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1 Introduction 

The correctness of a real-time system depends not only on how concurrent processes interact, 

but also the time at which these interactions occur. In the tradition of untimed concurrency 

theory, however, formal models for time-dependent computation have treated the execution 

of processes abstractly, quite isolated from their operating environments. These environments 

often have a profound effect on the timing behavior of real-time systems, and cannot be ignored 

when reasoning about them. 

To help bridge the gap between abstract computation models and implementation, we have 

developed a real-time formalism called Communicating Shawd Resources, or CSR [4, 31. CSR7s 

underlying computational model is resource-based, where a resource may be a processor, an 

Ethernet link, or any other constituent device in a real-time system. At any point in time, 

each resource has the capacity to execute an action consisting of only a single event or particle. 

However, a resource may host a set of many processes, and at every instant, any number 

of these processes may compete for its availability. "True" parallelism may take place only 

between resources; on a single resource, the actions of multiple processes must be interleaved. 

To arbitrate between competing events, CSR employs a priority-ordering among them. 

Our priority semantics of CSR is based on the linear-history model [2], and its extension to 

real-time computing [9, 71. While this semantics adequately captures the temporal properties 

of prioritized resource interaction, it does not easily lend itself to an equational characteri- 

zation of the CSR language. It is for this reason that we have developed the Calculus for 

Communicating Shared Resources, or CCSR. Strongly influenced by SCCS [ll, 131, CCSR is a 

process algebra that uses a synchronous form of concurrency, and possesses a term equivalence 

based on strong bisimilarity. Syntactically, CSR is a "richer" formalism, in that it contains 

many real-time language constructs such as timed interrupt-handlers, temporal scopes [lo], 

and periodic processes. However, all of the CSR constructs can be formulated in CCSR, and 

further, CCSR provides the ability to perform equivalence proofs by syntactic manipulation. 

This paper describes our resource-based view of concurrency, including the notion of strong 

prioritized equivalence based on strong bisimulation and the equational characteristics of the 

CCSR terms. To illustrate the effect of priority on computation. consider the following SCCS 



program fragment: 

where a and b are particles. In unprioritized SCCS, a strongly equivalent agent is: 

That is, since the calculus has no underlying priority structure, the resulting term is nonde- 

terministic. However, with the introduction of priority, the result can be much different. For 

example, assume that the priority of a is greater than that of b, or informally a > b, and h > 5. 
In this case we would expect the first term of the summation to  emerge; that is, the resulting 

unit action could not be treated as having no priority. 

An interesting problem arises when priorities are "circular"; that is, when a > b but 5 > .iE. 

Is the resulting term inaction or nondeterministic? If we view particles as "belonging" to system 

resources, there is no reason why such conflicts cannot arise. The problem is complicated 

further in SCCS, where actions consist of many such particles, each having its own priority. 

In order to  assign composite priorities to actions, we clearly require some additional structure 

in our calculus. 

Previous research has, with varying success, treated some issues of the priority problem. 

There has been a spate of effort directed toward defining models for concurrency based on 

"maximum parallelism" [15], in which if processes are ready to communicate, they will com- 

municate. Thus maximum parallelism incorporates a very limited, bi-level priority scheme, 

where non-idle actions always take precedence over idle actions, and contention between non- 

idle actions is resolved nondeterministically. A priority scheme for CCS is treated in [I], in 

which particles can only communicate with inverses of the same priority; this avoids the multi- 

ple priority problem mentioned above. Further, it can be debated whether there is justification 

for priority in completely asynchronous contexts such as those defined by CCS. 

The remainder of this paper is organized as follows. In Section 2, we briefly overview 

the language of CCSR. Then, in Section 3, we describe the resource-based action domain; in 

particular, we stress the priority function on actions, and the partitioning of particles according 

to resources constraints. The semantics of CCSR terms is defined in two steps: we define the 

unconstrained operational semantics for closed terms in Sec I 1 1  1 1 1  I .  followed by the prioritized 



strong equivalence in Section 5. Section 6 presents an example of a real-time problem whose 

correct temporal behavior depends on priority. 

2 The CCSR Language 

The syntax of CCSR resembles, in large part, that of SCCS, and we wish to retain much of its 

flavor. The major differences occur in several places. First, the action domain contains sets of 

particles, does not form a monoid or a group. Second, our notion of communication is closer 

to that of CSP [6, 51, and is not performed with the use of inverse actions. In fact, there is 

no concept the inverse in our calculus, in that the basic combinator of actions is the union 

operation. Finally, and most importantly, our actions have priorities associated with them. 

Let C be the set of all particles, or events, and let a ,  b, and c range over C. Let the letters 

A, B and C range P(C), and r range over P(P(C)).  Let P range over the domain of terms, 

and let X range over the domain of term variables. As usual, we assume the existence of an 

infinite set of free term variables, FV.  Also, we let the letter range over renaming functions 

on C; that is, 4 E C + C. We overload notation and extend such functions to  sets in the usual 

way, where 4(A)  = {4(a) 1 a E A ) .  

The following grammar defines the terms of CCSR: 

P := N I L  I A : P 1 P + P I PIIIJP I [PII I P\A 1 fix(X.P) I X 

While we give formal semantics for these terms in subsequent sections, we briefly present some 

motivation for them here. The term N I L  corresponds to  0 in SCCS - i t  can execute no action. 

The Action operator, "A : P", has the following behavior. At the first time unit, the action A 

is executed, proceeded by the term P. The Sum operator represents standard SCCS choice - 

either of the terms can be chosen to execute, subject to the constraints of the environment. The 

Conjunction operator P I  l l J  P  has two functions. It  limits the resources that can be used by the 

two terms, and also forces synchronization between them. The Constrainment operator, [PIr, 

denotes that the term P occupies exactly the resources represented in the index I. The Hiding 

operator P\A masks actions in P up to their priority, in that while the actions themselves 

are hidden, their priorities are still observable. The term fir( Y P )  denotes guarded recursion, 

allowing the specification of infinite behaviors. 



The term X is a free variable that belongs to the infinite set FV.  Any term in the calculus 

that contains a free variable is called open; a term that contains no free variables is considered 

closed. Staying within the terminology of CCS, we call closed terms agents. 

3 A Resource-Based Action Domain 

The considerations mentioned in section 1 have led us to construct a calculus with semantics 

based on resource constraints. In our execution model, we consider individual resources to 

be inherently sequential in nature. To put this in the parlance of SCCS, a single resource is 

capable of synchronously executing actions that consist, at most, of a single particle. Actions 

that consist of multiple particles must be formed by the synchronous execution of multiple 

resources. 

This notion of execution leads to a natural partition of C into mutually disjoint subsets, 

each of which can be considered the set of particles available to a single resource. Letting R 

represent the index set of system resources, for some i in R we denote C; as the collection of 

particles available to resource i. Also, since 

and 

V i E R , V j € R . i # j ,  X i  fl Cj=O,  

the binary relation over P ( C )  x P(C) characterizing "belonging to the same set of resources" 

is .an equivalence zelation on actions. 

As we have stated, a single resource is capable of executing actions that consist of at most 

one particle. We formalize this concept by defining, for each resource i, the domain of actions 

each is capable of performing: 

D; = { { a }  I a E C;) U (0) 

We now can formally define the domain of actions 2): 



where p(C) denotes the set of finite subsets of C. It  is often convenient to map actions in 2) 

to  the resource sets they inhabit. For a given action A, we use the notation R(A) to represent 

the resource set that executes particles in A: 

It is important to briefly discuss the role of "0" in CCSR. What does it mean, for example, 

when for some i E R ,  i $ R(A)? It  would be tempting to suggest that resource i is idling, 

but this is not necessarily true; resource i may not even be a member of the subsystem under 

observation. Thus, if i $! R(A), we can only state that resource i is not contributing to the 

observed behavior. This notion is developed in the sequel. 

3.1 Priorities 

Each resource has a finite range of priorities at which its particles can execute. Letting mpi be 

the maximum priority on resource i, we denote PRI; = [O, .  . . , mp;] C_ N as the set of priorities 

available to resource i. 

Thus we can linearly order the particles in each C; by a priority mapping .rr; E C; + PRI;. 

Extending this ordering to V;, we construct a new mapping II; E Vi -+ PRIi U {I) where for 

each A in V;, 

and Qn E PRI;, I < n. While technically unnecessary, we assign to the emptyset the undefined 

priority "I" to distinguish it from singleton actions. 

Finally, we can define the partial ordering "<p77 that reflects our notion of priority over the 

domain D. For all A, B E D, 

A S p  B iff Qi, II;(A n C;) < TIi(B n Ci) 

3.2 Anonymous Execution Particles 

In SCCS, the unit action "1" serves two distinctly different functions. One is to  denote or 

idling, or a "busy waiting" condition. For example, the term 1 : ( P  x Q) represents a process 

that idles for one time unit, and subsequently executes the tcr.111 P x Q. On the other hand, 



the unit can denote the combined actions of two communicating partners. For example, the 

term 

( a  : P )  x (Z : Q )  

is strongly equivalent to  1 : (P x Q ) ,  yet in the resource-based view on concurrency, it has a 

distinctly different meaning. 

With the introduction of priority into the calculus, we cannot make such an equivalence 

between terms. For example, assume that that a and E are particulate actions, and that each 

particle has a nonzero priority on its respective processor. To allow the equivalence above 

would be contradictory to our execution model, in that two actions with nonzero priority 

could synchronize into an idle action. Priority mandates that there be a difference between 

time consumed by execution, and time consumed by a busy-wait condition. This restriction 

leads to the following constraint placed on the calculus: At every time unit, each active resource 

i n  a system must contribute a minimum amount of observational information - the priority 

of particle being executed. Thus priorities may be considered "lights" on a resource's control 

panel; whenever a particle is executed by the resource, the light corresponding to its priority 

is illuminated. 

Note that a priority function n; naturally partitions each C; into equivalence classes. That 

is, for some n E P R I i ,  a particle a is in the class [b]? if and only if r i ( a )  = n;(b) = n. In 

CCSR, we use the symbol "T:" to  represent a "canonical" particle from each class. 

Now, let a E C; be an arbitrary particle. Then there exists some rr in C such that 

~ i ( a )  = ~ ; ( r r ) .  Further, there is a unique renaming function 4, such that & ( a )  = rc. This 

renaming.is unique up-to.particle priority, in that if r ; ( a )  = -lri(b), but a # b, then 

It follows that the rr are fixed-points of priority renaming; that is, $,(rr) = rr. 

Now we turn briefly to the topic of resource idling. As stated in section 3.1, when a 

resource contributes no particle to an action, it does not imply that the resource is in an idle 

state. Instead, the action merely remains unspecified with respect to that resource. In our 

semantics, idling is an observable behavior, corresponding to thc T action in CCS under strong 

bisimulation. When a resource i idles, it executes a particle r:; in the scenario portrayed 



above, the "light" corresponding to a priority of 0 is illuminated. Thus for every i E R, there 

is a T: in Xi. This permits each resource to have the capacity to execute an idle particle. For 

a given set of resources 1 C R, the action composed of all of their idle particles is: 

3.3 Synchronization 

Resources synchronize through the use of connection sets, which can be thought of as the port 

connections between them. In a particulate calculus such as CCS, a particle "a" typically 

synchronizes with its inverse, or "E," and the only fully synchronized action is "7." This is 

a valid and even obvious approach, and certainly could be adapted for a priority-sensitive 

calculus. In CCSR, however, we take a more general approach. First, we wish to preserve the 

flavor of a fully synchronized action, without losing the ability to observe each of the action's 

constituent particles. (For example, when the CCS actions "a" and "E" communicate, a degree 

of observability is lost, in that "7" is fairly "generic.") Second, it is desirable to incorporate 

the SCCS expressibility of n-way communication within the structure of our prioritized action 

domain, 2). 

Example 3.1 In CSP-type languages, the alphabet of particles is: 

where each c; is considered a channel, c;! is interpreted as a write action, and c;? is interpreted 

as a read action. When a read and a write occur simultaneously on the same channel, the 

communication is considered successful. Thus, the connection sets in such languages are simply: 

Akin to resources, connection sets partition C into mutually disjoint subsets of particles. 

We denote C as the index set of connection sets across the system, and for all i E C, C; is a 

connection set. The connection sets must satisfy several properties: 

1. The connection sets form a cover of C :  UaEc Ci = E. 



2. The connection sets are mutually disjoint: V i  E C V j  E C, i # j, Ci n Cj = 0. 

3. The connection sets are constructed so that no particle of any Cj depends on synchro- 

nizing with another particle from C;: V i  E ' R V j  E C, C; n Cj E 2);. 

4. All "priority-canonical" particles belong to their own connection sets: 

Va E C 3 j  E C .  {4,(a)) = C j .  

The reason for condition 3 is apparent when we view connection sets in context of resource 

mapping. If the property did not hold, a processor would have to simultaneously execute two 

different particles for synchronization to  occur. Such behavior violates our execution model, 

as each resource is sequential in nature. 

Since every particle is a member of a unique connection set, we can construct a mapping 

from particles to  the connection sets that contain them. We use the function connections 

to represent this. For any a in C, there is a distinct C;  such that connections(a) = C;. For 

instance, in example 3.1, connections(a?) = {a?, a!}. We can naturally extend the connections 

function to sets of particles as follows: 

Definition 3.1 We say that a set is fully synchronized if it can be fully decomposed into a set 

of the connection sets (or it is empty). We use the predicate sync to represent this: 

sync(A)  iff Connections(A) = A 

It is often convenient to be able to decompose a set A E V into two parts: that which is fully 

synchronized, and that which is not. To do this, we make use of the following two definitions: 

r e s ( A )  = A r l  Connections(A) 

unres (A)  = A - r e s ( A )  

Finally, we need not view actions in merely two ways, as being either synchronized or unsyn- 

chronized. An action can be synchronized with respect to a rcsource set I. This means that 

for an action A ,  all of the connections that can be made with particles on resources in I are 



made. This concept is particularly useful in defining the Conjunction operator. We let D,(rl 

denote the subdomain of V in which actions are synchronized with respect to I: 

Of course if sync(A) is true, then A E Va(R(A))  

4 Semantics 

In this section we give the unconstrained operational semantics for closed terms, in the style of 

[14]. By unconstrained, we mean that no priority structure is given to the domain. It is indeed 

possible to include our priority structure in a much more complicated set of transitional rules. 

The reason for this is that, when dealing with properties of priority, it is not sufficient to  include 

in a rule's premise an action an agent can perform. In addition, it would be necessary to  also 

include actions it cannot perform if higher priority actions are present. This highly complicates 

matters, and leads to infinite branching on finite terms. Thus we present an unconstrained 

version of our semantics, and we then refine our notion of priority with an equivalence relation 

based on it. In this we follow the path of [I] in their treatment of CCS priority, as well as [7] 

in their approach to maximum parallelism. 

Let & represent the domain of closed terms. The labeled transition system (&, +, 22) is 
A 

defined by the relation +E & x A x&, whose members are denoted: "P - Q". Throughout, 

we use the following notation. For a given set of resources I E R, we let X I  represent the 

set UiEICi .  Table 1 presents the unconstrained transition system. The Action, Sum and 

Recursion rules are straightforward, and similar to their counterparts in SCCS. The other 

operators, however, require special treatment. 

Conjunction. The four side conditions are what makes the Conjunction operation different 

from a more general "product" combinator, such as that found in SCCS. First, the two resource 

sets I and J are mutually disjoint. This, combined with the next two side conditions, places 

a very strong constraint on the sorts that each term can execute. Not only are the particles 

in both of the sorts mutually disjoint, but they are drawn from completely different resources. 

This corresponds to our resource- oriented view of concul.lt7ilc y. in which the Conjunction 

operator merges the operations of two digeerent subsystems. 



B 
A P - P' 

Action : A : P - P Hide : d ' h t d e ( ~ )  ( B )  ( s ~ n c ( A  n B ) )  
P\A - P1\A 

A A 
P - P' P - PI 

SumL : A Constrain : Au(G-Gp1) ( A  C C I )  
P t Q - P '  [PI1 - [P'II 

A A Q ----+ Q' P - P' 
SumR : A Recursion : A 

P t Q ---4 9' f ix (X.P)  -----, P' [( f i x ( X . P ) ) / X ]  

Conjunction : 
A1 A2 

PI - Pi, Pz - pi 
-41 UAZ ( I n  J = 0, A1 G X I ,  - 4 2  c C J ,  A1 u A2 E D , ( I ~ J ) )  

PI IIIJPZ - P ~ I J I J P ~  

Table 1: Unconstrained Transition System 

The final side condition, "A1 U A2 E D,(IuJ)", defines the essence our synchronization 

model: Assume that P can execute an action A p  C X I .  Likewise, assume that Q can execute 

an action AQ C_ C j .  Then, if Ap and AQ are to synchronize, they must be connected in the 

following sense: 

a If any particle in a E A p  shares a connection set with some particle b E C J ,  then b must 

appear in AQ. 

a If any particle in b E AQ shares a connection set with some particle a E X I ,  then a must 

appear in Ap. 

Hiding. In CCSR we do not allow the general use of morphisms on actions. If we did, one 

could use it to reallocate a particle to a resource other than the one that "owns" it. Even a 

more restricted use of morphism, which only permitted functions that maintained the resource 

structure would still be too general - the connection set structure would then be violated. We 

are left with a very restricted use of morphism - one which redilc~s fully synchronized particles 

to  their "anonymous" priority representation (see section 3.2). We call this operator Hiding, 



and denote it as P\A. 

Assume that A E 2). We construct the function q5hide(Al as follows. For all a in C, 

+,(a) if a E A 
+hide (~ ) (~ )  = 

otherwise 

Thus, all of the particles in A are reduced to  their "canonical" priority representation. 

Constrainment. The constrainment operator assigns terms to occupy exactly the resource 

set denoted by the index I. First, if the action A utilizes more than the resources in I, it 

is deleted. On the other hand, the particles in A utilize less than the set I, the action is 

augmented with the "idle" particles from each of the unused resources (see section 3.2). 

A 
Proposition 4.1 All agents i n  & a w  well-defined, i n  that if P E E and P - PI, then 

A E D. 

The proof follows directly from the definition of the operators. 

5 Priority Equivalence 

In our semantics, equivalence between processes is based on the concept of strong bisimulation. 

Definition 5.1 For a given transition system ( E ,  --t,V), the symmetric relation r 2 (&, &) is 

a strong bisimulation if, for (P,Q) E r and A E V, 

A A 
1. i f  P - P' then, for some Q', Q ----+ Q' and (PI, Q') E r ,  and 

A A 
2. if Q - Q' then, for some PI, P - P' and (PI, Q') E r. 

We let "N" denote unconstrained strong equivalence, or the largest such bisimulation with 

respect to  the transition system (&, -+, V). As in [ll, 12, 131, "N" exists, and is a congruence 

over the agents in &. 

In this section we define a new transitional system, (&, t , , Z ) )  grounded in our notion 

of priority. From this we derive a measure of prioritized strong equivalence based on strong 

bisimulations. Some care must be taken in this definition to ensure that it yields an equivalence 

with well-defined properties, properties that reflect a sound model of execution. To do this, 

we must find an adequate preemption measure. A preemption measure is a relation +E 'D x D 



such that, for any P E &, A, B E V, when P may execute A and B 4 A, P will never execute 

B. 

Definition 5.2 For all A E 9, B E V ,  A 5 B if and only if 

The relation ('5" defines a partial order over 2) and thus, we say A 4 B if A 5 B and 3 f A. 

Definition 5.3 The labeled transition system ( E ,  -,,V) is a relation +,E & x V x & and is 
A 

defined as follows: (P,  A, P') E-, (or P -, P') if: 

A 
1 .  P - P', and 

A' 
2. For all A' E V, P" E & such that P - P", A A'. 

The following result shows that "4" is progress-preserving, in that for a given transition 
A A 

P - P', either P - P' is itself executed under "+,", or some preempting transition 
A' 

P - PI', with A 4 A', is executed under "4,". 

A 
Lemma 5.1 If there is an A E 2) and P,P' E & such that P - P', then there exist 

A' 
A' E V ,  P" E & such that P -, P" with A 5 A'. 

Proof: Assume that the conclusion is false. Then, setting A. = A and inductively applying 
A i 

definition 5.3, we see that V i E W ,  i > 0, there exist A; E D, Pi' E & such that P - Pi with 

A;-1 4 A;. So we have the infinite chain over 2): A. 4 Al 4 A2 4 . . ., and by definition 5.2, 

However, note that Vi, j E R, R(A; )  = R ( A j ) ,  and thus Vi, j E R, R(res(A;)) = R(res(Aj)) .  

Further, since every A E V is finite, R(res(A)) is finite. Thus there are finitely many distinct 

priorities on sets using the resources in R(res(A)):  ~ i E z ~ , , , ~ A ~ ~ ( m p i  + 1)  to be exact. So such 

infinite, strictly increasing chains cannot exist. 

We now define our notion of prioritized strong equivalence, "N,". 

Definition 5.4 We denote " N ~ "  as the largest strong bisimulation over the transition system 

( & 7 + r ,  V). CI 



Relying on the well-known theory found in [ll, 12,131, we state without proof that "N,'~ exists, 

and that it is an equivalence relation over I .  The Appendix presents some of the equational 

characteristics of CCSR with respect to prioritized strong equivalence. Also, by the following 

theorem, we see that "N," forms a congruence over the operators. 

Theorem 5.1 Prioritized strong equivalence is a congruence over agents in E .  That is, for 

agents P,  Q and R in I ,  A in V ,  such that P N, Q ,  we have: 

We shall only present the proof for case (3a); the proofs for the other cases are similar. Before 

doing so, we require the following lemma. 

A AnCI 
Lemma 5.2 Let Pl,P2,Pi,Pi E E ,  andA E D. IfPlIllJP2 -, PiIllJPi, thenPl -----+, 

AnC j 
Pi and P2 -----+, Pi. 

A 
Proof: Denote AI = A n CI and Aj = A r l  C J .  By definition 5.3, PI 1 1 1  jP2 -----+ Pi 1 1 1  J Pi. 

AI A J  
So by the transition rule for Conjunction, we have that PI - Pi and R - R' with 

Ax AJ 
AI U A j  E V,(luj). We now claim that PI -, Pi and P2 -, Pi. 

AI 
To the contrary, assume it is false that PI -, Pi. Then there is a A; E V and Pi' E E 

A; 
such that PI - Pf with AI 4 A;. By definition 5.2, R ( A i )  = R ( A I ) ,  and thus, A; C X I .  

Since unres(A1) = unres(A1) and AI U A .J E j ) ,  we also have that A; U Aj E 
A i U A  j 

But these are exactly the side conditions required for PI 11(JP2 ----+ Pi' J P;. Now, since 

res(A',) >, res(AI),  we have that 

res(A1 U A J )  = res(A1) U res(Aj) U res(unres(AI) U ~ n ~ e s ( A j ) )  

<, res(Ai) U res(A j )  U res(unres(AI) U unres(A j ) )  

= res(A;) U T ~ s ( A J )  U res(unres(A;) U unres(A J ) )  

= res(A$ U A j )  

Also, R ( A I u A J )  = R(AjluAj) and u n r e s ( A ~ ~ A j )  = u n r e s ( A ; ~ A ~ ) ,  so ( A I u A J )  4 (A iuA j ) .  
A r 

But this contradicts our original assumption. So, PI -, Pi and by a similar argument, 
A J  

P2 -T Pi. 



Proof of Theorem 5.1, (3a): Here we make use of the fact that "N," is the largest 

bisimulation with respect to (&,+,,V). Thus to prove that PI[[ j R  N, Q I I I ~ R ,  it suffices 

to find any bisimulation r with respect to (&, +,, 2)) such that ( P I ( (  J R, Q I((J R) E r ,  since 

r E N,. 

We claim that r = {(PI\[  J R, Q 111 J R) I P N, Q A R E &} is a strong bisimulation on 

(&, +, V). By definition, (PI(I jR ,QIJ I jR)  is in r .  To prove that r satisfies property 1 of 

definition 5.1, assume there exist PI, R' E &, A E 2) such that 

A 
It suffices to show that for some Q', Q 111 J R -, Q' I l l J  R' and that P' N, Q'. Let AI = 

AI A J 
A n CI and A j  = A n C j .  By lemma 5.2 we have that P -, P' and R -, R'. 

AI 
Now because P N, Q, we have that Q ---t, Q', with P' N, Q'. TO finish showing that 

A 
r enjoys property 1 of definition 5.1, we must prove that Q R -, Q'IIJ j R'. Obviously 

part 1 of definition 5.3 is satisfied, so assume part 2 is violated. That is, assume there is some 
A' 

A ' €  V, Q",R" E & such that QzlIJR - QNZ(ljR" with A 4 A'. Then bylemma5.1, 
A" 

we know there exist some A" E V,Q"', R'" E & such that QI l ( jR  -, Q"'Ill jR'" with 

A' 5 AN, and hence A 4 AN. 
A;' 

Letting A/f = AN n XI, by lemma 5.2 have that Q -, Q"', and since P Q, there is 
A: A" 

also some P'" E & such that P - P"'. But this implies that PzlIJR - P"'III jR"' with 
A 

A 4 A", again contradicting our assumption (t). So Q J R -, Q'IJJ J R' and the proof of 

property 1 is complete. By a symmetric argument, r satisfies property 2 in definition 5.1, and 

so r is a bisimulation. 

The next theorem shows that the strong equivalence defined by "N," is coarser than that 

defined by "N".  

Theorem 5.2 Let P , Q  E & and assume P is strongly equivalent to Q under the transition 

system ( I ,  -+, V), (that is, P N Q). Then P N, Q. 

Proof: We need only show that the relation L L ~ 7 7  is a bisimulation on the transition system 
A A 

( I ,  +-,,V). Assume P N Q, and let P -, P'. By definition 5.3, P - P'. Since 
A 

P N Q, there is some Q' E & such that Q - Q' with P' - Q'. Thus we must prove that 
A A' 

Q -, Q'. If this is false, there is some A' E V, Q" E & such tha.t Q - Q' and A + A'. 



A' 
But since P N Q, there is also some P" E & such that P - P', which is a contradiction. 

A A 
Similarly, if Q -, Qt, then for some P', P -, Pt with P' N Q'. 

We now turn briefly to the subject of infinite terms. First we give the standard extension 

of " N ~ "  to  terms with free variables. 

Definition 5.5 Let the set {XI,.  . . , X,) include the free variable in the terms P and Q .  Then 

P N, Q if, for all agents PI, . . . , P,, PIP1 1x1,. . . , P n  /Xn] Nn Q [PI 1x1, . . . , pn/Xn]. 

With this definition we are able to show that "N," forms a congruence over recursive terms. 

For brevity we state the result without proof, which is performed by induction on transitional 

inference. 

Theorem 5.3 If P N= Q ,  and at most X is free in  P and Q ,  then f i x ( X . P )  N= f i x (X .Q) .  

6 An Example 

In this section we present a simple example that illustrates the role of priority in CCSR. 

Our system is a time-critical Producer/Consumer problem that has two producers and one 

consumer; both producers possess real-time constraints that must be satisfied to  ensure that 

they operate correctly. Our goal is to show that in some real-time applications, a system's 

correctness can hinge on the ability to implement priority. 

First we introduce some notation that facilitates a concise specification of our system. For 

an action A E V a term P E &, and a positive integer t ,  let "&A : P" be the term that must 

execute the A action within t time units, but may execute 0 up to  that point. That is: 

( (A : P )  + (0 : 6t-lA : P )  otherwise 

Also, let "At : P" be the term that executes the action A for t time units before proceeding to 

P : 

( A : At-' : P otherwise 



The System is composed of three agents: Consumer, Producerl and Producer2. Initially, 

Producerl can choose either to  idle or to  enter its "production" phase. In this phase, it 

"produces" for 1 time unit by executing the action {pl}. Then it attempts to interrupt the 

Consumer by executing the action {inti!). However, if the interrupt is not accepted within 

2 time units, Producerl deadlocks. If it is accepted, the agent has a latency of 2 time units 

before re-starting the loop: 

Producer2 is exactly like Producerl except for one fact: it gives the Consumer 3 time units 

to  accept its interrupt. 

The Consumer waits for either P T O ~ U C ~ T ~  or Producerz to interrupt. Once either interrupt 

is received, there is a digestion period of 2 time units, during which the action {c} is executed 

in a critical section. 

Consumer = fix(Xc. (0 : Xc) + ({inti?) : { c ) ~  : XC) + ({int2?) : {cI2 : XC) ) 

Let Producerl be hosted on resource 1, and let {pl,intl!} C C1. Further, let nl(pl) = 0 and 

n2(intl) = 0, which makes Producerl a "passive" agent. Similarly, let Producer2 be hosted 

on resource 2, and {p2,int2!} C C2. Let n2(p2) = 0 and r2( int2)  = 0. 

Let Consumer be hosted on resource 3, with {c, inti?, int2?) C C3; let n3(c) = 1, n3(intl?) = 

2, and ns(int2?) = 1. The only connection sets of importance are Cl = {intl!,intl?) and 

C2 = {int2!,int2?}. All other particles are assumed to belong to their own connection sets. 

From this priority scheme, we have the property that if both interrupts “inti!" and "int2!" are 

raised simultaneously, the Consumer will handle "inti!". 

The entire system is posed as follows: 

We claim that this priority ordering is exactly the key to keeping the system deadlock-free. 

That is, it contains no proper derivatives that terminate in NIL. Assume that both inter- 

rupts "inti!" and "int2!" are raised simultaneously. In the priority-based system, "inti!" is 



handled first, and there will be a delay of exactly 3 time units that "int2!" is forced to wait. 

But Producer2 can wait that long, and because Producerl cannot attempt to raise another 

interrupt for at  least 4 time units, the system will remain safe. On the other hand, if "int2!" 

had been serviced first, the system would not have been safe, as Producerl cannot wait for 

3 time units to have "inti!" serviced. In a semantics without priority structure (e.g., under 

the "-t" transition system), the choice between the two interrupts would be nondeterministic. 

Thus, the system would not be deadlock-free. 

7 Conclusion 

In this paper we have presented a synchronous, priority-based process algebra called CCSR. 

Influenced by SCCS, this calculus gives an appropriate equational characterization of the CSR 

design language. The calculus, accompanied by a proof system, facilitates the syntactic ma- 

nipulation of CCSR terms based on both resource configuration and priority ordering. Thus 

the formalism can be considered one step toward unifying abstract, real-time specifications 

with their resource-specific implementation environments. 

We are currently incorporating a dynamic priority structure into the syntax and semantics 

of the CCSR model. Because deadline-driven scheduling can be formulated in terms dynamic 

priority, we will then be able to reason about the properties of real-time scheduling algorithms, 

and their efficacy in guaranteeing the deadlines of the processes with which they interact. 
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Appendix: Equational Characteristics of CCSR 

(6) ( A  : P )  1 1 1  J ( B  : Q )  N~ 

( A U B )  : (PIIIJQ) if A  C C I ,  B  c C J ,  A U B  E ID,(IuJl { NIL  otherwise 

(7) P I ~ ~ J N I L  -, NIL  

(11) ( A  : P)\B -, 4hide(~)(A) : (P\3) if fl 3, 

otherwise 

(13) NIL\B -, NIL  

[P]J i f I  C J 
(14) [IPIIIJ -, 

N I L  otherwise 

( A  u (q - TziA))) : LP]z if A E~ 
(17) [ A  : PII -, { .IL otherwise 
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