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Abstract
We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically
optimized for widespread deployment in STEM environments through a combination of bacterial strain
engineering and distributable hardware development. The transfer functions of 16 genetic switches,
programmed to express a GFP reporter under the regulation of the (acyl-homoserine lactone) AHL-sensitive
luxR transcriptional activator, can be parametrically tuned by adjusting high/low degrees of transcriptional,
translational, and post-translational processing. Strains were optimized to facilitate daily large-scale
preparation and reliable performance at room temperature in order to eliminate the need for temperature
controlled apparatuses, which are both cost-limiting and space-constraining. The custom-designed,
automated, and web-enabled fluorescence documentation system allows time-lapse imaging of AHL-induced
GFP expression on bacterial plates with real-time remote data access, thereby requiring trainees to only be
present for experimental setup. When coupled with mathematical models in agreement with empirical data,
this toolbox expands the scalability and scope of reliable synthetic biology experiments for STEM training.
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Abstract:  

We report a toolbox for exploring the modular tuning of genetic circuits, which has been 

specifically optimized for widespread deployment in STEM environments through a combination 

of bacterial strain engineering and distributable hardware development. The transfer functions of 

16 genetic switches, programmed to express a GFP reporter under the regulation of the (acyl-

homoserine lactone) AHL-sensitive luxR transcriptional activator, can be parametrically tuned by 

adjusting high/low degrees of transcriptional, translational, and post-translational processing. 

Strains were optimized to facilitate daily large-scale preparation and reliable performance at room 

temperature in order to eliminate the need for temperature controlled apparatuses, which are both 

cost-limiting and space-constraining. The custom-designed, automated, and web-enabled 

fluorescence documentation system allows time-lapse imaging of AHL-induced GFP expression 

on bacterial plates with real-time remote data access, thereby requiring trainees to only be present 

for experimental setup. When coupled with mathematical models in agreement with empirical 

data, this toolbox expands the scalability and scope of reliable synthetic biology experiments for 

STEM training.  
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Introduction 

Synthetic biology experiments are powerful vehicles for inspiring interest in STEM fields, 

teaching critical concepts in gene regulation and cellular physiology, and applying engineering 

frameworks to biological problems through combined experimentation and mathematical 

modeling. 1-4 However, quantitative cell biology experiments are difficult to implement in training 

settings, due to (i) limitations in cost, equipment, space, and personnel, which are especially 

problematic for large group sizes, (ii) incompatibility of student academic schedules and extended 

laboratory access with the inherent time-courses of cellular phenomenon and well established 

laboratory protocols designed for research as opposed to scientific training, and (iii) poor 

experimental robustness against student inexperience with nuanced laboratory techniques, which 

can be particularly problematic if experiments must build on prior successful results. These 

practical challenges impede the implementation of hands-on laboratory practice coupled to 

mathematical modeling in mutually informative wet and dry laboratories.    

Here, we report the creation of a toolbox to overcome the deployment challenges of 

synthetic biology experiments in STEM training laboratories, through a combination of bacterial 

strain engineering, protocol optimization, and hardware development. We engineered a genetic 

circuit based on the Vibrio fischeri quorum sensing (QS) system frequently studied to explore the 

principles of cell-cell communication, population dynamics, and the modular nature of genetic 

regulation. 2, 5-8  A set of 16 strains allows for the parametric tuning of the genetic transfer function 

through combinations of high/low levels of transcription, translation, inducer sensitivity, and post-

translational degradation (schematized in Figure 1a-c). The strains were optimized to facilitate 

large-scale preparations and reliable room temperature growth in order to circumvent cost- and 

space-constraining temperature control systems that limit scalability.  A distributable data 

acquisition system enables automated time-lapse imaging (and real-time data access) of GFP 



 

reporter expression on bacterial plates over several days, thereby decoupling the scheduling of 

experiment setup from the continuous measurements needed to study nonsteady state and 

lengthy responses.  Experimental results were in reasonable agreement with corresponding 

mathematical models for data reported here (as well as models and data generated by >120 

undergraduates in the past two years).  This infrastructure will enhance hands-on exploration of 

key gene regulation principles in synthetic biology and bioengineering.  

 

Results and Discussion 

Modular “Receiver” circuits2, 5 report gene expression under the regulatory control of the 

luxR activator that is switched-on by a diffusible chemical signal (acyl-homoserine lactone, AHL).  

A constitutive promoter drives expression of luxR, which dimerizes upon binding of AHL and binds 

to its cognate pLux promoter to activate expression of the green fluorescent protein (GFP) 

reporter.  The AHL-to-GFP transfer function or response curve is tunable at multiple levels of 

regulation in the suite of strains, which vary in (i) E. coli promoter strength driving constitutive luxR 

expression, (ii) AHL-to-luxR binding affinity, (iii) the strength of the ribosome binding site (RBS) 

preceding the GFP reporter, and (iv) presence/absence of a post-translational degradation tag 

(Figure 1a-c). Specifically, promoters were derived from the Anderson promoter collection9 

(strong, BBa_J23100; weak, BBa_J23109). AHL-to-luxR affinity was varied using the wild-type 

Vibrio fisheri gene and a hypersentive mutant, luxR-G2F.10 RBS strength responsible for GFP 

translation was varied in the conservation of the Shine-Dalgarno sequence (BBa_B0034 and 

BBa_B0033 in the Registry of Standard Biological Parts 11, 12). Finally, GFP degradation rate was 

varied through the addition of the LVA-ssrA degradation tag for clpX-mediated proteolysis. 13-16  

To enhance scale-up, we chose NEB Turbo as the cellular chassis because the rapidly growing 

strain of E. coli decreases the time required for daily large-scale preparations to be manageable 

by a single person. Moreover, the use of NEB Turbo facilitates faster room temperature growth 



 

during liquid culture and plate experiments in the absence of temperature control (protocols for 

large-scale sample preparation are provided in Supporting Document 1; Strain growth rate 

curves are provided in Supporting Figure 1). 

Tuning the AHL response curve at the different aforementioned regulatory stages can be 

explored with a set of five strains, including a common “baseline” strain (Figures 1c-e). Strains 

programmed by all pairwise combinations of the tunable factors were also characterized 

(Supporting Figures 2 and 3).  After 20 h room temperature growth, AHL response curves are 

readily measured on a plate reader, and strains with high GFP expression levels (i.e., greater 

than the baseline strain in black in Figure 1) are easily quantified on educational grade 

spectrophotometers (e.g., Ocean Optics Red Tide / Vernier). Even though the efficiency of the 

LVA tag is diminished at room temperature, 16 its effects are still highly detectable. A mathematical 

model adapted from Hill-based gene expression models17, 18 reasonably captures the circuit-

dependent transfer function characteristics (Figure 1f, see Materials and Methods for model).  

Experimental deviations from the modeled behavior primarily arise because a first-order luxR-

concentration dependent term does not fully capture the effects of pLuxR leakiness. However, 

the first-order term was implemented for pedagological simplicity because it still captures the 

salient features of promoter leakiness.  

LuxR is highly studied in synthetic biology for its application to quorum sensing models.  

To facilitate the exploration of the spatiotemporal patterning of gene expression, we optimized the 

preparation and imaging of “Sender-Receiver” 5, 19 experiments, in which reporter expression in 

the Receiver is induced on bacterial plates by AHL which diffuses isotropically from a soaked filter 

disc that emulates a spatially localized ligand source in cell-cell signaling (Figure 2a). To minimize 

sample volume during autoclave preparation, a thin layer of cells in agarose was uniformly coated 

on top of the M9 minimal media plate, rather than embedded in the agar. 5  



 

To further address the incompatibility between student training schedules and extended 

gene expression time-course experiments, we developed a deployable (<$250), fully automated, 

and web-enabled fluorescence imager for remote data acquisition in bacterial plate experiments 

(Figure 2b). A laser-cut base houses blue LED strips for excitation. A custom Python script 

coordinates LED illumination and imaging of the plate(s) through a camera-equipped Raspberry 

Pi, which is mounted on a laser-cut hood. Plate images are stored locally on the Raspberry Pi 

and also pushed to a cloud server (in this case, Google Drive) for real-time remote access. This 

apparatus decouples experimental time at the bench from continuous time-course imaging over 

several days.  The spatial gene expression patterning data, here also obtained at room 

temperature to circumvent incubators, agrees with mathematical models (Figure 2c,d) that 

combine numerical approximations for the nonsteady transfer functions and 2D diffusion. These 

models are appropriate for advanced undergraduate training (see Materials and Methods). For 

best results, we suggest using a strain with high expression levels (e.g., BC-A1-001 in 

Supporting Figure 2; represented as the gold strain in Figure 1 and Supporting Figure 3). All 

CAD files, assembly instructions and schematics, and code are open source (Supporting 

Document 2 and Supporting File 1). 

Through focused strain development, protocol optimization, and hardware engineering, 

this toolbox was created to address issues of scaling in both size and scope, the latter of which 

can be adjusted from single-day demonstrations (e.g., spatial patterning of gene expression) to 

multiweek modules in which response curve measurements inform predictive modeling and 

experimental testing of the spatial patterning of gene expression (which we have successfully 

implemented in groups of 40-80 concurrent students on multiple occasions).  It is a valuable 

addition to a growing community-wide infrastructure that includes training modules in light-gated 

gene expression (“Bactograph” 20, 21), the canonical lac operon and enzymatic synthesis of fragrant 



 

compounds (“Biobuilder” 3, 4), and accessible instrumentation (e.g., 3D-printed turbidostat 22), all 

of which share a common goal for enhancing access to synthetic biology.  

 

Materials and Methods 

Strain Construction: Plasmid information is summarized in Supporting Figure 1. Plasmids were 

constructed via multipart Gibson Assembly using the high-copy pSB1C3 backbone vector.  

 

Transfer Functions in Liquid Culture: Strains were grown overnight in LB media with 34  µg/mL 

chloramphenicol and then diluted 1:100 into M9 minimal media (with 34 µg/mL chloramphenicol, 

1 mM thiamine hydrochloride, and 0.2% casamino acids). Cultures were grown at 37C to reach 

mid-log phase and then diluted to OD600 ≈ 0.3 for uniformity before AHL induction (Sigma-Aldrich 

K3007, < 1% v:v DMSO in all solutions). After 20 h growth at room temperature, OD600 and GFP 

fluorescence (excitation, 466 nm; emission: 511 nm) were measured on a Tecan Infinite m200 

plate reader.  

 

Spatial Patterning of Gene Expression on Plates: Strains were prepared as described above 

prior to induction. A 2 mL sample of culture (OD600  ≈ 0.3) was diluted into 2 mL of 0.7% agarose 

(4 mL total) and then quickly poured over 100 mm M9-Chloramphenicol plates and allowed to dry. 

of AHL (10 µL of 1 µM, Figure 2) was placed on a sterile 5 mm filter paper disk (Sigma-Aldrich 

74146, hole punched to correct size) and allowed to dry, after which the dry disk was centered on 

the bacterial plate.  

 



 

Automated Imaging Acquisition: The automated imager was designed in Solidworks and laser-

cut out of MDF. Strip LEDs (Oznium Super Thin Ribbon LED Strips) for illumination were 

controlled via a camera-equipped Raspberry Pi 2 Model B connected to a driver circuit 

(Supporting Document 2). The camera was focally adjusted (f=500 mm, Thorlabs LA1908-A), 

and controlled by a custom Python script that automatically pushes images to a cloud server 

(Google Drive) using the Drive linux library. All CAD files, drawings, parts list, Python code, 

Raspberry Pi configuration files, and support documentation can be found online (Supporting 

Document 2 and Supporting Files 1; SD card image file with Raspberry Pi operating system 

and complete Solidworks Assembly files are hosted on the University of Pennsylvania Scholarly 

Commons). 

 

Mathematical Modeling: A 3-equation system based on the Hill Function was adapted from a 

previous work17 to model steady-state gene expression, where R = activated luxR (M), R = 

formation rate of R (M-3 min-1), R = degradation rate of R (min-1), TX = GFP transcript (M), TX 

= formation rate of TX (M min-1), TX = degradation rate of TX (min-1), KR = luxR activation 

threshold (M), n = Hill coefficient (dimensionless), pluxR = luxR promoter leakiness23 (min-1), GFP 

= formation rate of translated GFP (min-1), GFP = degradation rate of translated GFP (min-1). All 

concentrations for molecular species should be in micromolar in order to prevent roundoff errors 

in MATLAB. 

(1)  
𝑑[𝑅]

𝑑𝑡
= (𝜌𝑅[𝐿𝑢𝑥𝑅]2[𝐴𝐻𝐿]2 − 𝛿𝑅[𝑅]) 

(2) 
𝑑[𝑇𝑋]

𝑑𝑡
= 𝛽𝑝𝑙𝑢𝑥𝑅[𝐿𝑢𝑥𝑅] + (

𝛼𝑇𝑋 (
[𝑅]

𝐾𝑅
)

𝑛

1+(
[𝑅]

𝐾𝑅
)

𝑛 ) − 𝛿𝑇𝑋 [𝑇𝑋] 

(3)  
𝑑[𝐺𝐹𝑃]

𝑑𝑡
= (𝛼𝐺𝐹𝑃[𝑇𝑋] − 𝛿𝐺𝐹𝑃 [𝐺𝐹𝑃]) 



 

Nonsteady state gene expression was modeled using finite difference numerical approximations 

for eqs 1-3 (FTCS, forward time centered space approximations). Time-varying AHL profiles of 

2D diffusion from the filter disc were modeled by FTCS approximations as previously reported, 5 

and then passed into the dynamic gene expression model to solve for spatiotemporal patterning 

of GFP expression.  

 

Supporting Information:  

[Supporting Figure 1] Growth rate comparison of NEB Turbo and NEB 5 cells.  

[Supporting Figure 2] Plasmid map and genetic circuit design summary.  

[Supporting Figure 3] Transfer functions for 16 strains covering all pairwise combinations 

of individual parameters reported in Figure 1.  

[Supporting Document 1] Large-scale sample preparation protocols for AHL response 

curve generation and spatial patterning of GFP expression on bacterial plates. 

 [Supporting Document 2] Automated imager assembly details, parts list, and Raspberry 

Pi automation setup. 

 [Supporting Files 1] Zip file containing CAD files for trans-illuminator and Python code for 

automation.  
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Figure 1. Parametric tuning of a genetic switch. (a) Simple genetic switch of a stimuli (input) responsive transcriptional 
activator that drives reporter protein expression (output) with a characteristic transfer function. (b) Engineered cell that express-
es GFP under luxR transcriptional regulation in response to the acyl-homoserine lactone (AHL) ligand. The AHL-to-GFP 
response curve or transfer function of this “Receiver” circuit is tunable at multiple regulatory levels: (1) E. coli promoter strength 
(transcription), (2) luxR-AHL affinity (transcriptional induction), (3) RBS “strength” or Shine-Dalgarno sequence conservation 
(translation), and (4) LVA proteasomal degradation tag (post-translational processing). (c) Set of five bacterial strains for para-
metric tuning, engineered for room-temperature experiments to eliminate temperature control. (d-f) Transfer functions of strains 
with high/low parameter “strengths” vs. reference strain (black), taken 20 h postinduction and room temperature incubation (d) 
plotted individually by parameter or (e) altogether, are in reasonable agreement with (f) mathematical models. Error bars ± 
s.e.m.
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Figure 2. Spatiotemporal patterning of gene expression measured on an automated web-enabled fluorescence plate 
imager (a) GFP expression in a uniform film of plated Receiver cells is induced by AHL diffusing from a local source (filter paper), 
and results in a spreading edge of observed fluorescence. (b) Schematic of the accessible ($250) fluorescence plate imager, based 
on a Raspberry Pi camera module that automates data acquisition and pushes the data immediately to cloud storage for real-time 
remote access, which eliminates scheduling and laboratory access constraints in training environments. (c) Time course of 
observed GFP edge distance “spreading” (error bars ± s.e.m) is in agreement with a model that combines numerical approxima-
tions of diffusion and the AHL-to-GFP transfer function. (d) Representative images and heat maps from the model. Scale bar = 
10mm. Experiments were conducted at room temperature.
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Supplementary Figure 1. Growth rate comparison between NEB Turbo and NEB 5α cells. Growth curves of NEB Turbo 
(dark gray) or NEB 5α (light gray) carrying plasmid BC-A1-001 in different media and temperature combinations. Overnight 
cultures were grown in LB media supplemented with 34 µg/mL chloramphenicol at 37°C and then diluted to OD600 = 0.05 
in the experimental media (LB or M9). Cultures were transferred to an incubator at either 37°C or 25°C for the duration of 
the experiment. All growth curves were measured in triplicate and the data point represents the mean of three cultures. Error 
bars ± s.d. are smaller than the point size in some cases. Inset shows the exponential growth phase (log-transformed) used 
to calculate doubling time.
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Supplementary Figure 2. Plasmid map and genetic circuit design summary. (a) Full plasmid map of the 16 genetic 
circuits constructed, with (b) the inset showing the variable region between all strains. (c) A table with all strain designations. 
Strain names follow the format of Promoter-luxR-RBS-GFP (H=High, L=Low, as defined in inset and Figure 1b).
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Supplementary Figure 3. Hierarchical tuning of “Receiver” cell transfer functions. AHL-to-GFP transfer functions of 
strains for all 16 pairwise combinations of individual parameters described in Figure 1b and Supplementary Figure 2c. Plots 
are displayed on the same scale to facilitate comparisons in relative expression levels and switching point concentrations, 
with inset boxes provided to resolve features. Error bars ± s.e.m are smaller than the point size in some cases.
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