstraction to
compose systems. Now, we present a language construct
and its semantics and prove that it provides value–resource–
time determinism and also compositional determinism. We
assume that a high-level structuring construct is given that
allows us to assemble resource scopes sequentially (operator
;) and concurrently (‖) by using the specified identifier (e.g.,
sc1||sc2). We do not elaborate on sequential composition,
because it does not add to the discussion of determinism.

In [4], the authors propose temporal scopes as a language
construct that can be used to specify the timing constraints
of code execution and inter-process communication. A tem-
poral scope allows the programmer to specify timing con-
straints and exception handlers to cope with timing errors.
The language constructs introduced here, called resource
scopes, extend temporal scopes with information about re-
source consumption and also specify semantics for the value
domain.

6.1. Resource Scopes

In the most general form, a local resource scope allows
the programmer to specify the timing of a statement block
and its resource consumption. The resource scope’s (approx-
imate) form is as follows:

ts once : : =
〈bid〉 : s t a r t 〈offset〉 [ 〈deadline〉 ] [ 〈vars〉 ]

[ 〈resources〉 ] do
〈main body〉 [ 〈opt body〉 ]

done [〈assign〉 ]
[donate 〈don〉 ]

The declaration of a scope starts with stating its identifier
〈id〉. The remainder of the construct’s meaning is that
the task is delayed as specified by 〈offset〉 and then
its body, 〈main-body〉, and subsequently optional parts,
〈opt-body〉, are executed. The execution must complete
before the 〈deadline〉. Within the body, it will access vari-
ables 〈vars〉 and will use the resources 〈resources〉. The
construct terminates at its deadline, if provided; otherwise,
the construct will continue endlessly until an error occurs.
When the construct terminates, the assignments specified in
〈assign〉 are executed at the deadline.

If an error occurs, then the construct will be terminated
and an exception will be raised. An error occurs, e.g., when
the deadline is not met, the construct runs out of resources,
or some illegal read/write operations happen. The raised
exception is handled in the last active body’s exception
handler, if it is provided; otherwise, the exception is ignored
and execution resumes with the next construct. The last
active body, is either the body 〈st-body〉 or one of the
optional 〈opt-body〉 ones. We discuss exception handling
in Section 6.2.



The construct’s offset can be specified using absolute time
or relative time as follows:

〈offset〉 : : = now | a t 〈abs time〉 | a f t e r 〈rel time〉

now means that there is no offset with the construct. at
〈abs-time〉 means that the body’s execution is delayed until
the specified physical time. after 〈rel-time〉 means that
the body’s execution’s is delayed for 〈rel-time〉 time units.

The construct’s deadline defines how soon the construct’s
execution has to be completed. As with the offset, a deadline
can be specified using absolute time (by 〈abs-time〉) or
relative time (within 〈rel-time〉) and its syntax is as
follows:

〈deadline〉 : : = by 〈abs time〉 | w i t h i n 〈rel time〉

The variables specifies which global variables are ac-
cessed within the construct. For each variable, the program-
mer must define its type and which global variable’s value
is used as initial value. The syntax is as follows:

〈vars〉 : : = wi th { 〈pdef〉 [ , 〈pdef〉 ]∗ }
〈pdef〉 : : = 〈type〉 〈id〉 :=〈value〉

If declared, the variable list 〈vars〉 must contain at least
one variable and each variable must have a unique identifier
within the construct. The assigned value must have the
same type as the declared variable. The declared variables
are created immediately and the values are also assigned
immediately. These semantics are discussed in detail in
Section 6.2.

The resource declaration defines a collection of resources
along with their type and amount. The resources are re-
served at the construct’s beginning and will dissipate when
the construct terminates. Thereby, the construct consumes
all resources specified in the collection. The syntax is as
follows:

〈resources〉 : : = demand { 〈rentry〉 [ , 〈rentry〉 ]+ }
〈rentry〉 : : = 〈lbracket〉 〈rtype〉 , 〈numeral〉 〈rbracket〉

The resource entry, 〈rentry〉, specifies the resource type
〈rtype〉 (e.g., CPU, memory, communication), and the
amount of resource as a numeral (e.g., CPU cycles, bytes of
memory, and communication frames).

The main body is a statement block with a Java-like try-
catch block around it:

〈main body〉 : : = 〈block〉 | t r y 〈block〉 〈catches〉
〈catches〉 : : = 〈catchclause〉 | 〈catches〉 〈catchclause〉
〈catchclause〉 : : = c a t c h ( 〈type〉 〈id〉 ) 〈block〉

The statement block 〈block〉 contains program instruc-
tions. The statement block uses the language specific to
utilizing the resources. For example, it can use a C-like
language for computation on the CPU. The try-catch block is
similar to Java’s one. The programmer can handle different

exceptions independently by coding a separate catch-block.
A construct can specify multiple optional bodies. The op-
tional body will be executed only, if the scope has enough
resources left after executing the main body. The syntax is
as follows:

〈opt body〉 : : = o p t i o n a l 〈ts once〉

From the syntax, an optional body is a complete resource-
scope construct, however, its semantics differ from the
main body. We discuss the semantics and their difference
in Section 6.2. The 〈assign〉 block is a simple list of
assignment.

Finally, unused resources can be donated to other resource
scopes:

〈don〉 : : = global | 〈id〉

The unused resources can be either donated to the global
pool to be used by other optional scopes or they are
specifically donated to one scope specified by 〈id〉.

1 s t a r t now w i t h i n 44ms
demand { 〈CPU , 3 6 0K〉 , 〈MEM , 110kB〉 }

3 do
image_t my_image = acquire_image ( ) ;

5

o p t i o n a l s t a r t now w i t h i n 3ms
7 demand { 〈CPU , 1 0K〉 , 〈MEM , 10kB〉 }

wi th { img := my_image }
9 do

img_status_t stat = img_sanity_check (img ) ;
11 done wi th ( cam_image_status :=stat )

done wi th ( cam_image :=my_image ) ;
13 donate global

Listing 1. The camera scope (= RScam).

Listing 1 shows the resource scope RScam, which im-
plements the camera module. The module demands 360K
instructions and 110kB of memory. The main body calls the
method acquire_image() and acquires a fresh image
from the camera. If resources are left, then RScam will
perform a sanity check on the camera image. The resource
scope terminates with copying the acquired image to the
shared variable. Finally, the unused resources are donated to
the global pool (e.g., unused CPU time and memory).

6.2. Semantics and Behavior

The previous paragraphs shows the resource scope’s syn-
tax; in the following, we present its behavior. We only pro-
vide an intuition and an informal specification of PEACOD’s
behavior, since the formal specification of the operational
semantics of PEACOD are too long for this paper. At the
moment, we have implemented an interpreter in Prolog to
execute the scope and simulate its behavior. The interpreter
can parses a resource scope construct and simulates the
resource consumption, input/output behavior, and timing



following a semantics description as described below. We
plan to implement compiler for resource scopes.

6.2.1. PEACOD Behavior. A resource scope has semantics
in three areas: the temporal domain, the value domain, and
the resource domain. We use events to denote actions in the
resource scope. The notation ev1 ↔ ev2 means that event
ev1 occurs iff event ev2 occurs.

Definition 2 (Temporal Events). A resource scope σ can
have the following temporal events:

1) The scope is released but is inactive (marked by event
evrel(σ)).

2) The scope becomes active (event evact(σ)) after a
specific offset off(σ) specified in the scope’s temporal
constraints, thus evact(σ)↔ evrel(σ) + off(σ).

3) The scope finishes execution (event evfin(σ)) after
a random amount of time has passed since the ac-
tivation. This random mount of time can be described
by execution-time distributions [8], hereafter labeled
Υ(σ). Thus evfin(σ)↔ evact(σ) + Υ(σ).

4) The scope completes (event evcompt(σ)), i.e., all sub-
scopes finished by (1) the transition system of σ
reaches a final location, and (2) the scope at that
location has finished. Thus, evcompt(σ)↔ evfin(σ)+∑

σi
(off(σi) + Υ(σi)) with σi all subscopes of σ that

are activated in the run.
5) The scope terminates (event evterm(σ)) when its dead-

line dl(σ) passes: thus, evterm(σ)↔ evrel(σ)+dl(σ).

Definition 3 (Value Events). A scope σ can have the
following value events where σ.I marks the input variables
in the 〈vars〉 section, stoσ is the local variable storage,
stoG is the global variable storage, and typ(v) refers to the
declaration of variables as either soft or hard.

1) All hard input variables are read (event evI/hard(σ)):
∀v ∈ σ.I ∧ typ(v) = hard : stoσ.v ← stoG.v.

2) All hard output variables are written (event
evO/hard(σ)): ∀v ∈ σ.O ∧ typ(v) = hard :
stoG.v ← stoσ.v.

3) All soft input variables are read (event evI/soft(σ)):
∀v ∈ σ.I ∧ typ(v) = soft : stoσ.v ← stoG.v.

4) All soft output variables are written (event
evO/soft(σ)): ∀v ∈ σ.O ∧ typ(v) = soft :
stoG.v ← stoσ.v.

A scope demands resources in the 〈resources〉 part of
the declaration. We name the set of demands σ.R. We define
remaining demand ∆(σ.R) as the allocated demand minus
necessary demand to finish this particular execution. Note,
that resources are allocated from a global pool. Optional
scopes allocate their resources from their parent scope; how-
ever, optional scopes may use the resources from the global
pool using. So in this sense, we have a hard reservation
system but a soft consumption system (c.f., [9]).

Definition 4 (Resource Events). A scope σ can have the
following resource events:

1) The scope allocates its demanded resources (event
evalloc(σ)) according to σ.R.

2) The scope starts consuming allocated resources (event
evconsume(σ)).

3) The scope finishes consuming resources (event
evnoconsume(σ)). Note that preemption does not cause
an event evnoconsume(σ), because a scope’s demand
has been calculated until the end of its execution. Thus
evnoconsume(σ)↔ evconsume(σ) + σ.R−∆(σ.R).

4) The scope donates (event evdonate(σ)) the remaining
demand ∆(σ.R).

5) The scope frees resources (event evfree(σ)).

Definition 5 (PEACOD’s Behavior). The behavior of a
scope in PEACOD in the resource, value, and temporal
domain is specified as:

• evalloc(σ) ↔ evrel(σ) ↔ evI/hard(σ) meaning that a
resource is allocated when the scope is released and
when the hard variables are read.

• evconsume(σ) ↔ eva(σ) ↔ evI/soft(σ) meaning that
a scope starts consuming resource when the offset has
passed and when soft variables are read.

• evnoconsume(σ) ↔ evfin(σ) ↔ evO/soft(σ) meaning
that a scope stops consuming resources when it finishes
and when it writes to soft variables.

• evdonate(σ) ↔ evcompt(σ) meaning that a scope do-
nates resources when it completes.

• evfree(σ) ↔ evterm(σ) ↔ evO/hard(σ) meaning that
a scope frees its resources when its deadline passes and
when it writes to hard variables.

Additionally, we enforce the following access permis-
sions:

• Required scopes must not read soft input values. There-
fore, we check statically and dynamically that for each
release event evrel(σ)∧ σ.α = 1 : 6 ∃v ∈ σ.I : typ(v) =
soft.

• Optional scopes must not write hard output values.
Therefore we check statically and dynamically that for
each termination event evterm(σ) ∧ σ.α < 1 :6 ∃v ∈
σ.O : typ(v) = hard.

6.2.2. Exception Handling. The 〈main-body〉 and
〈opt-body〉 can specify exception handlers. Possible
exceptions cover value errors (e.g., invalid read/write
access), resource errors (e.g., insufficient resources),
and temporal errors (e.g., scope’s release missed). If an
error occurs, an exception is raised. While raising the
exception, the system looses any kind of determinism. If
a corresponding exception handler is available, then the
system stops all active scopes to execute the exception
handler. If no handler is available, the system ignores the
exception and continues with the next construct. As the
system handles the error, using a handler or ignoring the
exception, at the scope’s deadline, the remaining resources
dissipate but no hard values will be written.



6.2.3. Compositional Determinism For Resource Scopes.
In the following, we now show that the resource scope
construct with its specified semantics guarantees value–
resource–time determinism. Note that we assume that the
system executes resource scopes following the specification.

Theorem 3. PEACOD’s behavior guarantees value–
resource–time determinism, i.e., ∀tr, tr′ : tr ∼v tr′ with
v = {clk, I, O, cc}.

Proof: We proceed to prove Theorem 3 by contradic-
tion. For that we have to show that ∃tr, tr′ : tr 6∼v tr′

with v = {clk, I, O, cc}. This is the case, if either tr or tr′

contain a task state, that is not present in the other’s run.
Let us consider this on a case-by-case basis:

• Task state changes w.r.t. clk. Scopes always terminate
(run out of time, run out of resources) and therefore
their runs always have a beginning and an ending. For
two runs tr and tr′ to ensure tr 6∼{clk} tr′, either the
beginning or the ending has to differ between runs.
The two events that affect this are evrel and evterm. In
PEACOD, the occurrence of both events is invariant of
the run time (Υ) and thus it is impossible to create two
runs, where the occurrence of these two events differs
w.r.t. time. Therefore, ∀tr, tr′ : tr ∼{clk} tr′.

• Task state changes w.r.t. I,O. Runs change whenever
output variables are written or inputs are read. For
two runs tr and tr′ to ensure tr 6∼{clk,I,O} tr′, one
of the runs must read or write a variable while the
other does not. The events evI/hard and evO/hard

control reading and writing result in task state changes.
Again, in PEACOD these two events are invariant of
the run time, thus it is also impossible to create two
runs, where their occurrence differs w.r.t. time. Thus,
∀tr, tr′ : tr ∼{clk,I,O} tr′

• Task state changes w.r.t. cc. Runs change whenever the
consumption configuration changes. For two runs tr
and tr′ to ensure tr 6∼{clk,cc} tr′, one of the runs must
change the consumption configuration at a different
time than the other task. Changes in the consumption
configuration occur through the events evalloc and
evfree. Similar to above, in PEACOD it is impossible
to create two runs, which are dissimilar w.r.t. time and
consumption. Therefore, ∀tr, tr′ : tr ∼{clk,cc} tr′.

Since it is impossible to generate two runs tr and tr′ that
satisfy tr 6∼{clk,I,O,cc} tr′, Theorem 3 follows.

Corollary 1. PEACOD always produces the same run and
thereby guarantees: ∀tr, tr′ : tr = tr′.

Proof: Based on Theorem 3, it is sufficient to show
that: tr = tr′ ⇔ tr ∼{clk,I,O,cc} tr′.

It is trivial that (tr = tr′) =⇒ tr ∼{clk,I,O,cc} tr′.
tr ∼v tr′ states that all state changes are the same in
both runs according to the view v. If the view includes all

elements (v = {clk, I, O, cc}), then tr ∼v tr′ =⇒ tr = tr′

in all elements.
Compositional determinism requires that the task proper-

ties concerning determinism are preserved: i.e., if τ1 and
τ2 are value-time deterministic, then τ3 = (τ1‖τ2) also
to be value-time deterministic assuming that τ3 is both
schedulable and results in no race condition.

A race condition can occur for τ3 = (τ1‖τ2) if the
following conditions hold: (a) τ1 and τ2 share an output
variable, (b) τ1 and τ2 allocate the same mutually exclusive
resource, or (c) τ1 and τ2 allocate the same time-shared
resource. The first two cases prevent us from composing
the system, since we cannot resolve the race condition. In
the last case, we can first check whether the combined
demand (τ1‖τ2) remains schedulable (see Section 5) and
then combine the demands of τ1 and τ2 into a single
allocation request in τ3.

Theorem 4. PEACOD provides compositional determin-
ism with respect to time, values, and resources (Z =
{clk, I, O, cc}) assuming that the composed system remains
schedulable, resource scopes share no output variables, and
mutually exclusively allocate mutually exclusive resources..

Proof: We can define τ3 = τ1||τ2 = 〈clk,Vi(τ1) ∪
Vi(τ2),Vo(τ1) ∪ Vo(τ2), cc(τ1) ∪ cc(τ2)〉. Now the result
follows from Theorem 1.

Note that PEACOD also supports sequential composition
(τ1; τ2). We can combine sequentially composed resource
scopes by calculating one resource scope that treats the
scopes are sub-scopes. A race condition can occur for
τ3 = (τ1; τ2) if the following conditions holds: (a) τ1 has
an output variable that is an input variable of τ2 or (b) τ1

releases a mutually exclusive resource that is allocated by τ2.
In both cases, we resolve the possible race condition by first
completing τ1—writing its variables, releasing resources—
and then executing τ2.

7. Implementation Outline

The PEACOD framework is, to date, a formal model with
specified semantics, an interpreter in Prolog, and proven
properties. However, in this section, we provide a detailed
outline of how PEACOD can be implemented and why we
think it is feasible. The central argument is that related
systems have already implemented one or the other type
of determinism and PEACOD can utilize and extend these
mechanisms.

The centerpiece of the implementation is a resource,
value, and timing mediator, following the mediator design
pattern [10]. A mediator defines an object that encapsulates
how a set of objects interact. The mediator promotes loose
coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.



The timing mediator controls the temporal domain and co-
ordinates releasing, activating, completing, and terminating
scopes. Timing mediators have already been successfully im-
plement in a variety of real-time operating systems [9], e.g.,
schedulers that support periodic tasks. The value mediator
controls the value domain and coordinates variable read and
write access for each scope. A value mediator has already
been successfully implemented by the Giotto [3], achieving
value/time determinism. A central element, the E machine
that controls write and write access to values via, what
they call, drivers. Finally, the resource mediator controls
the resource domain and coordinates allocation, donations,
and dissipation. Resource reservation-based systems already
provide a resource mediator (see nano-RK [11] or other
resource kernels in [9]). PEACOD’s donation system can
then be implemented on top of the resource reservation
system.

Without a tool chain, programming resource scopes is
a cumbersome task. Parts of the tool chain already exist
as individual products or research prototypes. The tool
chain should provide resource-consumption data and should
support code generation. Determining network consumption
is not uncommon as a number of real-time protocols require
this information to calculate the bus schedule. Tools to
determine the worst-case execution time are already avail-
able and usable [12]. Algorithms for worst-case memory
consumption are in their early stages [13]. So, in conclusion,
the individual pieces do exist but have to be brought together
and integrated into one tool chain.

8. Related Work

Temporal scopes [4] allow the programmer to specify tim-
ing constraints and exception handlers to cope with timing
errors. This work’s goals are similar and build upon the
work of temporal scopes. In this work, we extend temporal
scopes to allow the programmer to specify time and resource
constraints and also provide semantics for value and resource
usage.

A number of systems provide determinism in one or
two domains. Programmable logic controllers (PLCs) are
deterministic in the resource and value domain. Before
computing, a PLC creates a process image and all com-
putation bases on this image. At the finish time, the all
computed values are written. Giotto [3] implements value/-
time determinism by enforcing reading and writing variables
are specific points in time. Some resource kernels and
real-time operating systems such as nano-RK [11] provide
resource/time determinism w.r.t. individual resources. For
example nano-RK implements resource/time determinism
for sensors, since the sensor is allocated at the release time
and released at the finish time. In contrast to this work,
PEACOD introduces resource/time/value determinism. Fur-
thermore, PEACOD provides hard and soft values to handle

values with low latency (as specified, soft values are written
before the deadline, however, they are not deterministic;
other system do not offer this dualism) and lowers the system
overhead by its resource donation system.

A number of programming languages are common in
the area of embedded systems such as Ada and C. Some
programming languages also provide specific constructs for
real-time systems such as the real-time specification for Java
(RTSJ) [14] or the time-triggered message-triggered objects
(TMO) [15]. Out of these and related languages, some pro-
vide constructs for timing such as a delay statement in Ada
and C or similar to temporal scopes, textual specifications
in TMO. Some programming languages provide constructs
to control resources such a RTSJ with the ScopedMemory

object for memory and the object SchedulingParameters
for CPU consumption. However, these languages do not
provide value–time and resource–time determinism together,
which is essential. This work differs as it provides these
two types of determinism and provides a compositional non-
growing abstraction.

In their work, I. Shin et al [1] defined a composi-
tion abstraction for a periodic task and resource model.
This abstraction preserves the task’s semantics and permits
composing tasks under EDF and RM. In this work, we
provide an abstraction for a more general task model with
offsets and deadlines different from the period. This general
task model allows us to decouple resource consumption
and together with the compositional abstraction, it permits
compositionality in the value and resource domain. Others
define composition via arrival curves [2], which covers a
general task model, but ignores value behavior.

In resource-aware programming [16] a users can monitor
the resources used by their programs and programmatically
express policies for the management of such resources. The
framework bases on a notion of hierarchical groups, which
act as resource containers for the computations they sponsor.
However, the main difference is that the resource initially
allocated can be exhausted or retrieved if not consumed.
Therefore, the resource consumption cannot be determined
a priori and the user interaction is needed to handle these
cases. Our approach, in contrast, aims at providing deter-
ministic guarantees on resource consumption.

Determinism, as defined by Kopetz [17] represents a
specific form of determinism that is compatible and can be
expressed with our notion of determinism; in fact, Kopetz’s
model is value–time deterministic as per our definition.

9. Conclusions

Different models and systems discuss or enable deter-
minism in one or two of the domains resource, value, and
time to model or support compositionality. Each of them
makes assumption about the third, missing domain such as
ignoring value behavior or assuming unlimited resources.



Consequently, realizing a physical system with these models
can cause problems as these assumptions may be violated.

The PEACOD framework provides one model that sup-
ports deterministic behavior in all three domains and allows
compositionality under this unified view. In this work, we
presented the framework and its language construct. We in-
troduced the necessary terminology to define determinism in
the time, value, and resource domain on the basis of similar
runs and proved that our specified behavior for resource
scopes in PEACOD guarantees deterministic behavior in all
three domains. Furthermore, we proved that it preserves this
property under composition.

By providing both determinism for these domains and
compositionality, the PEACOD framework hopes to ease the
design and implementation of real-time embedded systems.
In the future, we hope to relax some of the rigid assumptions
made in this work, towards making this framework more
practical.

Firstly, we plan on using the conditional task model [18]
to model the resource scopes. Conditional task models are
more expressive than the periodic task models used here,
and the results on compositional analysis with conditional
task model can be used to synthesize a tighter abstraction
for all the system tasks.

Secondly, we hope to use resource monitoring to fill in
the resource requirements of each scope, instead of having
to specify them explicitly. Additionally, we would also
be looking at reservable and schedulable resources, and
implementing the resource, value, and timing mediator to
allow experimenting with the framework.

Finally, we also plan on extending the model to include
faults and exceptions. This would require defining deter-
ministic behavior in the presence of faults, and methods to
realize them in the implementation.
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