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ABSTRACT 

In oil sand waste tailings pond, the gravity segregation takes place, where coarse 

particles settle relatively more quickly than fine particles, and a stable suspension, 

known as the mature fine tailings (MFT), is formed. Compression of MFT appears to 

be very slow, and MFT remains suspended in tailings pond for decades due to the low 

permeability. Large volumes of MFT continually accumulate in tailings ponds, and 

therefore MFT storage requires a large containment pond, which generates 

environmental concerns and leads to MFT management challenges. Hydraulic 

conductivity is one of the most important properties of MFT because it controls 

consolidation behaviors. Clear understandings of hydraulic conductivity and its 

relationship with void ratio are essential to MFT management and treatment. 

This study establishes the relationship between hydraulic conductivity and a 

relatively wide range of void ratios for MFT through three laboratory tests, i.e. the 

standard oedometer test, the falling head test and the Rowe cell test. Based on the 

hydraulic conductivity data of this study together with the data reported in the literature, 

data regression models are developed to correlate the hydraulic conductivity with a 

wide range of void ratios (k-e relationship) for fine oil sand tailings. Empirical 

equations, which were proposed to predict the hydraulic conductivity for plastic soils, 

are evaluated their suitability and performances in terms of predicting the hydraulic 

conductivity for fine oil sand tailings. 

Key words: mature fine oil sand tailings, hydraulic conductivity, void ratio, data 

regression. 
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CHAPTER 1  INTRODUCTION 

1.1 General  

Oil sands mining processes produce tremendous amounts of tailings in northern 

Alberta, Canada. The tailings are deposited to tailings ponds, where gravity segregation 

takes place. During this process, sand settles more quickly than fine solids, which form 

a stable suspension, called mature fine tailings (MFT). MFT typically consists of 90% 

fines and stabilizes at a solids content of 30% (Jeeravipoolvarn 2010). Consolidation of 

MFT is very slow because of the tailings’ low permeability (Jeeravipoolvarn 2010). 

Management and treatment of the MFT are major challenges facing the oil sand industry. 

Hydraulic conductivity is an important physical property of MFT because it 

controls consolidation behaviors. Clear understandings of hydraulic conductivity and 

its relationship with void ratio are essential to MFT management and treatment. Owing 

to the excessive amount of time, and the sophisticated experimental techniques and 

apparatus required, studies related to investigation and measurement of the hydraulic 

conductivity over a wide range of void ratios for MFT are limited, and will be the focus 

of this study.  

1.2 Objectives of Study 

The main objective of this study is to measure the hydraulic conductivity of MFT 

over a relatively wide range of void ratios. The following specific objectives are devised: 

• Existing experimental apparatuses and laboratory testing methods of the 

measurement of hydraulic conductivity for fine grained geomaterials are 
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summarized; particular attention is paid to the measurement methods for soft 

fine-grained geomaterials, which have high water content and generally 

present in the form of slurries. 

• Available hydraulic conductivity data (k values) reported in the literature for 

oil sand tailings are summarized. Particular attention is paid to k values of fine 

grained oil sand tailings. 

• Empirical equations proposed in previous studies to predict the hydraulic 

conductivity for plastic soils are summarized. 

• The hydraulic conductivity of MFT over a wide range of void ratios is 

measured using three methods in laboratory tests, i.e. the standard oedometer 

test, the falling head test and the Rowe cell test.  

• Data regression models are developed to correlate the hydraulic conductivity 

and a wide range of void ratios (k-e relationship) for fine oil sand tailings based 

on data from this study as well as data published in the literature. 

• The suitability and performances of empirical equations are assessed and 

compared in terms of predicting hydraulic conductivity for fine oil sand tailings.  

1.3 Thesis Outline 

This thesis contains five chapters. Chapter 1 is an introduction of the thesis, 

including the objective of this study, thesis outline and original contributions. 

Chapter 2 presents the literature review, which primarily contains three parts: a 

review of laboratory testing methods and relevant experimental apparatuses of the 

measurement of hydraulic conductivity for fine grained geomaterials; a review of 
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available hydraulic conductivity data for oil sand tailings; and a review of empirical 

equations developed for the prediction of hydraulic conductivity of plastic soils.  

Chapter 3 introduces the methodology of hydraulic conductivity measurement of 

mature fine oil sand tailings (MFT). Geotechnical properties of MFT samples used in 

this study are presented. The experimental apparatuses, testing procedures and data 

analysis for the standard oedometer test, the falling head permeability test and Rowe 

cell test are described in detail. The challenges associated with the sample preparation, 

the test set up and execution, as well as limitations and possible sources of errors of the 

laboratory test methods are reported. 

Chapter 4 includes the analysis and discussions of experimental results obtained 

from three laboratory testing methods. A hydraulic conductivity database for oil sand 

tailings is established based on data from this study together with data published in the 

literature. This database is used to develop the regression models, which correlate the 

hydraulic conductivity with a wide range of void ratios for fine oil sand tailings. The 

regression models proposed in this study can be used in the prediction and analysis of 

the hydraulic conductivity for fine oil sand tailings. Selected empirical equations are 

evaluated for their suitability and performances in predicting the hydraulic conductivity 

for fine oil sand tailings.  

Chapter 5 presents a summary of the thesis, conclusions and a recommendation for 

future research. 

1.4 Original Contributions 

The original contributions of this study include: 
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• Measuring the hydraulic conductivity for MFT over a wide range of void 

ratios using three experimental devices 

• Establishing a hydraulic conductivity database for oil sand tailings 

• Developing data regression models for MFT and oil sand tailings 

• Evaluating the suitability and performance of previous empirical equations 

in terms of predicting hydraulic conductivity for fine oil sand tailings 
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CHAPTER 2  LITERATURE REVIEW 

2.1 Introduction 

Oil sands tailings are by-products of the bitumen extraction process used in mining 

operations. The tailings directly produced from oil sands processing are called whole 

tailings.  

The tailings slurry, which is discharged into a tailings pond for storage, contains 

approximately 40% solids. Upon deposition, the tailings segregate, coarse solids settle 

quickly, forming beaches. The remaining water, bitumen, and fines accumulate in the 

center of tailings pond. Fine tailings remain suspended in the water and form a stable 

suspension containing about 30 % solids and are known as mature fine tailings (Xu et. 

al 2008). Compression of mature fine tailings (MFT) is extremely slow and MFT 

remains in a fluid-like state for decades given the tailings’ low permeability 

(Jeeravipoolvarn 2010). The management of tailings largely depends on the 

consolidation behavior of MFT. Large volumes of MFT require multiple large 

containment ponds, which generates environmental issues and leads to MFT 

management challenges due to limited capacity of tailings pond. 

The hydraulic conductivity is one of the most important physical properties of 

geomaterials as it controls seepage and the rate of consolidation. In soil mechanics, the 

hydraulic conductivity is defined as a coefficient of proportionality of Darcy’s law, 

which links the discharge velocity with the hydraulic gradient. Darcy’s law can be 
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expressed with the following equation (Das 2013): 

 v = ki  (2.1) 

where v[L/T] discharge velocity, i is hydraulic gradient, and k[L/T] is hydraulic 

conductivity. Hence, the hydraulic conductivity can be measured through the volume 

rate of flow, q[L3/T], and cross-sectional area, A[L2/T], given by the following equation: 

 q = kiA  (2.2) 

It should be noted that hydraulic conductivity is a measure of the rate of flow for a 

particular fluid through a porous medium and its value varies as function of the fluid 

and the porous medium. Permeability, also termed intrinsic permeability, is a property 

of the medium itself and is not related to the fluid flowing through the fabric. The 

hydraulic conductivity and permeability can be related by the following equation 

(Adams 2011): 

 
K g

k



   (2.3) 

where k [L/T] is the hydraulic conductivity, K[L2] is the intrinsic permeability, ρ [M/L3] 

is the density of the fluid, g [L/T2] is the gravitational constant, and µ is the dynamic 

viscosity [M/LT] which reflects one of the fluid properties.  

Clear understanding of hydraulic conductivity and its relationship with void ratio 

are essential to the investigation of the MFT consolidation behavior and oil sand tailings 
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management. According to Terzaghi’s one-dimensional consolidation theory, the 

coefficient of consolidation, Cv [L
2T-1] can be related to the hydraulic conductivity, k 

[LT-1], by the following equation (Das 2013): 

 v

v w

k
C

m 
  (m2/s)  (2.4) 

where γw [9.8 kN/m3, ML-2T-2] is the unit weight of water, and mv (M-1LT2) is the 

coefficient of volume change. This theory was developed based on the assumptions of 

incompressible soil properties, i.e. a linear stress-strain relationship, a constant hydraulic 

conductivity, and infinitesimal strain. Hence the coefficient of consolidation, Cv, is 

assumed to be a constant during the consolidation process. 

However, Terzaghi one-dimensional consolidation theory is not applicable to soft 

fine-grained geomaterials, like MFT. The compressibility and hydraulic conductivity of 

MFT are highly non-linear. Significant settlements occur when it is subjected to small 

stress increments from continuous deposition (Ahmed 2013). Therefore, Cv cannot be 

considered as a constant and consolidation of MFT cannot be considered as a small 

strain problem, especially with high water content.  

More accurate methods for predicting the consolidation behavior of soft fine-

grained geomaterials are based on large-strain consolidation theory (or finite strain 

consolidation theory), which releases the restrictions and allows for non-linear material 

properties. Large strain consolidation theory can be presented in several forms, for 

example: (Guo 2017).   
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  (2.5) 

Where k [L/T] is the hydraulic conductivity, σ’ is the effective stress [ML-1T-2], γw is the 

unit weight of water, kN/m3, γs is the unit weight of soil solid, kN/m3 , and e is the void 

ratio. Obtaining the coefficient of consolidation, Cv, from Equation 2.5, requires an 

explicit relationship between the hydraulic conductivity and void ratio (k-e), as well as 

between the stress and strain (σ’-e), which is beyond the scope of this study. 

To date, studies related to the investigation and measurement of hydraulic 

conductivity over a wide range of void ratios (k-e relationship) for MFT have been very 

limited.  

In this chapter, a review of laboratory testing methods for the measurement of 

hydraulic conductivity is presented; particular attention is paid to the measurement 

methods for soft fine-grained geomaterials having high water content and generally 

present in the form of slurries. Pros and cons, as well as the suitability of these methods, 

are discussed. In Section 2.3, the available hydraulic conductivity data (k values) for oil 

sand tailings reported in the literature are summarized to constitute a hydraulic 

conductivity database. In Section 2.4, empirical equations, which were proposed to 

predict the hydraulic conductivity for plastic soils, are summarized and classified into 

two categories based on the form of the equations. These equations correlate the 

hydraulic conductivity with the void ratio and/or other properties of soil, such as 

Atterberg limits.  



9 
 

2.2 Laboratory Methods and Apparatuses of the Hydraulic Conductivity 

Measurement 

Many techniques and methods have been developed and reported in previous 

studies to measure the hydraulic conductivity of soils in the laboratory. In this section, 

existing experimental apparatuses and testing methods of the hydraulic conductivity 

measurement in the laboratory are summarized. For fine-grained soils with high-water 

content, conventional measurement techniques are inadequate or even not suitable for 

determining the hydraulic conductivity. Therefore, special attention is paid to 

experimental apparatuses and methods designed for soft fine-grained geomaterials that 

have a high compressibility and low permeability.  

The hydraulic conductivity of soils can be measured by direct or indirect methods. 

In sections 2.2.1 and 2.2.2, two types of methods are introduced, and a comparison 

between the direct and indirect methods is presented in Section 2.2.3. 

2.2.1 Direct Methods  

2.2.1.1 Constant Head Test  

The constant head test has been carried out in various apparatuses, such as the 

constant head permeameter, the oedometer cell, the slurry consolidometer, the large 

strain consolidation cell and the Rowe cell, to directly measure the hydraulic 

conductivity of geomaterials. In this section, these appartuses are introduced in detail. 

It should be noted that the test performed in constant head permeameter is a standarad 
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test followed by standard ASTM D2434, except which the test performed in other 

apparatuses mentioned above are non-standard tests. 

The principle of the constant head test performed in various apparatuses is the same, 

and the hydraulic conductivity can be calculated using the following equation: 

 kz =
QL

Aht
 (m/s) (2.6) 

where kz (m/s) is the hydraulic conductivity in the vertical direction, A is the soil sample 

cross-sectional area (m2), h (m) is the constant total head, t (s) is the measured time, Q 

(m3) is the total quantity of water collected over time t, and L(m) is the sample height.  

• Constant Head Permeameter  

A typical arrangement for performing the constant head test using the conventional 

constant head permeameter is shown in Figure 2.1. The arrangement is suitable for 

measuring the hydraulic conductivity of coarse grained soils with high permeability. A 

detailed description of the constant head test performed in this apparatus is given in the 

ASTM D2434 - Standard Test Method for Permeability of Granular Soils. For fine-

grained soils, the water tank is replaced by the Mariotte bottle, as shown in Figure 2.2, 

to apply the constant head during the test. The Mariotte bottle is designed to apply very 

small heads so it is most useful for soils with relatively low permeability (Olson et. al. 

1981). 

• Oedometer Cell 
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Some oedometer cells are equipped with the means to perform the constant head 

test while the sample is under load, as shown in Figure 2.3. The essential features of 

such oedometer cells are a bottom inlet, which can be connected to a standpipe; sealing 

rings to prevent water escaping around the specimen and containing ring; and an upper 

overflow outlet (Head 1982).  

The constant head test performed in such an oedometer cell is more suitable for 

soils with intermediate permeability, such as silts. However, this method cannot be used 

for soft fine-grained geomaterials with high initial water content because large 

deformations occur during the consolidation stage, so the small sample thickness is not 

adequate for consolidation. 

• Slurry Consolidometer  

Figure 2.4 shows the slurry consolidometer, which was developed in the 

Geotechnical Centre at the University of Alberta, to carry out large strain consolidation 

tests (Jeeravipoolvarn 2005). The slurry consolidometer is about 30 cm in height and 20 

cm in diameter, which allows large deformation during the consolidation and allows the 

constant head test to be directly performed at the end of each consolidation loading step. 

This apparatus is equipped with a clamping device, which consists of a horizontal steel 

bar (50 mm by 50 mm) fastened to two vertical frame rods, to prevent settlements caused 

by the applied hydraulic gradients when performing permeability tests on slurry-like 

soils (Suthaker 1995). 
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The constant head test performed in the slurry consolidometer has been adopted in 

previous studies by Suthaker (1995), Jeeravipoolvarn (2005) and Miller (2010) to 

measure the hydraulic conductivity of fine oil sand tailings. The advantage of this 

apparatus is the development of a top cap clamping system, which permits the 

permeability test to be conducted on slurry samples without further consolidation 

induced by seepage forces. However, the disadvantage is obvious. The slurry 

consolidometer is not equipped with the means of applying back pressure to the sample, 

which means it cannot ensure the sample being fully saturated, cannot give a rapid pore 

water pressure reponse, and cannot ensure that the primary consolidation phase is 

completed (Head 1986). 

• Large Strain Consolidation Cell 

Figure 2.5 (a) shows the large strain consolidation cell adopted by Qiu (2001). This 

apparatus was used to carry out the consolidation test and permeability test (the constant 

head test) for four tailings, i.e., copper mine tailings, gold mine tailings, coal wash plant 

tailings and oil sand composite/consolidated tailings (CT). According to Qiu, tailings 

samples taken from mine sites were unsaturated, and thus a special laboratory technique 

was adopted to saturate tailings samples. First, tailings samples were carefully placed 

into a de-airing cylinder, as shown in Figure 2.5 (b). Then the de-airing cylinder was 

placed on a vibrating table while a vacuum of 60 kPa was applied for at least 2 hours to 

draw off any gas entrapped in the specimen. To avoid entrapping air when a sample was 

placed in the large strain consolidation cell, a vacuum tube was used to connect the de-

airing cylinder and consolidation cell, as shown in Figure 2.5 (c). The sample was placed 
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into the large strain consolidation cell while suction (vacuum pressure) was applied to 

both the de-airing cylinder and the cell. 

The experimental arrangement, including the large strain consolidation cell, the de-

airing cylinder, and the vacuum tube, can improve the saturation degree of sample, but 

cannot apply a back pressure to the sample, similar to the slurry consolidometer. 

• Rowe Cell   

The Rowe cell, also known as the hydraulic consolidation cell, was developed by 

P. W. Rowe and his research group to overcome the disadvantages of the conventional 

oedometer apparatus when performing consolidation tests on low-permeability soils 

(Head 1986). This apparatus allows the constant head test to be directly conducted, 

either as an independent test or after the consolidation test on a sample of a known 

vertical effective stress. Rowe cells are available in three different nominal diameters: 

76mm, 150mm and 250 mm.  

A typical general arrangement of the apparatuses for a Rowe cell test is 

diagrammatically shown in Figure 2.6. In a Rowe cell, a sample is loaded hydraulically 

by water pressure acting on a convoluted flexible diaphragm, and this differs from the 

conventional oedometer test using a mechanical lever system. This hydraulic loading 

system is capable of testing large diameter samples, i.e, up to 250 mm in diameter, and 

allows large deformations during consolidation. Owing to the hydraulic loading system, 

the sample is less susceptible to vibration effects; in addition, the applied hydraulic 

pressure can be very low to as high as 1000 kPa, even with a large diameter (Head 1986). 
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The sample can be loaded either by applying a uniform pressure over its surface, i.e. the 

free strain test, or through a rigid plate which maintains the loaded surface plane, i.e. the 

equal strain test. More importantly, the Rowe cell has the ability to control drainage 

conditions. Both vertical and horizontal drainage conditions can be imposed on the 

sample. The Pore water pressure can be measured during consolidation at any time and 

with immediate response, and thus the primary consolidation can be monitored from the 

pore pressure readings. Rowe cells are equipped with the means of applying back 

pressure. An elevated back pressure can ensure a sample is fully saturated, rapid pore 

water pressure reponse, and completion of primary consolidation (Head 1986).  

The Rowe cell has been adopted in previous studies to measure  the hydraulic 

conductivity and compression behaviour of fine-grained geomaterials, including marine 

clays and other ultra soft soils (Bo 1998, 2003, 2010) 

2.2.1.2 Falling Head Test  

The falling head test has been carried out in the falling head permeameter as well 

as in the oedometer cell to directly measure the hydraulic conductivity of fine-grained 

geomaterials. In this section, these appartuses are introduced in detail. It should be noted 

that the test performed in falling head permeameter is a standard test followed by ASTM 

D5856, and the test performed in oedometer cell is an non-standard test.     

For measuring the hydraulic conductivity of soils with intermediate and low 

permeability, i.e. silt and clays, the falling head test is often used (Head 1982). The 
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principle of the falling head test performed in various apparatuses is basically the same, 

i.e. a soil sample is connected to a standpipe which provides both the head of water and 

the means of measuring the quantity of water flowing through the sample (Head 1982). 

Denoting the cross-sectional area of the standpipe by a (m2), sample length by L (m), 

sample cross-sectional area by A (m2), time duration by t (s), and h1 (m) and h2 (m) are 

initial and final hydraulic head differences, respectively, the vertical hydraulic 

conductivity k (m/s) can be determined using the following equation (Budhu 2007): 

 1

2

ln
haL

k
At h

 (m/s) (2.7) 

• Falling Head Permeameter 

Figure 2.7 shows a typical arrangement for performing the falling head test using 

the falling head permeameter. This arrangement is suitable for measuring the hydraulic 

conductivity of fine-grained soils. A detailed description of the falling head test 

performed in this apparatus is given in ASTM D5856 Standard Test Method for 

Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, 

Compaction-Mold Permeameter (ASTM D5856). 

In order to reduce testing time, the falling head test of fine-grained soils is often 

performed using high hydraulic gradients. However, high gradients induce large seepage 

forces that may consolidate soft and compressible samples, such as fine oil sand tailings, 

thereby reducing their hydraulic conductivity as the test proceeds and causing erroneous 

results. Therefore, when performing the test in a falling head permeameter, it is 
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important to apply an appropriate hydraulic gradient to the sample without causing 

significant consolidation, particularly for soft fine-grained samples with high water 

contents, and to avoid prolonged testing time. 

• Oedometer Cell 

The falling head test can be performed in the oedometer cell at various stages during 

a consolidation test after the completion of the primary consolidation. An oedometer cell 

arranged for the falling head test with an upward flow is shown in Figure 2.8, which is 

similar to the constant head test performed in the oedometer cell. The test is started by 

opening the pinch clip (shown in Figure 2.8) and running the clock when the level in the 

burette reaches the first desired level. The next step is to record the time taken to the 

level in the burette to fall to the second desired level. This step is repeated two or three 

times. The hydraulic conductivity can be calculated using Equation 2.2. 

2.2.1.3 Flow Pump Test  

Olsen first proposed the flow pump technique for measuring the hydraulic 

conductivity of fine-grained soils (Olsen 1966). The flow pump test is the opposite 

concept of the constant head test. Figure 2.9 shows a schematic diagram of a flow pump 

test, in which a flow pump is incorporated into a conventional triaxial test system to 

allow water to flow in or out from the base of a soil sample at a small and constant rate. 

According to Fernandez (1985), the flow pump test generates a constant flow rate 

through the sample and the induced head drop across the sample is used to calculate the 

hydraulic conductivity using Darcy's law. 
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The advantage of the flow pump test is the hydraulic conductivity can be obtained 

more rapidly at substantially smaller gradients (Olsen 1985). This advantage is more 

apparent when testing soft fine-grained geomaterials, where errors from high hydraulic 

gradients caused sample consolidation can be avoided or minimized. The disadvantage 

of this test is the high initial cost for equipment; whereas it may be offset by testing time 

saved in commercial laboratories (Aiban, 1989).   

2.2.2 Indirect Method 

The hydraulic conductivity of geomaterials can be measured either directly or 

indirectly in the laboratory. The indirect method refers to the hydraulic conductivity 

back-calculated from consolidation parameters, i.e. the coefficient of consolidation and 

the coefficient of volume change, based on Terzaghi's one-dimensional consolidation 

theory using Equation 2.4.  

The coefficient of consolidation, cv, and the coefficient of volume change, mv, are 

obtained from the standard oedometer test, which has been widely used in geotechnical 

laboratories as a basic laboratory test. The standard oedometer test is performed based 

on the standard test method for one-dimensional consolidation properties of soils using 

incremental loading (ASTM D2345). However, the test is not applicable for soft fine-

grained geomaterials that have high water content and generally are in the form of 

slurries. Two major problems can invalidate the hydraulic conductivity measurement for 

soft fine-grained geomaterials. The first is that large deformations may occur during 

consolidation, thus the small sample thickness is not adequate for consolidation. The 
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second problem is that such materials present non-elastic properties during the test, 

which violate the assumptions of Terzaghi’s theory and result in errors in the back-

calculation of the hydraulic conductivity.  

According to Olson and Daniel (1981), the standard oedometer test was developed 

for soil that is in a relatively solid phase with a shear strength no less than 2 kPa, which 

places limitations on the applicability of the test. The other limitation is that the 

oedometer cell is not equipped with the means to measure the excess pore water pressure, 

the dissipation of which controls the consolidation process; therefore, the approach to 

the completion of primary consolidation is based solely on the change of sample height 

(Gofar and Kassim 2006).  

2.2.3 Discussion and Conclusions 

In Section 2.2, direct and indirect methods for hydraulic conductivity measurement 

are introduced. Direct methods include the constant head test, the falling head test, and 

the flow pump test. The indirect method refers to the hydraulic conductivity back-

calculation from the consolidation parameters based on Terzaghi's one-dimensional 

consolidation theory. 

The constant head test and the falling head test are widely used in geotechnical 

laboratories owing to their simplicity and the availability of equipment at a reasonable 

cost (Aiban and Znidarcic 1989, Suthaker 1995). The constant head test can be 

performed in the constant head permeameter, the oedometer cell, the slurry 
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consolidometer, the large strain consolidation cell, and the Rowe cell. Comparing these 

apparatuses, the constant head permeameter and the oedometer cell are not applicable 

to conducting the constant head test on soft fine-grained geomaterials. The slurry 

consolidometer and the large strain consolidation cell, both of which were designed for 

mine tailings, allow large deformation during the consolidation and allow the constant 

head test to be directly conducted at the end of each consolidation loading step. However, 

these two apparatuses are not equipped with the means to apply the back pressure during 

the test. The Rowe cell is superior to other apparatuses not only because it can be used 

for soft fine-grained geomaterials, but also because it is capable of applying back 

pressure.  

The falling head test can be performed in the falling head permeameter and the 

oedometer cell. Comparing these two apparatuses, the falling head permeameter is 

commonly used in geotechnical laboratories to measure the hydraulic conductivity of 

fine-grained geomaterials. As mentioned previously, the oedometer cell is not suitable 

for carrying out permeability tests for soft fine-grained geomaterials, either the constant 

head test or the falling head test. 

The other direct method, i.e. the flow pump test, has rarely been used due to the 

complexity of equipment and complicated calculation process needed for determining 

hydraulic conductivity.  

The indirect method can be used for fine-grained geomaterials that obey the 

assumptions involved in Terzaghi's infinitesimal consolidation theory. However, this 
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method is unacceptable in measuring the hydraulic conductivity of geomaterials with 

high compressibility and low permeability when Terzaghi's consolidation theory is not 

valid. 

Based on the above discussions, it can be concluded that the constant head test 

performed in the Rowe cell is well suited for measuring the hydraulic conductivity of 

soft fine-grained geomaterials, such as mature fine oil sand tailings, over a wide range 

of void ratios. Thus, the Rowe cell is adopted in this study to perform the constant head 

test. In addition, the falling head test performed in a conventional falling head 

permeameter is also adopted in this study as another direct method to compare results 

obtained by using the Rowe cell and to determine the measurement range of hydraulic 

conductivity with this method. The standard oedometer test has been used in this study 

as an indirect method to determine the hydraulic conductivity of the mature fine tailings 

at relatively low water content and void ratio and to estimate the measurement range of 

hydraulic conductivity with this method. 

2.3 Database of the Hydraulic Conductivity of Oil Sand Tailings 

The available hydraulic conductivity data for oil sand tailings reported in the 

literature are summarized in this section to constitute a database. 

Suthaker (1995) investigated the consolidation behavior of fine oil sand tailings and 

the factors affecting this behavior. The slurry consolidometer, as shown in Figure 2.4, 

was adopted in this study to conduct the one-dimensional multi-step loading 
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consolidation test and the constant head test. The constant head test with an upward flow 

was carried out at the end of each consolidation increment. The permeant fluid used in 

the constant head test was tailings pond water. In the study, the hydraulic conductivity 

of fine oil sand tailings with three initial solids contents (20%,25%, and 30%) over the 

void ratio range from 1 to 8 was measured. The 20% and 25% initial solids content fine 

oil sand tailings consisted of approximately 2% fine sand, 43% silt and 55% clay, while 

the 30% initial solids content fine tailings had 5% sand, 49% silt, and 46% clay. The 

specific gravity of samples varied from 2.1 to 2.5. The author indicated that this variation 

is attributable to the variable amount of bitumen, which has a specific gravity of 1.03. 

The average unit weight of fine oil sand tailings was about 12 kN /m3. The liquid limit 

of tailings samples varied between 40% and 60% and the plasticity index varied between 

20% and 35%. Based on the Unified Soil Classification System (USCS), the fine tailings 

samples were classed as high plasticity clay (CH). The hydraulic conductivity data 

obtained from this study are plotted in Figure 2.10, which shows that the hydraulic 

conductivity decreased by about four orders of magnitude when void ratio decreased 

from 8 to 1. The author also suggested that the initial solids content did not affect the 

hydraulic conductivity of fine oil sand tailings. 

Qiu (2001) measured the hydraulic conductivity and other engineering properties 

for oil sand composite/consolidated tailings (CT) from Syncrude Canada Ltd. CT 

essentially is a mix of coarse sands and mature fine tailings, with a coagulant added to 

produce non-segregating tailings that can settle and consolidate quickly 

(Jeeravipoolvarn 2010). CT samples used in this study consisted of about 76% sand, 15% 



22 
 

silt, and 9% clay. Fines content for CT samples accounted for 24%. The specific gravity 

of CT was 2.6. Based on the USCS, CT samples is classed as non-plastic silty sand  

(SM). In this study, a large strain consolidation apparatus, as shown in Figure 2.5, was 

used to carry out the one-dimensional multi-step loading consolidation test and the 

constant head test. The hydraulic conductivity was directly measured at the end of each 

consolidation increment by applying a constant head difference across the sample to 

measure the upward flow through the sample. The results obtained from this study are 

presented in Figure 2.10. The hydraulic conductivity values range from 2.2 x 10-9 m/s to 

6.3 x 10-9 m/s for CT samples within the void ratios varying  between 0.47 and 1.14 

range, which is consistent with the results (2.5 to 8.5 x l0-9 m/s) presented by Liu et al. 

(1994).  

Jeeravipoolvarn (2010) measured the geotechnical properties of the cyclone 

overflow tailings (COF). After the extraction of bitumen, oil sands tailings are passed 

through cyclones, which produce coarse and fine tailing streams, known as COF. 

According to Jeeravipoolvarn (2010), COF is a source of new fines and one of the 

contributions to new MFT. The initial void ratio and water content of COF samples were 

5.66 and 223.6%, respectively. COF samples had 8% sand, 40% silt, and 52% clay. The 

fines content for COF samples accounted for 92%. The specific gravity of the COF was 

2.53. The liquid limit and plastic limit of samples were 50% and 21%, respectively. 

Based on USCS , COF samples should be classed as clay with high plasticity (CH). The 

experimental apparatus, the testing method and testing procedures used in this study 

were the same as those used in Suthaker’s study (1995). The hydraulic conductivity data 
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of COF over the range of void ratios from 0.8 to 4 are shown in Figure 2.10. 

Miller (2010) carried out a comprehensive study to evaluate the properties and 

processes influencing the rate and magnitude of volume decrease for fine oil sand 

tailings resulting from different bitumen extraction processes (caustic versus non-

caustic). In this study, the fine content of tailings samples ranged from 96% to 100%. 

The specific gravity of samples varied from 2.48 to 2.55. The liquid limit of samples 

varied between 50% and 60% and plasticity limit varied between 21% and 31%. Based 

on USCS , fine oil sand tailings samples used in this study should be classed as clay 

with high plasticity (CH). The experimental apparatus, the testing method and testing 

procedures used in this study were the same as those used in Suthaker’s study (1995) 

and Jeeravipoolvarn’s study (2010). The hydraulic conductivity data obtained from this 

study are presented in Figure 2.10, where it can be found that the hydraulic conductivity 

decreased by five orders of magnitude when the void ratio decreased from 10 to 1. 

Owolagba (2013) investigated the dewatering behavior of centrifuged oil sand fine 

tailings. After centrifugation, the water content of centrifuged fine oil sand tailings (CFT) 

decreased to 63wt% from 240wt%. The specific gravity of the CFT was 2.39. CFT 

samples contained approximately 95% material finer than 0.075 mm and 52% material 

finer than 0.002 mm. The liquid limit and plastic limit of CFT samples were 41% and 

20%, respectively. Based on USCS , CFT samples used in this study should be classed 

as clay with low plasticity (CL). In this study, a fixed ring consolidometer testing system, 

as shown in Figure 2.8, was used to perform the one-dimensional consolidation test and 
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the falling head test. The one dimensional consolidation test was performed in 

accordance with the ASTM Standard D2435-11.The hydraulic conductivity was 

measured after each load increment using the falling head method along with an upward 

flow through the sample. The hydraulic conductivity data of centrifuged fine oil sand 

tailings over the range of void ratios from 0.5 to 1.5 are shown in Figure 2.10. 

The available hydraulic conductivity data published in previous studies are 

summarized in this section and presented in Figure 2.15. Since the hydraulic 

conductivity controls the rate of consolidation and there is less hydraulic conductivity 

data available in the literature, it is necessary to obtain more hydraulic conductivity data 

for oil sand tailings in future works. 

2.4 Predictive Models  

The hydraulic conductivity of geomaterials is one of the most significant and 

widely used geotechnical parameters in many applications (Mbonimpa 2002). Due to 

the excessive amount of time, and the sophisticated experimental techniques and 

apparatus required for the measurement of hydraulic conductivity of fine-grained soil, 

especially for soft fine-grained geomaterials with high water content, empirical 

equations have been developed to predict and estimate the hydraulic conductivity of 

fine-grained soils from properties such as Atterberg limits and void ratio. In this section, 

a review of empirical equations proposed in the literature is presented. These equations 

are classified into two categories based on equation formats and geotechnical parameters.  
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2.4.1 Class 1: Based on Kozeny-Carman Equation and its Extensions 

• Kozeny–Carman equation (1937) 

A well-known relationship between the hydraulic conductivity and the properties 

of pores of geomaterials was proposed by Kozeny and later modified by Carman. The 

resulting equation is known as the Kozeny–Carman (KC) equation. This equation was 

developed after considering a porous material as an assembly of capillary tubes. It 

yielded the hydraulic conductivity as a function of the porosity, the specific surface of 

solids, and the parameter C (Chapuis 2003). 

The following equation was one of the forms of the KC equation, (Chapuis 2012) 

 
3
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 (2.8) 

where C is a constant which depends on the porous space geometry, g is the gravitational 

constant (m/s2), µw is the dynamic viscosity of water (kg/(s·m)), ρw is the density of 

water (kg/m3), Gs is the specific gravity, S (m2/kg) is the specific surface of solids, and 

e is the void ratio. According to Chapuis (2012), the KC equation is not convenient to 

use because the determination of specific surface (S) of geomaterials is difficult and not 

commonly measured in geotechnical laboratories. 

• Chapuis (2003)  

Chapuis (2003) developed the following equation that can be used for any soil, 

either plastic soil or non-plastic soil, based on the well- known KC equation,  
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where ksat (m/s) is the saturated hydraulic conductivity, Gs is the specific gravity, and S 

(m2/kg) is the specific surface. Chapuis (2012) reported that Equation 2.5 predicts a ksat 

value between one-third and three times the ksat value obtained with a high-quality 

laboratory test performed on fully saturated samples.  

In order to apply Equation 2.5, it is necessary to measure the specific surface of 

geomaterials in a laboratory or estimate it through experimental correlations. The 

laboratory methods for measuring the specific surfaces of fine-grained soils involve 

adsorption of either a gas or a polar liquid but are not frequently used in geotechnical 

laboratories (Chapuis 2012). Several experimental correlations have been proposed 

between the specific surface of geomaterials and basic soil properties, such as 

consistency limits (Muhunthan 1991). Four frequently used methods for estimating the 

specific surface of plastic soils are summarized as below. 

Locat (1984) indicated that the use of quantitative mineralogy and specific surface 

area can interpret index properties of clay soils. In this study, the specific surface area 

of clay soils from nine sites in Eastern Canada was measured using the methylene blue 

method. Afterward, the measured specific surface area for all samples was related to the 

plasticity index as shown in Figure 2.11. The coefficient of determination (r2) for this 

correlation is 0.85. The author suggested that the plasticity index relates well with the 

specific surface for clay soils. (Locat 1984) 
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Mbonimpa (2002) established the following simple relationship between the 

specific surface and liquid limit by using the data published by Locat et al. (1984), 

Sridharan et al. (1986), Muhunthan (1991), Sitharam et al. (1995), and Tanaka and Locat 

(1999), 

 
1.450.20 LS w  (2.10) 

where S (m2/g) is specific surface, wL is liquid limit in percentage. This equation is valid 

for materials with the specific surface within the range of 21 m2/g to 433 m2/ g, and their 

liquid limit within the range of 25% to 127%.  

Chapuis (2003) reported that the specific surfaces of most clay soils can be assessed 

from their liquid limit. The author proposed a linear correlation between S-1 and wL
-1

 

using data from plastic soils published by De Bruyn et al. (1957), Farrar and Coleman 

(1967), Locat et al. (1984), Sridharan et al. (1986, 1988), and Muhunthan (1991). 

 
1 1.3513

0.0089
w LS

   (2.11) 

where S (m2/g) is specific surface and wL (%) is liquid limit. The r2 of this equation is 

0.88. Chapuis (2012) pointed out that Equation 2.7 predicts an S value usually within 

±25 % of the measured value when wL
-1> 0.0167, i.e. wL < 60 %; the predictions of this 

equation are less accurate for clays with wL >60 %, especially those contains trace 

bentonite and organic clays. The equation is invalid for high plasticity clay with 

wL>110 %. 
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Dolinar (2009) proposed that the specific surface of non-swelling clay soil can be 

expressed in the following equations from the Atterberg limits or the plasticity index, 

and the weight portion of clay minerals in the soil, 

 S= (wL - 31.91p) / 0.81 (2.12) 

 S= (wp - 23.1p) / 0.27 (2.13) 

 S= (IP - 8.74p) / 0.54 (2.14) 

where S (m2/g) is specific surface, wL (%), wp (%) and IP (%) are the liquid limit, plastic 

limit and plasticity index, respectively. The equations (Equations 2.8, 2.9 and 2.10) are 

only valid for inorganic soils at an ambient temperature of 20 °C. 

• Mbonimpa (2002) 

Mbonimpa (2002) proposed a set of simple equations, based on pedologic material 

properties, to predict the hydraulic conductivity for granular and plastic soils., as an 

extension of the KC equation. The author suggested that the fundamental equation for 

hydraulic conductivity, k, can be formulated by combining the different influence factors 

as follows: 

 k= ff fvfs  (2.15) 

where ff (L
-1T-1) represents the function of pore fluid properties, fv (L

3L-3) represents the 

function of the void space, and fs (L
2) represents the function of the solid grain surface 

characteristics. Then, using the experimental results taken from his study and from the 
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literature, the author proposed the following pedotransfer functions that can be used for 

quickly estimating k value for plastic soils, 

 𝑘𝑠𝑎𝑡 = 𝐶𝑃
𝛾𝑤

𝜇𝑤

𝑒3+𝑥

1+𝑒

1

𝜌𝑠
2𝑤𝐿

2𝜒  (2.16) 

where ksat (cm/s) is saturated hydraulic conductivity, CP (g2/m4) is a constant and equal 

to 5.6 for plastic soils, γw (kN/m3) is the unit weight of water, μw (kg/(s·m) is the dynamic 

viscosity, χ is an empirical material parameter (1.5), ρs (kg/m3) is density of solid grain, 

wL (%) is the liquid limit, and the parameter x is defined by 

 𝑥 = 7.7𝑤𝐿
−0.15 − 3 (2.17) 

Equation 2.12 is an extension of the KC equation and does not require the specific 

surface of soils, which means it equation is more convenient to use than the KC equation 

and the equation proposed by Chapuis (2003). Thus, Equation 2.12 will be used to assess 

its suitability and relative performances in terms of predicting the hydraulic conductivity 

for fine oil sand tailings in this study.  

2.4.2 Class 2: Based on Atterberg Limits and Index Properties of 

Geomaterials 

It has long been recognized that the compressibility and hydraulic conductivity of 

fine-grained soils, especially for soils that are deposited as slurries, are closely related 

to Atterberg limits (Carrier 1984, Morris et al. 2000). Because Atterberg limits can be 

determined rapidly using basic geotechnical laboratory equipment and small quantities 
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of samples, it would be very convenient to use Atterberg limits to predict the hydraulic 

conductivity of geomaterials. In this section, empirical equations based on Atterberg 

limits used to predict the hydraulic conductivity for fine-grained soils are summarized.  

• Nishida (1969) 

Nishida (1969) indicated that the hydraulic conductivity of clay can be 

approximately estimated from its void ratio and plasticity index. In this study, the author 

started from the following linear relationship, which was formed based on data from 

experiments， 

 10loge k    (2.18) 

where α and ß are empirical constants. Based on experimental results carried out in this 

study, the author found that the value of α is nearly equal to 10 times the value of ß, and 

the coefficient ß has a linear relationship with the plasticity index, as shown below, 

 =0.01( )PI   (2.19) 

where IP (%) is the plastic index. γ is a constant depending on the kind of clay, which 

takes the value of 0.3 for an oven-dried clay and 0.05 for a fine-grained soil. Then, the 

following equation was proposed: 

 e = (0.01 𝐼𝑃 + 0.05)(10 + log 𝑘𝑠𝑎𝑡) (2.20) 

where ksat (cm/s) is the saturated hydraulic conductivity and e is the void ratio.  
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• Samarasinghe (1982) and Sridharan and Nagaraj (2005) 

Samarasinghe (1982) proposed the following equation to predict the hydraulic 

conductivity of clay soils.  

 𝑘𝑠𝑎𝑡 = 𝐶
𝑒𝑥

1+𝑒
 (2.21) 

where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, C (m/s) and x 

are permeability parameters. According to Sridharan and Nagaraj (2005), x is about 5 

for clay and C can be calculated using the plasticity index, IP (%). 

 C = 0.00104𝐼𝑃
−5.2  (2.22) 

However, Samarasinghe (1982) stated that for large void ratio variations, no single 

hydraulic conductivity -void ratio relationship is valid for all soils. 

• Carrier (1984)  

Carrier (1984) measured the hydraulic conductivity using various test methods for 

a total of 61 samples, of which 22 are phosphatic, 13 are dredged materials, and 26 are 

remoulded natural clays. Then, the author proposed the following equation to predict 

the hydraulic conductivity of remoulded clays.  

 𝑘𝑠𝑎𝑡 =
0.0174𝐼𝑃

−4.29

(1+𝑒)
[𝑒 − 0.027(𝑤𝑃 − 0.242𝐼𝑃)]  (2.23) 

where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, wP (%) i the 

plastic limit, and IP (%) is the plasticity index.  



32 
 

• Nagaraj (1993, 1994) and Prakash (2002)   

Nagaraj (1991) reported that all clays have almost the same hydraulic conductivity 

value at their limit liquid. Nagaraj (1993) generalized the prediction of hydraulic 

conductivity in terms of the void ratio at the liquid limit and proposed the following 

equation: 

 
𝑒

𝑒𝐿
= 2.38 + 0.233 log (𝑘𝑠𝑎𝑡) (2.24) 

where e/eL is defined as the generalized state parameter, e is the void ratio, eL is the void 

ratio at liquid limit, and ksat (m/s) is the saturated hydraulic conductivity.  

Nagaraj (1994) proposed an updated model (Equation 2.21) to relate the 

generalized state parameter, e/eL. The updated model is applicable for normally 

consolidated soil as well as overconsolidated soils, 

 
𝑒

𝑒𝐿
= 2.162 + 0.195log (𝑘𝑠𝑎𝑡) (2.25) 

However, Stepkowsa (1996) pointed out that the equations proposed by Nagaraj, i.e. 

Equations 2.20 and 2.21, are not applicable to sludges materials, and explained the 

reason being the difference in their microstructures. 

Prakash (2002) proposed an equation similar to Equations 2.20 and 2.21, 

 
𝑒

𝑒𝐿
= 2.23 + 0.204 log (𝐾𝑠𝑎𝑡) (2.26) 

where e/eL is defined as the generalized state parameter, e is the void ratio, eL is the void 
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ratio at liquid limit, and ksat (m/s) is the saturated hydraulic conductivity. 

Equations 2.20, 2.21 and 2.22 imply that at the liquid limit, i.e. e/eL=1, the ksat value 

takes a constant value whatever the clay. 

• Suthaker (1995) 

Suthaker (1995) carried out large strain consolidation tests (Jeeravipoolvarn 2005) 

on fine oil sand tailing using the slurry consolidometer, as introduced in section 2.2.1. 

This test allows large deformation during the consolidation and allows the hydraulic 

condutivity of fine oil sand tailings to be directly measured at the end of each 

consolidation loading step. Based on the experimental results, the author proposed the 

following equation to describe the relationship between the hydraulic conductivity and 

void ratio for fine oil sand tailings. 

 9 4.4686.16 10k e    (2.27) 

where k (cm/s) is hydraulic conductivity and e is the void ratio. 

• Sivappulaiah (2000) 

Sivappulaiah (2000) carried out one-dimensional consolidation tests on bentonite -

sand mixtures to measure the hydraulic conductivity using Terzaghi’s consolidation 

theory. Then, based on experimental results, the author proposed four methods for 

predicting the hydraulic conductivity from void ratio and liquid limits. 

Method 1: Equation 2.24 can be used to predict the value of hydraulic conductivity 

at liquid limits greater than 50%. 
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0.846

satlog (53.06 ) 11.8Lk e w    (2.28) 

where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, and wL (%) is 

the liquid limit. The r2 of this equation is 0.71. 

Method 2: Equation 2.25 is valid for soils with a liquid limit greater than 50%. The 

r2 of this equation is 0.81. 

 log(𝑘𝑠𝑎𝑡) =
𝑒−0.0535𝑤𝐿−5.286

0.0063𝑤𝐿+0.2516
 (2.29) 

where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, and wL (%) is 

the liquid limit.  

Method 3: Equation 2.26 is similar to Equations 2.20, 2.21 and 2.22, in which the 

generalized state parameter, e/eL, relates to log k. Equation 2.25 is valid for soils with 

liquid limits ranging from 50% to 100%.  

 
𝑒

𝑒𝐿
= 1.16 + 0.242log (𝑘𝑠𝑎𝑡) (2.30) 

where ksat (m/s) is the saturated hydraulic conductivity, and e is the void ratio. The 

r2 of this equation is 0.722. 

Method 4: This method relates loge/eL to logk.  

  10 10log 0.237log 0.29
L

e
k

e

 
  

 
  (2.31) 
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where k (m/s) is the hydraulic conductivity, and e is the void ratio. The r2 of this 

equation is 0.74. The author suggested that Method 2 is preferred compared to the other 

three methods because it gives a higher correlation coefficient. 

Morris et al. (2000, 2003)  

Morris et al. (2000) proposed Equation 2.28 based on the index properties of mine 

tailings to estimate the hydraulic conductivity. Equation 2.28 was developed based on 

data from New South Wales and Queensland coal tailings, Western Australian bauxite 

tailings, and Florida phosphate tailings. These data were obtained through a variety of 

test methods and consist mostly of laboratory data, and field data for bauxite tailings. 

 
𝑒

𝑒𝐿
= 29.80[𝑘𝑠𝑎𝑡(1 + 𝑒)]0.177 − 0.09527 (2.32) 

where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, and eL is 

the void ratio at the liquid limit. The r2 of this equation is 0.8. 

Morris et al. (2003) proposed a new correlation (Equation 2.29) for fine-grained 

dredged materials based on the liquid limit alone. Data representing 18 American and 

10 Australian dredged materials were used in the study to develop Equation 2.29. 

According to Morris et al. (2003), the new correlation is both simpler and statistically 

stronger than comparable earlier correlations. 

 
𝑒

𝑒𝐿
= 12.55[𝑘𝑠𝑎𝑡(1 + 𝑒)]0.109 − 0.372  (2.33) 
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where ksat (m/s) is the saturated hydraulic conductivity, e is the void ratio, and eL is the 

void ratio at the liquid limit. The corresponding r2 is 0.874. The authors also pointed out 

that sandy (SC or SM) materials do not conform to Equation 2.29, and whether materials 

with high organic contents conform to this equation is uncertain. 

• Bo (2003)  

Bo (2003) conducted one-step loading and step-loading compression tests for ultra-

soft soil using a Rowe cell to investigate the compression behavior in the ultra-soft stage. 

Based on experimental results, the author established a correlation between the 

hydraulic conductivity and void ratio under vertical and horizontal drainage conditions. 

 
8.291

exp( )
0.3155

e
k


  (2.34) 

where k (m/s) is the hydraulic conductivity, e is the void ratio. 

• Somogyi (1979) and Berilgen (2006) 

Somogyi (1979) suggested that the variation of hydraulic conductivity during one-

dimensional compression can be described in the following form: 

  
Dk Ce  (2.35) 

where k (m/s) is the hydraulic conductivity, e is the void ratio, and C (m/s) and D are 

empirical coefficients.  
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Berilgen (2006) carried out seepage induced consolidation tests on clays in a slurry 

consistency. The data obtained from this study, together with information already in the 

literature, were used to investigate relationships between index properties and hydraulic 

conductivity. The author suggested that the coefficients C and D are correlated with the 

plasticity index and the liquidity index in the following forms: 

 C = exp[−5.51 − 4 ln(𝐼𝑃)] (2.36) 

 D = 7.52exp (−0.25𝐼𝐿) (2.37) 

where IP (%) is plasticity index and IL (%) is liquidity index.  

• Dolinar (2009) 

Dolinar (2009) started from the power equation (Equation 2.31) proposed by 

Somogyi (1979), and pointed out that C and D are soil-dependent parameters, which 

reflect the tortuosity of the flow path and the cross-sectional characteristics of the flow 

conduit, depending on the shape and the size of the particles.  

In this study, the hydraulic conductivity of non-expansive clays was measured using 

the falling-head test in an oedometer consolidation cell. Then, the following equations 

were proposed: 

 
6 3.03C=4.08 10 SA   (2.38) 

 
0.2342.30 SD A  (2.39) 
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0.2346 3.03 2.304.08 10 e S

Sk A    (2.40) 

where AS (m2/g) is the specific surface. Combining Equation 2.36 with Equation 2.10, 

the following equation is proposed to predict the hydraulic conductivity of fine-grained 

soils containing non-swelling clay minerals, 

 𝑘𝑠𝑎𝑡 =
6.31∙10−7

(𝐼𝑃−8.74𝑝)3.03
𝑒2.66(𝐼𝑃−8.74𝑝)

0.234

 (2.41) 

where ksat (m/s) is the hydraulic conductivity, e is the void ratio, IP (%) is plasticity index, 

and p is the portion of clay minerals (0 ≤ p ≤ 1).  

2.5 Summary  

In this chapter, direct and indirect methods, as well as experimental apparatuses 

used for measuring the hydraulic conductivity of geomaterials are reviewed in detail. It 

is concluded that the constant head test performed in the Rowe cell is well suited for 

measuring the hydraulic conductivity of soft fine-grained geomaterials over a wide 

range of void ratios, hence it is adopted in this study to measure the hydraulic 

conductivity of MFT. A hydraulic conductivity database of oil sand tailings is 

established, which provides useful information for future studies in terms of the 

investigation of consolidation behaviors of oil sand tailings. Empirical equations 

developed in the literature to predict the hydraulic conductivity of fine-grained soils are 

summarized. These equations are classified into two categories, i.e. Class 1, Kozeny-

Carman Equation and its Extensions; and Class 2, Equations based on Atterberg Limit 

Properties. 
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Figure 2. 1 Constant head test in the constant head permeameter               

with downward flow (Head 1982) 

 

 

Figure 2. 2 Mariotte bottle (Olson et. al. 1981) 
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Figure 2. 3 Constant head test in oedometer cell (modified from Head 1982) 

 

 

Figure 2. 4 Slurry consolidometer (Suthaker 1995) 
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(a) 

 

(b) 
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 (c) 

 Figure 2. 5 (a) The large strain consolidation apparatus (b) The de-airing cylinder  

(c) The tailings placement technique. (Qiu 2001) 
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Figure 2. 6 The schematic diagram of a typical Rowe cell (modified form Head 1986) 

 

 

Figure 2. 7 Falling Head Permeameter (Das, 2013)  
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Figure 2. 8 Falling head test in oedometer consolidation cell (Owolagba 2013) 

 

Figure 2. 9 Flow pump test (Fernandez, 1991) 
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Figure 2. 10 Hydraulic conductivity database of oil sand tailings 

 

 

Figure 2. 11 Specific surface versus plasticity index for clay soils (Locat 1984) 
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CHAPTER 3  METHODOLOGY OF HYDRAULIC 

CONDUCTIVITY MEASUREMENT OF FINE OIL SAND 

TAILINGS 

3.1 Introduction 

Establishing the relationship between a relatively large range of void ratios and 

hydraulic conductivity for fine oil sand tailings is one of the objectives of this study. As 

discussed in Chapter 2, the hydraulic conductivity of soils can be determined either 

indirectly and measured directly in the laboratory (Suthaker 1995). However, the 

characteristics of the fine oil sand tailings posts restrictions on the test methods that 

could be chosen. The measurement of hydraulic conductivity for fine oil sand tailings 

and other soft fine-grained geomaterials, which have high water content and generally 

in the form of slurries, is particularly challenging because these geomaterials have a 

large void ratio, high compressibility, low permeability, which result in nonlinear and 

lengthy consolidation.  

The oedometer test, which is the standard test for measuring the consolidation 

characteristics of natural soils, was adopted in this study as an indirect method to 

estimate the hydraulic conductivity of fine oil sand tailings at relatively low water 

content and void ratio. As discussed in Chapter 2, direct measurement methods perform 

better than indirect methods for fine grained soils, particularly on soils with water 

contents above the liquid limits. Two direct measurement methods were adopted in this 

study, i.e., the falling head test and the Rowe cell test. The falling head test has been 

widely used in geotechnical laboratories for direct measurement of the hydraulic 
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conductivity of fine grained soils owing to its simplicity and availability of equipment 

at a reasonable cost (Aiban and Znidarcic 1989, Suthaker 1995). This test was used to 

measure the hydraulic conductivity of fine oil sand tailings at relatively high water 

content and void ratio. The Rowe cell has many advantages, as discussed in Chapter 2. 

It allows large deformations in the consolidation stage and allows the hydraulic 

conductivity measurement of the sample at the end of primary consolidation of each 

loading increment. The results obtained from the Rowe cell test are used to compare 

with results obtained from the oedometer test and falling head test.   

In this chapter, the characterization of fine oil sand tailings used in this study is 

presented. Then three laboratory test methods of measuring the hydraulic conductivity 

of mature fine oil sand tailings are described in detail, including the experimental 

apparatus, testing procedures, and data analysis methods of the test results. The 

challenges associated with the sample preparation, the test set up and execution; as well 

as limitations and possible sources of errors are discussed at the end of each laboratory 

test method section.  

3.2 Properties of fine oil sand tailings   

The samples used in this study are the mature fine oil sand tailings (MFT) 

recovered from the tailings pond in Fort McMurray, Alberta, Canada, courtesy of 

Syncrude Canada Ltd. and Imperial Oil Canada. The properties of mature fine tailings 

are listed in Table 3.1. The specific gravity (Gs) is 2.51, and the liquid limit and plastic 

limit of mature fine tailings (MFT) are 51.6% and 29.1%, respectively. The plastic 

index, considered a measure of plasticity of geomaterials, is 22.5. The organic matter, 
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which is mainly attributed to residual bitumen in MFT, is 14.7wt%. Based on the 

Unified Soil Classification System (USCS), the mature fine tailings is classified as a 

silt with high plasticity (MH). The mature fine oil sand tailings have high water contents 

and large void ratios in tailings ponds. The natural water content is 171.3% when the 

mature fine tailings (MFT) samples were received (Guo 2012). 

3.3 Standard Oedometer Test 

The oedometer test, also known as the one-dimensional consolidation test, is used 

to determine the consolidation parameters for soils. The hydraulic conductivity of soils 

can also be derived from the test results. In the standard oedometer test (ASTM D2435), 

the soil sample is confined laterally and drained vertically while it is subjected to a 

sequence of incremental vertical loads; and each load increment is maintained until the 

excess pore water pressure is essentially dissipated. 

Two standard oedometer tests (Oedo-1and Oedo-2) were carried out, and the initial 

water content and void ratio of both test samples were approximately 65% and 1.6, 

respectively. The next sections introduce the experimental apparatus used in the tests, 

the testing procedures, and data analysis methods for the standard oedometer test. 

3.3.1 Experimental Apparatus 

The consolidation test unit, consisting of a fixed ring consolidometer and a loading 

device, was used in this test. The test sample was confined in a stainless-steel 

consolidation ring of 15.2 mm in height and 49.7 mm in diameter. A linear displacement 

transducer mounted to the arm on the support post of the loading frame, as shown in 

Figure 3.1, was used to measure the deformation of the test sample during the 
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consolidation process. The linear displacement transducer and the readout unit were 

manufactured from Schaevitz Equipment LTD. 

3.3.2 Testing Procedures 

The standard oedometer tests were performed according to ASTM D2435-11, the 

standard test method for one-dimensional consolidation properties of soils using 

incremental loading (ASTM D2345). The test samples were first preconsolidated in the 

permeameter chamber by applying various loads on the sample and opening the 

drainage port at the bottom rim of the permeameter, as shown in Figure 3.2, in order to 

reach a lower water content. The preconsolidation pressure was less than the first 

loading increment in the subsequence oedometer test. The test sample was 

preconsolidated in the permeameter until it could sustain at least 2 kPa axial pressure. 

After completing preconsolidation, the sample was trimmed to the consolidation ring. 

It should be noted that the maximum water content of mature fine tailings sample used 

in the oedometer test is approximately 65%, which was ascertained by trial. At water 

contents higher than 65%, corresponding to a void ratio of 1.6, the oedometer test may 

not be suitable for the hydraulic conductivity measurement because the too soft sample 

can not be properly trimmed to a consolidation ring. In addition, very large nonlinear 

deformation can occur during consolidation for a soft sample, which results in errors in 

the back-calculation based on Terzaghi’s one dimensional consolidation theory.  

A standard incremental load was applied to two standard oedometer tests (Oedo-

1and Oedo-2) in the following sequence: 5kPa, 10kPa, 25 kPa, 50 kPa, 100 kPa, 200 

kPa and 400 kPa. The displacement readout was recorded and collected at 16 time 
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intervals: 6s, 15s, 30s, 1min, 2min, 4min, 8min, 15min, 30min, 1h, 2h, 4h, 6h, 24h, 48 

and 72h. The sample deflection versus time was recorded during the test to monitor the 

progress of primary consolidation and to decide the time to apply to the next load 

increment. For MFT samples used in oedometer tests, the loading increment of 72 hours 

was proved to be reasonable.  

3.3.3 Data Analysis 

To back calculate the hydraulic conductivity from consolidation parameters, the 

coefficient of consolidation and the coefficient of volume change are assumed constant 

over each loading increment, and using the following equation that is derived from 

Terzaghi's one-dimensional consolidation theory (Budhu 2008),  

 z w v vk c m
 (3.1) 

where, kz (L/T) is the hydraulic conductivity in the vertical direction, γw (M/T2L3) is the 

unit weight of water (9.8 kN/m3), Cv (L
2/T) is the coefficient of consolidation, which is 

determined from two commonly used curve fitting methods, i.e. Cassagrande’s 

logarithmic time method and Taylor’s square root time method (Gofar and Kassim 

2006), and mv (LT2/M) is the coefficient of volume change or modulus of volume 

compressibility. After obtaining the values Cv, and mv, the values of γw, Cv, and mv were 

substituted to Equation 3.1. The hydraulic conductivity values of mature fine tailings 

were obtained, and then the relationship between the hydraulic conductivity and void 

ratio for the mature fine oil sand tailings was established. 

3.3.4 Discussion 

The standard oedometer test, as a basic laboratory test, has been widely used in 
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geotechnical laboratories. However, based on the standard ASTM-D2435, the 

oedometer test was not applicable for the slurry-like soil such as the mature fine oil 

sand tailings with high water content, because of its large void ratio and high 

compressibility during self-consolidation stages (Proskin et al. 2010). The standard 

oedometer test was developed for the soil that is in a relatively solid phase with a shear 

strength of no less than 2 kPa (Olson and Daniel 1981). The other limitation is that the 

oedometer used in this study cannot measure the excess pore water pressure, therefore, 

the completion of primary consolidation is based solely on the change of sample height 

(Gofar and Kassim 2006).  

In addition, the maximum initial water content of the MFT sample that can be used 

in the standard oedometer test is approximately 65%, which was estimated by trials, 

corresponding to a void ratio of 1.6. As discussed previously, at water contents higher 

than 65%, two major difficulties can invalidate the oedometer test for determining the 

hydraulic conductivity. For samples with higher void ratios, other measurement 

methods must be adopted.  

3.4 Falling Head Test 

The falling head permeability test, also known as the falling head test, is one of the 

most commonly used laboratory tests for the direct measurement of hydraulic 

conductivity (ASTM D5856). The falling head test is usually used for fine-grained soils 

with intermediate and low permeability. The mature fine tailings used in this study fits 

in this category. Another method, i.e. The constant head test (ASTM D5856) is used for 

coarse grained soils with high permeability. These two methods are widely used in 
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geotechnical laboratories owing to simplicity and availability of equipment at a 

reasonable cost (Aiban and Znidarcic 1989, Suthaker 1995). 

The falling head tests with the downward flow and constant tail water elevation 

were carried out in this study on MFT samples of a wide range of void ratios, from 

approximately 1.5 to 7.0. A detailed description of the falling head test is given in 

ASTM D5856 Standard Test Method for Measurement of Hydraulic Conductivity of 

Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter (ASTM D5856). 

3.4.1 Experimental Apparatus 

A rigid wall permeameter from Hoskin Scientific LTD. and an open standpipe fitted 

with a meter stick were used in this test. The permeameter chamber with 150 mm in 

height and 76.3 mm in inner diameter was used to place the sample. This permeameter 

allows for observation of the sample height from the transparent plexiglass wall. Water 

flowing through MFT samples from the standpipe connected to the influent port at the 

top plate of the permeameter and then to the funnel which was connected to the drainage 

port at the bottom rim of the permeameter, as the schematic diagram shown in Figure 

3.3. This arrangement allows the downward hydraulic gradient to be applied to the test 

sample. The standpipe and funnel were connected to the permeameter both by rubber 

tubes. The funnel was clamped to the meter stick and used to maintain a constant 

tailwater level. The realistic view of the arrangement of the falling head test with the 

downward flow is shown in Figure 3.4. 

3.4.2 Testing Procedures 

The falling head tests were performed according to ASTM D5856 Standard Test 
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Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-

Wall, Compaction-Mold Permeameter, Method B - Falling head, constant tailwater 

elevation (ASTM D5856). The sample with the natural water content of 171.3% was 

first preconsolidated in the permeameter chamber to reach a predetermined water 

content for the falling head tests by applying incremental vertical loads on the top of 

the sample and opening the drainage port of the permeameter, as shown in Figure 3.5. 

Another method of sample preparation was that the sample was first mixed with de-

aired water and curing for 24 hours. The sample height was measured and recorded 

during consolidation. The sample height versus elapsed time was recorded and was 

plotted against log time, as shown in Figure 3.6. This step allows the falling head test 

to be conducted under a stable void ratio of the sample.  

In the falling head test, the following values were recorded: the initial and final 

heads, denoted by h1 and h2, respectively (shown in Figure 3.3); the time t 

corresponding to h1 to h2; and the temperature, T, of the tail water in the funnel. The 

height of the sample was measured and recorded at the start and end of each permeation 

trial. Four or five permeation trials were conducted consecutively to obtain at least four 

values of hydraulic conductivity in one falling head test. At the end of the test, the 

permeameter was dismantled and the final water content of the test sample was 

determined.  

3.4.3 Data Analysis 

The hydraulic conductivity is calculated from the falling head test by using the 

following equation (Holtz and Kovacs, 1981): 
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where kT (cm/s) is the hydraulic conductivity in the vertical direction carried out at T◦C, 

a (cm2) is the cross-sectional area of the standpipe, Lav (cm) is the average value of the 

sample height at the beginning and end of each permeation trial. A (cm2) is the cross-

sectional area of the test sample, h1 (cm) and h2 (cm) are initial and final hydraulic head 

difference, respectively, t (s) is the time duration for the head difference dropping from 

h1 to h2. Then the kT value was corrected to a baseline temperature of 20◦C by using the 

following equation (Budhu 2007): 

 20

20

( )=T
T T Tk k k R



  (3.3) 

where µT and µ20 are the viscosities of water at T◦C and 20◦C, respectively. T is the 

temperature at which the permeation trial was made, and RT is the temperature 

correction factor that was calculated using the following equation: 

 2.42 0.475ln( )TR T   (3.4) 

After calculating the average value of hydraulic conductivity, k20, which was obtained 

from each permeation trial in one falling head test, the relationship of the test sample 

between the hydraulic conductivity and void ratio was obtained. 

3.4.4 Discussions  

The falling head test has been widely used in geotechnical laboratories owing to its 

simplicity and the availability of equipment at a reasonable cost (Suthaker 1995), as 

well as the simplicity of interpretation of test data.  

For the soil sample with low permeability, it is usually necessary to apply larger 
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hydraulic gradients in the laboratory to accelerate the test, while a high hydraulic 

gradient produces high seepage force that can consolidate soft and compressible 

samples, which results in reducing the sample hydraulic conductivity as the test 

proceeds. Therefore, the major challenge for the falling head test was applying an 

appropriate hydraulic gradient to the samples without causing significant consolidation 

and to avoid prolonged testing time. The sample height should be continuously 

monitored during the test. Once an obvious change of the sample height occurs the test 

should be terminated. 

Due to limitations of the experimental conditions, two possible sources of errors 

for this test are identified: 1) The test can only measure the inflow rate, which may lead 

to an error in obtaining the hydraulic conductivity value, especially for soft fine-grained 

soils in which consolidation and permeability may occur together (Chapuis 2012); 2) 

Evaporation from the standpipe or the tail water funnel may occur, which would lead 

to overestimation of the hydraulic conductivity values.  

In addition, the minimum water content of the MFT samples that can be achieved 

by consolidating the sample in the permeameter is approximately 60%. Therefore, in 

this study, the falling head test can measure the hydraulic conductivity of MFT samples 

with water contents higher than 60%, corresponding to a void ratio of 1.5. 

3.5 Rowe Cell Test 

The Rowe cell, also known as the hydraulic consolidation cell, was developed by 

P. W. Rowe and his research group to overcome the disadvantages of the conventional 

oedometer apparatus when performing consolidation tests on low permeability soils 
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(Head 1986). A detailed description of the experimental apparatus and ancillary devices, 

testing procedures, and data analysis methods for the Rowe cell test are presented in 

this section. 

The schematic diagram of a typical Rowe cell is shown in Figure 3.7 (a). The main 

feature of the Rowe cell is its hydraulic loading system. In the Rowe cell, a sample is 

loaded hydraulically by water pressure acting on a convoluted flexible diaphragm, 

which differs from the mechanical lever system used in the conventional oedometer. 

This allows for testing large diameter samples, i.e, up to 250 mm diameter for 

commercial purposes, and allows for large deformations in consolidation. With the 

hydraulic loading system, the loading pressure, including very low pressures, can be 

easily applied (Head 1986). In contrast to the conventional oedometer apparatus, the 

Rowe cell allows the direct measurement of hydraulic conductivity, either as an 

independent test or after the consolidation test on a sample with a known vertical 

effective stress. More importantly, the Rowe cell has abilities to control drainage 

conditions, to measure pore water pressure during the consolidation stage, and to apply 

back pressure throughout the test, as introduced in Chapter 2.  

In this study, four Rowe cell tests, i.e. RC 1, RC 2, RC 3 and RC 4, were carried 

out to measure the hydraulic conductivity of MFT over a wide range of void ratios, 

from approximately 1 to 6. This range partially overlaps with the ranges of the standard 

oedometer test and falling head test. Each Rowe cell test includes step loadings 

consolidation tests and permeability tests. A permeability test was performed during the 

consolidation test sequence at the end of each loading stage.  



57 
 

3.5.1 Experimental Apparatus  

The following apparatuses were used in this study for Rowe cell tests:  

• A Rowe cell 

• A Brainard. Kilman pressure control panel (B.K panel) 

• A vertical pressure transducer 

• A pore water pressure transducer 

• A linear displacement transducer 

• A volume change indicator 

• A data logger 

A Rowe cell produced by ELE International, UK, of 150 mm nominal diameter was 

used in this study, as shown in Figure 3.7 (b). The cell has an internal diameter of 150.4 

mm with a smooth plastic lining, as shown in Figure 3.8 (b). The cell consists of three 

parts: the cell top, the cell body, and the cell base, as shown in Figure 3.8. The cell top 

is fitted with a convoluted flexible diaphragm made of synthetic rubber, which is used 

to transmit a uniform water pressure to the sample underneath. The cell top is also fitted 

with an inlet valve, denoted by valve C as shown in Figure 3.7 (a), connecting to a 

hydraulic pressure on a sample. An aluminum alloy hollow spindle passes through a 

seal in the center of the cell top. The lower end of this spindle passes through the center 

of the diaphragm at which it is sealed and fixed by two thin washers. The upper end of 

it is connected to a drainage valve, denoted by valve D, via a flexible tube, as shown in 

Figure 3.7 (a). The drainage valve D is fitted to the edge of the cell top. An air bleed 

screw, denoted by E as shown in Figure 3.7 (a), is placed on the top of the cell top. The 
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cell body has a flange at each end with bolt holes for securing the cell top and base, as 

shown in Figure 3.8 (b). A small hole at the upper end of the cell body is an outlet 

leading and connected to a valve, denoted by valve F as shown in Figure 3.7 (a). A 

smooth plastic lining is bonded onto the inside face of the cell body to reduce the 

friction between the sample and cell wall. A small circular pore stone is inserted in the 

center of the cell base. This is the main pore water pressure measuring point, and leads 

to valve A (as shown in Figure 3.7 (a)) on the outer edge of the cell base. Valve A is 

connected to the pore water pressure transducer. (Head 1986) 

Two large pore stones obtained from Hoskin Scientific LTD of 150 mm in diameter 

and 13 mm in thickness are used with the Rowe cell, as shown in Figure 3.9.  

A Brainard-Kilman pressure control panel (B.K panel) is used to provide three 

independently controlled pressures required for the Rowe cell test: the vertical pressure, 

and two separate back pressures. The realistic view and schematic diagram of the B.K 

panel are shown in Figures 3.10 and 3.11, respectively. The three pressure systems are 

fitted on the B.K panel on positons 1, 2 and 3, respectively, as shown in Figure 3.11. 

The B.K pressure control panel has an accuracy of 1kPa (B.K. panel operation manual). 

The vertical pressure transducer, which has a better accuracy of 0.1 kPa compared 

with the B.K pressure control panel, measured the real-time pressure applied on the 

sample. The pore water pressure was measured by the pore water pressure transducer, 

which has an accuracy of 0.1 kPa. A linear displacement transducer was used to measure 

vertical displacements of the sample during the test. It has a maximum travel of 25 mm 

and has the accuracy of 0.001 mm. The above transducers were manufactured by 
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Dynisco Ltd. 

The volume change indicator (SHAPE Instrument Ltd.), as shown in Figure 3.12, 

was used to measure the volume of the outflow water during the consolidation test and 

permeability test. It was incorporated into the drainage line of the Rowe cell test 

arrangement by connecting with valve D. The volume change indicator used in this 

study has the maximum capacity of 100ml and has the accuracy 0.01ml. All the 

measured data, including vertical pressure, pore water pressure, deflections of the 

testing sample and the volume of the outflowing water, were recorded by the data logger 

(SCIEMETRIC INC).  

3.5.2 Testing Procedures  

For the MFT samples having a water content much higher than the liquid limit, it 

is necessary to start with applying a low consolidation pressure and gradually increase 

in a few increments. In this study, four Rowe cell tests were performed. 

In the first Rowe cell test (RC 1), the sample with an initial water content of 176.9% 

was consolidated under four loading increments with a back pressure. The incremental 

vertical loading was applied in the following sequence: 7 kPa, 12 kPa, 17 kPa and 43 

kPa. The corresponding back pressure for each loading step was applied in the 

following sequence: 5 kPa, 7 kPa, 10 kPa and 33 kPa. Thus, the theoretical effective 

stresses of the sample after the completion of each loading consolidation were as 

follows: 2 kPa, 5 kPa, 7 kPa and 10 kPa. The above pressures applied in the RC 1 test 

are summarized in Table 3.2. After the completion of primary consolidation under each 

loading, one-way drainage permeability tests were carried out on the samples of known 
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effective stress in the Rowe cell with the vertical upward flow. Two constant back 

pressures were applied to the sample to provide a constant differential pressure between 

the sample base and top, while the sample was subjected to a vertical pressure as in the 

previous consolidation step. The differential pressures applied to the sample at each 

permeability test are also summarized in Table 3.2. 

In the second Rowe cell test (RC 2), the sample with an initial water content of 

129.7% was consolidated by incremental loading. A back pressure of 10 kPa was 

maintained during the test. The incremental vertical loads were: 12 kPa, 13 kPa, and 15 

kPa. Thus, the theoretical effective stresses on the sample after the completion of 

consolidation in each stage were: 2 kPa, 3 kPa, and 5 kPa. At the end of each 

consolidation stage, the permeability test was carried out under a constant differential 

pressure. Pressures applied in the RC 2 test are summarized in Table 3.3. 

In the third Rowe cell test (RC 3), the sample with an initial water content of 210.4% 

was consolidated under four loading increments with a back pressure of 5 kPa. The 

incremental vertical loads were: 7 kPa, 8 kPa, 9 kPa and 10 kPa. The theoretical 

effective stresses on the sample after the completion of consolidation in each stage were: 

2 kPa, 3 kPa, 4 kPa and 5 kPa. At the end of each consolidation stage, a permeability 

test was carried out under a constant differential pressure. Pressures applied in the RC 

3 test are summarized in Table 3.4. 

In the fourth Rowe cell test (RC 4), the sample with an initial water content of 76.7% 

was consolidated in four increments with a back pressure of 10 kPa. The incremental 

vertical loads were: 15 kPa, 20 kPa, 30 kPa and 50 kPa. The theoretical effective 
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stresses on the sample after the completion of consolidation in each stage were: 5 kPa, 

10 kPa, 20 kPa and 40 kPa. At the end of each consolidation stage, a permeability test 

was carried out under a constant differential pressure. Pressures applied in the RC 4 test 

are summarized in Table 3.5. 

 In this study, the Rowe cell tests were carried out primarily based on Hydraulic 

Cell Consolidation and Permeability Test in the Manual of Soil Laboratory Testing 

(Head 1986), while some steps were modified to accommodate the B.K pressure system. 

A detailed description of the test executions is introduced in the following steps. 

Step 1. Cell assembly 

 The cell body was first bolted to the cell base, as shown in Figure 3.13. MFT 

samples were poured into the cell to a depth of 15-30 mm with a uniform surface. Then, 

the cell top was placed on the cell body, and the diaphragm flange of the cell top was 

seated onto the cell body flange without entrapping air or causing ruckling or pinching, 

as shown in Figure 3.14. The view of the correctly seated diaphragm flange on the cell 

body flange is shown in Figure 3.15. After completing the cell assembly, the valve C 

(Rowe cell) was connected to a water supply to completely fill the space above the 

diaphragm with water. (Head 1986) 

Step 2. Rowe cell connection with B.K pressure system 

The arrangement of the Rowe cell and connections with a B.K Pressure control 

panel are shown in Figure 3.16. The valve C (Rowe cell) was connected with valve Q1 

(B.K panel) through a flexible tube, as shown in Figure 3.18. This line provided vertical 

hydraulic pressures on the sample throughout the Rowe cell test. The valve A (Rowe 
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cell) was connected with valve Q2 (B.K panel) through a flexible tube, as shown in 

Figure 3.18. This line provided one of the back pressure to the sample during 

permeability test but kept closed during consolidation stage. The valve D (Rowe cell) 

was connected to the volume change indicator, which was then connected to the valve 

Q3 (B.K panel), as shown in Figure 3.16. This line was the drainage line in which water 

flowed out of the sample through valve D (Rowe cell) to the volume change indicator; 

which provides another back pressure to the sample throughout the Rowe cell test. The 

above three lines were fully saturated with freshly de-aired water and de-aired by 

flushing with de-aired water to ensure saturation.  

Then, the vertical pressure transducer, pore water pressure transducer, displacement 

transducer and volume change indicator were connected to the data-logger. The 

readings showing on the data logger were calibrated to be consistent with the readings 

showing on the B.K pressure panel. 

Step 3. Checking Saturation 

The degree of saturation of MFT samples can be related to the pore pressure ratio, 

i.e. δu/δσ, where δu is the pore pressure response to an increment of the total vertical 

stress δσ without drainage (Head 1986). It should be noted that this ratio is not the exact 

pore pressure parameter B, which is defined as the pore pressure response to the 

increments of isotropic stress not vertical stress. However, the similar method was used 

to check the saturation of the sample in this study. Saturation is usually acceptable when 

the ratio δu/δσ reaches approximately 0.9 (Head 1986). The detailed execution of 

checking saturation degree of samples is introduced as follows.  
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A very small vertical pressure, p0, which was less than the first increment 

consolidation pressure, was applied to the sample without drainage (valve D closed). 

The initial vertical pressure, p0, and the initial pore pressure, u0, were recorded by the 

data logger when p0 and u0 reach a stable value. Then, the vertical pressure was 

increased from the initial pressure p0 to a value that gave the required first increment 

pressure p1, typically an increase of 3 to 5 kPa on the sample, without drainage. The 

pore pressure u1 was recorded when it reached a stable value. The initial ratio, δu/δσ, 

was calculated as: 

 1 0

1 0

u uu

p p









 (3.5) 

The initial ratios (δu/δσ) of the MFT samples used in this study were larger than 0.92, 

which means the samples satisfy the test saturation requirement. After checking the 

saturation condition of the sample, the vertical pressure was set back to the initial 

pressure p0. 

Step 4. Consolidation Test 

The vertical pressure was set to the first increment consolidation pressure on the 

B.K panel with valve C (Rowe cell) closed. The back pressure was set to a desired value 

corresponding to the first incremental loading with valve D (Rowe cell) closed. The 

data logger was first to run to record the initial vertical deflection reading and the initial 

volume change indicator readings, corresponding to time equal to zero. 

The consolidation stage was started by opening valves C and D to apply vertical 

pressure and back pressure on the sample and allow water to be expelled from the 

sample. Once opened valves C and D allowed water to drain from the sample, the 
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applied stress was transferred from the pore water to the soil skeleton, increasing the 

effective stress, while the total applied vertical stress was held constant. The following 

data were recorded by the data logger at an appropriate time intervals. 

• Vertical settlement  

• Pore water pressure 

• Volume-change indicator on outlet back pressure line 

• Diaphragm pressure for checking purpose 

As the consolidation stage proceeded, the following graphs were created. 

• Settlement (∆H mm) against log time (min) 

• Outflow volume change (∆V mm) against log time (min) 

• Pore water pressure against time (min) 

The permeability test was performed when the primary consolidation was 

completed based on instruction listed above, i.e. the pore pressure approached the back 

pressure. For most practical purposes, 95% dissipation of the excess pore pressure is 

sufficient (Head 1986). The percentage pore pressure dissipation, denoted by U%, is 

given by the following equation: 

 

0

0

100%
b

u u
U

u u


 


 (3.6) 

where, u is the pore water pressure at a time considered, ub is the back pressure applied 

in the consolidation stage, and u0 is the pore water pressure at the start of consolidation. 

Step 5. Permeability test  

One-way drainage permeability tests were carried out on the samples of known 

effective stress in the Rowe cell with the vertically upward flow. Three independently 
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controlled constant pressure systems were used for the permeability test. One system 

was connected to valve C (Rowe cell) to maintain the pressure as applied in the previous 

consolidation step. The other two back pressures were connected to valve A and D, 

respectively, as shown in Figure 3.16. The arrangement of the Rowe cell for the one-

way drainage permeability test is shown in Figure 3.17, and this arrangement allows 

water to vertically flow upward through the sample by applying different inlet (p2) and 

outlet (p1) pressures between the sample base and top, while the sample was subjected 

to a vertical pressure as the in previous consolidation step.  

The differential pressure between the inlet and outlet was adjusted by trial and error 

to establish a reasonable rate of flow through the sample. In this study, 1 or 2 kPa 

differential pressure, ∆p, between the inlet and outlet was used (shown in Tables 3.2 to 

3.5), which was ascertained from the trials. The procedure for the permeability test in 

the Rowe cell is described as follows: 

The outlet pressure P2 was maintained the same as the back pressure applied in the 

consolidation stage. The inlet pressure P1 was adjusted by starting with a pressure equal 

to P2 and increasing progressively, but this pressure must never exceed the vertical 

pressure. The differential pressures ∆p applied in the permeability tests are shown in 

Tables 3.2- 3.5.  

The volume of the cumulative outflow water Q (ml) and the elapsed time t (s) were 

recorded by the data logger. As the permeability test proceeded, the graph of the 

cumulative outflow water Q (ml) on ordinate against the elapsed time t (minute) on 

abscissa was plotted. The test was continued until a steady rate of flow was reached, i.e. 
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the graph presented a linear segment. In this study, permeability tests generally lasted 

1.5 to 2 hours to allow enough linear segment on the graph to emerge. The permeability 

test was stopped by closing valves A and D.   

Step 6. Further consolidation tests and permeability tests 

Additional tests at the higher effective stress level were carried out by either raising 

the vertical pressure only or by raising vertical pressure and back pressure both but with 

different increments to the predetermined value. In this study, the samples were 

consolidated 3 or 4 times at the subsequent loading levels by increasing the vertical 

pressure and back pressure to the desired value, as summarized in Tables 3.2- 3.5. 

The procedures described in Step 4--Consolidation Test were repeated. After 

setting up the vertical pressure and back pressure to the next loading level on the B.K 

pressure control panel, valves C and D were opened simultaneously to allow water to 

be expelled from the sample under a new consolidation pressure. When the primary 

consolidation was completed, the permeability test was carried out by repeating the 

procedures as described in Step 5 on a sample under a new void ratio and effective 

stress level. 

After the samples were consolidated 3 or 4 times, the Rowe cell was disassembled 

and the final water content was measured.  

3.5.3 Data analysis 

The hydraulic conductivity can be directly measured by the Rowe cell tests. The 

graph of the cumulative outflow water Q (ml) against the elapsed time t (minute) was 

plotted, in which the slope of the linear segment of the graph was used to calculate the 
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rate of flow, q (ml/minute), i.e. q = δQ/δt (ml/minute). The pressure difference ∆p across 

the soil sample was equal to (p2 – p1). The hydraulic conductivity of the sample can be 

calculated by using the following equation based on Darcy’s Law, (Head 1986) 
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V
V

q
k

Ai
  (m/s) (3.7) 

where kv is the hydraulic conductivity in vertical direction (m/s), qv is the rate of vertical 

flow (ml/minute) obtained from the slope of the linear part of the graph of the 

cumulative outflow water Q against the elapsed time t, A is the sample cross-sectional 

area (mm2), approximately 18,000mm2, and i is the hydraulic gradient. A pressure 

difference of 1 kPa is equivalent to a water head 1/9.81m≈102 mm (Head 1986). Thus, 

the hydraulic gradient i can be calculated from the following equation: 
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   (3.8) 

where, ∆p (kPa) is the pressure difference between the inlet pressure p2 and outlet 

pressure p1, and H is the height of the sample (mm). Substituting Equation 3.8 into 

Equation 3.7, the hydraulic conductivity, kv, can be expressed as: 
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 (3.9) 

The hydraulic conductivity values calculated from Equation 3.9 were corrected to 

the equivalent values at 20◦C by using the temperature correction factor RT, as 

introduced in Section 3.4.3.  

The void ratio corresponding to each hydraulic conductivity value of the sample 

was back-calculated from the final void ratio after obtaining the final water content. 
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3.5.4 Discussion 

The most important feature of the Rowe cell is that it allows the consolidation and 

permeability tests to be directly and successively conducted, which provides data 

covering a wide range of void ratios or strains (Gofar and Kassim 2006). The Rowe cell 

test can be used for the measurement of the hydraulic conductivity of the MFT samples, 

partially overlapping with the ranges of the standard oedometer tests and falling head 

tests. In addition, the advanced hydraulic loading system, and the abilities to control 

drainage and to measure pore water pressure, as well as to apply the back pressure to 

the sample, contribute to more reliable results compared to other methods. 

3.6 Summary 

This chapter describes in detail the experimental apparatus, testing procedures and 

data analysis for the standard oedometer test, the falling head test and Rowe cell test 

used in this study to measure the hydraulic conductivity of mature fine oil sand tailings.  

In the standard oedometer test, the incremental loads were applied to the samples, and 

vertical settlements were measured throughout the test. Due to the limitations of the 

test, the ASTM-D2435 standard oedometer test was not applicable for the MFT samples 

with the initial water content and void ratio higher than 65 % and 1.6, respectively. 

The falling head test was chosen as one of the direct measurement methods to 

determine the hydraulic conductivity of the mature fine oil sand tailings. The major 

difficulty encountered during the test was adjusting an appropriate hydraulic gradient 

to the MFT samples to avoid the prolonged testing time and to avoid consolidation. 

Then, two possible sources of errors for this test were recognized because of limitations 
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of the experimental conditions.  

The Rowe cell test overcomes the disadvantages inherent in the standard oedometer 

test and falling head test for measuring the hydraulic conductivity of the mature fine 

tailings. The Rowe cell test is capable of testing the sample covering a large range of 

void ratios, which partially overlaps the range of both standard oedometer and falling 

head tests. Comparing three laboratory test methods, the Rowe cell test is more complex 

than the other two tests in terms of the experimental apparatus assembly and connection, 

as well as test execution. In addition, the advanced control features, the ability to 

measure pore water pressure and the ability to apply back pressure on the sample 

contribute to more reliable test results obtained with Rowe cell tests. 
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Table 3. 1 Properties of mature fine tailings (modified from Guo 2012) 

Specific gravity, Gs 2.51 

Organic matter (%) 14.7 

Atterberg limits   Plastic limit, PL (%) 29.1 

             Liquid limit, LL (%) 51.6 

                Plasticity index, PI (%) 22.5 

Grain size        D10 (μm) 0.85 

 D50 (μm) 7.15 

 D90 (μm) 27.9 

 Sand (%) 0.00 

 Silt (%) 80.00 

 Clay (%) 20.00 

Unified Soil Classification MH 
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Table 3. 2 Summary of Rowe cell test 1 (RC 1) 

 Vertical 

Pressure 

(kPa) 

Outlet Back 

Pressure 

P2 (kPa) 

Inlet Back 

Pressure 

P1 (kPa) 

Effective stress 

after consolidation 

σ’ (kPa) 

Differential 

Pressure ∆p 

(kPa) 

C-1a 7 5 n/a 2 n/a 

P-1b 7 5 6 2 1 

C-2 12 7 n/a  5 n/a 

P-2 12 7 9 5 2 

C-3 17 10 n/a 7 n/a 

P-3 17 10 12 7 2 

C-4 43 33 n/a 10 n/a 

P-4 43 33 35 10 2 

a. C refer to consolidation test; 

b. P refers to permeability test 

 

Table 3. 3 Summary of Rowe cell test 2 (RC 2) 

 Vertical 

Pressure 

(kPa) 

Outlet Back 

Pressure 

P2 (kPa) 

Inlet Back 

Pressure 

P1 (kPa) 

Effective stress 

after consolidation 

σ’ (kPa) 

Differential 

Pressure ∆p 

(kPa) 

C-1a 12 10 n/a 2 n/a 

P-1b 12 10 11 2 1 

C-2 13 10 n/a 3 n/a 

P-2 13 10 12 3 2 

C-3 15 10 n/a 5 n/a 

P-3 15 10 12 5 2 

a. C refer to consolidation test; 

b. P refers to permeability test 
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Table 3. 4 Summary of Rowe cell test 3 (RC 3) 

 Vertical 

Pressure 

(kPa) 

Outlet Back 

Pressure 

P2 (kPa) 

Inlet Back 

Pressure 

P1 (kPa) 

Effective stress after 

consolidation σ’ 

(kPa) 

Differential 

Pressure ∆p 

(kPa) 

C-1a 7 5 n/a 2 n/a 

P-1b 7 5 6 2 1 

C-2 8 5 n/a 3 n/a 

P-2 8 5 6 3 1 

C-3 9 5 n/a 4 n/a 

P-3 9 5 6 4 1 

C-4 10 5 n/a 5 n/a 

P-4 10 5 6 5 1 

a. C refer to consolidation test; 

b. P refers to permeability test 

 

Table 3. 5 Summary of Rowe cell test 4 (RC 4) 

 Vertical 

Pressure 

(kPa) 

Outlet Back 

Pressure 

P2 (kPa) 

Inlet Back 

Pressure 

P1 (kPa) 

Effective stress after 

consolidation σ’ 

(kPa) 

Differential 

Pressure ∆p 

(kPa) 

C-1a 15 10 n/a 5 n/a 

P-1b 15 10 12 5 2 

C-2 20 10 n/a 10 n/a 

P-2 20 10 12 10 2 

C-3 30 10 n/a 20 n/a 

P-3 30 10 12 20 2 

C-4 50 10 n/a 40 n/a 

P-4 50 10 12 40 2 

a. C refer to consolidation test; 

b. P refers to permeability test 
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Figure 3. 1 The consolidation test unit 

 

 

     

 (a)  (b) 

Figure 3. 2 Preconsolidation of sample in permeameter before the oedometer test 
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Figure 3. 3 Schematic of Falling Head Test 

 

Figure 3. 4 Falling head test apparatus 
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(a) 

  

 (b) 

Figure 3. 5 (a) Preconsolidation of sample in permeameter 

 before the falling head test  

(b) Weights used to preconsolidate the sample  
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Figure 3. 6  Sample height versus time during preconsolidation  

 

 

 

(a)  
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(b) 

Figure 3. 7 (a) Schematic of Rowe cell (Head 1986) (b) Rowe cell used in this study 

 

 

(a) 
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(b) 

 

 (c) 

Figure 3. 8 (a) Rowe Cell Cover; (b) Rowe Cell Body; (c) Rowe Cell Base 

 

 

Figure 3. 9 Two porous stones used in Rowe cell test 

A small circular pore 

stone 
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Figure 3.10 B.K Pressure control panel 

 

Figure 3. 11 Schematic of B.K. Pressure control panel (B.K. panel operation manual) 



80 
 

 

Figure 3. 12 Volume change indicator 

 

Figure 3. 13 Lower cell body bolted to the cell base 

 

              (a)  (b)  (c) 

Figure 3. 14 Seating the diaphragm: (a) avoid trapping air under flange (b) avoid 

ruckling and pinching (c) diaphragm correctly seated (Head 1986) 
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Figure 3. 15 The realistic view of the diaphragm flange correctly seating on  

the cell body flange 

 

 

 

Figure 3. 16 The arrangement of the Rowe cell and connections with B.K Pressure 

control panel (modified from Head 1986 and B.K. panel operation manual)  
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Figure 3. 17 Upward flow condition for permeability test 

 in the Rowe cell (Head 1986) 
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CHAPTER 4  RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter focuses on presenting the experimental results and discussion. First, 

the hydraulic conductivity data produced in three laboratory tests, i.e., the standard 

oedometer test, the falling head test and the Rowe cell test, are presented in Section 4.2. 

The results obtained from the Rowe cell tests are then compared with the results from 

the oedometer tests and falling head tests. The measurement range of the hydraulic 

conductivity for the mature fine oil sand tailings (MFT) in these tests is also presented 

and discussed. In Section 4.3, a hydraulic conductivity database for oil sand tailings is 

presented. A comparison of the hydraulic conductivity data is discussed in detail. In 

Section 4.4, two data regression models are established to correlate the hydraulic 

conductivity with a wide range of void ratios for fine oil sand tailings. The first model 

is developed based on the experimental results in this study, and the second model is 

developed based on the database presented in Section 4.3. Regression models proposed 

in this section can be used in the prediction and analysis of the hydraulic conductivity 

and consolidation behaviors for fine oil sand tailings. In Section 4.5, eight equations for 

predicting the hydraulic conductivity of fine-grained soils selected from the literature 

(summarized in Chapter 2) are assessed for their suitability and performances in terms 

of predicting the hydraulic conductivity for fine oil sand tailings using the data in the 

database presented in Section 4.3. 
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4.2 Laboratory Test Results 

This study is an experimental research on the measurement of hydraulic 

conductivity of mature fine oil sand tailings. As introduced in Chapter 3, three 

laboratory tests were performed. In particular, the oedometer test was carried out to 

measure the hydraulic conductivity of the mature fine oil sand tailings (MFT) at a 

relatively low void ratio; the falling head test was used to measure the hydraulic 

conductivity of MFT samples at a relatively high void ratio; and the Rowe cell test was 

used to measure the hydraulic conductivity of MFT samples partially overlapping with 

the ranges of the standard oedometer tests and falling head tests.  

4.2.1 Results of Standard Odometer Test  

Two standard oedometer tests (Oedo-1 test and Oedo-2 test) were conducted on the 

MFT samples with the initial water content and void ratio 65% and 1.6, respectively. 

The final water content of MFT samples used in Oedo-1 test and Oedo-2 test after 

completing the tests were 29.0 % and 28.7%, respectively. Both MFT samples were 

subjected to consolidation pressures of 5kPa, 10kPa, 25 kPa, 50 kPa, 100 kPa, 200 kPa 

and 400 kPa during the test. The consolidation pressure was applied for 72-hour for 

each increment. The hydraulic conductivity values of the MFT samples were indirectly 

calculated from the test results by following the procedures described in Chapter 3.  

Table 4.1 present a summary of results obtained with the Oedo-1 test and Oedo-2 

test, including the void ratio (e), the coefficient of consolidation (Cv), the coefficient of 

volume change (mv), the coefficient of compressibility (av), and hydraulic conductivity 

(k) for each loading increment. The coefficient of consolidation, Cv, for each loading 
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increment was determined using the Cassagrande’s logarithmic time fitting method 

(Casagrande and Fadum 1940). The log time-settlement curves under each loading 

obtained from the Oedo-1 test and Oedo-2 test are plotted in Figure 4.1 (a)-(g). The 

coefficient of compressibility, av, for each loading increment was obtained from the 

graph of the void ratios versus consolidation pressure, as shown in Figure 4.2.  

The hydraulic conductivity data versus void ratios of the mature fine oil sand 

tailings obtained from two oedometer tests are presented in Figure 4.3. It can be 

observed that the results obtained from the two tests are consistent, which indicates that 

the experiments are repeatable; the values from the Oedo-2 test are slightly higher than 

values from the Oedo-1 test. The hydraulic conductivity values range from 9.32 x 10-12 

(m/s) to 1.22 x 10-9 (m/s) for the void ratio varying from 0.778 to 1.52. As shown in 

Figure 4.3, the relationship between the logarithm of hydraulic conductivity and void 

ratio can be described as a linear correlation. The following linear regression equation 

can be proposed: 

 log 1.863 12.471k e  (m/s)  (4.1) 

where k (m/s) is hydraulic conductivity and e is the void ratio. The coefficient of 

determination (r2) of this equation is 0.969, which indicates that the regression line fits 

well with the data. Equation 4.1 can be rewritten as a power law function between k 

and e: 

 
13 1.863(3.38 10 ) 10 ek     (m/s)  (4.2) 

4.2.2 Results of Falling Head Permeability Test 

The falling head tests with the downward flow and constant tail water elevation 
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were carried out in this study on MFT samples of void ratios from 1.5 to 7.0. The 

hydraulic conductivity data obtained from the test versus void ratio are presented in 

Figure 4.4. A best fitted curve for the results is also plotted in Figure 4.4 and can be 

expressed in the following power law function: 

 9 1.8532 10k e   (m/s)  (4.3) 

where k (m/s) is hydraulic conductivity and e is the void ratio. The coefficient of 

determination (r2) of this equation is 0.813. The hydraulic conductivity values of the 

MFT samples vary from 1.48 x 10-9 (m/s) to 6.8 x 10-8 (m/s). As shown in Figure 4.4, 

at a particular void ratio, the deviation of the measured hydraulic conductivity is within 

half an order of magnitude, indicating the results are consistent.  

4.2.3 Results of Rowe cell test 

Four Rowe cell tests, i.e. tests RC 1, RC 2, RC 3 and RC 4, were carried out to 

measure the hydraulic conductivity of MFT samples over void ratios from 1 to 6. Table 

4.2 presents the initial water content, initial sample height, final water content and final 

sample height of four Rowe cell tests. Tables 4.3-4.6 present a summary of results 

obtained from tests RC 1, RC 2, RC 3 and RC 4, respectively. The hydraulic 

conductivity data and their corresponding void ratios of MFT samples obtained with 

four Rowe cell tests are summarized in Table 4.7 and shown in Figure 4.5. The 

hydraulic conductivity decreased by about three orders of magnitude when the void 

ratio decreased from 5 to 1. Specifically, the hydraulic conductivity of the MFT samples 

within the range of void ratio 1.09 to 4.96 varies from 3.72 x 10-10 (m/s) to 9.18 x 10-8 

(m/s). A best fitted curve for the results is plotted in Figure 4.5 and can be expressed in 
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the following power law function: 

 
10 4.02952 10k e   (m/s)  (4.4) 

where k (m/s) is the hydraulic conductivity and e is the void ratio. The coefficient of 

determination (r2) of this equation is 0.98, which indicates a strong agreement between 

the measured data and the regression curve.  

4.2.4 Discussions and Summary 

The standard oedometer test and the falling head permeability test were adopted in 

this study as indirect and direct measurement methods, respectively, to determine the 

hydraulic conductivity of fine oil sand tailings. The Rowe cell test was adopted in this 

study to overcome the disadvantages inherent in the standard oedometer test and the 

falling head permeability test in terms of measuring the hydraulic conductivity of the 

mature fine tailings. The Rowe cell allows the consolidation and permeability tests to 

be directly and successively conducted, and provides data covering a wide range of void 

ratios or strains.  

Figure 4.6 presents the hydraulic conductivity versus void ratio (k-e) of the MFT 

samples measured in this study with three different methods. The followings are 

observed from Figure 4.6:  

a) The hydraulic conductivity of MFT samples decreases approximately four 

orders of magnitude when the void ratio decreases from 7 to 0.5;  

b) The standard oedometer test and the Rowe cell test were performed on the MFT 

samples with void ratios less than 1.5. The results of the Rowe cell tests were 

higher than the results of the standard oedometer tests, mainly because the 
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latter were back-calculated based on Terzaghi’s one dimensional consolidation 

theory, which may underestimate the values of hydraulic conductivity. Tavenas 

et al. (1983) also indicated that the back-calculated values of the hydraulic 

conductivity underestimated the measured values by up to six times for soft 

clays, attributing such differences to the assumptions of Terzaghi's 

consolidation theory.  

c) The Rowe cell tests and falling head tests produce similar trends for the k-e 

relationship. Within the range of void ratio from 1.5 to 3, two tests produce 

consistent results. In contrast, at void ratios larger than 3, the results of Rowe 

cell tests were slightly higher than the results of falling head test within one 

order of magnitude. 

Figure 4.7 shows the measurement ranges of the hydraulic conductivity in this 

study using the three laboratory tests. It is clear from Figure 4.7 that the Rowe cell test 

covers the largest measurement range (approximately three orders of magnitude) of 

hydraulic conductivity of MFT samples. The falling head test enables the measurement 

of the hydraulic conductivity covering two orders of magnitude, and the oedometer test 

can only measure the hydraulic conductivity of MFT samples with low void ratio within 

one and a half orders of magnitude. 

The change of void ratio with effective stress (σ’- e) is shown in Figure 4.8, which 

depicts the compressibility of the mature fine oil sand tailings. The data plotted in 

Figure 4.8 are taken from the standard oedometer tests and the Rowe cell tests in this 

study. The void ratios are scattered at low effective stress (σ’ < 10 kPa), but tend to 
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converge into a narrow band when the effective stress reaches 10 kPa. This indicates 

that different initial void ratios affect the compressibility in low effective stress and this 

effect becomes small when the effective stress on the MFT sample is larger than 10 kPa. 

Suthaker (1995) and Jeeravipoolvarn (2005) also stated that the compressibility of the 

fine tailings is controlled by the initial void ratio of the sample. Additionally, Figure 4.8 

shows that a marked reduction in void ratio with little change in effective stress occurs 

in the first log cycle and shows that notable effective stress gain of MFT samples 

commenced at the void ratio of approximately 1.5. 

4.3 A Comparison of the hydraulic conductivity data of oil sand tailings  

The available hydraulic conductivity data for a variety of oil sand tailings reported 

in the literature (summarized in Section 2.3) together with the data obtained in this 

study constitute a hydraulic conductivity database for oil sand tailings. This database, 

which will be used to develop the regression models in the next section, includes the 

data of Suthaker (Suthaker 1995); Qiu (Qiu 2001); Jeeravipoolvarn (Jeeravipoolvarn 

2010); Miller (Miller 2010) and the experimental results in this study. The database is 

presented in Figure 4.9, in which the followings can be observed:  

a) There is a considerable spread between the upper and lower boundaries of 

hydraulic conductivity data 

b) A good agreement between the results of this study and Jeeravipoolvarn’s 

research (Jeeravipoolvarn 2010) was observed, particularly at void ratios less 

than 3.  

c) The hydraulic conductivity data reported by Qiu (2001) show the highest 
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values that range from 2.2 x 10-9 m/s to 6.3 x 10-9 m/s at low void ratios from 

0.47 to 1.14, which is considerably different with data presented in other 

studies. 

d) Without considering the data presented by Qiu (2001), the hydraulic 

conductivity data are within two orders of magnitude at void ratios less than 3. 

However, at void ratios larger than 3, the data spread over two orders of 

magnitude and the widest spread occurs between the results of Suthaker (1995) 

and Miller (2010). The results of this study fall between the above two studies 

but are closer to Miller’s results. 

The measurement deviations and unavoidable experimental errors during the tests 

may cause differences in hydraulic conductivity data. Besides that, as indicated in Table 

4.8, the following factors may also contribute to such differences: the type of oil sand 

tailings used in these studies, geotechnical index properties of the samples, particle size, 

mineral composition, organic or bitumen content in the samples, and the permeant fluid 

used in the test.  

The oil sand tailings samples presented in Table 4.8 were all produced in northern 

Alberta, Canada. The samples used in Qiu’s research (2001) were oil sand composite 

tailings (CT). CT essentially is a mix of coarse sands and mature fine tailings, with a 

type of coagulant added to produce non-segregating behavior tailings that can settle and 

consolidate quickly (Jeeravipoolvarn 2010). The samples used in Jeeravipoolvarn’s 

research (2010) were untreated cyclone overflow (COF). Untreated COF can be 

referred to as fine tailings and is a source of new fines and one of the contributions to 
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new MFT (Jeeravipoolvarn 2010). In Miller’s research (2010), Ore A and Ore B (Table 

4.8) refer to oil sands ore originating from the Syncrude mine and Suncor mine, 

respectively; C and NC refer to caustic and non-caustic fine tailings, which are two 

different tailings resulting from different bitumen extraction processes.  

As shown in Table 4.8, the specific gravity (Gs) of the samples varies from 2.1 to 

2.6. According to Suthaker (1995), this variation is attributable to the variable amount 

of bitumen, which has a specific gravity of 1.03. The liquid limit varies from 40% to 

60%, and the plastic limit varies from 21% to 31%. Differences between the liquid limit 

and plastic limit for these samples (shown in Table 4.8) were not significant. The clay 

minerals of these oil sand tailings are kaolinite and/or illite, which reflects the average 

clay mineralogy of the clay-shale strata in the McMurray Formation in northern Alberta 

(Suthaker 1995).  

Fines content shown in the grain size distribution column refers to the content of 

particles with sizes less than 75 µm. Except for the CT (Qiu 2001), fines contents of the 

samples were above 90%, whereas the CT was dominated by sand sized particles. 

Suthaker (1995) and Jeeravipoolvarn (2005) reported that, in the mixes of fine oil sand 

tailings and sand, the hydraulic conductivity is controlled by the fines content and 

decreases with increasing fines content. An increase in sand content leads to increased 

hydraulic conductivity. As CT has the largest sand content and a non-plastic 

cohesionless characteristic, the hydraulic conductivity values published by Qiu were 

higher than others by up to two and a half orders of magnitude.  

The bitumen contents, which is the bitumen mass divided by the mass of mineral 
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solids plus bitumen (Miller 2010), in various samples are given in Table 4.8. The 

hydraulic conductivity of fine oil sand tailings is influenced by bitumen content and 

decreases with a higher bitumen content (Suthaker 1995). As shown in Table 4.8, the 

samples of this study had the highest bitumen content, followed by the COF. The 

bitumen contents of samples used in Suthaker’s research and Miller’s research were 

significantly lower than in other samples. Relatively low bitumen content may explain 

why the hydraulic conductivity values reported by Suthaker are higher than that 

reported by this study and Jeeravipoolvarn. However, more investigations are suggested.  

The process water used in tests, as shown in Table 4.8, is another possible reason 

causing the differences in hydraulic conductivity data. Different process water has 

different ion types and the concentration of ions is different, which affects the double-

layer of clay particles and further affects the hydraulic conductivity of fine oil sand 

tailings. Miller (2010) states that pore water chemistry in fine oil sand tailings, which 

varies greatly depending on the extraction process, type of the process water and the oil 

sands ore, impacts their compressibility and hydraulic conductivity, particularly at high 

void ratios (low effective stress). Miller also refers to the double layer theory of clay 

particles to further explain this idea. In addition, the effect of pore water chemistry is 

expected to be significant at high void ratios, which explains why the range of hydraulic 

conductivity values, as shown in Figure 4.9, was greater at high void ratios. However, 

because the specific information, such as ion types, the concentration of ions and the 

specific composition of process water, are not available in the literature, more 

investigations are suggested.  



93 
 

4.4 Regression Models for Fine Oil Sand Tailings 

Owing to the excessive amount of time, and the sophisticated experimental 

techniques and apparatus required, studies on measuring the hydraulic conductivity of 

soft fine-grained geomaterials, such as fine oil sand tailings, are usually based on very 

limited data. Several equations have been proposed to predict and estimate the hydraulic 

conductivity for fine-grained soils from easily measured data, such as Atterberg limits 

and void ratio. In these equations, the hydraulic conductivity is expressed as a function 

of the porosity (i.e., void ratio) and selected properties of soils (Dolinar 2009). These 

equations are applicable to most types of fine-grained soils, but they have rarely used 

for fine oil sand tailings.  

In this section, the hydraulic conductivity database presented in Section 4.3 is used 

to obtain reliable k - e relationships or ranges of relationships. Two data regression 

models are proposed to establish the correlation between the hydraulic conductivity and 

a wide range of void ratios of fine oil sand tailings (k-e relationship). The first set of 

models is developed based solely on the experimental results in this study, thus it is 

more suitable for the mature fine tailings used in this study or similar geomaterials. The 

second set of models is developed based on the database presented in Section 4.3. Data 

published by Qiu (2001) are excluded as that study did not use fine oil sand tailings. 

The second set of models is applicable for the prediction or analysis of the hydraulic 

conductivity and consolidation behaviors of various fine oil sand tailings from different 

locations. 

The practical significance of establishing the k-e regression models is to investigate 
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the consolidation behaviors of fine oil sand tailings, which undergo large settlements 

during consolidation (Suthaker 1995), based on large strain consolidation theories. 

These theories require explicit relationships between hydraulic conductivity and void 

ratio, as well as a relationship between void ratio and effective stress (Gibson et al. 

1967). In addition, from a practical point of view, the models can be used to quickly 

estimate the hydraulic conductivity in preliminary design stages for tailings disposal 

projects without excessive time or prohibitive testing costs.  

4.4.1 Regression Models Based on the Experimental Results of this Study 

The first set of regression models was developed based on the experimental results 

in this study. Experimental results presented in previous studies show that the hydraulic 

conductivity is strongly dependent of soil porosity and various correlations were 

proposed between the hydraulic conductivity and void ratio (Deng, Y. F. et. al 2011). 

Conventionally, such correlations can be expressed in the following form: 

 
Dk Ce (m/s)  (4.5) 

where k (m/s) is the hydraulic conductivity, e is the void ratio, and C (m/s) and D are 

empirical coefficients. Equation 4.5 was first proposed by Somogyi (1979) to define 

the hydraulic conductivity changes during a one-dimensional compression of soils. This 

form coincides with the findings published by other researchers (Carrier and Beckman 

1984; Krizek and Somogyi 1984; Al-Tabba and Wood 1987; Suthaker 1995; Pane and 

Schiffman, 1997; Dolinar 2009). 

For the mature fine tailings tested in this study, the experimental results presented 

in Figure 4.6 indicate that the power law equation, as the same form as that in Equation 
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4.5, can be employed to describe the variation of the hydraulic conductivity with the 

void ratio. A best fitted curve for the results plotted in Figure 4.6 can be expressed in 

the following function: 

 
10 3.9871 10k e  (m/s)  (4.6) 

where k (m/s) is the hydraulic conductivity and e is the void ratio. The coefficient of 

determination (r2) of this equation is 0.833. Figure 4.10 shows the hydraulic 

conductivity data versus porosity of the mature fine tailings tested in this study. As 

shown in this figure, the relationship between the logarithm of hydraulic conductivity 

(log k) and porosity (n) can be described as a linear correlation. The following linear 

regression equation can be proposed by using the OLS method:  

 log 8.815 14.57k n  (m/s)  (4.7)           

where k (m/s) is hydraulic conductivity and n is the porosity, calculated as e/(1+e). This 

expression is similar to the regression Equation 4.1 obtained from the oedometer test. 

r2 of this equation is 0.89, which indicates good agreement between the measured data 

and the regression curve. The upper bounds and lower bounds are also drawn in Figure 

4.10 based on a confidence interval of 95%. Equation 4.7 can be rewritten as a power 

law function as follows: 

 
14.57 8.81510 10 nk    (m/s)  (4.8) 

Equations 4.6, 4.7 and 4.8 are the regression equations based on the experimental results 

in this study and can be specifically used for studies related to the mature fine tailings 

similar to those used in study. 
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4.4.2 Regression Models Based on the Database of Oil Sand Tailings 

The second set of regression models was developed based on the database (as 

presented in Section 4.3). Data published by Qiu (2001) were excluded because the 

samples are not fine oil sand tailings. Figure 4.11 shows a linear correlation between 

the logarithm of hydraulic conductivity (log k) and the void ratio (e). This linear 

correlation is in the form of: 

 log 0.447 9.826k e  (m/s)  (4.9)           

where k (m/s) is hydraulic conductivity and e is the void ratio at which k is required. r2 

of this equation is 0.6. The upper bounds and lower bounds are also drawn in Figure 

4.11 based on a confidence interval of 95%. Equation 4.9 can be rewritten as a power 

law function as follow: 

 
9.826 0.44710 10 ek    (m/s)  (4.10) 

Figure 4.12 shows a power law relationship between the hydraulic conductivity 

and void ratio. The following equation is proposed to describe this relationship with an 

r2 of 0.67. 

 
10 3.582 10k e  (m/s)  (4.11) 

Figure 4.13 shows a linear correlation between the logarithm of hydraulic 

conductivity and porosity. The following equation is proposed to describe this linear 

correlation with an r2 of 0.75:  

 log 9.46 15.05k n  (m/s)  (4.12)           

Equation 4.12 can be rewritten as a power law function as follow: 

 
15.05 9.4610 10 nk    (m/s)  (4.13) 
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where k (m/s) is hydraulic conductivity and n is the porosity.  

Figure 4.14 shows a power law relationship between the hydraulic conductivity 

and porosity. The following equation is proposed to describe this relationship with an 

r2 of 0.74. 

 
7 14.779 10k n  (m/s)  (4.14) 

In relative terms, Equation 4.12 has higher r2 when linearly correlating the 

logarithm of hydraulic conductivity with porosity. The performance in predicting the 

hydraulic conductivity for fine oil sand tailings is similar when using both Equations 

4.13 and 4.14. Compared with the regression equations proposed in Section 4.4.2, it is 

concluded that the correlation of hydraulic conductivity versus porosity (k-n) is 

superior to that of hydraulic conductivity versus void ratio (k-e) for fine oil sand tailings. 

Thus, Equation 4.13 or 4.14 is preferred in predicting the hydraulic conductivity of fine 

oil sand tailings 

4.4.3 Summary  

In this section, two data regression models were proposed to correlate the hydraulic 

conductivity with a wide range of void ratios of fine oil sand tailings. The first set of 

models is more suitable for the mature fine tailings or similar geomaterials. According 

to the regression analysis, the k-n relationship is superior to the k-e relationship for the 

mature fine tailings. Thus, it is suggested that predictions of hydraulic conductivity for 

mature fine tailings should be based on the k-n relationship using Equation 4.7 or 4.8 

in order to obtain more reliable results. The second set of models was developed based 

on the database presented in Section 4.3, except that the data published by Qiu (2001) 



98 
 

were excluded. Similarly, the correlation relationship of k-n is superior to the 

relationship of k-e for various fine oil sand tailings. Thus, it is suggested that, for fine 

oil sand tailings from northern Alberta, Canada, predictions or analyses of the hydraulic 

should be based on the k-n relationship using Equation 4.13 or 4.14.  

4.5 Evaluation and Comparison of Previous Empirical Equations  

Empirical equations (summarised in Chapter 2) have been proposed to predict the 

hydraulic conductivity for plastic soils. These equations are generally applicable for the 

specific geomaterials. However, the suitability and relative performances of these 

equations are uncertain in terms of predicting the hydraulic conductivity for fine oil 

sand tailings. Thus, it is desirable to assess and compare these equations using the data 

in the database (presented in Section 4.3). For this purpose, eight typical equations were 

selected from these empirical equations to estimate their suitability and performance 

for predicting the hydraulic conductivity for fine oil sand tailings. 

The eight equations evaluated and presented in detail in this section were proposed 

by: Carrier (1984), Samarasinghe (1982) coupled with Sridharan and Nagaraj (2005), 

Suthaker (1995), Morris et al. (2000), Mbonimpa et al. (2002), Morris et al. (2003), 

Dolinar (2009) and Paul (2011).  

To evaluate the predicting models or equations, the following two parameters are 

used: i) a is the mean value of R, calculated by Equation 4.15; ii) b is the root mean 

square error of R, calculated by Equation 4.16; where R is defined as the ratio of the 

predicted value of k (kpredicted) to the measured value of k (kmeasured), and N is the total 

data number (Tang et al 2008; Deng et al 2011). 
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Figures 4.15 (a) to (h) show the measured hydraulic conductivity data of fine oil 

sand tailings coupled with the best fitted curve and the curve created by the eight 

equations. The predicted k values calculated by these equations versus measured k 

values are plotted in Figures 4.16 (a) to (h). The mean value of R and the root mean 

square error of R are shown in Table 4.9. The following can be concluded from Figures 

4.15 and 4.16, and Table 4.9:  

a) The equations, respectively proposed by Carrier (1984) and Morris et al. (2003), 

give poor estimates of k values with large deviations. The k-e relationship 

produced by Carrier (1984) equation does not conform to the measured k-e 

relationship for fine oil sand tailings. The equation by Morris et al. (2003) 

severely overestimates k values. Thus, these two equations are deemed not 

suitable for fine oil sand tailings. 

b) Similar trends for the k-e relationship can be found between measured data and 

models by Samarasinghe et al. (1982) and Sridharan and Nagaraj (2005), 

Suthaker (1995), Morris et al. (2000), Mbonimpa et al. (2002), Morris et al. 

(2003), Dolinar (2009) and Paul (2011). Among them, the equations of Morris 

et al. (2000), Dolinar (2009) and Paul (2011) overestimate k values by about 

two orders of magnitude, whereas the equation of Samarasinghe et al. (1982) 

coupled with Sridharan and Nagaraj (2005) slightly underestimates k values 
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within one order of magnitude. The equations proposed by Suthaker (1995) and 

Mbonimpa et al. (2002) provide better prediction of k values for fine oil sand 

tailings mainly because they were initially developed based on data from mine 

tailings.  

c) Although the equations of Morris et al. (2000), Dolinar (2009) and Paul (2011) 

produce similar trends with the data from this study, their predictive capacities 

are still much lower than the equations proposed by Samarasinghe et al. (1982) 

and Sridharan and Nagaraj (2005), Suthaker (1995) and Mbonimpa et al. (2002) 

due to relatively large a and b values, as shown in Table 4.9.  

In summary, eight empirical equations were evaluated and compared in this section, 

in which the equations proposed by Samarasinghe et al. (1982) coupled with Sridharan 

and Nagaraj (2005), Suthaker (1995) and Mbonimpa et al. (2002) are shown to be 

relatively reliable in terms of predicting the hydraulic conductivity for fine oil sand 

tailings over a wide range of void ratios. 

4.6 Summary  

 The experimental results obtained with three laboratory tests are presented first. 

The hydraulic conductivity of the MFT samples ranges from 9 x 10-12 (m/s) to 1 x 10-7 

(m/s) within the void ratio of 0.5 to 7. The standard oedometer test is suitable for the 

measurement of hydraulic conductivity of MFT with the initial void ratio less than 1.6. 

For MFT with a natural water content of 171%, the falling head test can measure the 

hydraulic conductivity of MFT with the initial void ratio larger than 1.5. The Rowe cell 

tests cover the measurement range of both the standard oedometer tests and the falling 
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head tests. The hydraulic conductivity data obtained from the Rowe cell tests were 

higher than the data from the standard oedometer tests when the void ratio of the MFT 

sample was less than 1.5 and higher than the data from the falling head tests when the 

void ratio of the MFT sample was larger than 3. In addition, the initial void ratio affected 

the compressibility of MFT in low effective stress (σ’< 10 kPa) and this effect was 

diminished when the effective stress of MFT sample is larger than 10 kPa. 

In Section 4.3, a hydraulic conductivity database for oil sand tailings is established 

by combining the data obtained from the literature (as summarized in Section 2.3) 

together with data obtained from this study. Then, a comparison of the hydraulic 

conductivity data for different oil sand tailings is presented, and the possible factors 

that may cause differences in hydraulic conductivity data are discussed. The samples 

used in Qiu’s study (2001) are oil sand composite tailings (CT), which are sandy soils 

and classified as SM according to USCS (Qiu 2001), while the samples used in other 

studies are fine oil sand tailings. The hydraulic conductivity values published by Qiu 

are higher than others by up to two and a half orders of magnitude at the low void ratio, 

mainly because of the CT samples’ lowest fine content, largest sand to fine ratio and 

non-plastic cohesionless characteristics. Except for the data published by Qiu, the 

hydraulic conductivity values (shown in Figure 4.9) are within two orders of magnitude 

at void ratios less than three. However, at void ratios larger than three, the data are 

spread over two orders of magnitude, and the widest spread occurs between the results 

of Suthaker and Miller.  

In Section 4.4, two data regression models are proposed to correlate the hydraulic 
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conductivity with a wide range of void ratios of fine oil sand tailings (k-e relationship). 

The first set of models is developed based solely on the experimental results in this 

study. The second set of models is developed based on the database presented in Section 

4.3. The data published by Qiu (2001) are excluded. According to the regression results, 

the correlation relationship of k-n is superior to the relationship of k-e for both mature 

fine tailings samples used in this study and various fine oil sand tailings used in previous 

studies. Thus, using Equation 4.7 or 4.8 to predict of the hydraulic conductivity of 

mature fine tailings, and using Equations 4.13 or 4.14. to the predict or analyze the 

hydraulic conductivity for various fine oil sand tailings are suggested. 

In Section 4.5, the suitability and performances of eight empirical equations are 

assessed in terms of predicting hydraulic conductivity for fine oil sand tailings. The 

results show that equations proposed by Carrier (1984) and Morris et al. (2003) are not 

applicable for fine oil sand tailings to predict k values; equations proposed by Morris 

et al. (2000), Dolinar (2009) and Paul (2011) have relatively low predictive capacities; 

equations proposed by Samarasinghe et al. (1982) coupled with Sridharan and Nagaraj 

(2005), Suthaker (1995) and Mbonimpa et al. (2002) provide relatively accurate 

predictions of k values for fine oil sand tailings.  
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Table 4. 1 Results obtained form the Oedo-1 test and Oedo-2 test 

 Consolidation 

Pressure 

(kPa) 

Final 

void ratio* 

e 

Average 

void ratio* 

e 

Cv 

(m2/s) 

mv 

(m2/kN.) 

av 

(m2/kN.) 

K 

m/s 

Oedo-1 

test 

0 1.637 n/a n/a n/a n/a n/a 

5 1.401 1.519 1.29E-09 0.0187 0.0472 2.37E-10 

10 1.341 1.371 4.87E-10 0.00503 0.0119 1.22E-10 

25 1.206 1.273 1.30E-09 0.00397 0.00903 5.07E-11 

50 1.088 1.147 1.52E-09 0.00220 0.00473 3.29E-11 

100 0.961 1.024 2.08E-09 0.00125 0.00253 2.55E-11 

200 0.841 0.901 2.73E-09 0.000631 0.0012 1.69E-11 

400 0.728 0.784 3.66E-09 0.000317 0.000567 1.14E-11 

Oedo-2 

test 

0 1.635 n/a n/a n/a n/a n/a 

5 1.469 1.552 2.25E-09 0.0130 0.0332 2.87E-10 

10 1.335 1.402 1.09E-08 0.000405 0.001 1.81E-10 

25 1.184 1.260 1.71E-09 0.00803 0.0187 7.08E-11 

50 1.085 1.135 3.09E-09 0.00186 0.00396 5.62E-11 

100 0.956 1.021 2.45E-09 0.00128 0.00258 3.07E-11 

200 0.834 0.895 2.36E-09 0.000644 0.00122 1.49E-11 

400 0.721 0.778 2.99E-09 0.000318 0.000565 9.32E-12 

* Final void ratio refers to the void ratio of the sample after a loading step 

* Average void ratio refers to the void ratio of samples during a loading step 

 

Table 4. 2 Water content and sample height for four Rowe cell tests 

Test NO. Initial Water 

Content (%) 

Final Water 

Content (%) 

Initial Sample 

Height (mm) 

Final Sample 

Height (mm) 

RC 1 177 74.1 13 7 

RC 2 129 88.3 15 4 

RC 3 210 165 20 15.6 

RC 4 76.7 43.4 16 11.3 
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Table 4. 3 Results obtained form the RC 1 Test 

Test 

NO. 

Test 

Stage 

Settlement 

(mm) 

Sample 

Height 

(mm) 

Effective 

Stress 

(kPa) 

Void 

Ratio 

Water 

Content 

(%) 

∆P          

(kPa) 

Flow 

Rate 

(ml/min) 

K 

(m/s) 

1 C1* 0.947 n/a 0-2 n/a n/a n/a n/a n/a 

P1* n/a 11.901 2 4.04 160.9 1 0.553 5.84E-08 

2 C2 1.482 n/a 2-5 n/a n/a n/a n/a n/a 

P2 n/a 10.42 5 3.41 135.9 2 0.489 2.34E-08 

3 C3 1.975 n/a 5-7 n/a n/a n/a n/a n/a 

P3 n/a 8.44 7 2.58 102.6 2 0.1302 5.06E-09 

4 C4 1.688 n/a 7-10 n/a n/a n/a n/a n/a 

P4 n/a 6.75 10 1.86 74.14 2 0.0403 1.25E-09 

*C refers to consolidation test; C1 refers to the first consolidation stage;  

*P refers to permeability test; P1 refers to the first permeability test;  

 

 

Table 4. 4 Results obtained form the RC 2 Test 

Test 

NO. 

Test 

Stage 

Settlement 

(mm) 

Sample 

Height 

(mm) 

Effective 

Stress 

(kPa) 

Void 

Ratio 

Water 

Content 

(%) 

∆P          

(kPa) 

Flow 

Rate 

(ml/min) 

K 

 (m/s) 

1 C1* 1.487 n/a 0-2 n/a n/a n/a n/a n/a 

P1* n/a 13.41 2 2.83 112.8 1 0.0731 9.02E-09 

2 C2 0.735 n/a 2-3 n/a n/a n/a n/a n/a 

P2 n/a 12.67 3 2.62 104.4 2 0.1003 5.85E-09 

3 C3 1.416 n/a 3-5 n/a n/a n/a n/a n/a 

P3 n/a 11.25 5 2.22 88.28 2 0.0661 3.42E-09 

*C refers to consolidation test; C1 refers to the first consolidation stage;  

*P refers to permeability test; P1 refers to the first permeability test;  
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Table 4. 5 Results obtained form the RC 3 Test 

Test 

NO. 

Test 

Stage 

Settlement 

(mm) 

Sample 

Height 

(mm) 

Effective 

Stress 

(kPa) 

Void 

Ratio       

Water 

Content 

(%) 

∆P          

(kPa) 

Flow 

Rate 

(ml/min) 

K 

 (m/s) 

1 C1 1.962 n/a 0-2 n/a n/a n/a n/a n/a 

P1 n/a 18.09 2 4.96 197.7 1 0.551 9.18E-08 

2 C2 0.892 n/a 2-3 n/a n/a n/a n/a n/a 

P2 n/a 17.2 3 4.67 186 1 0.481 7.60E-08 

3 C3 0.813 n/a 3-4 n/a n/a n/a n/a n/a 

P3 n/a 16.38 4 4.40 175.3 1 0.443 6.67E-08 

4 C4 0.775 n/a 4-5 n/a n/a n/a n/a n/a 

P4 n/a 15.6 5 4.14 165.1 1 0.397 5.69E-08 

 

 

Table 4. 6 Results obtained form the RC 4 Test 

 

 

 

 

Test 

NO. 

Test 

Stage 

Settlement 

(mm) 

Sample 

Height 

(mm) 

Effective 

Stress 

(kPa) 

Void 

Ratio       

Water 

Content 

(%) 

∆P          

(kPa) 

Flow 

Rate 

(ml/min) 

K 

 (m/s) 

1 C1 1.268 n/a 0-5 n/a n/a n/a n/a n/a 

P1 n/a 14.56 5 1.69 67.37 2 0.00152 1.02E-09 

2 C2 0.931 n/a 5-10 n/a n/a n/a n/a n/a 

P2 n/a 13.62 10 1.52 60.52 2 0.0123 7.71E-10 

3 C3 0.842 n/a 10-20 n/a n/a n/a n/a n/a 

P3 n/a 12.78 20 1.36 54.3 2 0.0101 5.94E-10 

4 C4 1.476 n/a 20-40 n/a n/a n/a n/a n/a 

P4 n/a 11.3 40 1.09 43.43 2 0.00716 3.72E-10 
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Table 4. 7 The hydraulic conductivity data obtained form four Rowe cell tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

No. Test Void ratio K (m/s) 

1 RC 4 1.09 3.72E-10 

2 RC 4 1.36 5.94E-10 

3 RC 4 1.52 7.71E-10 

4 RC 4 1.69 1.02E-09 

5 RC 1 1.86 1.25E-09 

6 RC 2 2.22 3.42E-09 

7 RC 1 2.58 5.06E-09 

8 RC 2 2.62 5.85E-09 

9 RC 2 2.83 9.02E-09 

10 RC 1 3.41 2.34E-08 

11 RC 1 4.04 5.84E-08 

12 RC 3 4.14 5.69E-08 

13 RC 3 4.40 6.67E-08 

14 RC 3 4.67 7.60E-08 

16 RC 3 4.96 9.18E-08 
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Table 4. 8 A comparison of the data shown in the database 
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Table 4. 9 The mean value of R, a, and the root mean square error of R, b. 

No. Studies a b 

1 Carrier and Beckman (1984, 1986) 18.1 48.9 

2 Samarasinghe et al. (1982) and 

Sridharan and Nagaraj (2005) 

0.83 1.03 

3 Suthaker (1995) 2.13 3.03 

4 Morris et al. (2000) 41.5 77.1 

5 Mbonimpa et al. (2002) 3.82 4.98 

6 Morris et al. (2003) 346 1469 

7 Dolinar (2009) 18.1 48.9 

8 Paul (2011) 45.6 65.7 

 

  



109 
 

  

(a) 

 

 

 

(b) 

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =5 kPa

Oedo-1

Oedo-2

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =10 kPa

Oedo-1

Oedo-2



110 
 

  

(c) 

 

 

  

(d) 

 

12.3

12.5

12.7

12.9

13.1

13.3

13.5

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =25 kPa

Oedo-1

Oedo-2

11.8

11.9

12.0

12.1

12.2

12.3

12.4

12.5

12.6

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =50 kPa

Oedo-1

Oedo-2



111 
 

 

(e) 

 

 

  

(f) 

 

 

11.0

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =100 kPa

Oedo-1

Oedo-2

10.4

10.5

10.6

10.7

10.8

10.9

11.0

11.1

11.2

0.1 1 10 100 1000 10000

S
am

p
le

 H
ei

g
h
t 

(m
m

)

Time (min)

Consolidation pressure =200 kPa

Oedo-1

Oedo-2



112 
 

 

(g) 

Figure 4. 1 Log time-settlement curves under each loading obtained from 

the Oedo-1 test and Oedo-2 test 

 

Figure 4. 2 Void ratio versus consolidation pressure obtained from the 

Oedo-1 test and Oedo-2 test 
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Figure 4. 3 Hydraulic conductivity versus void ratio  

obtained from two oedometer tests  

 

 

Figure 4. 4 Hydraulic conductivity versus void ratio  

obtained from falling head tests 
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Figure 4. 5 Hydraulic conductivity versus void ratio obtained from Rowe cell tests 

 

 

Figure 4. 6 Hydraulic conductivity versus void ratio obtained from three laboratory 

tests 
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k (m/s) 

Figure 4. 7 The measurement range of three test methods  

 

 

Figure 4. 8 The change of void ratio with effective stress (σ’-e) 
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Figure 4. 9 Hydraulic conductivity database for oil sand tailings 

 

 

  

 

Figure 4. 10 Linear regression between the logarithm of hydraulic conductivity 

and porosity for the mature fine tailings used in this study 
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Figure 4. 11 Linear regression between the logarithm of hydraulic 

conductivity and void ratio for oil sand tailings 

 

Figure 4. 12 Power regression between the hydraulic conductivity and void 

ratio for oil sand tailings 
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Figure 4. 13 Linear regression between the logarithm of hydraulic 

conductivity and porosity for oil sand tailings 

 

Figure 4. 14 Power regression between the hydraulic conductivity and 

porosity for oil sand tailings 
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(g) 

 

 (h) 

Figure 4. 15 The measured hydraulic conductivity data and the curve created by the 8 

equations: a) Carrier and Beckman (1984, 1986); b) Samarasinghe et al. (1982) and 

Sridharan and Nagaraj (2005); c) Suthaker (1995); d) Morris et al. (2000); e) 

Mbonimpa et al. (2002); f) Morris et al. (2003); g) Dolinar (2009); h) Paul (2011). 
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(g) 

 

 (h) 

Figure 4. 16 kmeasured versus kpredicted calculated by the following equations：a) Carrier 
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and Beckman (1984, 1986); b) Samarasinghe et al. (1982) and Sridharan and Nagaraj 

(2005); c) Suthaker (1995); d) Morris et al. (2000); e) Mbonimpa et al. (2002); f) 

Morris et al. (2003); g) Dolinar (2009); h) Paul (2011). 
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CHAPTER 5  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

 In this thesis, the relationship between hydraulic conductivity and a wide range of 

void ratios for fine oil sand tailings is established. Three laboratory tests, the standard 

oedometer test, the falling head test and the Rowe cell test, are carried out to measure 

the hydraulic conductivity of MFT, and their results are presented. Based on the 

hydraulic conductivity data of this study together with the data reported in the literature, 

data regression models are developed to correlate the hydraulic conductivity with a 

wide range of void ratios (k-e relationship) for fine oil sand tailings. Empirical 

equations, which were proposed to predict the hydraulic conductivity for plastic soils, 

are evaluated for suitability and performance through the prediction of the hydraulic 

conductivity of fine oil sand tailings. 

5.2 Conclusions 

 The main conclusions of the thesis are summarized as follows: 

• According to the experimental results of three laboratory tests, the hydraulic 

conductivity of the MFT ranges from 9 x 10-12 (m/s) to 1 x 10-7 (m/s) within a 

void ratio range of 0.5 to 7. The ASTM-D2435 standard oedometer test is not 

applicable for MFT samples with an initial water content and void ratio higher 

than 65 % and 1.6, respectively. For MFT with a natural water content of 171%, 

the falling head test can measure the hydraulic conductivity for initial void 

ratios larger than 1.5. Rowe cell tests cover the measurement range of both the 
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standard oedometer tests and the falling head tests.  

• The hydraulic conductivity measurements obtained from the Rowe cell tests 

are higher than the those from standard oedometer tests when the void ratio of 

MFT samples is less than 1.5 and higher than the measurements from falling 

head tests when the void ratio of MFT samples is larger than 3. Additionally, 

the initial void ratio affects the compressibility of MFT in low effective stress 

(σ’< 10 kPa) and this effect is diminished when the effective stress of MFT 

sample is larger than 10 kPa. 

• The correlation relationship of k-n is superior to the relationship of k-e for both 

mature fine tailings samples and various fine oil sand tailings. It is suggested 

to use Equation 4.7 or 4.8 to predict the hydraulic conductivity of mature fine 

tailings, and Equations 4.13 or 4.14 to predict or analyze the hydraulic 

conductivity for various fine oil sand tailings. 

• According to the evaluation results of empirical equations (presented in 

Chapter 4), equations proposed by Carrier (1984) and Morris et al. (2003), are 

not applicable for fine oil sand tailings to predict k values whereas equations 

proposed by Morris et al. (2000), Dolinar (2009) and Paul (2011) have 

relatively low predictive capacities and equations proposed by Samarasinghe 

et al. (1982) coupled with Sridharan and Nagaraj (2005), Suthaker (1995) and 

Mbonimpa et al. (2002) provide relatively accurate predictions of k values for 

fine oil sand tailings. 
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5.3 Engineering Significance 

Compression of MFT appears to be very slow and MFT remains suspended in 

tailings pond for decades due to low permeability. Large volumes of MFT continually 

accumulate in tailings ponds, which produces the need for a large containment pond. 

This can lead to environmental concerns and MFT management challenges. Hydraulic 

conductivity is one of the most important properties of MFT as it controls consolidation 

behaviour. Clear understandings of hydraulic conductivity and its relationship with void 

ratio are essential to MFT management and treatment. 

The practical significance of establishing the relationship between hydraulic 

conductivity and void ratio (k-e relationship) for fine oil sand tailings is to investigate 

the consolidation behaviour of these tailings, which undergo large settlement during 

consolidation (Suthaker 1995), based on large strain consolidation theories. These 

theories require explicit relationships between hydraulic conductivity and void ratio, as 

well as a relationship between void ratio and effective stress (Gibson et al. 1967). In 

addition, from a practical point of view, the k-e relationship can be used to quickly 

estimate the hydraulic conductivity in preliminary design stages for tailings disposal 

projects without excessive time or prohibitive testing costs.  

5.4 Recommendations 

The following recommendations are suggested for future studies: 

• In order to countercheck the performance of the Rowe cell in terms of 

measuring the hydraulic conductivity of soft-fine grained geomaterials, 

additional testing using kaolinite or other general soils, placed in a slurry 
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consistency, should be performed in the Rowe cell test. 

• A higher precision pressure equipment than the BK pressure panel used in this 

study is required for future research, particularly for soft fine-grained 

geomaterials where a low-pressure application is required. 

• The possible factors which affect the hydraulic conductivity of fine oil sand 

tailings, particularly at the high void ratio, should be further investigated. 
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