
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

9-27-2017 1:00 PM 

The Lasting Effects of Perceived Predation Risk on the Avian The Lasting Effects of Perceived Predation Risk on the Avian 

Brain and Behaviour Brain and Behaviour 

Lauren E. Witterick 
The University of Western Ontario 

Supervisor 

Dr. Liana Zanette 

The University of Western Ontario 

Graduate Program in Biology 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Lauren E. Witterick 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Witterick, Lauren E., "The Lasting Effects of Perceived Predation Risk on the Avian Brain and Behaviour" 
(2017). Electronic Thesis and Dissertation Repository. 4962. 
https://ir.lib.uwo.ca/etd/4962 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.lib.uwo.ca%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4962?utm_source=ir.lib.uwo.ca%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

Predators affect prey populations not only through direct killing, but also through perceived 

predation risk – the ‘fear’ of predators.  Responding to predation risk is critical for prey 

survival, however perceived predation risk can have lasting effects ranging from individual 

changes in neurobiology up to population level effects. I manipulated perceived predation 

risk using auditory playbacks of predators or non-predators in wild caught black-capped 

chickadees (Poecile atricapillus) in acoustic isolation and wild caught brown-headed 

cowbirds (Molothrus ater) in large outdoor aviaries. I found changes in dendritic morphology 

and inhibited neurogenesis in response to increased perceived predation risk lasting at least 

one week.  I also found changes in both escape behaviour and in the response to a conspecific 

alarm call.  My research shows that perceived predation risk has long-lasting effects on both 

the brain and behaviour, with applications for both ecologists and biomedical researchers. 

Keywords 

Predator-prey ecology, fear, perceived predation risk, post-traumatic stress disorder, nucleus 

taeniae of the amygdala, hippocampus, caudal nidopallium, dendritic morphology, ΔFosB, 
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Chapter  1    

1   General Introduction 

1.1   Predator-Prey Interactions 

 Predator-prey dynamics traditionally focused on the impact of predators based 

solely on how many prey they could capture and kill (Taylor 1984, Abrams 2000, 

Vandermeer et al. 2001), as predation represents the ultimate, negative effect on 

individual fitness since dead prey do not reproduce (Kavaliers and Choleris 2001, 

Boonstra 2013). However, most predators encounter more prey than they kill, as limited 

capture success gives many prey the opportunity to escape from the jaws of death 

(Vermeij 1982).  For example, under severe winter conditions, recently reintroduced 

wolves (Canis lupus) in Yellowstone were only successful in killing elk (Cervus elaphus)  

in 26% of predation attempts, killing only 3% of the elk they chased (Mech et al. 2001).  

Additionally, the Merlin (Falco columbarius) predation success rate peaks at 26% of 

attempts across a variety of hunting strategies and observed populations (Page and 

Whitacre 1975, Buchanan et al. 1988).  Few species reach a predation success rate of 

90%, with success rates that high generally restricted to predation on prey in vulnerable 

sizes classes (Vermeij 1982).  Given the low success rates, many individuals will survive 

predation attempts, learning and adapting from the experience. 

1.2   Anti-predator response 

In order to survive, all animals must be able to recognize predation risk and 

respond accordingly.  In high predation environments, individuals may use adaptive 

avoidance to alter their behaviour and minimize the potential for predation (Lima and 
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Dill 1990, Lima and Bednekoff 1999). This behaviour can either be reactive to predation 

or predictive based on cues of predator presence, and may include spending more time 

under cover, increased vigilance, or changes to feeding behaviour, habitat selection, or 

escape behaviour (Lima and Dill 1990, Lima 1998, Steiner 2007, Walters et al. 2017).  

For example, increased predation pressure from reintroduced wolves led elk in 

Yellowstone to shift to conifer dominated feeding areas rather than their preferred 

grasslands, altering the habitat selection in elk (Creel et al. 2005).   These behavioural 

changes from increased predation risk may also be accompanied by physiological 

changes, such as increased production of corticosteroid hormones (Boonstra et al. 1998, 

Clinchy et al. 2011b).  Increased corticosteroid hormones from predator presence can 

lead to demographic consequences, as high levels of corticosteroid hormones have been 

connected with smaller litters in snowshoe hares (Lepus americanus) (Sheriff et al. 2009).  

Although these changes in behaviour and physiology can have lasting effects on 

populations, they traditionally had been thought to be acute and reversible changes, with 

the assumption that behaviour and physiological condition would return to baseline once 

the stress had been removed (Cannon 1915, Sapolsky 2004).  However, elevated 

corticosteroid hormones from increased predation risk can also induce lasting physical 

changes in prey species. 

For some species, the presence of predators or predator cues can induce 

permanent morphological changes. For example, the presence of predators can induce a 

larger body phenotype in tadpoles (Rana piricia, Rana sylvatica), with a cost of reduced 

swimming performance (Kishida and Nishimura 2004, Middlemis Maher et al. 2013).  

Additionally, Daphnia have been shown to grow larger helmets and longer tail spines in a 
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high predator environment (Krueger and Dodson 1981, Dodson 1989).  While these 

changes in behaviour, physiology, and morphology can help individuals avoid predation, 

they can also incur costs with repeated challenges. 

The impact of predators extends past direct consumption alone, as the non-

consumptive effects of predation risk can have a greater impact on populations than 

consumption.  The presence of predators has been shown to have a greater effect on prey 

demography, growth, maturation, and density than consumption, with the effects 

especially pronounced when prey experience limited resources and increased competition 

(Preisser et al. 2005, Bolnick and Preisser 2005).  These non-lethal effects of predators 

can extend up to the population and community level when individuals undergo repeated 

challenges (Lima 1998, Creel and Christianson 2008, Cresswell et al. 2010).   

The net effect of these anti-predator responses can change prey population 

demographics, as the costs associated with avoiding predation can affect reproduction 

and offspring survival.  For example, exposing song sparrows (Melospiza melodia) to 

increased perceived predation risk led to a 40% reduction in offspring survival (Zanette et 

al. 2011).  Perceived predation risk can also lead to cascading effects, with changes in 

perceived predation risk in a mesocarnivore affecting species at three different levels of 

the food chain (Suraci et al. 2016).  These demographic consequences can have 

epigenetic actions extending across generations, leading to important ecosystem 

implications. 
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1.3   Predation Risk and the Brain 

Studying how perceived predation risk affects the brain will expand our 

understanding of the underlying causes of ecological changes associated with increased 

predation risk, as changes in the brain can impact the individual long after the threat of 

predation has passed.  Predation stress has been shown to have long lasting effects on 

prey species, based on a range of different measures.  Prey learn from previous predation 

experience, and the memory of a predation event or exposure to predator cues can lead to 

lasting changes in prey behaviour.  For example, ringed salamanders (Ambystoma 

annulatum) exposed to predator cues as embryos showed significant behavioural changes 

post-hatching, as they were both less active and spent more time under vegetation 

(Mathis et al. 2008).  Additionally, when predator cues were associated with higher risk, 

wood frog tadpoles (Rana sylvatica) retained the predator-related information longer 

(Ferrari et al. 2010).  Retaining cues related to previous predation experience is important 

for future survival, and can be seen not only in behaviour, but also in lasting changes in 

the brain.  For example, predator exposure has been shown to induce changes in the 

dendritic morphology of the brain of lab rats, through alterations to dendritic length, 

branching, and number of spines (Baran et al. 2005, Mitra et al. 2009, Adamec et al. 

2012).  Predation stress has also been shown to inhibit brain cell proliferation in rats and 

fish (Tanapat et al. 2001, Falconer and Galea 2003, Dunlap et al. 2016).   Finally, 

increased perceived predation risk has been shown to increase immediate early gene 

activated protein production in the brains of rats and birds in response to predator cues 

(Staples et al. 2009, Hobbs 2015).  These changes in the brain can be long lasting, and 

continue to impact individuals long after the immediate threat of predation has been 
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removed.  Understanding the neural mechanisms behind predation stress can provide us 

with a greater understanding of the underlying causes of changes in behaviour and 

physiology. 

There are three brain regions implicated in the stress response mediating fear and 

anxiety: the amygdala, the hippocampus, and the medial prefrontal cortex.  The amygdala 

is the region most implicated in fear, and is of particular importance in learned fear 

(Gross and Canteras 2012).  The amygdala is thought to play a crucial role in fear 

processing, through the development and expression of conditioned fear, detecting 

aversive environmental stimuli and responding accordingly (Davis 1992, Janak and Tye 

2015).  The hippocampus is important for spatial memory, interacting with the amygdala 

to integrate environmental context to predator cues (Gross and Canteras 2012).  Finally, 

the medial prefrontal cortex is though to influence the expression of fear conditioning 

through interactions with the amygdala (Gross and Canteras 2012), in addition to 

controlling the emotional response (Steimer 2002).  

1.4   Predation Risk and Post Traumatic Stress Disorder 

Understanding the effects of perceived predation risk is useful not only for 

studying predator-prey dynamics, but also for modelling the effects of life threatening 

traumatic stress in humans.  Experiencing, witnessing, or repeated exposure to life 

threatening traumatic events can lead to the development of post traumatic stress disorder 

(PTSD) in humans (American Psychiatric Association 2013).  Symptoms can include 

intrusive memories, changes in emotional reactions, and avoidance behaviour, with 

diagnosis possible after symptoms are present for at least one month (American 

Psychiatric Association 2013).  Individuals with PTSD may also have an increased 
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propensity for drug abuse and shifts in response to non-stress related stimuli (American 

Psychiatric Association 2013).  The estimated lifetime prevalence for PTSD in humans is 

7.8%, with woman more than twice as likely as men to develop PTSD, and onset most 

commonly associated with combat stress in men and sexual violence in women (Kessler 

et al. 1995).   

In humans, long term changes in neurobiology have been associated with PTSD.  

The three brain regions thought  to be involved in the human stress response are the 

amygdala, the hippocampus, and the medial prefrontal cortex (Bremner et al. 1999, Nutt 

and Malizia 2004, Shin et al. 2006).  For example, in humans diagnosed with PTSD, 

negative trauma related stimuli induced an increased response in the amygdala 

(Protopopescu et al. 2005), suggesting that this region is sensitive to stress.  Additionally, 

those diagnosed with PTSD showed a significant reduction in hippocampal volume when 

compared to healthy individuals (Gurvits et al. 1996, Bremner et al. 1997).  Combat 

veterans also showed decreased blood flow in the medial prefrontal cortex in response to 

traumatic images and sounds (Bremner et al. 1999).  Animal models are often used to 

study the etiology of PTSD, to gain a better understanding of the neurobiological 

mechanisms leading to changes seen in those diagnosed with PTSD.  By focusing on the 

causes of PTSD rather than just studying the symptoms and the behavioural response, 

therapies can be targeted to reversing the effects of the traumatic event or mitigating the 

impact that these lasting changes have on individual behaviour.  

Perceived predation risk presents an excellent stimulus to use in animal models 

for studying the effects of PTSD, which can be induced by life threatening traumatic 

events.  Controlled manipulations of predation risk on animal models offer many 
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advantages for the study of PTSD for both ecologists and biomedical researchers (Cohen 

et al. 2012, 2014), with the extreme stress of predation mimicking the circumstances 

leading to PTSD in humans (Clinchy et al. 2011a).  Animal models have shown 

behavioural changes consistent with the increased anxiety present in those with PTSD in 

response to increased perceived predation risk (Adamec & Shallow, 1993).   

Additionally, lab studies using animal models have shown long lasting changes in neuron 

morphology and protein expression in response to increased perceived predation risk 

(Adamec et al., 2012; Mitra et al., 2009; Staples et al., 2009).  Animal models using 

perceived predation risk are advantageous in studying the effects of PTSD because the 

traumatic event induces no physical pain, while resulting in similar physiological and 

behavioural abnormalities seen in those diagnosed with PTSD (Cohen et al. 2012, 2014, 

Clinchy et al. 2013, Zoladz and Diamond 2016).   

1.5   Measuring Fear in Wild Animals 

 Wild caught animals provide an excellent model to assess how perceived 

predation risk affects the brain and behaviour, as they have spent their entire life escaping 

predators so their response would more closely mimic the response in free-living animals 

than a laboratory raised animal. Wild animals would have learned to assess predator cues 

in order to survive, habituating to non-threatening cues of predation risk, although the 

extent of their previous predation experience is unknown.  For example, Fiddler Crabs 

(Uca vomeris) exposed to dummy predators showed the ability to habituate to the 

presence of the predator over time, but also adjusted their behaviour when the predator 

location was altered and the apparent risk level changed (Hemmi and Merkle 2009).  

Exposing naïve lab raised animals to predators leads to potential overestimation of 
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predation risk, as they would not have learned to evaluate the extent of predation risk 

through previous experience with observational learning.  Naïve animals can also have 

significant differences in their anti-predator response in comparison to experienced 

individuals (Brown and Warburton 1999).  Using wild caught animals to assess the 

effects of perceived predation risk on the brain and behaviour would provide the most 

ecologically relevant view of the natural response that could be tested in a captive 

environment.   

 When measuring the effects of perceived predation risk on the brain, little is 

known about the effects on wild animals, particularly for non-mammalian species.  Very 

few studies have investigated the effects of perceived predation risk on the avian brain 

and the networks processing predator induced fear.  Increased activation has been found 

in the avian brain in response to fearful stimuli in captive, wild caught animals,  

(Marzluff et al. 2012, Cross et al. 2013, Hobbs 2015), however the effects of perceived 

predation risk on the brain have never been tested in a semi-natural or free-living 

environment.  It would be expected that encounters with predators or predator cues would 

be perceived as life threatening by free-living prey, and lead to similar long lasting 

changes in the brain to those seen in humans with PTSD and in rodents (Clinchy et al. 

2011a, Boonstra 2013, Cohen et al. 2014). When quantifying the long term effects of fear 

in the brain of wild animals, it would be expected that they have prior experience with 

predation risk and would be functioning at a higher baseline level of risk than predator 

naïve lab raised animals.  Therefore any significant increases in a measure of perceived 

predation risk, whether on behaviour, physiology, or neurobiology, in wild animals 
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would represent a meaningful effect of fear (Clinchy et al. 2011a, Boonstra 2013, Cohen 

et al. 2014).   

Three brain regions have been suggested as part of the network that processes 

predator induced fear in the avian brain: the nucleus taeniae of the amygdala (TnA), the 

hippocampus (Hp), and the caudal nidopallium (NC) (Cross et al. 2013, Hobbs 2015).  

The TnA is the avian homologue to the mammalian medial amygdala (Yamamoto et al. 

2005), which plays a crucial role in fear processing (Davis 1992, Gross and Canteras 

2012).  It is suggested that this region acts as a switchboard, conveying information about 

threatening stimuli in the environment to other parts of the brain, with increased 

activation shown in response to both predator presence and cues (Marzluff et al. 2012, 

Cross et al. 2013, Hobbs 2015).  

The avian Hp is homologous to the mammalian Hp, although its role in 

processing predation risk is not as well defined as the TnA (Colombo and Broadbent 

2000, Bingman et al. 2003, Cross et al. 2013).  The Hp plays a role in many processes 

involving learning and memory, including encoding and retrieval of fear memory and the 

processing of spatial information (Colombo and Broadbent 2000, Bingman et al. 2003, 

Gross and Canteras 2012).  Increased activation has been shown using both positron 

emission tomography and immediate early gene activation in response to threatening 

stimuli, including predator cues and dead conspecifics (Cross et al. 2013, Hobbs 2015). 

The role of the avian NC, analogous to the mammalian prefrontal cortex, is also 

not as well defined as the TnA.  The avian NC is proposed to be involved in executive 

functions and processing information to generate behaviour (Herold et al. 2011).  
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Additionally, the increased activation has been found in the NC in response to viewing a 

predator (Cross et al. 2013). 

1.6   Quantifying the Effects of Fear in the Brain 

In order to asses the effects of perceived predation risk on the brain, it is 

necessary to quantify the extent of any changes that occur.  Little is known about the 

effects on wild caught animals, particularly for a non-mammalian species.  By adapting 

measures used to assess changes in the brain used in mammals, changes in brain 

activation and neural structure can be measured in a semi-natural environment.  This 

allows us to assess how laboratory methods for studying the brain translate to the field, 

which could be beneficial for future comparison with biologically meaningful effects on 

reproduction (Clinchy et al. 2011a).  In particular, I will focus on three different markers 

for assessing long lasting changes in the avian brain: ΔFosB, dendritic morphology, and 

neurogenesis. 

One method which has been used to study the lasting effects of perceived 

predation risk in the brain is through changes to ΔFosB (Staples et al. 2009, Hobbs 2015).  

ΔFosB is a protein splice variant of FosB, a transcription factor produced rapidly and 

transiently in response to stress (Nestler et al. 2001).  ΔFosB is a relatively long-lived 

molecule that accumulates in the brain following the breakdown of FosB, but can no 

longer be detected 1-2 months post stimulus withdrawal (Nestler et al. 2001).  Changes in 

ΔFosB activation evident after seven days are representative of changes seen in PTSD, 

and are considered long lasting when individual lifespan is considered (Staples et al. 

2009, Cohen et al. 2012).  Perceived predation risk increased ΔFosB activation in the 

TnA and the HP seven days post treatment in black-capped chickadees under controlled 
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laboratory manipulations (Hobbs 2015), however it has not been studied in birds 

manipulated in semi-natural conditions.   

The lasting effects of perceived predation risk can also be studied through 

changes in dendritic morphology.  Dendrites are the component of neurons that are 

specialized to receive signals (Kulkarni and Firestein 2012).  Stress induces structural 

plasticity, modifying the amount of connectivity between neurons to regulate excitatory 

neurotransmission through growth or retraction of spines, producing immediate and long 

term changes in synaptic function (Leuner and Shors 2013).  Changes to dendritic 

morphology can be measured by examining changes to length, number of branches, or 

number of spines in the brain area of interest.  Although linked to ΔFosB activation 

(Nestler et al. 2001, Ruffle 2014), changes to dendritic morphology can be longer lasting 

and potentially permanent, with changes still evident after behavioural extinction 

(Maroun et al. 2013) and 8 weeks post exposure (Juarez-Mendez et al. 2006).  These 

lasting changes are thought to maintain traces of the fear response for future reactivation 

after behavioural extinction (Pignataro and Ammassari-Teule 2015).  Previous studies 

have shown changes in dendritic morphology from perceived predation risk in rats over a 

week after the traumatic event (Baran et al. 2005, Mitra et al. 2009, Adamec et al. 2012), 

however this has yet to be tested in an avian species.  

A third measure to look at the lasting effects of perceived predation risk is 

through neurogenesis, the generation of new neurons in the brain.  Neurogenesis 

generally consists of three distinct phases: cell proliferation, neuronal differentiation, and 

maturation into functional neurons (Christie and Cameron 2006).  Neurogenesis is 

thought to be involved in brain remodeling, allowing new memories to form and old 
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memories to break down and be removed (Frankland et al. 2013, Mongiat and Schinder 

2014).  High levels of neurogenesis has been shown to disrupt established hippocampus-

dependent memories, leading to decreased memory retention (Akers et al. 2014).  

Neurogenesis is also highly variable depending on the environment, as experiences such 

as learning, environmental enrichment, exercise, and stress, can affect the rate of 

neurogenesis (Deng et al. 2010, Schoenfeld and Gould 2012, Egeland et al. 2015).  

One particular stressor that has been shown to affect neurogenesis is predation 

risk, with multiple different cues of predation leading to decreased neurogenesis.  For 

example, rats exposed to fox odor cues showed decreased cell proliferation in the dentate 

gyrus (Tanapat et al. 2001, Falconer and Galea 2003).  Additionally, living in an 

environment with a naturally high predation risk led to decreased cell proliferation in 

electric fish (Brachyhypopomus occidentalis) when compared to those in a low predation 

pressure environment (Dunlap et al. 2016).  However, this was a correlational study 

looking at natural variation in predation risk, with little known about how these wild 

caught animals would respond to a controlled predation risk manipulation.  

 In order to quantify differences in neurogenesis, we can quantify the number of 

neurons expressing doublecortin (DCX).  DCX is a microtubule-associated protein 

associated with migrating immature neurons.  It is a reliable marker to visualize and 

quantify neurogenesis, detectable for at least 60 days in newborn neurons, with some 

neurons expressing DCX for at least one year (Couillard-Despres et al. 2005, Vellema et 

al. 2014).  Additionally, DCX has the advantage over bromodeoxyuridine (BrdU), 

another common marker of neurogenesis, because it does not require in vivo labelling of 

neurons through injections (Couillard-Despres et al. 2005).  Using DCX allows us to 
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minimize handling the research animals, preventing additional stress that could be 

confound the experiment. Finally, there is evidence for co-labelling between Egr-1, an 

immediate early gene product, and DCX (Vellema et al. 2014).  Egr-1 has been shown to 

be elevated in response to increased perceived predation risk (Hobbs 2015), so it would 

be expected that if there was a link between these measures that we would also see 

changes in DCX with increased perceived predation risk. 

1.7   Research Objectives 

My research aims to answer the question of how chronic perceived predation risk 

continues to affect the avian brain even after the stimulus is removed. My first objective 

is to determine if perceived predation risk induces lasting changes to the dendritic 

morphology of the brain. My second objective is to test for lasting changes in brain 

activation from perceived predation risk in a semi-natural environment, allowing birds to 

be protected from direct predation while still exposed to their natural environmental 

variation and predator cues.  I hypothesize that under increased perceived predation risk, 

birds will show long lasting changes in brain activation and dendritic morphology.  I 

predicted that I would see increased brain activation in both the Hp and the TnA, 

dendritic retraction in the Hp and dendritic extension in the TnA.  I also hypothesize that 

any changes we see in the brain will translate to long lasting changes in anti-predator 

behaviour.   

In Chapter 2 my objective was to assess the effects of chronic perceived predation 

on the dendritic morphology and behaviour in Black-capped chickadees (Poecile 

atricapillus), tested in acoustic isolation in the lab.  In Chapter 3, I expanded this 

objective and assessed the effects of chronic perceived predation risk on the brain 
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activation, neurogenesis, dendritic morphology, and behaviour in Brown-headed 

cowbirds (Molothrus ater) living in semi-natural outdoor aviaries.  In Chapter 4, I discuss 

the broader ecological and biomedical significance of my findings, and how they can 

expand our knowledge of the effects of perceived predation risk on the brain.   

1.8   Study Species  

 I used two different study species in my experiments, in order to expand on 

previous research.  For Chapter 2, my study species is the Black-capped chickadee 

(Poecile atricapillus; hereafter referred to as chickadees).  In Chapter 3, my study species 

is the Brown-headed cowbird (Molothrus ater; hereafter referred to as cowbirds). 

 Black-capped chickadees are a well-known and easily recognizable bird across 

North America.  Chickadees are found throughout the majority of Canada and the 

northern two-thirds of the United States (all material reviewed from Smith, 1991 unless 

stated otherwise).  They are year-round residents, making them an ideal research subject 

as they are accessible for study throughout the year.  Chickadees average 10-14 grams 

and are distinguished by their dark cap and bib; white cheeks; and dark back, wings, and 

tail. Chickadees feed on a variety of insect and plant species, and cache food for future 

use. 

 Chickadees have a complex vocal repertoire and use a variety of different 

vocalizations to communicate.  They have at least 15 different vocalizations, signalling 

territories, feeding, reproductive availability, or predator presence.  Chickadees will use 

the high zee call to alert other members of the flock that there is an immediate predation 

threat.  The high zee is primarily given by males in response to avian and mammalian 
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predators.  It conveys such a strong message that many other species of small birds will 

also freeze or take cover upon hearing this call.  

 Chickadees live in non-breeding flocks during the fall and winter, shifting to 

monogamous, territorial breeding pairs in the spring and summer.  They nest in cavities 

in stumps and rotting branches, with females responsible for nest building and the 

incubation of eggs.  Males and females share feeding duties when the young have 

hatched.  The chickadees used in my experiment were all resident to London, in the area 

surrounding the University of Western Ontario.  Chickadees are known to adapt readily 

to captivity, and did well in the semi-natural aviaries where they were housed on campus. 

 Brown-headed cowbirds are found across North America, ranging from northern 

Mexico up to Southern Canada (all material reviewed from Ortega, 1998 unless stated 

otherwise).  Cowbirds are migrants, travelling between wintering and breeding grounds.  

Males are distinguished by their glossy back plumage and brown head while females 

have brown plumage with fine light streaking. Cowbirds are ground foragers, feeding 

primarily on insects and seeds. 

 Cowbirds flock together in groups throughout the year.  As an obligate brood 

parasite, they lay their eggs in other birds’ nests and are known to parasitize at least 220 

different host species (Friedmann and Kiff 1985).  This minimal investment in parental 

care allows for assessment of the effects of perceived predation risk during the breeding 

season with minimal impact on behaviour resulting from parental care responsibilities.  

The cowbirds used in this experiment were all captured during migration at a banding 
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station in Southern Ontario.  They were group housed in semi-natural aviaries, to mimic 

their natural environment as closely as possible. 
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Chapter  2    

2   Assessing the effects of perceived predation risk on dendritic 
morphology and behaviour 

2.1   Introduction 

 Predators can affect prey through both direct predation (e.g. killing and eating 

prey) and through indirect effects on prey species.  All living organisms face the threat of 

predation, although responses differ across taxa.  Understanding how prey perceive 

predation risk is essential to our knowledge of predator-prey ecology, as lasting changes 

in behaviour are often first signalled by a change in the brain.  By expanding our 

knowledge of how a life threatening event like predation affects the brain, this can aid our 

understanding of how life-threatening situations can impact the human brain and affect 

human health. 

 In order to survive, animals must be able to perceive and respond to predation 

risk.  Anti-predator responses vary across taxa, but can generally be broken down into 

changes in physiology, morphology, and behaviour.  In high risk environments, 

behavioural changes to minimize predation risk can include spending more time under 

cover, increasing vigilance, or changing feeding behaviour, habitat selection, or escape 

behaviour (Lima and Dill 1990, Lima 1998, Steiner 2007, Walters et al. 2017).  When 

facing increased predation risk, animals may also decrease the frequency of movement 

and reduce spontaneous activity levels to minimize the potential for detection by 

predators (Lima and Dill 1990, Lima 1998).  These behavioural changes may be 

accompanied by physiological changes, such as increased production of corticosteroid 

hormones (Boonstra et al. 1998, Clinchy et al. 2011b), or morphological changes to avoid 
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gape limited predators (Krueger and Dodson 1981, Dodson 1989, Kishida and Nishimura 

2004).  When exposed to repeated challenges, the net effect of these anti-predator 

responses can change prey population demographics, as anti-predator costs affect 

reproduction and offspring survival (Creel and Christianson 2008, Zanette et al. 2011). 

 In addition to changes in the behavioural response when a predator is present, 

prey will also learn cues associated with predation risk, retaining the memory of cues 

associated with the predation event. For example, ring salamanders (Ambystoma 

annulatum) exposed to predator cues as embryos showed significant behavioural changes 

post-hatching, as they were both less active and spent more time under vegetation 

(Mathis et al. 2008).  Additionally, prey have been shown to retain the memory of 

predator-related information longer when they had previously been associated with 

higher risk cues (Ferrari et al. 2010).  Prey species can also learn to recognize both visual 

and acoustic social cues alerting predator presence, with socially acquired predator 

avoidance found in fish, birds, eutherians, and marsupials (Griffin 2004).  Black-capped 

chickadees, in particular, will use a high zee call to alert other members of their flock to 

an immediate predation threat (Smith 1991).  This call is given primarily by males in 

response to avian and mammalian predators, and conveys such a strong message of risk 

that many other small bird species will freeze or take cover in response to the high zee 

call (Smith 1991).   

 In order to better understand the underlying causes of these ecological changes 

associated with increased predation risk, it is beneficial to study how perceived predation 

risk affects the brain (Clinchy et al. 2011a, 2013). Wild caught animals present an 

excellent model to assess the how perceived predation risk affects the brain, as they likely 
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have some previous predation experience. When quantifying fear in the brain of wild 

animals, it would be expected that they have prior experience with predation risk, rather 

than predator exposure as a novel stimulus, and would be functioning at a higher baseline 

level of risk than predator naïve lab raised animals since they are likely to have 

experience judging cues of predation risk.  Therefore any significant increases in a 

measure of perceived predation risk, whether on behaviour, physiology, or neurobiology, 

in wild animals would represent a meaningful effect of fear (Clinchy et al. 2011a, 

Boonstra 2013, Cohen et al. 2014).  

Two of the brain regions thought to be involved in fear learning and memory are 

the amygdala and the hippocampus.  The region most implicated in fear learning is the 

amygdala (Gross and Canteras 2012).  The amygdala is thought to play a crucial role in 

the development and expression of conditioned fear, and in the detection of aversive 

environmental stimuli and responding accordingly (Davis 1992, Janak and Tye 2015).  

The hippocampus interacts with the amygdala to integrate environmental context to 

predator cues and plays an important role in learning and memory (Gross and Canteras 

2012).  In the avian brain, two brain regions that have been suggested as part of the 

network processing perceived predation risk are the nucleus taeniae of the amygdala 

(TnA),  and the hippocampus (Hp) (Cross et al. 2013, Hobbs 2015).  The avian 

homologue to the medial amygdala is the TnA, which plays a crucial role in fear 

processing (Davis 1992, Gross and Canteras 2012).  The TnA is thought to be the centre 

of the avian fear network, conveying information about threatening environmental stimuli 

to other parts of the brain. Increased activation has been round in the TnA in response to 

predation stress (Marzluff et al. 2012, Cross et al. 2013, Hobbs 2015).  The role of the 
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avian Hp, homologue to the mammalian Hp, is not as well defined as the TnA (Colombo 

and Broadbent 2000, Cross et al. 2013).  The Hp is responsible for the encoding and 

retrieval of fear memory and the processing of spatial information (Colombo and 

Broadbent 2000, Gross and Canteras 2012).   

 Understanding the neural mechanisms behind a life-threatening event like a 

predation attempt is beneficial not only for studying predator-prey ecology, but also for 

modelling how these traumatic events affect the human brain.  In humans, exposure to a 

life-threatening traumatic event can lead to the development of post traumatic stress 

disorder (PTSD) (American Psychiatric Association 2013).  Long term changes in human 

neurobiology have been associated with PTSD, with the amygdala, hippocampus, and 

medial prefrontal cortex thought to be involved in the human stress response (Shin et al. 

2006, Bremner et al. 2008).  Animal models are often used to study the etiology of PTSD, 

in order to understand the neurobiological mechanisms behind the symptoms. 

 Controlled manipulations of perceived predation risk presents an excellent animal 

model for PTSD, offering many advantages for both ecologists and biomedical 

researchers (Cohen et al. 2012, 2014) using predation risk to mimic the circumstances 

leading to PTSD in humans (Clinchy et al. 2011a).  PTSD research has traditionally 

focused on the treating the symptoms of the disease, rather than understanding the cause.  

Using animal models allows researchers to control the conditions leading to the onset of 

PTSD symptoms, to better understand the neurological mechanisms leading to this 

condition.  Animal models have shown behavioural changes consistent with human 

PTSD symptoms, and lab studies have shown long lasting changes in neuron morphology 

and protein expression in response to increased perceived predation risk (Adamec and 
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Shallow 1993, Mitra et al. 2009, Staples et al. 2009, Adamec et al. 2012).  Additionally, 

using perceived predation risk to model PTSD allows for the manipulation of a life 

threatening traumatic event without inducing physical pain, while still resulting in similar 

physiological and behavioural abnormalities (Clinchy et al., 2013; Cohen et al., 2012, 

2014; Zoladz & Diamond, 2016).  One major criticism of using perceived predation risk 

is whether lab rats with no previous predation experience would show the same response 

to predation stress as their free living counterparts, which can be mitigated through the 

use of wild caught animals (Clinchy et al. 2011a).  

 In order to quantify the brain response to increased perceived predation risk, I 

looked at changes in dendritic morphology.  Dendrites are the component of neurons 

specialized to receive signals (Kulkarni and Firestein 2012).  Stress induces structural 

plasticity, modifying the connectivity between neurons to regulate excitatory 

neurotransmission and producing immediate and long lasting changes in synaptic 

function that can be measured as changes in length, branching, or number of spines, with 

changes differing between acute and chronic stimuli (Leuner and Shors 2013).  Previous 

studies have shown changes in dendritic morphology from perceived predation risk in 

rats, with reduced length and branching in the Hp and increased branching in the 

basolateral amygdala (Baran et al. 2005, Mitra et al. 2009, Adamec et al. 2012), however 

these changes have never been assessed in a wild caught animal.  Previous work has 

shown increased ΔFosB, a protein splice variant of the immediate early gene FosB, in the 

TnA and Hp of wild caught black-capped chickadees one week after increased perceived 

predation risk (Hobbs 2015).  Overexpression of ΔFosB increases expression of cyclin-

dependent kinase-5 (CDK-5), which is one of the pathways that have been shown to 
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induce changes in dendritic morphology (Chen et al. 2000, Nestler et al. 2001, Norrholm 

et al. 2003, Ruffle 2014).  Given the high levels of ΔFosB evident in both the Hp and the 

TnA under the same experimental conditions, it would be expected that we would also 

see structural plasticity in these regions.  Finally, both males and females were assessed, 

to account for any sex differences in the response to increased predation risk. 

 My study aimed to investigate the long term behavioural and neurological 

changes in black-capped chickadees (Poecile atricapillus) in response to increased 

perceived predation risk.  I used playbacks of predator and non-predator species to 

manipulate perceived predation risk (following Zanette et al. 2011), then looked at the 

behavioural response to a conspecific alarm call and the effect on dendritic morphology 

seven days later.  

 I predicted that I would see long lasting changes in behaviour in response to the 

alarm call, with those exposed to increased predation risk showing a greater response if 

they retained the memory or became sensitized to the predation risk from the previous 

week.  I also predicted that I would see changes in the length, branching, and number of 

spines in birds exposed to the greater perceived predation risk, with the TnA showing 

increased dendritic length and branching and the Hp showing reduced dendritic length 

and branching (Leuner and Shors 2013).  
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2.2   Methods 

2.2.1   Overview 

I used wild caught black-capped chickadees (Poecile atricapillus; hereafter 

referred to as chickadees) to study the long term effects of perceived predation risk 

manipulated through auditory playbacks.  I used auditory playbacks of species known as 

predators or non-predators of chickadees to simulate chronic predation risk over two 

days, following Hobbs (2015).  I looked at long lasting behavioural changes in response 

to a conspecific alarm call and the effect of perceived predation risk on dendritic 

morphology in brain regions thought to be involved in processing the fear circuitry of the 

brain to look for lasting effects of perceived predation risk.  

2.2.2   Predation Risk Manipulation 

Between January and March 2016, I captured 15 chickadees (nine male; six 

female; all after hatch year) using seed baited potter traps from multiple sites at Western 

University, London, Ontario.  Upon capture, chickadees were weighed and sex was 

estimated based on wing chord (males >60mm; females <60mm; confirmed with post 

mortem laparotomy).  I housed chickadees in mixed sex groups of four to six in outdoor 

aviaries with ad libitum access to Mazuri small bird diet, black oil sunflower seeds, 

striped sunflower seeds, mealworms, and water.  Chickadees were captured at least seven 

days prior to the start of manipulations in order to acclimate to captivity. 

Chickadees were randomly assigned to either the predator or non-predator 

treatment while maintaining a balanced sex ratio between the treatments.  For the 

predation risk manipulation, chickadees were transferred to a new cage within individual 

sound-attenuating acoustic chambers.  Each chamber was outfitted with a Hipstreet mp3 



36 

 

player, a set of speakers, and a Logitech webcam.  The chambers were setup so that the 

mp3 player and webcam could be operated for playbacks, recording, and monitoring 

without opening the chamber and disturbing the birds.  The chambers operated on a 

natural light cycle (11.5h light: 12.5h dark) and chickadees had access to food and water 

ad libitum throughout the manipulation.   

 Seven species known to prey on chickadees were used (Table 1), with predator 

and non-predator species matched for maximum amplitude and frequency (Hobbs 2015).  

All calls were obtained from the Macaulay Library Database (Cornell University Lab of 

Ornithology, Ithaca, New York, USA) and the Xeno-Canto foundation (www.xeno- 

canto.org).  I used a sound pressure metre at the centre of the cage at perch height to 

measure the sound level to 74dB.  During the playback periods, chickadees were exposed 

to 5 minutes of calls every hour.  Calls were broadcast at randomly selected intervals with 

each species used one to four times every two hours (depending on call length), and 

different exemplars used for each instance to help prevent habituation. 

Individual birds were transferred to individual acoustic isolation chambers 24 

hours before the manipulation began to acclimate to the new environment.  The predation 

risk manipulation ran for 48 hours, with playbacks running 12 hours each day during 

daylight hours.  Following playbacks, the chickadees were returned to their semi-natural 

home aviary for seven days, after which I conducted a behavioural assay.  Immediately 

following the behavioural assay, birds were transferred to a post-mortem room where 

they were euthanized by isoflurane overdose.   
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Table 2.1: List of species used in the auditory playbacks for the chickadees.  Predator 

and non-predator species were matched based on their acoustic call characteristics 

(frequency and maximum amplitude). 

Predators Non-Predators 
Cooper’s hawk, 

(Accipiter cooperii) 
 

Song sparrow 
(Melospiza melodia) 

American crow 
(Corvus brachyrhynchos) 

 

Mallard 
(Anas platyrhynchos) 

Red-tailed hawk 
(Buteo jamaicensis) 

 

Blue jay 
(Cyanocitta cristata) 

Barred owl 
(Strix varia) 

 

Northern leopard frog 
(Lithobates pipiens) 

Sharp-shinned hawk 
(Accipiter striatus) 

 

Hairy woodpecker 
(Picoides villosus) 

Northern saw-whet owl 
(Aegolius acadicus) 

 

Wood frog 
(Lithobates sylvaticus) 

Merlin 
(Falco columbarius) 

Downy woodpecker 
(Picoides pubescens) 

 

2.2.3   Behavioural Assay 

The behavioural assay took place in the acoustic isolation chamber and consisted 

of 15 minutes of novel cage exploration followed by 15 minutes of exposure to chickadee 

high zee calls.  The novel cage exploration also allowed for an assessment of baseline 

behaviour in the chamber before any additional stimuli were present.  The setup of the 

acoustic isolation chamber was identical to the predation manipulation with the exception 

of the cage, which was substituted with a larger cage (38.5cm x 35cm x 36.5cm) 

containing only black oil sunflower seeds and water. The behavioural assay was recorded 

using the webcam inside the acoustic isolation chamber for later analysis. The high zee 
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playlist consisted of vocalizations from three different individuals, with each call playing 

for 5s followed by 45s of silence (following Hobbs, 2015).  This 60s playlist was 

repeated 15 times at 74dB. 

Behaviour was scored by an observer blind to experimental treatment using an 

ethogram developed to assess chickadee behaviour, looking at consumption, movement, 

aggressive, resting, and immobile behaviours (Appendix 1).  Every change in location 

was recorded in the first 10 minutes of each video to assess exploratory behaviour.  

Additionally, behaviour was scored continuously for 1 minute prior to and for the 1 

minute of the high zee playback to look at individual differences in response the alarm. 

2.2.4   Brain Processing 

All brains were processed following Louth et al. (2017).  Brains were removed 

immediately and incubated in Golgi-Cox Solution (1% potassium dichromate, 0.8% 

potassium chromate, and 1% mercuric chloride in water) in the dark for 25 days, then 

transferred to 30% sucrose for 48h until saturated and frozen at -80°C for long term 

storage.   Brains were returned to 30% sucrose 24h before processing.  Brains were sliced 

at 500µm coronally in 30% sucrose using a vibrotome (Leica VT10005), starting from 

the back of the brain and ending once the anterior commissure had been sliced, and left in 

6% sucrose overnight. Sections were processed in 2% paraformaldehyde for 15 minutes, 

2.7% NH4OH for 15 minutes and fixed in Kodak Fixitive A for 25 minutes, before being 

mounted on slides, dehydrated in ethanol, cleared in citrisolv and coverslipped (see 

Appendix C for staining). 
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2.2.5   Neuron Tracing 

 In each brain region of interest, 4 pyramidal neurons were selected for tracing.  

Each neuron was selected from a difference hemisphere, covering a minimum of two 

slices and four hemispheres within the region of interest.  In the Hp, these were within the 

first three slices on the caudal side of the anterior commissure, and in the TnA they were 

selected from the two slices with the TnA clearly visible. Three-dimensional image 

stacks were captured for each neuron, with images spaces 1µm apart in the z-plane at 

30X magnification with an Olympus BX53 microscope.  Neurons were traced using 

Neurolucida software (MicroBrightField, Williston, VT, USA) and Neurolucida Explorer 

(MBF Bioscience, Williston, VT, USA) software was used to extract data on 

morphological characteristics and perform the Sholl analysis (Sholl 1953).  To be 

selected for the analysis, neurons had to be fully contained within the slice, with no 

breaks in dendritic branches or obtrusions (such as the cell body of another neuron).  I 

captured all images and traced all neurons without knowing which treatment the 

individual belonged to, to avoid bias in the results. Spines were counted over a 10µm 

length of dendrite at three different locations on the longest branch of the apical dendrite 

and the longest basal dendrite.  Counting for the proximal spines started approximately 

10µm from the cell body, distal spines were counted starting approximately 10µm from 

the end of the dendrite, and medial spines were counted at the approximate centre point 

between the proximal and distal measurements. 

2.2.6   Statistical Analysis 

 For the behavioural assay, I calculated the difference between before and during 

the high zee playback for each individual behaviour.  I compared the number of 
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occurrences and the time spent for each behaviour using a non-parametric Mann-Whitney 

U Test.  

 For the general dendritic morphology, I used a two-way ANOVA with treatment 

and sex as fixed factors.  Sex was included as a fixed factor to account for potential sex 

effects, as mammalian research on dendritic morphology is often biased towards males.  

To analyze spine counts, I used a repeated measures ANOVA, with location as my 

repeated measures factor and treatment and sex as fixed factors. 

 For the Sholl analysis, I used a two-way repeated measures ANOVA with 

treatment and sex as fixed factors and the distance from the cell body as the repeated 

measures factor, followed by a Tukey HSD post-hoc test to look for differences between 

treatments at each radial distance.  Prior to analysis with, all data were Box-Cox 

transformed to meet the assumption of homogeneity of variances.  All analyses were 

conducted using Statistica (Version 13.0.04, Dell Inc.).  I present the median and 

interquartile range for behaviour and the non-transformed means ± SE for clarity in the 

brain analyses. 

2.3   Results: 

2.3.1   Behaviour Assay 

 The behavioural assay showed significant, long lasting changes in anti-predator 

behaviour in response to a conspecific alarm call.  Specifically, chickadees exposed to 

predators showed a significant decrease in the number of location movements they made 

around the cage (Fig 2.1; n=15, p=0.015) and the time they spent on these location 

movements (n=15, p=0.024) when comparing before to during the high zee playback.  
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Additionally, chickadees spent more time immobile (Fig 2.2; n=15, p=0.0065) during the 

high zee playback if they had been in the predator treatment one week earlier.  There 

were no sex differences for any of the behaviours assessed (p>0.1). 

2.3.2   Nucleus taeniae of the amygdala (TnA) 

 I found a trend towards increased total dendritic length (Fig 2.3; Treatment: 

F1,11=3.58, p=0.085) in the predator treatment.  I also found a trend towards increased 

branching in the basal dendrites of the TnA (Fig 2.4; Treatment: F1,11=3.76, p=0.078) 

with increased predation risk, however this same difference was not found in the apical 

dendrites of the TnA (Treatment: F1,11=0.26, p=0.620). The Sholl analysis revealed a 

significant treatment effect on the distribution of dendritic length (Fig2.5; 

Treatment*Distance: F9,99=3.28, p=0.0015), with increased predation risk leading to 

clusters of increased dendritic length.  I found no other significant treatment effects, sex 

effects, or interactions for the number of dendrites or number of dendritic spines (all p-

values > 0.1) for the total dendritic material, basal dendrites or apical dendrite.  The Sholl 

analysis revealed no treatment effect, sex effect or interaction for the branching, branch 

endings, or intersections with the Sholl rings (p>0.1).   

2.3.3   Hippocampus (Hp) 

 In the hippocampus (Hp), the Sholl analysis revealed differences in dendritic 

complexity, with both increased perceived predation risk showing clusters of increased 

intersections with the Sholl rings (Fig 2.6; Treatment*Sex*Distance: F8,88=2.56, p=0.015) 

and increased branching (Treatment*Distance: F6,66=2.29, p=0.045; Fig 2.7; 

Treatment*Sex*Distance: F6,66=4.63, p=0.00056), with the differences appearing to be 

driven by the females.  I found no treatment effects, sex effects, or interactions for the 
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number of branches, number of dendrites, the total length of the dendrites, or the number 

of dendritic spines (p>0.1).  Additionally, the Sholl analysis revealed no treatment 

effects, sex effects, or interactions for the complexity of the length or number of branch 

endings (p>0.1).  
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Figure 2.1: The number of location changes within the cage made by chickadees 

significantly differed between treatments in the first minute of exposure to the high zee 

alarm call compared to pre-exposure in chickadees: n=15, U= 6.5, p=0.015.  

 

Figure 2.2: Time spent immobile significantly differed between playback treatments in 

the first minute of exposure to a high zee alarm call: n=15, U= 4, p=0.0065. 
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Figure 2.3: Total dendritic length in the nucleus taeniae of the amygdala (TnA) showed a 

trend to increased length in response to predator playbacks in chickadees: Treatment: 

F1,11=3.58, p=0.085, n=15 (both sexes included). 

 

Figure 2.4: The basal dendrites of the nucleus taeniae of the amygdala (TnA) showed a 

trend toward increased branching in response to predator playbacks in chickadees: 

Treatment: F1,11=3.76, p=0.078, n=15 (both sexes included). 
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Figure 2.5: The dendritic length at each distance from the centre of the cell body on all 

chickadee dendrites in the nucleus taeniae of the amygdala; Treatment*Distance: 

F9,99=3.28, p=0.0015.  



46 

 

A) 

 

B) 

 

Figure 2.6: The number of intersections with Sholl rings at each distance from the centre 

of the cell body on all dendrites in the chickadee hippocampus in A) females and B) 

males; Treatment*Sex*Distance: F8,88=2.56, p=0.015 
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A) 

 

B) 

 

Figure 2.7: The number of branches at each distance from the centre of the cell body on 

all dendrites in the chickadee hippocampus in A) females and B) males; 

Treatment*Sex*Distance: F6,66=4.63, p=0.00056. 
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2.4   Discussion 

 The experimental results demonstrate that manipulating the level of perceived 

predation risk prey are exposed to has long lasting effects on both behaviour and 

neurobiology.  Exposure to high levels of perceived predation risk led to long lasting 

changes in anti-predator behaviour as chickadees made fewer location changes (Figure 

2.1) and spent more time immobile (Figure 2.2) in response to a conspecific alarm call 

one week after the predation risk manipulation.  Decreasing movements is a common 

prey response to increased predation risk, in order to minimize the potential for detection 

by predators (Lima and Dill 1990, Lima 1998).  This provides evidence that behavioural 

changes in response to increased predation risk are long lasting, and can be maintained 

even after the increased risk has been removed.  Additionally, my results present lasting 

changes in the dendritic morphology of two brain regions associated with processing 

predation risk, identifying quantifiable and long lasting changes in neurobiology in 

response to increased perceived predation risk.   

 Finding long lasting changes in both the brain morphology and behaviour in a 

wild caught species has strong implications for both ecology and biomedical research.  

These wild caught individuals had likely already experienced predation attempts prior to 

this study, unlike predator-naïve lab-raised study organisms.  With previous predation 

experience, these animals would likely have learned to distinguish between predator cues 

that require immediate attention and those that do not pose an immediate threat.  This 

increase in the baseline level of predation risk seen in wild animals suggests that any 

changes seen in response to my predation risk manipulation were in addition to any pre-

existing effects prior to capture.  Given the likelihood for previous predation experience, 
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the changes in dendritic morphology I have found may provide a better representation of 

the brain response to traumatic events leading to PTSD in humans.  This study shows 

similar lasting changes in dendritic morphology in the avian brain to those seen in 

laboratory studies on mammals, showing evidence that these changes are comparable 

across multiple taxa and suggesting an adaptive advantage to retaining a memory of 

traumatic situations for future survival.  

 In the TnA, these results follow the same pattern as seen in previous mammalian 

research, with increased predation risk leading to increased length and branching (Vyas et 

al. 2002, 2004, Leuner and Shors 2013).   These long lasting changes in the amygdala, in 

combination with previous research showing increased ΔFosB activation support the 

proposed function of the TnA as the fear processing centre of the avian brain (Cohen & 

Goff, 1978; Hobbs, 2015).  Additionally, stress induced changes in the mammalian 

basolateral amygdala has been shown to be persistent, with lasting changes in the brain 

and behaviour after a 21-day recovery period (Vyas et al. 2004).  This suggests that these 

changes could persist and continue to affect behaviour past the seven day period tested.   

 In the Hp, the changes in the pattern of length and branching do not follow the 

same trend as seen in the mammalian literature.  In mammals, the Hp dendrites have been 

shown to retract in length and branching in response to stress (Sousa et al. 2000, Vyas et 

al. 2002, Baran et al. 2005, Christian et al. 2011, Leuner and Shors 2013).  In my 

experiment, the length and branching did not change overall, but distribution of 

branching changed as evident in the Sholl analysis (Figures 2.6 and 2.7).  Additionally, 

where there were variations between the treatments, the length and number of branches 

were higher in those exposed to increased perceived predation risk.  This variation could 
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be due to using a different taxa, as most research looking at the effects of perceived 

predation risk has been conducted on laboratory mammals.  In humans, variation has 

been shown in these same regions, as those with PTSD showed an increased functional 

response in the amygdala in response to trauma related stimuli (Protopopescu et al. 

2005), and increased hippocampal volume in comparison to healthy individuals (Gurvits 

et al. 1996, Bremner et al. 1997).  When looking at other brain regions, comparative 

analysis has shown there are distinct differences in the arrangement of neurons in the 

visual cortex when comparing mammals and passerines (Chand et al. 2013).  Given that 

structural plasticity can alter the connectivity between neurons, a different neural 

arrangement between taxa may lead to baseline differences in connectivity and a 

variation in the structural changes in response to stress.  In particular, it is impossible to 

know the baseline dendritic morphology given the finite nature of the individuals in the 

experiment.  Finally, chickadees are known to undergo seasonal hippocampal plasticity, 

as the Hp plays an important role in spatial memory and food caching behaviour (Sherry 

and Vaccarino 1989, Sherry and Hoshooley 2010).  Given that the chickadees used in this 

experiment were wild caught and housed in semi-natural outdoor aviaries, it is possible 

that their brains would respond differently than a mammal living under laboratory 

conditions. 

 These changes in dendritic morphology are consistent with  previous work 

showing increased ΔFosB in the Hp and the TnA in chickadees one week after increased 

perceived predation risk (Hobbs 2015).  Overexpression of ΔFosB increases expression 

of cyclin-dependent kinase-5 (CDK-5), which has been shown to induce changes in 

dendritic morphology (Chen et al. 2000, Nestler et al. 2001, Norrholm et al. 2003, Ruffle 
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2014).  Given the high levels of ΔFosB evident in both the Hp and the TnA under the 

same experimental conditions, it would be expected that we would see structural 

plasticity in these regions and could continue to see changes past the seven day period 

tested.  With both the Hp and the TnA showing elevated ΔFosB, it would be expected 

that both regions would show similar effects on dendritic morphology, in this case 

increasing in both length and branching in the TnA, and altering the length and branching 

patterns in the Hp. 

When looking at the behavioural changes, the behavioural changes in freezing and 

number of movements in response to the conspecific alarm call was a common reaction 

to the threat of predation.  When predation risk is high, reducing activity levels is a 

common method of avoiding detecting by predators (Lima and Dill 1990, Lima 1998).  

Given that there was no refuge available, when exposed to an immediate threat reducing 

activity would likely have been the best response to minimize predation risk.  The 

increased time spent immobile and reduced number of movements in those with prior 

exposure to predation suggest that they did retain the memory of that predation 

experience, and that it continued to affect their anti-predator behaviour even after a 

period of low risk.  Given the changes we can see in the dendritic morphology in the TnA 

and the Hp and the increased ΔFosB activation in the TnA and Hp (Hobbs 2015), it is 

likely that these changes in behaviour are linked to these long lasting changes in the 

brain.  These behaviours are also consistent with those symptomatic of PTSD in humans, 

such as hypervigilance and a marked reaction to external cues that resemble an aspect of 

the traumatic event (American Psychiatric Association 2013).  This behavioural 

consistency provides further support for the use of perceived predation risk in animal 
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models for PTSD, and suggests that the changes in dendritic morphology seen in this 

experiment could be occurring in those with PTSD. 

 This study is likely to represent meaningful effects of perceived predation risk on 

the brain and behaviour due to the use of an auditory predator cue alone.  Many 

mammalian studies looking at the effects of perceived predation risk on dendritic 

morphology use exposure to a live predator as the stimulus (Baran et al. 2005, Diamond 

et al. 2006, Mitra et al. 2009, Adamec et al. 2012).  Response to predation threat has been 

shown to change depending on the cue used, with live predators eliciting stronger and 

longer lasting  behavioural responses than predator odour, as sound generally represents a 

more definitive indicator of predator presence than odour (Adamec et al. 1998, 

Wiedenmayer 2004).  The fact that we see a neural response to an auditory cue alone 

shows the importance of these cues for prey fitness, and in conjunction with the lasting 

behavioural response suggests that retaining a memory of previous predation experience 

is beneficial for future fitness.  

 This study has provided new insight into the long lasting effects of perceived 

predation risk on behaviour and dendritic morphology, showing that increased perceived 

predation risk leads to lasting changes in both the TnA and the Hp as well as the response 

to a conspecific alarm cue.  However, there are still many questions that warrant further 

investigation.  First would be to investigate whether we can find similar effects to the 

changes in dendritic morphology measured in this study and the increased ΔFosB shown 

in previous work (Hobbs 2015) if we conducted a similar test in a semi-natural 

environment.  Previous work looking at the effects of perceived predation risk on the 

brain has always been assessed in a laboratory environment, and it would be interesting 
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to see if we can detect a similar lasting signature of predation risk even in the presence of 

natural environmental variation and predation risk.  Additionally, it would be interesting 

to see if there is any difference in the neural response to perceived predation risk during 

the mating and brood rearing period.  Increased perceived predation risk during brood 

rearing is known to impact offspring production and survival (Zanette et al. 2011), and it 

understanding the neural response in both the parents and offspring during this critical 

period could provide new insight into the mechanisms behind these demographic 

consequences. 

 Providing evidence for long lasting changes in behaviour and dendritic 

morphology in a wild caught, non-mammalian species in response to perceived predation 

risk, a common stimuli used in the study of PTSD, provides ecological validation for 

animal models of PTSD. Using wild caught birds and the cues from their natural 

predators, I have modelled a scenario that is closer to that of free living animals and 

could better mimic the conditions leading to PTSD in humans.  Humans encountering a 

PTSD inducing traumatic event have likely experienced other stressful events in their 

life, just like my wild caught animals would likely have a baseline level of experience 

avoiding predation.  Although the use of wild animals in biomedical models is not 

common, it provides a new tool for validating animal models and better understanding 

the etiology of PTSD.  I have shown that predation risk can induce changes lasting at 

least one week in dendritic morphology in wild animals comparable to previous 

laboratory studies, suggesting that these changes represent a meaningful effect of 

increased predation risk rather than simply an effect of predator naiveté.  Finally, this 

gives a better understanding of the neurological mechanisms involved in processing 
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predation risk, and provides a tool for comparing lasting changes in the brain with 

changes in behaviour and physiology in wild animals. 

 In this study, I have identified long lasting changes in behaviour and dendritic 

morphology in the TnA and the Hp in wild-caught chickadees.  This provides further 

evidence that the effects of perceived predation risk continue long after the fearful stimuli 

has been removed, and could lead to lasting effects on an individual’s fitness if these 

changes impair foraging or mating.  Impairments in foraging and mating can lead to 

demographic effects if individuals undergo repeated challenges, with effects evident in 

both parents and offspring (Boonstra et al. 1998, Creel et al. 2007, Zanette et al. 2011).  

This study connects changes in the brain and behaviour, providing support for future 

research into the role of perceived predation risk on the neurobiology of free-living 

animals. 
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Chapter  3    

3   Assessing the effects of predation risk in a semi-natural 
environment 

3.1   Introduction: 

 Predators can affect prey populations both directly, through prey consumption, 

and indirectly, through non-consumptive effects such as inducing prey defences.  

Research has traditionally focused on direct consumption, looking at the impacts of 

predation based on how many prey they could capture and kill (Taylor 1984, Abrams 

2000, Vandermeer et al. 2001).  Often overlooked were the non-consumptive effects of 

predators, which have been shown to have an equal or greater effect on prey species than 

direct consumption alone  (Preisser et al. 2005, Bolnick and Preisser 2005).  In order to 

minimize predation risk, individuals may alter their behaviour, physiology, or 

morphology.  Behavioural changes in response to increased predation risk may include 

spending more time under cover, increasing vigilance, or changing feeding behaviour, 

habitat selection, or escape behaviour (Lima and Dill 1990, Lima 1998, Steiner 2007, 

Walters et al. 2017).  Physiological changes, such as increased production of 

corticosteroid hormones (Boonstra et al. 1998, Clinchy et al. 2011b),  or morphological 

changes, such as variation in body size to avoid gape limited predators (Krueger and 

Dodson 1981, Dodson 1989, Kishida and Nishimura 2004), may also accompany these 

behavioural changes.  When exposed to repeated challenges, increased predation risk can 

also lead to demographic consequences or trophic cascades (Creel et al. 2007, Zanette et 

al. 2011, Suraci et al. 2016). 
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 One behaviour that is particularly important in avoiding predation is the ability to 

escape from threatening situations.  In order to avoid predation, individuals in high risk 

environments may alter their habitat selection, particularly for feeding grounds, in favour 

of areas that are less conspicuous and have more opportunities for refuge (Lima and Dill 

1990, Creel et al. 2005).  Prey species may also alter their flight initiation distance with 

varying predation risk, weighing the benefits of avoiding predation with the costs of 

flight and any lost resources (Lima and Dill 1990, Cooper 2006, Díaz et al. 2013).  

Additionally, providing prey species with adequate space to flee or avoid predation risk is 

an important factor in assessing anti-predator behaviour in a captive environment, to 

avoid any response measured  being attributed to the unnatural effects of captivity 

(Clinchy et al. 2011a). 

 In order to better understand the changes associated with increased perceived 

predation risk, it is important to understand the neural mechanisms involved in the 

perception of predation risk (Clinchy et al. 2011a, 2013).  Understanding how predation 

risk affects the brain can help us to understand the varying behavioural responses to 

predation risk, and how prey retain the information related to predator cues for future 

survival.  In particular, using wild caught animals to assess the effects of perceived 

predation risk presents an excellent model, as wild animals likely have previous 

experience with predation risk and would respond more closely to their free-living 

counterparts than laboratory raised animals.  Additionally, studying how perceived 

predation risk affects wild caught animals in a semi-natural environment rather than a 

laboratory can give us greater insight into the natural behaviours and associated neural 

mechanisms in the response to perceived predation risk.  Allowing prey to perform 
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natural anti-predator behaviours, such as escape and seeking refuge, and experiencing 

natural variations in the level of predation risk can give greater insight into the neural and 

behavioural response that would be expected of free-living animals (Clinchy et al. 2011a, 

Cohen et al. 2014). 

 Understanding the neural mechanisms behind perceived predation risk can give us 

new insight into both predator-prey ecology and post traumatic stress disorder (PTSD).  

Perceived predation risk presents an excellent stimulus to use in animal models  to mimic 

the life threatening traumatic events which can induce PTSD in humans, with the 

advantage of controlled manipulations to further understand the etiology of PTSD 

(Clinchy et al. 2011a, Cohen et al. 2012, 2014).  In humans, PTSD diagnosis requires 

symptoms be present for at least one month after a traumatic event (American Psychiatric 

Association, 2013), which is often translated to one week in the life span of a small 

mammal or bird (Cohen et al., 2012).  Using perceived predation risk provides an 

advantage over other stressors used in animal models of PTSD, such as foot shock, 

because it allows researcher to manipulate a life threatening traumatic event without 

inducing any physical pain (Clinchy et al., 2013; Cohen et al., 2012, 2014; Zoladz & 

Diamond, 2016).  Using wild caught animals in a semi-natural environment to study 

PTSD can also mitigate one of the major criticisms of animal models, that lab rats in 

cages may not show the same neurological and behavioural responses as their free-living 

counterparts (Clinchy et al. 2011a).   

 In humans, long term changes in  neurobiology associated with PTSD have been 

found in the amygdala, hippocampus, and medial prefrontal cortex, three regions thought 

to be involved in the human stress response (Shin et al. 2006, Bremner et al. 2008).  In 
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the avian brain, three corresponding brain regions have been proposed as part of the 

network that processing perceived predation risk: the nucleus taeniae of the amygdala 

(TnA), the hippocampus (HP), and the caudal nidopallium (NC) (Cross et al. 2013, 

Hobbs 2015).  The TnA is the avian homologue to the mammalian medial amygdala and 

plays a crucial role in fear processing (Davis 1992, Reiner et al. 2005, Gross and Canteras 

2012).  The TnA is suggested to convey information about predation stress to other 

regions of the brain, and has shown increased activation in response to predation stress 

(Marzluff et al. 2012, Cross et al. 2013, Hobbs 2015).  The Hp is homologous to the 

mammalian Hp, playing a role in many processes including the encoding and retrieval of 

fear memory, and the processing of spatial information (Colombo and Broadbent 2000, 

Bingman et al. 2003, Gross and Canteras 2012).  Threatening stimuli, such as predator 

cues and dead conspecifics, have been shown to induce increased activation in the Hp 

(Cross et al. 2013, Hobbs 2015). The NC, an analogue of the mammalian prefrontal 

cortex, is proposed to be involved in executive functions and processing information to 

generate behaviour (Herold et al. 2011), and has shown increased activation in response 

to viewing a predator (Cross et al. 2013). 

 In order to better understand how perceived predation risk affects the brain, it is 

necessary to quantify any changes that occur.  Three methods that can be used to quantify 

effects of perceived predation risk on the brain are: ΔFosB activation, neurogenesis, and 

dendritic morphology. ΔFosB is a protein splice variant of FosB, a transient transcription 

factor that is produced rapidly in response to stress, peaking after approximately 6 hours 

(Nestler et al. 2001).  ΔFosB accumulates in the brain following the breakdown of FosB, 

with detection possible for up to 1-2 months post stimulus (Nestler et al. 2001).  
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Increased ΔFosB activation has been shown in both birds and mammals in response to 

increased perceived predation risk, however this has yet to be tested outside of a 

controlled laboratory environment (Staples et al. 2009, Hobbs 2015). 

 A second method to quantify the effects of perceived predation risk on the brain is 

through changes in neurogenesis. Neurogenesis is proposed to be involved in brain 

remodeling, allowing old memories to be forgotten and new memories to be formed 

(Frankland et al. 2013, Mongiat and Schinder 2014).  Increased neurogenesis has been 

shown to decrease memory retention and disrupt established hippocampus-dependent 

memories (Akers et al. 2014), and is highly variable depending on environmental cues 

(Deng et al. 2010, Schoenfeld and Gould 2012, Egeland et al. 2015).  Predator cues have 

been shown to inhibit neurogenesis in both rats and fish, but this has yet to be tested 

through a controlled manipulation in a semi-natural environment (Tanapat et al. 2001, 

Dunlap et al. 2016). 

 The effects of perceived predation risk on the brain can also be assessed through 

changes in dendritic morphology.  Dendrites are the components of neurons specialized 

to receive signals (Kulkarni and Firestein 2012).  Connectivity can be modified through 

stress induced plasticity, producing immediate and lasting changes in synaptic function 

(Leuner and Shors 2013).  Changes in dendritic morphology have been linked to changes 

in ΔFosB activation (Nestler et al. 2001, Ruffle 2014), but are generally longer lasting 

and potentially permanent (Juarez-Mendez et al. 2006).  Previous laboratory studies have 

shown changes in dendritic morphology from perceived predation risk in rats (Adamec et 

al., 2012; Baran et al., 2005; Mitra et al., 2009, Chapter 2), however this has yet to be 

tested in an avian species or a semi-natural environment. 
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 In this study, I looked at the effects of perceived predation risk on the brain and 

behaviour of brown-headed cowbirds (Molothrus ater) in a semi-natural environment, as 

previous experiments with this species showed behavioural changes in response to 

increased predation risk (Cheng 2016, Walters et al., 2017).  In particular, I assessed both 

the immediate and the long term impact of perceived predation risk on escape behaviour, 

and to look for lasting changes in ΔFosB activation, neurogenesis, and dendritic 

morphology in the brain.  I expected that we would see immediate changes in cowbird 

escape behaviour, as previously shown by Walters et al. (2017).  Looking at ΔFosB, I 

expected that there would be increased ΔFosB activation in the TnA and the Hp in 

response to increased perceived predation risk, similar to previous laboratory studies in 

both birds and rodents (Staples et al. 2009, Hobbs 2015).  For neurogenesis, I expected 

that there would be inhibited neurogenesis in the TnA and the Hp, as inhibitions in 

neurogenesis have been shown in response to increased perceived predation risk in both 

rats and fish (Tanapat et al. 2001, Dunlap et al. 2016).  Finally, for dendritic morphology, 

I expected that we would see changes to the length, branching, and number of spines in 

the TnA and the Hp, as previous mammalian research has shown changes in the Hp and 

the amygdala in response to increased predation risk (Baran et al. 2005, Mitra et al. 2009, 

Adamec et al. 2012).  Here, I report that increased perceived predation risk led to 

alterations in escape behaviour in comparison to a non-predator control.  Additionally, I 

found long lasting effects of increased perceived predation risk in the TnA and the Hp on 

both neurogenesis and dendritic morphology in both sexes.  Finally, there was no lasting 

changes in ΔFosB in the TnA and the NC, and Hp response differed between the two 

rounds of the experiment. 
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3.2   Methods: 

 I used wild caught brown-headed cowbirds (Molothrus ater; hereafter 

referred to as cowbirds) to study the long term effects of perceived predation risk 

manipulated through auditory playbacks.  Cowbirds were exposed to either predator or 

non-predator playbacks, each consisting of multiple species over 10 days.  I looked at the 

effect of increased perceived predation risk on escape behaviour and on the protein splice 

variant ΔFosB, dendritic morphology, and neurogenesis to study lasting changes in brain 

regions thought to be involved in processing predation risk from changes in perceived 

predation risk.  

3.2.1   Animal Housing 

Between April 4 and April 26, 2016, I captured 112 cowbirds at Ruthven Park 

Banding Station, Cayuga, Ontario as they returned from migration. Each bird was given a 

unique combination of colour bands for individual identification.  Upon capture, seven 

male and seven female cowbirds were housed in each of four large outdoor aviaries (3.66 

m x 9.14 m x 18.29 m) at the Environmental Sciences Western Field Station.  The 

remaining birds were housed in the same sized groups in large cowbird traps on site, 

acoustically and visually isolated from the experimental aviaries until the second round of 

the experiment.  Each aviary was equipped with perches, trees, grass, and an A-frame 

shelter, providing a semi-natural environment while protecting birds from predation.  

Adjacent aviaries were separated by an opaque barrier, visually isolating the groups. The 

aviaries pairs were separated by 150m, separating groups both visually and acoustically.  

Cowbirds had ad libitum access to a modified Bronx Zoo diet for omnivorous birds 
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(Travers et al. 2010) and water, in addition to foraging for naturally present food in the 

aviaries.   

3.2.2   Predation Risk Manipulation 

To manipulate predation risk, cowbirds were simultaneously exposed to auditory 

playbacks and taxidermic mounts of predator and non-predator species between May 9 

and June 25 2016. Cowbirds were given a minimum of two weeks from the time of 

capture to the beginning of the experiment and a minimum of one week in their assigned 

experimental aviary to acclimate before the playbacks began.  I conducted two rounds of 

the experiment, where each treatment was conducted in each of the aviary pairs, to 

account for any differences in the micro-climate or surrounding environment between the 

aviary locations. Each predation risk manipulation risk manipulation consisted of 10 days 

of exposure to playbacks and taxidermic mounts of predator or non-predator species, 

followed by 7 days without treatments to look for lasting effects. After 7 days in the 

aviary without any treatment, 10 individuals from each treatment (five males, five 

females) were sacrificed.  Birds in the second round of the experiment were also given a 

minimum of seven days to acclimate to the aviaries before the treatments began.  To 

prevent sound contamination, adjacent aviaries received the same treatments at the same 

time. Aviaries 1A and 1B received the non-predator treatment first, while aviaries 3A and 

3B received the predator treatment first.  The start date for the aviary pairs was staggered 

by three days (i.e. Aviary 3A and 3B began on May 9, while aviary 1A and 1B began on 

May 12) to allow for behavioural observations to be taken on the same day of the 

experiment and at the same time of day for each treatment. To avoid habituation to the 
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treatments, playbacks and taxidermic mounts were presented on days 1-4 and days 7-10 

(following Cheng, 2016; Walters et al., 2017) 

Table 3.1: List of species used in the auditory playbacks for the brown headed cowbirds.  

Predator and non-predator species were matched based on their acoustic call 

characteristics (peak frequency, maximum frequency, minimum frequency, and 

frequency range). 

Time Predators Non-Predators 
Day Sharp-shinned hawk 

(Accipiter striatus) 
Killdeer 

(Charadrius vociferous) 
Day Cooper’s hawk 

(Accipiter cooperii) 
Northern flicker 

(Colaptes auratus) 
Day Red-shouldered hawk 

(Buteo lineatus) 
American robin 

(Turdus migratorius) 
Day Red-tailed hawk 

(Buteo jamaicensis) 
Yellow-rumped warbler 
(Dendroica coronate) 

Day American kestrel 
(Falco sparverius) 

Cedar waxwing 
(Bombycilla cedrorum) 

Night Eastern screech owl 
(Megascops kennicottii) 

Common loon 
(Gavia immer) 

Night Northern saw-whet owl 
(Aegolius arcadius) 

Wood frog 
(Rana sylvatica) 

Night Barred owl 
(Strix varia) 

Northern leopard frog 
(Lithobates pipiens) 

Cowbirds were randomly assigned to either the predator or non-predator 

treatment, while maintaining a balanced sex ratio between the treatments. For the 

predation risk manipulation, each aviary was equipped with two playback units housed in 

weatherproof boxes.  Each playback unit contained a pair of speakers (Logitech Z130 

Speakers) and an MP3 player (Hipstreet 4GB MP3 Player).  The playback units were 

mounted 2.4m high, placed at least 12m apart from each other and moved to a new 

location within the aviary every two days to prevent habituation.  Sounds of predator or 

non-predator species were broadcast at 80dB from 1m away with a call-to-silence ratio of 
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1:1.5 during the day and 1:2.3 during the night to simulate temporal variations in 

predation risk (following (Cheng 2016, Walters et al. 2017)).  Eight different species 

were used for each playback treatment, with each species matched to the appropriate time 

of day to simulate the natural variation in predation risk (Table 3.1).  Playbacks were also 

randomized between the playback units so that only one unit was broadcasting within 

each aviary at any given time.   

On days 1-4 and days 7-10, taxidermic mounts were also presented to the birds.  

Two species of taxidermic mounts selected for each treatment, matched for size and 

stance between the treatments (Table 3.2).  Two different mounts were presented to each 

aviary each day that the playbacks were broadcast, with the first at a randomized time 

between 1100h and1400h and the second at a randomized time between 1400h and 

1700h.  The location of the mounts was changed daily to minimize habituation.  Mounts 

were covered with an opaque box, and revealed to the birds for 5 minutes for each 

presentation. 

Table 3.2: List of taxidermic mounts used in the predation risk manipulation for brown-

headed cowbirds.  Species were matched for size and stance between treatments. 

Predator Non-Predator 
Red-shouldered hawk 

(Buteo lineatus) 
Northern pintail 

(Anas acuta) 
Cooper’s hawk  

(Accipiter cooperii) 
Northern flicker  

(Colaptes auratus) 

3.2.3   Assaying take-off behaviour 

 Anti-predator behaviour was assayed by measuring take-off behaviour on 

treatment day 5 and 6 and post-treatment day 6 (following Walters et al 2016).  We used 

a specially designed apparatus to measure the speed and angle of as birds initiate take-off.  
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The apparatus consisted of two parallel vertical 1m2 walls 45cm apart, attached to a 1m2 

base. The back wall was painted white with a mounted feeder. The front wall was a 

transparent acrylic sheet marked with a 2.54cm grid to provide a scale for measuring the 

vertical and horizontal displacement during flight.  When a bird landed on a perch to 

feed, a researcher hidden behind a blind outside the aviary would record the bird ID and 

pull a string, releasing a spring loaded flag to initiate take-off.   

 Take-off behaviour was recorded using digital video recorders (Swann DVR4-

3425, 30 frames/s) positioned perpendicular to each flight apparatus.  A second camera 

recorded the feeder to confirm individual bird ID.  Vertical and horizontal displacements 

(to the nearest 1.27cm) were measured for the first six frames (0.2s) of each take off 

event using the center of the head as the reference point for calculations (following 

Walters et al. 2016).  Take-off behaviour was assayed for differences in angle (°) and 

speed (m/s) both during the treatment period and 6 days post treatment to look for lasting 

effects on behaviour.   

3.2.4   Brain Processing 

 After seven days in the aviary without any treatments, birds to be euthanized were 

randomly assigned to be processed for immunohistochemistry or dendritic morphology.  

Birds assigned to immunohistochemistry were euthanized using an overdose of isoflurane 

followed by a transcardial perfusion with 0.1M phosphate buffered saline (PBS) (pH 7.4) 

and 4% paraformaldehyde.  Brains were removed and left in paraformaldehyde for a 

minimum of 24h, followed by sucrose for 48h until saturated, and then frozen at -80° for 

long term storage.  I used a cryostat at -20°C to section brain slices into 40µm coronal 
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slices.  I started collecting slices when the anterior commissure was no longer visible, 

collecting every slice for Nissl and three series of immunohistochemistry.  Nissl slices 

were stained to locate regions of interest in the brain.  I carried out 

immunohistochemistry to label ΔFosB (FosB (102) rabbit IgG, sc-48, Santa Cruz 

Biotechnology) and doublecortin (DCX (C-18) goat IgG, sc-8066, Santa Cruz 

Biotechnology) according to standard IEG protocol, with the primary anti-body at a 

concentration of 1:500 and 1:250 in 0.3% phosphate-buffered saline with triton (PBS/T), 

respectively.  Sections were then labelled with a secondary antibody (goat anti-rabbit for 

ΔFosB and horse anti-goat for DCX, Santa Cruz Biotechnology) and visualized with 

diaminobenzidine solution (see Appendix D-I for staining). 

Birds assigned to dendritic morphology were processed following Louth et al., 

(2017).  Brains were removed immediately and incubated in Golgi-Cox Solution (1% 

potassium dichromate, 0.8% potassium chromate, and 1% mercuric chloride in water)  in 

the dark for 25 days, then transferred to 30% sucrose for 48h until saturated and frozen at 

-80°C for long term storage.   Brains were returned to 30% sucrose 24h before 

processing.  Brains were sliced at 500µm in 30% sucrose using a vibrotome (Leica 

VT10005), and left in 6% sucrose overnight. Sections were processed in 2% 

paraformaldehyde for 15 minutes, 2.7% NH4OH for 15 minutes and fixed in Kodak 

Fixitive A for 25 minutes, before being mounted on slides, dehydrated in ethanol, cleared 

in citrisolv and coverslipped. 
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3.2.5   Quantifying ΔFosB  

I quantified immunoreactivity in the TnA, Hp, and NC for each slice clearly 

labelled in the region of interest.  I also quantified immunoreactivity in a control region, 

the mesopallium (M), to compare to the regions of interest and ensure that I was not 

quantifying “background” expression (following Hobbs, 2015).   

I used a Leica CTR6500 microscope and Leica Application Suite software to 

capture a z-stack image to cover the depth of each region in each slice, using the 10X 

(TnA, Hp, Control) and 5X (NC) objective lenses centred over the region of interest for 

16 individuals.  I calibrated ImageJ (NIH) to the image measurement, and measured the 

area in mm2 of the region of interest in each slice quantified.  I then converted the image 

from colour to 16-bit black and white, subtracted the background and enhanced the 

contract.  I used the thresholding tool within ImageJ to convert ΔFosB positive nuclei to 

black against a white background.  To quantify ΔFosB, I used the count function within 

Image J to measure positive cells/mm2 in each slice in each brain region of interest.  All 

images were collected and counted without knowledge of the treatment groups to avoid 

bias in the results. 

3.2.6   Quantifying DCX 

I used a Leica CTR6500 microscope and Leica Application Suite software to 

capture a z-stack image of each hemisphere in five slices for each region, using the 40X 

objective lenses. In the Hp, three photographs were taken in each hemisphere for each 

slice, covering the lateral, medial, and ventral Hp.  In the TnA, two photographs were 

taken for each slice, covering the lateral and ventral TnA.  In ImageJ, I then converted the 
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image from colour to 16-bit black and white, subtracted the background and enhanced the 

contract.  I used the thresholding tool within ImageJ to convert DCX positive cells and 

fibres to black against a white background and quantified the percent coverage of DCX 

positive cells.   

3.2.7   Neuron Tracing 

 In each of the Hp and the TnA, four pyramidal neurons were selected and traced 

for 12 individuals according to the protocol outlined in Chapter 2. 

3.2.8   Statistical Analysis 

 For escape behaviour, take-off angle (°) and speed (m/s) were analyzed using a 

two-factor ANOVA, with treatment and sex as fixed factors. For each individual, only the 

first take-off event was included in the calculations. 

 For ΔFosB, I averaged the ΔFosB positive cell densities for all slices clearly 

stained and quantifiable per brain region per individual to give one data point per 

individual for the TNA, Hp, and NC (following Hobbs 2015).  I then compared the 

ΔFosB positive cells/mm2 for each brain region with a three-factor ANOVA, with 

treatment, sex, and experimental round as my fixed factors.   This was followed by a 

Tukey HSD test to determine any differences within factors. 

 For doublecortin activation, the percent cover of DCX positive cells and fibres 

was averaged across each individual for each brain region to give one data point per 

individual for the TNA, Hp, and NC.  I then compared the DCX percent cover for each 

brain region with a two-factor ANOVA, with treatment and sex as my fixed factors.  
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 I used a two-way ANOVA with treatment and sex as fixed factors for the general 

dendritic morphology.  Sex was included as a fixed factor to account for potential sex 

effects, as previous research has shown sex differences cowbirds in the behavioural 

response to perceived predation risk (Cheng 2016, Walters et al. 2017).  To analyze spine 

counts, I used a repeated measures ANOVA, with location as my repeated measures 

factor and treatment and sex as fixed factors. 

I used a two-way repeated measures ANOVA for the Sholl analysis (Sholl 1953), 

with treatment and sex as fixed factors and the distance from the cell body as the repeated 

measures factor, followed by a Tukey HSD post-hoc test to look for differences between 

treatments at each radial distance.  Prior to analysis with, all data were Box-Cox 

transformed to meet the assumption of homogeneity of variances.  All analyses were 

conducted using Statistica (Version 13.0.04, Dell Inc.).  I present non-transformed means 

± SE for clarity. 

3.3   Results: 

3.3.1   Behavioural Analysis 

 When in a high predation risk environment, the cowbirds altered their escape 

behaviour to take off at a steeper angle (Fig 3.1; Treatment: F1,56= 6.68, p=0.012), with 

no effect of sex (Sex: F1,56=0.90, p=0.346; Treatment*Sex: F1,56=0.19, p=0.668).  

Cowbirds also took off at a slower speed (Fig 3.2; Treatment, F1,56 = 4.49, p = 0.039)  in 

the high predation risk environment, with no effect of sex (Sex: F1,56 = 0.026, p = 0.87; 

Treatment * Sex F1,56 = 0.68, p = 0.412).  This suggests a trade-off in escape behaviour 

between angle and speed.  Indeed, we found no significant changes differences in 



77 

 

mechanical energy between the predator (2.55 ± 0.115 J/kg) and non-predator treatments 

(2.53 ± 0.094 J/kg; F1,56 = 0.86, p = 0.771), regardless of sex (Sex: F1,56 = 0.72, p = 0.399; 

Treatment * Sex: F1,56 = 1.05, p = 0.31).  These behavioural changes were not long 

lasting, however, as one week post playbacks no difference was found in either take-off 

angle (Fig 3.1; Treatment: F1,45=0.23, p=0.632) or take-off speed (Fig 3.2; Treatment: 

F1,45=0.19, p=0.663). 

3.3.2   Nucleus taeniae of the amygdala (TnA) 

 The nucleus taeniae of the amygdala (TnA) showed inhibitions in neurogenesis 

and alterations in the dendritic morphology, with no long lasting difference in ΔFosB 

activation.  There was a significant reduction in DCX positive cells in the TnA of birds 

exposed to increased perceived predation risk (Fig 3.3; Treatment: F1,14=179.7, 

p<0.0001), regardless of sex (Sex: F1,14=0.18, p=0.679; Treatment*Sex: F1,14=0.09, 

p=0.770).  Overall the length of the dendrites in the TnA was altered by increased 

predation risk, with females showing increased dendritic length and males decreasing in 

dendritic length. This marginally significant treatment by sex interaction for total length 

(Fig 3.6; Treatment*Sex: F1,8=4.95, p=0.057) is supported by the Sholl analysis, showing 

significant treatment by sex by radius interactions for the distribution of length across the 

neuron (Treatment*Sex*Distance: F10,80=4.23, p=0.000099) and the number of 

intersections with the Sholl rings (Fig 3.7; Treatment*Sex*Distance: F9,72=2.45, 

p=0.017).  There was also trend towards a sex effect on the number of dendrites in the 

TnA, with females (6.67 ± 0.40) showing a greater number of dendrites than males (5.71 

± 0.18;  Sex: F1,8 = 3.95, p=0.082), with no effect of treatment (Treatment: F1,8=1.26, 

p=0.294; Treatment*Sex: F1,8=0.60, p=0.46).  There was no treatment effect, sex effect, 
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interaction, or Sholl effect revealed for number of branches or number of branch endings 

(p> 0.05).  In contrast, there was no significant treatment effect on ΔFosB activation in 

the TnA (Fig 3.4; Treatment: F1,8=0.078, p=0.786), with activation consistent between 

sexes (Sex: F1,8=0.85, p=0.382; Treatment*Sex: F1,8=0.0003, p=0.986) and experimental 

rounds (Round: F1,8=0.02, p=0.89; Treatment*Round: F1,8=0.63, p=0.452). 

3.3.3   Hippocampus (Hp) 

 The hippocampus (Hp) showed inhibitions in neurogenesis, with no long lasting 

difference in ΔFosB activation.  There was a significant reduction in DCX positive cells 

(Fig 3.3; Treatment: F1,14=91.0, p<0.0001) in birds exposed to increased perceived 

predation risk.  This inhibition of DCX positive cells was consistent across the sexes 

(Sex: F1,14=0.058, p=0.820; Treatment*Sex: F1,14=1.88, p=0.192).  There were also 

significant treatment by sex interactions for both the overall dendritic morphology and 

the patterns revealed in the Sholl analysis.  For the general dendritic morphology in the 

Hp, there was a significant treatment by sex interaction on the total length (Fig 3.8; 

Treatment*Sex: F1,8=5.67, p=0.044), branching (Fig 3.8; Treatment*Sex: F1,8=7.25, 

p=0.027), and branch endings (Treatment*Sex: F1,8=9.25, p=0.016).  In each of these 

measures females increased with increased predation risk, while males showed dendritic 

retraction with increasing predation risk.  The Sholl analysis revealed a significant 

treatment by sex by radius interaction for intersections with the Sholl rings 

(Treatment*Sex*Distance: F9,72=6.56, p= 0.0000009) and the distribution of dendritic 

length (Treatment*Sex*Distance: F10,80=8.16, p= 0.000000006).  The Sholl analysis also 

showed a significant treatment by radius interaction for branching (Treatment*Distance: 

F8,64=2.55, p=0.018) and a significant sex by radius interaction for branch endings 
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(Sex*Distance: F10,80=2.34, p=0.018).  In contrast, there was no significant treatment 

effect on ΔFosB activation (Treatment: F1,8=0.046, p=0.836).  There was, however, a 

significant treatment by round interaction for ΔFosB activation in the Hp (Fig 3.5; 

Treatment*Round: F1,8=5.86, p=0.042), which seems to be driven by a trend towards 

variation in the response in the non-predator treatment (Non-predator Round1:Non-

predator Round 2; Tukey HSD: p= 0.092).  

3.3.4   Caudal Nidopallium (NC) 

 In contrast to the TnA and Hp, the caudal nidopallium (NC) showed no long 

lasting effects from increased perceived predation risk.  There was no significant effect of 

the playback treatment on DCX  positive cells (Fig 3.3; Treatment: F1,14=1.36, p=0.263) 

or on ΔFosB activation (Fig 3.4; Treatment: F1,8=0.45, p=0.522).  This was consistent 

across sexes for both DCX (Sex: F1,14=0.17, p= 0.688; Treatment*Sex: F1,14=0.44, p= 

0.518) and ΔFosB (Sex: F1,8=0.20, p=0.665; Treatment*Sex: F1,8=0.55, p=0.48). 

3.3.5   Mesopallium (M) (Control) 

 In contrast to the TnA, Hp, and NC, there was a significant treatment effect (Fig 

3.4; Treatment: F1,8=6.53, p=0.034) and treatment by sex interaction (Treatment*Sex: 

F1,8=5.68, p=0.044) on ΔFosB activation in the M control region.  This seems to be 

driven by the males, as a Tukey HSD post-hoc test revealed a significant difference 

between the treatments for males (Tukey HSD - Predator Male:Non-Predator Male: 

p=0.033). 
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Figure 3.1: The take-off angle a) during the playback treatments (Treatment: F1,56= 6.68, 

p=0.012) and b) one week after the playback treatments for cowbirds (Treatment: 

F1,45=0.23, p=0.632). 

 

Figure 3.2: The take-off speed (m/s) a) during the playback treatments (Treatment, F1,56 

= 4.49, p = 0.039) and b) one week after the playback treatments for cowbirds(Treatment: 

F1,45=0.19, p=0.663).  

  

b) 

a) 

a) 

b) 
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Figure 3.3: The percentage of brain slices covered by DCX positive cells in the a) TnA 

(Treatment: F1,14=179.7, p<0.0001), b) Hp (Treatment: F1,14=91.0, p<0.0001), and the NC 

(Treatment: F1,14=1.36, p=0.263) in cowbirds. 

a) 

b) 

c) 

a) 

b) 

c) 
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Figure 3.4: The density of FosB positive cells in the a) TnA (Treatment: F1,8=0.078, 

p=0.786), b) NC (Treatment: F1,8=0.45, p=0.522), and c) M (control; Treatment: 

F1,8=6.53, p=0.034) in cowbirds. 

a) 

b) 

c) 

a) 

b) 

c) 
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Figure 3.5: The density of FosB positive cells in the Hp for a) experimental round 1 and 

b) experimental round 2 (Treatment*Round: F1,8=5.86, p=0.042) in cowbirds.   

a) b) 
b) a) 
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Figure 3.6: The total dendritic length in the TnA for a) male and b) female 

(Treatment*Sex: F1,8=4.95, p=0.057) cowbirds. 

 

 

Figure 3.7: The number of intersections with the Sholl rings at each radius from the cell 

body for a) male and b) females(Treatment*Sex*Distance: F9,72=2.45, p=0.017) 

cowbirds. 

b) a) 

a) b) 
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Figure 3.8: The total dendritic length in the cowbird Hp for a) males and b) females 

(Treatment*Sex: F1,8=5.67, p=0.044) and the total number of branch points in the Hp for 

c) males and d) females (Treatment*Sex: F1,8=7.25, p=0.027). 

 

a) b) 

c) d) 
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3.4   Discussion 

 The experimental results demonstrate that manipulating the level of perceived 

predation risk prey are exposed to can have long lasting effects on brain morphology.  

Exposure to high levels of perceived predation risk led to changes in escape behaviour, as 

cowbirds initiated flight at a steeper angle and slower speed in the predator treatment.  

Additionally, we found lasting effects of perceived predation risk on neurogenesis and 

dendritic morphology in regions associated with processing predation risk that persisted 

for at least seven days after the manipulated threat was removed.   This provides evidence 

that there are long lasting changes in prey neurobiology, and that these changes are still 

evident when predation risk is manipulated in a semi-natural environment. 

 When looking at behaviour, we found that increased perceived predation risk led 

to transient changes in flight take-off behaviour.  We found the same behavioural trade-

off of cowbirds taking off at a steeper angle and slower speeds that was previously shown 

by Walters et al. (2017).  It has been suggested that a steeper take-off angle aids prey in 

evading a predators line of attack and out-climbing the predator, which can reduce the 

likelihood of capture (Howland 1974, Lind et al. 2002, Walters et al. 2017).  This also 

shows that the experimental protocol used here produces replicable results, as we found 

the same pattern of high predation risk leading to a steeper take-off angle and lower take-

off speed as seen in previous research (Walters et al. 2017).  Additionally, the lack of a 

treatment effect six days after the playbacks ended suggests that changes to escape 

behaviour are transient, and will return to baseline conditions once the threat has been 

removed.  This is consistent with previous work, as the repeated measures design used by 

Walters et al. (2017) showed that individuals who had been exposed to the predator 
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treatment first showed no significant difference in their behaviour in the non-predator 

treatment 12 days after the end of the predator playbacks compared to those who 

experienced the non-predator treatment first.   

 In both the TnA and the Hp, we found a lasting inhibition in neurogenesis in 

cowbirds exposed to increased perceived predation risk.  This is likely to retain the 

memory of the stressful situation, as it has been suggested that increased neurogenesis 

promotes the formation of new memories and the forgetting of old information 

(Frankland et al. 2013, Mongiat and Schinder 2014).  Increased neurogenesis has been 

shown to disrupt established memories in rats (Akers et al. 2014), suggesting that the 

inhibition in neurogenesis here promotes retaining the memory of the high predation risk 

situation.  Previous work has shown prey do retain information related to predator cues, 

with cues associated with higher risk retained longer (Ferrari et al. 2010), supporting the 

idea that prey retain the memory of high risk situations.  Additionally, this result is 

consistent with previous work showing inhibited neurogenesis with high predation risk in 

both rats and fish (Tanapat et al. 2001, Dunlap et al. 2016).   

When looking at ΔFosB, there was variation in the response between the TnA and 

the Hp.  In the TnA, there was no significant treatment effect of predation risk on ΔFosB  

activation.  This is likely due to the influence of external cues in the semi-natural 

environment, as previous work has shown significantly increased ΔFosB in the TnA in 

response to high perceived predation risk in the lab (Hobbs 2015).  One potential factor 

that can also increase ΔFosB is sex, as previous work with rats has shown increased c-

fos, a closely related protein, in the medial amygdala in response to sexual activity 
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(Erskine 1993).  Additionally, males rats exposed to estrous females displayed a reduced 

aversion, decreased behavioural stress response, and a weakened hormonal stress 

response to predator odour (Kavaliers et al. 2001).  Given that previous work has shown 

that female cowbirds in the non-predator treatment were significantly more responsive to 

male displays (Cheng 2016), it is likely that these birds were also engaging in more 

sexual arousal.  Given that both increased sexual activity and increased predation risk 

could potentially be contributing to the increase in ΔFosB, these factors could potentially 

cancel out any quantifiable treatment effect for this protein.  In the Hp, there was a 

significant effect treatment by round interaction, driven by a trend towards a round effect 

in the non-predator treatment.  Given that these changes were driven by those in the non-

predator treatment, this round effect would likely have been driven by an external cue 

influencing the cowbirds brain and behaviour in the semi-natural environment. The 

results for ΔFosB activation suggest that while this is an extremely useful tool for 

studying brain activation in the lab, there may be too many potential stimuli for this to be 

used as an indicator of perceived predation risk in the field.  ΔFosB is thought to increase 

sensitivity in the reward circuitry of the brain, exerting anti-depressant-like behavioural 

responses to help individuals cope in times of stress (Nestler 2008), and is often 

implicated in addiction studies (Reviewed in Nestler, 2001, 2004, 2008).  While ΔFosB 

has been shown to increase in response to increased perceived predation risk (Staples et 

al. 2009, Hobbs 2015), this has previously been shown only in a controlled laboratory 

environment.  Given the strong treatment response seen in both neurogenesis and 

dendritic morphology, these results suggest that there were too many external stimuli in 

the semi-natural environment that could also affect ΔFosB for it to be used as a tool for 
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detecting the long lasting signature of perceived predation risk.   

For dendritic morphology, both the TnA and the Hp showed significant treatment 

by sex interactions.  This was evident for total dendritic length in the TnA and for total 

length, branching, and branch endings in the Hp.  In every case, females in the predator 

treatment increased compared to those in the non-predator treatment, while males in the 

predator treatment decreased for each measure in comparison to the non-predator 

controls.  This variation in response to perceived predation risk is likely due sex 

differences in the processing of fearful information.  Sex differences have been found in 

rodents in the recall of fear conditioning and extinction, in particular when exposed to 

chronic stress (Baran et al. 2009).  Research has shown both sex and seasonal differences 

in the hippocampal volume in brown-headed cowbirds (Sherry et al. 1993, Clayton et al. 

1997).  For females, having a relatively larger Hp is thought to be important for finding 

host nests (Sherry et al. 1993).  If increased dendritic material in the Hp aids female 

cowbirds in remembering the risk associated with the high predation pressure location, it 

could be beneficial for the survival of their offspring.   Previous work using the same 

species with the same experimental protocol also has shown that males displayed less to 

the less receptive females in a high predation risk environment, but showed no difference 

in their displays towards other males (Cheng 2016).  By reducing the length, branching, 

and branch endings in a high predation risk environment, males could be reducing the 

connectivity in the Hp to better ignore the threatening information and maintain the 

behaviours required to protect their status within the social hierarchy.  Overall, these 

changes in dendritic morphology suggest that increased perceived predation risk can lead 

to long lasting changes in both the TnA and the Hp, supporting their proposed importance 
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in the avian fear network (Cross et al. 2013, Hobbs 2015). 

 In the NC, we can see no long lasting effects in either DCX or ΔFosB activation.  

This is consistent with previous work in the lab showing no long lasting effects of 

increased perceived predation risk on ΔFosB (Hobbs 2015).  In contrast, perceived 

predation risk has been shown to induce short term changes in activation in the NC 

(Cross et al. 2013, Hobbs 2015), which is consistent with the suggestion that the NC is 

responsible processing information to generate behaviour (Herold et al. 2011).  It is likely 

that this region is involved with the processing of fearful information, but these results 

and previous work looking at ΔFosB in black-capped chickadees (Poecile atricapillus) 

(Hobbs 2015) suggests that the NC does not retain a lasting signature of this information 

in the long term.   

 The mesopallium control region showed a significant treatment effect in males, 

with those in the non-predator treatment showing increased ΔFosB activation.  It is likely 

that this is linked to a behavioural response in the males, as previous research has shown 

male zebra finches to increase in c-fos, another transcription factor in the Fos family, in 

response to exposure to females for a first attempt at courtship (Sadananda and Bischof 

2002).  This is consistent with previous behavioural changes seen in cowbirds under the 

same experimental protocol, who made fewer courtship displays to females when under 

high perceived predation risk (Cheng 2016).  Given that this same region has previously 

been used as a control to ensure that changes in ΔFosB activation were limited to regions 

involved in processing fear information (Hobbs 2015), it is likely that this result is 

evidence of ΔFosB activation involved in mediating behavioural changes rather than a 



91 

 

direct response to processing perceived predation risk. 

 With dendritic morphology, the sex differences seen in the response in both the 

TnA and the Hp emphasize the importance of considering both sexes when looking at the 

behavioural and neural response to perceived predation risk, particularly during the 

breeding season.  Previous work looking at the effects of increased perceived predation 

risk on dendritic morphology has been focused on males (Baran et al. 2005, Mitra et al. 

2009, Adamec et al. 2012), leaving a knowledge gap in how this increased risk affects 

females.  Additionally, given the sex differences seen in courtship behaviour and escape 

ability (Cheng 2016, Walters et al. 2017), it is not surprising that this species showed sex 

differences in the dendritic morphology as well.  By considering both sexes, these results 

can give us a greater understanding of cowbird neurobiology and a potential contributing 

factor for the sex differences shown in the behavioural response to increased perceived 

predation risk. 

 These results can also provide new insight into the ecological relevance of these 

methods for quantifying changes in the brain for PTSD research.   Previous research has 

suggested perceived predation risk as a useful stimulus to study PTSD (Adamec & 

Shallow, 1993; Clinchy et al., 2013; Cohen et al., 2012, 2014; Zoladz & Diamond, 2016), 

however the majority of studies have been conducted on mammals in a laboratory 

environment.  These results show that even in a semi-natural environment, increased 

perceived predation risk has long lasting effects on both dendritic morphology and 

neurogenesis.   In particular, the changes seen in both dendritic morphology and 

neurogenesis can be linked to changes in learning and memory that promote retention of 

cues surrounding the stressful situation (Diamond et al. 2006, Frankland et al. 2013, 
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Mongiat and Schinder 2014).  Given that intrusive memories related to a traumatic event 

or distress in response to cues resembling an aspect of the traumatic event are common 

symptoms in humans diagnosed with PTSD (American Psychiatric Association 2013), 

understanding how a traumatic stimulus like perceived predation risk affects 

neurogenesis and dendritic morphology could provide valuable insight on the etiology of 

PTSD. Additionally, this research shows that using wild caught animals to model the 

conditions leading to PTSD is a valuable tool for to gain a broader understanding of the 

changes that occur in the brain following a life-threatening traumatic event. 

 By manipulating perceived predation risk on wild caught individuals in a semi-

natural environment, we were able to support the notion that lasting neurological changes 

are not just a product of predator-naïve individuals or an artificial laboratory 

environment.  These semi-natural conditions better mimic the real life conditions of prey 

species living in a high predator environment than what could be produced in a lab 

setting.  Additionally, the use of a non-mammalian species to study neurobiological 

changes previously studied in mammals suggests that these changes could be widespread 

across a variety of taxa.  Furthermore, this study may have underestimated the effects of 

perceived predation risk on the brain due to the use of a conservative auditory cue and 

taxidermic mounts.  Many previous studies looking at the effects of perceived predation 

risk on the brain have used live predators as the stimulus (Baran et al. 2005, Diamond et 

al. 2006, Mitra et al. 2009, Adamec et al. 2012).  Given that the cue used can alter the 

response to predation threat, with live predators eliciting a stronger and longer lasting 

response than predator odour (Adamec et al. 1998, Wiedenmayer 2004),  it would be 

expected that live predators would elicit a stronger response on both the brain and 
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behaviour when compared to calls and mounts alone.  This suggests that exposure to live 

predators would lead to a stronger and longer lasting brain response than auditory cues 

and taxidermic mounts, and that similar neurological changes would be seen in free living 

animals exposed to live predators.   

 This study has provided new insight into the long lasting effects of perceived 

predation risk on the brain, however there are still many questions that warrant 

investigation.  First would be to investigate whether similar lasting effects on 

neurogenesis and dendritic morphology could be seen in free living animals.  Previous 

research has shown that free living song sparrows exposed to increased perceived 

predation risk had reduced offspring production and survival (Zanette et al. 2011).  

Understanding the neurobiological changes occurring during this time could provide 

valuable insight into the mechanisms contributing to these demographic consequences.  

Additionally, it would be interesting to see how the brain of developing animals is 

affected by increased perceived predation risk.  Previous research has shown that 

changing the level perceived predation risk affects parental care, through decreased food 

provision for young (Fontaine and Martin 2006, Dudeck 2016), and nutritional stress 

during early development has been shown to impair development in song control regions 

of the brain (MacDonald et al. 2006).  It would be interesting to assess whether increased 

perceived predation risk during early development has any impact on TnA, Hp, or NC, 

and how the effects of perceived predation risk on the brain compare between parents and 

offspring.   

 In this study we have identified long lasting changes in dendritic morphology and 

neurogenesis in the TnA and Hp of wild caught cowbirds.  This provides further evidence 
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that the effects of perceived predation risk continue long after the heightened threat has 

been removed, and that they can have lasting effects on the brain.  This study also shows 

that lasting the effects of perceived predation risk can still be seen in a semi-natural 

environment, suggesting that similar changes could be seen in free-living animals.   
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Chapter  4    

4   Discussion 

In this thesis, I explored the long lasting effects of perceived predation risk on the 

avian brain and behaviour.  In Chapter 1, I reviewed the effects of perceived predation 

risk from the population level down to the individual brain.  I presented a variety of 

different tools that can be used to quantify changes in the brain in response to perceived 

predation risk, highlighting areas that required further exploration with a wild caught 

species.  In Chapter 2, I explored how perceived predation risk affects the brain and 

behaviour in a controlled laboratory setting, with the focus on long lasting effects that 

continue even after the predation risk has been removed.  I manipulated predation risk in 

black-capped chickadees using playbacks of predator and non-predator species and 

measured lasting changes in behaviour and dendritic morphology, allowing me to assess 

and compare changes in behaviour and neurobiology at a common time point.  In Chapter 

3, I expanded my study to a semi-natural environment, with brown-headed cowbirds as 

my study species.  I used visual and auditory cues to manipulate perceived predation risk, 

and assessed changes in escape behaviour (take-off angle and speed) and neurobiology 

(protein activation, neurogenesis, and dendritic morphology).  In this study, I integrated 

laboratory methods used to assess changes in neurobiology with a wild caught species in 

a semi-natural environment, to explore how predation risk would affect the brain in a 

more natural environment.  In this final chapter, I will summarize how my work 

addresses important issues relating to how predation threat impacts the brain and 

behaviour, and to explore the broader significance of my findings in understanding the 

long lasting effects of perceived predation risk on prey species.  
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4.1   Perceived predation risk has lasting effects on the brain and behaviour 

 My results help us to better understand the roles of the avian TnA, Hp, and NC in 

processing perceived predation risk.  The TnA showed lasting changes in dendritic length 

and inhibited neurogenesis in response to increased perceived predation risk.  This 

supports the proposed role of the TnA as the centre of the avian fear network (Cohen and 

Goff 1978, Marzluff et al. 2012, Hobbs 2015).  Additionally, these results mirror those 

seen in the mammalian amygdala, which has also shown increased activity and lasting 

effects in response to threatening stimuli such as predator cues (Vyas et al. 2002, Shin et 

al. 2006, Mitra et al. 2009, Adamec et al. 2012, Gross and Canteras 2012).  In the Hp, I 

also found lasting changes in dendritic morphology and inhibited neurogenesis.  These 

results reflect the proposed importance of the avian Hp for learning and memory 

(Colombo and Broadbent 2000, Marzluff et al. 2012, Cross et al. 2013, Hobbs 2015), in 

addition to supporting the functional similarities with the mammalian hippocampus 

(Tanapat et al. 2001, Kim and Diamond 2002, Baran et al. 2005, Adamec et al. 2012).  In 

the NC, I found no lasting changes in activation or neurogenesis.  This result is consistent 

with previous work looking the lasting effects of perceived predation risk on the brain 

(Hobbs 2015).  This region has, however, shown short term changes in activation in 

response to fearful stimuli (Marzluff et al. 2012, Cross et al. 2013, Hobbs 2015), 

supporting the proposed importance in the avian fear network, but leaving further 

questions about the duration of activation in this NC.   

 Behaviourally, my results suggest that certain anti-predator behaviours are longer 

lasting, and that environmental cues can trigger varying behavioural responses.  I found 

only short term changes in escape behaviour, suggesting that these changes are transient 
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and that individuals will return to their baseline conditions once the threat has been 

removed. However, it is evident that prey species will respond to conspecific cues of 

predation risk, and that previous experience with predation risk affects the behavioural 

response to these cues.  This suggests that they retain a memory of the traumatic 

situation, and that conspecific alarm cues may trigger that memory if that risk is 

presented again in future. 

 My results show that perceived predation risk can produce lasting and 

quantifiable changes in the avian fear network, in both a laboratory and semi-natural 

setting, and that these changes can coincide with lasting changes in behaviour.  These 

neurobiological effects may also be linked to other changes in individual biology, with 

the full extent of the impact of perceived predation risk not yet known. It is clear that the 

neurological impacts of perceived predation are long lasting, and should be considered 

both in future study on predator-prey ecology and in conservation.  Additionally, it is 

evident that the neurological response in a semi-natural environment does not always 

match that seen in the lab, stressing the importance of considering environmental factors 

in biomedical fear research.   

4.2   Implications for Avian Neurobiology 

 My results support the proposed roles of the TnA (Cohen and Goff 1978, 

Marzluff et al. 2012, Hobbs 2015) and the Hp (Colombo and Broadbent 2000, Cross et al. 

2013, Hobbs 2015) in the processing perceived predation risk, and their importance in the 

avian fear network.  Both the TnA and the Hp showed lasting changes in dendritic 

morphology and inhibited neurogenesis seven days after exposure to increased perceived 

predation risk, suggesting that these regions are not only important in the perception of 
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predation risk but also for retaining information about previous predation events.  My 

results also suggest that further research is needed to better understand the role of the NC 

in the avian fear network, as there was no lasting effect on neurogenesis or ΔFosB 

activation. These results are consistent with previous work looking at the lasting effects 

of perceived predation risk (Hobbs 2015), but leave many questions about the extent of 

this region’s involvement in the processing and memory of predation risk.  Further 

research into the duration of activation in the NC, and whether there is any interaction 

with the lasting changes seen in the TnA and Hp could help us to better understand the 

role of the region.      

 Additionally, this research suggests that dendritic morphology and neurogenesis 

could provide valuable tools for quantifying the neurological impacts of perceived 

predation risk on the avian brain.  With both measures showing effects of increased 

perceived predation risk in a semi-natural environment, it is likely that these tools would 

be useful in studying the effect of perceived predation risk on avian neurobiology both in 

the lab and the field. 

4.3   Implications for biomedical research 

Biomedical research has shown lasting effects on both the brain and behaviour in 

human and animal models in response to life threatening traumatic events (Adamec and 

Shallow 1993, Bremner et al. 1999, Shin et al. 2006, Cohen et al. 2012, 2014, Clinchy et 

al. 2013, Zoladz and Diamond 2016).  Animal models are particularly useful in studying 

the etiology of post traumatic stress disorder (PTSD), as researchers can manipulate the 

circumstances leading to the onset of PTSD, and assess any changes in neurobiology seen 

in response to the traumatic stimuli.  My experiment addresses one of the major 
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criticisms of animal models for PTSD, being that laboratory raised animals in cages may 

not show the same response as their wild counterparts (Clinchy et al. 2013).  While it is 

evident that perceived predation risk can lead to long lasting changes in the brain, the 

effects seen in laboratory studies do not always persist in the natural environment.  For 

example, in some species aversive stimuli presented in the lab have been shown to induce 

changes lasting much longer than changes observed in the natural environment 

(Wiedenmayer 2004).  My results show methods used to quantify neurological changes in 

laboratory mammals elicited similar responses in wild caught animals tested both in the 

lab and in a semi-natural environment.  These wild caught individuals would likely have 

prior experience with predation risk, suggesting that the responses seen are ecologically 

meaningful.  Additionally, finding lasting changes in a non-mammalian species suggests 

that these lasting neurological changes seen in response to increased perceived predation 

risk may be more ubiquitous than previously thought (Sapolsky 2004).   

 Understanding the neural response to perceived predation risk can also aid 

biomedical researchers in developing new therapies for disorders like PTSD.  Given the 

sex differences in the cowbird dendritic morphology, this suggests that males and females 

may respond differently to traumatic stimuli.  This suggests that sex may be an important 

factor to consider when studying potential therapies for PTSD, and that the efficacy of 

any new treatment must be assessed in both sexes.  Additionally, adult neurogenesis is an 

area of ongoing research, and the extent of adult neurogenesis and its effect on human 

behaviour has yet to be fully explored (Kheirbek et al. 2012).  By identifying these 

neurological changes occurring in response to increased perceived predation risk, this 
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could provide new targets for research on drug therapies to help individuals suffering 

from PTSD. 

4.4   Implications for conservation 

 Understanding the impacts of perceived predation risk could provide useful tools 

for conservation and wildlife management.  Previous research has shown that increasing 

perceived predation risk can impact prey demography and lead to trophic cascades 

(Zanette et al. 2011, Suraci et al. 2016).  Additionally, the presence of predators alone, 

following the reintroduction of wolves to the Greater Yellowstone Ecosystem, has led to 

changes in elk habitat selection and fecundity (Creel et al. 2005, 2007).  Understanding 

the neurological mechanisms can help gain a better understanding of how perceived 

predation risk affects behaviour and demography.  It may also be beneficial to look for 

connections between the changes seen here in the TnA and Hp and the effect on 

hypothalamic-pituitary-adrenal (HPA) axis, as this stress system is known to interact with 

the amygdala and hippocampus and can lead to target tissues showing resistance to sex 

steroids, which could in turn impact reproduction (Tsigos and Chrousos 2002).  By 

connecting these changes in neurobiology with changes in behaviour, we can better 

understand why behavioural changes are occurring, and the extent to which the memory 

of a traumatic event remains in the brain.  This could also provide valuable insight for 

conservation managers looking to understand what environmental cues are most stressful 

or lead to the greatest negative impact on species at risk. 

 Given the lasting neurological and behavioural changes seen in this experiment, it 

is clear that prey retain a memory of high predation situations.  This provides further 

support for the importance of predators in the ecosystem, as has been demonstrated by 
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changes to elk behaviour and demography since wolves were returned to Yellowstone 

(Creel et al. 2005, 2007, Creel and Christianson 2009).  If prey retain a lasting signature 

of previous predation risk in the brain, they are likely to maintain these behavioural 

changes even if predators are not constantly present in the area, supporting the 

importance of protecting small populations of large predators from human disturbance.  

These results also support the importance of considering fear effects when creating 

policies for wildlife conservation and management.  Given that the indirect effects of 

predation, such as intimidation, can have greater impacts on prey species than 

consumption (Preisser et al. 2005, Bolnick and Preisser 2005), it is important to consider 

the effects of perceived predation risk when altering the predation risk in an ecosystem.  

This may be of particular importance when capturing animals for relocation or 

reintroduction to an ecosystem, as a traumatic capture could mimic a predation attempt 

and lead to unexpected lasting effects on the captured individuals.  Whether through the 

reintroduction of extant predators or increased human activity, it is important for 

conservation policy to account for the potential indirect effects that predation risk can 

have on prey neurobiology, behaviour, and demography. 

4.5   Future directions 

 My results have expanded our knowledge on the lasting effects of perceived 

predation risk on prey behaviour, dendritic morphology, and neurogenesis.  My results 

emphasize the importance of the Hp and the TnA in the perception of predation risk, and 

show that auditory cues can have lasting impacts on behaviour and neurobiology in a 

semi-natural environment.  These results also lay the groundwork for future studies on 

the impacts of perceived predation risk on prey behaviour and neurobiology. 
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 One area that could use further research would be the NC.  My research found no 

lasting effects of perceived predation risk on neurogenesis or ΔFosB activation in the NC, 

which is consistent with previous research looking at the long term effects of perceived 

predation risk on the avian brain (Hobbs 2015).  However, the NC has shown changes in 

short term activation in response to increased perceived predation risk (Hobbs 2015), 

suggesting that further investigation is needed to gain a better understanding of the role of 

the NC in processing perceived predation risk and the extent to which this region is 

changed in response to changes in predation risk. 

Another direction worth further investigation is the timescale of these changes in 

dendritic morphology and neurogenesis, to determine how quickly these changes are 

evident and whether these changes are still present past the one week period studied.  In 

rats, changes in dendritic morphology response to caffeine administration have been 

shown to persist for at least 8 weeks (Juarez-Mendez et al. 2006).  Future study into the 

lasting effects of perceived predation risk on dendritic morphology and neurogenesis past 

this one week time period may help to better understand the neural changes causing 

persistent PTSD symptoms in humans.  PTSD diagnosis in humans requires symptoms to 

be present for at least one month, however some individuals have maintained symptoms 

for over 50 years (American Psychiatric Association 2013).  Understanding the neural 

mechanisms behind these symptoms may be beneficial for mitigating symptoms and 

identifying new therapies for treating PTSD.   

 My results show that perceived predation risk can have lasting effects on wild 

caught prey neurobiology in a semi-natural environment.  The next step in understanding 

the lasting neurological effects of perceived predation risk on free-living animals.  
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Previous work has shown that exposing song sparrows (Melospiza melodia) to increased 

perceived predation risk during the breeding season led to a 40% reduction in offspring 

survival (Zanette et al. 2011).  However little is known about the effects of perceived 

predation risk on the brain in wild animals, and new research in this area could provide 

new information about the mechanisms leading to these observed changes in 

reproduction and offspring survival.   

 Another area worth further investigation is how perceived predation risk affects 

the developing brain.  Increased perceived predation risk has been shown to reduce 

parental investment, leading to fewer feeding visits (Zanette et al. 2011, Dudeck 2016).  

Additionally, nutrient stress during early development has been shown to impair the 

development of HVC, a song control region in the avian brain (MacDonald et al. 2006).  

In order to better understand how perceived predation affects prey, it could be beneficial 

to look at the lasting effects on the developing brain.  If increased perceived predation 

risk did lead to lasting impairments in development it could lead to long lasting 

impairment in fitness.  In song sparrows, song learning is concentrated in during a 40 day 

period in early development (Marler and Peters 2010).  Even if the neurological effects of 

perceived predation risk were not permanent, if they led to impairments during this 

critical period for song learning it could lead to lasting impacts on individual fitness.  

Additionally, it would be interesting to see if the Hp and the TnA showed a similar 

magnitude of response in the developing brain in comparison to adults, as the perception 

of the threat associated with perceived predation risk may vary with experience.   

 Finally, it would be interesting to assess how neurological activation in response 

to perceived predation risk changes over time, and how this impacts behaviour.  One 
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potential tool to assess this would be positron emission tomography (PET) scans.  

Previous research has used PET scans to look at activation across the brain in American 

crows (Corvus brachyrhynchos) in response to a variety of threatening stimuli, including 

a natural predator (Marzluff et al. 2012, Cross et al. 2013).  One advantage of using PET 

is that it is a non-invasive method of assessing changes in brain activation, which would 

allow for the same individuals to be studied at multiple time points.  This could be 

beneficial for looking at how activation changes if individuals become habituated to 

certain stimuli, or for gaining a better understanding of what brain regions are activated 

in response to the social cues (such as a conspecific alarm call) after a threatening event.  

Finally, the use of PET scans could allow researchers to make more concrete connections 

between brain activation, behaviour, and physiology, as it would be possible to collect 

repeated measurements for both at concurrent time scales.  By connecting neurological, 

behavioural, and physiological changes at the same time points for the same individuals, 

researchers could gain a more holistic view of the effects of perceived predation risk.  

Additionally, the use of non-invasive methods would allow individuals to be followed 

over time to gain a better understanding of how the neurological changes associated with 

perceived predation risk connect with previously observed changes in demography.   

  



114 

 

4.6   References 
Adamec, R., M. Hebert, J. Blundell, and R. F. Mervis. 2012. Dendritic morphology of 

amygdala and hippocampal neurons in more and less predator stress responsive rats 

and more and less spontaneously anxious handled controls. Behavioural Brain 

Research 226:133–146. 

Adamec, R., and T. Shallow. 1993. Lasting effects on rodent anxiety of a single exposure 

to a cat. Physiology & Behavior 54:101–109. 

American Psychiatric Association, editor. 2013. Diagnostic and statistical manual of 

mental disorders. 5th edition. Washington, DC. 

Baran, S. E., A. M. Campbell, J. K. Kleen, C. H. Foltz, R. L. Wright, D. M. Diamond, 

and C. D. Conrad. 2005. Combination of high fat diet and chronic stress retracts 

hippocampal dendrites. Neuroreport 16:39–43. 

Bolnick, D. I., and E. L. Preisser. 2005. Resource competition modifies the strength of 

trait-mediated predator-prey interactions: a meta-analysis. Ecology 86:2771–2779. 

Bremner, J. D., L. H. Staib, D. Kaloupek, S. M. Southwick, R. Soufer, and D. S. 

Charney. 1999. Neural correlates of exposure to traumatic pictures and sound in 

Vietnam combat veterans with and without posttraumatic stress disorder: a positron 

emission tomography study. Biological Psychiatry 45:806–816. 

Clinchy, M., M. J. Sheriff, and L. Y. Zanette. 2013. Predator-induced stress and the 

ecology of fear. Functional Ecology. 

Cohen, D. H., and D. M. Goff. 1978. Effect of avian basal forebrain lesions, including 

septum, on heart rate conditioning. Brain Research Bulletin 3:311–318. 

Cohen, H., N. Kozlovsky, C. Alona, M. A. Matar, and Z. Joseph. 2012. Animal model for 

PTSD: From clinical concept to translational research. Neuropharmacology 62:715–



115 

 

724. 

Cohen, H., M. A. Matar, and J. Zohar. 2014. Maintaining the clinical relevance of animal 

models in translational studies of post-traumatic stress disorder. ILAR Journal 

55:233–245. 

Colombo, M., and N. Broadbent. 2000. Is the avian hippocampus a functional homologue 

of the mammalian hippocampus? 

Creel, S., and D. Christianson. 2009. Wolf presence and increased willow consumption 

by Yellowstone elk: implications for trophic cascades. Ecology 90:2454–2466. 

Creel, S., D. Christianson, S. Liley, and J. A. Winnie. 2007. Predation risk affects 

reproductive physiology and demography of elk. Science. 

Creel, S., J. Winnie, B. Maxwell, K. Hamlin, and M. Creel. 2005. Elk alter habitat 

selection as an antipredator response to wolves. Ecology 86:3387–3397. 

Cross, D. J., J. M. Marzluff, I. Palmquist, S. Minoshima, T. Shimizu, and R. Miyaoka. 

2013. Distinct neural circuits underlie assessment of a diversity of natural dangers 

by American crows. Proceedings of the Royal Society B: Biological Sciences 280. 

Dudeck, P. B. 2016. Fear Of predators compromises parental care and juvenile survival 

in songbird. Electronic Thesis and Dissertation Repository. 

Gross, C. T., and N. S. Canteras. 2012. The many paths to fear. Nature Reviews 

Neuroscience 13:651–658. 

Hobbs, E. C. 2015. The effects of perceived predation risk on the avian brain. Electronic 

Thesis and Dissertation Repository. 

Juarez-Mendez, S., R. Carretero, R. Martinez-Tellez, A. B. Silva-Gomez, and G. Flores. 

2006. Neonatal caffeine administration causes a permanent increase in the dendritic 



116 

 

length of prefrontal cortical neurons of rats. Synapse 60:450–455. 

Kheirbek, M. A., K. C. Klemenhagen, A. Sahay, and R. Hen. 2012. Neurogenesis and 

generalization: a new approach to stratify and treat anxiety disorders. Nature 

Neuroscience 15:1613–1620. 

Kim, J. J., and D. M. Diamond. 2002. The stressed hippocampus, synaptic plasticity and 

lost memories. Nature reviews. Neuroscience 3:453–62. 

MacDonald, I. F., B. Kempster, L. Zanette, and S. A. MacDougall-Shackleton. 2006. 

Early nutritional stress impairs development of a song-control brain region in both 

male and female juvenile song sparrows (Melospiza melodia) at the onset of song 

learning. Proceedings of the Royal Society of London B: Biological Sciences 273. 

Marler, P., and S. Peters. 2010. A Sensitive Period for Song Acquisition in the Song 

Sparrow, Melospiza melodia: A Case of Age-limited Learning. Ethology 76:89–100. 

Marzluff, J. M., R. Miyaoka, S. Minoshima, and D. J. Cross. 2012. Brain imaging reveals 

neuronal circuitry underlying the crow’s perception of human faces. Proceedings of 

the National Academy of Sciences. 

Mitra, R., R. Adamec, and R. Sapolsky. 2009. Resilience against predator stress and 

dendritic morphology of amygdala neurons. Behavioural Brain Research 205:535–

543. 

Preisser, E. L., D. I. Bolnick, and M. F. Benard. 2005. Scared to death? The effects of 

intimidation and consumption in predator-prey interactions. Ecology 86:501–509. 

Sapolsky, R. M. 2004. Why zebras don’t get ulcers. Times Books. 

Shin, L. M., S. L. Rauch, and R. K. Pitman. 2006. Amygdala, medial prefrontal cortex, 

and hippocampal function in PTSD. Annals of the New York Academy of Sciences 



117 

 

1071:67–79. 

Suraci, J. P., M. Clinchy, L. M. Dill, D. Roberts, and L. Y. Zanette. 2016. Fear of large 

carnivores causes a trophic cascade. Nature communications 7:10698. 

Tanapat, P., N. B. Hastings, T. A. Rydel, L. A. M. Galea, and E. Gould. 2001. Exposure 

to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal 

hormone-dependent mechanism. The Journal of Comparative Neurology 437:496–

504. 

Tsigos, C., and G. P. Chrousos. 2002. Hypothalamic–pituitary–adrenal axis, 

neuroendocrine factors and stress. Journal of Psychosomatic Research 53:865–871. 

Vyas, A., R. Mitra, B. S. Shankaranarayana Rao, and S. Chattarji. 2002. Chronic stress 

induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid 

neurons. The Journal of Neuroscience 22:6810–6818. 

Wiedenmayer, C. P. 2004. Adaptations or pathologies? Long-term changes in brain and 

behavior after a single exposure to severe threat. 

Zanette, L. Y., A. F. White, M. C. Allen, and M. Clinchy. 2011. Perceived predation risk 

reduces the number of offspring songbirds produce per year. Science 334:1398–

1401. 

Zoladz, P. R., and D. M. Diamond. 2016. Predator-based psychosocial stress animal 

model of PTSD: Preclinical assessment of traumatic stress at cognitive, hormonal, 

pharmacological, cardiovascular and epigenetic levels of analysis. Experimental 

Neurology 284:211–219. 

 

  



118 

 

Appendices 

Appendix A: Ethogram for scoring chickadee behaviour. 

Category Behaviour Description 

Consumption Feeding Pecking in food cup 

 Handling Use the beak and feet to open seed 

 Drinking Pecking in water cup 

Movement Flying Moving using wings.  Starts when feet are in the air and 
stops when feet are back on a surface and feathers are 
folded again 

 Landing Bird stops and takes off again, within a 0.6s timeframe 

 Walking Moving by putting one foot in front of the other.  Starts 
when the first foot is in the air and stops after the last foot 
is back on a surface 

 Hopping Moving by jumping.  Starts when the feet are in the air and 
stops when the feet are back on a surface and the body is 
directly over the feet 

Resting Shaking Wiggling the body from left to right.  Starts when the body 
starts to move and stops when feathers are folded again 

 Stretching Extending at least one limb without changing location 

 Preening Manipulating feathers with the beak or feet or rubbing the 
beak over a surface 

 Puffing Up Raising feathers, appearing larger 

Immobile Sitting Staying still with two claws attached to a fixed object for 
at least 0.6s, with head moving 1-3 times per second 

 Looking Staying still with two claws attached to a fixed object for 
at least 0.6s, with head moving more than 3 times per 
second 

 Freezing Staying still with two claws attached to a fixed object for 
at least 0.6s, with head moving less than 1 time per second 
and no rapid movement 

Aggression Biting bars Pecking at the cage bars 
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Appendix B: Diagram of the brain regions analyzed: the nucleus taeniae of the amygdala 

(TnA), the hippocampus (Hp), the caudal nidopallium (NC), and the mesopallium (M) 

(used as a control region). 
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Appendix C: An example of a Golgi-Cox stained pyramidal neuron in a chickadee 

hippocampus. 
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Appendix D: An example of cowbird DCX labelling in the TnA for the predator (left) 

and non-predator (right) treatments. 

 

Appendix E: An example of DCX labelling in the Hp for the predator (left) and non-

predator (right) treatment. 

 

Appendix F: An example of DCX labelling in the NC for the predator (left) and non-

predator (right) treatment. 
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Appendix G: An example of ΔFosB labelling in the TnA for the predator (left) and non-

predator (right) treatment. 

 

Appendix H: An example of ΔFosB labelling in the Hp for the predator (left) and non-

predator (right) treatment. 

 

Appendix I: An example of ΔFosB labelling in the NC for the predator (left) and non-

predator (right) treatment. 
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Appendix J: Statistical results for black-capped chickadee (BCCH) dendritic 

morphology measures. 

Species Brain 
Region 

Dendrite Variable Measure p 

BCCH Hp Total Nodes Treatment 0.251 
BCCH Hp Total Nodes Sex 0.945 
BCCH Hp Total Nodes Treatment*Sex 0.925 
BCCH TnA Total Nodes Treatment 0.132 
BCCH TnA Total Nodes Sex 0.870 
BCCH TnA Total Nodes Treatment*Sex 0.460 
BCCH Hp Total Ends Treatment 0.223 
BCCH Hp Total Ends Sex 0.804 
BCCH Hp Total Ends Treatment*Sex 0.871 
BCCH TnA Total Ends Treatment 0.140 
BCCH TnA Total Ends Sex 0.770 
BCCH TnA Total Ends Treatment*Sex 0.285 
BCCH Hp Total Length Treatment 0.217 
BCCH Hp Total Length Sex 0.762 
BCCH Hp Total Length Treatment*Sex 0.389 
BCCH TnA Total Length Treatment 0.085 
BCCH TnA Total Length Sex 0.720 
BCCH TnA Total Length Treatment*Sex 0.209 
BCCH Hp Total Quantity Treatment 0.992 
BCCH Hp Total Quantity Sex 0.606 
BCCH Hp Total Quantity Treatment*Sex 0.429 
BCCH TnA Total Quantity Treatment 0.866 
BCCH TnA Total Quantity Sex 0.294 
BCCH TnA Total Quantity Treatment*Sex 0.393 
BCCH Hp Apical Nodes Treatment 0.311 
BCCH Hp Apical Nodes Sex 0.447 
BCCH Hp Apical Nodes Treatment*Sex 0.782 
BCCH TnA Apical Nodes Treatment 0.620 
BCCH TnA Apical Nodes Sex 0.360 
BCCH TnA Apical Nodes Treatment*Sex 0.771 
BCCH Hp Apical Length Treatment 0.452 
BCCH Hp Apical Length Sex 0.358 
BCCH Hp Apical Length Treatment*Sex 0.917 
BCCH TnA Apical Length Treatment 0.245 
BCCH TnA Apical Length Sex 0.355 
BCCH TnA Apical Length Treatment*Sex 0.262 
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BCCH Hp Apical Longest 
Dendrite 

Treatment 0.176 

BCCH Hp Apical Longest 
Dendrite 

Sex 0.905 

BCCH Hp Apical Longest 
Dendrite 

Treatment*Sex 0.969 

BCCH TnA Apical Longest 
Dendrite 

Treatment 0.299 

BCCH TnA Apical Longest 
Dendrite 

Sex 0.457 

BCCH TnA Apical Longest 
Dendrite 

Treatment*Sex 0.049 

BCCH Hp Apical Ends Treatment 0.370 
BCCH Hp Apical Ends Sex 0.370 
BCCH Hp Apical Ends Treatment*Sex 0.971 
BCCH TnA Apical Ends Treatment 0.667 
BCCH TnA Apical Ends Sex 0.388 
BCCH TnA Apical Ends Treatment*Sex 0.731 
BCCH Hp Basal Nodes Treatment 0.339 
BCCH Hp Basal Nodes Sex 0.708 
BCCH Hp Basal Nodes Treatment*Sex 0.968 
BCCH TnA Basal Nodes Treatment 0.078 
BCCH TnA Basal Nodes Sex 0.572 
BCCH TnA Basal Nodes Treatment*Sex 0.407 
BCCH Hp Basal Length Treatment 0.205 
BCCH Hp Basal Length Sex 0.875 
BCCH Hp Basal Length Treatment*Sex 0.260 
BCCH TnA Basal Length Treatment 0.110 
BCCH TnA Basal Length Sex 0.914 
BCCH TnA Basal Length Treatment*Sex 0.324 
BCCH Hp Basal Longest 

Dendrite 
Treatment 0.140 

BCCH Hp Basal Longest 
Dendrite 

Sex 0.172 

BCCH Hp Basal Longest 
Dendrite 

Treatment*Sex 0.158 

BCCH TnA Basal Longest 
Dendrite 

Treatment 0.337 

BCCH TnA Basal Longest 
Dendrite 

Sex 0.693 

BCCH TnA Basal Longest 
Dendrite 

Treatment*Sex 0.817 

BCCH Hp Basal Ends Treatment 0.270 
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BCCH Hp Basal Ends Sex 0.857 
BCCH Hp Basal Ends Treatment*Sex 0.818 
BCCH TnA Basal Ends Treatment 0.083 
BCCH TnA Basal Ends Sex 0.287 
BCCH TnA Basal Ends Treatment*Sex 0.214 
BCCH Hp Basal Spines SPINES 0.000 
BCCH Hp Basal Spines SPINES*Treatment 0.235 
BCCH Hp Basal Spines SPINES*Sex 0.250 
BCCH Hp Basal Spines SPINES*Treatment*Sex 0.106 
BCCH TnA Basal Spines SPINES 0.000 
BCCH TnA Basal Spines SPINES*Treatment 0.891 
BCCH TnA Basal Spines SPINES*Sex 0.590 
BCCH TnA Basal Spines SPINES*Treatment*Sex 0.308 
BCCH Hp Apical Sholl 

Intersections 
Treatment 0.612 

BCCH Hp Apical Sholl 
Intersections 

Sex 0.250 

BCCH Hp Apical Sholl 
Intersections 

Treatment*Sex 0.982 

BCCH Hp Apical Sholl 
Intersections 

RADIUS 0.000 

BCCH Hp Apical Sholl 
Intersections 

RADIUS*Treatment 0.878 

BCCH Hp Apical Sholl 
Intersections 

RADIUS*Sex 0.020 

BCCH Hp Apical Sholl 
Intersections 

RADIUS*Treatment*Sex 0.261 

BCCH Hp Basal Sholl 
Intersections 

Treatment 0.105 

BCCH Hp Basal Sholl 
Intersections 

Sex 0.981 

BCCH Hp Basal Sholl 
Intersections 

Treatment*Sex 0.358 

BCCH Hp Basal Sholl 
Intersections 

RADIUS 0.000 

BCCH Hp Basal Sholl 
Intersections 

RADIUS*Treatment 0.139 

BCCH Hp Basal Sholl 
Intersections 

RADIUS*Sex 0.941 

BCCH Hp Basal Sholl 
Intersections 

RADIUS*Treatment*Sex 0.005 

BCCH Hp Apical Sholl Length Treatment 0.451 
BCCH Hp Apical Sholl Length Sex 0.312 
BCCH Hp Apical Sholl Length Treatment*Sex 0.992 



126 

 

BCCH Hp Apical Sholl Length RADIUS 0.000 
BCCH Hp Apical Sholl Length RADIUS*Treatment 0.911 
BCCH Hp Apical Sholl Length RADIUS*Sex 0.140 
BCCH Hp Apical Sholl Length RADIUS*Treatment*Sex 0.834 
BCCH Hp Basal Sholl Length Treatment 0.142 
BCCH Hp Basal Sholl Length Sex 0.610 
BCCH Hp Basal Sholl Length Treatment*Sex 0.293 
BCCH Hp Basal Sholl Length RADIUS 0.000 
BCCH Hp Basal Sholl Length RADIUS*Treatment 0.031 
BCCH Hp Basal Sholl Length RADIUS*Sex 1.000 
BCCH Hp Basal Sholl Length RADIUS*Treatment*Sex 0.053 
BCCH Hp Apical Sholl Nodes Treatment 0.396 
BCCH Hp Apical Sholl Nodes Sex 0.414 
BCCH Hp Apical Sholl Nodes Treatment*Sex 0.484 
BCCH Hp Apical Sholl Nodes RADIUS 0.000 
BCCH Hp Apical Sholl Nodes RADIUS*Treatment 0.940 
BCCH Hp Apical Sholl Nodes RADIUS*Sex 0.113 
BCCH Hp Apical Sholl Nodes RADIUS*Treatment*Sex 0.037 
BCCH Hp Basal Sholl Nodes Treatment 0.151 
BCCH Hp Basal Sholl Nodes Sex 0.749 
BCCH Hp Basal Sholl Nodes Treatment*Sex 0.932 
BCCH Hp Basal Sholl Nodes RADIUS 0.000 
BCCH Hp Basal Sholl Nodes RADIUS*Treatment 0.189 
BCCH Hp Basal Sholl Nodes RADIUS*Sex 0.381 
BCCH Hp Basal Sholl Nodes RADIUS*Treatment*Sex 0.001 
BCCH Hp Apical Sholl Ends Treatment 0.370 
BCCH Hp Apical Sholl Ends Sex 0.308 
BCCH Hp Apical Sholl Ends Treatment*Sex 0.915 
BCCH Hp Apical Sholl Ends RADIUS 0.000 
BCCH Hp Apical Sholl Ends RADIUS*Treatment 0.400 
BCCH Hp Apical Sholl Ends RADIUS*Sex 0.762 
BCCH Hp Apical Sholl Ends RADIUS*Treatment*Sex 0.643 
BCCH Hp Basal Sholl Ends Treatment 0.096 
BCCH Hp Basal Sholl Ends Sex 0.727 
BCCH Hp Basal Sholl Ends Treatment*Sex 0.506 
BCCH Hp Basal Sholl Ends RADIUS 0.000 
BCCH Hp Basal Sholl Ends RADIUS*Treatment 0.228 
BCCH Hp Basal Sholl Ends RADIUS*Sex 0.992 
BCCH Hp Basal Sholl Ends RADIUS*Treatment*Sex 0.084 
BCCH Hp Total Sholl Treatment 0.147 
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Intersections 
BCCH Hp Total Sholl 

Intersections 
Sex 0.787 

BCCH Hp Total Sholl 
Intersections 

Treatment*Sex 0.295 

BCCH Hp Total Sholl 
Intersections 

RADIUS 0.000 

BCCH Hp Total Sholl 
Intersections 

RADIUS*Treatment 0.111 

BCCH Hp Total Sholl 
Intersections 

RADIUS*Sex 0.993 

BCCH Hp Total Sholl 
Intersections 

RADIUS*Treatment*Sex 0.015 

BCCH Hp Total Sholl Length Treatment 0.172 
BCCH Hp Total Sholl Length Sex 0.784 
BCCH Hp Total Sholl Length Treatment*Sex 0.887 
BCCH Hp Total Sholl Length RADIUS 0.000 
BCCH Hp Total Sholl Length RADIUS*Treatment 0.251 
BCCH Hp Total Sholl Length RADIUS*Sex 0.983 
BCCH Hp Total Sholl Length RADIUS*Treatment*Sex 0.153 
BCCH Hp Total Sholl Ends Treatment 0.155 
BCCH Hp Total Sholl Ends Sex 0.965 
BCCH Hp Total Sholl Ends Treatment*Sex 0.679 
BCCH Hp Total Sholl Ends RADIUS 0.000 
BCCH Hp Total Sholl Ends RADIUS*Treatment 0.806 
BCCH Hp Total Sholl Ends RADIUS*Sex 0.975 
BCCH Hp Total Sholl Ends RADIUS*Treatment*Sex 0.373 
BCCH Hp Total Sholl Nodes Treatment 0.136 
BCCH Hp Total Sholl Nodes Sex 0.875 
BCCH Hp Total Sholl Nodes Treatment*Sex 0.782 
BCCH Hp Total Sholl Nodes RADIUS 0.000 
BCCH Hp Total Sholl Nodes RADIUS*Treatment 0.045 
BCCH Hp Total Sholl Nodes RADIUS*Sex 0.478 
BCCH Hp Total Sholl Nodes RADIUS*Treatment*Sex 0.001 
BCCH TnA Apical Sholl 

Intersections 
Treatment 0.241 

BCCH TnA Apical Sholl 
Intersections 

Sex 0.550 

BCCH TnA Apical Sholl 
Intersections 

Treatment*Sex 0.362 

BCCH TnA Apical Sholl 
Intersections 

RADIUS 0.000 

BCCH TnA Apical Sholl RADIUS*Treatment 0.911 
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Intersections 
BCCH TnA Apical Sholl 

Intersections 
RADIUS*Sex 0.781 

BCCH TnA Apical Sholl 
Intersections 

RADIUS*Treatment*Sex 0.930 

BCCH TnA Basal Sholl 
Intersections 

Treatment 0.075 

BCCH TnA Basal Sholl 
Intersections 

Sex 0.709 

BCCH TnA Basal Sholl 
Intersections 

Treatment*Sex 0.220 

BCCH TnA Basal Sholl 
Intersections 

RADIUS 0.000 

BCCH TnA Basal Sholl 
Intersections 

RADIUS*Treatment 0.643 

BCCH TnA Basal Sholl 
Intersections 

RADIUS*Sex 0.780 

BCCH TnA Basal Sholl 
Intersections 

RADIUS*Treatment*Sex 0.966 

BCCH TnA Apical Sholl Length Treatment 0.277 
BCCH TnA Apical Sholl Length Sex 0.401 
BCCH TnA Apical Sholl Length Treatment*Sex 0.306 
BCCH TnA Apical Sholl Length RADIUS 0.000 
BCCH TnA Apical Sholl Length RADIUS*Treatment 0.882 
BCCH TnA Apical Sholl Length RADIUS*Sex 0.929 
BCCH TnA Apical Sholl Length RADIUS*Treatment*Sex 0.937 
BCCH TnA Basal Sholl Length Treatment 0.109 
BCCH TnA Basal Sholl Length Sex 0.920 
BCCH TnA Basal Sholl Length Treatment*Sex 0.328 
BCCH TnA Basal Sholl Length RADIUS 0.000 
BCCH TnA Basal Sholl Length RADIUS*Treatment 0.352 
BCCH TnA Basal Sholl Length RADIUS*Sex 0.960 
BCCH TnA Basal Sholl Length RADIUS*Treatment*Sex 0.968 
BCCH TnA Apical Sholl Nodes Treatment 0.589 
BCCH TnA Apical Sholl Nodes Sex 0.652 
BCCH TnA Apical Sholl Nodes Treatment*Sex 0.769 
BCCH TnA Apical Sholl Nodes RADIUS 0.000 
BCCH TnA Apical Sholl Nodes RADIUS*Treatment 0.999 
BCCH TnA Apical Sholl Nodes RADIUS*Sex 0.320 
BCCH TnA Apical Sholl Nodes RADIUS*Treatment*Sex 0.791 
BCCH TnA Basal Sholl Nodes Treatment 0.111 
BCCH TnA Basal Sholl Nodes Sex 0.360 
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BCCH TnA Basal Sholl Nodes Treatment*Sex 0.758 
BCCH TnA Basal Sholl Nodes RADIUS 0.000 
BCCH TnA Basal Sholl Nodes RADIUS*Treatment 0.161 
BCCH TnA Basal Sholl Nodes RADIUS*Sex 0.319 
BCCH TnA Basal Sholl Nodes RADIUS*Treatment*Sex 0.286 
BCCH TnA Apical Sholl Ends Treatment 0.823 
BCCH TnA Apical Sholl Ends Sex 0.711 
BCCH TnA Apical Sholl Ends Treatment*Sex 0.828 
BCCH TnA Apical Sholl Ends RADIUS 0.000 
BCCH TnA Apical Sholl Ends RADIUS*Treatment 0.818 
BCCH TnA Apical Sholl Ends RADIUS*Sex 0.949 
BCCH TnA Apical Sholl Ends RADIUS*Treatment*Sex 0.720 
BCCH TnA Basal Sholl Ends Treatment 0.101 
BCCH TnA Basal Sholl Ends Sex 0.658 
BCCH TnA Basal Sholl Ends Treatment*Sex 0.218 
BCCH TnA Basal Sholl Ends RADIUS 0.000 
BCCH TnA Basal Sholl Ends RADIUS*Treatment 0.978 
BCCH TnA Basal Sholl Ends RADIUS*Sex 0.937 
BCCH TnA Basal Sholl Ends RADIUS*Treatment*Sex 0.850 
BCCH TnA Total Sholl 

Intersections 
Treatment 0.089 

BCCH TnA Total Sholl 
Intersections 

Sex 0.587 

BCCH TnA Total Sholl 
Intersections 

Treatment*Sex 0.154 

BCCH TnA Total Sholl 
Intersections 

RADIUS 0.000 

BCCH TnA Total Sholl 
Intersections 

RADIUS*Treatment 0.334 

BCCH TnA Total Sholl 
Intersections 

RADIUS*Sex 0.891 

BCCH TnA Total Sholl 
Intersections 

RADIUS*Treatment*Sex 0.771 

BCCH TnA Total Sholl Length Treatment 0.033 
BCCH TnA Total Sholl Length Sex 0.934 
BCCH TnA Total Sholl Length Treatment*Sex 0.108 
BCCH TnA Total Sholl Length RADIUS 0.000 
BCCH TnA Total Sholl Length RADIUS*Treatment 0.002 
BCCH TnA Total Sholl Length RADIUS*Sex 0.999 
BCCH TnA Total Sholl Length RADIUS*Treatment*Sex 0.586 
BCCH TnA Total Sholl Ends Treatment 0.253 
BCCH TnA Total Sholl Ends Sex 0.748 
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BCCH TnA Total Sholl Ends Treatment*Sex 0.439 
BCCH TnA Total Sholl Ends RADIUS 0.000 
BCCH TnA Total Sholl Ends RADIUS*Treatment 0.980 
BCCH TnA Total Sholl Ends RADIUS*Sex 0.803 
BCCH TnA Total Sholl Ends RADIUS*Treatment*Sex 0.890 
BCCH TnA Total Sholl Nodes Treatment 0.210 
BCCH TnA Total Sholl Nodes Sex 0.691 
BCCH TnA Total Sholl Nodes Treatment*Sex 0.733 
BCCH TnA Total Sholl Nodes RADIUS 0.000 
BCCH TnA Total Sholl Nodes RADIUS*Treatment 0.514 
BCCH TnA Total Sholl Nodes RADIUS*Sex 0.210 
BCCH TnA Total Sholl Nodes RADIUS*Treatment*Sex 0.326 
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Appendix K: : Statistical results for brown-headed cowbird (BHCO) dendritic 

morphology measures. 

Species Brain 
Region 

Dendrite Variable Measure p 

BHCO Hp Total Quantity Treatment 0.953 
BHCO Hp Total Quantity Sex 0.907 
BHCO Hp Total Quantity Treatment*Sex 0.953 
BHCO Hp Total Length Treatment 0.979 
BHCO Hp Total Length Sex 0.253 
BHCO Hp Total Length Treatment*Sex 0.044 
BHCO Hp Total Ends Treatment 0.961 
BHCO Hp Total Ends Sex 0.643 
BHCO Hp Total Ends Treatment*Sex 0.016 
BHCO Hp Total Nodes Treatment 0.933 
BHCO Hp Total Nodes Sex 0.556 
BHCO Hp Total Nodes Treatment*Sex 0.026 
BHCO TnA Total Quantity Treatment 0.294 
BHCO TnA Total Quantity Sex 0.082 
BHCO TnA Total Quantity Treatment*Sex 0.459 
BHCO TnA Total Length Treatment 0.564 
BHCO TnA Total Length Sex 0.953 
BHCO TnA Total Length Treatment*Sex 0.057 
BHCO TnA Total Ends Treatment 0.800 
BHCO TnA Total Ends Sex 0.733 
BHCO TnA Total Ends Treatment*Sex 0.177 
BHCO TnA Total Nodes Treatment 0.974 
BHCO TnA Total Nodes Sex 0.840 
BHCO TnA Total Nodes Treatment*Sex 0.138 
BHCO Hp Apical Longest 

Dendrite 
Treatment 0.692 

BHCO Hp Apical Longest 
Dendrite 

Sex 0.097 

BHCO Hp Apical Longest 
Dendrite 

Treatment*Sex 0.149 

BHCO Hp Basal Longest 
Dendrite 

Treatment 0.427 

BHCO Hp Basal Longest 
Dendrite 

Sex 0.985 

BHCO Hp Basal Longest 
Dendrite 

Treatment*Sex 0.017 

BHCO Hp Apical Nodes Treatment 0.684 
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BHCO Hp Apical Nodes Sex 0.375 
BHCO Hp Apical Nodes Treatment*Sex 0.109 
BHCO Hp Basal Nodes Treatment 0.647 
BHCO Hp Basal Nodes Sex 0.862 
BHCO Hp Basal Nodes Treatment*Sex 0.027 
BHCO Hp Apical Ends Treatment 0.572 
BHCO Hp Apical Ends Sex 0.498 
BHCO Hp Apical Ends Treatment*Sex 0.077 
BHCO Hp Basal Ends Treatment 0.659 
BHCO Hp Basal Ends Sex 0.917 
BHCO Hp Basal Ends Treatment*Sex 0.048 
BHCO Hp Apical Total Length Treatment 0.811 
BHCO Hp Apical Total Length Sex 0.320 
BHCO Hp Apical Total Length Treatment*Sex 0.194 
BHCO Hp Basal Total Length Treatment 0.827 
BHCO Hp Basal Total Length Sex 0.359 
BHCO Hp Basal Total Length Treatment*Sex 0.046 
BHCO Hp Apical Mean Length Treatment 0.811 
BHCO Hp Apical Mean Length Sex 0.320 
BHCO Hp Apical Mean Length Treatment*Sex 0.194 
BHCO Hp Basal Mean Length Treatment 0.773 
BHCO Hp Basal Mean Length Sex 0.528 
BHCO Hp Basal Mean Length Treatment*Sex 0.167 
BHCO TnA Apical Longest 

Dendrite 
Treatment 0.692 

BHCO TnA Apical Longest 
Dendrite 

Sex 0.097 

BHCO TnA Apical Longest 
Dendrite 

Treatment*Sex 0.149 

BHCO TnA Basal Longest 
Dendrite 

Treatment 0.427 

BHCO TnA Basal Longest 
Dendrite 

Sex 0.985 

BHCO TnA Basal Longest 
Dendrite 

Treatment*Sex 0.017 

BHCO TnA Apical Nodes Treatment 0.684 
BHCO TnA Apical Nodes Sex 0.375 
BHCO TnA Apical Nodes Treatment*Sex 0.109 
BHCO TnA Basal Nodes Treatment 0.647 
BHCO TnA Basal Nodes Sex 0.862 
BHCO TnA Basal Nodes Treatment*Sex 0.027 
BHCO TnA Apical Ends Treatment 0.572 



133 

 

BHCO TnA Apical Ends Sex 0.498 
BHCO TnA Apical Ends Treatment*Sex 0.077 
BHCO TnA Basal Ends Treatment 0.659 
BHCO TnA Basal Ends Sex 0.917 
BHCO TnA Basal Ends Treatment*Sex 0.048 
BHCO TnA Apical Total Length Treatment 0.811 
BHCO TnA Apical Total Length Sex 0.320 
BHCO TnA Apical Total Length Treatment*Sex 0.194 
BHCO TnA Basal Total Length Treatment 0.827 
BHCO TnA Basal Total Length Sex 0.359 
BHCO TnA Basal Total Length Treatment*Sex 0.046 
BHCO TnA Apical Mean Length Treatment 0.811 
BHCO TnA Apical Mean Length Sex 0.320 
BHCO TnA Apical Mean Length Treatment*Sex 0.194 
BHCO TnA Basal Mean Length Treatment 0.773 
BHCO TnA Basal Mean Length Sex 0.528 
BHCO TnA Basal Mean Length Treatment*Sex 0.167 
BHCO Hp Total Sholl 

Intersections 
Treatment 0.641 

BHCO Hp Total Sholl 
Intersections 

Sex 0.284 

BHCO Hp Total Sholl 
Intersections 

Treatment*Sex 0.018 

BHCO Hp Total Sholl 
Intersections 

RADIUS 0.000 

BHCO Hp Total Sholl 
Intersections 

RADIUS*Treatment 0.717 

BHCO Hp Total Sholl 
Intersections 

RADIUS*Sex 0.191 

BHCO Hp Total Sholl 
Intersections 

RADIUS*Treatment*Sex 0.000 

BHCO Hp Total Sholl Length Treatment 0.784 
BHCO Hp Total Sholl Length Sex 0.251 
BHCO Hp Total Sholl Length Treatment*Sex 0.020 
BHCO Hp Total Sholl Length RADIUS 0.000 
BHCO Hp Total Sholl Length RADIUS*Treatment 1.000 
BHCO Hp Total Sholl Length RADIUS*Sex 0.070 
BHCO Hp Total Sholl Length RADIUS*Treatment*Sex 0.000 
BHCO Hp Total Sholl Nodes Treatment 0.239 
BHCO Hp Total Sholl Nodes Sex 0.438 
BHCO Hp Total Sholl Nodes Treatment*Sex 0.128 
BHCO Hp Total Sholl Nodes RADIUS 0.000 
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BHCO Hp Total Sholl Nodes RADIUS*Treatment 0.018 
BHCO Hp Total Sholl Nodes RADIUS*Sex 0.364 
BHCO Hp Total Sholl Nodes RADIUS*Treatment*Sex 0.319 
BHCO Hp Total Ends Treatment 0.051 
BHCO Hp Total Ends Sex 0.038 
BHCO Hp Total Ends Treatment*Sex 0.000 
BHCO Hp Total Ends RADIUS 0.000 
BHCO Hp Total Ends RADIUS*Treatment 0.495 
BHCO Hp Total Ends RADIUS*Sex 0.018 
BHCO Hp Total Ends RADIUS*Treatment*Sex 0.477 
BHCO TnA Total Sholl 

Intersections 
Treatment 0.556 

BHCO TnA Total Sholl 
Intersections 

Sex 0.968 

BHCO TnA Total Sholl 
Intersections 

Treatment*Sex 0.087 

BHCO TnA Total Sholl 
Intersections 

Treatment 0.000 

BHCO TnA Total Sholl 
Intersections 

Sex 0.885 

BHCO TnA Total Sholl 
Intersections 

Treatment*Sex 1.000 

BHCO TnA Total Sholl 
Intersections 

RADIUS 0.017 

BHCO TnA Total Sholl Length RADIUS*Treatment 0.358 
BHCO TnA Total Sholl Length RADIUS*Sex 0.959 
BHCO TnA Total Sholl Length RADIUS*Treatment*Sex 0.072 
BHCO TnA Total Sholl Length Treatment 0.000 
BHCO TnA Total Sholl Length Sex 0.253 
BHCO TnA Total Sholl Length Treatment*Sex 1.000 
BHCO TnA Total Sholl Length RADIUS 0.000 
BHCO TnA Total Sholl Nodes Treatment 0.969 
BHCO TnA Total Sholl Nodes Sex 0.783 
BHCO TnA Total Sholl Nodes Treatment*Sex 0.634 
BHCO TnA Total Sholl Nodes RADIUS 0.000 
BHCO TnA Total Sholl Nodes RADIUS*Treatment 0.998 
BHCO TnA Total Sholl Nodes RADIUS*Sex 1.000 
BHCO TnA Total Sholl Nodes RADIUS*Treatment*Sex 0.999 
BHCO TnA Total Sholl Ends Treatment 0.908 
BHCO TnA Total Sholl Ends Sex 0.718 
BHCO TnA Total Sholl Ends Treatment*Sex 0.471 
BHCO TnA Total Sholl Ends RADIUS 0.000 
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BHCO TnA Total Sholl Ends RADIUS*Treatment 0.252 
BHCO TnA Total Sholl Ends RADIUS*Sex 0.980 
BHCO TnA Total Sholl Ends RADIUS*Treatment*Sex 0.092 
BHCO Hp Apical Sholl 

Intersections 
Treatment 0.674 

BHCO Hp Apical Sholl 
Intersections 

Sex 0.310 

BHCO Hp Apical Sholl 
Intersections 

Treatment*Sex 0.101 

BHCO Hp Apical Sholl 
Intersections 

RADIUS 0.000 

BHCO Hp Apical Sholl 
Intersections 

RADIUS*Treatment 0.781 

BHCO Hp Apical Sholl 
Intersections 

RADIUS*Sex 0.344 

BHCO Hp Apical Sholl 
Intersections 

RADIUS*Treatment*Sex 0.010 

BHCO Hp Basal Sholl 
Intersections 

Treatment 0.950 

BHCO Hp Basal Sholl 
Intersections 

Sex 0.332 

BHCO Hp Basal Sholl 
Intersections 

Treatment*Sex 0.030 

BHCO Hp Basal Sholl 
Intersections 

RADIUS 0.000 

BHCO Hp Basal Sholl 
Intersections 

RADIUS*Treatment 0.997 

BHCO Hp Basal Sholl 
Intersections 

RADIUS*Sex 0.257 

BHCO Hp Basal Sholl 
Intersections 

RADIUS*Treatment*Sex 0.002 

BHCO Hp Apical Sholl Length Treatment 0.646 
BHCO Hp Apical Sholl Length Sex 0.257 
BHCO Hp Apical Sholl Length Treatment*Sex 0.090 
BHCO Hp Apical Sholl Length RADIUS 0.000 
BHCO Hp Apical Sholl Length RADIUS*Treatment 0.773 
BHCO Hp Apical Sholl Length RADIUS*Sex 0.211 
BHCO Hp Apical Sholl Length RADIUS*Treatment*Sex 0.002 
BHCO Hp Basal Sholl Length Treatment 0.906 
BHCO Hp Basal Sholl Length Sex 0.325 
BHCO Hp Basal Sholl Length Treatment*Sex 0.027 
BHCO Hp Basal Sholl Length RADIUS 0.000 
BHCO Hp Basal Sholl Length RADIUS*Treatment 1.000 
BHCO Hp Basal Sholl Length RADIUS*Sex 0.315 
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BHCO Hp Basal Sholl Length RADIUS*Treatment*Sex 0.000 
BHCO Hp Apical Sholl Nodes Treatment 0.503 
BHCO Hp Apical Sholl Nodes Sex 0.574 
BHCO Hp Apical Sholl Nodes Treatment*Sex 0.112 
BHCO Hp Apical Sholl Nodes RADIUS 0.000 
BHCO Hp Apical Sholl Nodes RADIUS*Treatment 0.369 
BHCO Hp Apical Sholl Nodes RADIUS*Sex 0.957 
BHCO Hp Apical Sholl Nodes RADIUS*Treatment*Sex 0.152 
BHCO Hp Basal Sholl Nodes Treatment 0.888 
BHCO Hp Basal Sholl Nodes Sex 0.693 
BHCO Hp Basal Sholl Nodes Treatment*Sex 0.036 
BHCO Hp Basal Sholl Nodes RADIUS 0.000 
BHCO Hp Basal Sholl Nodes RADIUS*Treatment 0.812 
BHCO Hp Basal Sholl Nodes RADIUS*Sex 0.119 
BHCO Hp Basal Sholl Nodes RADIUS*Treatment*Sex 0.166 
BHCO Hp Apical Sholl Ends Treatment 0.314 
BHCO Hp Apical Sholl Ends Sex 0.972 
BHCO Hp Apical Sholl Ends Treatment*Sex 0.025 
BHCO Hp Apical Sholl Ends RADIUS 0.003 
BHCO Hp Apical Sholl Ends RADIUS*Treatment 0.568 
BHCO Hp Apical Sholl Ends RADIUS*Sex 0.228 
BHCO Hp Apical Sholl Ends RADIUS*Treatment*Sex 0.201 
BHCO Hp Basal Sholl Ends Treatment 0.776 
BHCO Hp Basal Sholl Ends Sex 0.660 
BHCO Hp Basal Sholl Ends Treatment*Sex 0.005 
BHCO Hp Basal Sholl Ends RADIUS 0.000 
BHCO Hp Basal Sholl Ends RADIUS*Treatment 0.790 
BHCO Hp Basal Sholl Ends RADIUS*Sex 0.197 
BHCO Hp Basal Sholl Ends RADIUS*Treatment*Sex 0.655 
BHCO TnA Apical Sholl 

Intersections 
Treatment 0.868 

BHCO TnA Apical Sholl 
Intersections 

Sex 0.984 

BHCO TnA Apical Sholl 
Intersections 

Treatment*Sex 0.081 

BHCO TnA Apical Sholl 
Intersections 

RADIUS 0.000 

BHCO TnA Apical Sholl 
Intersections 

RADIUS*Treatment 0.884 

BHCO TnA Apical Sholl 
Intersections 

RADIUS*Sex 0.942 

BHCO TnA Apical Sholl RADIUS*Treatment*Sex 0.218 
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Intersections 
BHCO TnA Basal Sholl 

Intersections 
Treatment 0.553 

BHCO TnA Basal Sholl 
Intersections 

Sex 0.904 

BHCO TnA Basal Sholl 
Intersections 

Treatment*Sex 0.081 

BHCO TnA Basal Sholl 
Intersections 

RADIUS 0.000 

BHCO TnA Basal Sholl 
Intersections 

RADIUS*Treatment 0.761 

BHCO TnA Basal Sholl 
Intersections 

RADIUS*Sex 0.977 

BHCO TnA Basal Sholl 
Intersections 

RADIUS*Treatment*Sex 0.028 

BHCO TnA Apical Sholl Length Treatment 0.625 
BHCO TnA Apical Sholl Length Sex 0.877 
BHCO TnA Apical Sholl Length Treatment*Sex 0.069 
BHCO TnA Apical Sholl Length RADIUS 0.000 
BHCO TnA Apical Sholl Length RADIUS*Treatment 0.398 
BHCO TnA Apical Sholl Length RADIUS*Sex 0.752 
BHCO TnA Apical Sholl Length RADIUS*Treatment*Sex 0.164 
BHCO TnA Basal Sholl Length Treatment 0.571 
BHCO TnA Basal Sholl Length Sex 0.861 
BHCO TnA Basal Sholl Length Treatment*Sex 0.059 
BHCO TnA Basal Sholl Length RADIUS 0.000 
BHCO TnA Basal Sholl Length RADIUS*Treatment 0.907 
BHCO TnA Basal Sholl Length RADIUS*Sex 0.998 
BHCO TnA Basal Sholl Length RADIUS*Treatment*Sex 0.032 
BHCO TnA Apical Sholl Nodes Treatment 0.858 
BHCO TnA Apical Sholl Nodes Sex 0.480 
BHCO TnA Apical Sholl Nodes Treatment*Sex 0.098 
BHCO TnA Apical Sholl Nodes RADIUS 0.000 
BHCO TnA Apical Sholl Nodes RADIUS*Treatment 0.418 
BHCO TnA Apical Sholl Nodes RADIUS*Sex 0.220 
BHCO TnA Apical Sholl Nodes RADIUS*Treatment*Sex 0.533 
BHCO TnA Basal Sholl Nodes Treatment 0.947 
BHCO TnA Basal Sholl Nodes Sex 0.648 
BHCO TnA Basal Sholl Nodes Treatment*Sex 0.321 
BHCO TnA Basal Sholl Nodes RADIUS 0.000 
BHCO TnA Basal Sholl Nodes RADIUS*Treatment 0.812 
BHCO TnA Basal Sholl Nodes RADIUS*Sex 0.852 
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BHCO TnA Basal Sholl Nodes RADIUS*Treatment*Sex 0.576 
BHCO TnA Apical Sholl Ends Treatment 0.973 
BHCO TnA Apical Sholl Ends Sex 0.414 
BHCO TnA Apical Sholl Ends Treatment*Sex 0.127 
BHCO TnA Apical Sholl Ends RADIUS 0.000 
BHCO TnA Apical Sholl Ends RADIUS*Treatment 0.568 
BHCO TnA Apical Sholl Ends RADIUS*Sex 0.941 
BHCO TnA Apical Sholl Ends RADIUS*Treatment*Sex 0.212 
BHCO TnA Basal Sholl Ends Treatment 0.719 
BHCO TnA Basal Sholl Ends Sex 0.988 
BHCO TnA Basal Sholl Ends Treatment*Sex 0.211 
BHCO TnA Basal Sholl Ends RADIUS 0.000 
BHCO TnA Basal Sholl Ends RADIUS*Treatment 0.485 
BHCO TnA Basal Sholl Ends RADIUS*Sex 0.849 
BHCO TnA Basal Sholl Ends RADIUS*Treatment*Sex 0.285 

 
BHCO Hp Apical Spines SPINES 0.201489235 
BHCO Hp Apical Spines SPINES*Treatment 0.851833705 
BHCO Hp Apical Spines SPINES*Sex 0.550766839 
BHCO Hp Apical Spines SPINES*Treatment*Sex 0.924830269 
BHCO Hp Basal Spines SPINES 0.967618317 
BHCO Hp Basal Spines SPINES*Treatment 0.318365169 
BHCO Hp Basal Spines SPINES*Sex 0.240736736 
BHCO Hp Basal Spines SPINES*Treatment*Sex 0.401213096 
BHCO TnA Apical Spines SPINES 0.752407054 
BHCO TnA Apical Spines SPINES*Treatment 0.661132782 
BHCO TnA Apical Spines SPINES*Sex 0.661132782 
BHCO TnA Apical Spines SPINES*Treatment*Sex 0.356721654 
BHCO TnA Basal Spines SPINES 0.468212458 
BHCO TnA Basal Spines SPINES*Treatment 0.59473228 
BHCO TnA Basal Spines SPINES*Sex 0.767058824 
BHCO TnA Basal Spines SPINES*Treatment*Sex 0.805977921 
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Appendix L: Ethics approval for animal use. 

AUP Number: 2010-024 	 

PI Name: Zanette, Liana 	 

AUP Title: The Effects of Predators and Predator Risk On Prey: From Genes To 

Ecosystems 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