
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

12-1-1993

Convex Hulls: Complexity and Applications (a Survey) Convex Hulls: Complexity and Applications (a Survey)

Suneeta Ramaswami
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Suneeta Ramaswami, "Convex Hulls: Complexity and Applications (a Survey)", . December 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-97.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/264
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fcis_reports%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/264
mailto:repository@pobox.upenn.edu

Convex Hulls: Complexity and Applications (a Survey) Convex Hulls: Complexity and Applications (a Survey)

Abstract Abstract
Computational geometry is, in brief, the study of algorithms for geometric problems. Classical study of
geometry and geometric objects, however, is not well-suited to efficient algorithms techniques. Thus, for
the given geometric problems, it becomes necessary to identify properties and concepts that lend
themselves to efficient computation. The primary focus of this paper will be on one such geometric
problems, the Convex Hull problem.

Disciplines Disciplines
Theory and Algorithms

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-97.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/264

https://repository.upenn.edu/cis_reports/264

Convex Hulls: Complexity and Applications
(A Survey)

MS-CIS-93-97

Suneeta Ramaswami

University of Pennsylvania
School of Engineering and Applied Science

Coniputer and Information Science Department

Philadelphia, PA 19104-6389

December 1993

Convex Hulls: Complexity and ,4pplications

(A Survey)

Suneet a Ramaswami

April 1990

Contents

1 Introduction

2 Preliminaries and Lower Bounds

2.1 Problem Statement and Esta.hlishing Lower Bounds

3 Algorithms for the Convex Hull Problem 14

. 3.1 Graham's Sca.n 1.5

. 3.2 Jarvis's March 18

. 3.3 The Kirkpatrick-Seidel Algorithm 10

. 3.4 Finding Convex Hulls in 3 dimensions: The gift-wrapping method 28

4 Some Applications of Convex Hulls 35

4.1 Convex Layers . :35

. 4.2 'l'he Farthest Pair Problenl (Diameter of a Set) 37

. 4.3 Voronoi Diagrams 40

5 Conclusion 43

List of Figures

. 1 A linear time reduction from sorting to problem CH 7

. 2 The vertices of the input set R 12

. 3 Projection p' of the path connecting z; and zj 13

. 4 One of v'. vz. + I or ~ 2 ~ ~ 1 ca~lnot he ext.reme 14

.5 Merging two convex hulls by finding the uppcr and lower bridges 21

6 All points in the shaded region can bc discarded before the recursive call of UPPER-

HULL . 22

. 7 Elirrlina. tion of candidates for bridge points 25

. 8 The upper bridge and its relation to supporting lines 25

9 An cxample graph and the correspo~lding DCEL . 30

10 Merging the left and right convex hulls by constructing wrapping faces 31

11 The depth of a point and the convex layers of a set 35

12 Figure for the proof of Observation 1 . 38

13 Figure for steps (2).(a), (b) of the Farthest-Pairs-2D algorithm 39

14 Figure for step (2)-(c) of the Farthest-Pairs-2D algorithm 40

. 15 (a) .4 Voronoi polygon; (b) A Voronoi diagram 41

. 16 The straight-line dual of the Voronoi diagram (the Delaunay triangulation) 42

W P E II

1 Introduction

Corriputational geometry is, in brief, the study of algorithms for geometric problems. Classical study

of geometry and geometric objects, however, is not well-suited to efficient algorithmic techniques.

Thus, for the given geometric problem, it becomes necessary to identify properties a.nd concepts

that lend thenlselves to efficient computation. The primary focus of this paper will be on one such

geometric problem, the Convex Hull problem.

It is safe to say that the convex hull problem is one of the most extensively studied and well-

understood problems in computational geometry. The study of efficient algorithms t o compute

convex hulls had started even before the emergence of computational geometry as an area of research

in its own right. The reasoil for the extensive study of this problem is its theoretical and practical

significance. Problems in computer graphics, image processing, pattern recognition, and statistics

are, to rr~erltion but a few, some of the areas in which the convex hull of a finite set of points is

routinely used. In addition, the computation of the convex hull arises as an intermediate step in

many problems in computational geometry.

The concept of t.he convex hull of a set of points is intuitive and easy to grasp, and finding

it seems to be a fairly straightforward task. However, in order to develop algorithms, we need a

constructive approach for solving the problem, and it is not immediately obvious what this approach

might be. In this paper, we will discuss some of the representative approaches. Before we do tha,t,

however, we address the importa,nt question of lower bounds to t,he complexity of the problem.

It is straightforward to show that sorting is linear time reducible to the problem of finding

convex hulls. which immediately gives us an O(N1og N) lower bound. More irnp~rt~antly, it can be

shown that just identifying the points tha,t lie on the hull (i.e. without specifying the order in which

they occur) also takes at least O(N1ogN) time. However, the argument to prove this fact is not

as elementary. This leads us to an extremely important result by Steele and Yao [22] which, when

combined with the powerful algebraic decision-tree model of Ben-Or [Fj], gives us the stated lower

bound. The proof for this result is fairly complex. We have devoted considerable attention to it

because the proof technique involved is applicable to a large class of algorithms, and is particularly

well-suited t o problems in colriputational geometry.

We will restrict our attention to the planar and 3-dimensional convex hull algorithms. There

is a vast amount of literature on algorithms for planar convex hulls; most of these attain the lower

bound. Three algorithms for the planar case have been surveyed. We start with Graham's Scan

[14], which was one of the first papers specifically concerned with finding an efficient algorithm.

More than a decade later, this techniqne continues to be a powerful tool in co~~lputatiolial geometry.

Jarvis's March, the next algorithm surveyed, is the two-dimensional version of the gift-wrapping

method, which is a constructive method of finding convex hulls in arbitrary dimension [9]. The

familiar technique of divide-and-conqner is applicable to the convex hull problem, a va,ria.tion of

which is the Kirkpatrick-Seidel .algorithm [16]. It uses the novel idea of reversing the order of the

divide and conquer stages: in particular, this method is known as the prune and search method.

Among all the convex hull problems in dimensions greater than 2, the three-dimensional instance is

of particular importance because of its relevance to a host of applications, ranging from computer

graphics to design automation. to pattern recognition and operations research [19]. We describe

the three-dimensional version of the gift-wrapping method as the final algorithm in our survey.

The convex hull problem is fundamental to computational geometry; this explains, and justifies,

the amount of attention that has been paid to this problem. In order to lend some credence to

this claim, it is important to consider some applications of the problem. The penultinlate section

of t,his paper attempts to do this. Giving a truly representative sample of such applica.tions is a

formidable task, quite beyond the scope of this paper. Instead, we restrict our attention to the

convex layers problem, the farthest pairs problern, and Voronoi diagrams.

2 Preliminaries and Lower Bounds

Given k distinct points p l , pa, . . . , pk in E~ (the $-dimensional Euclidean space), the set of points

is the convex set generated b y pl , p2, . . . , pk, and p is a corzve~ cornbi7zution of p l , p z , . . . , pk.

Intuitively speaking, we say that a subsct D c E~ is convex if for every ql, qz E D, each point

on their line segment is also in D.

Definition 2.1 Given a set ,5" of points in E ~ , the convex hull conv(S) of S is the smallest convex

sct containing S .

The term "convex hull" is used interchangeably t o mean either the convex set or the boundary

of the convex set. Following Preparata and Shamos [20], we will use the notation CH(S) when

referring t o the boundary of the convex hull conv(S).

The convex hull, then, is just the intersection of all convcx sets in E~ containing S. It is

guaranteed to exist since the intersection of an arbitrary non cmpty family of convex sets is convex

([17], Theorem 3, p8). Since (2 ,S) is convex, such a family for S will be non-empty, and the

intersection will certainly contain ,S. The convex hull of a finite set of points in is called a

convex d-polytope (or. briefly, a polytope).

Definition 2.2 A polyhedral set in E~ is the intersection of a finite number of closed half-spa.ces.

A polyhedral set may be unbounded. The relationship between convex hulls and polyhedral

sets is provided by the fbllowing theorem (stated without proof):

Theorem 2.3 ([17], pp. 43-47) Every convex polytope is a bounded polyhedral set. Conversely,

every bounded polyhedral set i s a convex polytope.

The description of the convex polytope is obtained from its boundary, svhich consists of faces.

We use the term k-Jace to refer to a k-dimensional face. If a polytope P is d-dimensional, then

it's a! - 1-faces a,re called facets, its d - 2-faces are called subfacets, its 1-fa,ces are called edges, and

its 0-faces are called vertices. For technical reasons and for uniformity, the given d-polytope P is

sometimes referred to as the d-face, and the empty set is called t,he (-1)-fa.ce. It can be shown

([17], p40) that a convex polytope has only a finite number of distinct faces, and each face is a

convex polytope.

Specifically, for the case of d = 2, the polytope is a convex polygon. Its facets are the edges,

and its subfacets are the vertices. The polygon can he represented as a bidirectional list consisting

of the ordered sequence of its vertices. For the case d = 3, the polytope is a polyhedron, its facets

are planar polygons, and its subfacets are the edges. The number of vertices (v) , edges (e) , and

faces (f) of a polyhedron are linearly related, as given by Euler's formula v - e + f = 2. Thus

a polyhedron with N vertices can be representcd in O (N) space (1201, p9.7). Thus, representation

issues for polytopes in the important cases of d = 2 , 3 do not pose any difficulties.

111 what follo~vs, we shall first define our problem formally, and then establish some lower bounds

on its c~omputational complexity.

2.1 Problem Statement and Establishing Lower Bounds

A siluple observation about convex hulls will assist us in formalizing the sta.tement of the problem.

Definition 2.4 A point p of a convex set T is called an extreme point if there do not exist points

a , b E T sudl tha.t p lies on the open line segment 2.

If P is a convex polytopc, i.e. P = conv(S) for some finite S , and I< is the set of vertices of

P, then I< 2 S , and li is the srrlallest subset such that P = conv(1C) ([17], p41). Moreover, the

set I< is precisely the set of extreme points of P.

We now state two versions of the convex hull problem, as given in [20].

Problem EXTREME POINTS (EP): Given a set S of N points in ~ " i d e n t i f ~ those points

of S that are the vertices of conv(S).

However, in order t o obtain a complete description of the convex hull, wc will need t o know

how the extreme points are connected to each other i.e. we will need to obtain the description

of the faces of the convcx polytope.

Problem CONVEX HU1,L (CH): Given a sct S of N points in E ~ , construct the complete

description of the boundary CH(S).

It is clear that the first problem is linear time reducible to the second.

We now proceed to establish lower bour~ds for these two problems. We obtain lower bound

results for d = 2, since a.ny set of points in two dinlensions is trivially embedded in E~ for arbitrary

d , and hence any lower bound results obtained for d = 2 remain valid for higher dimensions1.

First we consider problem CH. In the planar instance of this problem, we need to know the

order in which the vertices of the convex polygon occur, so that we may get a complete description

of its boundary. This suggests an immediate parallel between the problem of sorting and problem

CH for d = 2.

Theorem 2.5 ([20], Theorem 3.2., p94) ,Sorting is linear-time transformable to the convex 1~ulE

problem; therefore, finding the ordered convex hull of N points in the plane requires R (N log N)

tim,e2.

Proof: Given a set of n real numbers X I , x2, x,, we want to sort them using an ordered

planar convex hull algorithm. Assume, without loss of generality, that the convex hiill algorithm

gives the vertices of the convex polygon in counter-clockwise order, starting a t some given vertex.

Now, we provide the CH algorithm with the input points { (x , , x t 2) : 1 < i 5 n) , and find the

point p with the least x-coordinate (which we use as the starting point). This can be done in linear

time. Observe that all points in the input t o CH lie on the parabola y = x2, and all of them

actually lie on the convex hull (see Figure 1). So when the CH algorithm outputs the vertices of

the hull in counter-clockwise order starting at p, the points will effectively be sorted by increasing

abscissa. Reading the x coordinates of these points in order will give us the sorted list we need.

Since the preceding transformation of sorting to planar CH involves only arithmetic opera-

tions, the lower bound of O (N log N) for problem CH holds in all computa.tiona1 models in which

multiplicat,ion is permitted and sortirig is known to require N log N) time ([20], p95).

Let us now consider problem EP. We do not know any linear t,ra,nsformation of sorting to this

weaker problem, and no simple argument to establish a lower bound is known. In fact, this problem

' T h e convex hull of a set of points in one dimension is the smallest Interval that contains them, and can be found

in 8 (N) time.

2 ~ e r e , and in the rest of the paper, log means logy

W P E II: Draft

Figure 1: A linear time reduction from sorting to problem CH.

remained open for a long time, until the preliminary work of A. C. Yao [23], and, a little later, the

powerful algebraic decision-tree results of Ben-Or [5] and Steele and Yao [22] definitively settled

the question. As it turns out, even the unordered convex hull problem, i.e. just identifying the

vertices on the planar convex hull, takes R(N log N) time. In order to prove this, we will need some

definitions and a few relevant results.

If we have some problem A, and its associated decision problem is D(A), then it is easy to

recognize that D(A) c c g (~) A. This is a crucial observation, since it means that when we want

to find a lower bound to a problem, we may restrict our attention to the lower bound of the cor-

responding decision problem. The statement of the decision problem that corresponds to problem

EP is formulated as follows:

Problem PLANAR EXTREME POINTS TEST (EP-test): Given N points in the plane, are

they vertices of their convex hull?

Before going on to the results of Ben-Or and Steele-Yao that give us lower bounds to the above

problem, we will need to know what algebraic decision trees are.

Definition 2.6 ([20], p30) An Algebraic Decision Tree on a set of variables {xl, X*, . . . , x,) is

a program with statements L t , L2, . . ., LP of the form:

1. L,: Compute f(xl, 22, . . . , x,); if f : 0 then go to L, else go to L j (where : denotes any

comparison relation such as 5).

2. L,: Halt and output YES (accepted input in decision problem).

3. Lt: Halt and output NO (rejected input in decision problem).

In definition 2.6, f is an algebraic function i.e. a polynomial of degree degree(f). Furthermore,

the program is assumed t o be loop-free, so that it has the structure of a tree. Each non-leaf node

in the tree is described by f,(zl, . . . , x,) : 0, where f, is a polynomial in the variables xi for

1 5 i 5 n, and : a comparison rela.tion . The order of the algebraic decision tree 2) is the maximum

of the degree of the polynomials ft,(xl, . . . , 2,) : 0, for each node v of 2).

The computation of a. RAM can be represented by a.n algebraic decision tree I?. If the answer

output by t,he RAM program for a given input is YES (NO). then the leaf of the decision tree that

the input goes to is classified as accepting(rejecting). The depth of the tree gives a lowcr bound

on the time I the computation ta.kes. Now, suppose we know that there are H accepting leaves in

the tree, and that the tree is binary3. Then, clearly 7 >_ depth(V) 2 log H (the = case holds if

all leaves are accepting 1ca.ves). Thus, if we get a handle on the number of accepting leaves in the

tree, we immediately have a lower bound for T.

The motivation for the proof technique for obtaining a lower bound on 7 is as follows: If

21, x2. . . . , xn are the parameters of the decision problem, then each such input to the decision

problem can be viewed as a point in En Euclidean space. The decision problem gives a YES

answer for all points in some IV C_ En i.e. it outputs YES if and only if (xl, x2, . . ., x,) E W

(the decision tree 21 solves the membership problem for W) . Each leaf 1, of the tree has a region

D, C En associated with it, namely, the region that is the set of all points that satisfy the

constraints f, : 0 for each node v in the path from the root to the leaf I,. Since each input

51, 2 2 , . . . , x, corresponds to a computation that traces a unique path in the dccision tree and

which takes it to either an accepting leaf or a rejecting one, leaf L, is classified as:

accepting, if Dj C T.V

rejecting, otherwise

Observe that for any two distinct leaves l , , l J , Dt and D, must be disjoint because each input

X I , x2, . . . , x, traces a unique path from the root to a leaf. Now, suppose that , by the nature of

the problem, we know the number of disjoint, connected conzponents, # (W) , of W. We then try

to establish, for accepting leaf I , , the maximum number of disjoint, connected components of W

that D , could possibly have i.e. we establish that # (D 3) 5 M for some M. From this, and from

the previous observation, it follows that

i.e. log#(W) - logM < logH 5 depth(V) 5 7 (1)

Thus log #(by) - log iM is thc lowcr bound for I .

"his is a reasonable assumption , since any tree with branching > 2 can be replaced by a corresponding binary

tree that performs the same co~nputation

W P E 11 9

In the case of a linear decision tree model (i.e. an algebraic decision tree of order I), it can be

proved that hl has to be 1, and, as a consequence, we have the following theorem (due to Dobkin

and Lipton (1979), and stated here without roof).

Theorem 2.7 [I 11 ,4ny linear decision tree algorithm that solzqes the membership problem in

W E" must have depth at least log # (W) , where # (W) is the number of disjoint, connected

components of fl'.

Unfortunately, the elegant and straightforward proof technique used for the above theorern is

restricted t o linear decision tree models. The proof rests crucially on the fact that the region

D, En associated with a leaf l 3 of the tree is convex, because it is the intersection of half-spaces

(the polynomial J, a t node v in the tree defines a hyper-plane). However, this very useful property

no longer holds when the maximum degree of the polynoniial f , is 2 2. When silch polynomials

are used, the region associated with a leaf may consist of several disjoint, connected components of

JV ([20], p33). Hence, more sophisticated concepts are needed to figure out what M should be for

$-degree algebraic trees (d 2 2).

This problem was solved by Steele and Yao (1 982) and Ben-Or (1983), using a clever adaptation

of a classical result in algebraic geometry, proved independently by Milnor (1964) and Thorn (1965).

The Milnor-Thorn theorem is as follows:

Theorem 2.8 (Milnor-Thorn) Let V be the set of points in the m-dimensional cartesian space

Em defined by the simultaneous solution to the following p polynomial equation,^:

Then, i f the degree of each polynomial g; (i = I , . . . ,p) is 5 d, the ~xumber #(IT) of disjoint,

connected co~nponen,ts of V is bounded above by

independent of the number of equations.

Theorem 2.8 gives us a way to bound the number of disjoint, connected components that can be

associated with a leaf; the constraint,^ encountered along the path from the root of the tree ;I) t o the

leaf give us the p polynomials in the hypothesis of the theorem. However, since V above is defined

in terms of equations, and a path in 2) will typically consist of equations as well as inequalities, the

Milnor-Thorn theorem cannot be applied directly. Ben-Or found a way t,o circumvent this difficulty,

and proved the following result.

Theorem 2.9 ([~ C I] , Theorem 1.2., p35) Let W be a set in the cwrtesian space E 7 k n d let Z I be

an algebraic decision trce of fixed order d (d 2 2) that solves the membership problem in MT. If

h* is the depih of 23, then h* = R(log#(\V) - n).

Proof: Let V be an algebraic decision tree of order d (d >_ 2) that solves the membership problem

in W, and # (W) the number of disjoint, connected components of CV.

Let x = (xl , 22,. . . , 2 ,) . Suppose

are the constraints along the path from the root to some leaf in 27, where the qils a,nd the pj's

are polynomials, and d = max{2, degree(q;), degree(pj)). Let lJ be the solution space of these

constraints.

To convert the inequalities into equalities, Ben-Or introduced slack va,riables, an idea commonly

used in linear programming [I]. The first step in the conversion is to replace the open inequalities

with closed inequalities. Let # (U) ef t (# (U) is finite), and pick a point from each of the f.

components of U . Let these points be 711, v ~ , . . . , vt. Define

E = rnin{pi(llj) : i = 1, . . . , s; j = 1 , ..., t } .

Since ea.ch v; lies in the solution space U , p;(vj) > 0 (range of i a.nd j as above) and hence E > 0.

Thus, the solution space UE of the following set of equations

is contained in Cr, and, clearly, #(UE) > #(t i) .

The final set of (converted) constraints, then, with yl, . . ., ys, ys+l, . . ., y ~ (as the slack

variables, is as follows (not,e that we now view En as a subspace of E ~ + ~) :

The hlilnor-Thorn theorem can be applied to the above set of equations, since they are all

equalities (in E " + ~) . The order of the polynomia.1~ is still d (since we assumed d >_ 2). Let Un+h

be the solution set of tlze above set of equations in E ~ ~ ~ . By the Milnor-Thom theorern, we have

Since U, is the projection of Un+h into En, we must have # ([I ,) 5 #(Un+h)4. Therefore, we can

conclude that

(U) < # (U E) 5 #(Un+h) < d(2d - 1)
n f h - 1

Since the set of equat.ions we started off with were the equations along a path from a root to a

leaf, h (the number of inequalities) can he a,t most as large as the pat,h length. If h* is the length

of the longest path in the tree 2) (i.e. the depth of D), then V will have at most 2h* leaves, and

each leaf will have a t most d(2d - l)nSh*-' disjoint, connected components associated with it.

Referring now to Equa.tion 1, we ha.ve

iM = d(2d - l)n+h*-l

+ M < (2d)n+h*

logn i < [n f h,*) + (n + h.*)logd

+ log III = O(n + h*)

This means tha.t log # (W) - O(n + h*) 5 h* (again, from Equation I), and since d is a

constant, we have

h* = R(log#(Wj - nj ,

and this concludes the proof of the theorem.

Let us now see why the above results perta.ining to quadratic and higher degree decisio11-tree

nlodels are relevant to the problem we are concerned with, nanlely that of establishing a lower

bound for problem EP-test. For a large number of geometric problems, the linea,r decision-tree

model is much too restrictive. For instance, just computing the Euclidean distance metric requires

quadratic polynomials. The linear model is inadequate for our problem also; we do not, know of

any planar convex hull algorithm that uses only 1inea.r tests, and, in fact, all known algoritllrns can

be correctly modeled using quadratic dec,isioil trees. The primitive operation in these algorithms

is of the following form: Given three points pl , pz, and p3 in the plane, does pl lie to the left, to

the riyht, or or2 the directed line segment joining pa and p3? Mathematically, this test is expressed

as A(pl, pp, p3) : 0: where A corresponds to the polynomial given hy the determinant

N p l , Pz, ~ 3) =

'11 two points in E " + ~ are connected by some path, then the projections of these two points in En are connected

by the projectior~ of that path. Thus, projection can only reduce the number of disjoint, connected components [I].

Pll P12 1

p21 p22 1

P31 1)32 1

(2')

WPE 11: Draft

+ V Y 9
JL 'bit1

Figure 2: The vertices of the input set R.

where pl = (pn, p12), = (prl, p ~ ~) , and p3 = (pS1, ~ 3 ~) . A gives us twice the signed area

of Triangle(p1p2~~)~. It is clearly a quadratic polynomial.

We finally come to the last step of establishing a lower bound for problem EP-test. Since

we know that the quadratic decision-tree model is the correct one for this problem, we can use

Theorem 2.9 to give us our final result. However, in order to use this theorem, we first have to

obtain a lower bound to #(W), and we do that as follows [I].

Let R = {vl, v2, . . . , ~ 2 ~) be the input set of points to the problem EP-test. Let

v; = (z;, y;), 1 5 i 5 2N. Each such set R can be regarded as a point

z = (zl , yl, 22,92, . . . , z 2 ~) in CN. W in this case, then, is the set of dl points in E~
that satisfy the problem EP-test. Pick a set R for which EP-test gives the mswer YES. Without

loss of generality, let vl, v2, . . . , V2N be the clockwise order of vertices on the hull, as shown in

Figure 2. Let ~ 1 , rz, . .. , TN! be the N! permutations of the integers 1, 2, .. . , N and let aJl

possible permutations of the even numbered vertices v2, v4, . . . , v 2 ~ be as given below:

Observe that EP-test gives a YES answer for each set

since it is just a permutation of the input set R. Hence, for each such i, the point zj that the set

R; corresponds to, will be in W.

'The signed amo of the triangle (p1pZp3), as given by this determinant, is positive (negative) if and only if pi, p2,
and pa form a counterclockwise (clockwise) cycle. This means that A is positive (negative) if and only if pl lies to

the left (right) of the directed line segment from pz and p3. A is zero when pl lies on the directed line segment from

PZ and p3 .

W P E 11: Draft

Figure 3: Projection p' of the path connecting z; and 2;.

Claim: Each z;, 1 5 i 5 N! belongs to a distinct connected component of W.

Proof: Note that for any pair of sequential odd numbered vertices vzj-1 and v2j+~, there is exactly

one vertex from R, namely vzj, that lies to the left of the directed line segment ~2j-lvzj+l

(1 5 j < N, V2N+1 = vl) (see Figure 2), and hence A(v2j-lvzj+lv2j) > 0 (where A is as

in Equation 2). Now, for each TI;, construct a two dimensional N x N array A, as follows. For

1 5 r 5 N and 1 5 s 5 N, associate with the r-th row of Ai the pair (v?,-~, v ~ , + ~) , and

with the s-th column the vertex IIi(s). Define

A;(r, s) = -, if A(vzr-*v2,+lIIi(s)) < 0
+, otherwise

Each row of the above array will contain exactly one +, by virtue of the observation made

in the first sentence of this proof; Ai(r,st) = + iff TIi(sl) = vz,. Hence, if i # j , then

A; # Aj. The two arrays must differ in a t least one location, otherwise they would correspond to

the same permutation. Suppose A; and A j differ in location (r,s); for example, A;(r, s) = + and

Aj(r,s) = -. Then, II,(s) and II,(s) must lie on opposite sides of the directed line segment from

v2,-1 to v2r+l (see figure 3).

Now, clearly z, and z j are two distinct points in E ~ ~ . We want to show that z; and z j must lie

on different connected components of W. Suppose not i.e. suppose that there is a path p in E~~

connecting z; and z j that lies entirely within W. Consider the projection that maps onto the plane

the 2s-th and (2s + 1)-th coordinates of each point on the path p. Clearly, z; gets mapped to ll;(s)

and z j gets mapped to IIj(s). Since z; and z j are connected in E ~ ~ , the path p corresponds to a

path p' in the plane that connects IIi(s) and IIj(s). As observed earlier, since II;(s) and Hj(s) lie

on opposite sides of v2,-l vz,+l, by the intermediate value theorem, v2,-1 V ~ ~ + I must intersect p' at

some point, say v' (see Figure 3). Since v' is the projection of some point in W, it must be one of

the vertices of the input set R. This means that, a s illustrated in figure 4, one of V Z , - ~ , v27+1, Or V'

WPE 11: Draft

Figure 4: One of v', v2,+l or v2,-1 cannot be extreme. TCs),

cannot be extreme. But obviously this is a contradiction, since our input set R is a YES instance

of problem EP-test. Hence, any path from 2;; to z j must go out of W, which means that they must

belong to two distinct, disjoint, connected components of W. 0

Since we have N! such zi's, the above claim implies that W must have at least N! disjoint,

connected components, one for each permutation. Combining this result with Theorem 2.9, we get

the following result (at last!).

Theorem 2.10 ([20], Theorem 3.3., p97) In the fied-order algebraic decision-tree model, the

determination of the extreme points of a set of N points in the plane requires S1(N log N) time.

Proof: Referring to Theorem 2.9, we have n = 4N and #(W) 2 N!. Therefore, by the result

of the theorem, the computation time for the EP-test problem is Q(log #(W) - 4N) =
R(logN! - 4N) = Q(N log N - 4N) = Q(N1og N).

This concludes our section on lower bounds for the time complexity of the problem. Even

though the proof for the lower bound to problem EP is much more elaborate and complex than

that for problem CH, both problems bear an intimate relation to sorting, and this is apparent in

many of the algorithms for the problem at hand. We now turn to the description of algorithms for

the convex hull problem.

3 Algorithms for the Convex Hull Problem

We start with algorithms for the planar convex hull problem.

First we demonstrate a trivial (and extremely inefficient) algorithm to show that this problem

is in P. The algorithm can be derived from the following theorem:

Theorem 3.1 ([2 0] , Theorem 3.4, p98) A point p fails to be an extreme point of a plane convex

set S only if it lies in some trian,gle whose vertices are in S but is not itselfa vertex of the triangle.

Note tha't the triangles might deteriorate into three co1linea.r points. Using the above theorem,

we can eliininate all points tlmt are not ext.reme from t,he input set of points, a.s follows: For a

given point, there are triangles determined by the remaining -2r - 1 points. For each of

these triangles, determine if the point lies in the triangle or not, which can be done in a constant

number of steps. So, in O(AT3) time we can learn if a given point is extreme or not. This process is

repeated for each of the N points, and hence we have an O (N 4) algorithm to identify the extreme

points of a given set of points. These points must be ordered for us to form the convex hull.

Since a ray emanating from an interior point of a convex polygon intersects it in exactly one point

([20], Theorem 3 .5 , p9Y), and vertices of a convex polygon occur in sorted angular order about any

intcrior point ([20], Theore111 3.6, p99), we can sort the extreme points by picking some point that

is internal to the hull (the centroid of the extreme points, say, which can be found in O [N) time).

A ray starting at this point sweeps over all the extreme points, and the angle subtended by the

ray with, say, the horizontal can be determined at each extreme point, which clearly takes constant

time. The angles thus determined can then be sorted, and hence we have an O (N log N) procedure

for this phase of our algorithm.

Aside from the theoretical significance of establishing that problem CH lies in P, an 0(,v4)
algorithm does not buy us much in terrns of computational feasibility. It is far from the O (N log N)

lower bound, but, as we shall see now, there are a number of algorithms that actually match this

lower bound.

3.1 Graham's Scan

One reason the algorithm described above is O(N4) may be that it is doing redundant computation.

Graham's algorithm [14] amply illustrates that this is indeed the case. Performing the sorting step

first enables the extreme points to be found in linear time.

(see diagram for Graham's Scan in notes).

Suppose S = {pl, p ~ , . . . , p N) is the input set of points in the plane. Let 0 be the point from

the input set that has the least y-coordinate (if there a,re two or more such points, pick the one

with the largest x-coordinate). Assume that the coordinates of the n points have been transformed

so that 0 is the new origin. !Are now sort these points with respect to polar a.ngle from O about

the 1lorizonta.l axis. If two points have the same polar angle, the point closer to 0 is considered to

be the smaller of the two points. Before we proceed to the rest of algorithm, a brief but important

digression is necessary.

W P E I1 16

Suppose that we are given the input points in cartesian coordinates (x, y). In order to

do comparisons of the above form, we will need the polar coordinate information (r , 8) , where

r = q'm and 0 = arcsin(y/r). In many systerns with a restrictive set of primitives, how-

ever, both sqrt and arcsiri are not unit-time operations. Since we will only be comparing distances

froni 0 when the polar angles for two points are the same, we do not have to actually compute the

square root. We can work with the distance r squared, since all we are interested in is a magnitude

comparison. We do not have to explicitly compute the polar angles either; the signed area of a

triangle, defined earlier, will help us here. Given two points p, and ps from the input set of points,

the polar angle subtended by Op, with the horizontal is strictly smaller than that subtended by
-
Op, if and only if the signed area of the triangle (0 , p,, p,) is strictly positive.

So suppose now that the points have been sorted in the method described above, and arranged

in a doubly linked circular list6. The basic idea of Graham's algorithm is to make a single pass

around the sorted list of points, and eliminate all points that are not extreme from the circular list.

The important to note is that if a point is not extreme, then it will be internal t o some triangle

(0 , p,, p J) , where p, and p, are consecutive hull vertices (a point on the triangle boundary, excluding

the end points, is also considered internal). Thus, what we are left with in the list are the hull

vertices in the sorted order. Let vl , v2, . . . , v~ be the sorted order of the input set of points

p1, pz, . . . , p~ (where 111 obviously is 0) .

The actual method of elimination of points that are not extreme is as follows: We start the

scan through the list a t some point, say the origin 0 (note that 0 will be one of the extreme

points, and hence a hull vertex). We then repeatedly consider three consecutive points v;, .v;+l,

a.rid , u ; + ~ (I _< i 5 n - 2) in the sorted list t o determine whether or not internal L ~ ; V ; + ~ V ; + ~

is a reflex angle (one that is _< T . If internal L ~ ; V ; + ~ V ; + ~ is reflex then , V ; V ; + ~ I I ~ + ~ is said to be a

right turn. otherwise it is said to be a left turn. This can be determined by applying Equation 2;

if A(vi, v;+l , v ; + ~) is 5 0, then v;vi+lt~i+2 is a right turn; otherwise, it is a left turn. Note that if

v;v;+lv;+2 forms a right turn, then we ca,n immediately eliminate v;+l from our list, because v;+l

is internal t o t,he triangle (0 , v;, vi+2). Thus, our scan works as follows:

1. ,u;v;+lvi+2 forms a, right turn: Eliminate v;+l, and check v;-lviv;+z.

2. a;v;+l11;+2 forms a left turn: Advance the scan to the next vertex in the list, 11;+1, and check

?ji+l vi+2vi+3.

advance the scan until we hit vl again in the circular list. Also, since ul is a.n extreme point,

we do not ha,ve t o worry about eliminating it, and hence it is a,ll right for the initial check to be

v12j2v3. The complete algorithm for Graham's Scan is given below:

'The da ta structures used for this algorithm are as described by Preparata and Shamos [20]. A stack may also be

used for the same algorithm [I].

procedure GRAHAMHULL(S);

1. Find the point in S with the least y-coordinate. If there are two or more such points, pick

from them the one with the largest x coordinate. Call this point 0.

2. Transform all points in S so that 0 is the new origin.

3. Sort the points of S with respect to polar angle from 0. If two points have the same polar

angle, compute the distance of the points from 0 to determine their order.

4. (Scan)

begin
v := 0 ;

while /RLINK[zl] # 0) do

if (A(v, RLINK[v], RLINK[RLINK[v]]) 5 0) then
begin

Delete RLINK[u];

21 := LLINK[v];

end

else
v := RLINK[v];

end

Let us determine the complexity of the algorithm. Note that only unit time arithmetic and

comparison operations are used, since, as mentioned earlier, we do not have t o explicitly compute

the sqrt and arcsin functions. Step (1) and Step (2) clearly take O (N) time (where N is the size of

the input set of points). Step (3), which is the sorting step, takes O (N log N) time. Step (4) takes

O (N) time adso, and this can be shown as follows. Computing Delta and doing the comparison

takes a constant number of steps. After the comparison has been done, we either delete a point,

or advance the scan. l i e can perforrrl at most N - 1 deletions (N - 1 will be necessary in case all

the input points are the sa,me) and advance the scan at most N - 1 times (N - 1 will be necessary

in case all the input points lie on the hull). Clearly, then, the last step takes O (N) time. Thus,

the entire a.lgorithm takes O (N log N) time (and O (N) space). At the end of the algorithm, all the

points rerna.ining in the circular list are the hull vertices, a,nd, sta.rting from 0 , we can output the

p0int.s on the hull in counter-clockwise order as we t'raverse the list.

This algorithm clearly dernoristrates the direct relation between sorting and the convex hull

problem. However, Graham's scan has its own drawbacks. It rests crucially on the fact that the

hull vertices occur in sorted angular order about any interior point, and this fact holds only in two

dimensions. Hence this algorithm does not generalize to higher dimensions. Another important

W P E I1 18

goal for convex hull algorithms is parallelizability, and since this algorithm is not recursive (and

hence does not divide the main problem into smaller subproblems), it cannot be used in a parallel

environment.

3.2 Jarvis's March

Another approach t o finding the convex hull is to identify the hull edges, as opposed to the hull

vertices. This is exactly what Jarvis's algorithm [15] does. As it turns out, Jarvis's method is the

two-dimensional version of a general algorithm, known as the "gift-wrapping" method, for finding

the convex hull of a set of points in arbitrary dimension. This general method was proposed by

Chand and Kapur [9] as early as 1970. The three-dimensional sperialization of this algorithm will

be mentioned later on in this paper.

The name Jarvis's March comes fro111 the fact that we march around the convex hull, finding

successive hull vertices in order7. We will now describe a version of Jarvis's algorithm that includes

some minor corrections [4]. Let pl and ql be the points from the input set of points with the least

and the largest y-coordina,te, respectively (as usual, we brea.k ties in each ca.se by choosing the point

with the largest x-coordinate). Clearly, both pl and q~ are vertices on the hull. The idea is to sta,rt

a t p ~ , and pick the next point yz on the hull. Clearly, pz is that point p from the input set such

that pl?, makes the least polar angle with the positive x-axis. After pz has been picked, we choose

the next point on the hull pa in the same manner, and so on until we hit q l . Now we start a t ql

and repeat the process until we hit p l , only t,he polar a,ngle is now calculated with respect t o the

negative x-axis. As mentioned earlier, the smallest angle can be determined using only arithmetic

and comparison operations. The pseudocode for the algorithm is given below:

procedure JARVISMARCH(S);

1. Find the point in S with the least y-coordinate. If there are two or more such points, pick

from them the onc with the largest x-coordil~ate. Call this point p l .

2. Find the point in S with the largest y-coordinate. If there are two or more such points, pick

from the one with the largest x-coordinate. Call this point q l .

3. Finding points on the hull from pl upto ql in the ant,i-clockwise direc,tion:

78 := 1 ;

While (pn # q1)

Begin

'1t also resembles the process of wrapping a two-dimensional package. This is the intuitive idea of the "gift-

wrapping" method mentioned earlier.

W P E TI

Let p be the point from S such that the angle

made by pp,_l with the positive

x-axis is minimum.

Pn := P;

End;

4. Finding points on the hull from ql down to p7 in the anti-clockwise direction:

m := 1 ;

While (qm # PI)

Begin

m := m + 1;

Let q he the point from S such that the angle

made by qq,_l with the llegative

x-axis is minimum.

qm := Y;

End;

5. The points pl , p2, . . . , p,-1, ql, qz, . . . , q,-1 are the hull vertices. Note that they are in

anti-clockwise order, and hence we do not need to explicitly sort them.

In the above algorithm, Steps (1) and (2) clea,rly take O(N) time, where N is the size of the

input set of points. Now, let us denote by h the number of vertices on the convex hull. We will

use this measure to determine the complexity of Steps (3) and (4). The body of the while loop in

both those steps will take O(N) time. Since the total number of iterations of both those loops will

be h, Steps (3) and (4) will take O(Nh) time. Hence the total running time of the Jarvis March

algorithm is O(R h). The worst case (h = N i.e. all N input points lie on the convex hull) running

t i ~ n e of this algorithm, then, is O(iV2) which is worse than Chaham's Scan. However, if h is known

in advancc to be small, Jarvis's algorithm is a very efficient one.

3.3 The Kirkpatrick-Seidel Algorithm

The idea of Divide and Conquer algorithms is t o break up the problem into sub-problems (divide),

solve each of the sub-problems recursively (conquer), and then combine the subsolutions to form

the global solution (merge). Such algorithms for the convex hull problem will be of particular

interest to us, because they might achieve the important goal of parallelizability. However, in order

that such algorithms have good worst-case performances, it is important to divide the problem into

sub-problems of nearly equal size.

W P E 11 2 0

Suppose we divide out input set of points S into two parts, S1 and S2, each of roughly the same

size. Once we (recursively) find the convex hulls CH(S1) and CH(S2), is there an efficient method

to find CH(SI U S2) (i.e. t,he global solution)? The answer, fortunately, is yes. The following

relation is of significance for this method:

The above formula seems to suggest that the merge step of the divide and conquer method

requires us to apply the convex hull algorithm all over again. However, it is not necessary to do

that . We use the fact that CH(S1) and CH(S2) are in the form of co12vex polygons in order to

efficiently find the convex hull of their union. How exactly this method works will become clear a

little later in this section.

The standard divide-and-conquer algorithms for the convex hull problem work as follows:

procedure divide-and-conquer(S);

1. If J,SI < Lo (where ko is some small integer), then construct the convex hull of S by some

other method. If not, go to step 2.

2. Partition S into two subsets ,S1 and Sz of approximately equal size.

3. Recursively find the convex hulls of SI and Sz .

3. Merge the two convex hulls CH(Sl) and CH(S2) together to form CB(S).

The basic idea behind the merge step (Step (4)) is as follows (for now, we will not be rigorous,

and will appeal to the intuition that Figure 5 provides). In order to combine the two convex hulls,

we need t o find two lines: one that is tangent to the top of both CH(Sl) and CH(S2), and one that

is tangent to the bottom of both. These are referred to as the upper bridge and the lower bridge,

respectively. Let ul and lI be the vertices of S1 that lie on the upper and lower bridge, respectively.

Let ua and l2 be the corresponding vertices for Sz . Then, as illustrated in Figure 5, all vertices

in CH(SI) going clockwise from ul to l1 can be discarded. Similarly, all vertices in CH(S2) going

anti-clockwise from ua to l2 can be discarded. A11 the remaining vertices of CH(S1) and CH(S2)

form the vertices of CH(S). We will show later on that finding the upper and lower bridges can be

done in 0 (X) time.

The Kirkpatrick-Seidel algorithm [16] is based on a variation of the divide-and-conquer paradigm.

The method used in this algorithm reverses the conquer and merge stages. Upon dividing the

problem, first we determine how the sub-solutions will merge (without actually computing the

sub-solutions), and then proceed to solve the sub-problems. The advantage of this method is that

it allows us to remove beforehand, parts of the subproblems that upon merging turn out to be

WPE 11: Draft

- - - - ='k
' lower brde

Figure 5: Merging two convex hulls by finding the upper and lower bridges.

redundant. Thus, it reduces the size of the subproblems to be solved recursively [[16], ~2881. Such

algorithms are also known as prune and search algorithms8 [I].

The prune-and-search algorithm for the convex hull problem is as follows. Let S be the input

set of (planar) points, whose members are pl, p*, . . . , Pn -
procedure kirkpatrick-seidel(S);

1. Let pmin and p,,, be the points of S with the least and largest x-coordinate, respectively

2. If there are two or more such p,,, (pmm), pick from them the point with the largest y-

coordinate and call it pum;, (puma,).

T := urnin in, ~ u r n a z } U {p€S(~(pumin) C z(p) < ~ (p , ~ ~ ,))

UPPER-HULL(pumin puma,, T)';

3. If there are two or more such pmin or p,,,, pick from them the point with the le'ast y-

coordinate as pl,,, or plma,, as the case may be.

T := { ~ l m i n c p/maz) U {~€S(z(~lmin) < ~ (p) < ~(pr,,,))

L O ~ ~ E R - H U L L (P ~ ~ ~ ~ , pimi,, T) ;

4. (UPPER-HULL (LOWER-HULL) will return the points on the upper (lower) hull of S in

clockwise order, in the form of a doubly linked list.) Concatenate the list UPPER-HULL

returns to the list that LOWER-HULL returns. We now have the convex hull of S in clockwise

order.

procedure UPPER-HULL(p,;,, p,,,, T);

'In their paper, Kirkpatrick and Seidel refer to this approach as the marriage-before-conquest principle. I prefer

prune and search.
'The upper hull (lower hull) refers to the convex hull of the points of S above (below) and on the line passing

through p,;, and p,,,. Note that this is exactly the convex hull of S that lies above (below) that same line.

WPE 11: Draft

Figure 6: All points in the shaded region can be discarded before the recursive call of UPPER-
HULL.

1. I f pmin = p,,,, then return the singleton (doubly linked) list containing p,;,.

Else, continue on with the next step.

2. Find the median of the x-coordinates of the points in T i.e. find an a such that

x(p) 5 a for IT112 points in T and

x(p) > a for (T (/ 2 points in T

Let L be the vertical line x = a. Let TIeft be the points of T to the left of L. Let Tright be

the points of T to the right of L.

3. Define the upper bridge to be the segment such that its left end-point pl lies in Tiejt
and its right end-point p, lies in Tright, and it is a supporting line of TI0. Clearly, the upper

bridge is a part of the upper convex hull. We will show later that there is an algorithm to

determine upper bridges efficiently.

(p l , p,) := UPPER-BRIDGE(T, L);

4. Since p,;,, pl, p,, and p,,, are all points in T , and they form a convex quadrilateral, we

can discard all points of T that fall within this quadrilateral (see Figure 6), since they cannot

form the vertices of the upper hull1'.

Zejt := { p l } u all the points of T , e j t to the left of the line through p,;, and pl;

Tright := {pr}u d l the points of Tright to the right of the line through p, and p,,,;

''A supporting line of a set S contains at least one point of S, and all points of S lie on one side of the line.
''This step is a little different in the paper by Kirkpatrick and Seidel [16]. They only discard the points that lie in

the trapezoid determined by pr, p , and the pm,,pm,,. They do, however, mention the approach taken here.

5. UPPER-HULL(pmin, pl, T1eft) * UPPER-HULL@,, p,,,, Tright), where * represents list
concatenation of doubly linked lists.

The procedure for the lower hull, LOWER-HULL(pmas, p,,,, T), is very similar and uses

exactly the same idea. We will not repeat the entire procedure for LOWER-HULL here. The

only differences t o note are that in Step (3) we find lower bridges instead of upper bridges. When

assigning new values t o Tleft and TTzght in Step (A), we only pick the points below the line in question.

Finally, step (5) will be LONTER-HULL(p,,,, p,, TTzsht) * LOWER-HULL(pl, p,;,, Tleft),

so that we can get the points on the lower hull in clockwise order.

We have not yet specified how the upper and lower bridges are found. For now, let us assume

that these bridges can be found in linear time. This will be proved a little later. With the given

assumption, we can now sllow that the I<irkpatrick-Seidel algorithm runs in O(N log H) time, where

N is the size of the input set of points, and H is the number of points on the hull.

Claim: UPPER-HULL takes O(Nlog H,) time, where H , is the number of vertices on the upper

hull, and N is as above.

Proof: ([16], p290) From a result by Blum et al. ([3], p99) the median of a set of numbers can be

found in linear time. Using this result, and our assunlption stated above, it is clear. that steps (2)

t o (4) take O (N) time. Let f be the following recurrence relation (for h 2 2):

i f h = 2
f (n , h? I

cn. + ma.x {I (%, hl) + f (5. h,) (hl + h, = h) otherwise

where c is sorrle positive constant and n 2 h > 1. Clearly, the run time of UPPER-HULL

is given by f (N . H,). where hl and h,. above will be the size of Tleft and TTtsht, respectively, in

step (5) in the algorithm. The claim is that f (n , h) = O(n1og h.) i.e. that f(n, h) 5 cnlog h

satisfies the above recurrence. lnduction on gives a straightforward proof. For the base case, this

is obviously true. For h > 2, using the inductive hypothesis, we have

n
f (n, h) < c n + ma,x hl + c- - logh, 1 hl + h, =

2

It can be easily established, using elementary calculus, that the maximum is realized when

hl = h, = h / 2 . Thus,

= c a + cnlog (S)
= ra + c n l o g h - cn

W P E ll

= cnlogh

This concludes our proof. UPPER-HULL is O(iV log H,), and it obviously has a linear space

hound.

Similarly, LOWER-HULL will be O(N1og HI), where H I is the number of points on the lower

hull. The time bound for the main sub-routine (p rocedure kirkpatrick-seidel) follows imme-

diately frorn the a.bove claim. Since step (1) takes O (N) time, the total time taken will be

O (N) + O (N log H,) f O (N log HI), which works out to be O (N log H).

We now demonstrate that finding the upper bridge takes O (N) time. Recall that finding the

upper bridge involves finding a supporting line that contains t,wo points of S - one to the left of L

and one to the right of L. Let b be the bridge, and mb be the slope of b. One way in which bridge

points can be identified is to successively eliminate points from ,S as candidates for bridge points.

We pair up t,he points of 5' into N/2 couples, where A' is the size of S . The following lemmas

show how the formation of pairs can help us eliminate candidates for the upper bridge; analogous

lernmas for the lower bridge are omitted here for the sake of brevity.

L e m m a 3.2 Let p , y be a pair of points of S . If z ip) = x(q) and y(p) > y(q) then q cannot be

a bridge point.

L e m m a 3.3 Let p, q be a pair of points of ,Y with z(p) < : e (q) , and let m,, be the slope of the

straight line h through p and q.

1. If m,, > mb, then p cannot be a bridge point.

2. If m,, < mb, then q cannot be a bridge point.

Instead of proving these simple lemmas lormally, we refer the reader to figures 8-(a),(b) from

which t,he validity of the lemmas is obvious. In particular, they allow us to eliminate one bridge

point from each of the N / 2 pairs by appealing to the following lemma.

L e m m a 3.4 Let h be a supportin,g line of .S with slope nzh , and let the point(s) of S that it contains

belong to the upper hu.ll.

1. mh > mb iff h contains only points of S that are to the left of or on L.

2. mh < m b ifl h contains only points of S that are to the righL oJ L.

Figure 8 provides the necessary intuition behind the lemma. Combining it with 1emma.s 3.2

and 3.3, we can conclude the following.

WPE 11: Draft

Figure 7: Elimination of candidates for bridge points.

(a> (b)

Figure 8: The upper bridge and its relation to supporting lines.

WPE I1 2 6

Corollary 3.5 Let p, q be points in S with x (p) < x(q) , and h be any supporting line of S . Then

i f h contains only poi'nts of S to the left of or on L and m.,, > m.h, then p is not a candidate

for the end point of the bridge, and

if h contairzs only points of S to the right of L and mpq < m,h, then q is not a candidate for

the end point of the bridge.

We are now ready to give the UPPER-BRIDGE algorithm. Let L be the vertical line x = a,

and S the input set of points. If two edges of the convex hull intersect L and therefore qualify as

upper bridges, i.e. L contains a vertex v of the upper hull, then this algorithm returns the bridge

for which u is the left end-point.

function UPPER-BRIDGE(S, L); ([16], p292)

1. CANDIDATES := 0;

2. If JSJ = 2 then return ji, j) , where S = {pi , pj) and x(pi) < x (p j)

3. Arbitrarily pair up points of S into pairs (pi , pj). There will be LJS1/2] such pairs.

If a point of S remains, then insert it into CANDIDATES.

PA1R.S := the set of these ordered pa.irs (pi, pj) such t'hat ~ (y ;) 5 x (p j) .

4. Determine tlze slopes of the straight lines defined by the pairs. If the slope does not exist,

apply Lenzma 3.2:

For all (pi , p j) in PAIRS do

If ~ (p ;) = x (p j) then

Begin

If pi) > ~ (p j) then
insert p; into CANDIDATES

else

insert p j into CANDTDATES

End

else

5. Determine I { , the median of {k(p;, pj)((p;, pj) E PAIRS} .

6. S M A L L := {(p, , p,) E PAIRS(k(pt, p,) < I < } .

EQUAL := { (p , , p3) E PAIRSJk(p,, p,) = I<) .

LARGE := { (p i , p j) E PAIRSJk(p;, pj j > I {) .

7 . Find a supporting line of S with slope I { . Find the points of S that lie o n this supporting

line:

To do this we draw a Line with slope K through each point of S. The line that has the highest

intersection with the y-axis is t,he line we are looking for.

MAX:= set of points p; E S such that y(pi) - li t x (p ;) is ma.ximum.

pk := point, in MAX with minimum x-coordinate.

p . := point in MAX with maximum x-coordinate.

8. Determine if h contai~zs the bridge:

If x (p k) 5 a and n:(p,,) > a, then retnrn (k , m).

9. h contains only points of S to the left of or o n L (IITse Comllary 3.5):

If x(p,) 5 a then

for all (p;, p.i) E LARGE U EQUAL insert pj into CANDIDATES.

for all (pi, p j) E SMALL insert p; and pj into CANDIDATES.

10. h contains only points of S to the right of L (Use Corollary 3.5):

If x(pk) > a then

for a,ll (p , , p,) E SMALL U EQUAL insert p, into CANDIDATES.

for all (p , , p,) E LARGE insert p1 and p, into CANDIDATES.

11. returnjUPPER-BRIDGE(CANDIDATES, L)) .

Claim: UPPER-BRIDGE runs in O (N) worst case time, using linear space.

Proof: From the linear median finding algorithm of Blum et al. ([3], p99), step (4) takes O (N)

time. All t ,l~e other steps can clea,rly be executed in O (N) time a,lso. Furthermore, at least one

quart,er of the points of S are elimina.ted in step (3) and step (8) or step (9), and her~ce are not

contained in CANDIDATES. Thus the worst case time for this algorithm is given by:

This is a well-known recurrence whose solutioll is O (n) ([3], p64)/

This concludes the section on the Kirkpatrick-Seidel algorithm. Practically, as mentioned in [:I.],
this algorithm has some nasty constants because of the media.n finding algorithm. So, for planar

convex hulls, Gra.ham's Scan is most commonly used. We now consider the problem of constructing

the convex hull of a finite set of points in more than two dimensions.

3.4 Finding Convex Hulls in 3 dimensions: The gift-wrapping method

As nlentioned in Section 1, the convex hull of a finite set of points in arbitrary dimensions is

a. convex polytope. The case we have considered so far, na.mely the planar convex hull (convex

polygon), is the simplest geometric object in t.his class of objects, and its counterparts in higher

dimensions are much more complicated. Since any convex hull algorithm must produce a complete

description of the boundary of the polytope, it must organize the computa,tion of the facets of the

convex hull in such a manner as to minimize the likely overhead for the d-dimensional case. The

first attempt toward this goal was proposed by Chand and Kapur as long back as 1970 [9], and their

algorithm is known as the gijt-wrapping method. However, it was not until 1982 that the analysis

of this technique was produced by Bhattacharya ('201, p125).

The basic idea of this algorithm is to proceed from a facet of the convex polytope to the adjacent

facet, in the nianner of incrementally wrapping a sheet around the polytope. We will only mention

the final result of the analysis of the gift-wrapping method for arbitrary dimensions. We will,

however, discuss the algorithm in detail for the 3-dimensional case. The discussion of this method

and its analysis by Preparata and Shamos [[20], p125-1301 is based on the assumption that the

resulting polytope is s i 7 7 ~ ~ l i c a l ~ ~ ; hence, each facet of the d-polytope is determined by exactly d

vertices. The following theorem provides the basis of this method.

Theorem 3.6 ([20], Theorem 3.13, p126) In a sinzplical polytope, a subfacet is shared by ex-

actly two facets and two facets Fl and F2 share a subfacet e if and only if e is determilzed by a

common subset (with (d - 1) vertices) of the sets determining Fl and F2 (PI and F2 are said to

be adjacent on e) .

The gift-wrapping method uses a subfacet e of an already constructed facet El to construct the

adjacent. facet F2 that shares e with Fl. The final result is stated in the following theorem.

Theorem 3.7 ([20], Theorem 3.14, p140) The convex hull of a set of N points i n

d-dimensional space can be constructed by means of the gift-wrapping technique i n worst-case t ime
O (N 1dI2l + 1).

Among all the convex hull problems in dimensions greater than 2, the three-dimensional in-

stance is of particular importance because of its relevance to a host of applications, ranging from

''A d-polytope P is a d-simplexif i t is the convex hull of exactly (d + 1) affinely independent point,s. A set of (d+ 1)

points p, , p 2 , . . . , pd+l in Ed is said to be afinely independent if the d vectors p z - PI , pa - p l , p d + ~ - pl

are linearly independent.. Any subset of these points is itself a simplex, and is a face of P. A d-polytope is called

simplical if each of its facets is a simplex. This means that each facet (which is a d - 1-simplex) of the simplical

polytope is determined by exactly d points of the input set of points. Also, each of the facets will contain exactly d

sub-facets. Thns, for a sirnplical 3-polytope, each of its facet,s will be a triangle tha t will contain exactly 3 edges of

the polytope.

WPE I1 2 9

computer graphics to design automation, to pa'ttern recognition and operations research [19]. From

Theoreni 3.7 above, it follows that for d = 3, the computation of the convex hull will require

O (N ~) operations in the worst case. However, from the results in Section 1.1, the general lower

bound is fL(N1og N j , so the best we can hope for is an O(N1og N) algorithm. Fortunately, this

objective can be achieved as demonstrated by Preparata. and Hong [19].

Their algorithm is a specialization of the gift-wrapping algorithm for the 3-dimensional case.

However, the reduction in complexity from O(N2) to O(N log N) is due to the property that , from

Euler's formula, the number of edges of the convex polytope is linearly related to the number of

vertices. This property no longer holds for dimensions greater than 3 because it can be shown that

there exist convex polytopes with N vertices, for d 2 4, whose number of edges have cardinality

O(N') ([19], p88).

Let S = {pl, p2, . . . , p N) be the input set of AT points in E3. For simplicity in the discussion

of the algorit,hm, we will make a couple of assumptions a.bout the given set of points. The first is

that for any two points p; and pj in S, we have x(p;) # x(pj), y(pi) # y(pj), z(p;) # z(pj).

In other words, no two points of S can be on a common plane normal to the x, y, or z axis. The

other assunlption is that no four points of S are coplanar. What this means is that the convex

polytope that the algorithm constructs will be simplical (See Section 1) i.e. it will have all its faces

as triangles. As we will mention at the end of this section, the changes in the algorithm required

for the unrestricted case are not very complicatetl.

Before we describe the algorithm, let us discuss, in brief, a data structure that is well-suited for

the representation of convex polytopes in three dimensions, namely the doubly-connected-edge-list

(DCEL). The use of this data structure depends crucially on the following property of 3-D convex

hulls, stated here without proof.

Theorem 3.8 [I] The graph corresponding to a 3-dimensional convex polytope is a planar graph.

Following Prepa,rata and Shamos ([20], p15-16), a DCEL is described as follows. Let

V = {vl, ~ 2 , . . . , 0,) and E = {el, e2, . . . , eM} be the sets of vertices and edges of the planar

graph. Assunie that every edge in the graph is given an arbitrary direction. Each entry in the

DCEL is indexed by an edge, and for each such edge, we have the following information:

a Two fields Vtail and Vhead, that contain respectively t,he tail and head vertex of the edge.

a Two fields fieft and Fright, that contain the faces which lie respectively to the left and t o the

right of the edge oriented from Iftail to Ifhead

a Two pointer fields Pleft and Pright. Each contains a pointer to an edge index in the DCEL.

Pleft (Fright) points to the first edge encountered when we face the direction of orientation of

the edge and proceed counter-clockwise around the tail (head), as shown in Figure 9.

WPE 11: Draft 30

Figure 9: An example graph and the corresponding DCEL.

Thus, the above data structure can be represented as six arrays, each consisting of M entries.

The reason the DCEL is doubly connected is that the reverse edge oriented from the head to the

tail is implicitly stored in it. We read the three pairs of fields in the reverse order in order to get

the correct information. Figure 9 shows an example graph and part of the corresponding DCEL.
Suppose the graph has F faces fi, fi, . . . , fF. We can create two arrays called H V and HF, of

sizes N and F respectively, such that HV[i] contains some edge incident on vi and HF[i] contains

some edge that surrounds the face f,. These arrays can be created in O(N) time by making a single

scan through the first four fields of the DCEL. Using these arrays and the Pleft and the Pright fields,

it is straightforward to see that all the edges incident on a given vertex or all the edges enclosing

a given face can be easily extracted from the DCEL in O(N) time.

We are now ready to describe the algorithm for finding the convex hull in three dimensions

using a DCEL. Divide and Conquer is the strategy used for solving the problem. Recall that S

is the input set. We first sort the elements of S by their x-coordinates, and relabel them so that

i < j tj x(pi) < x(pj). We then have the following recursive algorithm for finding the convex

hull.

procedure 3D-ConvexHull(S);

1. If (IS(5 ko) (where ko is some small number) then construct CH(S) using some straight-

forward method. Else continue on with the next step.

2. (DIVIDE)

k := LNI2J;

s1 := {PI, P2, . - . , pk};

S2 := {pk+l, Pk+2, - P N) ;

3. (RECUR)

PI := 3D-ConvexHull(S1);

WPE II: Draft

Figure 10: Merging the left and right convex hulls by constructing wrapping faces.

4. (MERGE)

Merge Pl and P2 to form CH(P1 U Pz);

Note that due to the presorting step, the two convex polytopes PI and P2 are non-intersecting.

If the Merge step performs a t most M(N) operations, then an upper bound to the time T(N) taken

by 3D-ConvexKull is given by

If the merge time M(N) is O(N), then T(N) is O(N log N), and taking into account the ini-

tial sorting step, the overall complexity of the convex hull problem in three dimensions will be

O(N log N).

The two polytopes PI and P2 can be separated from each other by a plane ho that is normal to

the x-axis. The final convex hull P will intersect this plane in a two-dimensional convex polygon.

Every facet and edge of the final polytope P that is not already a facet or edge of either PI or P2,

must intersect ho. Thus, the facets and edges of P can be constructed in a cyclic manner in the

merge step ([12], p159). We now show that the merge step can indeed be performed in O(N) time.

We first give the basic idea behind this step. Once the left and right polytopes have been

obtained recursively, we merge the two in the manner of gift-wrapping them. We use a cylinder of

wrapping planes [I.] in such a way that each such plane goes through a hull edge of one polytope

and an extreme vertex of the other (See Figure 10). Thus the left and right ends of this cylinder

form cycles of edges from PI and P2 respectively, and it will intersect the plane ho to form the

convex polygon mentioned in the previous paragraph. Note that the wrapping faces13 will all be

triangles, and two adjacent wrapping faces will share an edge that is tangential to PI and P2 [I.].
- - -- - - -

13what we refer to as faces are actually facets (in rigorous terminology) of the three dimensional convex polytope.

W P E 11 3 2

There may, in general, be O (N) such wrapping faces, and sinc,e finding each face may take O (N)

time, it seems like the merge step could O (N 2) time. However, the nature of convex polytopes

allows us t,o proceed from one face to the one adjacent to it in such a way that constructing the

wrapping cylinder ta.kes only O (N) time.

In order t o start building the wra,pping cylinder, we need to start a t an edge that is tangential

to PI and P2. An efficient way to find such an edge is as follows.

1. Project PI and P2 onto a coordinate plane, say the x - y plane. This can be easily done

since we have access to all the vertex information from the DCEL. Let PI' and P2' be the

projections of PI and P2 respectively.

2. Now use one of the many known algorithms to find a common supporting line for PI' and

P2'. For instance, we could use the UPPER-BRIDGE procedure described in Section 2.3,

where S would be all the projected vertices, and any point on the open segment connecting

the rightmost vertex of Pl and the leftmost vertex of P2, projected onto the x - y plane will

give us L.

Clearly, the edge joining the vertices of PI and P2 that correspond t o the two end-points of

the bridge found above supports the two convex polytopes. This is the desired tangential edge in

3-dimensions. and finding it takes linear time since both step (1) and step (2) above ta.ke O (N)

t.ime.

We now start constructing the wrapping faces. The following observations will help us do so

[I].

1. At any point, only the two vertices that form the end points of the current, tangential edge,

say a and b, will be under consideration. We will need t o look a t all the edges incident on

these two vertices in order to determine the next wrapping face.

2. The next wrapping face will be formed by the current tangential edge and by that edge of PI

or P2 which is incident on a or b, respectively, and offers the least amount of rotation t o the

current wrapping face. We can think of this as rotating the current wrapping face about the

tangential edge until it hits one of the two convex polytopes along an edge incident on the

vertices under consideration.

The DCEL plays a crucial role in the efficient implementation of the wrapping process. All the

edge, vertex, and face information is readily available. We also assume that the array HV has been

created so that all edges incident on a vertex can be obtained in a counter-clockwise direction or

clockwise direction. As we find the tangential edges and the wrapping faces, we need to update

the DCEL. The following steps [I] describe how this is accomplished. We will refer to Figure 10

throughout for concreteness of illustration.

W P E I1 33

1. Let (c, d, e) be the current wrapping plane i.e. the most recently added one. Suppose that

we advanced from edge (c, d) to edge (c, e) in order t o do this, pivoting on vertex c. (c, e j

is the current tangential edge. First, we create a new node for (c, e) in the DCEI,. T/tail and

Vhead are c and e respectively. FLeft is the current face (c, d, e) , and Plejt is (c, d). Fright

a.nd PTisht will be added later. We now scan the edges incident on c and e.

2. First we scan the edges incident on e in P2. We start at the edge (d, e) in the edge incidence

list for the current vertex e, and move in a counter-clockwise direction. We select a vertex

e' connected t o e, such that the face (c, e, e') forms the largest convex a,nglel' with the

wrapping plane (c, e, d j among the faces (c, e, v), for v connected to e. This e' is f in

Figure 10. It is very important to observe that any internzediate edge (e, u) (v # d) that we

scan until we hit the edge (e, f) is hidden by the face (c, e, f) , and hence becomes internal

to the final hull CH(Pl U P2) and need not be considered further us an edge incident on e.

These edges can then be removed from the incident edge list for e.

3. We now scan the edges incident on c in PI. Since c was the pivoting vertex in the last stage,

some of the edges incident on it have already been scanned (c was reached earlier than e was).

Hence, we resume scanning, in the clockwise direction, at the last edge that was scanned in

the incident edge list for vertex c. As in the previous step, we select a vertex c' among the

vertices connected to c. This c' is g in Figure 10. Hidden edges are eliminated as described

in the previous step.

4. Now, from the faces (c, e, j) and (c, e, g) found in steps (2) and (3), respectively, choose

the one that makes a larger convex angle with (el e, d).

5. We can now add Fright and Prigkt in the node for (c, e) in the DCEL, as pronlised in the first

step.

For the case when the winning face in the previous step is (c, e, g), Frzght is (c, e, g)

and PTlght is (e, g). Also, Plejt for (c, g) is now (c, e) .

When the winning face is (c, e, f) , these fields are (c, e, f) and (e, f) , respectively.

Plejt for (f, e) is now (c, f) .

6. Advance the current wrapping plane and tangential edge to the newly creat,ed ones. In the

first case (as above), these will be (c, e, g) and (e, g) , and in the other case, (c, e, f) and

(c, f), respectively.

7. The DCEL has now been updated to reflect all the changes as well as the new information.

Go back to step 1 and repeat the process until the new tangential edge found in Step (6) is

the one we started with, in which case Stop.
- - -

1 4 ~ convex angle is one that is less t,han x .

Note that the edge deletion (of edges internal to the convex hull) process mentioned in step (2)

may not entirely delete the edge from the DCEL. In fact, it is important that this does not happen

because the other vertex of the edge being deleted, say el may be one that is not yet known to

be on the hull. Hence, e will need to be considcrcd as one of the edges incident on that vertex,

when it is being scanned. As a result of the manner in which the DCEL is upda.ted, edges are

only eflectively deleted. The planar graph on the deleted edges will be disconnected from the final

convex hull graph. At the end of the above process, we are automatically left with the DCEL of

the merged convex hull. Note that the updated DCEL is still O (N j, even though the disconnected

edges haven't been removed from the DCEL. Let us now analyze the time complexity of the abovc

process.

Suppose we have a vertex v in PI under consideration and we are scanning all the edges incident

on it. If after step (4), we choose an edge from the other polytope P2 as the one that determines

the wrappjng face, we will have to rescan the edges incident on v again in the next iteration of the

above process. However, we call eliminate edges t,hat get hidden by the candidate for the wrapping

face, since they cannot possibly lie on the convex hull. Hence, these edges do not get qcanned again

for the vertex v and scanning for v can resume at the last edge that was previously scanned. These

hidden edges do not get looked up again, unless their other vertex gets scanned. It is clear that as

we build the wrapping faces, every edge in PI and P2 will be scanned at most twice, once for each

of its vertices.

Let vl (el) and v2 (eZ) be the number of vertices (edges) in PI and P2 respectively. There are

two types of angle comparisons (which take constant time) that we pay for.

I. In Steps (2) and (3) , we make angle comparisons for all the scanned edges incident on the

two vertices under consideration. From the observation in the previous paragraph, the total

of these can be a t most twice el for PI and a t most twice e2 for Pz.

2. In step j4), we make angle comparisons between candidates for thc wrapping face. This

amounts to choosing between two vertices, one from PI and the other from P2 (these are g

and f in the process described above). Thus, the total number of such comparisons will be

O(v1 + ~ 2) .

The total number of comparisons, then, is O(el + ea + vl f v 2) Due to the planar graph

structure of PI and P2, el i s O(vl) and €2 is O(v2), whence the total cost of the process of finding

wrapping planes is O(v7 + v 2) Hence, M(LV) in Equation 3.4 is OrN) , leading to the result that

the convex hull of AT points in three-dimensional space can be colnputcd in O(N1og N) time.

Let 11s briefly mention the modifications nccessary for the case of nollsirrlplical polytopes i.e.

four or more points may be coplanar. The simplest way is t o run the process as above, and let it

introduce an artificial triangulation of nontriangular faces ([20], p139). This will happen if instead

WPE 11: Draft

Depth 2
LAYER, 2

Depth 4

Figure 11: The depth of a point and the convex layers of a set.

of comparing convex angles (in steps (2), (3), and (4)), we compaxe angles that are less than or

equal to 7. Thus the final convex hull may have adjacent facets that are coplanar. After the merge

step is completed, we can mark all edges that are coplanar with both its neighbors by making a

single pass through the DCEL. We then delete dl edges so marked. Clearly, this takes O (N) time.

4 Some Applications of Convex Hulls

The claim that the convex hull problem is fundamental to computational geometry is justified

because of the numerous applications it has to related problems. In this section, we will present a

few such applications.

4.1 Convex Layers

We will first define the problem, and outline the algorithm for it. At the end of this section, we

will state an application of the method to statistics.

Suppose we have a set of points of S. CH(S) forms the first layer of S. If we delete the points

on this convex hull, and find the convex hull of the remaining points, we get the second layer of S.

Continuing in this way, we can find the (i + 1)-th layer after finding the i-th layer (see Figure 11).

Definition 4.1 ([20], p166) The depth of a point p in a set S is the number of convex hulls

(convex layers) that have to be stripped from S before p is removed. The depth of S is the depth

of its deepest point.

This immediately leads to the following problem.

W P E 11 3 6

a Problem CONVEX LAYERS (CL): Given a set S of N points in the plane, what is the depth

of each point. in S .

Sorting is linear time reducible to Problem CL, as follows. Let the n points X I , 22, . . . , x, he

the input to the sorting problem. Provide the CL algorithm wit,h the input points

5' = {(xi, 0) : 1 5 i n}. There will be two points for every depth j such t,hat

1 < j < dcpth(S). At the layer deptli(S), we may have one or two points. Clearly, the x-

c~ordinat~es of the points that have depth i will be the i-th smallest and the i-largest of the sorted

list. Thus, we will have to do one comparison for the point,s at each depth in order to obtain the

final sorted list i.e. we need only O (N) additionaa compa.risons. This immediately gives us an

O (N log N) lower bound to problem CL.

The most obvious ~netliod of finding the convex hull of the N input points in O (N log N)

time, discarding the hull points, and then finding the hull of the remaining points, and so on

takes O(lV2 log AT j time (this bound is reached when all the computed hulls are nested triangles).

However, applying the Jarvis March method a t each convex layer gives us a better algorithm ([20],

p167). Let h, denote the nurnber of hull vertices in the i-th layer. At each layer, Jarvis's March

takes O (N h ,) time, and hence the total running time will be O(iVhl + Nha + . . . + Nhk), where

k is the depth of the input set. Since hl + h2 + . . . f hi, = N , this algorithm will take O(N2)

time.

An algorithm reaching the O(N log N) lower bound was developed by Chazelle in 1983 [lo]. In

his paper, he shows that by organizing the deletions of points carefully, we can obtain the layers

efficiently. The best known algorithm for finding convex layers in thrcc dimensions is 0 (~ ~ / ~ l o g AT).

The convex layers problem has an important application in statistics. As is well known, a central

proble~n in statistics is to estimate a population pa.rameter from a small, random sample drawn

fro111 t,he population. However, certain kinds of pa.ra,meters a.re extremely sensitive to outliers,

which are observations t11a.t lie abnormally far from most of the sample ([20], p165). It is important

to reduce the effects of outliers, since they skew thc sample da,ta, thereby introducirig significa,nt

error in the para,lneter estimat,e. The data is then said to be robust. There are several ways of

accomplishing this goal. One method, known as the Gastwirth estimator, is based on the fact that

in a ra,ridorn sample, the da,ta that is closer. to the center is more reliable a,nd can be retained ([20],

p165). In other words, the da.ta that, lies outside a. certain fraction of t,he sample is discarded.

Given the input set of points, we can use the algorithm for problem CL to peel off convex layers

until t,he desired fraction of points remain.

W P E 11

4.2 The Farthest Pair Problem (Diameter of a Set)

The diameter of a set of points is used in clustering problems. Clustering is the grouping of similar
\

objects ([2C1], p170). If we restrict our attention to objects in the plane, then "a measure of the

spread of the cluster is the maximum distance betureen any two of its points", which is nothing but,

the diameter of the cluster ([20], p170). A well-known formula.tion of the clustering problem is as

follows.

Problem MINIMUM DlAMETER I<-CLUSTERING [[20], ~1701: Given A' points in the

plane, partition them into li clusters C1, C2, . . . , CIc so that the maximum cluster diameter

is as small as possible.

Regardless of tlie strategy used to compute a solution to this problem (whether exact or ap-

proximate), it is clear that we must have a method to determine the diameter of a set of points in

tlie plane. In the rest of this section we will focus on this latter problem.

The Farthest Pair problelr~ can be stat,ed as follows.

Problem FARTHEST PAIR (FP): Given a set S of N points, find a pair of points in S that

are farthest15. If there are many such pairs, output any one of them.

The length of the edge connecting the farthest pair is known as the diameter of S. The brute

force method for solving this problem is to compute the Euclidean distance between all possible

pairs of points, and output any one of t h ~ pairs that has the largest such value. This gives us an

O (N 2) algorithm. It can be shown, however, that problem FP has an fl(N1og N) lower bound16.

There is an algorithm for problem FP in the plane that achieves this lower bound. In three

dimensions, however, the best known algorithm is O ((N log N)'.':I [24] and whether or not the gap

between this bound and the R(N log N) lower bound can be reduced is an open question. In this

section, we will restrict our attention to the two dimensional case. Before we outline the algorithm,

a couple of crucial observations are necessary. Let S be the input set of points in the plane.

Observation 1: [1~] The diameter of S is formed by two extreme vertices of S.

Proof: Suppose not, i.e suppose that one of the vertices of the diameter of S is not extreme. Let

(d, a) be the farthest pair, and assume that a is not extreme. Then, a must lie in some triangle

(d, c, b), c, 6 E S . Referring to Figure 12, the length of da is clearly less than that of da'. Also.
- - - - - - - -

15 Here "farthest" means the largest Euclidean distance
16 This can be done by showing a linear time reduction from the SET DISJOINTNESS PROBLEM to problem

FP in the plane. If A and B are two sets of numbers, the set disjointness problem is to determine if they share an

element. Using the algebraic decision tree model, this problem has been shown to have an a (N log N) lower bound.

WPE 11: Draft

Figure 12: Figure for the proof of Observation 1.

since a' is closer to d than either b or c, i t follows immediately that (da'l is less than Jzl or (zl.
But this contradicts the fact that Ida(is the diameter.

Definition 4.2 If l1 and l2 are supporting lines of S that go through pl and pz (pl, pz E S)
respectively and ll is parallel to 12, then (pl, pz) is said to be an antipodal pair.

The following theorem, which we state here without proof, provides the most important idea

behind the efficient algorithm for problem FP in the plane.

Theorem 4.3 ([20], Theorem 4.18, p17) The farthest pairs of a set S are the antipodal pairs

of S of maximum length.

Thus, in order to find the farthest pairs, we look at all possible antipodal pairs, and choose

the ones that have maximum length. From Observation 1 and the above theorem, all antipodal

pairs must be extreme points. Hence, we first construct the convex hull, and then determine the

antipodal pairs from the hull vertices. We now give the outline of the algorithm, without going

into implementation details.

procedure Farthest-Pairs-2D(S); [I]

1. Find the convex hull of S.

2. Let po, pl, . . . , ph be the hull vertices. Assume step (1) gives all the vertices of the convex

hull in anti-clockwise order. We find all the antipodal pairs by making a rotational sweep

around the convex hull.

(a) Let l1 be the supporting line determined by the first two points po and pl on the hull.

For all other points pj, 2 5 j 5 h on the hull, determine the distance between pj

W P E 11: Draft

Figure 13: Figure for steps (2)-(a),(b) of the Farthest-Pairs-2D algorithm.

and 11. Since all the points lie on a convex hull, this distance will increase as we make

a counter-clockwise sweep around the hull until we hit a maximum, and then it will

decrease (see Figure 13). Let pi be the point that has the maximum such distance. Let

I z be the line through p; that is parallel to ll (if there are two such points, then 12 is the

line through both of them). Clearly, ll and 12 are supporting lines through antipodal

pairs of points.

(b) Ort := acute angle between l1 and plpz;

OIN := acute angle between l 2 and pipi+l;

(If there are two such p;, then we consider the rightmost of them to determine GI".)

01 := min(Olf, 0");

Let dlf and dl" be as shown in Figure 13.

If (dlt > dl") then
dl := dlf and el := (pl, p;)

else

dl := dl" and e l := (po , p i)

Mark po, pl and p; as already visited.

(If there are two such p;, then compute the distance of po and pl from each of them.

The max of these will be dl and el will be determined in the obvious way. Both the p;

will be marked.)

(c) We now rotate both Il and 12, by the same amount, until one of them hits an edge in

the convex hull. The amount of this rotation is el. Obviously, the rotated lines are still

parallel supporting lines and they will now determine new antipodal pairs. As shown in

Figure 14, suppose, without loss of generality, that I2 is the first to hit the next edge on

the convex hull. El2', 02", d2', and d2" are computed in a manner similar to that in the

above step. They are shown in Figure 14.

WPE 11: Draft

Figure 14: Figure for step (2)-(c) of the Farthest-Pairs-2D algorithm.

0 2 := min(Ozt, 02");

d2 := max(dzt, d2") and ez is the corresponding edge (as in the above step).

Mark vertices as before

(d) Continue the above rotational sweep until every vertex on the hull has been marked. We

will have h distances d l , dZ, . . . , dh and the corresponding h edges el, e2, . . . , eh.

(e) The diameter of S will be max{dl, d2, . . . , dh) and the edge corresponding t o the

diameter will give us a farthest pair of S .

We can have at most h antipodal pairs, where h is the number of points on the hull. The above

algorithm goes through all possible antipodal pairs & it does the rotational sweep. Let us analyze

the complexity of the above algorithm. Step (1) takes O(N log N) time, as we have demonstrated

many times in this paper. Consider step (2). (a) takes O(h) time. Steps (b)-(d) are repeated for

each antipodal pair, and hence this takes O(h) time. Finally, step (e) is also O(h). Since all N

points may lie on the hull, step (2) in the worst case is O(N)17. Thus, problem FP in the plane

can be solved in optimal O(N log N) time.

4.3 V o r o n o i Diagrams

The problem of constructing the Voronoi Diagram in the plane arises in a number of areas, one of

the most important of which are the proximity problems. A few examples of such problems are

(Euclidean) minimum spanning trees, clustering, and contour maps [8]. "The Voronoi diagram in

fact expresses the proximity information of the set at hand in a very explicit and computationally

useful manner." ([12], p293) The Voronoi diagram problem is defined for arbitrary dimension, but

"It follows immediately from this that the diameter of the vertices of a convex polygon can be iound in linear

time.

WPE 11: Draft

Figure 15: (a) A Voronoi polygon; (b) A Voronoi diagram.

we will restrict our attention to the planar case. It is appropriate to mention here that efficient

algorithmic techniques for finding Voronoi diagrams are available only in the two-dimensional case.

Definition 4.4 [I] A Voronoi Diagmna of a set S in the plane, where S = {pl, p2, . . . , pN), is

a partition of the plane into regions rl, r2, . . . , r N such that any point in the region r; is closer

to pi than to any other point in S.

Given any two points pi and pj in the plane, the set of all points that are closer to p; than to pj

is just the half plane containing p; and defined by the perpendicular bisector of the segment z p j .

So, given a set of N points, the region that is closer to point pi E S than t o any other point in S
will be the intersection of N - 1 half-planes. In E2, this is a convex polygon of at most N - 1

sides. This polygon, V(i), is called the Voronoi polygon associated with pi. A Voronoi diagram is

nothing but a mesh of N such convex regions. A Voronoi polygon and the Voronoi diagram for

a set of points is shown in Figure 15. The vertices and the edges of the diagram are called the

Voronoi vertices and Vomnoi edges, respectively.

Note that some of the convex regions may be unbounded, as can be seen in the figure. It can

be shown that these can only be the regions associated with the vertices on the convex hull of S.

Numerous other important and interesting properties of Voronoi diagrams can be proved. We will

not go into the details of these, since the primary purpose of this section is to see the relationship

between convex hulls and Voronoi diagrams.

Constructing the Voronoi diagram of N points in the plane takes iZ(N log N) time in the worst

case, using the algebraic decision-tree computation model. A linear time reduction of sorting to

this problem gives us this result ([2O], p206), as follows. The Voronoi diagram of N points in one

W P E 11: Draft

I

Figure 16: The straight-line dual of the Voronoi diagram (the Delaunay triangulation).

dimension is nothing but the sequence of N - 1 midpoints of the adjacent input points, which can

be found in O (N) time. Consecutive pairs of these midpoints can, in linear time, give us the input

points in sorted order (assuming, of course, that the Voronoi algorithm outputs the midpoints in

some particular order).

Shamos and Hoey [21] have given an O (N log N) divide-and-conquer algorithm for finding the

Voronoi diagram. Using a technique known as the sweep plane technique, Fortune [13] also demon-

strates an optimal algorithm. We will discuss here the connection between Voronoi diagrams and

convex hulls. It can be shown that there is a relationship between the dual of the Voronoi diagram

of N points in d-dimensions and the convex hull of those points in d + 1 dimensions, under a

suitable projection. Thus, the planar Voronoi diagram can be obtained from the convex hull of a

suitable set of points in three dimensions.

The straight-line dual of the Voronoi diagram of S in the plane is obtained by adding a straight

line segment between every pair of points (pi, pj) of S such that V (i) and V(j) share an edge (See

Figure 16).

Definition 4.5 ([2 0] , pl9) The triangulation of a finite set S of points in the plane is obtained

by joining the points of S by nonintersecting straight line segments so that every region internal to

the convex hull of S is a triangle.

It can be shown that the straight line dual of the Voronoi diagram gives a triangulation of S,

and it is known as the Delaunay triangulation. We will now outline the important ideas behind the

method of finding Delaunay triangulations from convex hullsfS and will keep the discussion fdrly

intuitive [I]. Let S = (p l , m, . . . , p N) be a set of N points in the plane.
18 When talking about properties of Voronoi diagrams, the assumption that no four points of the input set are

cecircular is made. In the absence of such an assumption, lengthy details, that do not throw any new light on the

property at hand, must be included in the statements and proofs of the properties.

WPE IT 43

1. Project each point of S onto the paraboloid U given by the equation z = x2 + y2. Let

p;(U) denote the projection of pi onto U and let S(U) = {pl(U), p2(lT), . . . , pN(U)).

2. Construct the convex hull, CH(S(U)), of S (U) in three dimensions.

3. Now "look up" a t the convex hull from below it and project all the faces of CH(S(U)) that

can he "seen", vertically onto the x - y plane (assume that we cannot look through faces i.e.

that the faces are opaque). This gives us the Delaunay triangulation of S .

Since no four points of S are cocircular, no four points of S (U) will be coplanar. Hence all

the faces of the convex hull will be triangles, and the projection of these triangles gives us the

triangulation. The following lemma is used crucially in proving that the final result is indeed a

Delaunay triangulation. We state it here without proof.

Lemma 4.6 [I] Let C be any circle in the x - y plane and let p be a point i n that plane. p(U) is

the projection of p onto U. Project C onto U and call it C (U) . Let H (C) be the plane containing

C(U) (Note that C (U) is an ellipse). Then

1. If p is outside C, then pi U) is above H (C) .

2. If p i s inside C , then p(U) is below H(C) .

3. If p is o n C, then p(U) i s on C(U) (obviously).

If we can show that the circumcircle of any tria.ngle in the triangulation does not contain any

points of .S inside i t , then we have proved that the triangulation is indeed a Delaunay triangulation

(this follows immediately from some of the properties of Voronoi diagrams). Let C be the circum-

circle in question. Let p be some point of S tha,t is illside C. Then, from Lemma 4.6-(2), we have

that p(U) is below H (C) . However, since H (C) is also a plane going through a face of CE-I(S(U)),

it is a supporting plane, and hence all points of S (U) will lie above it. We have a contradiction,

implying that p cannot lie inside C .

It can be shown that the number of Voronoi vertices and edges is linear in N . It follows

immediately from this that the number of edges in the Delaunay triangulation must also be O (N).

Therefore, having found the triangulation by the given method, we can find the Voronoi diagram

for S in 0 (N) time. Steps (1) - (3) clearly take O(N log N) time, and we have an optimal algorithm

for planar Voronoi diagrams.

5 Conclusion

The Q (N log N) lower bound to the convex hull problem was shown, as well as the existence of

efficient algorithms for the important cases of two and three dimensions. All the algorithms dis-

W P E I1 44

cussed in the paper are sequential and off-line. Off-line algorithms require all the dat.a points to be

available before any processing can begin. In many geometric applications that run in real-time,

all the dat,a may not be available at the same time and the convex hull needs to be constructed as

and when the data is received. For this purpose, on-line convex hull algorithms that run in optimal

B(N log N) time (i.e. real-time) can be shown 1181. In addition, a randomized algorithm that runs

in O (N) expected time has been demonstrated for the planar case [7]. There is no known efficient

randomized algorithm for finding convex hulls in three dimensions. Finding approximations to the

convex hull is useful in applications that need rapid solutions even a t the expense of accuracy; sta-

tistical applications, where the observation points are themselves approximate, come immediately

to mind. Efficient approximation algorithms exist for the two and three dimensional cases [6].

The developlnent of sequential algorithms for geometric problems has been an active area of

research since 1975. However, some of the first publications about parallel algorithms for such

problerns appeared only as recently as 1985. An optimal parallel algorithm for the planar convex

hull problem appears in [2]. In this paper, Aggarwal et a.1. also demonstrate algorithms for finding

convex hulls in three dimensions and Voronoi diagranls in two dimensions which, though sub-

optitnal, are the best known parallel algorithms. There are very few problems in computational

geometry for which parallel algorithms have been developed. For instance, it is not known if the

important technique of prune and search can be parallelized and no parallel algorithm is known for

the convex layers problem. Needless to say, parallel computational geometry is a burgeoning area

of a.ctive research.

In summary, even though research endeavors relating to the convex hull problem have reached

sophisticated levels, the problem, along with those related to it, continues to be the focus of vigorous

research. Further development,^ in this area are bound to provide new insights funda,mental t o

computational geometry.

W P E 11 45

References

[I] A. Aggarwal. Computational geometry. Lecture Notes, Research Seminar Series, MIT, Spring

1988.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. 07Dunlaing, and C. Yap. Parallel computational

geometry. Algorithmica, 3:293-327, 1988.

[3] -4. V. Aho, J . E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison- Wesley, Reading, MA, 1974.

[4] S. G. Akl. Two remaaks on a. convex hull algorithm. Info. Proc. Lett., 8(2):108-109, 1979.

[5] M. Ben-Or. Lower bounds for algebraic computation trees. In Pmc. 15th ACM Annual Symp.

on Theory of Computing, pages 80-86, hlay 1983.

[6] J. L. Rentley, G. M. Faust, and F. P. Preparata. Approximation algorithms for convex hulls.

Conlrn. ACM, 25:64-68, 1982.

[7] J. L. Bentley and M . I. Shamos. Divide a,nd conquer for linear expected time. Info. Proc.

Lett., 7:87-91, Feb. 1978.

[8] K. Q. Brown. Voronoi dia,grams from convex hulls. Info. Proc. Lett., 9(5):223--228, Dec. 1979.

[9] D. R. Cha.nd and S. S. Kapur. An algorithm for convex polytopes. J. ACM, 1(17):78-86, Jan.

1970.

[lo] B. M. Chazelle. Optimal algorithms for coniputing depths and layers. In Proc. 21st Allerton

Conference on Co~nm., Control and Conzput., pages 427-436, Oct. 1983.

[ll] D. Dobkin and R. Lipton. On the complexity of computations under varying set of primitives.

Journal of Computer and Systems Sciences, 18:86-91, 1979.

[I21 H. Edelsbrunner . Algorith,ms in Con~binatorial Geonze try. Springer-Verlag, 1987

[13] S. J . Fortune. A sweepline algorithm for voronoi diagrams. .4lgorithmica, 2: 153-1 74, 1987.

[14] R.. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.

Info. Proc. Lett., 1:132-133, 1972.

[15] R. -5. Jarvis. On the identification of the convex 111111 of a finite set of points in the plane. Info.

Proc. Lett., 2:18-21, 1973.

[16] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J .

Cornput., 15(1):287-299, Feb. 1986.

[17] P. Mchlullen and G. C. Shepard. Convex Polytopes and the Upper Bound Conjecture. Cam-

bridge University Press, Cambridge, England, 1971.

[18] F . P. Preparata. An optimal read-time algorithm for planar convex hulls. Comm. ACM,

22:302-405, 1979.

[19] F. P. Prepa.rata and S. J . Hong. Convex hulls of finite sets of points in two and three dimensions.

Comm. ACM, 20(2):87-93, Feb. 1977.

[20] F . P. Preparata and M. I. Shamos. Computational Geometry: A n Introduction. Springer-Verlag

New York Inc., 1985.

[2.1~] M . I . Shamos and D. Hoey. Closest-point problems. In Sixteenth Annual IEEE Symposium on

Foundations of Computer Science, pa,ges 151-162, Oct. 1975.

[22] J . M . Steele and A. C. Yao. Lower bounds for algebraic decision t,rees. J. Algorithms, 3:l-8,

1982.

[23] il. C . Yao. A lower bound to finding convex hulls. J. ACM, 28:780-787, 1981.

[24] A. C . Ya,o. On constructing minimum spanning trees in k-dimetlsional spa.ce and related

problems. SIAM J. Comput., 721-736, 1982.

	Convex Hulls: Complexity and Applications (a Survey)
	Recommended Citation

	Convex Hulls: Complexity and Applications (a Survey)
	Abstract
	Disciplines
	Comments

	tmp.1184338201.pdf.tKpi4

