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1 Introduction 

The purpose of this report is to describe research in sensor fusion with statistical deci- 
sion theory in the GRASP1 Lab, Department of Computer and Information Science, 
University of Pennsylvania. This report is thus a tutorial overview of the general 
research area, the mathematical framework for the analysis, the results of specific 
research problems, and directions for future research. The intended audience for this 
report includes readers seeking a self-contained summary of the research as well as 
students considering study in this area. The prerequisite for understanding this report 
is familiarity with basic mathematical statistics. 

This report has nine sections. Section 2 gives a heuristic description of the sensor 
fusion problem. Section 3 describes the mathematical model of sensor fusion adopted 
in the GRASP Lab. Section 4 discusses uncertainty classes used in modeling sensor 
noise. Section 5 is an introduction to statistical decision theory, the framework for the 
mathematical analysis. Section 6 gives some examples of research problems solved. 
Section 7 is a summary of the main research papers. Section 8 poses other directions of 
research. Section 9 lists publications and presentations by researchers in the GRASP 
Lab. 

2 Sensor Fusion and Consistency 

The sensor-fusion problem is the problem of combining multiple measurements from 
sensors into a single measurement of the sensed object or attribute. There may be 
several different sensors or multiple measurements from a single sensor. The fusion 
problem arises when there are discrepancies in the data: In most applications, the 
measurements do not coincide. The variations in the data are due to the uncertainty 
associated with a sensor. The uncertainty may be due to the environment or to the 
sensor itself. Possible sources of uncertainty include temperature variation, electronic 
interference, weather conditions, worn or defective components, miscalibration, and 
quantization. Despite the variation, however, the desired output of the entire system 
is a single measurement based on the measurements from the sub-systems. Fusion 
is combination of these discrepant data. The goal of fusion, in particular, is optimal 
combination of multiple measurements. The criterion of optimality depends on the 
system and its model. 

Example 2.1 Figure 1 (p. 2) illustrates a sensor-fusion problem with three different 
sensors, labeled S1, S z ,  and S3. The output of each sensor is a measurement 2; of 
the distance of the airplane from a common origin. In general, the measurements 
Zl, Z2, and Z3 will differ from each other because of uncertainty in each sensor. For 
example, the assumed position of each sensor may inexact, or the accuracies of the 

'General Robotics and Active Sensory Perception 
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Figure 1: A sensor-fusion problem 

sensors may vary a t  different ranges. The fusion problem is to combine these three 
measurements into a single measurement of the airplane's distance. Simple examples 
of fusion schemes include the average or median of the data. An optimal scheme 
may maximize the average performance of the system or minimize the worst-possible 
performance of the system, for example. 0 

The sensor-fusion problem induces the consistency problem. A requirement of fu- 
sion is that the combined data are measurements of the same object. The consistency 
probiem is to verify within the uncertainty of the system that the data are in fact 
measurements of the same object. Thus, the first stage of a sensor-fusion problem 
is a test of consistency. Only consistent data are combined. Moreover, consistency 
verifies only the precision of the system, but not its accuracy. The mathematical 
framework alone can neither resolve inconsistencies in the data nor verify accuracy 
of consistent data: These questions must be addressed through some criterion, belief, 
or experience external to the framework. 

Example 2.2 Figure 2 (p. 2) illustrates a consistency problem. The goal of this sys- 
tem of five sensors is to measure the range of a single airplane. The system comprises 
five sub-systems corresponding to the five sensors. The output is a combination of 
the five measurements Zl, Z 2 ,  . . . , Z5 - provided that each sensor is observing the 
same airplane. The consistency problem is to verify this stipulation. In this example, 
a consistency test partitions the data set into two subsets of consistent measurements: 
{Z1, 22, Z4) and {Z3, Z5) The test cannot, however, determine which subset if ei- 
ther is correct. Overall, the measurements are not consistent, and so they are not 
combined. The system must be evaluated with some external assumptions in order to 
proceed. For example, prior experience may indicate that sensors S3 and S5 are faulty, 
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Figure 2: A consistency problem in sensor fusion 

and so only the consistent measurements Zl, Z2, Z3 are combined. Alternatively, the 
inference from the system may be that there are two airplanes in the scope of the 
system, that they are too close to distinguish one from the other, and consequently 
that they are too close for safety. CI 

In summary, this research in sensor fusion addresses the problem of combining 
multiple measurements of a single attribute or parameter into a single estimate of 
that parameter. The approach taken by this research to sensor fusion has some 
underlying assumptions about the sensor system and its application. First, it assumes 
that sensor measurements contain uncertainty and that multiple measurements can 
help to reduce the uncertainty. Second, it assumes that statistical models of the noise 
can be derived. The source of these models may be either physical or empirical. 
Derivation of these models is an important component of the analysis. Third, this 
approach assumes that the possible values of the parameter are known, and it uses 
this prior information in the fusion process. It neither assumes nor uses probabilistic 
prior information about the parameter. Finally, this approach assumes that there is 
a tolerance or threshold for error: An estimate within the tolerance is good enough 
for the application, but an estimate outside of this tolerance is not good enough for 
the application. Furthermore, there is no distinction among estimates within this 
threshold and no distinction among estimates outside of the threshold. 

This research addresses a low-level aspect of sensor fusion amenable to statistical 
analysis. Its scope is a single estimate of a parameter through multiple measurements 
of the parameter. This aspect of sensor fusion is low-level in the sense that its scope 
is limited to finding statistical information about a single attribute. This research 
does not address other questions of sensor fusion, such as how to use a measurement, 
what measurements to take, or how to integrate measurements of different attributes. 
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Research in the GRASP Lab considering other aspects of sensor fusion is included in 
[Durrant-Whyte, 19861, [Durrant-Whyte, 19881, [Hager, 19881, and [Hager, 19901. 

Mat hernat ical Model 

The research on sensor fusion in the GRASP Lab concentrates on statistical analysis of 
this problem. In particular, this research studies fusion of location data. The location- 
data model consists of measurements Z; of an unlcnown parameter 0 in statistical 
uncertainty. (These may be multi-dimensional.) A location model of a measurement 
assumes that the parameter governs only the location of the noise but not its shape; 
the model assumes that the shape of the noise is independent of the parameter. 
(Such noise is called additive.) For example, a measurement Z of a parameter 0 
may be modeled as a Gaussian or normally distributed random variable with mean 
0: Z N(0, u2). Then the shape of the noise is .V(O, a') regardless of the location 0 
of the mean. 

Statistical Formulation of Problem 

The underlying statistical model of sensor fusion in the GRASP Lab has multiple 
measurements Z; consisting of a location parameter 0, in additive noise V,: 

The random variable T/, is the statistical uncertainty in the measurement 2,. The 
scalar 0 is a location parameter for the distribution function Fz, of 2;: For all 0; E O;,  

The set O consists of the possible locations and thus represents prior information 
about the location parameter. The consistency problem is to verify for all i and j 
that 8; = O j  within statistical uncertainty. If the data are consistent, the model is 
simplified: 

Z ; = 0 + V , ,  i =  1, ..., n 

The fusion problem is to find an optimal estimator Sn(Z1,. . . , 2,) of the common 
location 0 from consistent data Z1, . . . , 2,. For constructing an optimal estimator, 
the model assumes a tolerance e for error: An estimate 4 for 0 is acceptable if the 
absolute error of estimation 116 - 811 is at most e; otherwise, the error is unacceptable. 
An optimal estimator minimizes the (maximum) probability of unacceptable error. 

This formulation of sensor- fusion permits flexibility in modeling the noise. For 
example, the distribution of the noise may be asymmetric, multi-modal, or uncertain. 
In particular, there is no restriction to Gaussian noise. Moreover, the model allows. 
measurements from sensors with different noise distributions: There is no assumption 
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that the random variables q, . . . , V, are identically distributed. Also, there may be 
st atistical dependence among these variates. 

Example 3.1 The location model of the sensor-fusion problem of example 2.1 is this: 

Each measurement Z; consists of an unknown location parameter 0; E O in additive 
noise V,. The set O represents prior knowledge about the range of the airplane. The 
noise Q models the uncertainty associated with sensor S;. The problem of consistency 
is to verify that 0, = 02, that O1 = 03, and that O2 = O3 within statistical uncertainty. 
If the measurements are consistent, then the fusion problem is to find an optimal 
estimator 6,(Z1, Z2, Z3) of the common location 0. 

Scalar Problem 

Currently, the main research problem motivated by this paradigm is to estimate the 
scalar location parameter 0 E O of a single observation Z in the model 

There are two versions of this problem, standard estimation and robust estimation. 
In a standard-estimation problem, the distribution function Fv of the additive noise 
V is known. An example is to estimate the mean 0 of Z - N(0 ,  1); in this case 
Fv - M(0 , l ) .  In a robust-estimation problem, the distribution Fv is uncertain: It 
is an unknown member of a given class 3 of distribution functions, an uncertainty 
class. An example is to estimate the mean 0 of Z - N(0 ,  a2) when the scale a E (O,1] 
is unknown; in this case Fv E 3 where 3 is the set of N(0 ,  a2) distribution functions 
with a E (0,1]. Robust estimation is important because it accounts for inexact 
characterizations of the noise. Standard estimation is important both because it is 
a starting point for the analysis of robust estimation and because many problems in 
robust estimation reduce to problems in standard estimation. 

Example 3.2 Figure 3 (p. 6) illustrates the structures of standard estimation and 
robust estimation. In a standard-estimation model, the statistical path from the 
location parameter 0 to the measurement Z is known: The noise distribution Fv 
represents this path. In a robust-estimation model, however, only the possible sta- 
tistical paths are known: The noise distribution is known only to be either F I ,  F 2 ,  

F3, or F4. The exact path is uncertain. The set of possible paths is the uncertainty 
class 3 = {Fl, F2, F3, F4). Standard estimation is thus the special case of robust 
estimation in which ,F consists of a single distribution function. 
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Noise P 
Figure 3: Standard estimation and robust estimation 

Analysis of the single-observation model Z = 8 + V is the first step in the anal- 
ysis of the multiple-observation model. Furthermore, preliminary research suggests 
that in some instances an optimal estimator 6, (Z1, . . . , 2,) is the composition of 
an optimal estimator S(Z) from the single-observation model with a scalar statistic 
Tn(Zl , .  . . , 2,) of the data: 6,(Z1,. . . , 2,) = 6(Tn(Z1,. . . , 2,)). 

The location-data model Z = 6  + V is also a first step in the analysis of the general 
model Z = h(0, V), in which h is some transformation of location and noise. It is the 
simple case in which h(8, v)  = 6' + v. Example transformations h in the general case 
include truncation and saturation functions. The most general situation is a robust 
model in which the transformation h is an uncertain member of a set 'H of possible 
transformations. For example, the transformation h may be a saturation function for 
which the point of saturation is not exactly known. 

Finally, analysis of the single-observation model provides a test of hypothesis that 
two measurements Z1 = O1 + If1 and Z2 = d 2  + If2 are consistent. With Z := Z1 - Z2, 
or 

Z := (81 - 0 2 )  + (Vl - V2) =: 6  + V, 

the data are consistent if 6' = 0 within statistical uncertainty. A test that 6' = 0 
accepts this hypothesis if the confidence interval [S(Z) - e, S(Z) + el contains zero. 
Here S(Z) is an estimator of 6' in the model Z = 8 + V. Analysis of this hypothesis 
test is an important research problem in consistency. 

Figure 4 (p. 7) illustrates the components of the sensor-fusion problem. The goal 
is fusion of consistent measurements from a sensor system. The scalar estimation 
problem is the starting point for the statistical analysis. 

Remark Multiple-observation models Zi = 8, + V,  also are classified as standard 
or robust. The adjectives standard and robust refer to the model of the noise 
distribution. 
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Measurements 

Figure 4: Components of research in sensor fusion 

1 

4 Uncertainty Classes 

Uncertainty classes model a variety of problems in which the noise distribution is not 
exactly known. Some examples are uncertainty in scale, uncertainty in origin, and 
E-contamination. 

Re-evaluation Consistency 
test 

Example 4.1 A model for uncertainty in the origin of a sensor is 

fail 

Here, the distribution Fvt of V' is known, but the shift 17 is unknown. This parameter 
represents the error in positioning the sensor. The model assumes that this error has 
known bounds q1 and 772. With V := V'+q, this problem becomes a robust-estimation 
problem with 

Fv E { F  : F ( x )  = Fvl(x - q), 771 1 7  1 7 7 2 ) .  

Scalar 
estimation 

(See figure 5 ,  p. 9.) This set extends to an uncertainty class .F such that 

pass 

A further extension replaces the lower and upper boundary distributions Fvt(. - 772) 
and Fvt(. - ql) derived from translations of a single distribution Fvt with boundary 
distributions 8, and fiU that are not necessarily related through translation. 

v 

Fusion 

Example 4.2 A model for uncertainty in the scale of a sensor's precision is 
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Here, too, the distribution Fvl of V' is known, but the scale a is unknown. The scale 
represents the sensor's precision through its reciprocal 110. The model assumes a 
known upper bound a,  for the scale or, equivalently, a known lower bound 110, for 
the precision. With V := aV', this problem becomes a robust-estimation problem 
with 

Fv E { F  : F ( x )  = FVl(x/u) ,  0. < u 5 u,). 

(See figure 6, p. 9.) This set extends to an uncertainty class 3 such that 

F c ( F  : F ( x )  <_ Fvl(x/a,) for x < 0 and F ( x )  > Fvl(x/am) for a: > 0 ) .  

A further extension replaces the boundary Fvt(./am) based on scale with some other 
boundary 6 not necessarily related to scale. 

Remark Mathematical analysis motivates the extended uncertainty classes of exam- 
ples 4.1 and 4.2: Many problems in robust estimation reduce to problems in standard 
estimation in which the noise distribution is taken from the uncertainty class. For un- 
certainty in scale, the appropriate noise distribution is the boundary Fvt(-la,). For 
uncertainty in origin, initial research suggests that the appropriate noise distribution 
is a convex combination of the boundaries Fvl(. - ql) and Fvl(  - 59). Thus, the 
boundaries of these uncertainty classes often contain the essential information for ro- 
bust estimation. An intuitive interpretation of this reduction of robust estimation to 
standard estimation based on boundary distributions is that the boundaries represent 
the worst-possible noise. 

Example 4.3 A model for uncertainty in both the origin of a sensor and the scale 
of its precision is 

With V := aV' + 77, 

Fv E { F :  F ( x )  = F v ~ ( ( x  - r l ) /a ) ,  0 < a I a,, 771 177 1772).n 

Example 4.4 A model for sporadic interference or noise is E-contamination. The 
distribution function of €-contaminated noise V is Fv = ( 1  - e ) @  + EQ, where @ 
is a known distribution function, \ZI is an unknown distribution function, and small 
E E ( 0 , l )  is known: With high probability 1 - e the distribution of V is the known 
distribution @, but with low probability E the distribution of V is contaminated by an 
unknown distribution \ZI and is thus uncertain. The corresponding uncertainty class 
for Fv is 

F = { F  : ( 1  - .c)@(x) < F ( x )  < ( 1  - f ) @ ( x )  + 6). 
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0 

Figure 5 :  An uncertainty class for origin 

Figure 6: An uncertainty class for scale 

Figure 7: An uncertainty class for 6-contamination 
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(See figure 7, p. 9.) The lower boundary (1 - €)a(-) corresponds to contamination 
concentrated a t  infinity, and the upper boundary (1 - €)a(-) + 6 corresponds to con- 
t amination concent rated at negative infinity: 

(1 - E)@ (x) = (1 - E)@(x) + e lim Qv (x) 
u-00 

(1 - e)Q(x) + 6 = (1 - c)@(x) + E y+-Kl lim Q,(x) 

Remark In some cases, an uncertainty class for 6-contamination is a generalized 
uncertainty class for origin or for scale if substochastic distributions are permitted. 
A substochastic distribution function F has the following properties: 

1. F is non-decreasing. 

2. F is right continuous. 

3. 0 5 F(x) 5 1 for all x. 
, 

5 .  lim F(x) > 0 or li~n F ( x )  < 1. 
I d - C O  X'03 

A substochastic distribution assigns less than unit probability to the real line 32. An 
interpretation is that such a distribution has probability mass at negative or positive 
infinity. Also, a substochastic distribution formalizes the notion of infinitely bad 
 outlier^.^ 

Example 4.5 The uncertainty class for E-contamination of example 4.4 can be ex- 
pressed as a generalized uncertainty class for origin provided that substochastic dis- 
tributions are allowed. In particular, the upper and lower boundary distributions 
are 

fi,(x) := ( 1  - E ) @ ( x )  and &,(x)  := ( 1  - E ) @ ( x )  + E.  

Consequently, F is a generalized uncertainty class for origin: 

The boundary distributions are substochastic: 

Also, fir(oo) = 1 - E and fi,(-CO) = E . O  

'P.J. Huber, Robust Statistical Procedures, Society for Illdustrial and Applied Mathematics, 
Philadelphia, PA, 1977, p. 30. 
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Example 4.6 The uncertainty class for E-contamination of example 4.4 is a gen- 
eralized uncertainty class for scale if the contamination is restricted to symmetric 
distributions 9: 9 (-x+) + 9(x+)  = 1 for all x. In this case, the extremes of contami- 
nation correspond to  concentration of the probability mass at  zero or to  concentration 
of half of the mass at negative infinity and half of the mass at  infinity. Any distribu- 
tion F E 3 satisfies these bounds: 

Thus if B(x)  := (1 - E)@(x) + €12, which represents concentration of the mass a t  
positive and negative infinities, then 

3 c {F : F ( x )  5 B(x )  for x < 0 and F (x )  > B(x)  for x > 0).  

The boundary distribution I$ is substochastic. 

5 Stat istical Decision Theory 
Statistical decision theory is the mathematical framework for analysis of the location- 
estimation problem in the GRASP Lab. This section introduces this theory and 
formulates the location-estimation model as a decision problem. The principal refer- 
ences for this discussion are [Ferguson, 19671 and [Berger, 19851. Secondary references 
include [DeGroot, 19701, [Wald, 19711, and [Bickel and Doksum, 1977, Chapter 101. 

The Decision Problem 

Figure 8 (p. 12) illustrates the structure of a statistical decision problem. The task is 
to make a decision or perform some action a from a set A of allowable actions. The 
parameter w determines the correct action to take, but the value of this parameter is 
not known. There are, however, two types of information about w. First, the possible 
values are known. These are the elements of the set fl. Second, there is an observable 
random variable Z whose distribution depends on w and thus contains statistical 
information about w. The goal of a decision problem is to choose an action from 
A by using the observable to gain information about the unknown parameter. The 
objective is to find a decision rule 5 that maps the sample space 2 of the observable 
Z to  the action space A: The decision or action for an observation Z = z is S(z) E A. 
Because the action taken is based on a random variable, the decision process has error. 
The loss function L gives the penalty for this error: The loss incurred by action a for 
the parameter w is L(w, a ) .  

In summary, a decision problem is a quadruple (O,A, L, 2) consisting of a pa- 
rameter space fl, an action space A, a loss function L, and an observable Z. The 
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I Parameter I 

Figure 8: A statistical decision problem 

I W 

I I 
I I 
I I 
I I 
I I 
I I 

parameter space is the set of possible values for the unknown statistical parameters. 
For standard estimation, the parameter space is = O and w = 8. For robust es- 
timation, the parameter space is 0 = 0 x 3 and w = (8, Fv). The action space is 
the set of available decisions. The action space of the location-estimation problem is 
A = O; an action a E A is an estimate of 8. The loss function is a scalar function 
on R x A. The loss L(w, a )  for w E R is the cost of the estimate a of 8. This research 
uses the zero-one (e) loss function, L,, to model error tolerance: 

The observable is a random variable whose distribution depends on the unknown 
parameters and thus contains information about them. For the location-estimation 
problem, the observable is Z = 8 + V. 

A decision rule S ( Z )  in an estimation problem is an estimator of 8. The decision 
rule is chosen according to an optimality criterion. This research constructs minimax 
decision rules: Under zero-one (e) loss, an estimator S"(Z) of the location parameter 
8 is minimax if 

A 

- 
0 bservable 

Z = z  

supPW{IIS8(Z) - $11 > e) = inf supP,{IIS(Z) - 611 > e). 
W 6 w 

Thus, a minimax estimator based on zero-one ( e )  loss minimizes the maximum prob- 
ability that the absolute error of estimation is greater than the error tolerance e .  
Equivalently, a minimax estimator minimizes the maximum probability of unaccept- 
able error. 

6 

Remark The zero-one (e) loss function models the notion of acceptable versus un- 
acceptable estimates. An estimate a of 8 has acceptable error if 118 - all 5 e 

- Action 

a = s ( z )  
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(Le(0,a) = 0); otherwise, the estimate has unacceptable error (L,(O,a) = 1). The 
minimax criterion under zero-one loss models the goal of minimizing the maximum 
probability of unacceptable error. CI 

Optimal Decision Rules 

An optimal decision rule is in some sense better than or preferable to other decision 
rules. A decision rule Sl is preferable to a decision rule S2 if the loss under S1 is smaller 
than the loss under S2. The loss function alone, however, is not enough to choose 
between two decision rules since L(w, S(Z)) is a random variable. Consequently, the 
first step in evaluating the performance of a decision rule 6 is to find its average loss 
or risk R(w, 6): 

The risk R(w, 6) is the weighted-average loss of 6, where the weight is given by the 
distribution Fz(-19). 

Example 5.1 When the loss is zero-one (e), the risk of a rule S is the probability 
under w that the absolute error exceeds e: 

Thus, small risk implies small probability of unacceptable error of estimation. 

Comparison of risk gives the weak optimality criterion of admissibility. A decision 
rule S1 is better than a decision rule S2 if the risk of S1 is smaller than the risk of 62 
uniformly in w: 

For all w E R, R(w, S1) I R(w, 62). 

For some 2 E 0, R(2,6,) < R(;, 62) 

A decision rule is inadmissible if there is another rule that is better than it. A 
decision rule is admissible if there is no better rule. Admissibility, however, is an 
incomplete criterion since the risk varies in the unknown parameter w.  (See figure 9.) 
Consequently, the second step in finding a decision rule is to remove the dependence 
of a choice on the unknown parameter. This step leads to three types of decision 
rules: minimax, Bayes, and equalizer. 
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W W 

Figure 9: Complete and incomplete comparison of decision rules through risk 

The minimax approach eliminates the unknown parameter w from the risk by 
comparing the maximum risks of two decision rules. A decision rule S* is a minimax 
rule if its maximum risk is the smallest possible maximum risk: 

sup R(w, S') = inf sup R(w , 6) 
W 6 w 

Thus, a minimax rule guards against the worst-possible risk. 

Example 5.2 A decision rule S* in a standard-estimation problem is minimax if for 
all rules 6, 

sup R(0, S*) 5 sup R(0,S). 
e 0 

A decision rule S* in a robust-estimation problem is minimax if for all rules 6, 

Example 5.3 Example 5.1 shows that under zero-one (e) loss the risk of a decision 
rule S is 

R(w, 6) = P,{IlS(Z) - 011 > e). 

Consequently, a decision rule is minimax under zero-one (e) loss if and only if 

supPW{(IS*(Z) - 811 > e) = inf supP,{(IS(Z) - 011 > e). 
W 6 W 

The Bayes approach eliminates w by comparing the weighted-average risks of two 
decision rules. This approach assumes that there is a known probability distribution 
T on the parameter space ll through which the risks are averaged. This distribution 
is a prior distribution on $2. A decision rule 6; is Bayes against a prior rr if its 
weighted-average risk under rr is the smallest possible weighted-average risk under .n: 

E[R(w, 6:)] = inf E[R(w, S)] 
S 
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Thus, a Bayes rule has best average performance. 
The equalizer approach eliminates w by choosing a decision rule with constant 

risk. A decision rule S is an equalizer rule if for all w E 0, 

R(w, 6) = constant. 

Constant risk is not by itself an optimality criterion, but minimax rules are often 
equalizer rules or almost equalizer rules. 

R e m a r k  A minimax or Bayes rule is optimal with respect to the class D of all 
decision rules 6 : 2 + A. (The definitions take the infimum over all 6 E D.) It is 
sometimes useful, however, to find a decision rule which is optimal only with respect 
to a restricted class D, c D of decision rules. In particular, a decision rule Sf E D, 
is 27,-minimax if for all decision rules 6, E D,, 

sup R(w, 6:) 5 sup R(w, 6,). 
W W 

Similarly, a decision rule 6; is 27,-Bayes against a prior distribution rr if for all decision 
rules ST E D,, 

E[R(w, &:)I < E[R(w, ST)]. 

The goal of this research is to find a minimax rule for the location parameter 9 
of the measurement Z = 0 + V, but direct computation of a minimax rule from the 
definition is usually not possible. Instead, the Bayes and equalizer approaches provide 
an indirect route to minimax rules. A standard result from statistical decision theory 
states that a Bayes equalizer rule is minimax: 

Theo rem 1 Let rr be a distribution on 0, and suppose that the decision rule S is 
Bayes against rr. If S is an equalizer rule, then 6 is minimax. 

Proof  See [Ferguson, 1967, p. 901 or [Berger, 1985, p. 3501. 

Theorem 1 gives a strategy for finding a minimax rule. The first step is to hypothesize 
a class of decision rules likely to contain a minimax rule. The structure of the decision 
problem usually suggests several candidates. The second step, if possible, is to find an 
equalizer rule S in this class. The final step, if possible, is to construct a distribution 
rr on R such that S is Bayes against rr. Theorem 2 gives an extension of this strategy. 

Theo rem 2 Let rr be a distribution on 0, and suppose that the decision rule 6 is 
Bayes against ?r. Let C = sup, R(w,S). If P{w : R(w, 6 )  = C )  = 1, then S is 
minimax. 

Proo f  See [Ferguson, 1967, p. 901 or [Berger, 1985, p. 3501. 
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Theorem 2 relaxes the constraint of constant risk in theorem 1 by permitting some 
points to have risk less than the maximum risk. It requires instead that there are 
not too many such points in the sense that the probability of the totality of these 
points is zero under the prior distribution on R. For example, if R is a continuum 
of points, then the theorem permits the risk to vary from the maximum risk for any 
countable number of points because the probability of a countable set is zero under a 
continuous distribution. A decision rule is almost an equalizer rule if it satisfies the 
hypotheses of theorem 2 and it is not an equalizer rule. 

The probability distribution of these theorems is a mathematical tool; it does not 
necessarily have an interpretation as prior knowledge about the parameter. It is a 
least-favorable distribution: A distribution ?ro on R is least favorable if 

inf E"" [R(w, S)] = sup inf E" [R(w, 6)]. 
6 ~r 6 

(The superscripts indicates the distribution on 52.) Thus, the Bayes risk against a 
least-favorable distribution is the worst-possible Bayes risk against any distribution. 

Computation of a Bayes rule is usually easier than computation of a minimax rule 
from the definition. Theorem 3 outlines a strategy for finding a Bayes rule: 

Theorem 3 Let T be a distribution on 0, and let T ( . J z )  be the conditional distribu- 
tion on R given the observation Z = z. If for all z, 

~ " ( ' 1 ' )  [L(w, S(z))] = inf a ~ " ( ' 1 ' )  [L(w, a)],  

then S is Bayes against ?r. 

Proof See [Ferguson, 1967, pp. 43-45] or [Berger, 1985, p. 1591. 

The conditional distribution ~ ( . ( z )  on R is the posterior distribution on 0. The 
expected value under ~ ( . l z )  of the loss L(w ,  a )  is the posterior expected loss of an 
action a. Thus, theorem 3 states that a Bayes rule minimizes the posterior expected 
loss under the corresponding posterior distribution. 

Example 5.4 For a standard-estimation problem with a prior density p on a contin- 
uous parameter space SZ = 0, the conditional density on O given Z = z is 

p(el.1 = 
fzi.le)~(e) where gz(z) := fi(z10)p(8) do, 

gz(z) 

provided that gz(z) is positive. Thus the posterior expected loss of an action a is 



A Prospectus of Research in the GRASP Lab 17 

Accordingly, theorem 3 implies that a decision rule S is Bayes against p if for all z, 

Thus in practice, the strategy for finding a Bayes action corresponding to an obser- 
vation Z = z is to minimize 

over all possible actions a. 

Features of Decision Theory 

This decision-theoretic formulation of the location problem has several features. First, 
standard estimation and robust estimation coincide within the framework of statis- 
tical decision theory. The only difference is the specification of the parameter space: 
R = O or R = OxF.  The tools of statistical decision theory, however, apply to either 
specification. Second, decision theory incorporates prior information about the un- 
known parameters through the minimax criterion by optimizing over w E R. Third, 
a decision problem accounts for the consequences of the estimate through the loss 
function. Zero-one (e) loss, in particular, models error tolerance: An estimate within 
e of 6 is sufficiently close and so incurs no penalty, and an estimate greater than e 

from 8 is too far and thus incurs full penalty. Also, zero-one loss is independent of 
the distribution Fv. Finally, a minimax estimator S8(Z) based on zero-one ( e )  loss 
induces an optimal fixed-size (2e) confidence procedure that maximizes the confidence 
coefficient among all fixed-size (2e) confidence procedures. This fixed-size confidence 
procedure induced by an estimator 5 of 8 is 

The confidence coefficient is inf, Pw{C6(Z)  3 81, where Pw{C6(Z) 3 8) is the proba- 
bility under w that the confidence interval covers 8. If 5' is a minimax rule, then 

inf Pw{C6*(Z)  3 8) = sup inf Pw{C6(Z) 3 8). 
W 6 

Thus, a confidence procedure based on a minimax estimator under zero-one loss 
maximizes the minimum probability of covering 8. This confidence procedure also 
provides a test of hypothesis that two measurements are consistent. 

6 Examples of Research Problems 

This section gives examples of research problems in statistical decision theory mo- 
tivated by the sensor-fusion problem. These examples are specific instances of the 
general results summarized in section 7. 
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Example 6.1 This example gives a minimax rule for the location or mean 0 of a 
measurement Z - N ( 6 , l )  with 6 E {-1,0,1) when the error tolerance e is 0. 

The random variable Z has the structure Z = 0 + V where Fv - n/(0,1). The 
possible values of 0 are the elements of O = {-1,0,1). This example is a standard- 
estimation problem since the noise distribution Fv is known. Thus Q = O and w = 6. 
Also, the action space A is O. The loss function is the zero-one (0) loss function: 

The minimax decision rule 6' is this: 

The point x = 0.803 is the unique solution of the equation 

This rule implies, for example, that the estimate corresponding to the observation 
Z = 0.5 is 0 = 0. Similarly, the estimate corresponding to any observation Z > 0.803 
is 0 = 1. 

The risk function of 5* is this: 

This decision rule is an equalizer rule with risk 0.422. 
Furthermore, the rule S* is Bayes against the distribution on O with probabilities 

p(0) = 0.4036 and p(&l) = 0.2982. This distribution is a least-favorable distribution. 
(See [McKendall, 19901 for the analysis underlying this example and for similar 

problems in standard estimation.) CI 

Example 6.2 This example gives a minimax rule for the location 8 of a Cauchy 
measurement Z C(B, 1) with 0 E {-1,0,1) when the error tolerance e is 0. The 
distribution and density of a Cauchy random va.riable V - C(0, l )  are 

1 1 1 
Fv(v) = - arctan(v) + - and fv(v) = 

n- 2 n- (1 + v2) ' 

The difference between this example and example 6.1 is the noise distribution. 
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The minimax decision rule S* is this: 

Thus the minimax estimate is d = 0 for small positive observations ( 0  < z < 0.739) 
and d = 1 for large observations (0.739 < z < 5.733). For very large observations 
( z  2 5.733), however, the minimax estimate is again 8 = 0 .  

The risk function of S* is this: 

Here x* := 0.739 satisfies the equation 

Thus, this decision rule is an equalizer rule with risk 0.485. 
The rule S* is Bayes against the distribution on O that has probabilities p(0) = 

0.4198 and p ( f  1 )  = 0.2901. This distribution is least favorable. 
(See [McKendall, 19901 for the analysis underlying this example.) 

Example 6.3 This example gives a minimax rule for the location 8 of a measurement 
Z N ( 9 , l )  with 8 E [-0.3,0.3] when the error tolerance e is 0.1. 

This example is also a standard-estimation problem. The parameter space and 
action space both are the interval [-0.3,0.3]. The zero-one (0 .1)  loss function is this: 

The minimax decision rule S* is this: 

-S*(-z)  if z < O  

S * ( z )  = 
0 if O < z < a  

z - a  if a < z < a + 0 . 2  
0.2 if a + 0.2 5 z 

Here a = 0.3992 is the unique solution of the equation 

2Fv(-a - e )  = Fv(a  - e ) .  
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Figure 10: Likelihood ratios fi(-[l)/fi(-10) for the hT(0,l) and C(0 , l )  distributions 

This rule has JSa(z) ( 5 0.2 since the error tolerance is 0.1. 
The risk function of S* is this: 

This decision rule has constant risk (0.6176) except for the points 6 = *0.1, which 
have smaller risk. Thus, this rule is almost an equalizer rule in the sense of theorem 2 
(P. 15). 

The rule S* is Bayes against the distribution on O that has this density function: 

This distribution is least favorable. 
(See [Zeytinoglu and Mintz, 19841 for the analysis underlying this example.) 0 

Remark The minimax rules of examples 6.1, 6.2, and 6.3 are admissible. 

Remark The minimax rules of examples 6.1 and 6.3 are non-decreasing. Their 
monotonicity reflects the monotone likelihood ratio3 of the N(0,l) noise distribution. 
The minimax rule of example 6.2 is not monotonic. Its behavior reflects the non- 
monotonic behavior of the C(0, l )  likelihood ratio. (See figure 10, p. 20.) 

3~ random variable Z with a density function fi(.)8), for 8 E 0, has a monolone likelihood ratio 
if the ratio fz(.(Ol)/ fz(.IBz) is non-decreasing for all > B2. 
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Example 6.4 This example extends example 6.3 to multiple measurements. It gives 
a minimax estimator 6:(Z1, Z2, Z3) for 0 when there are three independent and con- 
sistent measurements Zl, Z2, Z3 with Zi - N(0, l ) .  

The solution is based on the sample mean (Zl + Z2 + Z3)/3 and its centered 
distribution F' - Af(O,1/3). With r := (21, z2, z3) and T(x) := (zl + z2 + z3)/3, a 
minimax decision rule 6; is this: 

-S'(-T(x)) if T(x) < 0 

6;(%) = 
0 if 0 5 T ( r )  < a', 

T ( z )  - a' if a' 5 T ( r )  < a' + 0.2 
0.2 if a' + 0.2 5 T(a)  

Here a' is the unique solution of the equation 2Ff(-a' - e)  = F1(a' - e). Thus, this 
rule is the composition 6'oT of the minimax rule S* for the single-sample problem 
with noise V N Ff and the sample-mean statistic T. 

(The assumption of Gaussian noise is essential to this example because the sample 
mean of independent N ( 8 , l )  random variables is a sufficient statistic for 8. There 
are no similar results supporting composition of a single-sample minimax rule with 
the sample mean when sample mean is not sufficient for the location parameter. 
See [Zeytinoglu and Mintz, 19881 for the analysis and for other results composing a 
single-sample rule with a scalar statistic in multi-sample problems.) 

Example 6.5 This example gives a minimax rule for the location 0 E [-0.3,0.3] of 
a measurement Z N(0,  a') with some uncertain scale a 5 0.25 when the error 
tolerance is 0.1. 

This example is a robust-estimation problem since the scale a and hence the noise 
distribution Fv - N(0,  a') are uncertain. The uncertainty class is 

The parameter space R is O x 3  or, equivalently, [-0.3,0.3] x  (0,0.25]. The action 
space and loss function are the same as those of example 6.3. 

This problem reduces to a standard-estimation problem since the largest possible 
scale is sufficiently small relative to the error tolerance. The minimax rule for this 
example is the minimax rule for the standard-estimation problem of example 6.3 with 
the noise distribution replaced by N(0,0.25'). In particular, the minimax rule is given 
by definition 1 (p. 19) with a = 0.0808. 

(See [Zeytinoglu and Mintz, 19881 for the analysis. See [Martin, 19871 for a similar 
problem in which the largest possible scale is too large for the problem to reduce to 
standard estimation.) EI 

Example 6.6 This example gives a minimax rule for the location 8 E { -u, 0, u )  of a 
measurement Z = O +  V when the noise distribution Fv is uncertain. The uncertainty 
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class .F is a generalized uncertainty class for scale with boundary @ - n/(0,1): 

F = {F : F(v)  5 @(v) for v < 0 and F(v)  > @(v) for v 2 0). 

(See example 4.2, p. 7.) The error tolerance is e = 0. 
This problem also reduces to standard estimation provided that the unit u is 

sufficiently large (u > -2@-'(114)). If u = 1.5, for example, then solution of this 
problem is similar to solution of the example 6.1: 

The point x = 1.011 is the unique solution to the equation 2@(-x) = @(x - u) .  This 
decision rule is not an equalizer rule, but it is almost an equalizer rule in the sense of 
theorem 2. (See [McKendall, 19901 for the analysis.) 

Example 6.7 This example is a robust-estimation problem which does not reduce 
to standard estimation. The possible locations are { - 1,0,1) and the error tolerance 
is zero. The uncertainty class is 

The largest possible scale (2.5) is too large for the problem to reduce to standard 
estimation. 

A minimax rule S* is the following: 

(See figure 15, p. 26.) Here XI := 1.09833, x2 := 2.59355, and 2 3  := 3.095. 
This decision rule is Bayes against the prior distribution on the parameter space 

{-1,O, 1)  x {1,2.5) with these probabilities: 

This distribution is least-favorable. 
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Figure 11: Likelihood ratio jz(-ll)/fz(.lO) 

The risk function of S* is this: 

R((O,2.5), S*) = R((f 1, I ) ,  S*) = R ( ( f  1,2.5), S*) = 0.576597 

The rule S* is almost an equalizer rule: Although the risk for the parameter ( 0 , l )  is 
less than the equalized risk for the other points, the probability mass for ( 0 , l )  is zero 
under the least-favorable distribution. (See [McKendall, 19901 for the analysis.) 

Remark In the standard-estimation problems of examples 6.1, 6.2, and 6.3, the 
shape of the minimax rule reflects the shape of the likelihood ratio corresponding 
to the density of Z. In the robust-estimation problem of example 6.7, however, 
the non-monotonic shape of the minimax rule mimics the shape of the likelihood 
ratio corresponding to the marginal density of Z given 0 under the least-favorable 
probability function p: 

(See figure 11 (p. 23).) 

7 Summary of Results 

This section summarizes research in the GRASP Lab on decision problems relevant 
to the sensor-fusion ~arad igm.  It outlines the main results of [Zeytinoglu and Mintz, 
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Figure 12: A minimax rule of [Zeytinoglu and Mintz, 19841 

19841, [Ze~tinoglu and Mintz, 19881, [Martin, 19871, [McKendall, 19901, and [Kam- 
berova and Mintz, 19901. The research ~roblems are decision problems in which 
O is a finite interval [-d, d] or its discrete analog (0, f u ,  . . . , f Nu).  In standard- 
estimation problems, the minimal assumptions on the noise are that V has a continu- 
ous, increasing distribution function and a positive density function. The uncertainty 
classes 3 in robust-estimation problems are uncertainty classes for origin, scale, or 
E-contamination. Different assumptions about the parameters e, d or N ,  and Fv or 
F define the specific research problems studied. 

Zeytinoglu and Mintz, 1984 The standard-estimation problem of [Zeytinoglu 
and Mintz, 19841 has parameter space [ - c l ,  dl. The noise distribution has a unimodal, 
symmetric density function and a monotone likelihood ratio. The minimax rule 6 
is an odd, continuous, non-decreasing, piecewise-linear function. Its linear elements 
alternate between segments of unit slope and segments of zero slope. (See figure 12, 
p. 24.) The changes occur at points determined by the solution of a nonlinear system 
of equations in the noise distribution Fv. Without the assumption that Fv has a 
monotone likelihood ratio, the decision rule S is a restricted minimax rule in the class 
of odd, non-decreasing, non-randomized decision rules. 

Zeytinoglu and Mintz, 1988 In [Zeytinoglu and Mintz, 19881, the standard- 
estimation problem of [Zeytinoglu and Mintz, 19841 is extended to robust estimation. 
The uncertainty class is a generalized uilcertaillty class for scale in which the boundary 
distribution has a symmetric, unimodal density with a monotone likelihood ratio. If 
e exceeds a bound e* depending on d / e  and cP, then the decision rule S of [Zeytinoglu 
and Mintz, 19841 with Fv = iP is minimax. Also, the rule S is restricted minimax in 
the sense of [Zeytinoglu and Mintz, 19843. 
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Mar t in ,  1987 In [Martin, 19871, the robust-estimation problem of [Zeytinoglu and 
Mintz, 19881 with e < e* is studied through a specific example in which d l e  = 3 and 
@ is the standard normal distribution, N(0 , l ) .  The uncertainty class is 

The minimax rule for this problem is a randomized decision rule. A randomized 
decision rule is a probability distribution on the space V of all possible decision rules. 
(See [Ferguson, 19671 or [Berger, 19851 for further discussion of randomization in 
statistical decision problems.) The randomized rule of this result confines its mass to 
a few translations of the minimax rule obtained in [Zeytinoglu and Mintz, 19841 with 
Fv =a.  

McKendall ,  1990 The decision problems of [McKendall, 19901 extend the prob- 
lems of [Ze~tinoglu and Mintz, 19841 and [Ze~tinoglu and Mintz, 19881 to the discrete 
parameter space (0, f u,. . . , f Nu), where N is a positive integer and u is a positive 
unit. There are two standard-estimation problems, in which the distribution function 
Fv is continuous and increasing on 32 and has a continuous density function. In the 
first Fv has a monotone likelihood ratio. The corresponding minimax rules are non- 
decreasing step functions whose jumps have magnitude u. (See figure 13, p. 26.) In 
contrast, the second problem assumes that Fv is the standard Cauchy distribution, 
which does not have a monotone likelihood ratio. The minimax rules for this problem 
are also step functions with unit jumps, but they are not monotonic. (See figure 14, 
p. 26.) In both cases, the steps in the decision rules occur at points determined by 
the solution of nonlinear systems of equations in the noise distribution Fv. 

There are also two robust-estimation problems, which are similar to the problems 
of [Zeytinoglu and Mintz, 19881 and [Martin, 19871. The uncertainty class is the 
generalized uncertainty class for scale in which has a monotone likelihood ratio. If 
u exceeds a bound u* depending on N, e and a, then the decision rule 6 of the first 
standard-estimation problem with Fv = @ is minimax. The case u < u* is studied 
through specific examples in which N = 1, e = 0, and F is the uncertainty class of 
[Martin, 19871. The minimax rules for these examples are step functions with unit 
jumps, but they are not monotonic. (See figure 15, p. 26.) 

Kamberova a n d  Mintz,  1990 The results of [Kamberova and Mintz, 19901 extend 
conclusions of [Zeytinoglu and Mintz, 19841 and [Zeytinoglu and Mintz, 19881 to 
problems with fewer assumptions about the noise distribution. In particular, these 
results do not assume that the density of Fv is symmetric or unimodal, and they do 
not assume that the support of Fv is the real line. These results also show how to 
reduce some problems in robust estimation to standard estimation for uncertainty in 
origin and uncertainty in origin and scale combined. 
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Figure 13: A minimax rule of [McKendall, 19901 when Fv has a monotone likelihood 
ratio 

Figure 14: A minimax rule of [McKendall, 19901 when Fv is standard Cauchy ( z  2 0) 

Figure 15: A minimax rule of [McKendall, 19901 when u < u* ( z  > 0) 
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Research Direct ions 

The goals of this research are to model sensor fusion as a statistical problem, to ana- 
lyze the model with statistical decision theory, and to develop mathematical statistics 
for the analysis. The past and current emphasis of this research is the third goal - 
finding minimax rules for decision problems motivated by sensor fusion. In particular, 
the current emphasis is to extend the results of section 7 to more general structures. 
This section outlines these directions for research. 

Non-monotone likelihood ratio In practical applications, likelihood ratios are 
not monotone. For example, c-contamination models and scale-mixture models of 
Gaussian distributions are both widely accepted as realistic models for representing 
uncertainty in sampling distributions. The likelihood ratios in these models, however, 
are generally not monotone. Thus an important extension is to allow noise distribu- 
tions that do not have monotone likelihood ratios. Research issues include identifying 
classes of likelihood ratios and corresponding classes of decision rules. This extension 
is important in robust estimation that does not reduce to standard estimation as well 
as in both single-sample and multi-sample standard estimation. Initial results in this 
direction are included in [McKendall, 19901. 

Multi-dimensional location Problems in which the space O of possible loca- 
tions is multi-dimensional are also important to applications: O c !R2 or O c p, 
for example. A related problem is to jointly estimate the location parameter and 
scale parameter of a bivariate distribution by transforming the scale into a second 
location parameter through the logarithm. Research issues include both stochastic 
dependence among the components of an observation and algebraic dependence in a 
non-rectangular space of locations, such as {(el, 02) : 8; + 82 - < r2).  Another issue 
is approximation with a minimax rule from a similar problem that does not have 
dependencies. 

Multiple samples The multi-sample problem is an important extension of the 
single-sample results. It is fundamental to any application of sensor-fusion. One 
approach to multi-sample problems is direct computation of decision rules on the 
measurements. Another approach is to reduce the multi-sample problem to a single- 
sample problem by composing a single-sample rule with a scalar statistic on the 
measurements: Here, the problem is to identify an appropriate noise distribution and 
statistic. A third approach is to approximate a global minimax rule with a restricted 
minimax rule: Here, the problem is to choose the restricted class so that the restricted 
minimax rule is a good approximation that is easy to find. Some initial efforts using 
the last two approaches are included in [Zeytinoglu and Mintz, 19841. 

Robust  estimation One direction in robust estimation is to develop the problems 
of [McKendall, 19901 and [Martin, 19871 that do not reduce to standard estimation. 
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Another direction is to  extend the results of [McKendall, 19901 to uncertainty in 
origin and c-contamination. A general research issue is to identify and analyze other 
uncertainty classes. 

Sensor models The first and second goals of this research - to model sensor fusion 
as a statistical problem and to analyze the model with statistical decision theory - 
provide broad directions for research. Development and testing of models for specific 
sensors include acquisition and analysis of data. Preliminary work analyzes statistical 
variation in gray-value measurements from both monochrome and color CCD cameras 
used in computer-vision systems. Possible additional sources of data are laser, tactile, 
and ultrasound sensors. Another direction is to consider different models of a sensor's 
measurements. An extension to the linear location-data model Z = 0 + V is the non- 
linear model Z = h(8) + V. Both of these models are special cases of the the general 
structure Z = h(0, V ) .  Possible transformations h are truncation, saturation, and 
quantization Also, the function h on O may be uncertain, and so robust estimation 
must guard against this uncertainty, too. 

Research tools The research philosophy embraces computational investigation in 
addition to traditional mathematical analysis: Numerical and symbolic computation 
are used heavily to gain insight into the solution of the decision problems. The com- 
puting tools of the GRASP Lab provide rich resources for this philosophy. The com- 
puting environment consists primarily of a Sun 4/280 and a VaxStation 3500 under 
UNIX. These are accessed through many Sun, Vax, IBM, and Hewlett-Packard work- 
stations running x l l .  There is also a Connection Machine with two front ends, one 
for c/Paris and another for *LISP. The general-purpose programming language in the 
lab is C,  and the main editor is GNU-Emacs. The main symbolic package is Mathe- 
matica, although MACSYMA is available. The main numerical packages are Numerical 
Recipes in c and I M S L .  The document processor is 14TEX/Tfl with POSTSCRIPT. 

9 Publications and Presentations 

This section lists publications and presentations about sensor fusion by researchers 
in the GRASP Lab. 

1. Robust Multi-Sensor Fusion: A Decision-Theoretic Approach. 
G. Kamberova and M. Mintz. 
In Proceedings of the 1990 DARPA Image Understanding Workshop, 
pp. 867-873, Morgan Kaufmann Publishers, Inc., San Mateo, CA. 
(GRASP Lab technical report MIS-CIS-90-57 (229).) 
September 1990. 

2. Statistical Decision Theory for Sensor Fusion. 
R. McKendall. 
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In Proceedings of the 1990 DA RPA Image Understanding Workshop, 
pp. 861-866, Morgan Kaufmann Publishers, Inc., San Mateo, CA. 
(GRASP Lab technical report M1S:CIS-90-55 (227).) 
September 1990. 

3. Non-Monotonic Decision Rules for Sensor Fusion. 
R. McKendall and M. Mintz. 
In Proceedings of the 1990 DA RPA Image Understanding Workshop, 
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