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Abstract 

An important objective in computer vision research is the automatic understand- 

ing of aerial photographs of urban and suburban locations. Several systems have 

been developed to begin to recognize man-made objects in these scenes. A brief 

review of these systems is presented. 

This paper introduces the Pennsylvania Landscan recognition system. It is per- 

forming recognition of a scale model of the University of Pennsylvania campus. 

The LandScan recognition system uses features such as shape and height to identify 

objects such as sidewalks and buildings. 

Also, this work includes extensive study of edge detection for object recognition 

Two statistics, edge pixel density and average edge extent, are developed to differ- 

entiate between object border edges, texture edges and noise edges. The Quantizer 

Votes edge detection algorithm is developed to find high intensity, high frequency 

edges. 

Future research directions concerniiig recognition system development, and edge 

qualities and statistics are motivated by the results of this research. 

Acknowledgement: This work was in part supported by: DARPAIONR grant N0014- 

85-K-0807, NSF grant DCR-84 1077 1, Air Force grant AFOSR F49620-85-K-00 18, Army/DAAG- 

29-84-K-0061, NSF-CERlDCR82-19196 Ao2, NIH grant NS-10939 -1 1 as part of Cere- 

bro Vascular Research Center, NIH 1-R01-NS-23636-01 ,NSF INT85-14199,NSF DMC85- 

17315, ARPA N0014-85-K-0807, by DEC Corp., IBM Corp. and LORD Corp. 



Contents 

1 Introduction 

2 Automatic Recognition System Design 

2.1 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Related Recognition System Work . . . . . . . . . . . . . . . . . . . . 

3 Pennsylvania LandScan 

4 Edges for Recognition 

4.1 Border Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Coloring Book Edges and Edge Statistics . . . . . . . . . . . . . . . . . 

4.3 Results of Edge Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Spatial Frequency of Edges . . . . . . . . . . . . . . . . . . . . . . . . 

5 Quantizer Votes 

5.1 Quantizer Votes Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Results and Discussion of Quantizer Votes Edges . . . . . . . . . . . . 

5.3 Checking Edge Results . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Suggestions for Further Study 

7 Conclusions 

A Appendix: Recognition System Design Questions 



1 Introduction 

An important objective in computer vision research is the automatic understanding of 

aerial photographs. The Pennsylvania LandScan (Language Driven Scene Analyzer) sys- 

tem identifies buildings, roads and other man-made objects in urban scenes. LandScan 

consists of modules which perform edge detection, segmentation, stereo disparity calcu- 

lation, feature identification, recognition, and query generation. In this work, the initial 

implementation of the LandScan system is presented, except for the query generation 

module. 

The initial implementation of the LandScan system uses pictures of a model of the 

University of Pennsylvania campus as shown in Figure 1. In addition, the system is being 

expanded to perform recognition on a large class of aerial photographs. It is difficult to 

extend a recognition system which performs recognition on a known picture to perform 

recognition on a completely different picture such as the one in Figure 2. No single 

threshold used within a module will be at the right level for every possible picture. For 

example, in the edge detection module, a certain minimum edge strength is employed. 

Below this strength threshold, edges are not counted. This eliminates edges which are 

part of the texture of the campus model's materials. However, the edge strength threshold 

which applies to the campus model may not be applicable to the edges in a picture of 

a suburban town on a winter afternoon. Before recognition can be done on a large 

class of photos, edge strength thresholds, size thresholds and other specific decisions 

about picture characteristics must be identified and understood. After understanding how 

these decisions effect recognition, the thresholds can be modified as necessary to perform 





Figure 2: Aerial Photo of Mt. Laurel, NJ 

recognition automatically on many other photographs. 

This work includes extensive study of the edge detection module. Using different 

methods of edge detection and line finding, a large number of edge pixels is generated. 

The proper edges are usually found, along with many edges that a person would not use 

to represent the image. It is possible to choose one threshold after another until a good 

set of edges is obtained, and then to proceed with   automatic^' scene analysis. In this 

work, we show approximately how many edge pixels are needed and why. Elimination 



of the extra edge pixels is studied. Statistics are presented which indicate whether the 

extra edge pixels were removed. 

Even when the edge detection module is truly automatic, it will not work on all aerial 

photos. For example, in a picture which includes an entire city, buildings cannot all be 

recognized separately. No object which is represented by a few pixels can be recognized. 

The resolution of the picture limits the abilities of the recognition system. This problem 

is discussed, and the analysis bounds the practical expectations for recognition systems. 

Finally, an edge detection algorithm is presented which finds appropriate edges for 

recognizing man-made objects in aerial photographs. This algorithm will find sharp 

edges, which are characteristic of buildings, road edges and other man-made and man- 

altered objects. It eliminates fuzzy edges, which are characteristic of trees and many 

natural objects. 

2 Automatic Recognition System Design 

2.1 Design Philosophy 

The most important decisions in recognition system design are the early ones. First, the 

goals of the system must be set. Second, the features which lead to recognition must be 

considered. Third, the structure of the overall system must be designed. 

Before setting the goals, it is worthwhile to consider the philosophy of the recognition 

system. Is this an attempt to perform a subset of human vision? Or, should the system 

be based strictly on the kind of tasks computers do well now? 

Human recognition of complex objects is not a well understood process. Some psy- 
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chologists suggest that things are recognized as whole objects, for example, as faces 

rather than as collections of edges or collections of colored regions [MW 391. Indeed, 

people can imagine that they see faces in many places where no real faces exist. On 

the other hand, certain elemental features of a scene are sent from the eye to the brain. 

Familiarity with the exact shape of object borders does help people recognize complex 

objects in complex images. In [BLK 801 it was demonstrated that highly detailed repre- 

sentations are unnecessary for target identification training, but the use of line drawings 

made a significant improvement in target identification performance. People convert the 

brightness levels and the edges which they see into faces, buildings, and other objects. 

This conversion of discrete and local image attributes into continuous and global objects 

is a major problem in the field of perceptual psychobiology [WRU 831. The nature of 

this conversion, and of visual knowledge representation in the brain, is not known. 

To date, there is no machine system which performs general vision. Berthold Horn 

suggests that we can "address ourselves either to systems that perform a particular task in 

a controlled environment or to modules that could eventually become part of a general- 

purpose system" [BKPH 861. Systems are in use today which perform particular tasks 

in controlled environments . 

Vision systems for parts inspection applications perform particular tasks in a con- 

trolled situation. There are two aspects of the control. First, this kind of system is 

provided with a complete set of objects in advance. Like a template, the object shapes 

must match within a close tolerance or be rejected. Second, the objects are automatically 

and consistently arranged to be compared to the template. The objects may not always 



be at ,the same orientation angle, but they are at approximately the same distance. The 

objects can even be marked with features specifically to make comparison easy. The 

lighting is controlled, too. Segmentation into object versus background is done the same 

way each time [EWK 861. This is not a recognition problem, but a template matching 

problem. 

The problem of recognition in aerial photographs is not as controlled as the parts 

inspection problem. First, the objects vary continuously within predictable ranges. For 

example, road width may vary from 1 lane to 16 lanes. Actual lane width varies some, 

too, and road shoulders add even more variability. Also, road curvature varies. However, 

curvature is limited to the performance abilities of cars and trucks. Exact limitations of 

curvature can be found in highway design manuals. Thus the characteristics are available, 

but every instance of every road cannot be provided for comparison. Second, in an aerial 

photo, objects are not arranged for the convenience or performance repeatability of the 

recognition system. Contrast varies, brightness varies, texture varies and object distance 

from the camera varies. 

The aerial photo recognition problem has some other limits, too. The types of objects 

and their viewing directions are limited. Buildings, roads, statues, people and cars are 

expected, whereas flying hamburgers can reasonably be ruled out. Viewing angle does 

vary, but it will be approximately perpendicular. The aerial photo recognition problem 

is more difficult than a carefully controlled task but less difficult than a general-purpose 

task. It is a limited task. 

The techniques used here do not necessarily apply to a general-purpose system, though 



they may turn out to be very useful. Also, the techniques need not be copies of human 

visual techniques, though they may turn out to be. However, we can look to human 

vision as an existing implementation of a vision system which may be copied whenever 

it is convenient to do so. If detailed study of edges helps the human recognition system 

work, we should consider using edge details if they will help our system work. 

Beyond the questions about how human vision works, and whether to copy it, we 

must make many decisions about the smaller goals. We must define exactly what we 

want to do, and get a general idea how we can do it. The basic questions and choices 

which define the goals for vision system design are presented in Appendix A. 

2.2 Related Recognition System Work 

See Table 1 for a description of several kinds of vision systems. It includes the system 

characteristics of human and machine recognition systems. The human recognition pro- 

cesses which have been studied are used to provide guidance for what a machine may 

accomplish. 

In the literature, there are several machine systems specifically designed to work with 

objects in aerial photographs. Some systems are designed to extract three-dimensional 

shape information about the objects, but do not address the problem of recognition of 

the objects themselves. On the other hand, some systems begin with sketches or maps, 

where the objects are presented in a consistent manner, then the objects are recognized 

using a feature comparison. 

One system, the 3-D MOSAIC system [MH 841, extracts connected edges of build- 



Table 1: Vision System Characteristics 
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ings, or junctions, from multiple aerial views of urban scenes. This system matches 

junctions from two pictures and obtain heights of edges. Horizontal faces are inferred 

from L-shaped junctions. Vertical faces are dropped from the edges. There is not enough 

information to find all the junctions from a single pair of pictures. Herman et al. are 

experimenting with multiple views to find the missing L junctions which will show the 

complete buildings. 

This system does not require junctions to be at right angles. After the missing 

junctions are found or inferred, this system will make a good reproduction of the above- 

ground portion of the scene. The emphasis of this work to date is on making a 3- 

dimensional model and display of the buildings rather than image interpretation. 

A second system, the SPAM image interpretation system [DMM 841, uses maps 

to guide the recognition of objects in airports. The knowledge from maps allows the 

system to used rules with cartographic coordinates, such as elevation and real distances, 

rather than "the runway has area 12000 pixels." A major problem with this work is 

the difficulty of region-based segmentation. The objects which appear to be broken into 

arbitrary fragments are typical of state-of-the-art region-based segmentation on real aerial 

images. It is extremely difficult to identify these fragmented objects. 

A third system, by A. Huertas and R. Nevatia [AH 831 looks for buildings with sharp 

corners. Lines and corners are extracted from real aerial images to trace boundaries of 

possible buildings. Next, adjacent shadows are extracted along the direction of illumi- 

nation. If a candidate building's corners can be paired with its shadow% corners, then 

the system decides that the object is indeed a building. The shadows are used to confirm 



that the building is higher than its surroundings. The criteria for identifying buildings are 

sharp corners and adjacent matching shadows. These criteria find L-shaped buildings, 

and do not find parked airplanes to be buildings. 

This strategy works well for buildings. It is limited by illumination constraints, but 

stereo could improve it dramatically. Nevatia states that a stereo module is being devel- 

oped to enhance the system [RN 861. The intention of this system is to find buildings, 

not to do exhaustive identification. 

A fourth system by D. Rosenthal and R. Bajcsy recognizes 12 objects (car, bus, street, 

building, median, etc.) using a production system [DAR 841. Queries drive the system, 

which searches for queried objects only in highly probable areas. For example, a query 

to find a median strip would generate a query to find a street then look on the street for 

the median strip. Region growing was used in this system. The shapes of the buildings 

and other objects recognized are basic, and the system uses adjacency and containment 

relationships very effectively. A powerful texture descriptor, homogeneity, is included in 

the system. 

To be recognized as a road's median strip, an object must be on a street, lighter in 

gray value than the street, within a range of widths, shaped like a rectangle, homogeneous, 

and almost as long as the street. This system only recognizes rectangular buildings, too. 

This is an example of a system which works very well on one picture, but would need 

significant modifications for more general application. 

A fifth system, called MAPSEE, was implemented on sketch maps by Mulder and 

Mackworth [JAM 851. It recognizes roads, coastlines, bridges and other objects. Sketch 



maps were used to completely avoid the problem of segmentation and texture. They 

exhaustively identified all of the elements in their sketches, but they also created all 

of those same elements. Therefore, the features probably would not be useful for real 

scenes, but the recognition algorithm will be. 

The MAPSEE system uses the method of least commitment for the identification. 

The principle underlying the method is to stick to the most abstract interpretation until 

evidence forces more specific interpretation. This was introduced by Marc and Nishihara 

[DM 821. It begins with the assumption that the object in question is an object (or part 

of an object) in the set of all possible objects. There are two subsets which divide the 

set of all possible objects. One test will determine whether the object is one subset or 

the other. This reduces the number of possible interpretations of the object, or reduces 

the ambiguity about it. Each succeeding test further reduces ambiguity about the object 

until it is identified as a member of a set containing one type of object. It is desirable for 

the early tests to divide the sets into approximately equal subsets and to be inexpensive 

to perform. 

This approach to the inference problem can be described with a tree structure. Nodes 

are sets of objects. The root is the set of all possible objects. Each leaf should be a single 

object. A region starts in the root node interpretation, and moves down into smaller and 

smaller subsets of possible interpretations. The edges are constraints which allow objects 

to be disambiguated. An alternative view of the tree is that a node is simply any region 

satisfying constraints on the unique path between that node and the root. At the leaf 

level, enough tests have been made to identify the region as one particular object. 



The tree arrangement is based on a priori knowledge of the scene. Correctness and 

efficiency of the tree is crucial to the success of the process. Objects may be located 

at more that one leaf; however, each leaf has a unique testing process which leads to it. 

The edges leading to a leaf will become the plan to find the object located at that leaf. 

3 Pennsylvania LandScan 

When people look at an aerial image of a complex urban scene, they can recognize 

buildings, roads and other objects with little difficulty. It is clear that there is sufficient 

information in an aerial image to recognize objects, but for an automatic system, it is 

very difficult to extract the useful information and then make the identifications. We 

begin with a long list of gray scale values and wonder how to proceed to do what we 

know is possible. 

The goal of the LandScan system is to identify objects in a complex urban scene 

from aerial images. We want the capability to identify all the objects in each scene, so 

that we can consider the context of the objects. While identification of every object in 

the original image is interesting, it is not efficient if only one particular type of object is 

sought for further analysis. In the LandScan system, queries are used to guide the search 

to the appropriate tests. The tests which are used to identify a building may not be the 

tests which are used to identify a sidewalk, for example. However, some tests, such as 

edge detection, must be done on the entire image. 

The LandScan system is intended to be modular, so that separate pieces can be 

improved while the system still functions. Figure 3 shows the overall system scheme. 



Figure 3: LandScan Identification System 
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In addition, more interaction between modules is planned. For example, in the initial 

implementation, edge detection cannot be redone on the basis of the query. However, 

this and other interactions are planned as future enhancements to the system. 

LandScan uses the Pennsylvania Active Camera System [FF 861. The camera system 

includes two cameras, and it has capabilities for movement similar to the human head. 

The camera platform controller lets the cameras converge, tilt, pan and move horizontally 

and vertically. The lens controller provides control of the focus, zoom and aperture 

opening. Each camera chip is a black and white CCD array (Fairchild CCD222) with 

a resolution of 488 lines per frame by 380 elements per line. A real-time digitizer and 

frame buffer (Ikonas RDS3000) acquires 5 12 by 5 12 8-bit image data from each channel. 

In addition, a single Sony XC-39 CCD camera can be used with the digitizer and frame 

buffer, but with manual platform and lens control. 

LandScan is now working with images of a scale model of the University of Penn- 

sylvania campus made of white, gray and black cardboard. This limits the variations of 

scale and texture present in the image. Pictures of the model are easily obtainable under 

different conditions of lighting and noise. Also, statistics about it can be checked easily. 

We can recognize most objects in the scale model now. However, we want to apply our 

recognition system to other images. We are trying to increase o w  flexibility so that we 

can do this. Future plans include recognizing objects in many different images, regardless 

of scale, noise level and other variables, and recognizing more types of objects. 

Gray value is the most obvious feature of objects in aerial photographs. However, 

the gray values of buildings and roads depend on the construction materials, the lighting 



and many other variables. Shape is much more consistent. Roads are long and narrow 

(relative to their length) whether they are concrete or asphalt, superhighway or alley, 

well-lit or barely visible. Buildings have more variety in their shapes, but they are rarely 

as long as roads. Shape is an important factor in human recognition of distant objects 

[BLK 801. 

In the LandScan system, shape is the most important feature used for recognition. 

Shape is obtained from grouped pixels, or regions. The regions are formed from edge 

pixels and local similarity of pixel gray values. The edge detection/region growing 

paradigm is discussed in [RB 861. In this region-growing algorithm, edges are used as 

barriers through which regions cannot cross. 

Stereo information is very useful in image understanding for aerial photos. It is 

more reliable than shadow information for differentiating raised structures from ground 

structures. Stereo allows adjacent objects to be joined for analysis as a group. In this 

system, stereo information is obtained from a stereo matcher developed by D. Smitley 

[DLS 851. To date, the LandScan system attaches the stereo information to regions, so 

that one height is associated with each region A planned development of the system is 

interaction between the stereo information and the region growing process. 

The basic internal shape representation is the surface patch, which is a connected 

group of pixels (region) with associated height. This is a form of 2 ; - ~  sketch, which is 

useful because it makes explicit information about the image in a form which is closely 

matched to what the simplest image processing algorithms can deliver [DM 821. Urban 

scenes viewed from above with stereo are described naturally with this structure. Few 



objects have sides which are not vertical, and few have bottoms above ground. This 

shape representation does not completely describe bridges or elevated highways, but it 

retains all the information available from the stereo aerial image. 

These surface patches are found in two steps. First, regions are found on one gray 

scale picture from a stereo pair by a combination of region growing and edge detection 

F B  861. Then, point-based stereo matching is done on the stereo pair [DLS 851. The 

stereo disparities are associated with the appropriate regions, and the median heights of 

the regions are calculated. 

The system uses a discrimination tree similar to Mulder and Mackworth's, but operat- 

ing on surface patches instead of sketch elements. The discrimination tree is particularly 

well suited to a query directed system because each object at a leaf has a unique path 

from the root. Strategy to find a particular object is automatically generated by following 

the path of tests from root to leaf. Also, it is efficient to mark partial identifications for 

the regions which do not satisfy constraints on the path leading to the desired object in 

case other identifications are requested later in the session. The discrimination tree which 

has been implemented is shown in Figure 4. 

Requests to the system include the type of object to be identified and the picture to 

be examined. The object sought would have to match a node of the identification tree. 

Output from the system is a picture of the requested objects. 

The intermediate results from the image in Figure 1 and its stereo paired image are 

shown in Figure 5. Recognized buildings are shown in Figure 6 and sidewalks in Figure 

7. 



Figure 4: LandScan Discrimination Tree 
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In an automatic image understanding system, it is important that only the useful 

information from an image be extracted for analysis. Simple tests should be sufficient to 

identify objects if the right information has been extracted. To find the useful information, 

a geometric model of the scene is required. A geometric model is a concept of the 3- 

dimensional structure of the scene. For example, one possible model of a scene could be 

a summation of cubes in different locations in space. This is a voxel, or volume element, 

model. The voxel geometric model is a 3-dimensional model of a 3-dimensional scene. 

In an urban scene viewed from above, the tops of objects are visible, and vertical sides 

ordinarily connect raised objects to the ground or to adjacent raised objects. Therefore, 

the scene can be modeled using regions with heights. If there is a disparity between the 

height on one region and an adjoining region, a vertical connection is assumed. This is 

the surface patch geometric model, which is a 2;-dimensional model. It has substantial 

3-D information, but not complete 3-D information. The LandScan system uses the 

characteristic vertical sides in an urban scene to reduce greatly the amount of information 

to store and analyze. 

It is possible to make a geometric model of an urban scene which is useful for displays 

but difficult to test for object identification. Conversely, it is possible to make clever 

tests for identification using information which is extremely difficult to obtain from aerial 

images. Since the LandScan project has object identification in aerial photos as its primary 

goal, the identification tests are being developed together with the geometric model. 

Useful descriptive information about features from the original image are generated along 

with the model. 



A problem in scene understanding occurs when only the characteristics of the image 

under study are used to make the identification tests. The image under study is understood 

well, but the system fails on almost any other image. A robust system must start by 

understanding one type of scene, but the system development must not stop after its 

first success. The design must allow for enhancement, adding more objects to recognize, 

improving the modules, and allowing more knowledge-based interaction between the 

modules. The robust system must accomodate the complete range of object presentations, 

yet differentiate other objects which may be quite similar. This is much more difficult. 

A robust system for scene understanding must have identification tests which are 

applicable to a wide variety of scenes. High-level tests should recognize curved roads as 

well as straight roads. Buildings with a variety of shapes should be recognized. However, 

a system cannot recognize all possible objects. Underground buildings will not be visible 

and will not be identified, but elevated highways are visible and should be identified. 

The low-level processing such as edge detection must work on images of different 

quality. The system should be adjustable to account for different image scales and noise 

levels. Of course, there will be a limit of minimum image quality for which the system 

works, but that limit should be found along with an explanation for the limit. 

The LandScan system is successfully working on one type of image, but the difficult 

task of making the system work on many types of images lies ahead. The system will be 

tested on new views of the Penn campus scale model and on real aerial images. Failures 

in identification will be studied, and enhancements to the system will be made. The 

goal of the error analysis and the study of enhancements is to produce a system which 



will work on many different images. The enhancements are directed toward automatic 

adjustments to the modules. However, before this can be done, exact error analysis will 

be required. 

In Landscan, the image analysis modules are designed on the basis of the following 

imperatives: 

emphasize shape rather than absolute gray value. Shape is a more consistent feahlre 

of objects than gray value, since the gray value depends on the lighting of the 

scene. 

match the abilities of the scene analysis processor. The characteristics of the features 

extracted from the images must be useful for the reasoning system. 

correspond to interesting aspects of aerial urban and suburban scenes. Edge detec- 

tion should select sharp, strong edges while removing weak, gradual edges. 

preserve excellent edge location while removing low amplitude edges. Edges should 

be sharp and accurate. 

Knowledge about the answers desired at higher levels should be included at every level 

of image analysis. For example, if the recognition system cannot differentiate between 

very small objects, the region grower should not produce many small objects. Instead, the 

region grower should merge similar regions to present good candidates for identification. 

However, the knowledge included at the low level should be general enough that the 

scene understanding system works on a large class of pictures. 



4 Edges for Recognition 

Digitizing a picture produces a value for the intensity at each element (pixel) of a 512 

by 512 array. This can be described as a 2-dimensional intensity function. If there is 

a significant change in local intensity, the pixel at the location of the greatest change is 

called an edge pixel. Edges pixels are found using a convolution of two or more masks 

with a two-dimensional intensity function. The convolution produces some form of the 

directional derivative. The value of the convolution of the intensity function with the 

mask at a given pixel is the gradient of the intensity function near that pixel. A high 

gradient means that there is a large intensity change at that pixel, so a high gradient is a 

strong edge. The value of the gradient will be referred to as the strength of the edge. 

In the LandScan system, two methods are used to find edge pixels, Canny's method 

and a new method, quantizer votes. Canny's method [JC 83,DT 851 consists of convo- 

lution in 2 directions, using masks which are the first derivatives of a Gaussian normal 

function (of width a), then directional non-maximum suppression. 

The quantizer votes method uses a combination of edges from Canny's method ob- 

tained from several quantized versions of the original intensity function. This method is 

discussed further in Section 5. 

Edge scale is related to the width of the Gaussian function. Since gradient values 

are rates of change in intensity with distance, it is important to consider the distance over 

which the changes occur. The Gaussian filter has the desirable effect of reducing noise 

by averaging several adjacent pixels. At the same time, the picture resolution is reduced, 

much like defocusing. As a result, convolution with a narrow Gaussian filter (small a), 



yields small and large steps of intensity along with large gradual changes of intensity. 

Using a broad Gaussian filter (large a), only large changes of intensity are found, whether 

they are sharp or gradual. A narrow filter gives good localization of edges; however, it 

also responds to noise. A broad filter is more robust in the presence of noise, but does 

not give good localization. Further discussion of edge scales and mask types is included 

in Section 4.4. 

4.1 Border Edges 

An important class of edges in an aerial photo is the borders of the objects in the photo. 

These edges are usually long, fairly straight, and sparse. Typical border edges are curbs, 

building corners and river banks. Edges which are not borders may be short, wavy, and 

very close together. Typical non-border edges are brightness changes due to differing 

vegetation, or waves on a lake. The non-border edges are useful for texture identification. 

However, for edge-based segmentation, it is desirable to find border edges and eliminate 

non-border edges. 

Borders are useful because they provide region boundaries which separate objects. 

Also, details of border shapes are important. For example, consider a concrete sidewalk 

adjoining a concrete street. If the border between the sidewalk and the street is missing, 

the whole sidewalk plus street will look like a street. However, with the borders present, 

they can be treated separately. Both are long, but the sidewalk is probably narrower. 

Width may be the best feature to separate the class of sidewalks from the class of 

streets. On the other hand, if the sidewalk is divided into separate concrete sections, 



the objects will look like small squares. The roof of an adjacent building may also 

have square shingles. The shapes of these objects may be the same. In addition, the 

recognition system may be overwhelmed with thousands of objects to recognize. The key 

to recognition by shape is finding the borders of the particular objects that the system is 

designed to recognize. 

To find the best edges it is possible to look for the best edge detection procedure. 

On the other hand, it is also worthwhile to study the edges themselves. What is it that 

makes an edge picture good for segmentation and for finding the right border shapes? 

Other than in machine perception, where are edge pictures used? 

4.2 Coloring Book Edges and Edge Statistics 

There is another situation, completely different from automatic scene understanding, in 

which border edges are very important+hildren's coloring books. Some insight into 

border edges in aerial photos may be gained from understanding border edges in coloring 

books. The coloring problem for children is related to the segmentation problem in image 

understanding. How should areas of the picture be grouped together as regions? 

In coloring books for pre-school children, edges are provided as borders of regions. 

Ordinarily, each region is intended to be all one color, and adjacent regions are different 

colors. These border edges are usually long, fairly straight, and sparse, just like the edges 

we seek in the aerial photo. The most interesting thing about the coloring book edges is 

that the edges are long and sparse with statistical parameters almost independent of the 

contents of the pictures [CB-11. 



These descriptions of edges in coloring books and aerial photos lead to statistics 

which may be applied on all edge pictures. The observed sparseness leads to edge pixel 

frequency, which is the number of edge pixels per thousand pixels. Edge pixel frequency 

simply indicates how crowded an edge picture looks. The observed edge length leads 

to average edge extent. Average edge extent is like edge length, except that an edges 

can go in any direction and split. This quantity is estimated by finding all the sets of 

8-connected edge pixels, and giving the average set size, in pixels. While there are other 

possible ways to measure length, this method has the advantage that it favors connected 

lines and is independent of line curvature. However, it has the disadvantages that it has 

units of area rather than length and that it favors edges which are not thinned. 

When these statistics are applied to coloring books in a qualitative study, it is clear 

that there are differences in average edge extent and edge pixel frequency among coloring 

books [CB-1,CB-2,CB-31. The differences appear to be a function of the age of the child 

for whom the book is intended. Average edge extent decreases and frequency increases 

with increasing age of the child. There are many possible explanations for this, but it is 

clear that an older child has greater ability and/or willingness to make a finer segmentation 

of a coloring book picture while a 2 year old may happily color the entire picture red. 

This description leads to the concept of designing the edge detection module to match 

the design of the segmentation and recognition processing elements of the system. 



4.3 Results of Edge Statistics 

When edges are produced to form regions for a recognition system, most edges should 

be boundaries of recognizable objects. The regions should be large enough to have 

recognizable shapes, and the recognition system should not be asked to work with objects 

beyond the optical resolution. Thus the regions should be fairly large. Since most edges 

are boundaries of regions, and the regions are large, the edges should be sparse. For 

example, if there are 200 regions in a 512 by 512 image, the average area of a region 

is 1311 pixels. If all of these regions were square, there would be 55 edge pixels per 

thousand pixels in the image. Of course, most pictures are not that simple, but there are 

practical limits on the perimeter-to-area ratio of typical regions. Since the scale of an 

image can be calculated from camera geometry, the approximate size of the objects to 

be recognized can be calculated. Based on knowledge about the objects, approximate 

perimeter to area ratios of expected objects in urban scenes can be estimated. These 

ratios are the basis for analysis of edge detection results using edge pixel frequency. 

One system limitation listed in table 1 is the maximum number of object instances per 

v i m .  In most automatic recognition systems, this limitation is not explicitly considered. 

It can provide useful guidance for boundary edge detection and the recognition system 

in general. A limit on the maximum and minimum number of objects can prevent the 

machine system from working on objects too small to recognize or objects which are 

partially occluded. Segmentation programs normally limit the minimum size of regions, 

which gives an upper limit to the number of regions possible, but this upper limit is often 

much larger than the number of objects which the system could be expected to recognize. 



The perimeter-to-area ratio of a region is a very useful statistic about the region. In 

the range of distances between the camera and the objects in which the recognition system 

is expected to operate, the perimeter-to-area ratio is approximately constant [EWK 861. If 

perimeter of a region is measured by counting the exterior pixels and area is measured by 

counting all pixels, then the perimeter-to-area ratio is inversely proportional to distance. 

In [WAP 861, "compactness," which is Areal(Perimeter ** 2), is used as an attribute of 

regions for recognition to avoid this distance variation. However, both perimeter-to-area 

ratio and compactness are useful ways to compare region shapes. 

The number of regions and the average perimeter to area ratio of the regions determine 

8(0), the total number of border edge pixels. Let P be the average perimeter of the 

regions in pixels, A the average area of the regions in pixels, At the total number of 

pixels in the image, and r the total number of regions. When adjacent regions share 

border pixels, 

If a strength threshold is used to remove weak edges, then the number of edge pixels 

can be expressed as a function of strength threshold, B ( a ) .  B ( s )  is the total number of 

edge pixels whose strength exceeds s. As s  increases, B(s) decreases. 

Expectations about B ( s )  can be used by an automatic system such as Perkins [WAP 861, 

or by a cartographer operating an interactive system to set edge strength thresholds. Then 

edges can be used to construct regions. However, the edge threshold will influence the 

attributes of the resulting regions. For example, a forest in an aerial photo may produce 

edges at the forest boundary and fainter individual tree edges. If all the edges are used, 



the resulting regions will be individual trees. The size, texture, shape and compactness 

of the tree regions may not match the attributes of the expected forest. Knowledge about 

the scale of the picture could be used to know that the tree borders make too many edge 

pixels when forest-sized objects are sought. Then a threshold of edge strength could 

remove most tree edges leaving the forest boundaries in the edge picture. 

Besides borders of desired regions, there are other sources of edges. In the tree 

vs. forest example, the trees and grasses are real, but they cannot be recognized by the 

system. Let the number of edge pixels they produce be 7(s) .  In addition, the camera 

system itself will produce noise, and that noise will produce edge pixels, W (s). 

If we know about the behavior of B (s), 7 (s) and W (s), then we will know whether 

a threshold of edge strength is useful. The total number of edge pixels, & (s) = B(s) + 

7 (s) + W (s). Will a threshold of edge strength remove the texture and noise edges and 

preserve the borders? This is a decision which is normally made by the system operator 

and tailored to individual images. However, global knowledge about images can help 

with this decision. The total number of border edge pixels in the image, B (0), is known 

approximately, from the number of regions and the perimeter to area ratio of the objects. 

Since the total number of edge pixels exceeding s is & (s), this can be expressed as 

where e(s) is the number of edge pixels at a given strength value s. 

e(s) = b(s) + t (s) + n(s) 

To separate border edges, b(s), from texture edges and noise edges, t(s) + n(s), consider 



Figure 8: Number of Edge Pixels vs. Edge Strength for the Image in Figure 2 
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the graph of e(s) versus s in Figure 8. If the border edges have higher contrast, on 

average, than texture edges and noise edges, then they can be separated with a threshold 

of edge strength. When s is the local minimum in the bimodal distribution: 

However, in some pictures, texture edges have higher strength values than border edges. 

For example, if the object sought in a photo was a city block of buildings, then the building 

to building edges within the block may be just as strong or stronger than the building 

front to sidewalk edges. Figure 9 illustrates the problems edge strength thresholding. On 

the first example, a threshold of edge strength eliminates most texture edge pixels and 

few border edge pixels. This is typical of pictures where the texture has lower contrast 

than the object boundaries, such as Figures 1 and 2. However, in the second example, a 

threshold of edge strength is not useful. This is typical of pictures like Figure 10 where 
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building-to-building edges compete with the city block edges. 

4.4 Spatial Requency of Edges 

Edge shapes change when they are found with different scale edge detectors (i.e. different 

values of a in the Canny edge detection mask). At a larger scale, edges from texture 

may be removed, but the accuracy of edge location is reduced. In [JC 831, the tradeoff 

between accuracy of edge location and signal to noise ratio is discussed. In aerial photos, 

this means that removal of texture (convolution with large Gaussian) produces changes 

in the shapes of the remaining edges. Building corners become rounded. Lane stripes 

are widened and the gaps in between them are filled. Figure 11 shows how the shapes 

of road lane stripes change when viewed at different scales. 

Witkin [APW 841 and Bergholm [FB 861 have attempted to track edges across dif- 

ferent scales. Witkin uses different scales to fully describe the edges in the intensity 

function. Bergholm finds edges in large scale, then looks at small scales to give better 

localization of these edges. 

In an urban scene, sampled with pixels spaced at, say, 3 foot intervals, borders are 

generally man-made or man-altered. The desired edges are the object borders, which are 

normally long and straight. Urban streets are long and straight. Buildings have straight 

sides, interrupted at intervals by sharp corners. Oil storage tanks and highways have 

long edges with specific types of curvature. All of these edges are sharp. The intensity 

changes can be found at high spatial frequencies in the original image. Gradual changes 

are found in tree edges, shadows on grass and other natural objects. We want do not 



Figure 10: Image at a Scale (approximately 10 feet per pixel) at which High Contrast 

Edges come from Objects Too Small To Recognize. Photograph courtesy of Prof. R.J. 

Woodham, University of British Columbia, digitization at the University of Pennsylvania 

GRASP Laboratorv. 



Figure 1 1 : Edges at Different Scales 
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want to recognize trees, but to group trees together and recognize forests. Therefore, we 

do not want gradual edges which have only low frequency components. However, the 

edges found at high spatial frequencies include both small and large changes in intensity. 

We want only the edges with large intensity change. For an unknown image, we do not 

know how large a change we want until we see the edges. 

Emphasis on sharp edges is characteristic of human vision, too. A small change in 

gray value is visible when it is presented as a step edge, while a much larger change 

in grey value is difficult to see as a ramp. On a monitor with 256 gray values, this is 

easy to show. On a printed page, the quality of a 16 level image cannot be distinguished 

from a 256 level image [TP 821. Whether there are 256 or 16 gray levels, machine 

representations of ramps are made up of small steps. However, a gradual ramp looks 

like a series of steps when printed with 16 gray levels. A steep ramp is more difficult to 

localize. Human vision enhances sharp edges, but does not enhance gradual edges. This 

is shown in the synthetic picture which was used for algorithm testing. It is shown in 

Figure 12. 

5 Quantizer Votes 

Quantizer votes is a nonlinear algorithm which eliminates edges with low intensity change 

and edges with only low spatial frequency. That is, subtle edges and gradual edges are 

eliminated while sharp edges are retained. The algorithm is adjustable such that it can 

eliminate low intensity and low frequency edges up to different levels, depending on the 

content and quality of the picture. This is done without loss of localization accuracy. 



Figure 12: Synthetic Picture of 2-Dimensional Intensity Steps, Ramps, Blurred Edges, 



There is no guarantee that the edges which are eliminated are uninteresting. However, 

several statistics about the resulting edge pictures are presented, and they can be used to 

rate the effectiveness of the algorithm at different levels on aerial photos. 

5.1 Quantizer Votes Algorithm 

The algorithm uses a combination of several images of the local maxima of the Gaussian 

smoothed gradient on quantized versions of the original image. The Gaussian smoothed 

gradient of an image depends on the standard deviation, a, of the Gaussian filter. At a 

larger convolution scale, edges from texture may be removed, but the accuracy of edge 

location is reduced. The shapes of the remaining edges are changed. Rather than a 

combination of edges using different spatial frequencies, our algorithm combines edges 

in the amplitude (intensity) domain. 

Since a 16 gray level image looks the same as a 256 gray level image on the printed 

page, all 256 gray levels are not required to identify objects in an image. An 8 gray level 

picture will look almost as good as a 256 gray level image with the addition of dither. 

Dither is the addition of noise generated by a random process. It tends to break up 

contours produced by the coarse quantization of an image [TP 821. Dithering a coarsely 

quantized image of a face makes the face more pleasant to look at, since sharp edges 

are not expected in a face. The re-quantization done in the quantizer votes algorithm 

restores the contours which may be removed by dithering. Sharpened edges are useful 

for recognition based on edge shape. For this purpose, the best re-quantization is the 

minimum representation which preserves the information necessary for object recognition. 



Figure 13: Re-quantization Mapping Function 
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A quantization function maps the input gray levels to the re-quantized gray levels. 

This mapping can be considered a method of estimating the gray value in the noisy 

original image [RM 861. A symmetric step function is the simplest mapping. A step 

mapping function is shown in Figure 13. 

The technique consists of three parts: repeated quantizing and gradient detection, then 

combination of results. The technique can be used at various levels, depending on the 

amplitude of edge desired, but a specific set of thresholds is described below. 

First, the image is quantized from a 256 gray scale image to a 16 gray scale image. 

The 16 remaining gray values correspond to the original 0-15, 16-3 1, 32-47, ... Then 

gradient detection, using the Canny operator, is done on the quantized image. 

Next, the image is re-quantized to a 16 gray scale image, using a smaller first bin and 

larger last bin. The 16 gray scales correspond to the original scale 0-14, 15-29, 30-45, 

46-62 ... Again, gradient detection is performed. 



The re-quantizing and gradient detection is repeated until the first bin is vanishes. 

(An alternative way to consider the repeated re-quantizing is this: add a bias of 

intensity 2 to every pixel, then re-quantize using the original quantization mapping. This 

process is repeated until the size of the bias equals the quantization step size.) 

Finally, edge pixels from the different re-quantized images are combined. Some pixels 

are found to be edges in all of the re-quantized images, some are edges in none, and some 

in between. There are 8 different re-quantizations, so a pixel can get counted as an edge, 

or "voted," up to 8 times. The intensity change weak edge is in the original image is 

proportional to the number of votes the pixel has received. A strong edge, with intensity 

change greater than the step size in the mapping function, will receive the maximum 

number of votes. Votes are summed for each pixel to produce a combination image. 

This is demonstrated for a single scan line in Figure 14. A threshold of gradient value 

is used to prevent extremely weak edges from counting toward the combined image. 

The gradient threshold removes most of the edge pixels due to noise. Gradual edges 

become steps when re-quantized. The steps produce edges which are artifacts due to 

re-quantization. However, these artifacts move as the re-quantization mapping function 

changes. When a vote threshold is used at each pixel, no single pixel has enough votes 

to pass the vote threshold. 

Edges found using two different step size thresholds are shown in Figures 15 and 

16. 



2 Sets of 
Quantization 
Levels 

Figure 14: Edge Pixel Votes on a Single Scan Line 

Original Intensity: a Ramp 
Quantized Ramp 

Sets of Edge Pixel Votes 

Original Intensity: 

2 Sets of 
Quantization 
Levels 

4 Sets of Edge Pixel Votes 

Votes Coincide on Large, Sharp Edges 



Figure 15: Edges Found for Figure 2 Above Step Size 9 



Figure 16: Edges Found for Figure 2 Above Step Size 18 



5.2 Results and Discussion of Quantizer Votes Edges 

Certain types of edges are attenuated by the quantizer votes process. A ramp edge is 

made into a series of steps by quantizing. After shifting, the step locations move. Thus, 

no single location on the ramp edge gets enough votes to pass thresholding. All gradual, 

or low spatial frequency, changes in intensity are attenuated by this process. 

High frequency edges do appear in the shifted image. In the final combination image, 

a two dimensional step edge (further discussed below) will appear if it exceeds ss. 

vt = number of votes required to pass threshold 

V = total number of votes 

ori inal ra scale - quantization ratio 9 = re-puakza:o:gray rcde - 

Between these two values, the edge may appear, depending on how the edge fell in 

the quantization. The probability of an edge appearing increases linearly from 0 to 1 over 

the range. 

Thus, the amplitude of edge to be attenuated varies with the quantization ratio and 

the level of thresholding. The process works well with a quantization rate of 8 5 q 5 64. 

Below 8, the quantization has no effect. Above 64, too many edges are lost. The threshold 

to total vote ratio, vt/V from 218 to 518 give reasonable results on the test pictures, with 

the best contours usually at 318 and 418. In the experiment, the total range of maximum 

step edge to be attenuated can vary from 4 to 32 on a 256 gray scale (8 bit) image. 

The step edge discussed above is a 1-dimensional step, repeated for several scan lines, 

so the total edge is 2-dimensional. The gradient detection uses information from adjacent 

45 



scan lines to improve the edge detection of 2-dimensional edges. Taking a threshold of 

the gradient value before voting removes steps which only appear in 1 scan line. This is 

useful for eliminating stuck pixels and some other local area noise. Using the Gaussian- 

smoothed gradient detection method is better than local differencing, which would be 

sensitive to single pixel noise. It also removes the noise of real objects which are too 

small to classify. 

Convolution is a linear process, but non-maximum suppression is nonlinear, so the 

combination of these processes is a nonlinear process. The combination process improves 

the signal to noise ratio without reduction in edge localization, until noise exceeds the 

maximum attenuation for the filter settings. When that occurs, the process makes the 

signal to noise ratio worse. 

For example, the quantizer votes algorithm has been tested finding step edges in 

Gaussian white noise. Pixel intensities range from 0 to 255. If the value of the noise is 

5 6, and a quantization ratio of 32 is used, up to 2 votes out of 8 may be changed by 

the noise. Using a vote threshold of 3, this will have no effect on the votes combination 

picture. However, if the value of the noise is > 15, and a size 32 quantization is used, 4 

or more votes will be changed. This will cause the noise pulse to be falsely classified as 

an edge in the final picture. 

Experiments on temporal noise in the Pennsylvania Active Camera System indicate 

that usually u2 c 16 [RM 861 for a maximum signal intensity of 256. 

To test the effect of noise on the edge detection, Gaussian white noise with u2 = 16 

was added to the synthetic picture. Approximately 95% of the additive noise will be 



5 181 on the original gray scale. This is individual pixel noise, and that is not likely to 

produce a Zdimensional step edge. The Gaussian-smoothed gradient detection process 

reduces the effect of Gaussian white noise. Therefore, a pre-vote threshold on the Canny 

gradient values which eliminates step edges 5 8 will prevent almost all false detection of 

edge pixels. However, noise at edges causes a more serious problem that noise in areas 

of constant intensity. Noise at edges may cause inaccurate edge localization. 

To compare the quantizer votes filter using the Canny process with the Canny process 

alone, a synthetic test picture was used. The test picture includes a series of step edges of 

different intensities, ramp edges, cumulative Gaussian edges, lines of different orientations 

and intensities, single pixel dots of various intensities, and several circles. The gradient 

values of pixels on either side of a perfect step edge are equal, so the Canny non-maximum 

suppression removes neither. Therefore, the 2-dimensional step edge shows as a double 

line in the result. However, when a little noise is added, the gradient at one pixel or the 

other becomes a local maximum, and the edges become erratic line, as in Figure 17. 

Quantizer votes removes the effect of small changes in local intensity and the same noisy 

edge is a straight double line. In real pictures, double edge lines are more likely to occur 

using quantizer votes than using Canny alone because the number of possible intensity 

values is much lower after quantization. Thus edges are more likely of be symmetric. 

This can be beneficial when edges are used for region growing because they are more 

likely to be closed over long distances; however, for other applications double lines may 

be a problem. 

Synthetic intensity ramps appear as very wide edges using gradient detection. They 



Figure 17: Effect of Gaussian White Noise of Variance 1 on Canny's Method and 

Ouantizer Votes Edge Detection Algorithms 





are not thinned by non-maximum suppression, because the gradient values are identical. 

With Gaussian white noise added, there are small jumps in intensity and small flat levels 

of intensity, so the ramp becomes an area of short, erratic edges. The quantizer votes 

algorithm eliminates these edges until the noise is very strong. This effect is shown in 

Figure 18. 

The quantizer votes process works well using a convolution with a mask which 

is a directional derivative of a Gaussian function. However, the exact nature of the 

convolution mask is not specified by the process. Quantizer votes and other amplitude 

domain processing, may work with a large variety of convolution masks. In principle, 

quantizer votes could work using local differencing instead of convolution (and non- 

maximum suppression in either case), but we expect a degradation of performance from 

the lack of good pre-vote thresholding. 

The quantizer votes algorithm could be implemented as a parallel process. The 

quantizations could be done in parallel, the edge detection could be done in parallel and 

the non-maximum suppression could be done in parallel. No global information is used 

until the edge information is completed. 

There is no a priori distinction between noise, texture and useful edges. If noise 

exceeds the amplitude of attenuated edges, that noise will be passed through the process. 

Conversely, if the amplitude of useful edges is less than the attenuation amplitude, those 

useful edges will be lost. However, some analysis of the resulting edges will indicate 

whether the process was successful. 



5.3 Checking Edge Results 

Several statistics have been developed which measure whether the border edges were 

separated from the noise and texture edges. One statistic tests whether the number of 

edge pixels found is the number of border edge pixels expected. The other statistic tests 

whether the average length of the groups of edge pixels found has the average length 

of the groups of edge pixels eqected .  These methods will not prove that the edge 

pixels found are actually the desired border edges. That can only be done subjectively. 

However, these methods provide indications that the edge pixels are the border edge 

pixels. 

One statistic is the the edge pixel frequency introduced in Section 4.2. Edge pixel 

frequency is the average number of thinned edge pixels found per thousand pixels in the 

original image. If the graph of the number of edge pixels e(s) versus edge strength s has 

a bimodal distribution (Figure 8), the local minimum is used as the strength threshold sf. 

If the total number of edge pixels E (sf) at or above st falls into a range of expected values 

for the number of border edge pixels B (0), then there is a good chance that most of the 

border edge pixels are found. This method was used along with subjective evaluations 

to establish a theoretical basis for edge strength thresholding. 

This method is slow for the quantizer votes algorithm because the quantization and 

edge detection must be done repeatedly for different edge strengths thresholds. The same 

statistic can be used with Canny's method of edge detection, since a histogram of strength 

values can be used directly. However, in our tests, edges found using Canny's method 

did not produce a bimodal distribution. 



Another way to confirm that noise and texture edges are separable from border edges 

uses the average edge extent statistic which was introduced in Section 4.2. Average edge 

extent is a measure of average length of 8-connected edge pixels, but the connected pixels 

need not be in a line. If there is a jump in average edge extent at the threshold s when 

& (s) is in the expected range for B (0), then this is a strong indication that the border 

edges were separated. However, if some noise and texture edges exceeded the strength 

threshold, they will reduce the average edge extent. For example, the image in Figure 2 

did not have a sharp increase in average edge extent when the Quantizer Votes algorithm 

was used for edge detection. When Canny's method was used for edge detection, there 

was a gradual increase in average edge extent with increasing edge strength threshold. 

A faster way to confirm separation of border edge pixels is to choose a strength 

threshold, then calculate the average edge length and edge pixel frequency. If pixel 

frequency and length are within acceptable limits, then the threshold is acceptable. If not, 

use the pixel frequency to choose whether to increase or decrease the strength threshold. 

More experiments need to be done in this area to find a quick, reliable process. 

6 Suggestions for Further Study 

More work is needed to enhance machine object recognition capabilities. The new edge 

thresholding work should be integrated with edge enhancement and region growing pro- 

cesses, and the resulting regions should be checked with the expectations about regions. 

Knowledge-based interaction between these modules may be a substantial contribution to 

the field of object recognition. 



Quantizer votes can be compared with another algorithm which would produce edges 

with similar spatial frequency characteristics. This algorithm would combine edges with 

high edge strength at a narrow scale with high edge strength at a wide scale. This 

method may give similar results using pyramid image processing rather than parallel 

image processing. 

The edge extent, edge pixel frequency and total number of object instances per view 

statistics need to be studied further to confirm their usefulness in general vision. In 

particular, the range of border edge densities found in different types of scenes, not just 

urban and suburban aerial photos, needs to be studied. 

7 Conclusions 

The LandScan object identification system for use on aerial photos of urban scenes has 

been described. The LandScan system performs automatic recognition on images of a 

model of the University of Pennsylvania campus. Current versions are being enhanced 

to recognize objects from digitized aerial photographs on a larger set of scenes. 

The LandScan recognition system is based on identification of region shapes. It is 

a modular system, and the modules are being studied and enhanced individually. In 

this work, several approaches to the edge detection module have been studied. A new 

concept based on the quantizer votes algorithm has been developed. The quantizer votes 

algorithm is an edge detection method which produces appropriate edges for recognition 

of man-made objects. This method is based on re-quantization of the original image 

and repeated application of Canny's method for gradient detection and non-maximum 



suppression. This method has been tested and discussed. 

Several new statistics about edge pixels have been introduced and studied. These are 

average edge extent and edge pixel frequency. Average edge extent is the average length 

of connected, but not necessarily straight, edges in the image. Edge pixel frequency is 

the number of edge pixels per 1000 pixels in the image. These statistics were tested on 

several images and there are indications that they may be useful for general application to 

edge detection. In addition, a limit on the total number of object instances per view has 

been proposed, based on human perception and machine capabilities. This limit, along 

with object area to perimeter ratios, will provide information necessary to calculate the 

edge pixel frequency. 

The goal of this work has been twofold. First, a modular automatic object recognition 

system has been built. Second, that system has been enhanced to use more knowledge 

about kinds of edges and characteristics of edges to improve recognition on the basis of 

shape. 

A Appendix: Recognition System Design Questions 

The design of a recognition system is driven by the answers to the following questions: 

What objects are the system supposed to recognize? 

understand context: Will the system try to recognize everything in the scene, 

or will part of the scene be considered background? 



recognition vs. discrimination vs. inspection: Is the recognition a division into 

classes, then finer distinctions? Is the object assumed to be in a particular 

class, and the system is to discriminate between instances? Is the system to 

compare objects to specific paaerns or to a range of features? 

range of variability: How much change within object classes will there be? Do 

object classes ever overlap? 

For each object, what are the important diagnostic features upon which to base 

recognition? 

1. How will raw information be obtained? 

2. What types of feature information can and should be obtained from the raw 

data? 

3. How will feature information be combined? 

4. Will recognition of some objects in the scene influence identification of other 

objects? 

In what situations is the system supposed to work? 

1. Will the same features be available in all situations? 

2. How will feature information change in different situations? 

3. How will the system recognize what the situation is? 

4. Under what situation is the system not expected to work, and what should its 

response be then? 



How will the system be controlled? 

1. How will the task begin? 

2. How will control pass within the system? 

(a) Can processing be done in parallel? 

(b) Is there internal feed back, self-checking, relaxation labeling, or other 

repetitious processing toward a goal? What is that goal? 

What is the nature of the result? 

1. What are the termination criteria? 

2. In what form is the result? 

3. How is the result deiivered? 

Once the overall system design is complete, there are many different kinds of algo- 

rithms to choose from. The recognition decisions can be made using a fixed rules or fuzzy 

sets. The initial identifications can be the final identifications, or they can be updated 

using a set of rules about inter-relationships. Recognition algorithms should be chosen 

on the basis of the expected objects' characteristics. For example, if the set of objects to 

identify is fairly consistent, then a fixed set of rules should produce reasonable results on 

the first iteration. On the other hand, if objects have overlapping characteristics, a fuzzy 

set of rules would be more useful. The recognition portion of the system can be modular, 

so that the recognition algorithm can be improved if it is not adequate. In this way, the 

system can begin with a relatively simple recognition algorithm. When the limits of the 

algorithm are reached, it can be replaced without redesigning the whole system. 

56 



Features for recognition need to be extracted from the pixels. There are many kinds 

of features which can be used, and there are various algorithms used to find them. Again, 

this aspect of recognition can be modularized such that the feature extraction algorithm 

can be changed if it is not a&quate. The exact feature value ranges in the recognition 

module would have to be changed, but the rest of the recognition module should still 

function. 
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