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1 Introduction 

It has been widely acknowledged in the Machine Perception community that the Scene Segmenta- 
tion problem is ill defined, and hence difficult! To make our primitives adequately explain our data, 
we perform feedback on processed sensory data to explore the scene. This is Active Perception, the 
modelling and control strategies for perception. 

Definition of the problem: 
Segmentation process is a data reduction and requantization of the sensory measurements. The 
key question is what are the new units, primitives, into which we wish to requantize the data. 
Unless we define what these primitives are we cannot measure the performance and completion 
of the segmentation process. This is why we tie the segmentation process to  the part primitives 
[baj,sol,gup88]. 

What should the primitive be? 
In general this depends on the task and the nature of the measurements. In order to make progress 
we shall linlit ourselves to only visual, non-contact measurements, 2D or 3D. Throughout this 
work we are not assuming that any higher level knowledge is available! One consequence of this 
limitation is that movable and removable parts will not be recognized. This is because these parts 
cannot be recognized without manipulation [baj,tsik89]. We also assume that the objects are 
static, the illumination is fixed in relationship to the camera, but the observer is mobile, and can 
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take and control the data acquisition process, hence the Active Perception paradigm. The goal 
of 3D segmentation is to divide and cluster range measurements into solids of primitive shapes 
and primitive surfaces that correspond to (at least in appearance) to one physical material and 
primitive curves that correspond to physical boundaries. The goal of 2D segmentation is to divide 
and group intensity measurements into regions with some determined characteristics and primitive 
2D curves. We postulate that the problem of 3D segmentation is better defined and hence easier 
than the 2D segmentation. This is because the projection of a 3D shape into a 2D shape is a 
nonlinear transformation. Therefore, there are many possible 3D interpretations of a 2D shape. 

2 Segmentation problem - a brief essay 

As stated in the introduction, the question is: wha t  primitives should we choose? 

There are two extreme approaches: 

1. Simple and one only primitive, such as: 

for 3D volume: a cube or a sphere 

for 3D surface: a plane 

for 3D boundary: a straight line segment 

for 2D region: homogeneous, constant gray/color value 

for 2D boundary: a straight line segment 

2. Multiple primitives, as many as the data requires for the best fit: 

for 3D volume: n dimensional parametric volume 

for 3D surface: nth order surface description (n-order polynomial as an example) 

for 3D boundary: nth order curve description 

for 2D region: arbitrary surface description of gray scale and/or color 

for 2D boundary: arbitrary curve description 

The advantage of the first approach is the simplicity of detection of these primitives. The disadvan- 
tage is that the data is poorly approximated and typically either oversegmented, or undersegmented, 
or both. The advantage of the second approach is that the segmentation process will result in a 
natural best fit approximation to the data. The disadvantage is that it is very difficult and expen- 
sive to compute the fit and it does not always give unique results. 

Example  demonst ra t ing  t h e  first approach: Consider a circular segment fit into a straight 
line or a straight line fit into a circle. 

Example  demonst ra t ing  t h e  second approach: Consider an undulated surface 3 times as 
large as one finds on sandumes, or waves in the ocean. This surface will be fitted by a 10th order 
polynomial. 



We hope that the reader sees the point that neither of these extreme approaches are desirable. 
Hence, one is seeking a compromise. However, every compromise will cause some problems. In this 
paper we shall make a design decision and choose: 

for volume: superquadric primitive with deformation parameters of bending and tapering 
along the major axis, as introduced by Solina [so187]. 

for 3D surface: up to second order surfaces 

for 3D boundary: up to second order curves 

for 2D regions: up to second order surface fit to  the signal measurement (either brightness or 
saturation) 

for 2D boundary: up to second order curved segments 

The advantage of this choice is that it covers a larger class of possible geometric objects (more than 
just one primitive) and yet it is easier to compute than the general nth order polynomial fit. The 
disadvantage is that invariably we will have scenes/objects oversegmented and/or undersegmented. 
The goal is however to recognize both cases, i.e. the oversegmentation and undersegmentation and 
make the appropriate corrections. It is in the process of correction where the Active Perception 
comes into play. The above primitives provide a vocabulary in which the final description of the 
scene will appear. 

3 Segmentation of 3D data 

This section is based on work of Gupta [gup89]. The assumption here is that we have a mobile 3D 
range camera available, as constructed by Tsikos [tsik87], and as shown in Figure 1. The physical 
properties of this camera are such that one does not obtain any shading measurements, though 
shadows play a role which does need to be corrected by different views of the camera (this is just 
one example why) the mobile cameraJobserver is important. 
The goal of the segmentation process is to describe the scene/objects in terms of volumetric parts, 
surface and boundary details. These three components form the complete representation of the 
object, yet clearly representing different granularity/resolution of the description. The evaluation 
of the segmentation process is done in terms of the magnitude of the residuals between the models 
(primitives) and the data. In the case of oversegmentation, chunking of segments into larger entities 
will be attempted. For example, if an undulated surface is segmented into consecutive second order 
patches then they maybe grouped together and denoted as one surface. Notice, this grouping is 
done on the symbolic level and one needs to verify it by going back to  the signal level, perhaps 
invoking higher order primitive than just second order (this is acceptable since it is on a different 
level in the hierarchy of representations). 
Following Gupta's proposal, we begin with a volumetric fit, see Figure 2. The residual is measured 
two ways simultaneously: one is the difference between the occluded contour of the model and the 
data, the other is the difference between the surface points of the model and the data. If both 
residuals are smaller than a threshold (obtained from signal/noise ratio), then there is only one 
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verification step left to check. That is why we need to verify the assumption that this objectlpart 
is symmetric. This calls for moving the camera 180 degrees, scanning the object and repeating the 
volumetric fit. If the surface residual is the only one which is bigger than the threshold then the 
implication is that the surface is undersegmented and we apply local fit up to second order patches. 
An example of this case is the vase in Figure 3 where the first approximation is a tapered cylinder, 
and it is only with the surface analysis that we get the second approximation, i.e., the undulated 
surface. Undulated surface is a name for composition of consecutive second order convex and 
concave patches. If one needs to verify whether the boundaries between the patches are continuous 
or if they are true surface boundaries, one would have to perform further tests, such as fit the data 
to higher order surface. 
Another example of this sort can be a case of one cavity in otherwise convex object. This happens 
if the camera is looking perpendicularly on the cavity. The cavity can be modeled two ways: one 
as a negative volumetric part, the other as a combination of bending and rotating, an example of 
the two cases is presented in Figure 4a and b. The difference between the two is in the magnitude 
of the rest of the data. What we mean is this: if the remaining data is bulky then it seems more 
natural to  explain the cavity as a negative volume (bulk implies volume). An example of this type 
is the block with a cut-out half circular cylinder. On the other hand, if the remaining data is more 
like a disk (two dimensions are much bigger than the remaining third one) then the bending plus 
a rotating operation seems more appropriate (case of a bowl). In order to distinguish between the 
two cases again one needs to consider at least one other view. 
Recognition of a hole comes from a combination of the surface residual and the contour of the hole 
must be closed . 
Analysis of significant residual of the occluded contour. 
Here again two cases are: 

a overestimation, where the model covers more than what data is, i.e., missing data. 

a underestimation where the model covers less than where the data is, i.e., excess data. 

The overestimation case: 
The first test is the magnitude by which the model exceeds the data, both at the contour and the 
surface level. If this magnitude is small then the description is adequate. If it is bigger than a 
threshold then search in a radial fashion for the nearest concavity of the contour. Since we know 
a priori that the volumetric primitives are convex objects, we use this fact to follow the contour 
of the object until the next concavity on the contour. That is the breaking point; There must 
be at  least two convex points between the two concave points so that the segmentation can lead 
to primitives. In the case where there are two concave points following each other, the occluding 
segment is pushed in perpendicular direction until the next boundary is found. These heuristics 
follow again from the assumption about convex and symmetric primitives. It could be the case 
that the next boundary will not be symmetric. This can happen either because the true boundary 
is not symmetric or because of missing data due to the angle between the laser and the camera 
which receives the reflected laser stripe (the shadow problem). In order to decide which is which 
we must invoke the camera, and scan the object from an angle that will confirm one case against 
the other. If after the new data acquisition, the boundary is still asymmetric, there is no choice but 
to segment the data into two or more convex and symmetric parts. Using this strategy, recursively 
remove one by one the segmented data and fit it individually to proper superquadric primitives. 
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After every removal of the segmented data, the remaining data is refit to  a new superquadric model. 
Check if there is any underestimation. If there is none, then one can apply the segmentation fit 
procedure to  the part without refitting the remaining data. However, if there is some data which is 
underestimated then one must include it into the recursive process, refitting that portion as well. 
When all the data fits in the models, the process terminates. 
In summary, the basic strategy is first to examine the undersegmented data with continuous recheck- 
ing and fitting of the not explained data. 

4 Two dimensional segmentation process 

Gray scale segmentation of a scene as a problem of Computer Vision has existed for about 20 years. 
So the question can be raised, another paper on segmentation - what can be new? The problem 
as we see it, is that so far most of the criteria of what is considered a "good segmentation" are 
subjective, based on people's perception and interpretation. However if Machine Vision is going 
to be a module that delivers its output to another mechanical device and/or module, such as a 
manipulator, or an autonomous vehicle, then the output of the segmentation process must be well 
defined, parametrized, quantified and measurable. So, the purpose of this section is an attempt to 
develop a theory for the 2D segmentation process. 
For the discussion here we make the following assumptions: 

1. We assume a stationary observer and non moving scene 

2. We assume known illumination (diffused or point source with known direction) 

3. We assume known distance between the observer and the observed scene 

4. We are limiting ourselves to 2D segmentation only, in that boundaries must correspond to 
some change in intensity 

5. We assume that all the conditions above are constant during the time of observation 

Given the above assumptions, the goal of this part of image processing is to produce a segmented 
image, where segments correspond to visually coherent, monotonically changing surfaces. The 
reflectance could be piecewise constant or linear, but no texture and geometrically meaningful units, 
meaning that the regions are enclosed. The segmentation process as defined above can be stated also 
as finding the partitioning of the data into equivalence classes, where the equivalence relationship 
is the homogeneity measure together with the constraints given by the external parameters. We 
propose to  model segmentation process by the flow diagram in Figure 5 .  
In order to be able to  evaluate the segmentation process one must have a model, or a form of data 
decomposition. For us the ingredients of the model are a set of spatial scales . The values of scale 
are discrete and vary by powers of two. This part is built on the basis of the Wavelet Representation 
developed by Mallat [mal88], who has shown that the one dimensional signal as well as the two 
dimensional image are completely represented by a sequence of Wavelet representations. Using 
the Wavelet representation, Mallat has derived another type of representation of the band-pass 
filtered images based on their zero-crossings and the signal between the consecutive zero-crossings, 
see [tre,mal,baj89], parametrized with respect to a set of different orientations. The type of signal 
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between the consecutive zero-crossings can be: constant, linear and quadratic. This is consistent 
with our 3D surface primitives. 
When edge information is associated across different scales, it is possible to separate texture from 
border edges. The texture edges have high spatial frequency content but not low spatial frequency 
content. Shading has low frequency content but not high. Borders have frequency content at  all 
scales. 
In summary, we shall have the following parameters: scales, orientations, the signal type and its 
magnitude. One external parameter to the theory is the signal to noise ratio, which comes from 
the camera characteristics. This last parameter will determine the detection threshold. The lowest 
frequency, the largest scale is given of course by magnification of the optics of the camera and 
the nyquist characteristics. The highest frequency, the smallest scale, is determined by the spatial 
resolution of the CCD chip. If from the task one can obtain more accurate bounds for the largest 
and smallest scale, it is desirable to do so, because of saving of processing time. 
Finally, we have only those external parameters which come from the devices, i.e. the camera noise, 
camera magnification and spatial resolution. 
In the past most work in image segmentation has been using either edge based methods or region 
growing methods [har,shap85]. We have recognized for some time that these two processes are not 
independent and should be considered together [and 881. However we as others have still aplied 
them independently. The new approach does not separate the region growing from edges i.e., 
the signal between two zero-crossing. Rather the edges are used as markings of discontinuity on 
the signal. The considerations of all scales provide a natural data driven selection for different 
granularity of the segmentation process. This is shown in Figure 6 on one dimensional signal. The 
work on two dimensional signals is in progress. 

5 Conclusion 

Scene segmentation is still an art rather than science. We have tried in this paper to introduce some 
analytic methodology into segmentation. Firstly, we claim that unless one commits to some primi- 
tives, i.e the vocabulary of the segmented signal, one has no chance of evaluating the performance 
of the segmentation process. Of course we recognize that by doing so, that is committing ourselves 
to some primitives, we will have errors, that is oversegementation and/or undersegmentation. We 
argue, however, that this is not so bad, providing that one recognizes these two situations and acts 
upon them. Secondly, we assert that geometric primitives are well justified in 3D but not for 2D 
objects because the projective transformation that takes the 3D shape and maps it to many 2D 
possible shapes. Based on this argument we pursue on 2D signal reflectance/color primitives and 
2D shape comes into play only as descriptors of the boundary but not of the shape of the region. 
Thirdly, in the spirit of Active Perception, we sustain that segmentation is an active process, that 
is the process is driven by the task. The task determines at what level of details and accuracy the 
segmentation may stop. 
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Figure 1: Laszr Range Scanner 



1 

t t t 
Occluding Contour Surface D e s c r i p t i o n  Superquadric Model 

* Contour  Tracing ~ o c o l  Surfaca r l t t lng.  
Curvature  e s t l m a t l o n .  - n o d e l  RoCOverea f o r  

* Conlour A n a l ~ s l s  w 

BOSIC s u r f a c e  TIJDBS. Elvan data. -- curvature mlnlma. 
maulma and znros. 

s u r r a c a  
S a ~ m n n t a t ~ o n  s ~ ~ m o n t a l l o n  

Evaluation o r  5hlDB DeSCrIDIIon. 
~ ~ ~ o l n e s n s  gnneratlon 6DOUt P a r t s .  
H ~ o O t n e S e s  Ver I r Icot Ion tnrougn r e e a n s c h .  

F i g u r e  2: Detailed Block Diagram of our Approach for 3-D Segmentation 



Figure 3: Analysis of a Vase: 

. . .  
a) original range image 

b) superquadric model recovered for the vase. A tapered 
cylinder gives acceptable volumetric approximation of 
the vase. 

c) sign of the Gaussian (bottom) and mean (top) curvature: 
mean curvature map indicates presence of 3 convex regions 
separated by two concave regions (boundaries of the convex 
patches). Zero Gaussian curvature on the vase shows that 
the patches are cylindrical. Three second-order surfaces 
can be used to describe the convex patches at the surface 
level. 



F i g u r e  4a & 4b 

a) Range p o i n t s  of a n  a r c h  

b) Range p o i n t s  of a bowl 
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