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Background: The Argentinean programwas initiatedmore than a decade ago as the first experience of systematic
translational research focused on NCL in Latin America. The aim was to overcome misdiagnoses and
underdiagnoses in the region.
Subjects: 216 NCL suspected individuals from 8 different countries and their direct family members.
Methods: Clinical assessment, enzyme testing, electron microscopy, and DNA screening.
Results and discussion: 1) The study confirmed NCL disease in 122 subjects. Phenotypic studies comprised
epileptic seizures and movement disorders, ophthalmology, neurophysiology, image analysis, rating scales,
enzyme testing, and electron microscopy, carried out under a consensus algorithm; 2) DNA screening and
validation of mutations in genes PPT1 (CLN1), TPP1 (CLN2), CLN3, CLN5, CLN6, MFSD8 (CLN7), and CLN8:
characterization of variant types, novel/knownmutations and polymorphisms; 3) Progress of the epidemiological
picture in Latin America; and 4) NCL-like pathology studies in progress. The Translational Research Programwas
highly efficient in addressing the misdiagnosis/underdiagnosis in the NCL disorders. The study of “orphan
diseases” in a public administrated hospital should be adopted by the health systems, as it positively impacts
upon the family's quality of life, the collection of epidemiological data, and triggers research advances. This article
is part of a Special Issue entitled: “Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)”.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neuronal ceroid lipofuscinoses (NCL), altogether the most common
neurodegenerative disease in children, were sporadically recognized in
Argentina before 2003. One publication of 1995 by Taratuto et al. [1]

collected the first data based on clinic and transmission electron
microscopy (EM). The clinical cases from several Latin American coun-
tries have been reported (Table 1). The integrated NCL Program of
Argentina allowed, during the past 12 years, the recognition of 122
new cases in the region, including patients from neighboring countries
like Chile and Brazil and the complete characterization of 49 individuals.
Mutations in these patients were identified in 7 of the 13 genes
described worldwide [2]. The interdisciplinary approach included
systematically the involved aspects of several medical and laboratory
specialties, child neurology, ophthalmology, enzymology, pathology,
and genetics using a consensus algorithm (Fig. 1). These integrated
criteria consistently applied to the study of each NCL case were the
clue for the success of theTranslational Research Program. The presented
algorithm was based and modified from the one published by Williams
et al. (2012) [3] and Kohan et al. (2009) [4]. All the patients visiting
our Hospital firstly received the clinical services and then, the electro-
physiological and image studieswere completed to assess compatibility
with a NCL. The next step was to perform PPT1 and TPP1 enzyme activ-
ity assays in blood, saliva and DBS, followed by the electronmicroscopy

Biochimica et Biophysica Acta 1852 (2015) 2301–2311

Abbreviations:CL, curvilinearbodies;DBS,driedblood spots;EM, transmissionelectron
microscopy; FP, fingerprint profiles; GRODs, granular osmiophilic deposits; LM, light
microscopy; NCL, neuronal ceroid lipofuscinoses disorders; NGS, Next Generation
Sequencing techniques; RL, rectilinear bodies; v, variant;WES,whole-exome sequencing
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observation of a skin biopsy and the light-microscopically search for
vacuolated lymphocytes. After that, if the criteria were compatible
with a NCL, the screening for DNA variations related to these diseases
was undertaken. Alternatively, we received inquiries from medical
doctors established at distant regions of Argentina and sporadically
from other Latin American countries; in those cases, laboratory samples
were received by mail. The external patients were enzymatically stud-
ied, followed by the morphological and genetic approaches, according
to the study algorithm (Fig. 1). Genetic counseling was performed in
the hospital, or remotely mediated by the referring professionals. For
the patients admitted in the NCL Program, the recommendation was a
visit to the Hospital at least once each year.

Forty nine cases were positive for DNA variants validated as
mutations in a known NCL gene. The DNA screening was done under a
research protocol [5,6]. This methodology has emerged in recent years
as a useful tool for NCL diagnosis and enhancing subtype classification
[7–20]. Increasing recognition of variant phenotypes associated with
specific NCL genetic etiologies challenges diagnosis based solely on
clinical history or pathologic features. Thirteen NCL genetic forms have
been described to date in different NCL disorders, with age at onset
ranging from around birth to adult [3]. Mutations in different genes
may cause similar phenotypes, and similar genetic mutations may
give rise to variant phenotypic features. This makes difficult accurate
candidate gene selection for direct sequencing [7]. Furthermore, it is

Table 1
NCL cohorts reported from Latin America (1995–2014).

Cases Country Diagnostic definition Gene References

30 Argentina Clinical/EM – Taratuto et al. 1995 [1]
17 Brazil Clinical/EM – Puga et al. 2000 [22]
13 Costa Rica Molecular CLN6 Gao et al. 2002 [23]
1 Venezuela Molecular CLN6 Gao et al. 2002 [23]
1 Argentina Molecular CLN6 Sharp et al. 2003[24]
7 Argentina Clinical/EEG – Caraballo et al. 2005 [25]
12 Brazil Clinical/EM – Jardim et al. 2005 [26]
7 Venezuela Clinical/EM – Peña et al. 2004 [27]
14 Chile Clinical/EM – Troncoso et al. 2005 [28]
6 Mexico Clinical/LM – Ruiz García et al. 2005 [29]
40 Argentina, Brazil, Chile,

Paraguay, Perú, Spain
Clinical/EM/enzymatical/molecular PPT1 TPP1

CLN3
CLN5
CLN6
MFSD8
CLN8

Noher de Halac et al. 2005 [30], Kohan et al. 2008 [31],
Kohan et al. 2009 [4], Cismondi et al. 2012 [6],
Kohan et al. 2013 [32]

10 Brazil Clinical/EM/molecular CLN3 Valadares et al. 2011 [33]
9 Venezuela Clinical/enzymatical TPP1 Miranda Contreras et al. 2011 [34]

Abbreviations: EM, transmission electron microscopy; EEG, electroencephalogram; LM, light microscopy.

Fig. 1. Renewed diagnostic strategy proposed for the study of NCL in Latin America (modified from the one ofWilliams et al. 2012 [3], and Kohan et al 2009 [4]). The algorithm starts with
the study of the compatibility of the clinical phenotypes, using electrophysiological data, and image analysis, systematically followed by the PPT1 and TPP1 enzyme assays and the
morphological analysis, and then by molecular studies to find the DNA variants of the patients and parents by Sanger sequencing (A–B–C–D). WES using available epilepsy and specific
NCL panelswere preliminary performed, but not in a systematicway (E).WES studieswere performed in 4 patients according to the clinical compatibility, to set the genotypes (1–2–3). In
one CLN2 case, the morphological analysis and the enzymatic assays were performed after WES, modifying the algorithm sequence fromWilliams et al. 2012; Kohan et al. 2009 (4–5).
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estimated that ~8% of individuals diagnosed with NCL, by conservative
clinical and histopathological criteria, have been ruled out formutations
in the known NCL-associated genes, suggesting that additional NCL
genes remain unidentified [8].

In the remaining 73 individuals, clinical and electrophysiological data
were considered compatible for a NCL, and they were enzymatically
excluded for PPT1 and TPP1 deficiencies; the morphological studies
also demonstrated the compatibilitywith a NCL (data not shown). How-
ever, at present they remainwithout a definitivemolecular characteriza-
tion because, in most of them, DNA variants related to the disease were
excluded in several NCL genes by Sanger technology (CLN3, CLN5, CLN6,
MFSD8/CLN7 and CLN8), and are still awaiting a genotypic definition. The
high economic resources needed for genotyping is a problem in this
region, as these studies are frequently not covered by the social security.
The genetic spectrum of these patients will be completed in the next
step of the Translational Program through whole-exome sequencing
(WES), under a research protocol. We excluded in the present paper
the discussion of other 94/216 retrospective cases referred to our
Program that remained without positive enzymological or electron
microscopy data, and were not genotyped, or were diagnosed with
other disease.

The extra value of a Translational Research ProgramonNCLs is that it
integrates the complexity of these difficult to diagnose neurodegenera-
tive diseases in one place offering the families advice and containment
each time it is needed, favoring at the same time the accumulation of
experience of themedical staff, the advance of the clinical and laboratory
investigation, and allowing an epidemiological view of these diseases in
our region. Few centers are able to perform such complex diagnostic
studies in an integrated manner, even at an international level [21].
The patients frequently showed diagnostic delay due to the inexperi-
ence of child neurologists and other isolated professionals in remote
locations of the countries, and the lack of awareness on these disorders.
Another difficulty to cope was the high level of heterozygosis and the
abundance of variant phenotypes in our countries due to the ethnic
composition of the population, with mixed ancestors of diverse parts
of the world and the autochthonous people of America.

2. Enzyme testing

To date, the known NCL forms have been associated to a protein in
which mutations trigger the disease [35]. PPT1 (CLN1) [36], TPP1
(CLN2) [37], CTSD (CLN10) [38], and CTSF (CLN13) [13] are catalytic
enzymes; CLN5 is a non-enzymatic lysosomal soluble protein [35];

pCLN3 seems to have a role related to the mitochondrial compartment
[39]; MFSD8 (CLN7) is a lysosomal membrane transporter [40]; pCLN8
is related to the synthesis, transport or lipid modulation [41,42];
ATP13A2 (CLN12) is a transmembrane protein [43]; and the function
of the other proteins remains unknown [35].

Knowing the role of a protein is important for research anddiagnosis.
First, it allows setting the protein in a metabolic context, which may be
then studied to determine its relation with the disease. On the other
hand, if we have substrate of an enzyme, protocols for enzymatic assays
can be developed. Considering this last assumption, currently three
soluble lysosomal enzymes can be tested for activity: PPT1 (CLN1)
[44], TPP1 (CLN2) [4] and CTSD (CLN10) [45].

The cohort of patients and their parents studied in Argentina were
systematically tested for PPT1 and TPP1 enzymatic activities in three
tissues (as available): leukocytes (adapted from Sohar et al. [46,47]),
saliva [48] and dried blood spots (DBS) (adapted from Lukacs et al.
[49]). The integrity of each sample was verified by testing TPP1 and
PPT1 in parallel assays. Briefly, the assays consisted in the incubation
of the samples with the fluorogenic substrates 4methylumbelliferyl
6thiopalmitateßDglucopyranoside (Santa Cruz Biotechnology,
USA) for PPT1 or Ala-Ala-Phe-7-amido-4-methylcoumarin (Sigma,
USA) for TPP1 at 37 °C during several hours (depending on the tissue).
The fluorescence was measured on a LS 50 B fluorometer (Perkin
Elmer, Waltham, MA, USA). Product formation was converted from
fluorescent units to nanomol using 4-methylumbelliferyl (for PPT1)
and 7-amino-4-methylcoumarin (for TPP1) calibrators. Leukocytes
and saliva activities were standardized to protein concentration mea-
sured with Lowry method [50]. The population control's ranges were
defined simultaneously for TPP1 and PPT1 in leukocytes, saliva and
DBS in control samples from the local population (Table 2).

The standardization of the enzyme assays was performed in a statis-
tically significant number of samples for both lysosomal enzymes.
For this purpose, we used leukocytes, saliva and DBS from affected
individuals, parents and population controls to carry out one or more
repetitions in each sample to ensure the assay reproducibility. The box
plot analysis [51] of all the data obtained in leukocytes, saliva and DBS
for both enzymes, PPT1 and TPP1 are presented in Fig. 2. In DBS, the
tendency of overlapped values between patients and controls is not in
accordance to the provisional statement of Lukacs et al. [49]; whilst
patients' diminished activities in leukocytes and saliva with respect to
control's samples (b3× the standard deviation) demonstrated the
greater accuracy of these techniques. Altogether, these results indicate
TPP1measurements in leukocytes and saliva having a greater sensibility

Table 2
Percentages of PPT1 and TPP1 activities in leukocytes, saliva and DBS in healthy controls and CLN1/CLN2 patient samples.

PPT1 TPP1

Leukocytesa Salivab DBSc Leukocytes Saliva DBS

Normal controls
n 86 110 139 100 117 243
Reference interval (RI) 6–67 64–494 0.34–2.18 62–368 92–476 0.10–0.81
Mean ± SD 24 ± 11 189 ± 85 0.81 ± 0.40 160 ± 64 216 ± 97 0.27 ± 0.17

CLN1 individuals
n 2 2 2
Reference interval (RI) 0–2.26 0–56.4 0.01–0.26
% from CR 0–9% 0–30% 1–33%

CLN2 individuals
n 24 23 28
Reference interval (RI) 0–9.82# 0–31.9 0–0.26
% CR 0–6% 0–15% 0–100%⁎

Abbreviations: n, number of individuals tested; SD, standard deviation; RI, reference intervals.
a Leukocytes: values are expressed in nmol/h/mg protein.
b Saliva: values are expressed in nmol/24 h/mg protein.
c DBS: values are expressed in nmol/spot.
# An extreme value of 15.85 nmol/h/mg protein was obtained in one patient. This value was not included in the statistic evaluation.
⁎ 2/28 false negatives with values overlapping the mean value of the normal controls' range.
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than in DBS. No technique allowed us to discriminate obligate heterozy-
gous parent's activities, however, a general tendency to be lower than
control's was noted (Fig. 2).

Two individuals showed PPT1deficiency in leukocyteswith percent-
ages of activity respectively of 0 and 9% from the mean value of the
control's range; in saliva and DBS, the same subjects showed an activity
of 0 and 30%, and 1 and 33% respectively (Table 2). Noticeable is that the
individualwith 0%of activity in all the tested samples is a living boy now
21 years old with a juvenile phenotype [4,52] (Table 3). Because of the
small number of patients, percentages of enzyme activities could not
be valuated regarding the correlation with phenotypes.

TPP1 activity was measured in samples from 32 CLN2 affected
individuals, showing 0–6% activity of the mean of the normal controls
in leukocytes, 0–15% in saliva, and 0–100% in DBS. Nine out of 28
(32%) TPP1 assays in DBS were considered false negative enzyme

results, with values overlapping the normal controls ranges (Table 2);
although these negative TPP1 results inDBS, each patientwas genetically
characterized and bothmutationswere found in the TPP1 gene (Table 3).
It was assumed a deficient enzymatic TPP1 phenotype when the values
were decreased in two different leukocyte samples of the same subject,
or both in leukocytes and saliva, with percentages of activity ranging
0% to 15% from the mean of the population control's range, even when
that deficiency was not reflected in DBS.

3. Electron microscopy

Transmission electron microscopy (EM) confirmed a presumed NCL
disease when typical lipofuscin bodies were seen in skin biopsies:
granular osmiophilic deposits (GRODs) in CLN1, curvilinear bodies
(CL) in CLN2, and fingerprint profiles (FP) in CLN3 [4,6,32]. Variant

Fig. 2. Standardization process for PPT1 (upper panel) and TPP1 (lower panel) enzyme assays in biological samples from healthy controls, parents (obligated heterozygotes), and patients.
The total number of determinations (n), the mean (χ) and 3 times the standard deviation (±3 SD) are shown.
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Table 3
Summary of the phenotypical variability and genotypes.

Gene/enzyme No of patients (%) Phenotypes/
(age at onset range)
onset symptoms

Disease evolution Pathology (EM) Mutations

PPT1/CLN1
PPT1 in leukocytes
0–2.26
(RI = 6–67 mg/h/prot)

n = 2
(4%)

CLN1 disease, juvenile, n = 2
(6–7 y)
Learning difficulties, tonic clonic seizures, visual
failure, ataxia,
myoclonus.

EEG abnormal (6–11 y);
MRI, cerebellar atrophy (9.6–10 y).
Case 1, wheel chair bound, gastrostomy; current age, 21 y.

Mixed (CL + FP + GRODs),
n = 1
nd, n = 1a

I3, c.363-3T N G [62]
E5, p.Arg151*

TPP1/CLN2
TPP1 in leukocytes
0–9.82
(RI = 62–368 mg/h/prot.)

n = 32
(62.7%)

CLN2 disease, late infantile, n = 20
(2–4 y)
Refractory epileptic syndrome, speech delay or loose,
cognitive regression, ataxia, myoclonus.
CLN2 disease, juvenile, n = 12
(5–10 y)
Febrile seizures; hyperkinesia; behavioral disorders;
language difficulties or delay; tonic–clonic seizures;
visual failure; mental retardation; motor regression.

Tonic–clonic seizures (2–3.6 y); motor regression (2–9 y);
intellectual delay (2.5–6 y); ataxia (3–10 y); language
difficulties (3–11 y); EEG abnormalities (3–6.6 y); MRI
with cerebellar and cerebral atrophy (3.3–11 y); VEP/ERG
abnormalities (3.6–6.6 y); evolution time (11–17 y).
Tonic–clonic seizures (5–11.3 y); motor regression (5–10
y); intellectual delay (5–12 y); VEP/ERG abnormalities
(5–12 y); language difficulties (6–15 y); ataxia (6.6–13 y);
EEG abnormalities (7–17 y); MRI with cerebellar and
cerebral atrophy (9–16 y); evolution time (19–39 y).

CL, n = 11
FP, n = 2
Mixed
(CL, GRODs +/− FP), n = 5
nd, n = 14a

I1, c.17 + 3G N T [this publication]
I2, c.89 + 5G N C [63]
E3, p.Gln66* [54]
E4, p.Leu104* [4,64]
I5, c.509-1G N C [54]b

E6, p.Arg208* [54]b

E7, p.Asp276Val [4]
I7, c.887-10A N G [65]
E8, p.Arg339Gln [63]
E8, p.Glu343Asp [this publication]
E8, p.Arg350Trp [32]
E9, c.1107-1108delTG [32]
E11, p.Arg447His [54]
E11, p.Ala453Val [4]
E11, p. Ala453Asp [32]
E11, p.Ser475Leu [54]
E13, p.Gly535Arg [32]

CLN3 n = 6
(11.6%)

CLN3 disease, juvenile, n = 6
(4–7 y)
Visual loss, rapidly progressing to blindness secondary
to a pigmentary retinopathy;
intellectual decline.

Ataxia (5 y); generalized tonic–clonic seizures (4–10 y);
VEP and ER conduction abnormalities (4–13 y);
MRI with cerebellar atrophy (5–13 y); language difficulties
(4–13 y); vacuolated lymphocytes.

FP + CL, n = 4
Atypical CL, n = 1
nd, n = 1a

E6-7, p.[Gly154Alafs*29,
Val155_Gly264del], del. 966 bp [66]b

E6, p.Cys134Arg [63]
E13, p.Arg334Cys [67]
E14, p.Glu399* [63]

CLN5 n = 2
(4%)

CLN5 disease, juvenile, n = 2
(2–4 y)
Absence seizures;
motor regression

Motor regression (2–6 y); intellectual regression (6 y);
tonic–clonic seizures (6–7 y); MRI with cerebellar atrophy
(6–8 y); abnormal EEG (7 y); visual failure (7–9 y);
myoclonus (8–10 y) language difficulties (10 y).

Atypical CL (RL), n = 1
CL, n = 1 [68]

E1, c.291insC = p.Ser98Leufs*13 [69]
E4, c.1002-1006delAACA=
p.Lys368Serfs*15 [31]

CLN6 n = 2
(4%)

CLN6 disease, juvenile, n = 2
(2–3 y)
Seizures; motor and psycho-intellectual regressions,
followed by visual impairment.

Seizures (2–3 y); motor regression (2 y); language
difficulties (3 y); EEG, abnormalities with paroxisms (3–4
y); mental regression (3.3 y); visual loss (3.3–7 y);
myoclonus (4 y); MRI with cerebellar atrophy (4–6 y) and
bilateral cerebral atrophy (5 y); ERG and VEP abnormalities
(4.3 y); age at death, 15.6 y.

Densely packed FP or atypical CL,
n = 2

E4, p.Arg103Trp [70]
I4, c.486 + 8C N T [63]
E6, c.552dupC = p.Phe185Leufs*17 [71]
E7, p.Arg252His [63]

MFSD8/
CLN7

n = 4
(7.7%)

CLN7 disease, juvenile, n = 3
(1.5–4 y)
nd, n = 1∞

Absence and tonic–clonic seizures; emotional
disturbances.

Seizures (1.5–4 y); severe refractory epilepsy: generalized
seizures and absences (7 y); speech disorder, mild global
hypotonia, developmental and psychomotor retardation,
obesity and frequent falls; abnormal MRI (hemicerebral
atrophy, thinning of the corpus callosum, extensive
hypointense lesions on T1 and hyperintense on T2; 3.6–14
y); motor regression (3.3 y); mental regression (4 y) EEG
with abnormalities (3.6–11 y); abnormal fundoscopy (3.6 y).

Atypical CL (RL), n = 1
CL, n = 1 [68]
FP, n = 2

E3, p.Arg35* [55,72]
I2, c.63-4delC [72]
E10, p.Thr294Lys [55,72]
E13, p.Arg482* [55]

CLN8 n = 1
(2%)

CLN8 disease, congenital, n = 1
Psychomotor retardation (birth)

Severe hypotonia; language never developed; generalized
tonic–clonic seizures (3 y); myoclonus (6 y); ataxia (6.6
y); MRI, cerebellar atrophy (6 y); age at death, 12.3 y.

GRODs,FP + CL, n = 1 E2, p.Met1Val [73]
E3, p.Asn264Lys [74]

SGSH
(Differential diagnose in progress)

n = 2
(4%)

n = 2
(10 m)
Refractory seizures

Twins; developmental delay; EEG with pathological
features (2 y); abnormal MRI, VEP, and ER (5 y); altered
visual behavior (6 y). Heparin-N-sulfatase and GAG
analysis, in progress.

Atypical electron dense bodies
n = 1
nd = 1

E2, p.His49Pro [this publication]
E8, p.Val387Met [75]

Total NCL = 49 (+2 SGSH)

Abbreviations: RI, reference intervals; y, years; m, months; ∞, no clinical data were available; EEG, electroencephalogram; MRI, magnetic resonance images; CL, curvilinear bodies; RL, rectilinear bodies; FP, fingerprint profiles; GRODs, granular
osmiophilic deposits; nd, not done; E, exon; I, intron; b, bases.

a EM was not performed because the contact with the family was lost, the family did not authorize the biopsy procedure, or because it is a brotherhood (in these cases, the morphological studies are done in only one of the siblings).
b Most common European mutations.
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morphologies were observed in the remaining genotypes. In Fig. 3,
inclusions in skin or muscle of individuals with CLN3, CLN5, CLN6,
MFSD8/CLN7 and CLN8 genotypes are shown. A review of the morpho-
logical variations in the studied group of patients is presented in
Table 3. There were no diagnosed cases included in this review where
typical storage was looked for but not seen.

4. Genotypes/phenotypes

DNA variationswere studied by PCR followed by Sanger sequencing,
or through WES technology according with the concordance of the
clinical, enzymatic and morphological features with those of the
published literature, with special attention to electron microscopy

Fig. 3. Electron microscopy results. A. CLN5 disease, juvenile: muscle biopsy showing RL (arrows) (courtesy of A. L. Taratuto). B. CLN6 disease, juvenile: muscle biopsy showing densely
packed FP (courtesy of A. L. Taratuto). C. CLN7 disease, juvenile: skin biopsy showing vesicles with RL in an eccrine secretory gland. D. CLN8 disease, congenital: skin biopsy with
GRODs, CL and FP neighboring a lipid droplet (L). E. CLN3 disease, juvenile: muscle biopsy showing CL predominantly at the subsarcolemmal compartment (arrow); notice the enlarged
mitochondria (M) (courtesy of A. L. Taratuto). F. CLN3 disease, juvenile: skin biopsy withmixed FP and CL in an eccrine sweat gland. G. CLN3 disease, juvenile (detail of F): mixed FP+ CL
bodies. Abbreviations: CL, curvilinear bodies; RL, rectilinear bodies; FP, fingerprint profiles; GRODs, granular osmiophilic deposits; M, mitochondrion; L, lipid droplet.
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data useful to orient the searchof theNCL genes [53] (Table 3). However,
in one caseWESwas carried out before electronmicroscopy and enzyme
testing, being inconclusive because only one TPP1 mutation was found
(exon 6- p.Arg208*) [54]. This child was corroborated later as TPP1
deficient, with an electron microscopy showing CL in the skin biopsy;
the second TPP1 mutation remains elusive. Another case with positive
electron microscopy data showing CL in a muscle biopsy, and TPP1
and PPT1 enzyme values in the control's range, was efficiently stated
as CLN7 using WES, which showed one homozygous known mutation
(exon 3- p.Arg35*) [55], segregating from the parents.

The new DNA variants were validated as disease causing mutations
by a combination of methods that included: direct Sanger sequencing
in a new DNA sample, restriction enzymes, co-segregation within the
families, absence of the sequence change in 200 control alleles, and
bioinformatic tools: ClustalW2 program (http://www.ebi.ac.uk/Tools/
clustalw2/index.html), UniproKW (http://www.uniprot.org), Polymor-
phism Phenotyping-2 (PolyPhen-2, http://genetics.bwh.harvard.edu/
pph2), Sorting Intolerant from Tolerant (SIFT, http://sift.jcvi.org),
PopMusic 2.1 (http://babylone.ulb.ac.be/popmusic), Pongo server
(http://www.hsls.pitt.edu/obrc/index.php?page=URL1153413945),
Phobius (http://phobius.sbc.su.se/), ESEfinder (http://rulai.cshl.edu/
cgi-bin/tools/ESE3/esefinder.cgi?process=home), PMut (http://mmb2.
pcb.ub.es:8080/PMut/), Protein Data Bank (PDB, http://www.rcsb.org/
pdb/home/home.do) and PyMOL version 1.1 (http://www.pymol.org).
The combination of the results obtained through all these studies was
used to validate the DNA missense changes as disease causing
mutations in the studied CLN genes (data not shown). DNA variants
were excluded as disease causing mutations if they were mentioned
as SNPs in the database http://www.ncbi.nlm.nih.gov/snp/. Known
NCL mutations were found in the international database, https://
www.ucl.ac.uk/ncl/mutation.shtml.

Seventy three banked DNA samples still remain genetically
uncharacterized and require analysis and molecular screening; this
will be done under a systematic WES research protocol using a NCL
panel including PPT1/CLN1, TPP1/CLN2, CLN3, CTSD/CLN10 [56,57],
DNAJC5/CLN4 [17], and the most recently NCL associated genes:
CLN11/GRN [58], CLN12/ATP13A2 [43], CLN13/CTSF [59,60], KCTD7/
CLN14 [8], andCLCN6 [61]. As variant clinical phenotypes are increasingly
recognized in the NCL disorders, it is difficult to exclude specific genetic
loci based on pathologic data. The lack of available clinical functional
studies to support specific diagnosis means that complete NCL panel
molecular genetic analysis is warranted. These studies are in progress.

DNA disease related variants were found in 49/122 NCL individuals,
and both pathological alleles were identified in 40. One pathological
allele is still unknown in 1 CLN3, and 2MFSD8/CLN7 suspected patients,
all of them with clinical and microscopically compatible data. One PPT1
and 5 TPP1 deficient individuals arewaiting the confirmation of theDNA
changes. All the missing genetic studies are currently in progress. The
phenotypic spectrum and the DNA variants found in 7 different NCL
genes are summarized in Table 3.

5. Discussion and concluding remarks

A NCL Translational Research Program has great value in assisting,
from an interdisciplinary scope, with clinical and molecular characteriza-
tion and subsequent clarification ofmisdiagnosis and establishment of di-
agnosis. The study of “rare diseases” in a public administrated hospital
should be adopted by the health systems, as the impact on patient and
family quality of life, the collection of epidemiological data, and potential
for research enrollment and advance are highly significant.

The regional genotypes and phenotypes can be compared with
European and US published cohorts [67,76]. With the exception of
PPT1 and TPP1 [4,32], the molecular data of this paper reflect new pub-
lished results for the other genotypes. Additional data on DNA variants
throughout the world are compiled at https://www.ucl.ac.uk/ncl/
mutation.shtml. A total of 34 mutations were identified in 7 NCL

genes: missense (n = 16), nonsense (n = 6), splice site (n = 7),
small/large deletions (n = 3), and insertions/duplications (n = 2).
From these, 14 mutations were novel (41%), and 20 were previously
reported in other countries (59%). Complexheterozygosity predominated
in our cohort of patients in all the studied genes. Correlations between
compound heterozygosity and protracted phenotypes were described
for many NCL forms [32,77–79].

Information on the actual incidence and prevalence of childhood
NCL is based mainly on data gathered from clinical and morphological
studies conducted in the pre-genetic era [80–86]. Over the past
10 years, the use of molecular genetics to corroborate clinical diagnoses
has made it possible to obtain more accurate epidemiological data on
the NCLs, which have been shown to have a worldwide distribution
[87,88]. Moreover, some studies seem to indicate a higher-than-
expected incidence in specific geographical regions [89,90]. The relative
incidence of childhood forms of NCL in Italy and the phenotypic
spectrum related to mutations in known NCL genes was investigated
[87]. Descriptive epidemiology data, collected through the application
of shared clinical and morphological diagnostic criteria and direct
gene sequencing of eight known NCL genes, reveal an incidence rate
of 0.98/100,000 live births in the period 1992–2004. This figure is 58%
higher than that recorded in the pre-genetic era [81]. The incidence
rate of NCLs in Italy was still found to be lower than in other European
countries where epidemiological investigations were recently
performed [90,91]. In Italy, LI-NCL appear to be the most frequent
forms, accounting for an incidence of 0.78/100,000 live births. About
half of the cohort had a genetic diagnosis of LI-NCL, the single most
affected gene being TPP1. High frequencies of LI-NCL and
TPP1 mutations have been reported in only two studies, carried out
in restricted geographic areas, namely British Columbia [92] and
Newfoundland [89], respectively. In the latter study, LI-NCL patients mu-
tated inCLN5 and CLN6 accounted for 26%of thewhole LI-NCL population.
Molecularfindings in 124NCL patients according to both clinical formand
mutated gene in the Italian population [57,87,93] showed CLN1 (13.7%),
CLN2 (23.5%), CLN3 (12.9%), CLN5 (5.6%), CLN6 (16.9%), CLN7 (11.3%),
CLN8 (5.6%), CLN10 (0.8%) and about 10% of the NCL cases in this sur-
vey remained without a genetic diagnosis as shown elsewhere [57,
93]. The genetic studies in Argentina stated that CLN2 is the most
common NCL type, accounting for a 65.3% of the diagnosed subjects,
followed by CLN3 (12.2%) and CLN7 (8.2%). The molecular studies
rendered a total of 17 TPP1 mutations in Latin America, from
which 47% were world-wide known mutations and 53% were novel
for this region. The most common mutations identified in TPP1
gene are p.Asp276Val exon 7 (30.5% of disease alleles), p.Arg208*
exon 6 (12.5% of disease alleles), and c.887-10A N G intron 7
(10.8% of disease alleles). To simplify the future genetic analysis of
TPP1-deficient patients in our region, we might consider ruling out
E7 p.Asp276Val, I7 c.887−10A N G, E6 p.Arg208*, E3 p.Gln66* and
E4 p.Leu104* before starting costly complete TPP1 screening. At pres-
ent, these five most common Latin American mutations comprise
64.8% of the detected pathological alleles [32].

Rare Diseases epidemiology is a novel action field still largely
unexplored. The rare disease community suffers from the absence of
reliable epidemiological data on the prevalence and incidence of rare
diseases in the national and global populations [94].

The application of a unified algorithm and the centralization of all
the diagnostic steps in one center were the main factors underlying
the success of the Argentinean NCL Program. The pathological features
assayed by LM and EM were characterized and differentiated for
congenital-onset NCL, infantile-onset NCL, “classical” and “variant” late
infantile-onset NCL and for juvenile-onset NCL phenotypeswith variant
genotypes. In one case, it oriented other differential diagnostic activities
withMPS Type IIIA. Coincidenceswere found regarding themorphology
of the bodies in the pathological poorly or incompletely known NCL
forms (CLN5, CLN6, CLN7, and CLN8) with the statements of Radke
et al. [53].
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5.1. CLN1 disease, juvenile

Two CLN1 subjects were enrolled in the NCL program since 2003.
Another 7 Mexican patients showed PPT1 deficiency measured only in
DBS, and the study could not be completed [4]. In the first case, the
boy from Brazil showed a juvenile phenotype with PPT1 deficiency in
leukocytes (0 nmol/h/mg protein for a normal range: 6–67). The second
case, an Argentinean girl, was not seen again and did not complete all
the requested exams. She showed PPT1 activity in leukocytes of
2.26 nmol/h/mg protein. The CLN1 index case was genetically studied,
and he showed a compound heterozygotic combination of the nonsense
mutation exon 5- p.Arg151*, the most common variant worldwide
[2,62], and intron 3- c.363-3T N G, a South American splice site muta-
tion—seen for the first time in this individual [4]. Present age is
21 years old.

5.2. CLN2 disease, late infantile and juvenile

Both complete and partial TPP1 deficiencies were documented.
Residual TPP1 activity was demonstrable in leukocytes and saliva, but
not in DBS (Table 2). CLN2 disease, juvenile variant phenotypes were
more frequently described than expected through the literature
(37.5% of the cases), in several cases correlating with residual TPP1
enzyme activity, especially when measured in blood or saliva [4,32].
The heterozygous combination of intronic mutations in non-consensus
sites with missense/nonsense mutations correlated with the residual
TPP1 activity [32]. Correlations of CLN2 phenotypes in relation to the
amount of TPP1 deficiency are reviewed: 1) CLN2 disease, late infantile:
“classical or severe” phenotype was stated in individuals with undetect-
able TPP1 activity in leukocytes, saliva and DBS [32]; 2) CLN2 disease,
juvenile: slightly, to significantly “later-onset” phenotype was stated in
individuals with a 10–15% of control mean TPP1 activity in leukocytes
[32]; 3) CLN2 disease, adult: ataxia (SCAR7), a later-onset and more
restricted phenotype, with no ophthalmologic abnormalities or
epilepsy, showed a considerable overlap in enzyme activity with CLN2
disease patients (values in SCAR7 patient's leukocytes correlated with
a mean residual activity ranging from 10 to 15% of the lowest control
TPP1 activity in Sun Y et al. 2013 [11]). In one Australian ‘later-onset’
case (CLN2 disease, adult) the measured TPP1 activity in leukocytes
was ~2% of mean normal activity, which is very similar to that observed
in Australia for CLN2 disease, late infantile patients; the clinical presen-
tation was totally consistent with that reported for SCAR7, but it is not
clearwhy the residual activitymeasured is so low (Dr.Michael Fietz, Ad-
elaide—Australia, personal communication). One 11 y old US girl also
presented with SCAR7 phenotype (CLN2 disease, adult); a partial TPP1
deficiency was detected in both blood and fibroblasts. EM results were
inconclusive. WES by NGS was performed, allowing the identification
of one common mutation in TPP1 (intron 5- c.509-1G N C) and a novel
mutation, exon 8- p.Glu343Asp (KS, Boston). However, on looking at
the published cases, it appears that some of the SCAR7 individuals also
showed very low levels of TPP1 leukocyte activity; and 4) variations in
TPP1 activities correlated with variant phenotypes in CLN2 knock-out
mice [95].

5.3. CLN3 disease, juvenile

This is the second most frequent NCL type [6], with 6 identified
patients. 3/6 children carry the p.[Gly154Alafs*29, Val155_Gly264del]
or 966 base pair (bp) deletion mutation in homozygous state; the
other 2/6 had this deletion in heterozygous combination with two Ar-
gentinean CLN3 DNA variants, exon 6- p.Cys134Arg and exon 13-
p.Arg334Cys. Finally, 1/6 showed a nonsense mutation exon 14-
p.Glu399*, with the second allele remaining elusive. The CLN3 DNA var-
iants are listed in the database https://www.ucl.ac.uk/ncl/mutation.
shtml, and in Kousi et al. [63]. Ultrastructural features are shown in
Fig. 3E–G. Summarizing data of the Argentinean group of patients

with CLN3 disease, 50% of subjects carry the most common deletion in
homozygous state, 33.4% are heterozygous for this deletion in combina-
tion with other “rare” CLN3 variants, and 16.7% is identified with single
“rare” CLN3DNA variant (no second CLN3mutation identified). In Great
Britain and the US [5,49,63], CLN3 disease, juvenile reports showed
prevalence of homozygous individuals for themost common 966 bp de-
letion in ~75%, with greater than 90% having at least a copy of this com-
mon mutation.

5.4. CLN5 disease, juvenile

DNA variants in CLN5 were found in 2 girls in combination with a
complete clinical and pathological characterization. Both individuals
had juvenile phenotypes and positive ultrastructural data, with atypical
CL—called rectilinear bodies, RL by Radke et al. [53]—in the muscle
biopsy of one Argentinean girl (Fig. 3A). By Sanger sequencing a unique
insertion (homozygous) was identified in the Argentinean girl: exon 1-
c.291insC, p.Ser98Leufs*13 [69]; in addition, it was also found a
presumed polymorphism in CLN6 intron 2: c.198+104T N C. Whether
this CLN6 polymorphism may alter phenotypic expression remains
unproven. In the second case, a girl from Spain, it was stated a deletion,
exon 4- c.1002-1006delAACA, p.Lys368Serfs*15 in homozygosity [31].
The Spanish girl was not seen in Argentina, but the DNA variant was
found in the frame of our Translational Program and published by the
Spanish group [31,68].

5.5. CLN6 disease, juvenile

Two CLN6 cases were studied through our Program, a boy and a girl.
Both showed juvenile phenotypes and FP profiles were seen by EM
(Fig. 3B). The variant clinical presentations in these two CLN6 cases
did not provide evidence of genetic and allelic heterogeneity accompa-
nying intra-familial variability [24], because only 1memberwas affected
in these two unrelated CLN6 families fromArgentina. Sanger sequencing
demonstrated in the girl two CLN6 variants: exon 7- p.Arg252His and
c.486 + 8C N T (exon/intron 4, rs149692285), predicted as probably
damaging and aberrant splicing respectively by computational
approaches (p.Arg252His: ClustalW2, conserved among Pan troglodytes,
Macaca mulatta, Rattus norvegicus,Mus musculus, Bos taurus, Canis lupus
familiaris, Gallus gallus and Danio rerio; SIFT, tolerant; Pongo server and
Phobius, cytoplasmic region; PolyPhen-2, possibly damaging; ESEFinder,
altered splicing modifiers; PMut, pathologic). One polymorphism was
detected in the same gene, c.198 + 104T N C (rs8025947) [63]. Age at
deathwas 18 y. The boy's DNAwas analyzed through Sanger sequencing
and compound heterozygosity for two different South American vari-
ants were stated: exon 4- p.Arg103Trp and exon 6- p.Phe185Leufs*17
[70,71]. The age at death was 13 years. Mutations in CLN6 gene seem
to be family specific.

5.6. CLN7 disease, juvenile

The first Argentinean CLN7 confirmed case is a boy, currently 5 years
old, of unknown migrant and American Indian Guarany ancestors.
Genotypingwas throughWES using aNCLpanel, after renderingnormal
PPT1 and TPP1 enzyme activities, and EM observation of typical CL
profiles in the muscle biopsy. The confirmation of the DNA variants in
theMFSD8/CLN7 gene was through segregation in the same family and
Sanger sequencing, showing a known homozygous variant, exon 3-
p.Arg35* [55,72]. Other two Argentinean boys were suspected as CLN7
cases, remaining genetically unconfirmed. The first of them with
Eastern European ancestry showed one DNA change, intron 2- c.63-
4delC segregating from the mother. This change was previously identi-
fied, also in heterozygous form, in a patient of Polish origin. Although
this intronic change was studied by the authors with RT-PCR and it
was absent in 200 control chromosomes, it remains open whether it is
a disease-associated mutation or a rare non-pathogenic polymorphism
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[72]. The second, with Italian-Spanish ancestry, showed one nonsense
mutation, exon 13- p.Arg482* known before in one French subject
[55]. In another Spanish girl from the Baleares Islands, MFSD7/CLN7
was suspected, and the most frequent missense mutation exon 10-
p.Thr294Lys was found in heterozygosity. The case was published else-
where [55,72]. The suspicion of MFSD8/CLN7 was sustained in the Ar-
gentinean cases based on clinical and electron microscopy data. All
patients showed childhood onset (ages 1.5–4 y). Interesting peculiari-
ties are that visual failure was a later symptom, and none had ataxia
or other movement abnormalities. EM showed in the 2 unconfirmed
cases, a variant of CL profiles in the skin biopsy (Fig. 3C). These clinical
and pathologic featuresmay prompt consideration of CLN7 disease, par-
ticularly in this South American region.

5.7. CLN8 disease, congenital

OneArgentinean girl with onset at birth and a life span of 12 years, is
the first confirmed CLN8 case in Latin America, and the first congenital
phenotype described worldwide. The ultrastructure with GRODs, CL
and FP profiles is shown in Fig. 3D. Sanger sequencing of CLN8 showed
two DNA changes in heterozygous state, exon 2- p.Met1Val
(rs143730802) was previously identified in heterozygous state in one
patient of African descent, with a general frequency of less than 0.01%
[73]. The other DNA variant, exon 3- p.Asn264Lys (rs587779411) was
previously identified in homozygous state in an Iberian patient [74].
Both were predicted as deleterious DNA changes by computational
approaches (PolyPhen-2 and SIFT software predicted them as “probably
damaging” and “damaging”, respectively). Moreover, the polymor-
phisms c.257G N C (rs71499040) and c.280_279insG (rs71209699) in
exon 1 were also found in Argentinean patients.

5.8. Differential diagnoses

SGSH mutations were mentioned in the literature in a patient who
was diagnosed with adult onset NCL [96]. In this same issue the article
of Radke et al. [53] calls attention to the differential diagnose among
MPS type III A, Sanfilippo Syndrome and NCL. The onset age in a pair of
Argentinean twins was at 10 months with refractory seizures, followed
by developmental delay. EEG was pathological (2 years). MRI, VEP, and
ERGwere normal at the age of 5 years. By 6 years, altered visual behav-
ior was observed. PPT1 and TPP1 were normal. EM of a skin biopsy
showed atypical osmiophilic bodies. WES studies were performed
(INDEAR/Bioceres, Santa Fe, Argentina) and revealed in one of the
twins the presence of two heterozygous DNA variants, exon 8-
p.Val387Met [75] and the novel missense change exon 2- p.His49Pro
in the SGSH gene (Mucopolysaccharidosis IIIA, Sanfilippo Syndrome)
(Table 3). Sulfamidase studies in blood, heparin sulfate and GAG analy-
sis in urine are in progress.

5.9. Whole exome sequencing in NCL disease

As an example of the power of theWES screening approach, using a
recessive model to filter the identified variants, a KCTD7/CLN14 homo-
zygous variant, c.550C N T, p.Arg184Cys was identified in a Mexican
family with infantile-onset NCL [8]. The mutation was predicted to be
deleterious andwas absent in over 6000 controls. The identified variant
altered the localization pattern of KCTD7 and abrogated interaction
with cullin-3, a ubiquitin-ligase component and known KCTD7
interactor. Intriguingly, murine cerebellar cells derived from a juvenile
NCLmodel (CLN3) showed enrichment of endogenous KCTD7.Whereas
KCTD7mutations have previously been linked to progressive myoclonic
epilepsy, with or without lysosomal storage, this study clearly demon-
strated that KCTD7 mutations also cause a rare, infantile-onset NCL
subtype (designated CLN14) [8,9].

WES can be remarkably helpful in identifying genetic disorders, but
as a technology at the current time there are limitations reflecting depth

of coverage and gaps in sequencing that may yield false negative results
in any particular patient and/or within some specific genes. The
expenses may be warranted, but focused NCL-panel testing, with
technologies which allow for complete nucleotide coverage, may offer
best and most cost-effective strategies for testing those in whom the
phenotype suggests possible NCL disorder (seizures, visual failure,
cognitive regression, ataxia/movement abnormalities). In the next
step of the Translational Research Program 25/73 banked DNA samples
that remain genetically uncharacterizedwill undergomolecular screen-
ing under a specific NCL directed WES protocol.

In conclusion, in previous papers of our group the main features of
the two types of NCL with enzyme deficiencies, CLN1 disease and
CLN2 disease, were published [4,32]. The review of these results, and
the data of other 5 NCL types, CLN3 disease, CLN5 disease, CLN6 disease,
CLN7 disease, and CLN8 disease are presented in this paper. The pheno-
types were late infantile, or juvenile except CLN8, that was congenital
with severe infantile phenotype. The subjects showed known and new
mutations, and family specific DNA variants. Clinical features and elec-
tronmicroscopy data were stated for each type (Table 3). The aggregate
value of a Translational Research Programwith focus onNCLs in a public
hospital is the systematic use of a unified study algorithm; the education
of practitioners that become expertise in recognizing these difficult to
diagnose diseases and manage the symptoms; the integration with
clinical research; and having a site with a staff that can provide advice
and contention to the families each time they need. An epidemiological
view is gradually developed. In our future work we intend to reveal the
DNA variants of the still genetically uncharacterized individuals in the
frame of the study algorithm (Fig. 1).
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