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Purpose of review

To present up to date evidence on the pathogenicity of low-density lipoprotein receptor (LDLR) variants and
to propose a strategy that is suitable for implementation in the clinical work-up of familial
hypercholesterolaemia.

Recent findings

More than 1800 variants have been described in the LDLR gene of patients with a clinical diagnosis of
familial hypercholesterolaemia; however, less than 15% have functional evidence of pathogenicity.

Summary

The spectrum of variants in the LDLR identified in patients with clinical familial hypercholesterolaemia is
increasing as novel variants are still being reported. However, over 50% of all LDLR variants need further
evidence before they can be confirmed as mutations causing disease. Even with applying the recent
American College of Medical Genetics variant classification, a large number of variants are still considered
variants of unknown significance. Before obtaining an undisputable confirmation of the effect on the
expression and activity of the LDLR, reporting these variants as part of a clinical diagnosis to the patient
holds the risk that it might need to be withdrawn in a later stage. An investment should be made to develop
functional assays to characterize LDLR variants of unknown significance for a better patient diagnosis and
to prevent confusion in the physician’s office.
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INTRODUCTION

More than 90% of mutations described in patients
with familial hypercholesterolaemia are found in
the low-density lipoprotein receptor (LDLR) gene
[1–4]. Untreated familial hypercholesterolaemia
can give rise to marked premature coronary artery
disease [5]. Mutations in the genes coding for apo-
lipoprotein B (APOB) and proprotein convertase
subtilisin/kexin type 9 (PCSK9) are rare causes of
familial hypercholesterolaemia (<10%). The mol-
ecular diagnosis of this disorder is required to obtain
diagnostic certainty and to perform accurate family
screening. However, care should be taken interpret-
ing the result of the genetic diagnosis. In theory, the
clinical diagnosis can only be confirmed when a
mutation is found and then proven by functional
studies to affect LDL metabolism. Variants that lead
to the introduction of an early stop codon (nonsense
and frameshift alterations) and large rearrange-
ments are known to have a deleterious effect on
the function of the LDLR protein. Therefore these
mutations are considered to be pathogenic variants
rs Kluwer Health, Inc. All rights rese
without need of further evidence [6]. Nevertheless,
the majority of the genetic alterations associated
with familial hypercholesterolaemia are in neither
of these categories, similar to the majority of other
genetic diseases. To overcome this difficulty, the
American College of Medical Genetics (ACMG)
issued in 2015 [7

&&

] guidelines for the functional
classification of genetic variants that should be
taken into account before making a genetic
rved. www.co-lipidology.com
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KEY POINTS

� More than 1800 LDLR variants have been described in
clinical familial hypercholesterolaemia patients.

� About 50% of these variants need further evidence to
be considered pathogenic.

� American College of Medical Genetics helps on variant
classification, but a large number still need functional
evaluation.

� Reporting the variants, of which the pathogenicity is
unknown, as part of a clinical diagnosis to the patient,
holds the risk that it might need to be withdrawn in a
later stage.

� Establishment of functional studies for these variants is
of utmost importance for familial hypercholesterolaemia
diagnosis and to prevent confusion in the physician’s
office.

Genetics and molecular biology
diagnosis. In these guidelines, variants are classified
as ‘pathogenic’, ‘likely pathogenic’, ‘variants of
unknown significance’ (VUS), ‘likely benign’ and
‘benign’. Genetic variants are classified based on a
number of criteria; before a variant is considered a
disease-causing mutation, support is, for instance,
required from structural analyses, evidence from
functional studies and in-silico analyses. Following
these guidelines, only carriers of variants from the
pathogenic and likely pathogenic classes should see
their clinical diagnosis confirmed; the remaining
patients need to await functional confirmation of
the variant’s pathogenicity. The purpose of this
review is to present up to date evidence on the
pathogenicity of LDLR variants and to propose a
strategy that is suited for implementation in the
clinical work-up of familial hypercholesterolaemia.
GENETIC DIAGNOSIS OF FAMILIAL
HYPERCHOLESTEROLAEMIA

The genetic diagnosis of familial hypercholestero-
laemia has been performed, until now, by the study
of the all exons and adjacent splicing regions of the
LDLR gene by PCR amplification followed by Sanger
sequencing, search for large rearrangements by Mul-
tiplex Ligation-dependent Probe Amplification
(MLPA) analysis and the study of one (part of exon
26) or two fragments (part of exon 26 and part of
exon 29) of APOB gene [2,8–11], also by PCR ampli-
fication and Sanger sequencing. PCSK9 gene is only
studied in some laboratories [12,13]. However, next-
generation sequencing (NGS) strategies are chang-
ing the genetic diagnosis of familial hypercholester-
olaemia, and in the near future, it is expected that,
2 www.co-lipidology.com
whenever possible, laboratories will be using target
sequencing with the complete study of all three
familial hypercholesterolaemia genes – LDLR, APOB
and PCSK9, and possibly familial hypercholestero-
laemia gene phenocopies will be added to such
panels (LIPA, APOE, LDLRAP1 and ABCG5/8)
because they do not represent a great increase in
the overall cost and allow better stratified diagnosis
[14].
LOW-DENSITY LIPOPROTEIN RECEPTOR
VARIANTS UPDATE

A compilation of the data available in three public
available databases [Leiden Open (source) Variation
Database (LOVD)2, LOVD3 and Human Gene
Mutation Database] and a bibliography search of
the past 10 years up to December 2015 lead to the
identification of a total of 1891 variants in LDLR
described as causing familial hypercholesterolaemia
[15

&&

], but ACMG criteria were never applied to
majority of variants in these databases. For this
analysis, reference sequence NM_000527.4,
NG_009060.1 and assembly GRCh37 were used.
We now have classified the 1891 reported variants
following ACMG guidelines in the five categories
(Table 1), and over 40% need further evidence before
they can be confirmed as disease-causing mutations.
These numbers do not include reported variants
with a minor allele frequency (MAF) greater than
5%. The spectrum of variants in the LDLR identified
in patients with clinical familial hypercholestero-
laemia is still increasing as novel variants keep on
being reported. Increasing awareness of the disorder
and access to modern DNA sequence facilities con-
tribute to the growing databases of LDLR variants.
For instance, in 2016, 31 novel alterations in the
LDLR have been reported mainly in the German,
Poland and South African populations [16–18].
Also, during 2015–2016, a total of 37 LDLR variants
underwent functional assessment to verify their role
in the LDLR cycle [19

&&

–24
&&

,25
&

,26] (Table 2).
The majority of the VUS are classified as such

because they do not have functional studies and
represent 42% of all variants reported to be cause of
familial hypercholesterolaemia. These variants
should be the top priority for in-vitro functional
assessment. In fact, only 174 out of the 1891 LDLR
putative mutations have ever undergone a complete
functional study in heterologous cells, which is one
of the better suited assays to characterize LDLR
putative mutations [27

&&

], or studies on familial
hypercholesterolaemia homozygote patient cells
(lymphoblast or fibroblasts) have been performed
(Table 3). Due to the high level of evidence obtained
in these studies, these were considered level 1
Volume 28 � Number 00 � Month 2017
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Table 1. Number of putative mutations associated with familial hypercholesterolaemia in the LDLR according to ACMG

classification

Alteration type,
structural

Alteration type,
functional Pathogenic

Likely
pathogenic VUS (FS)

Likely
benign Benign

Indel Frameshift 344 2 (0)

Large rearrangements 27 134 (5)

In-frame indels 3 43 37 (1)

Nonsense 24

Regulatory 1 7 (3)

Splicing 19 2 13 (1)

Missense 1 3 (0)

Point substitution Missense 50 325 479 (12) 1 4

Nonsense 139 5 (0)

Regulatory 6 28 (11) 2

Splicing 95 7 61 (7) 3 1

Synonymous 23 (2) 2

Total 701 385 792 (41) 6 7

Splicing includes all intronic variants.
ACMG, American College of Medical Genetics and Genomics; FS, functional studies; VUS, variant of unknown significance (between brackets are the number of
variants with functional studies).

LDLR variants in diagnosis of familial hypercholesterolemia Bourbon et al.
studies (Table 4). Other types of functional studies
that do add evidence to the variant pathogenicity,
but are not completely informative, have been pub-
lished for another 85 variants (Table 3). These were
considered level 2 studies and include, for example,
analysis of number of transcripts for putative slicing
variants, but without transcript quantification, and
assays performed with cells of familial hypercholes-
terolaemia heterozygote patients (Table 4). This
means that less than 15% of all variants described
have any kind of functional evidence on which they
can be classified as a disease-causing mutation.
FUNCTIONAL STUDIES FOR LOW-DENSITY
LIPOPROTEIN RECEPTOR MUTATIONS

Pathogenic LDLR mutations can affect different
parts of the LDL receptor cycle: protein synthesis;
protein maturation; expression at cell surface and
correct insertion in cell membrane; LDL binding;
internalization; recycling. The most severe altera-
tions are those that lead to no protein production.
These are usually mutations affecting protein
expression and synthesis (e.g. when an early stop
codon is introduced or a promoter mutation) and
also large rearrangements, because no functional
protein is produced from those alleles (null allele).
Also, a number of missense mutations have less than
2% LDL receptor activity in in-vitro assays (Table 5),
and for this reason are classified as null alleles.

The present-day functional characterization of
variants found in LDLR, APOB or PCSK9 genes is very
0957-9672 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
similar to the ones developed by Brown and Gold-
stein in order to characterize the LDL receptor cycle
comparing LDL receptor activity in normal con-
ditions and in presence of specific mutations. The
major difference is that radioactive iodine is
replaced by fluorescent labeling of the LDL particle
to follow the cycle [28].

The use of flow cytometry allows to follow this
fluorescent labelled LDL and to determine the LDLR
activity. Another difference is that familial hyper-
cholesterolaemia heterozygote patient cells are no
longer used, since the ‘normal copy’ of the LDLR
gene interferes with the mutant allele expression
leading to conflicting results [3,27

&&

]. However, true
familial hypercholesterolaemia homozygote patient
cells are the best human models for functional
studies, mostly used in the Dallas collection [29].
Putative point mutation and in-frame
deletions/insertions

In general, to assess LDLR putative mutations, a
plasmid containing the LDLR wild-type cDNA
(usually pcDNA3) is mutated by in-vitro mutagen-
esis and transfect into appropriate cell lines (usually
CHO-ldlA7 cell line that has been altered to have
only residual LDLR activity). After transfecting these
cells with the mutated plasmid, the cell line
expresses the mutant receptor enabling analyses
of the LDLR cycle by following the labelled LDL
and observe whether it binds, internalizes and
recycles to cell surface or it fails in any of these
rved. www.co-lipidology.com 3
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Table 3. Number of variants in LDLR by type of variant and existence of level 1 and level 2 functional studies

Types of variants LDLR With FA, level 1 With FA, level 2 Without FA

Missense 863 86 19 758

Frameshift 346 7 8 331

Splicing� 172 24 30 118

Nonsense 168 15 3 150

Large rearrangements 161 12 15 134

In frame delins 83 7 4 72

Regulatory 44 22 0 22

Intronic 29 1 2 26

Synonymous 25 0 4 21

Total of variants 1891 174 85 1632

FA, functional studies; LDLR, low-density lipoprotein receptor.
�Only variants up �15 nucleotides into the exon–intron border were included. The remaining were considered intronic variants.

Genetics and molecular biology
stages, which leads to the exact characterization of
the cellular defect. Immunoblotting (western blot)
complements all these experiments to test if the
LDLR mutant was able or not to go from the pre-
cursor to the mature form. If a defect in maturation
occurs, the mutant LDLR is retained in the endo-
plasmic reticulum (ER) and can be seen by confocal
microscopy. Finally, flow cytometry, using specific
antibodies, will show if the mutant LDLR is
expressed at cell surface or not. Additional exper-
iments can determine if the defect is in the recycling
pathway (kinetic studies) [20

&&

]. Taken together,
these methods allow us to determine if the mutant
LDLR is retained in the ER (confocal microscopy
studies); not able to form the mature form of the
Table 4. Types of functional studies (FS) included in each

level of evidence

Type of FS LDLR

Level 1

Homozygous patients’ cells studies 66

RNA studies with transcript quantification 19

Heterologous cells’ studies 69

Luciferase studies 20

Total FS level 1 174

Level 2

Heterozygous patients’ cells studies 38

RNA studies without transcript quantification 37

Other 10

Total FS level 2 85

Studies not considered

Compound heterozygous patients’ cells’ studies 90

Inconclusive studies 4

Total not considered 94

6 www.co-lipidology.com
protein (western blot); not expressed on the cell
surface (flow cytometry studies); not able to bind
and internalize LDL (flow cytometry studies); not
able to recycle to the cell surface (kinetic studies).
Recently, a new class of mutations has been
described by Ström et al. [22

&&

], which is referred
to as defective positioning of LDLR on the baso-
lateral cell surface. This can be studied by transient
transfection of liver hepatocellular cells with
mutant LDLR plasmids and subsequent study of
the mutant LDL receptors in cell lysates in media
by western blot analysis [22

&&

].
These experiments enable characterization of

the cellular defect and clarify how these mutants
affect LDLR activity. If an alteration leads to very
small residual (<2%) or absent LDLR activity, the
alteration is considered to produce a null allele. This
means that no functional protein is produced and
the patient phenotype is usually severe [3,36,37]. On
the contrary, if some residual LDLR activity (�2%) is
detected, the alteration results in a defective allele.
The degree to which the mutation affects the LDLR
activity can determine patient’s phenotype as dem-
onstrated previously [20

&&

]. However, LDLR activity
in an individual can be influenced by the environ-
ment and/or other alterations in lipid metabolism
genes [38]. Therefore, the relationship between
LDLR activity and phenotype is not always straight-
forward. The case of the mutant c.12146C>T,
p.(Arg406Trp) is of great interest [20

&&

]. Carriers of
this variant have a highly variable expression, result-
ing in very mild to severe phenotypes. The func-
tional study unraveled the reason of this high
variability in phenotypes. The cell expression, bind-
ing and internalization were about 60%, which
implies that this mutant allele has a substantial
residual LDLR activity. In addition, the microscopy
studies revealed that these receptors are expressed at
Volume 28 � Number 00 � Month 2017
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cell surface to a certain level [20
&&

]. This LDLR
activity can be sufficient for LDL clearance in case
of an adequate healthy lifestyle, but it is dysfunc-
tional in persons who do not adhere to a diet with fat
restriction and exercise recommendations. Based on
the functional insights from this variant, the clini-
cian might be able to tailor the therapy with a strong
recommendation on lifestyle changes, and, if the
patient complies, perhaps a low instead of a high-
dosage statin is sufficient. This was exemplified by
the phenotype presented by a number of these
mutation carriers [20

&&

].
Putative splicing variants

Although the majority of LDLR variants are studied
with the methods presented above, putative splicing
variants can be studied with less laborious method-
ology which has been described previously [26].
Since putative splicing variants are suspected to
interfere with correct mRNA splicing, it is possible
to study a patient’s mRNA from lymphocytes to
check if one or more transcripts are produced. Sev-
eral variants have been characterized this way
[9,20

&&

,26,21
&&

,39–41]. For example, using this
methodology, it was possible to show that the intro-
duction of two nucleotides (TG duplication) in pos-
ition c.190þ2_190þ3dup alters the splice region
and causes the retention of two nucleotides in
intron 2, causing a frameshift and an introduction
of a premature stop codon (p.Leu64Cysfs�143)
[21

&&

]. But, whereas this method is sufficient to
detect if alternative splicing occurs, it does not
quantify its effect, so we do not know, for example,
if 80 or 20% of aberrant transcripts are present. This
is important, because it will affect the amount of
normal protein that is produced, and ultimately
LDLR activity. For instance, if only 20% or less of
aberrant transcripts are detected, this alteration
may be classified as benign, because at least 80%
of LDLR activity is expected and 80% is the mini-
mum considered to be necessary for normal LDL
clearance [20

&&

,42,43]. In fact, there are patients
with splicing mutations who do present with a
severe phenotype, whereas other carriers of such
variants have mild phenotypes [39,40]. We postu-
late that the difference between these two different
groups has to do with transcript quantification that
can be determined by real-time PCR. Again, func-
tional studies can help understand the phenotype
and add additional information to optimize patient
treatment.

It cannot be forgotten that nucleotide changes
in the first or the last three nucleotides of an exon
can also affect splicing [44], and in-silico analysis
should be performed for these kinds of alterations,
8 www.co-lipidology.com
and, whenever possible, in-vitro analysis as well.
Since the number of transcripts is easily obtained
by the analysis of the mRNA, these analyses could be
performed in nearly all laboratories [9,26]. Several
variants in these positions have been found all over
the world [22

&&

,26,45–48]. For example, in the Por-
tuguese familial hypercholesterolaemia study, one
case was found in whom the nucleotide change
c.2389G>A was predicted to change p.(Val776Leu),
but when the splicing machinery was studied, skip-
ping of exon 16 was observed introducing a prema-
ture stop codon p.Ala771Valfs�17 [26].

Also, although rare, synonymous alterations can
cause splicing defects. The first of these cases has
been described in the United Kingdom [49], where a
patient was found to have the alteration c.1216C>A,
predicted to cause p.(Arg406Arg). Analysis of mRNA
from the patient’s cells showed that the mutation
introduces a new splice site, which is used to the
exclusion of the natural splice site and causes a
deletion of 31 bp from the mRNA, predicted to
introduce premature termination four codons after
Arg406 (p.Ser397Thrfs�6). In 2008, a Dutch group
published another synonymous variant, c.621C>G,
p.(Gly207Gly), as cause of splicing defect [50]. A
novel synonymous variant c.1813C>T, p.(Leu605-
Leu) has been recently characterized as having an
effect on splicing [51

&

], introducing also a premature
stop codon.

Another interesting alteration has been des-
cribed as causing aberrant splicing – c.2140þ86C>G
86C>G (intron 14) – which activated a cryptic splice
site. This alteration causes the insertion of 81 bp in
LDLR mRNA and encodes for an in-frame insertion of
27 amino acids in the LDLR, preventing the receptor
from leaving the endoplasmic reticulum, probably
because of misfolding of the protein. This case high-
lights the importance of looking for mutations in
sites not commonly studied specially in patients
without an identifiable mutation in the three genes
causing familial hypercholesterolaemia, but with a
phenotype very suggestive of familial hypercholes-
terolaemia [39].
Putative regulatory variants

Putative regulatory variants can be studied by
luciferase assays, and 17 out of the 42 described
variants have been characterized this way
[19

&&

,52–57]. The luciferase assay is based upon
the bioluminescent measurement of firefly lucifer-
ase. Briefly, the promoter region is cloned into a
plasmid and the mutants are created by site-
directed mutagenesis. Wild-type and mutant
plasmids are then transfected into a specific cell
line and let to grow. Cells are lysed and luciferase
Volume 28 � Number 00 � Month 2017
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activity is then determined using a reporter assay
measured in a luminometer.
CONCLUSION

More than 1800 variants have been described in the
LDLR of patients with a clinical diagnosis of familial
hypercholesterolaemia; however, less than 15%
have functional evidence supporting pathogenicity.
Considering that nonsense, frameshift and large
rearrangements have a deleterious effect on a
protein, there are still about 1000 variants that need
functional characterization. Without definite con-
firmation of the effect on the expression and activity
of the LDLR, reporting these variants as part of a
patient’s clinical diagnosis carries the risk that the
inference of causality might need to be withdrawn
in a later stage. The latest ACMG guidelines are a
valuable tool for variant classification in order to be
able to report the molecular findings to clinicians.
However, even when applying the ACMG classifi-
cation, almost 800 variants need further evidence to
be considered pathogenic or likely pathogenic.
Establishment of functional studies for these var-
iants is of utmost importance for the diagnosis and
to prevent confusion in the physician’s office
about it.
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