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Abstract 

Co-ordination of multiple manipulators requires cooperation at several levels in the control hierar- 

chy. A distributed processing environment with no hardware dependencies except at the motor servo 

level, would provide a flexible architecture for coordination. A system on these lines is being built to  

control an articulated hand and an arm. The four levels of control envisaged include a task decom- 

position level, a planning level, a scheduling level and a server level. The hand will carry both force 

and tactile sensors, feedback from these are used to  provide adaptive control in grasping tasks. The 

processing of the sensory information is performed by independent processes, with analyzed informa- 

tion being sent t o  the relevant layer of the system. The manipulators are also controlled by iiidividual 

processes. All process can open communications with an active process sending commands or data, 

or receiving them. We describe the scope of the system and the current setup plus future lines of 

development. 
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1 Introduction 

The motivation for this work came from the desire to develop an environment which having multiple levels 

of sophistication in terms of user programming as well as understanding. Most robotic environments are 

only programmable and usable at  a single level. That is the user is either provided with a programming 

environment [Lloyd85, Pau186, Vusk881, or is provided with a computational architecture that is suitable 

for robot control [Nigam85, Wang86, Chen861. 

In order to provide user access at various levels of the system, each level was partitioned in terms 

of its task and functionality requirements. This meant defining an interface between each level, and in 

addition creating multiple modules for each level. The communications interface would be defined by the 

receiver and the sender would comply to the definition. 

There were some strong reasons to try and break up the control system into independent modules. The 

notion of a central processing environment, no matter how computationally powerful, would not solve the 

need for parallelism, and a massively parallel architecture would introduce gross hardware dependancies 

from which we were trying to  get away from in the first place. 

The modules could either contain processes that control a manipulatory device, such as an arm, wrist 

or hand, or they could be processes that read a tactile array or collect the data from a range scanner. 

In either case they could send data/commands out to multiple devices and receive data/commands 

from multiple devices too. This system in no way precludes the addition of new sensors, manipulators 

or processing hardware, and thus serves the need to expand or modify the objects within the robot 

environment. 

In order to simplify and generalize the means of communication between the various modules, we 

decide to use the standard UDP protocol [Postel80]. Some justification for UDP is provided in [Corke89]. 

The protocol itself is not intrinsic in the design of the system and thus can be changed with the only 

requirement being, the ability to broadcast messages over a network using an Internet protocol. 

2 Robot System Issues 

Trying to  build a robot system that can perform simple tasks in a unstructured environments is largely 

an unsolved problem and most solutions have tended to overconstrain the problem. The initial problem 



was the lack of an articulated gripper, of which quite a few now exist some of which are described 

in [Ulr88, Jacob85, Salis841. A major issue now, is to be able to perform adroitly making use of information 

gathered from the environment to utilize these articulated grippers that are mounted on the end of an 

arm. 

There are other projects going on at MIT, JPL, Stanford and Sandia [Stans89] where work is being 

done on grasping and other manipulatory tasks using a robot arm in tandem with articulated hands. 

Still unknown environments provides the very daunting aspect of having to deal with numerous uncer- 

tainties and to overcome them by obtaining information via sensors. The information obtained about the 

environment or object being manipulated is not very useful in isolation. Only when it has been inserted 

into a framework with from where this information can be extracted can we obtain a or picture of the 

environment. 

The problem of grasping now balloons from grasping using multiple fingers to  dealing with a host of 

devices, each with their own characteristics. With a large number of devices we have a large amount of 

information flow within the system. If we adopt a distributed processing environment we need to define 

a hierarchy of control so that at  each level we have a particular processing capability, plus provide coor- 

dination between levels. To impose this hierarchy the system now needs to divide itself along conceptual 

lines without any hard dependancies between components in the system. 

We can introduce new devices or processes into such a system, or replace obsolete objects without 

perturbing the system or having to alter existing links. With distributed processing environment with 

standard interfaces with a high bandwidth communication channel, we should be able to construct an 

environment to develop a fairly flexible and intricate hand arm control system. 

3 System Description 

There are essentially four conceptual components to this robot system, a cognitive component, a percep- 

tual component, a scheduling component and a manipulatory component. This paper deals mainly with 

the details of the manipulatory component. The other components are an essential part of the system 

but are touched on more briefly in this paper. 

We are dealing with a large number of processes or modules that are linked to each other by the fact 

that they can send messages to and fro. Provided the speed of message passing is adequate, we can close 
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loops about a particular sensory processing module and a manipulator, or close the loop around multiple 

manipulators and sensors. 

Sensor and manipulator modules fall under the manipulatory part of the systems, though modules 

that process the sensory feedback could either be thought of as belonging to the perceptual component or 

the manipulatory component depending on whether the processed information was being used to directly 

control the manipulators, or whether the processing was being used to construct or modify object models 

stored in the perceptual database. 

The next few sections describe the components, detailing the importance of the component and I 

bringing out some of the kinds of interactions that take place between them. 

4 Cognitive Component 
I 
I 
I 

The cognitive component is the most complex and least defined part of the system. In order to perform 

the specified task, we need to understand the task, the constraints under which it is to be performed, 

take into account the information we can retrieve and obtain the remaining information. Substantial 

literature describing of work done in the area of task planning and decomposition exists. In the area of 

hand arm coordination and primarily grasping, Jeannerod talks about transportation and manipulation 

as being fairly independent [Jean81], Haun et al, talk about grasp posture as a function of stability and 

manipulabilty [Liu89]. In other work Marteniuk et a1 suggest that there is an invariability in the reaching 

component of prehension tasks, though, though there are variances in peak velocities and acceleration 

profiles [Mar87]. In [Arbib83] they discuss the flow of perceptual information through visual and tactile 

feedback while performing motor control. 

These studies and others indicate that humans seem to decompose tasks into different phases, some of 

which overlap. Also the decomposition often results in segmentation where there minimal dependancies 

between two separate segments. Thus in a robot environment we can attempt to  segment tasks in a 

similar manner and to each segment of the task, link a set of sensory information required to perform 

that segment. If the information is not available a priori i.e. from the perceptual database component, 

then we need to close a loop around the segment and the sensors that can provide the information. Once 

the task is segmented the planner needs to set up a framework for the task segments, to allow it to 

monitor the progress of the individual segments, as well as make any changes if need be to the ordering 

of the segments. 



4.1 Task Specification 

At the highest level we provide a task specification level, where the user can input a function that specifies 

the task to be performed, an object related to the task and associated object attributes. This interface 

provides a top level which requires a minimal understanding of how the system actually performs, and 

still has enough generality to allow useful exercises to be performed. The task is specified by means of 

a function label. The function label represents a set of one or more actions, on the completion of which 

the task is done. The function labels are self descriptive and are essentially an index into a database of 

functions that the system contains. 

Each action provide the system with a goal for which it must generate a plan for at the next level. 

The plan will generation is discussed in the planner. 

At the task level the system checks whether an object has been specified or not. If the object has not 

been specified the perceptual database is notified to provide information on possible objects if any that 

the task could be implicitly specifying. 

If on the other hand the object has been specified at the task level, the perceptual database is requested 

to  provide preliminary data on the object from its stored models. This preliminary data would augment 

any user provided attributes and be sent to the planner. 

Thus the task level can be thought of as an interface to any external reasoning or task planning system 

that can provide functions for the system to perform. 

4.2 Planner 

The role of the planner is to take a set of actions from the task level specification and fill in the parameters 

for each action based on the set of object attributes available from the perceptual database. The actions 

provided to  the planner would have a list of parameters that need to be initialized. Typically actions 

would involve motion of the arm with either a desired position or a desired velocity and for the hand a 

more complicated setpoint. The action could either specify for the hand to  achieve a desired characteristic, 

where the arm would assist by complying or moving with some velocity, or the action could merely ask 

the hand to be in a certain configuration when the arm reaches a desired setpoint. 

The planner has to  formulate a scheme around the set of actions, so that they can be sent to the 

scheduler and revised if necessary. Revisions to these plans take place, based on the success or failure of 

previous actions. 



The scheduler which is provided with individual queues for each device, keeps the planner informed in 

case of failure of one the commands in the queue. This enables the planner to decide whether the current 

queue is still valid, or whether the set of actions need to be revised. The planner does not collect all the 

sensory feedback, because the feedback is either used directly by the server that controls the manipulator, 

or by the perceptual database where the processed sensory data is integrated into the current model being 

used. 

5 Perceptual Component 

In order to access information about the objects we will be dealing with, we need to have a store of 

knowledge about them. Object categorization is well studied in the area of human recognition and 

perception. One paradigm used is natural categories [Ros76]. Objects are classified under superordinate, 

then divided into basic, and then further divided into subordinate categories. Some of the distinguishing 

features that place objects in the same category is function and structure. We will use this taxonomy to 

structure our database and add the material properties as a further distinguishing attribute. 

The perceptual system is constructed in a way to enable us to arrange our perceptual information 

both to perform object recognition, as well as provide operational parameters with reference to objects 

being manipulated. 

5.1 Perceptual Database 

One of the key feature of the database is the segmentation along the line of perceptual properties. In 

addition to perceptual properties, the individual components of the database map neatly onto particular 

sensory information. There are three components to  the database; structural, material and functional. 

Each component will allow for independent object parameters to be accessed from the database. Thus we 

can obtain shape and volume to decide the aperture of the hand from the structural database, stiffness 

and weight of object from the material component of the database, and part and part motion information 

from the functional database. Multiple object properties can be extracted from haptic sensing [Klat89], 

thus data obtained from tactile and other contact sensors can provide multiple property descriptions. 

The structural description of the database will consist of surface and volumetric description of objects 

as well as object parts. These descriptions will be provided using superquadrics as the representation. 



This representation can be used to model objects utilizing and fusing data from both visual as well as 

haptic sensors. 

The functional description will contain information about the kinds of tasks that the object could 

be used for. A knife cuts, a hammer hammers, cups can hold liquid would be the kinds of functional 

relevance that could tell us what object we are dealing with in trying to accomplish the task. In addition 

functional descriptions can provide information on the best grasp location on the object, or the best 

grasp to  use for a particular object. This grasp information would definitely augment the information we 

can obtain from the structural and material descriptions. In addition the functional description would 

contain salient information about moving parts of an object, pivots, and other distinguishing features. 

The material description will contain information on intrinsic object properties such as texture and 

stiffness. These two properties are different in the sense that texture is both a haptic as well as visual 

property [Led886], where as stiffness or hardness of objects is primarily extracted by touch. Thus the 

database can be updated by multiple sensors providing the same information, albeit a t  different resolutions 

spatially. 

6 Scheduler 

The planner provides the scheduler with a queue of commands that the devices are to be provided with. 

The scheduler maintains a separate queue of commands for each separate device within the system. On 

receiving a command for a device for the scheduler does not have an existing queue, a initialization 

message is sent first, and on acknowledgement, the scheduler sends out the commands from the devices 

queue. 

The motion queue handler is the heart of the scheduler. On receiving queue of commands for a device 

from the planner, it translates the commands into queue elements particular to the device, and appends 

them to the existing queue, or replaces the existing queue by the new commands. If the command is 

simply to stop the device from what it is doing, the scheduler has to send a halt command to the respective 

servers. The scheduler is responsible, for maintaining the ordering in the queue, coordinating between 

the queues, and linking the sensor feedback to the device server. 



7 Servers 

A server is provided for each device within the system. A device could be a gripper, wrist, arm or a sensor 

which can be actively commanded. Servers actively monitor the network to  check for any commands 

addressed to  them. Each server would have two asynchronous processes running simultaneously. The 

network process deals with communication over the network, to the scheduler, or a sensor server, that 

could be providing processed data that is used in controlling the servers device. The device process is 

engaged in sending commands to the device and monitoring its setpoints. Within the server the two 

processes would exchange information, using shared variables and buffers to read from and write to. 

The servers could run on any machine that had access to the network, be it a PC reading a tactile 

array, or a systolic array processor running a robot arm. Since the server has a standard interface to  the 

outside world we do not require any specification of the other device. Thus communication is done using 

the XDR representation which calls for a standard byte ordering in all messages, with machine specific 

decoding of the data at the host end. 

8 Sensors 

Sensors within the system can be divided into two categories, intrusive and non-intrusive. Intrusive 

sensors are those which provide contact data like tactile array sensors or moment/torque sensors. 

Non intrusive sensors are devices like laser range scanners, video cameras, that can provide data about 

the environment without having to be in contact. They typically do not disturb the environment or the 

objects of interest. These devices can be mounted on an arm and be position to the best advantage of 

the system, as long as that does not interfere in the manipulatory activity. 

There are three modes by which sensors can provide feedback to  the manipulators. In the servo 

feedback mode the sensor is directly monitored by the device process within the server. This mode is 

associated with position sensors or motor torque sensors where the output is used in the servo loop. This 

kind of feedback is essentially device specific, and thus not pertinent to the system specification. 

In server mode, the feedback is provided over the network by a sensor whose output has been processed, 

and a specific attribute is sent back to the device server. An example would be tactile sensors that provided 

a new finger position, by detecting edges, during contour tracing. Another example could be a visual 

servoing scheme [Corke89], where an object is tracked, by a camera, mounted on a Puma560. Here the 



processing of the camera image is done by one process, which provides the arm server with a new position 

and orientation. 

The third mode of sensory feedback is via the perceptual database. In this mode, the loop is closed 

around the perceptual database and the planner. Processed data is used by the database to modify an 

existing object model. this modification of the object model, may influence the task plan, in which case 

the planner, alters the commands sent to the scheduler. 

Below are described two sensors and the modes of processing. 

8.1 Visual sensing and processing 

Vision is the nonintrusive sensory capability provided to the system. Within this framework we use 

vision to provide us with information which is used to build the perceptual database. The structural 

component of this database, requires both volumetric and surface information about objects that need 

to  be manipulated. 

We use superquadrics to model objects, and use a schema proposed by Gupta [GuptaBS] to obtain 

both volumetric and surface descriptions from these models. Superquadrics is a compact means on 

representing a wide range of objects. In addition spatially dense data obtained from any device can be 

provided to the model generator to enhance the surface contours. Laser range data and tactile sensors 

are sources of such spatially dense data. 

The processing schema of visual data or the mode of representation of objects are not part of the 

system specification. What is needed are adequate descriptions of objects, which are easily modified and 

stored. The sensor has a server that accepts commands to relay the image, to  the processing server. The 

processing server could be anywhere on the net, and can either command the sensor to provide more 

images or could be asked to provide an object model to the perceptual database. 

Though the system has not been explicitly designed to perform object recognition, it has the capability 

of doing so. In the case of a task being specified and no object being provided, the functional database 

would provide a pointer to the structural database to indicate a group of possible object models. The 

visual server, would then be required to image the scene aiming to extract at  least one of the objects in 

the group selected. 



Figure 2: Example of sensor servers 



8.2 Tactile sensing and processing 

Tactile processing is a crucial intrusive or contact sensor. However it is in the dynamic data gathering 

and processing area that this system can fruitfully utilize tactile data. One motivation for using tactile 

data, is to  provide edge and surface data to the servers operating the articulated hand in real time. The 

tactile pads would be placed on the finger tips and palm of the hand, and allow for contour tracing, 

or surface tracking of objects. In terms of the perceptual database, tactile sensors provide the material 

properties for objects, such as stiffness and texture. 

The processing of tactile data is primarily useful if we can extract edges in real-time. Segmenting 

the image into a background and foreground to minimize the computation is an important component 

[Muthu87]. Since tactile feedback is inherently a dynamic process, the environment is constantly being 

modified even as we obtain data about it. Thus tactile data in conjunction, with position information 

in world coordinates would be required to accurately construct an object model. Thus along with each 

tactile image, we need to obtain position and orientation information, from both the arm and the hand. 

This information can be provided, the arm, hand and tactile servers can synchronize their clocks. Given 

that we can track edges, we can modify object models, where occlusion has prevented the entire surface 

description from being generated. 

Thus real time processing of tactile data is one of the aims of this system. The tactile image is 

obtained at a sufficiently high rate from the sensor and then processed by a server that obtains the data 

and provides edges and patches to the hand server. Again the algorithms used to process the sensors or 

the sensors themselves are not intrinsic to the system, instead the ability to provide real time edge and 

patch data to  the hand server is crucial. 

9 Current Setup 

This section describes some of the work that has been done in creating in the individual modules of 

the system and getting them to work in conjunction with each other. The primary concern was to 

demonstrate the validity of sending commands over the network to separate servers, and have the devices 

cooperate in performing tasks. We also attempted to  demonstrate the significance of modularizing the 

various computational processes and provide multiple levels of closed loops to perform the task. 

The four levels of the system were created, the task decomposition, the planner, the scheduler and 
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the server. The set of tasks that we planned to perform were pick and place tasks, where the object 

location and size and stiffness were specified by the user. Since we did not build the perceptual database, 

we simplified the set of action parameters to be within the three specified by the user. 

The planner consisted of a set of instructions, that determined if the actions were being successfully 

executed. If the action was not successful, the planner could either issue the command again, with a set 

of modified parameters, or it could gracefully fail. 

The scheduler, accepted a queue for the hand and another for the arm. the queues had elements which 

depended on the successful completion of each other to provide the coordination, and the scheduler passed 

the next valid element to the relevant server. 

At the server level we had two modules one to send commands to the gripper and the other to send 

commands to the arm. On receiving the initialization message from the scheduler, the gripper and the 

arm were put into ready mode. 

For each of the modules a input and output interface was defined, and communication established 

over a local ethernet. Using a local ethernet we found UDP to be very consistent and reliable. 



9.1 Hardware and Software 

The hardware as shown in figure 3 consists of a Vaxstation 3500, and two MicroVax 11's. We used a 

Puma560 and a Lord Gripper equipped with two LTS-200 force/tactile sensors mounted on the insides 

of each of the fingers. the fingers had a single degree of freedom, with a maximum aperture of 3 inches. 

The Puma 560 was controlled by a Unimate controller and the Lord gripper was controlled by a Lord 

controller. 

The gripper was mounted on the wrist of the Puma560. Parallel lines connects the MicroVax running 

the arm server to the Unimate control box, in order to send the new joint positions to the controller. 

Similarly a serial line connects the hand server to the Lord controller. An interface was provided to 

send commands to the Lord controller and receive the current positions and six degrees of force/torque 

information. 

The MicroVax and the Vaxstation were all unix based systems. The task decomposition system and 

the planner were written in Prolog, while the servers and the scheduler were written in C. 

9.2 Hand Server 

The hand server has two process running, one that communicates with the lord gripper over a serial line, 

and the other that talks to any client programs over the network. In the current implementation, the 

scheduler was the only client. The hand server starts up by opening a socket and listening to the network 

for any commands. It will accept a numbered command from any client. The command format is based 

on the number of parameters of the device that can be controlled, and for the gripper, either the desired 

finger positions, are provided, or the desired force is provided. In addition an object center command 

can also be provided. 

On completing a command the server checks to see if the client was expecting a response, and if 

so it sends back a message saying that command i, where i is the command number, was successfully 

completed or failed. 

9.3 Arm Server 

The arm server is built on similar lines to the hand server. The server starts up the network process and in 

addition starts up a communication channel with the Unimate controller using the RCI interface [Lloyd851 

to  send the joint commands. The server will accept commands in either cartesian positions or cartesian 

velocities in the world coordinates or incremental positions or velocities in the tool frame. 



The RCI interface is provided a new joint position every sample period. The inverse jacobian for the 

puma560 is computed every sampling period and the desired joint angles are obtained using the inverse 

jacobian and the desired cartesian rate [Corkegg, Pau1861. 

The arm server notifies the clientis of the current wrist position and orientation if the client requests 

notification. A notification request can specify an update interval when the current command status 

is sent, or demand the current tool position and orientation in world coordinates. If a joint limit or 

singularity was encountered the server would be notified by the controller and this information would be 

provided to the client in turn. 

9.4 Results 

The pick and place tasks, consisted of grasping cylindrical and cubical shaped objects, from a specific 

location, and moving them to another point. The coordination was accomplished on a couple of different 

fronts. We were able to overlap the arm reach motion, with attaining the grasp aperture, based on 

the object size, so that when we arrived near the object we need not wait for the hand to open. In 

addition, the delay between the time the hand closed on the object, and the arm began to move away 

was minimal. Thus it was felt that using a network to communicate between processes, was a feasible 

method of coordinating control of multiple robot manipulators. 

10 Further Research 

Research needs to proceed on many fronts. The first task we are working on is to  integrate the PENN 

hand [Ulr88] to  take the place of the Lord Gripper, so that we have a articulated hand as one of the 

devices. Building up the perceptual database and the planner are two large segments of the work. Work 

on the perceptual database organization is being done as is the work on building the sensor processing 

environment, in the area of integrating range and tactile data to enhance the object surface descriptions 

and in extracting edge information in rael time. 
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