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ABSTRACT 

In computer vision for object recognition or navigation, shadows are a frequent oc- 

currence. However, shadows are difficult to recognize because they cannot be infallibly 

recognized until a scene's geometry and lighting are known. We present a number of cues 

which together strongly suggest the identification of a shadow and which can be exam- 

ined without a high computational cost. The techniques developed are: a color model for 

shadows and a color image segmentation method that recovers single material surfaces as 

single image regions irregardless of whether the surface is partially in shadow; a method to 

recover the penumbra and umbra of shadows; and, a method for determining whether some 

object could be obstructing a light source. These cues either depend on or their reliability 

improves with the examination of some well understood shadows in a scene. Our observer 

is equipped with an extendable probe for casting its own shadows. These actively obtained 

shadows allow the observer to experimentally determine the number, location, and rough 

extent of the light sources in the scene. The system has been tested against a variety of 

indoor and outdoor environments. 



1 Introduction 

Many existing computer vision modules assume that shadows in an image have been ac- 

counted for prior to their application. For instance, object recognition systems assume 

that one can recover intrinsic properties of an object despite irradiance changes such as 

shadows. Similarly, shape from shading algorithms assume that surface radiance does not 

include shadow effects. In addition, it has long been recognized that identifying shadows 

in an image constrains the geometric interpretation of the pictured scene [Waltz, 1975; 

Shafer, 1985al. However, despite the acknowledged importance of identify shadows for 

image understanding, attempts to date have been overly simplistic. 

We begin with an examination of the nature of shadows and then present our technique 

for their detection. 

1 .  The Nature of Shadows 

Shadows result from the obstruction of light from a source of illumination. As such, shadows 

have two components: one spectral and one geometric. 

The spectral nature of a shadow derives from the characteristics of the light illuminating 

the shadow as compared to the additional light that would illuminate the same area if there 

was no obstruction. Hence, shadows reveal themselves as a spectral change in radiance due 

to a change in the local irradiance. 

The geometry of a shadow is determined by the nature of the illumination obstruction 

and the relative position of objects in a scene. The nature of the illumination obstruction 

is important in determining the shape of the shadow. The other component of the shape of 

a shadow is the geometry of the surface or surfaces on which a shadow is cast. The relative 

position of objects in a scene determines where a shadow is cast. 

Shadows can be classified as either cast shadows or self shadows (also called attached 

shadows). For a cast shadow, there is always free space between a point on the shadow 

and the point at which the light from a light source is obstructed for that point. For a self 

shadow, there is no free space between where the shadow is and where the obstruction is. 

Note that an object can cast a cast shadow on itself if the object has a concavity. We are 

interested in detecting cast shadows. 

To further examine the nature of shadows, consider that the light from a light source 



may be only partially obstructed. In fact, for any non-point light source, the outer portion 

of a shadow results from the partial obstruction of the light source. This is the penumbra 

of the shadow. The umbra of a shadow is the part of the shadow where the light source is 

completely obstructed. 

This work deals with shadows at a particular scale. We assume that part of the shape 

of a shadow is visible. Generally, the more of a shadow's shape that is visible, the better 

the system will be able to recognize it as a shadow. 

1.2 Shadow Cues 

Recognizing shadows in a scene is, in general, a difficult problem. Shadows can only be 

confidently recognized once the scene geometry, materials, and a characterization of the 

flux of light throughout the scene is known. With knowledge of these factors and the 

determination that light from a source of illumination has actually been obstructed, one 

can conclude that a shadow is present. However, this is more knowledge than one can expect 

an observer to have when recognizing shadows in a scene. Although we cannot hope to 

distinguish shadows from material and geometric changes with certainty in an environment 

that conspires against us, there are a number of cues that suggest the presence of a shadow 

in natural and indoor scenes: 

1. The intensity, hue, and saturation changes due to shadows tend to be predictable. 

A material in shadow appears darker than the same material not in shadow for the 

same viewing conditions. 

2. Shadows are only possible if there is an object obstructing light from a light source. 

3. The shape of a shadow is the projection of a silhouette of the object obstructing light 

emitted from a light source. For an extended light source (not a point light source), 

the projection is unlikely to be a perspective projection, hence shadow penumbra. 

4. For an extended light source, shadows can be expected to have a penumbra and 

umbra structure. 

5 .  Shadow boundaries tend to change direction with changes in the geometry of the 

surfaces on which they are cast. 



6. Shadows remain stationary relative to the surfaces on which they are cast for a fixed 

scene geometry. 

7. Shadows of objects moving relative to a stationary light source have a corresponding 

motion. 

8. Surface markings (or texture) tend to continue across a shadow boundary and vice 

versa under general viewing conditions. 

Some of these cues have been used in the explicit or implicit recognition of shadows. 

For instance, within the field of aerial image understanding, shadow detection is used as a 

cue for detecting objects that rise above the ground, such as buildings or clouds [Nagao e t  

al., 1979; Huertas and Nevatia, 1988; Irvin and McKeown, 1988; Liow and Pavlidis, 1990; 

Wang e t  al., 19911. Generally, all dark regions of an image, as determined by a threshold, 

which have an 'Lobject" adjacent to them in the direction of the light source are considered 

shadows. [Gershon e t  al., 19861 looks at just a color indicator for shadows, but uses a 

more sophisticated model then a single threshold applied to brightness. The color model 

we use is similar, but of a more general format, than that of [Gershon e t  al., 19861. [Jiang 

and Ward, 19921 use a detected penumbra and umbra structure in gray-scale images as 

a cue for shadows along with relative position besides an "object" and the light source. 

However, their techniques require strong restrictions on the layout of objects within the 

scene. [Witkin, 19821 uses texture continuation across a change in brightness as a cue to 

shadows. 

This body of this paper sketches out a system to recognize shadows. The details are 

presented elsewhere [Funka-Lea, 19941. We make use of cues 1, 2, and 4, as numbered 

above. (The use of cue 6 is presented in [Funka-Lea, 19941.) This work represents the most 

general system for detecting shadows to date and is consequently able to work on scenes 

of greater complexity than have been previously addressed. The conclusion examines why 

we use the various shadow cues in the way that we do and looks at an alternative way of 

organizing a shadow recognition system. 



2 Shadows and Color 

We, first, examine a scene with a single, extended, strong source source of illumination 

D. Let D(X) be the amount of energy emitted at each wavelength X by D as measured 

at  a given material surface. For the moment, we assume that D(X) does not vary with 

location across a given surface (hence that there is no shading). In addition to the light 

D(X), the light A(X) that has been reflected or scattered in the environment also strikes 

the surface. A(X) is the ambient light of the scene for the surface. Ambient light in this 

model is defined to be independent of position or direction in the environment. The total 

illumination striking a surface partially in shadow is 

where a(p) E [0 . . .l] indicates that the light source D will be only partially obstructed at 

some locations on the surface. 

Locations are measured relative to image locations (pixels). It is well known that the 

irradiance of a camera is proportional to the radiance of an imaged surface [Horn, 19861. 

We ignore the constant of proportionality and use an image location as a measure of 

surface radiance. The identity of the surface in question is uniquely determined by the 

inverse imaging transformation for non-transparent surfaces. Consequently, we can define 

the term a(p)  as follows: 

I if the back-projection of p is not part of the shadow. 

x E (0 . .  . l )  if the back-projection of p is in the penumbra, where 
a(p> = 

x is the percentage of total light reaching the surface. 

lo  if the back-projection of p is part of an umbra. 

We will not consider the case of a point light source. The justification being that point 

light sources are rare outside of scientific laboratories. (The sun, despite its tremendous 

distance, still has a resolvable extent in the sky.) 

Let S(X) be the surface reflectance (albedo). For the moment, assume that S(X) is 

independent of position, viewing direction, and direction of illumination; and hence, that 

there are no specularities (high-lights) or material variations. Let Qj(X) be the weighting 

function of the observer's camera system for the j th filter ( j  E [I, . . . , m]). Let Li(X) for 

i E [I,. . . , n] be direct source of illumination whose light is not obstructed by the shadow 



casting object. Then, the camera measurement from the surface directly lit and in shadow 

for one filter is 

IAP) = J ( ~ ( P ) D ( A )  + EN) S(A) Q, (A) d~ 
A (1) 

where E(A,p) = A(A) + Cy=$i(A), and A is the range of visible light. 

Let D be the vector whose elements are 

and let E be the vector whose elements are 

j E [I, . . . , m]. It follows that the image of the surface directly lit and in shadow is 

An important part this work involves looking at color values plotted in a color space. 

The axes of the space will be a set of basis functions such as (red, green, blue) or Qj(X), ( j  E 

[I, . . . , m]). Histogramming color images has become a common technique in computer 

vision (see, for example, [Shafer, 198513; Klinker et al., 1990; Lee, 1991; Novak and Shafer, 

19921). The histogram in a color space of an image of a surface directly lit and in shadow 

(i.e. dropping the dependence on position p) will be 

Equation 3 is the parametric form of a line with parameter a. The end-point of the line 

at a = 0 corresponds to the shadow umbra. The end-point at a = 1 corresponds to the 

surface directly lit. The open interval of the line (0 < cu < 1) corresponds to the shadow 

penumbra. 

Our images were taken with three color filters (rn = 3 in Equation 1): red, green, and 

blue. Some images were converted to the form (So, St ,  S2) = (brightness, sin A ,  cos A), 

where A ranges over the visible wavelengths [Lee, 19911. Equations 2 and 3 hold in both 

color spaces. 

In general, the description of the spectral appearance of a surface under shadow will 

also depend on the following factors. 



1. Shading: Whether or not the reflection variation due to shadow is confounded with 

that due to shading. 

2. Multiple compact light sources: Whether there are any compact light source in 

addition to the obstructed light. This affects the nature of the radiance within the 

shadow and whether or not multiple shadows are cast. 

3. Material changes: Whether or not a shadow is cast on a single material, multi- 

ple materials with distinct constant albedos, or on materials with smoothly varying 

albedos. 

4. Specular materials: Whether or not there can be specularities (high-lights) on the 

same surface material where a shadow is cast. All real objects are to some degree 

specular . 

5.  Discontiguous shadows: Whether or not a single shadow is visible in discontiguous 

parts of an image due to obstruction or the shadow being cast on discontiguous 

surfaces in the scene. 

6. Transparency of obstructing object: Whether or not a shadow making object 

transmits light. 

Unfortunately, from knowledge of total radiance it is not easy to tease out knowledge 

of shadow or any of the other individual factors above. Consequently, we restrict the scene 

conditions in order to have a manageable problem. We restrict the system to scenes with 

a singly colored light source and piece-wise constant albedos. In addition, we will assume 

that specularities and inter-reflections are local phenomenon which can be recognized in- 

dependently of the shadows in the scene. In addition, the system will be attempting to 

detect cast shadows of opaque objects whose brightness structure is visible in a contiguous 

region of the image. 

The restrictions placed on the problem limit the spectral model of shadows to that of 

Equation 2. We will refer to the above conditions where Equation 2 is applicable as the 

Linear Color Cluster Assumption for Penumbrae. 

We have not restricted the problem to the case of the Gray World Assumption [Rubin 

and Richards, 19881 where the ambient and direct light source must have the same hue and 



saturation. The spectral characteristics of the ambient light can be quite different from 

those of the direct light and our analysis still applies. 

There are a number of common scenarios where the lighting conditions match those to 

which the problem is restricted. Any sunny day in an environment without strongly specular 

materials qualifies. Similarly, an indoor environment lit by a single type of illumination, 

such as overhead fluorescent or incandescent lights (but not both together). In the indoor 

environment, the restriction that albedos be piece-wise constant is more likely to be met 

because of the nature of manufactured materials. In the experimental results, we will show 

that under the Linear Color Cluster Assumption for Penumbrae, the scenarios addressed 

still pose a challenging, practical problem. 

2.1 Color Image Segment at ion 

The goal of our color image segmentation is to segment an image into regions such that, 

if shadows are present, a uniformly colored surface material directly lit and in shadow will 

be recovered as a single region under the Linear Color Cluster Assumption for Penumbrae. 

Our color image segmentation produces a labeling of an image into multiple color-model 

regions and areas where no appropriate model was found to apply. In order to find regions 

of an image that could represent the same surface material lit and in shadow, we present a 

scheme in which an image is segmented into regions of line-like or uniform color clusters. 

The regions modeled by line-line color clusters will be shadow candidate regions. 

Under the Linear Color Cluster Assumption for Penumbrae, line-like color clusters can 

still originate from physical phenomenon other than shadows. Shading, inter-reflections, 

highlights, or material changes may also produce line-like color clusters [Shafer, 1985b; Lee, 

19911. Multiple cues are necessary before a shadow can be recognized with any confidence 

- color alone is not sufficient. 

Three ideas underlie the color image segmentation strategy. First, the realization that 

segmentation should be the search for the best description of an image in terms of model 

primitives [Leonardis e t  al., 19901. Second, the use of line-like color clusters as a model 

primitive in order to recover shadow candidate regions. Third, to dove-tail the image 

segmentation and model recovery between color-space and image-space in order to take 

into account aspects of both. 

The algorithm is organized into iterations of finding seed regions based on color-space 



or image-space and then growing each seed to find regions of the image that are well 

described by a model. The models are either uniform linear functions in 3D color space. 

The region growing is accomplished through a region growing and pruning algorithm based 

on [Leonardis e t  al., 19901. The region growing and pruning algorithm in outline is: 

1. WHILE change DO LOOP 

2. Grow each region based on extrapolating the region model and the use of a tolerance 

criteria. 

3. Update each region model to fit the new and old data. 

4. Consider a higher order model. 

5. Prune away entire regions based on the overlap, size, model goodness of fit, and model 

order. 

6. END LOOP 

Region growing is initiated by finding image regions with a strong color signal. These 

are the seed regions for the region growing. Seed regions are found based either on compact, 

strong peaks found in a 2D color histogram of the image, or based on uniformly colored 

image areas within a grid of 7x7 pixel squares which is over laid on the image. The specific 

2D color spaces used for histogramming were (-, -) intms,tv where X ranges over the 
green blue visible wavelengths [Lee, 19911 and the 2D color space (x, red). We believe that any 

2D color space that tends to de-emphasize intensity is a suitable choice for the initial his- 

togramming. The process first attempts to find seed regions through color histogramming 

because these regions are often large. The algorithm switches to the grid method when 

compact strong peaks with low color variance can no longer be found in the histogram. 

The details of our color segmentation algorithm have already been described in [Funka- 

Lea and Bajcsy, 19931. Sample results will be presented in Section 4. 

2.2 Brightness Structure of Shadows 

Image regions produced by the color image segmentation that have a clearly linear (ver- 

sus ~ o i n t )  color model, may potentially contain shadows as well as a directly lit surface. 



Therefore, all regions with a linear model become shadow candidate regions. Within each 

shadow candidate region the system examines the spatial layout of the brightness variation 

in order to  determine if the brightness structure is consistent with that of a shadow. 

In a scene with an extended light source, shadows will have a two part structure con- 

sisting of a penumbra and an umbra. The simplest brightness structure for shadows results 

from shadows cast by convex objects illuminated by a convex light source. In such cases, 

shadows cast onto contiguous locations in space will have a penumbra darkening towards 

an umbra, curve, or central point. The case of a point or curve apply when there is no 

umbra, only a partial obstruction of the light source. 

Shadows cast by objects with holes onto non-contiguous surfaces can have a very com- 

plex brightness pattern. However, in our work we have found it useful to consider each 

umbra or local minimum in the brightness and its surrounding neighborhood where the 

brightness is increasing to be an individual shadow. Consequently, a single concave object 

may cast multiple but contiguous shadows on a single planar surface. 

2.2.1 Recovering Umbrae 

From our color model, we know that if an image region with a line-like color cluster model 

contains the umbra of a shadow then the umbra will be the darkest part of the region. In 

addition, the umbra will be uniformly dark. Consequently, our system begins its analysis of 

the brightness structure within a segmented image region by determining if any uniformly 

dark regions exist. Because of noise in the image, one cannot expect a shadow umbra 

to have the absolute minimum brightness value within a segmented image region. Instead 

uniformly dark regions are found using a modification of the algorithm used for color image 

segmentation. In this case, the models are restricted to being uniform (zeroth order). In 

addition, the method of finding seed regions is different. 

The identification of uniformly dark seed regions within a color segmented region is 

initiated with a brightness threshold. We have two strategies for setting this threshold. 

The first strategy relies on the empirically based heuristic that the histogram of brightness 

for a region containing shadow often has a bimodal distribution where the darker mode 

originates with the shadow and the brighter mode originates with the directly lit part of 

the surface. (See Figure 6.) In this case, the umbra brightness threshold is set to  the darker 

mode. Our criteria for determining if a distribution is bimodal is listed later. The second, 



and fall back strategy for determining a brightness threshold, uses a cut off at  the lower 

10% of brightness within the segmented region. 

Once the brightness threshold has been determined, seed regions are then found, if 

possible, within the image region values below the threshold by the grid method discussed 

above. The color segmentation algorithm is then run on the entire shadow candidate region 

in order to  recover uniformly dark regions from these uniformly dark seed regions. Because 

the system runs a region growing algorithm, regions can grow into values that are above 

the brightness threshold used to initiate the process if the image values are still within the 

tolerance for growing a uniform surface patch. Consequently, the algorithm is much more 

flexible than those proposals to find shadows based rigidly on a threshold (such as [Nagao 

et al., 1979; Huertas and Nevatia, 1988; Irvin and McKeown, 1988; Liow and Pavlidis, 

1990; Scanlan e t  al., 1990; Wang et  al., 19911). The brightness threshold in our approach 

serves as a starting point for the recovery of shadows rather than as a judgment criteria. 

In addition, the brightness threshold our system uses is derived from image values under a 

reflectance based shadow model (the linear color clusters). 

2.2.2 Recovering Penumbrae 

Once umbrae have been found, their corresponding penumbrae must be recovered and 

those shadows that consist only of penumbra must be found. Finding a penumbra is the 

the problem of finding an area of locally concave brightness values within the segmented 

image regions. 

We again use image region growing as our principle tool. For each umbra, the system 

iteratively grow outward from the umbra as long as the brightness values are increasing. 

There are two types of criteria for terminating the penumbra growing: local and regional. 

Local criteria: 

- The local brightness does not increase (less than 1% brighter). 

- The local brightness is above the penumbra brightness threshold (see below for 

how this is determined). 

Regional criteria: 

- The average increase in brightness of the region is small (less than 10% of the 

previous iteration). 



- The increase in size of the region is small (less than 5% of the second iteration). 

Penumbra growing is terminated by the the regional brightness criteria. The local criteria 

determine how many, if any, new pixels are added to the penumbra at each iteration of 

growing. Note that the local brightness increase criteria is very weak so as to account for 

noise in the brightness. 

The penumbra brightness threshold is set based on similar criteria to those used for 

the umbra seed threshold. If the histogram of brightness has a bimodal distribution, take 

the lower end of the brighter distribution (i.e. the minimum brightness value found in the 

brighter peak). If the histogram of brightness does not have a clear brightness distribution, 

use the upper 10% cut-off as a threshold. The penumbra brightness threshold is intended 

to handle those cases where there is gradually increasing shading across an entire surface 

that coincides with the brightening due to a shadow penumbra. 

Penumbra without umbra are found in basically the same manner as shadows with both 

penumbra and umbra. The system finds dark patches within a segmented region and then 

try to grow a penumbra outward from them. 

3 Shadows and Geometry 

In order to insure that an image region corresponds to a shadow in a scene, an observer 

must determine that a light source is being obstructed in a manner consistent with a shadow 

visible at  that position in an image. In order to determine this, the location of any light 

sources within the scene must be determined. A light source is defined to be anything that 

can cause shadows to be cast; consequently, we use detected cast shadows to locate light 

sources. 

3.1 Locating a Light Source 

It has long been recognized that a point to point correspondence in an image between a 

shadow and the terminator along a shadow making object indicates the direction of the 

obstructed light source as projected onto the image plane. [Shafer, 1985al examined the 

ability to locate a light source in the case where a polyhedra casts a known shadow in 

a single image. The results are summarized in Table 1. The conclusion is that a point 

light source cannot be fully located from a known shadow and shadow casting object from 



Table 1: Shafer's four cases for locating a point light source based on the correspondence 

between the image of a shadow and the image of the object casting the shadow. Two cases 

are examined: whether or not the point light is infinitely far away from the observer. The 

rightmost column indicates if the observer can determine which case holds. The two middle 

columns indicate the number of parameters needed to define the location of the light source 

and how many can be recovered from the image. [Shafer, 1985a] 

Orthography 

Perspective 

a single view. However, if the observer moves, this, in general, provides an independent 

constraint sufficient to locate a point light source. 

We, however, are interested in locating an extended light source under measurement 

uncertainty in uncontrolled environments. The solution is to bound the location of the 

light source using the shadow of a known shading casting object. 

In order to have a shadow whose validity is assured for locating a light source, we 

allow the observer to cast its own shadows with a probe that can be extended into the 

environment. Any visible shadows cast by the probe can be easily detected because they 

are new to the environment. We assume the environment is otherwise static for the time 

it takes to extend the probe. 

The penumbra and umbra of a shadow provide different information about the location 

of the light source. This can be seen for the case of shadows in a 2D world in Figure 1. 

Pictured are illumination rays from the outer limit of the umbra or penumbra, tangential 

to the object casting the shadow and tangential to the light source. If the extent of the 

shadow and the location of the object casting the shadow was known, a tight bound on the 

location of the light source could be recovered from these illumination rays. 

The Point Light Source 

Infinitely far 

2 parameters - 

(slant, tilt); 

1 recoverable 

2 parameters - 

(slant, tilt); 

2 recoverable 

Finite distance 

3 parameters - 

(X, Y, Z); 
2 recoverable 
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Figure 1: Umbra and penumbra of a 2D shadow. The lines with long dashes are the 

penumbra illumination rays and the lines with short dashes are the umbra illumination 

rays. 
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Figure 2: Adjusting the location of the shadow boundaries to take into account data errors 

while still maintaining a bound on the location of the light source. The light source is 

necessarily located within the shaded region. The short dashes are the umbra bounds and 

the long dashes are the penumbra bounds on the light source location. 



However, the outer limits of the umbra and penumbra of a shadow are not practically 

recoverable because they represent an infinitesimal change in the illumination conditions 

and a camera has limited spatial and intensity resolution. Figure 2 demonstrates that by 

under-estimating the size of a shadow's umbra while over-estimating the size of the shadow 

casting object one is still guaranteed of having the location of the light source bounded 

by the umbra illumination rays. Similarly, over-estimating the size of a shadow's penum- 

bra while under-estimating the size of the object also still guarantees that the penumbra 

illumination rays bound the location of the light source. 

For the image of a shadow in the 3D world, it is important to under-estimate the size 

of the umbra and over-estimate the size of the penumbra perpendicular to the direction of 

the light source projected onto the image plane. This is the direction from the image of the 

shadow towards the image of the probe. If the probe is not visible, its projection onto the 

image plane can be calculated since the observing agent knows where the shadow probe is. 

These bounds on the location of the light source will be referred to as the image bounds on 

the location of the light source. 

We can also find bounds on the location of the light source in depth relative to the 

image plane based on the known location of the probe. We refer to these as the depth 

bounds on the location of the light source. 

The following definition of the depth bounds on the location of a light source refers to 

Figure 3. Figure 3 shows a 2D slice through the focal plane of the camera, the center of 

mass of the light source, and the center of mass of the probe. Let L be a line through the 

center of mass of the image of the probe's shadow and the center of mass of the projection 

of the probe onto the image plane. The intersection of each of the planes F,, Nu, F,, and 

N, with the image plane will be perpendicular to L. Planes F, and Nu will go through a 

the point on the probe closest to the probe's shadow. Planes F, and N, will go through a 

the point on the probe farthest from the probe's shadow. 

F, will be defined to go through a point u,,, on line L that lies on the boundary of 

the shadow umbra at the maximum distance from the probe. 

F, will be defined to go through a point s,,, on line L that lies on the boundary of 

the shadow penumbra at the maximum distance from the probe. 

Nu will be parallel to the line through the focal point of the camera and point urn,,. 



I 

I Figure 3: The depth bounds on the location of the light source in 2D based on both the 
I 

I shadow umbra and penumbra. The light source must lie in the shaded region defined by 
I 
I the lines I?,, N,, and Fp. See the text for an explanation. 
I 



N, will be parallel to the line through the focal point of the camera and point s,,,. 

As can be seen from Figure 3, F, always provides a weaker bounds on the location of a 

light source than F,; so, F, is not used. Together F,,N,, and N, make up the depth 

bounds on the location of the light source. 

The intersection of the volumes enclosed by the image bounds and the depth bounds 

define the area where the light source is located. As the observer moves and does more 

experiments with the shadow probe, new bounds on the location of the light source can 

be found and these can be intersected with the previous bounds. In order to combine the 

results from multipleexperiments it is important that the observer know its relative motion. 

Errors in the estimate of the relative motion are compensated for by further loosening the 

bounds on the location of the light source for each experiment before combining the results 

from multiple experiments. 

3.2 Is the Light Source Obstructed? 

Once the light source has been localized within a scene, the observer can examine the 

area between a shadow candidate and the light source to determine if a there is an object 

that could be obstructing the light and, hence, casting the shadow in question. However, 

the observer does not know the actual 3D location of its shadow candidates, nor do we 

intend for the system to determine their full 3D location. Instead, we examine what can be 

achieved by observing a single view or multiple individual views of the shadow candidates. 

Consider a shadow candidate region R. The projection onto the image plane of the 

shadow making object would lie between R and the bounds of the light source projected 

onto the image plane. The bounds on the image plane between R and the projection of the 

light source bounds onto the image plane we call the shadow casting bounds. (We assume 

perspective projection under a pin-hole camera model.) The system calculates the actual 

shadow casting bounds as the convex hull of the projection of the light source bounds onto 

the image plane and R. 

If all the image plane area in the shadow casting bounds can be discounted as being an 

obstruction to the light, then the observer knows that R cannot be a shadow. If some area 

A within the shadow casting bounds cannot be discounted, then that area may be either 

casting shadow R or that area may be obstructing the observer's view of the actual object 

casting shadow R. The observer can further test the consistency of the hypothesis that A 



Figure 4: Locating a light source based on actively cast shadows of a probe. The probe 

consists of a flat plate held in a gripper of a robot arm. Top: two of the four positions in 

which the probe was placed. The expected position of the probe is projected onto the image 

plane and superimposed on the image. The location of the umbra of the probe's shadow is 

indicated by dark gray and the location of the penumbra by light gray. Also shown are the 

line L and the over-estimated extent of the penumbra and probe. Bottom: Line drawing 

representation of the recovered geometry. The actual light source location is indicated by 

the small cube inside the large wire mesh. The large wire mesh is the calculated bounds 

on the light source location. The four squares beneath the light source indicate the four 

positions the probe was placed in. The cube at the lower left indicates the viewer position. 



is casting shadow R or obscuring the view of the object casting the shadow by examining 

the penumbra bounds on A. If part of R does not lie within the penumbra bounds of A, 

then that part of R could not be a shadow of A. The penumbra bounds of a A is the 

area between the penumbra illumination rays on the far side of A from the light source 

calculated assuming that the light source is as big as the entire light source bounds. Figure 

9 demonstrates the use of this technique. 

If the light source is not visible in the same image as R, we assume that the observer 

can pan in the known direction of the light source in order to acquire a sequence of images 

in which the area between R and the light source is visible. We leave it to a different 

module to decide if this effort is warranted in relation to the other constraints and goals of 

the observer. If multiple light source exist in a scene, then the observer must examine the 

shadow casting bounds between R and each of the light sources. 

The primary difficulty of this test of shadow consistency is to decide that parts of the 

scene are not casting a particular shadow. For a single view, a significant part of the scene 

may be visible between a shadow candidate region R and the light source. However, ours 

is a mobile observer, and as the it moves, it can observe the area between R and the light 

source from multiple views. Many objects that appear visible between R and the light 

source for a particular view will not lie between the two for a different view, assuming a 

general trajectory for the observer. This idea is based on parallax and hence it works best 

if R and the light source can be viewed from very different angles. In addition, there is 

the problem of tracking objects or finding the correspondence between segmented image 

regions across multiple image frames. We do not address this problem here, but instead 

assume it can be done. 

For a single view, additional knowledge is necessary if the observer is to dismiss parts of 

the visible scene from being a shadow casting object. Certain parts of the world can often 

be discounted from casting any shadows, for instance - a level ground plane or the sky. 

Results 

The first image segmentation and shadow recovery result is presented in Figure 5. The 

original image contains surfaces with a variety of albedos and surface characteristics. There 

are four wooden blocks and one plastic block. The plastic block is green and has four pegs 

on top of it and is at the center top of the image. The wooden blocks at the top left and top 



Figure 5: Top left: a color image of a block world. Top right: the color image segmentation 

results. Different shades of gray indicate the different regions. Black indicates that no 

region was recovered. Bottom left: white indicates no shadow, dark gray indicated umbra, 

light gray indicates penumbra. Bottom right: the outer bounds of the shadow overlaid on 

the original image. 
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Figure 6: Brightness histogram for a region with a linear model recovered during color image 

segmentation. Top left: the original color image. Top right: the image data corresponding 

to a region recovered with a linear model. Bottom: the brightness histogram for the region. 



right of the image are both red. The wooden block at the center of the image is green and 

the wooden block at the lower right is dark blue. The paper on the ground at the bottom 

of the image is white, the paper in the middle of the image is brown, and the paper at the 

top of the image is pink. The scene is illuminated by an incandescent bulb to the right of 

the field of view. Additional incandescent bulbs were used to illuminate the walls in which 

this scene was set in order to provide sufficient ambient light to illuminate the shadows for 

the CCD camera. 

The final results of the segmentation shown at the top right of Figure 5 generally match 

the natural boundaries of material changes with three types of exceptions. First, self- 

shadow or shading changes that occur with a change in surface gradient are separated from 

directly lit surfaces of the same material on the two wooden blocks in the foreground and on 

the plastic block at the back. The change in illumination conditions for these cases is abrupt 

rather than gradual as with the penumbra of a shadow. Second, the specularities on top of 

the pegs on the plastic block become separate regions. Finally, the strong reflections off the 

front of the red block at the top left of the image produce a strong secondary illumination 

in the shadow on the paper in front of the block. The algorithm segments this region of 

increased red reflectance as a separate region. Note that each of these cases breaks the 

Linear Color Cluster Assumption for Penumbrae we made as a condition for the success of 

the segmentation algorithm. Techniques exist for successfully recognizing specularities and 

inter-reflections [Lee, 19911 that are complementary to our effort with shadows. 

Small parts of image have no region assigned to them by the segmentation. These areas 

are best represented by a non-smooth model or a higher than first order model. Because 

the final iterations of finding seed regions begin with seed regions of a fixed size, we are 

unlikely to find regions smaller than the grid seed regions (7x7). 

There are a number of things to note about the shadow recovery results at the bot- 

tom of Figure 5 .  Despite the fact that the umbra and penumbra boundaries are found 

independently for each segmented image region, there is strong agreement on the shadow 

boundaries that span multiple materials and image regions. The self-shadowing on the two 

blocks in the foreground and at the left end of the plastic block has not been recognized as 

shadow because these regions were segmented from the same surface material directly lit. 

However, for the case of the tall, narrow block at the far right, the self shadow is detected 

because the entire block was recovered as a single image region. The umbra and penumbra 

structure assigned to this block is somewhat counter-intuitive. One might expect the entire 



area to be labeled as umbra. However, there are strong reflections off the pink paper onto 

the block that brighten its base without changing the block's red color. This inter-reflection 

brightening is mistakenly interpreted as the brightening of a shadow penumbra. Also note, 

the shading on the pegs of the plastic block darken towards the point of self-shadowing and 

hence mimic the brightness structure of an umbra and penumbra. Distinguishing between 

such shading and a shadow can only be done based on the geometry of the scene. Overall, 

the cast shadows that exist in the scene are successfully located. 

The original image in Figure 7 shows an unmarked road running through a stand of 

trees. The bottom of a tree trunk is visible at each of the top corners of the image. A 

green garbage can sits on the green grass to the left of the road. The asphalt of the road 

is cracked. Shadow are cast on the road and on the grass. Four image region are recovered 

from segmentation: one for the road, one for the garbage can, and one for the grass on 

each side of the road. Although the garbage can and the grass are both green they are 

recovered as separate regions. However, the tree trunks, which are very dark, are merged 

with the grass into single regions. The growing tolerance set by the segmentation algorithm 

when recovering the road region was very tight and consequently small variations on the 

road or the cracks in the road are not recovered as part of the road. In the final panel of 

Figure 7 the successful recovery of the shadows on the road is shown. The darkest gray 

indicated umbra. The medium gray indicates the seed used for growing shadows without 

umbra and light gray indicates penumbra. Because the shadow of the leaves of a tree has 

such a complex brightness pattern, a large number of shadows are recovered. This is a 

consequence of how we define what constitutes an individual shadow. 

Figure 8 shows an image of a book, a ball, and blocks made of three different materials 

arranged on a wooden table. The blocks from left to right are made of Styrofoam, wood, 

and plastic. The ball is made of plastic. All the objects, except the table, are blue. Beyond 

the end of table can be seen a blue curtain. The objects are lit from above and in the 

distance so that we see the self shadowed side of the ball and blocks. A CCD camera 

mounted on robot arm was used to take this image. This image is one in a series. 

The scene was arranged in an attempt to defeat the color image segmentation algorithm. 

It was assumed prior to the actual processing that the algorithm would have difficulty 

distinguishing between the different adjacent blue objects. As can be seen in Figure 8, the 

book cover, foam block and plastic ball have all been recovered as a single image region. In 

addition, the plastic block at right and part of the curtain are also represented by a single 



Figure 7: Top left: a color image taken from 

segmentation results. Bottom left: white ind 

light gray indicates penumbra. Bottom right 

the original image. 

he CMU Navlab. Top right: the color image 

zates no shadow, dark gray indicated umbra, 

the outer bounds of the shadow overlaid on 



Figure 8: Top left: a color image of a block world. All the objects are dark blue. Top 

right: the color image segmentation results. Bottom left: white indicates no shadow, dark 

gray indicated umbra, light gray indicates penumbra. Bottom right: the outer bounds of 

the shadow overlaid on the original image. 



Figure 9: Distinguishing shadows from shading. Left: a mosaic of images panning from 

the table top in the direction of the light source. The light source is an incandescent bulb 

in a parabolic reflector. The white lines indicate the convex hull of light source bounds as 

projected onto the image plane and the shadow candidate regions. Right: the penumbra 

bounds for the light source and the possible shadow making objects. The parts of these 

shadow candidates outside of the penumbra bounds could not be a shadow because there 

is no object in the scene that could cast them. 



image region. However, the table top, the wooden block, and two of the three parts of the 

curtain are successfully recovered. 

The cast shadows that actually exist in the scene are successfully recognized. However, 

shading on the table top has also been mistaken for shadow. The light source in this scene 

is strongly directional meaning that parts of the scene away from the direction of the light 

source receive little illumination. The light is directed just behind the objects in the center 

of the scene. Away from this point there is progressively less illumination. 

Figure 9 shows how, once the observer has found bounds on the location of the light 

source, shading and shadows can be distinguished. We assume that the table top and the 

curtain at the back of the scene are known not to cast any shadows on the table top. The 

shadow casting bounds around the light source and three shadow candidates are shown. 

The shadow candidate at center is the real shadow of a block. The block is clearly within 

the shadow casting bounds. The other two shadow candidates for which bounds are shown 

are not shadows, but rather artifacts of the directional lighting. For each of these shadow 

candidates only a small part of a block is within the shadow casting bounds. This implies 

that either that small part of the block is casting the shadow in question or there is an 

object behind that part of the block casting the shadow. We present the penumbra bounds 

for each of the blocks within the shadow casting bounds in right half of Figure 9. To a 

large extant, the shading that was mistaken for shadow has been recognized as not being 

shadow. 

Additional results (indoors and out) and a quantitative evaluation of the indoor block- 

world examples compared with a manual segmentation is provided in [Funka-Lea, 19941. 

5 Discussion and Conclusion 

The primary goal and contribution of this work has been in the use of both color and 

geometry to recognize shadows. The achievement of the system has been to successfully 

recognize shadows in scenes of greater complexity than has previously been examined. 

For our particular implementation of a system to recognize shadows, the image based 

sensory data was separated and analyzed in the following order: 

1. color and relative image position ( color image segmentation ), 

2. brightness and relative image position ( image brightness pattern ), 



3. 3D scene geometry with the probe ( shadow geometry ). 

Alternative orderings and arrangements of cues are possible. We will first look at the 

motivation behind the order we used and then discuss when other orderings would be 

appropriate. 

Our system is primarily a bottom up strategy. Work on the system began by asking 

"What can a naive observer in an unknown environment achieve in recognizing shadows?" 

This lead to the examination of color images first. Grayscale images are inadequate for a 

bottom up recognition of shadows because in a grayscale image the difference between a 

single surface lit and in shadow is the same type of difference as between any two different 

materials - a change in brightness. However, for color images under the constraints of the 

Linear Color Cluster Assumption for Penumbrae, shadows produce a line-like color cluster 

in the color histogram rather than an arbitrary distribution. Once an image is segmented 

based on color, the brightness pattern within the segmented regions can be examined for 

local concavities, which is the brightness structure of shadows. Next, we looked at what 

additional information would be useful and how higher level information can be practically 

obtained. We enabled our observer to cast shadows to locate the light source rather than 

rely on a priori knowledge or high-level scene assumptions such as [Huertas and Nevatia, 

1988; Jiang and Ward, 19921. Because we recognize the prevalence of extended light sources 

and the difficulty of determining exact scene locations based on image positions, we bound 

the location of the light source rather than attempting to determine the light source's exact 

location (as is presented in [Shafer, 1985aJ). 

In scenes with complex illumination - a number of equally strong light sources with very 

different spectral characteristics - it will be necessary to have a system that could begin 

the recognition of shadows from the scene geometry. Consider the case of an observer 

who has identified the locations of a light source and an object in the foreground. The 

observer could then check to see if there was a shadow cast by this object. The area of 

the scene to be examined could be bounded in a way similar to how our system bounds 

the location of a light source. Within a small part of the scene, it might be possible to 

find illumination conditions that meet the Linear Color Cluster Assumption even if the 

assumption is not true for the whole scene. In which case, color could then be used to find 

any shadow. Alternative strategies for initiating shadow recognition from geometric cues 

are surely possible. In an ideal system, shadow recognition would be initiated by both color 



and geometric cues and those shadow candidates for which there is a consensus would be 

accepted as shadows. 
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