
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1990

Polymorphic Rewriting Conserves Algebraic Strong Normalization Polymorphic Rewriting Conserves Algebraic Strong Normalization

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Jean H. Gallier
University of Pennsylvania, jean@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen and Jean H. Gallier, "Polymorphic Rewriting Conserves Algebraic Strong Normalization", . June
1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-36.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/546
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/129586269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/546
mailto:repository@pobox.upenn.edu

Polymorphic Rewriting Conserves Algebraic Strong Normalization Polymorphic Rewriting Conserves Algebraic Strong Normalization

Abstract Abstract
We study combinations of many-sorted algebraic term rewriting systems and polymorphic lambda term
rewriting. Algebraic and lambda terms are mixed by adding the symbols of the algebraic signature to the
polymorphic lambda calculus, as higher-order constants. We show that if a many-sorted algebraic rewrite
system R is strongly normalizing (terminating, noetherian), then R + β + η + type-η rewriting of mixed
terms is also strongly normalizing. The result is obtained using a technique which generalizes Girard's
"candidats de reductibilité", introduced in the original proof of strong normalization for the polymorphic
lambda calculus.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-36.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/546

https://repository.upenn.edu/cis_reports/546

Polymorphic Rewriting Conserves
Algebraic Strong Normalization

MS-CIS-90-36
LOGIC & COMPUTATION 19

Val Breazu-Tannen
Jean Gallier

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

June 1990

Polymorphic Rewriting Conserves Algebraic Strong
Normalization

Val Bream- ~ a n n e n ~ J e a n Gallier?

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St., Philadelphia, PA 19104, USA

Abstract. We study combinations of many-sorted algebraic term rewriting systems and
polymorphic lambda term rewriting. Algebraic and lambda terms are mixed by adding
the symbols of the algebraic signature to the polymorphic lambda calculus, as higher-order
constants .
We show that if a many-sorted algebraic rewrite system R is strongly normalizing (termi-
nating, noetherian), then R + p + 7 + type-P + type-)) rewriting of mixed terms is also
strongly normalizing. The result is obtained using a technique which generalizes Girard's
"candidats de reductibilit&", introduced in the original proof of strong normalization for the
polymorphic lambda calculus.

1 Introduction

From a very general point of view, this paper is about the interaction between "first-order
computation" modeled by algebraic rewriting, and "higher-order polymorphic computation"
modeled by reduction in the Girard-Reynolds polymorphic lambda calculus. Our results
permit to conclude that this interaction is quite smooth and pleasant.

Changing the perspective, we regard algebraic rewrite systems as tools for the proof-theoretic
analysis of algebraic equational theories, and we recall that such algebraic theories are used
to model data type specifications [EM85]. Then, the results in this paper together with the

'To appear in Theoretical Computer Science.
2Partially supported by ONR Grant N00014-88-I<-0634 and by ARO Grant DAAG29-84-I<-0061
3Partially supported by ONR Grant N00014-88-K-0593.

results in [BG89] continue to confirm a thesis put forward in a series of papers [MR86, BM87,
Bre881, namely that strongly normaliring type disciplines interact nicely with algebraic data
type specificat ions.

A brief summary of the technical setting for our result goes as follows. Given a many-sorted
signature C, we construct mixed lambda terms with the sorts of C as constant "base" types
and from the symbols in C seen, by currying, as higher-order constants. An obvious, but
important, feature of R-rewriting on mixed terms is that this is done such that the variables
occurring in the algebraic rules can be instantiated with any mixed terms, as long as they
are of the same "base" type as the variables they replace.

Our main result is about preservation of strong normalization (SN). In the setting described
above, we show in section 5 that given a set R of rewrite rules between algebraic C-terms, if
R is SN on algebraic C-terms, then R + @ + q + type-,B + type-q rewriting of mixed terms
is also SN.

Combinations of SN rewrite systems are notoriously impredictable. Toyama [Toy871 gives
two SN algebraic rewrite systems whose direct sum is not SN (see example 1.1). Results
like ours in which SN is preserved in the combination (which is not even a direct sum, since
application is shared) are therefore mathematically very interesting.

Combining the main result of this paper with one in [BG89], we obtain the following: if R
is canonical (SN and CR) on algebraic terms, then R + ,B + type-,B + type-q is canonical
on mixed terms. Again, we should point out that even direct sums of canonical systems are
not necessarily canonical (SN may still fail), as was shown by Barendregt and Klop (see t'he
survey [Klo87]).

We prove our conservation of SN result by generalizing a technique due to Girard [Gir72], the
method of candidates of reducibility. For the simple type discipline the idea of associating
certain sets of strongly normalizing terms to types to facilitate a proof by induction that all
terms are SN already appears in [Tai67] but the situation is much more complicated for the
polymorphic lambda calculus. The idea that such techniques could be used for proving other
results than strong normalization with respect to @-reduction apparently originated with
Statman [Sta85] in the context of the simply typed lambda calculus. (His unary syntactic
logical relations are simply typed versions of the sets of generalized candidates.) This idea is
taken further, to the Girard-Reynolds polymorphic lambda calculus, and very well articulated
by Mitchell [Mitt361 where most of the ingredients of the generalization we give here a.ppear
except that it works for proving properties of type-erasures of polymorphic lambda terms, and
not all such properties reflect back to typed terms. Tait also uses the type-erasing technique
just for strong normalization [Tai75],4 and the technical conditions we use in section 4 owe
to both Tait and Mitchell. In order to accomodate many-sorted algebraic rewriting we use
a generalization of Girard's original typed candidates.

The main result of this paper settles an open question posed in [Bre88], where some insight
into the problem was also given. Several related results have also been obtained recently.

4Mitchell's results were obtained independently of Tait's.

Okada [Oka89] proves conservation of SN by the addition of simply typed P-reduction, gives
a short sketch of an extension to polymorphic terms and type-P reduction, and claims fur-
ther extensions to q-reduction. Dougherty [Dou89] proves conservation of SN when adding
algebraic rewriting to certain SN terms of the untyped lambda calculus, using an analysis
of the residuals of algebraic reduction on untyped lambda terms. Barbanera [Bar891 proves
conservation of SN when adding algebraic rewriting to those terms of the untyped lambda
calculus, which can be assigned conjunctive types, using an extension of Tait's method.
While Barbanera's result strenghtens ours, Dougherty's uses sort-erasure and thus is appli-
cable only to one-sorted algebraic systems: indeed, the following example shows that there
are many-sorted algebraic rewrite systems which are SN, but which cease to be SN when the
sorts are identified.

Example 1.1
Let i and j be two distinct sorts, and Cl and C2 be the following disjoint signatures:

def def C1 = { f : i x i x i + i , O:i, 1 : i) , andC2 - {g:j x j+j) .

Let R and S be the following sets of equations over C1 and C2 respectively (these equations
are due to Toyama [Toy87]):

It is easily seen that both R and S are SN, and so is R U S, because the set of terms over
C1 U C2 is the disjoint union of the sets of terms over C1 and C2, the sorts being distinct.
However, if we identify the sorts i and j and consider the corresponding one-sorted signatures,
then Toyama exhibits the mixed term f (g(0, l),g(O, I) , g(0, I)), which rewrites to itself in
three steps.

2 Mixing algebra and polymorphic lambda calculus

This section is devoted to a review of the concepts and notation needed for stating our
results. We start with an arbitrary many-sorted algebraic signature and define mixed terms
i.e., polymorphic lambda terms constructed with the symbols of the signature seen as higher-
order constants.

Definition 2.1 (Algebraic signature)
Let S be a set of sorts and C an S-sorted algebraic signature. Each function symbol f E C
has an arity, which is a string sl - . s, E S*, n > 0, and a sort s E S.

The intention is that each symbol in C names some heterogenous operation which takes
arguments of sorts (in order) s l , . . . , s, and returns a result of sort s .

Definition 2.2 (Types)
Let V be a countably infinite set of type variables. Type expressions (types) are defined by
the following grammar:

where s ranges over S , and t E V.

Therefore, the "base" types are exactly the sorts of the signature. Free and bound variables
are defined in the usual way. We denote by FTV(a) the set of type variables which are
free in a . We will identify the type expressions which differ only in the name of the bound
variables. The set of type expressions will be denoted by 7.

Definition 2.3 (Terms)
Let X be a countably infinite set of term variables. Raw terms are defined by the following
grammar:

where f ranges over the function or constant symbols from a signature C, and x E X

We denote by R A the set of all raw terms. Free and bound variables are defined as usual.
We denote by FV(M) the set of free variables of M . We denote by FTV(M) the set of
free type variables of M. Again we identify the terms which differ only in the name of the
bound variables and bound type variables. We also follow the convention that in a given
mathematical context (e.g., definition, proof) all bound variables and type variables (in
terms or types) are chosen to be different from the free variables and type variables [Bar84].

In order to define what it means for a raw term to type-check, we need the concept of a type
assignment.

Definition 2.4 (Type assignment)
A type assignment is a partial function A : X ---+ 7 with finite domain. Alternatively,
we will also regard type assignments as finite sets of pairs x: a such that no x occurs twice.
We write A, x: a for A U {x: a) and, by convention, the use of this notation implies that
x # domA. The empty type assignment is usually omitted. We write A 5 At when
domA 2 domA1 and A1(x) = A(x) for every x E domA.

Definition 2.5 (Declared term)
A declared term is a pair (A, M) consisting of a type assignement A and a raw term M,
written A D M.

A declared term A D M may or may not type-check. In order to define which declared
terms type-check, we give the following typing rules, which are used to derive type-checking
judgments of the form A D M: a. (The name of each rule corresponds to the raw term
construct that it helps type-check.)

Definition 2.6 (Typing Rules)

Variables.
A D X : ~

where x: a E A.

Constants. For any f E C of arity sl . . s, and sort s, and for any A,

def where a = s l + . . - + s, + s.

Application.
A D M : ~ + T A D N : ~

Abstraction.

A D (MN): T

A,x:(TD M:T
A D AX:^. M): a + T

Type application.
A D M:Vt.a

A D (Mr): a[+]

for any T E 7.

Type abstraction.
A D M : ~

A D (At. M) : vt. a

where t $ FTV(ranA).

Definition 2.7
Given a declared term A D M and a type a we say that A D M has type a if the judgement
A D M : a is derivable. We say that a declared term type-checks if it has some type.

Clearly, if A D M type-checks, then FV(M) C domA. If x: a E A, we say that x: a is
declared in A D M. A declared term A D M can have declared variables which do not belong
to FV(M). The following fact is well-known.

Lemma 2.8
If A D M type-checks then it has a unique type, a . Moreover, the judgement A D M : a has

a unique derivation.

As the reader must have observed, it is notationally rather cumbersome to manipulate de-
clared terms A D M. It is possible to adopt certain conventions that will allow us to alleviate
this burden when no ambiguities arise. Often, we will write A D M simply as M. In the case
of an application M N , we tacitly assume that M and N are in fact declared terms A D M
and A D N with the same A. In the case of an application (Ax: a. M) N, we tacitly assume
that M and N are in fact declared terms A, x: a D M and A D N with the same A.

We will as much as possible avoid using explicitly declared terms and judgments except when
necessary to avoid ambiguities. Unfortunately, there are a few cases where we will not be
able to avoid declared terms.

Definition 2.9 (Substitutions)
A substitution is a map cp : V U X - 7 U RA, such that cp(u) # u for finitely many
u E V U X, cp(t) E 7 whenever t E V, and cp(x) E R A whenever x E X. The domain of the
substitution cp is the the set domcp = {u E V U X (cp(u) # u).

A substitution cp : V U X --+ 7 U RA can be uniquely extended (in the customary fashion,
by recursion) to a map (g ̂ : 7 U R A + 7 U R A , which is a homomorphism with respect to
the type and term structure.

We define the result of applying c,o to a (raw) term M or a type u as M[cp] def @(M), and

u[cp] d"' @(a).

A type substitution is a substitution cp such that domcp C V (and then cp : V + 7). A
tern substitution is a substitution cp such that domcp G X (and then cp : X - RA).

If domcp = i t l , . . . , tm, XI , . . . , x,}, cp(t;) = ai, and ~ (x j) = Mj (ti E V, xj E X) , we also
denote the substitution c p as [al l t l , . . . , am/tm, Mllxl , . . . , Mn/xn], (and we denote M[p] as
M[al/t l , - ,om/tm, Ml/xl, .. ,Mn/xn]).

'Strictly speaking, one must define substitution before identifying a-congruent expressions (i . e . , expres-
sions which differ in the name of the bound variables) and then show that it can be extended to a-congruence
classes, upon which it indeed acts like a homomorphism (see [Bar84], appendix C).

Since types do not contain term variables, note that a[al/ t l , . . . , am/tm, Ml/xl , . . . , Mn/xn]
is in fact equal to a[al / t l , . . . , am/tm]. Given a type substitution 0 = [al/ t l , . . . , am/tm]
and a term substitution cp = [Ml/xl,. . . , Mn/xn], we denote as 0 U cp the substitution
[cl/ t l , . . . , am/ tml M1/x1,. . . , Mn/xn], which is well defined since V and X are disjoint.

We will be considering substitutions with some type-preserving properties.

Definition 2.10
Let A and A' be two type assignments, and let cp be a substitution, cp : V U X + 7 U RA.
We say that 9 type-checks between A and A', iff domcpn X = domA, and A'~x[cp] : A(x)[cp]
is derivable for every x E domA. We will sometimes abbreviate "cp type-checks between A
and A'" by the notation cp : A + A'.

Note that the above definition makes sense, since A(x) is a type, and thus only the type
components of cp are substituted in A(x). Also, when cp is a term substitution, cp : A + A'
simply means that cp : A - A' is type-preserving (since in this case, A(x)[cp] = A(x)).

The following lemma is easily shown.

Lemma 2.11 Given a substitution cp : A - A', if A D M: a, then A' D M[cp] : a[cp].

We define the usual reduction relations at the level of raw terms. This is justified by
lemma 2.13.

Definition 2.12 (Reduction)

(P-reduction) M N iff
N is obtained from M by replacing a subterm of the form (Ax: a. X)Y with X[Y/x].

(7-reduction) M & N iff
N is obtained from M by replacing a subterm of the form Ax: a. Zx with Z, where
x 41 FV(Z).

(type-P reduction) A4 3 N iff
N is obtained from M by replacing a subterm of the form (At. X)T with X[r/t] .

(type-7 reduction) M 3 N iff
N is obtained from M by replacing a subterm of the form At. Zt with Z , where
t 41 FTV(Z).

Let
A' def P rl TO T r l = 4 U 4 U + U - +

Lemma 2.13 If A D M type-checks and M 2 N then A D N also also type-checks and
has the same type.

We will also need
A- def P 7 P '/11 + = 4 U - + U +

It is well-known that both Xv-reduction and A--reduction are canonical (i . e., strongly normal-
izing and confluent) on all terms. In fact, the generalized method of candidates presented in
section 4 can be used to prove this (see theorem 4.11). We denote by Xvnf (X) and X- nf (X)
the corresponding normal forms of X .

Next we will introduce algebraic terms and rewriting. There is a well-known transformation,
known as currying that maps algebraic C-terms into RA. This transformation is an injection.
In view of that, we choose to talk directly about curried algebraic terms and define algebraic
rewriting on them.

Definition 2.14 (Algebraic terms)
A type assignment is algebraic iff all the types occurring in it are sorts. Among the poly-
morphic declared terms that type-check, algebraic declared terms are defined inductively as
follows:

Any term of the form A D x, where A is algebraic and x is declared in A, is an algebraic
term.

If A D f has type sl + . . + s, -+ s, where f is a symbol in C, the type assignement A
is algebraic, and A D Al : sl , . . . , A D A, : s, are algebraic terms, then A D f Al - . A,
is an algebraic term.

Clearly, the types of algebraic terms are actually sorts.

Definition 2.15 (Algebraic rewrite rules)
An algebraic rewrite rule, written r = I? D A + B : s, is a pair r of algebraic terms, I? P A and
I? D B which have the same type (sort) s , and such that FV(B) C FV(A), and A is not a
variable.

Each algebraic rewrite rule determines a reduction relation on all declared terms that type-
check, not only the algebraic ones. In order to precisely define this relation, we introduce
contexts with exactly one hole, in the spirit of [Bar84].

 he results also hold if we have degenerate rules z - P' where FV(P1) = 0 but their effect can be
simulated with normal rules anyway.

8

Definition 2.16 (Contexts)
A raw context is a raw term in which an additional special constant 0 (called hole) can
occur. Given a type a, a (type-checked declared) context with one hole of type a consists of
a type assignment A and a raw context C in which the hole occurs exactly once, such that
A D C type-checks if we add the hole axiom scheme O D 0 : a where O ranges over all type
assignments. We use the notation A D C [: a] for such a context.

By lemma 2.8, a context A D C [: a] has a unique type T and A D C : r has a unique
derivation. In this derivation, there is exactly one instance of the hole axiom scheme. Say
that this instance is A' D 0 : a . Since the derivation is unique, A, C , and a determine A'.
Then, given a declared term A' D M of type a, we can "plug the hole" in the context, by
replacing A' D 0 : a with the derivation of A' D M : a . The resulting derivation type-
checks an actual term (no holes), which we will denote by A D C[A' D MI . As opposed to
terms, contexts are not considered modulo renaming of bound variables. In fact, their use is
motivated precisely by the situations in which a binding Ax in C captures a variable x that is
free in M, something that cannot be simulated with substitution. In working with declared
contexts, as with declared terms, we will omit the type assignments when no ambiguities
arise.

Definition 2.17 (Algebraic reduction)
Given an algebraic rewrite rule r G r D A + B : s, we define a reduction relation on declared
terms as follows

A D M L A D N iff

there exists a context A D C [: s] and a term substitution y : r + I", such that I" is the
type assignment of the instance of the hole axiom scheme used to type-check the context,
and such that

For simplicity, we write M ' N , tacitly assuming that M and N are declared terms with
the same type assignment A. Clearly, from the definition, if M N then M and N
type-check and have the same type. One can easily check the following fact.

Lemma 2.18 If A is algebraic and A 5 M , then M is algebraic.

Thus, we can talk about algebraic rewriting on algebraic terms. It is easy to see that
currying establishes the expected relation between many-sorted algebraic rewriting of C-
terms [MG85] and our definition of algebraic rewriting. Indeed, for any many-sorted C-
rewrite rule m G p -+p' and any many-sorted C-terms q , q'

q --l, q' iff curry(q) 9 curr.y(q')

where c (m) = curry(p) + curry(pl).

7Strictly speaking, we have to allow variants of a rule, that is, instances I" D A[v]+A'[v]:r, where
v: r - I" is a renaming substitution which is a bijection bewteen domr and domr'.

Definition 2.19
Let R be a set of algebraic rewrite rules. Define the following reduction relations on terms:

X'R def A' + =
TER

For any of these reduction relations, we will denote by - the reflexive and transitive closure
of t.

Example 2.20
Consider the signature C defined by: a, b, c: s , f: s + s -t s (where s is a sort),

and the rewrite rule: x: s, y: s , z: s D fx(fyz) + f (f x y) ~ : s.

We have the following reduction sequence:

((At.Ax:t.x)s)(fa(fbc)) ((At.Ax:t.x)s)(f(fab)c) - (Ax: s. x)(f (fab)c)

+ f (f able-

Finally, we state precisely our main result:
R (Conservation of Strong Normalization.) If + is strongly normalizing on algebraic

X'R terms then + is strongly normalizing on all terms that type-check.

3 Algebraic rewriting of higher-order terms

In this section, we show that strong normalization of algebraic reduction on algebraic terms
transfers to algebraic reduction on arbitrary terms. The section's main result, which will be
proved later as theorem 3.10, can be stated as follows.

R R Main Claim. If + is strongly normalizing on algebraic terms then -4 is strongly nor-
malizing on all terms.

The proof of the main claim will require some auxiliary lemmas, and in order to understand
why they are needed, we begin by sketching this proof.

Sketch of proof for the main claim. We proceed by induction on the size of terms. The
only case in which the induction hypothesis does not immediately apply is the case of an
application term. Let M I H TI . . . Tk be such that H is not an application and the Ti's are
terms or types. Suppose there is an infinite R-reduction out of M. Because any R-reduction
from a term of the form H TI . . . Tk where H is an abstraction, a type abstraction, a variable,
or a constant which takes > k arguments (i. e., the length of its arity is > k), must take place
inside some term among the H and T's, by an argument involving a form of the "pigeonhole

principle", we can show that one of the reduction sequences from some term among H and
the T,'s must be infinite.8 But the existence of an infinite reduction from some term among
H and the T,'s contradicts the induction hypothesis. The only complex case is when H is
a constant which takes exactly k arguments, and in this case the type of M is a sort. We
need to analyze algebraic reductions on such terms, in particular to separate "trunk" (close
to the "root" of terms) algebraic reductions from other reductions.

Definition 3.1 (Algebraic trunk decomposition)
An algebraic trunk decomposition of a declared term that type-checks r D M consists of an
algebraic term A D A (the "trunk") and a term substitution cp: A ---+ r such that M r A[p],
domv = FV(A), each variable in A occurs only once, and for all x E FV(A) the term y(x)
has the form H TI . Tk where H is an abstraction, a type abstraction, or a variable, and
TI , . . . , Tk are terms or types.

Strictly speaking, a trunk decomposition for r D M is a pair (A D A, 9 : A --+ I?) with the
above properties, but for simplicity of notation, we will often denote a trunk decomposition

R
of M as A[cp]. Given cp and cp' with domcp = domcp', the notation cp ---n cp' means that

R
v(x) + cp'(x) for every x E domcp.

The following terminology will also be useful. A term whose type is a sort and which has the
form H TI - . - Tk where H is an abstraction, a type abstraction, or a variable, and TI,. . . , Tk
are terms or types, is called a nontrunk term. A term f MI . . . Mk whose type is a sort and
where f is a constant taking k arguments, is called a trunk term.

Clearly the type of any term that has an algebraic trunk decomposition must be a sort, but
in fact that's all it takes:

Lemma 3.2
Any term M whose type is a sort has an algebraic trunk decomposition M = A[y]. Moreover,
this decomposition is unique up to renaming the free variables of A, and when M is a trunk
term, A is not a variable.

Proof. Immediate.

Equipped with this tool, the last case in the proof of the main theorem follows from the
following result, proved later as lemma 3.9.

R Secondary Claim. Let + be SN on algebraic terms. Let A[cp] be an algebraic trunk
decomposition. If 5 is SN on y(x) for each x E FV(A), then 5 is SN on A[y].

Before proving the secondary claim, we give a motivating discussion. For an algebraic trunk
decomposition M = A[cp], an algebraic redex must occur either entirely within one of the

re his argument will be presented more rigorously later when we prove theorem 3.10.

R
subterms cp(x), or "essentially" within the trunk part. More precisely, we say that A[cp] +

A'[cpt] is an algebraic trunk reduction step if the R-redex is not a subterm of one of the cp(x)'s.
R

It is easy to see that if A[cpJ + A1[y'] then for each x' E FV(A1) there is an x E FV(A)
n n

such that cp(x) + cp'(xl). However, separating the trunk reductions is somewhat subtle
because algebraic rewrite rules may be non-linear, or may erase some of their arguments. In

R R
particular, example 3.4 shows that A[cp] - A1[cp'] does not necessarily imply A + A'.

It will be useful to distinguish between algebraic trunk reduction steps and non-trunk re-
duction steps.

Definition 3.3
We shall denote algebraic trunk reductions by 5, and algebraic reductions in the non-trunk
part by 3 (non-trunk reductions).

It is important to note that if a nontrunk term M R-reduces to another term N, then N
ntR

cannot be a trunk term. This implies that for a non-trunk reduction M + N, if M = A[cp]
is a trunk decomposition of M , then N = A[cpt] for the same trunk A, i.e., the trunk does
not grow in a non-trunk R-reduction. Unfortunately, the trunk can grow when some p(x)
P-reduces.

Example 3.4

Let s be a sort, and let f : s -+ s + s , g : s + s -+ s + s , and a, b, c : s be constants.
Consider the following set of rewrite rules R = {fxx ---, gxxx, a - b, b + c) where
x : s is a first-order variable. Consider also the declared term M = f (za)(zb), where
z : s -+ s is a higher-order variable. While we have the rewrite sequence

R
we do not have that fx1x2 + gyly2y3 even if we rename the y's. However, note that

R
f zz - gzzz.

A number of auxiliary lemmas will be needed in order to obtain a proof of the secondary
claim (lemma 3.9).

Lemma 3.5
If M = A[y] 5 N, then the following holds.

tR
(1) If M -+ N , then N = A'[yf] , where for every y E domy', there is some x E domcp

such that cp1(y) = cp(x), and A' is some algebraic term, else

R
(2) M 5 N , and N A[cp1], where cp(xi) - pf (x i) for some xi E domcp and y t (x j) =

cp(xj) for all 3 # i.

Proof. Immediate by a case analysis depending on which kind of redex is being contracted.

Note that case (2) holds because a nontrunk term cannot rewrite to a trunk term. Thus,
the trunk cannot grow.

Lemma 3.6
R

If M E A[cp] + M' - Af[cp'], then for every y E domcp', there is some x E domcp such that
R

c p (4 - cp1(y)-

Proof. An easy induction on the number of rewrite steps using lemma 3.5. [7

Next, we will exploit the observation made in example 3.4 about the positive effect of iden-
tifying the variables that occur in the trunk A of an algebraic trunk decomposition A[cp].

Definition 3.7
For every sort s, let z, be some designated variable of that sort. If A is an algebraic term,
we let A[[] be the term obtained by replacing, for every sort s , all free variables of sort s in
A by 2,. (Note that A[[] is also an algebraic term.)

Lemma 3.8
If A[v] 3 A'[cp'] then A[C] -% A'[(]. If A[cp] 5 At[cp'] then A[(] = At[[] .

Proof. For the first part, let A[(] - A[v] , where v (x) = z, for every variable x E F V (A)
of sort s.' Since A[p] -% Af[cp'], by case (1) of lemma 3.5, we have that for every y E
domcp', there is some x E domcp such that cpt(y) = cp(x). Thus, we can define a function
h: domcp' --+ domcp such that cp f (y) = cp(h(y)) for every y E domcp', and it is easy to see that

tR we have A[v] --+ A1[v'], where domv' = domcp' and v f (y) = v (h (y)) for every y E domv'.
But then, v t (y) = z, for every y E domv' of sort s , and so A[v'] = At[[] , as claimed.

The second part follows from case (2) of lemma 3.5.

Lemma 3.9
Let 5 be SN on algebmic terms. Let A[p] be an algebraic trunk decomposition. If 5 is

SN on cp(x) for each z E F V (A) , then 5 is SN on A[cp].

'This is necessary because C being infinite, strictly speaking, it is not a substitution. However, v is a
substitution agreeing with C on F V (A) .

R R
Proof. First, observe that if M E A[cp] --H M' E A1[cp'], then --H is SN on cpl(y) for every
y E domcp'. This follows from lemma 3.6, since for every y E domcp' there is some x E domcp

R
such that cp(x) + cpl(y). Assume there is an infinite reduction from M . There are two
cases.

R
Case 1. The infinite reduction sequence M - A[cp] --H . . . contains only a finite number

R
of trunk rewrites. This means that the reduction is of the form M - A[p] --+ M' z

ntR
A1[cp'] ----H . . ., where the infinite reduction from M' does not contain any trunk rewrites.

ntR
Then, for every MI1 such that M' - A1[cp'] --H M" A'[cpl'] in this infinite reduction, we

R
have domcp" = domcp' and cp' + cp". Letting domy' = { x l , . . . , x,}, if there is some I; 2 0
such that each reduction sequence from cpl(x;) is of length bounded by k , then any reduction

ntR
sequence M' G A'[cpl] --H . . . has length bounded by mk. Thus, there must be an infinite
reduction from cpl(x;) for some xi E domcp', contradicting the fact that cpl(y) is SN for every
y E domv'.

R
Case 2. The infinite reduction sequence M - A[cp] + . . . contains an infinite number of
trunk rewrites. In view of lemma 3.8, we transform each term B[$] in the infinite reduction
sequence out of M into a corresponding algebraic term B[(]. Since there are infinitely many
trunk rewrite steps, the result will be an infinite sequence of R-reductions on algebraic terms,

R
contradicting the assumption that --H is SN on algebraic terms.

We can now prove the main theorem of this section.

Theorem 3.10
R R If --+ is strongly normalizing on algebraic terns then --+ is strongly normalizing on all

terms that type-check.

Proof. We proceed by induction on the size of terms. The only case in which the in-
duction hypothesis does not immediately apply is the case of an application term. Let
M E H TI . . . Tk be such that H is not an application and the T,'s are terms or types, and sup-

R R R R
pose that there is an infinite R-reduction sequence M + MI --B . . . Mn ----H Mn+l -+ . . .
out of M. There are two cases.

Case 1. The term H in M = H TI . . - Tk is not a constant taking k arguments. In this case,
because any R-reduction from a term of the form H TI . . Tk where H is an abstraction, a
type abstraction, a variable, or a constant which takes > k arguments (i.e., the length of its
arity is > k), must take place inside some term among the H and Ti's, it is easily seen by

R R
induction on n that each term Mn is of the form Hn T;" . . . TT with H + Hn and Ti -+ T;",
for i = 1,. . . , k. Then, one of the reduction sequences from some term among H and the Ti's
must be infinite, since otherwise, if m is an upper bound on the length of these reduction

R R R R
sequences, the length of the reduction sequence A4 + MI -+ . . . Mn --H Mn+l + . . . is

at most (k + 1)m. lo But the existence of an infinite reduction from some term among H
and the Ti's contradicts the induction hypothesis.

Case 2. The term H is a constant which takes exactly k arguments, and the type of M is a
sort. But then, M can be decomposed as M A[cp] where A is not a variable. Thus, each
cp(x;) has size strictly smaller that the size of M, and by the induction hypothesis, cp(xi) is
SN for every xi E domcp. We conclude by applying lemma 3.9.

4 Generalized candidates of reducibility

In this section, we present our generalization of Girard's candidates of reducibility tech-
nique. We also state that the technique can be applied to obtain some well-known SN
and CR results, in addition to Girard7s original SN result. We begin with the definini-
tion of the generalized candidates. For the intuition behind the definition the reader may
consult [GLT89]. The technical use of the candidates should be evident from the proof of
theorem 4.8. We choose to present a version using so-called saturated sets. Another version
using Girard sets (sets satisfying conditions given in Girard's thesis [Gir72] and in [GLTSS])
is possible. For a presentation of this other version and a detailed comparison of the various
conditions involved, we refer the reader to [Galgo].

Let P be a property of declared terms that type-check. For each type a, let P, be the set of
all declared terms of type a which have the property P.

Definition 4.1 (Sets of P-candidates)
The family of sets of P-candidates is the 7-indexed family C = (Cu)uET, where each C,
consists of all sets C (called P-candidates) of declared terms of type a having the property
P (i.e., C C P,), and such that the following conditions hold.

(Cand 1) If x is a variable, TI,. . . , Tk (k 2 0) are either declared terms that type-check which
have the property P or types, and x TI . . . Tk has type a, then x TI . . . Tk E C.

(Cand 2) If f E C is a constant, Nl, . . . , Nk (k 2 0) are declared terms that type-check which
have the property P, and f N l . . . Nk has type a, then f Nl . . Nk E C. (Note that
the length of the arity of f may differ from k.)

(Cand 3) If M, N are declared terms which have the property P, TI,. . . , Tk (k 2 0) are ei-
ther declared terms which have the property P or types, x: T is declared in M, and
M[N/x] TI Tk E C then (Ax: 7. M) N TI . . . Tk E C.

(Cand 4) If M is a declared term which has the property P , TI, . . . , Tk (k > 0) are either declared
terms which have the property P or types, T is a type, and M [T / ~] TI . Tk E C then
(A t . M) 7- TI - . . Tk E C.

''This argument uses a form of the "pigeonhole principle". A similar kind of argument already occurred
in the proof of lemma 3.9 and will occur a few more times.

(Cand 5) Whenever A b M E C and A < A', then A' b M E C. l1

The property P is candidate-closed iff the following hold.

(Clo la) If A b M type-checks and if A, x: a b M x has property P (in particular, also type-
checks), then A b M has property P .

(Clo lb) If M t (where t is a type variable) has property P, then M has property P.

(Clo 2) For any type a, the set Po is itself a P-candidate (i.e., Po E C,).

Observe that in stating the above conditions, except for conditions (Clo l a) and (Cand 5)
where this is not possible, rather than using declared terms (requiring the A part), we have
dropped the A part, making use of the tacit assumptions discussed in section 2.

The main theorem of this section (theorem 4.8) will state the following fact:

Claim. If P is candidate-closed, then every declared term that type-checks has property P.

The proof of this claim requires defining a sort of semantic interpretations of the types
involving the family C of sets of P-candidates. First, we need the concept of a candidate
assignment.

Definition 4.2 (Candidate assignment)
Let P be a property of declared terms that type-check. A candidate assignment (with respect
to P) is map p: V + 7 x C that associates to each type variable t a pair (7, C), where
T E 7 is some type, and C is a P-candidate such that C E C,. Furthermore, denoting the
map such that t H T as p ~ , we assume that the set {t E V I p7(t) # t) is finite. Thus, p~
is a type substitution. The map such that t H C is denoted by pc. With a slight abuse of
notation, we will sometimes denote p~ or pc simply by p.

We associate to each type a and each candidate assignment p a set of declared terms that
type-check, denoted [alp, as follows.

Definition 4.3

''The need for (Cand 5) appeared when the proof of lemma 4.7 was written in full detail. It seems that
(Cand 5) has been overlooked in previous work involving typed candidates.

It is easy to see that if A D M E [alp, then A D M : O [~ ~] .

The next lemma shows that the closure conditions on P-candidates are sufficient to insure
that the sets [alp are already in C.

Lemma 4.4
Assume that P is candidate-closed. For every type a and every candidate assignment p,

[alp E C,,[pl, i.e., [alp is a P-candidate of type a[p] .

Proof. The proof is by induction on the size of a . Such a proof is given in [Galgo], although
for a slightly different notation. For the benefit of the readers who are not familiar with this
kind of argument, we prove closure under (Cand I) , (Cand 5), and that every declared term
in [alp has property P. First, we prove that (Cand 1) holds.

That (Cand 1) holds when a is a variable or a constant is trivial, since each p(t) is a P-
candidate, and P,, itself is a P-candidate by (Clo 2).

Assume that A D x TI - . - Tk: (a + T)[P], where TI,. . . , Tk (k > 0) are either declared terms
which have the property P or types. Let A'D N be any declared term such that A'D N E [alp,
with A 5 A'. Then A' D N: a[p], and so A' D x TI . - - TkN: ~ [p] . By the induction hypothesis
applied to T, since (Cand 1) holds, we have A' D x TI . - Tk N E [T] ~ . But then, by the
definition of [a + TIP, we have A D x TI . . Tk E [a + TIP.
Finally, assume that A D x Tl . - . Tk: (Vt. a) [p], where TI, . . . , Tk (k 2 0) are either declared
terms which have the property P or types. Let T E 7 be any type. We can assume by
a-renaming that t is not free in T and that no capture takes place when p is applied, and
thus, (Vt.a)[p] = Vt.a[p], (a[p])[r/t] = a[p{t: = T)], and A D X TI . . Tkr: a[p{t: = T)]. By the
induction hypothesis applied to a, [alp' E C,,[,,] for every p', and in particular, for every p' of
the form p{t: = (T, C)), where T E 7 and C E C,. Thus, A D x TI . . T k ~ E [a]p{t: = (7, C))
for all T E 7 and C E C,, and by the definition of p t . alp, this means that A D x TI . . Tk E
[Vt. allp. Thus, we have proved (Cand 1). The proof for (Cand 2), (Cand 3), and (Cand 4),
is very similar. (Cand 5) follows immediately by inspection of the clauses of definition 4.3.

Finally, we prove that every declared term in [alp has property P . This is obvious when a
is a variable or a constant, since each p(t) is a P-candidate, and P,, itself is a P-candidate
by (Clo 2).

Let A D M E [a + TIP. Note that for every variable x $ domA, since A, x: a D x: a, by (Cand
l) , A, x: a E [alp, and by the definition of [a 4 TIP, we have A, x: a D Mx E [TIP. Applying
the induction hypothesis to T, the term A, x: a D Mx has property P, and by (Clo la) , this
implies that A D M has property P.

Let A D M E [W. alp. By the definition of p t . alp, we have A D M t E [u]p{t: = (t, PJ).
Applying the induction hypothesis to a, the term A D M t has property P, and by (Clo lb) ,
this implies that A D M has property P . This concludes the induction showing that every
declared term in [alp has property P.

We also need the following technical lemmas.

Lemma 4.5
For every types a, 7, for every p, we have

Proof. By induction on a.

Lemma 4.6
Given any two candidate assignments pl and p2, for every type a, i f pl(t) = p2(t) for all

t E FTV(a) , then [alpl = [alpz

Proof. By induction on a .

All this is then used to show that every term that type-checks belongs to some P-candidate,
and thus has the property P. One uses induction on deductions, strengthening the induction
hypothesis as shown in lemma 4.7. Given a candidate assignment p and a term substitution
cp, we will continue to slightly abuse the notation and write p U cp for the substitution p~ U cp.

Lemma 4.7
For every candidate assignment p, for every term substitution cp, for every A, for every

declared term that type-checks r~ M, if pucp type-checks between I' and A fi.e., pU cp: I' +

A), and if A D cp(x) E [I'(x)]p for every x E domI', then we have A D M[p U cp] E [alp, where
a is the type of I' D M .

Before giving a proof, note that Lemma 4.7 has the flavor of a Kripke-style soundness result.
Indeed, if we think of the A's as worlds (ordered by inclusion I) , then we can think of the
sets [anp as the carriers of some sort of Kripke structure. The Kripke-style nature of theorem
4.7 can be made more explicit if we introduce the following definitions.

Say that I'[p U cp] is satisfied in A, denoted A + r [p U 971, iff p U cp type-checks between I'
and A and A D cp(x) E [I'(x)]p for every x E domI'. Also say that M: u is satisfied in A at
p U cp, denoted A + (M: U cp], iff A D M[p U cp] E [alp. Then, lemma 4.7 can be stated
as follows:

For every A, p, and cp, if A + I'[p U cp] and I' D M: a, then A + (M: a)[p U cp].

Formulated this way, the theorem looks like a Kripke-style soundness result. However, this
analogy will not be pursued further in this paper.

Proof of lemma 4.7. The proof proceeds by induction on the depth of the proof of the
judgment I?D M: a. Such a proof is given in [Galgo], although for a slightly different notation.
For the benefit of the readers who are not familiar with this kind of argument, we consider
two cases, abstraction, and type application.

Case 1. (Abstraction)

l ? , x : a ~ M:T
I? D (Ax: a. M): a 4 T

Let cp be any term substitution, p any candidate assignment, and A any type assignment
such that p U cp type-checks between I' and A and A D y(x) E [I'(x)IJp for every x E domr.
Let A' be any type assignment such that A < A', and let A' D N any declared term such
that A' D N E [alp. We claim that p U cp{x: = N) type-checks between I?, x: a and A'.

For every y E domI', since p U cp type-checks between r and A and A 5 A', we have
A' D y[p]:I'(y)[p]. We also have A' D x[cp{x:= N)]:a[p], since x[p{x:= N)] = N, and
A' D N E [alp. Thus, p U pix: = N) type-checks between I', x: a and A'.

We also claim that A' D cp{x: = N)(y) E [(I ' , ~ : a) (y)] ~ for every y E dom(I ' , ~ : a) . This is
true for the following two reasons: (1) A D cp(x) E [I'(x)IJp for every x E domr, and by (Cand
5) , we have A' D y(x) E [I'(x)lJp; (2) We also have A' D N E [alp, and p{x: = N)(x) = N.

Thus, we can apply the induction hypothesis to r, x: a D M : T, p, cp{x: = N) , and A', and
we have

A' D M[p U p{x: = N)] E [TIP.
However, by a-renaming if necessary, it can be assumed that x is not free in F V (N) and
not free in any p(x), where x E domI', and so

M[pUcp{x:= N)] = M[pU cp][N/x].

From A' D M[p U p{z: = N)] E [TIP and M[p U cp{x: = N)] = M[p U y][N/x], we obtain

A' D M[P U cpl [NIX] E [TIP -
In particular, by setting A' - A, x: a and N - x, we have

and since A 5 A', by (Cand 5) , we have

A', x: a D M[p U cp] E [TIP.
Thus, by lemma 4.4, since A' D N E [alp and A',x: a D M[p U cp] E [TIP, both A' D N and
A', x: a D M [p U cp] have property P. Since we also have A' D M [p U y] [NIX] E [TIP, we are
in a position to apply (Cand 3), and we have

A' D (Ax: a[p]. M[p U cp])N E [~ l p .

Since (Ax: a[p]. M[p U cp]) = (Ax: a. M)[p U p], we get

A' D ((Ax: a. M)[p U cp])N E [TIP,

and this for all A' D N E [alp. By the definition of [a + TIP, this shows that

A D (Ax: a. M)[p U cp] E [a + TIP,
as desired.

Case 2. (Type application)

By the induction hypothesis, we have

A D M[p U cp] E [Vt. alp.

By the definition of [Vt. alp, we have

AD (M[P U cply) E [allp{t: = (7, C)),

for every y E 7 and C E C,. In particular, we can choose y T [p] and C E [TIP. By a-
renaming if necessary, it can be assumed that t is not free in FTV(r[p]) and not free in [p](t)
for every t E V , and so, (Vt. o)[p] = Vt. a[p], and (a[p])[r[p]/t] = a[p{t: = r[p])] = a[r/t][p].
We also have

A D (M[P U cp1~tPl) = A D (MT)[P U 9 1 7

and so,
A (MT)[P U cpl E I[alp{t: = (+I, [TIP) 1.

However, by lemma 4.5, we have

and so, we obtain
A (M ~) [P U cpl E I b [~ / t l l l ~ ,

as desired.

Finally, we obtain the main theorem of this section.

Theorem 4.8
If P is candidate-closed, then every declared term that type-checks has property P.

Proof. Apply lemma 4.7 by choosing p such that p(t) 5' (t, Pt) for all t E V, and ~ (x) ef x
for all x E K.

We give some applications without proof. For more details and proofs, we refer the reader
to [Galgo]. While all these results are certainly well- known, apparently the Church- Rosser
results for polymorphic terms have not been proved by the "candidates" method before (but
this path started in [Sta85, Mit861).

'I' Theorem 4.9 (Girard) " M is +-strongly normaliz ing "
i s a candidate-closed property of t e r m s M that type-check.

Theorem 4.10 (Girard) ' 3 - c o n f l u e n c e holds f rom M "
i s a candidate-closed property of t e r m s M tha t type-check.

Theorem 4.11
T h e following are also candidate-closed properties of t e r m s M t ha t type-check:

A'
" M is +-strongly normaliz ing "

XV
" --confluence holds f rom M "

X - " M is t - s t r o n g l y normaliz ing "

" 5 - c o n f l u e n c e holds f rom M '

5 Conservation of strong normalization

Let R be a set of algebraic rewrite rules such that 5 is strongly normalizing on algebraic
terms. In view of theorem 4.8, the main result of this paper (the conservation of the SN-
property) will hold if we can show the following claim (proved later as theorem 5.6):

X"R Claim. " M is +-strongly normalizing " is a candidate-closed property of terms M that
type-check.

Let us first sketch the structure of the proof of this claim. Of course, we need to check
that the conditions (Cand 1)-(Cand 5) , (Clo la), (Clo lb) , and (Clo 2) hold. In fact, the
only difficult case is to check (Cand 2) for terms of the form M = f Nl - . - N k , where f is a
constant taking k arguments. In this case, the type of M and that of all the terms in any
reduction sequence from M is a sort, and we can find algebraic trunk decompositions for
them. From here we distinguish two cases.

Case 1. The reduction sequence out of M contains only finitely many algebraic trunk
reduction steps.

Let then M' F At[y'] be the term in the sequence obtained through the last algebraic trunk
reduction step. Then, any further reduction step in the sequence is non-trunk and therefore
is inside one of the cpf(x'), x' E FV(At). Unfortunately, there is a small complication: it

X'R
would be tempting to claim that whenever M' = At[cp'] + M" G AU[cp"] and no trunk-
reductions take place, then AN = A'. However, this is not necessarily true because we may

P P have steps MI F Al[cpl] 4 M2 = A2[cp2] in which yl(y) --+ N for some y E FV(Al), and

N has a nontrivial trunk decomposition itself, which implies that A2 is strictly larger than
Al. Fortunately, it is possible to show that each cp'(xl) is SN: see lemma 5.2.

Case 2. The reduction sequence out of M contains infinitely many algebraic trunk reduction
steps.

In this case the idea is to take all the terms in the sequence to Xv-normal form, but this does
not quite work because of the bad interaction between 17 and algebraic reduction [BG89].
Instead we will use long normal forms (see definition 5.3 below).

We now state and prove the auxiliary lemmas needed for proving the claim. First, we need
a more general version of lemma 3.5.

Lemma 5.1
If M F A[cp] 2 N , then the following holds.

(1) If M 3 N , then N E A1[cpl], where for every y E domcp', there is some x E domip
such that cpl(y) = cp(x), else

(2) M 9 N , where N G A1[,o'] and for every y E FV(A1) , either there is some x E domcp

and some subterm N, of N E such that ~ (x) 2 N, and pl(y) is a subterm of
N,, or there is some x E domcp such that cpl(y) = ip(x).

Proof. Immediate by a case analysis depending on which kind of redex is being contracted.

Lemma 5.2
X'R

If M = A[cp] -H MI = A'[cpl] and cp(x) is SN for every x E domcp, then cpl(y) is SN for
every y E domv'.

Proof. An easy induction on the number of reduction steps using lemma 5.1 and the fact
that a subterm of an SN term must be SN.

We will also need the concept of a long normal form. This is a straightforward generalization
of the ?-expanded normal form in [Hue751 called a long pq-normal form in [Sta82].

Definition 5.3 (Long normal form)
A term M is in long normal form if M = Xul. - . . . Xuk. h TI . . - Tm where the vi7s are

either type variables or of the form y: T , h is a variable or a constant, the Tj7s are either
type expressions or (inductively) terms in long normal form, we do not have vk - T, F t
for some type variable t (to avoid having a 771-redex), and the type of h TI . - . T, is either
a sort, or a type variable, or of the form Vt. a. (We will often use the shorter notation

def Xv'. h T l . - - T m = Xul. . - . . Xuk. hTl . . - T m).

While long normal forms are in general not in 7-normal form, the name is justified by the
following result.

Lemma 5.4
Any term is Av-convertible to a unique long normal form.

Proof. Since every long normal form is also a A--normal form, it is sufficient to show how
to 7-convert any A--normal forms to a unique long normal form. If M is in A--normal form
then already M E Awl. . . - . Auk. h Tl - - T,,, where the v;'s are either type variables or of
the form y: T, h is a variable or a constant, the Tj's are either type expressions or terms
in A--normal form, and, we do not have vk = Tm E t for some type variable t. Suppose
that in Av'. h Tl . . . Tm we have already (recursively and, for the uniqueness, inductively)
7-converted those Tj which are terms (and therefore A--normal forms of strictly smaller size)
to their unique long normal form. Let the type of h TI - . Tm be a1 + - - - + a, + T where
n 2 0 and T is either a sort, or a type variable, or of the form Vt. u (any type is of this
form). From this, the unique long normal form is reached by performing the 7-expansions
that give Av'. Axl: al. - . Ax,: a,. h Tl . . Tm Ul . . U, where U; is the long normal form of

xi.

We denote by lnf (M) the long normal form of M. It turns out that while algebraic reduction
does not commute in general with 7-reduction [BG89], it does "commute" with Xv-conversion
to long normal form, in the following sense.

Lemma 5.5
Let r E R, and let M, N be two terms that type-check. If M It N then lnf (M)

lnf (N). Moreover, if M A N is actually an algebraic trunk reduction step then lnf (M) A
lnf (N) .

Proof. We consider first the general case (no restrictions on where the r-redex appears).

Let r = xl :s l , ..., x,:s,tzA t B : s . Since M N, there exists a context with
one hole C[: s] and a substitution y such that M C[A[(p]] and N C[B[(p]] . Let

def Pi = y(xi) (i = 1,. . . ,n) . Then, we can write

Without loss of generality, we can assume that the xi's do not occur in M, N. Let us
introduce the notation AB: s'. D kf Ax1: sl. - . XI,: s,. D where D is A or B. Then,

Let z be a fresh variable of type sl + . -+ s, + s . Then

Let Q sf lnf (C[z PI . . . P,]) . We claim that Q has the following property:

(*) Any occurrence of z is at the head of a subterm of the form z Pi. . - PL where P:
has type s; (i = 1, . . . , n) and z Pi. PL has type s (and thus cannot be further
applied to terms or types).

Indeed, property (*) holds for C[z P I - Pn] and it is easy to check that it is preserved
under P-reduction, 'TP-reduction, and '2-7-reduction. Moreover, while property (*) is not
preserved under arbitrary 7-expansions, it is preserved under the kind of 77-expansion that
are used to reach long normal form (see the proof of lemma 5.4). To see this, let Q' be a term
of the form Xv'. h TI . . Tm and such that the type of h Tl . . - Tm is T + T' , and assume
that Q' has property (*). We can rule out the case h Tl - . T, - z since by property (*) it
implies that the type of z is a sort, and not T -+ TI . For all the other possible occurrences
of z it is easily seen that Xv'. Xy: T . h Tl - - - Tm y also has the property (*).

Let
M" kf ,Bnf(Q[XZ:S: A l z]) 11 def N = ,klnf(Q[XZ:s'.B/z]) .

We will show that M" is in long normal form and since clearly M Xv-converts to MI', we
must have M" = Znf (M) . Similarly, N" = Znf(N) . With this, we need also show that

M" 1, N" . Both facts follow from the following claim.

Claim. If Z is a term in long normal form having property (*) then

r
are in long normal form and X -++ Y .
The proof of the claim is by induction on the size of Z. Let Z Xv'. h Tl . . . T, . We
distinguish two cases.

def (h $ z) Let D be A or B. Then, ,Onf(Z[XZ 2. D / z]) Xv'. h Ti - . Th where Tj' = Tj if Tj
I def is a type expression and Tj = Pnf (Tj[XI: 2 D / z]) if Tj is a term. In the latter case,

Tj is a long normal form of strictly smaller size than Z. Since property (*) is inherited
by subterms, we can apply the induction hypothesis and the statement of the claim
for 2 follows easily.

(h G z) In this case, by property (*), Z - X5.z Zl - . . Zn where Z; has type s; (i = 1 , . . . , n) .
Each of the 2;'s is a long normal form having property (*) and of strictly smaller size
than Z so the induction hypothesis applies. Let

def def Xi = /3nf(Zi[Xs:s'.A/z]) Tc; = /?nf(Zi[XZ:i'.B/z]) (i = 1, ..., n)

Consider XI gf Xi?. AIXl/xl,. . . , Xn/xn] . A is an algebraic term, thus already
in long normal form. By induction hypothesis, the Xi's are in long normal form
and since their types are sorts, X' is in long normal form, in particular also in P-
normal form. Since Z[XS: i'. A / z] /?-reduces to XI we have X X' . Similarly,
Y Xv'. B [x / x l , . . . , Yn/xn] and Y is in long normal form. Moreover, by induction
hypothesis Xi 1, 1: (i = 1,. . . , n) , hence x I* Y .

This ends the proof of the claim and that of the first part of the lemma.

For the second part, we consider the restricted case in which the r-reduction is an algebraic
trunk reduction. Using the same not ation as before, we write again the reduction M N
as

C I A I P ~ / ~ l , . . - 7 Pnlxn]] C[B[Pl/xl , . . . 7 Pnlxn]]

This being a trunk reduction however, the hole in the context ; C [] does not occur within
a p, 7 p , or 7 7 redex. Consequently

A-nf (M) A-nf (C[A[Pl/xl,. . . , Pn/xn]]) A-nf (C)[A[A-nf (PI) /xI , . . - 7 A-nf (Pn)/xnII

and similarly for A-nf (N). Because the type of the hole and those of the A-nf (Pi)'s are
sorts and because A is already in long normal form, we further have

lnf (M) = Znf (C)[A[lnf (PI)/xI, - - 7 lnf (Pn)/xnII

and similarly for lnf (N). It follows that lnf (M) A Znf (N) .
We can now prove the claim stated at the beginning of this section.

X'R Theorem 5.6 " M is +-strongly normalizing "
is a candidate-closed property of terms M that type-check.

Proof. (Clo la) and (Clo lb) are immediate. For (Clo 2), we need to check that the
set of strongly normalizing terms of a certain type satisfies (Cand 1)-(Cand 5). (Cand 1)
is immediate by the familiar kind of argument.12 The verification of (Cand 5) is trivial.
Checking (Cand 3) is a bit of work but the presence of algebraic rules makes no difference
compared to theorems 4.9 and 4.11. The details of this verification can be found in [Galgo].

Checking (Cand 4) is an easier version of checking (Cand 3). The only new situation appears
in checking (Cand 2).

XvR Suppose that Nl , . . - , Nk are all +-strongly normalizing and that there is an infinite re-
duction sequence from M = f Nl . - . Nk. Let the length of the arity of f be n. Since M
type-checks, we have k 5 n. If k < n, the familiar kind of argument applies.13

If k = n, then the type of M and that of all the terms in the reduction sequence is a sort,
and we can find algebraic trunk decompositions for them. We distinguish two cases.

Case 1. The reduction sequence out of M contains only finitely many algebraic trunk
reduction steps.

Let M' EE A'[cp'] be the term in the sequence obtained through the last algebraic trunk
reduction step. Then, any further reduction step in the sequence is non-trunk, and therefore

12By the pigeonhole principle kind of argument used in the proof of theorem 3.10.
1 3 ~ y the pigeonhole principle kind of argument used in the proof of theorem 3.10.

is inside one of the cp'(x'), x' E FV(A1). By the familiar kind of argument, one of these is
not strongly normalizing.14 However, by lemma 5.2, since every N; is SN, every cpt(x'), x' E
FV(Af) is also SN, a contradiction.

Case 2. The reduction sequence out of M contains infinitely many algebraic trunk reduction
steps.

In view of lemma 5.5, we convert all the terms of the infinite reduction sequence out of M to
long normal form. Since there are infinitely many algebraic trunk rewrite steps, the result
will be an infinite sequence of R-reductions. By theorem 3.10, this is impossible. Thus, in
both cases, the assumption that there is an infinite reduction sequence from M leads to a

contradiction, which implies that M is 3 - S N .

Finally, we obtain the main result of this paper.

Theorem 5.7 (Conservation of Strong Normalization)
R X'R If --+ is strongly normalizing on algebraic terms, then --t is strongly normalizing on all

terms that type-check.

Proof. Apply theorem 4.8 and theorem 5.6.

Directions for Further Research

The results of this paper and those of [BG89] show that some important properties of alge-
braic systems are preserved when algebraic rewriting and polymorphic lambda-term rewriting
are mixed. As applications to the results of this paper, we intend to investigate higher-order
unification modulo an algebraic theory. For the simply-typed lambda calculus, we conjecture
that adding the lazy paramodulation rule investigated in [GS89a] to the set of higher-order
transformations investigated in [GS89b] yields a complete set of transformations for higher-
order E-unification. Such a result has several applications in automated theorem proving.
We also intend to investigate the possibility of extending Knuth-Bendix completion proce-
dures to polymorphic theories with algebraic axioms.

Another direction of investigation is to consider more complicated type disciplines, such as
that of the Calculus of Constructions [CH88].

More generally, we feel that the results of this paper are only a first step towards extending
the important field of term rewriting systems to include higher-order rewriting. One of our
main goals is to provide rigorous methods for understanding higher-order functional and
logic programming. In particular, one is interested in rules which describe the behaviour of
higher-order operations (such as maplist, for example). However, one should be careful, the
situation is more complex, as demonstrated by the following example due to Okada.

14By the pigeonhole principle kind of argument used in the proof of theorem 3.10.

Example 6.1
Let f : s + s + s be a binary operation symbol (s is a sort), and consider the following
higher-order rewrite rule

f (22) x -L f (4 (4

where z : s + s is a higher-order variable and x : s is a first-order variable. To r-rewrite an
algebraic term we allow the instantiation of z by terms of type s -+ s obtained by application
from first-order variables and f . Clearly, is SN on algebraic terms. However, we have
the following infinite reduction if z is instantiated to Xy: s. y :

f ((Xy: s. y)x) x -I, f ((Xy: s. y)x) ((Xy: s. y)x) f ((XY: 9. Y) X) x - -

Thus, the interaction between p-conversion and higher-order algebraic rewriting seems quite
subtle. Actually, it is not quite clear what is meant by algebraic rewriting in the presence
of higher-order variables, and this should be investigated further. In any case, it would
be interesting to find sufficient conditions on higher-order rewrite rules that would allow
conservation results of the kind presented in this paper to hold.

References

[Bar841 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Volume 103 of
Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
second edition, 1984.

[Bar891 F. Barbanera. Combining term rewriting and type assignment systems. Manuscript,
to appear in Proc. Conf. Italian chapter of EATCS. 1989.

[BG89] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con-
fluence. Manuscript, submitted for publication. 1989.

[BM87] V. Breazu-Tannen and A. R. Meyer. Computable values can be classical. In Proceed-
ings of the 14th Symposium on Principles of Programming Languages, pages 238-
245, ACM, January 1987.

[Bre88] V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of
the Symposium on Logic in Computer Science, pages 82-90, IEEE, July 1988.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95-120, 1988.

[Dou89] D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus.
Manuscript, Wesleyan University. March 1989.

[EM851 H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1: equations and
initial semantics. Springer-Verlag, 1985.

[Gal901 J. Gallier. On Girard's "Candidats de Reductibilitk.". In P. Odifreddi, editor, Logic
and Computer Science, pages ??-??, Academic Press, New York, 1990.

[Gir72] J.-Y. Girard. Interpre'tation fonctionelle et diminution des coupures duns l'ari-
thme'tique d'ordre supe'rieure. PhD thesis, Universith Paris VII, 1972.

[GLT89] J . Y. Girard, Y. Lafont, and P. Taylor. Typed lambda calculus. Cambridge Univer-
sity Press, 1989.

[GS89a] J . Gallier and W. Snyder. Complete sets of transformations for general E-
Unification. Theoretical Computer Science, 67:203-260, 1989.

[GS89b] J . Gallier and W. Snyder. Higher-order unification revisited: complete sets of
transformations. Journal of Symbolic Computation, 8:101-140, 1989.

[Hue751 G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer Sci-
ence, 1:27-57, 1975.

[Klo87] J . W. Klop. Term rewriting systems: a tutorial. Bull. EATCS, 32:143-182, June
1987.

[MG85] J. Meseguer and J. Goguen. Deduction with many-sorted rewrite. Technical Re-
port 42, CSLI, Stanford, 1985.

[Mitt361 J. C. Mitchell. A type-inference approach to reduction properties and semantics of
polymorphic expressions. In Proceedings of the LISP and Functional Programming
Conference, pages 308-319, ACM, New York, August 1986.

[MR86] A. R. Meyer and M. B. Reinhold. 'Type' is not a type: preliminary report. In Conf.
Record Thirteenth Ann. Symp. Principles of Programming Languages, pages 287-
295, ACM, January 1986.

[Oka89] M. Okada. Strong normalizability for the combined system of the typed lambda
calculus and an arbitrary convergent term rewrite system. Manuscript, to appear
in Proc. ISSAC. 1989.

[Sta82] R. Statman. Completeness, invariance and A-definability. Journal of Symbolic
Logic, 47:17-26, 1982.

[Sta85] R. Statman. Logical relations and the typed A-calculus. Information and Control,
65:85-97, 1985.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. Journal of
Symbolic Logic, 32:198-212, 1967.

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In R. Parikh,
editor, Proceedings of the Logic Colloqium '73, pages 240-251, Lecture Notes in
Mathematics, Vol. 453, Springer-Verlag, 1975.

[Toy871 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128-143, January 1987.

	Polymorphic Rewriting Conserves Algebraic Strong Normalization
	Recommended Citation

	Polymorphic Rewriting Conserves Algebraic Strong Normalization
	Abstract
	Comments

	tmp.1187876417.pdf.JveSI

