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Abstract 
The RND superfamily of efflux pumps plays vital roles in the intrinsic defense mechanisms of 

bacterial pathogens. The Staphylococci have two genes encoding RND efflux pumps; farE, which 

promotes efflux of antimicrobial fatty acids, and an uncharacterized gene we have named femT. 

Although RND pumps are known to play roles in physiological function and antimicrobial 

resistance, the function of FemT, and the relationship between FemT and FarE in Staphylococci 

have not been identified. Using established assays, we have tested the phenotype of a femT deletion 

mutant. Here, we show that this mutant is more susceptible to lysostaphin, vancomycin and 

oxacillin, and grows faster in Mueller-Hinton broth. Most notably, when evaluating the 

relationship between these transporters, inducible expression of FarE in fatty acids was abolished 

in FemT-deficient mutants. These findings suggest an interplay between the two transporters, and 

cumulatively, represent the first description of both systems operating in S. aureus.  

 

Keywords: Staphylococci, USA300, MRSA, RND protein, redundancy, efflux pumps, 

antimicrobial lipids, FarE 
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1 Introduction 

1.1 Overview of Staphylococcus aureus 

1.1.1 Background 

Staphylococci are Gram positive, spherical bacteria that are distinguished microscopically by their 

characteristic organization into clusters. The Staphylococcus genus includes at least 40 species, 

most of which are harmless and reside normally on the skin and mucous membranes of humans 

and other organisms. Although members of the staphylococci are commensal, benign colonization 

can be the starting point for disease, transmission, and selection of new microbial traits. Therefore, 

bacteria in this category can be identified as pathobionts, as they exhibit duality of behavior from 

commensal to pathogen (1). This is especially true for the most pathogenic of the staphylococci, 

Staphylococcus aureus.  

Carriage of S. aureus as a commensal appears to play a significant role in the epidemiology and 

pathogenesis of infection. As part of the normal flora, S. aureus asymptomatically colonizes skin 

and mucous membranes, with the anterior nares being the most consistent area from which this 

organism can be isolated (2). Over time, three patterns of carriage can be distinguished: roughly 

20% of people are persistent carriers, 60% are intermittent carriers, and approximately 20% almost 

never carry S. aureus (3). Although the presence of S. aureus as a commensal is asymptomatic, 

carriage has been identified as a risk factor for the development of S. aureus infections. 

The identification of S. aureus as a pathogen began with its discovery in 1880 by Scottish surgeon 

Alexander Ogston, who first observed the bacterium while microscopically examining a pus 

sample removed from the leg of a patient (4). Ogston hypothesized that acute abscesses were 

caused by micrococci and, after injecting pus from infected abscesses into healthy animals, could 

demonstrate that new abscesses formed, followed by signs of septicemia and death (5). In 1882, 

what Ogston described as micrococci were named Staphylococcus due to their spherical, cocci 

shape and growth in masses that mimic the appearance of a bunch of grapes (6). Two years later, 

Anton J. Rosenbach coined the term Staphylococcus aureus, from the Latin word ‘aurum’, 

meaning gold, owing to their distinctive gold hue on agar medium (7). The pigment molecule 
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staphyloxanthin has since been attributed to this characteristic gold colour, and is an important 

contributor to the remarkable virulence of S. aureus and its ability to cope with environmental 

stresses by acting as an antioxidant that helps evade death by reactive oxygen species produced by 

the host immune system (8). In addition to its microscopic appearance and production of 

staphyloxanthin, S. aureus can also be distinguished by the production of the major virulence 

factor coagulase, a protein that binds prothrombin and facilitates the conversion of fibrinogen to 

fibrin, causing clot formation in plasma (9). Traditionally, staphylococci were divided into two 

groups based on their ability to produce coagulase, with the coagulase-positive staphylococci 

constituting the most pathogenic species; however, this classification can be misleading as it has 

been discovered that some S. aureus strains are coagulase-negative (10). These characteristics, 

combined with a large arsenal of virulence factors, have made S. aureus capable of causing a wide 

variety of diseases and syndromes. 

1.1.2 Pathogenesis 

The success of S. aureus as a pathogen and its ability to cause such a wide range of infections are 

the result of its extensive virulence factors, and initial exposure of S. aureus to host tissues beyond 

the skin and mucosal surfaces is thought to trigger upregulation of virulence genes (11). Carriage 

of S. aureus provides a reservoir from which bacteria can be introduced when host defenses are 

breached, whether by open wound inoculation, insertion of an indwelling catheter, surgery, or 

viral-mediated damage in the mucosa of the respiratory tract. Therefore, colonization of the skin 

and anterior nares by S. aureus is a common precursor to infection (12). Multiple studies have 

confirmed this finding, with a substantial proportion of S. aureus infections appearing to be of 

endogenous origin, as they originate from the strain present in the nasal mucosa (12, 13). If a host 

is not colonized with S. aureus asymptomatically via carriage as a commensal, colonization with 

S. aureus can occur due to transmission among individuals in health care and community settings.  

When encountering the body surfaces, S. aureus cells first interact with and adhere to epithelial 

surfaces on the skin and mucosa. The presence of adherent bacterial cells is sensed by epithelial 

surface receptors that recognize microbial components derived from the bacterial cell wall, 

including wall teichoic acid, lipoteichoic acid, peptidoglycan, and lipoproteins (15). Once the host-

pathogen interface has been breached and infection is established, S. aureus can cause skin and 
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soft tissue infections, the most common being abscesses. Pyogenic bacterial abscesses can form in 

deeper tissues, such as underlying muscle, and bacteria can disseminate to form abscesses at distal 

sites and affect virtually any internal organ system (16). Abscess formation and tissue invasion is 

mediated by a range of secreted and cell surface factors, such as proteases, lipases, elastases, and 

hemolysins, that enable S. aureus to degrade host cells and tissues, seize nutrients, and spread to 

other sites of the body (17). Regulation of these secreted factors plays a central role in 

pathogenesis, and their expression during the different stages of infection is critical to the success 

of S. aureus as a pathogen (18, 19). In addition to abscess formation, S. aureus can form biofilms 

on host and prosthetic surfaces, enabling the cells to persist via evasion of host defenses and 

antimicrobial molecules (20). S. aureus is also capable of producing septic shock by interacting 

with and activating the host immune system and coagulation pathways. In some S. aureus strains, 

this is due to the production of superantigens, which cause non-specific activation of T-cells 

resulting in polyclonal T cell activation and massive cytokine release (21). Apart from this activity, 

superantigens can also cause symptoms that are characteristic of infection, such as emesis, which 

occurs in cases of food poisoning. In addition to these characteristics, it is now firmly established 

that S. aureus can survive and even replicate both inside and outside many mammalian cell types, 

including macrophages (22, 23). These features represent important strategies by which S. aureus 

circumvents innate immune function to promote bacterial dissemination. 

1.1.3 Cell Wall Biology 

The cell wall of a microorganism is critical for providing protection, support, and shape, but it also 

plays an important role in infectivity and pathogenicity. The cell wall of S. aureus shows the typical 

features of gram-positive bacterial cell walls, composed of a thick layer of peptidoglycan, teichoic 

acids, and wall-associated surface proteins (24). Stress-bearing peptidoglycan is the main 

structural component of the cell wall and acts as a continuous macromolecular cover surrounding 

the cytoplasmic membrane to protect the cell from rupture (25). The two basic structural features 

of this giant macromolecule are linear glycan chains interlinked with short peptide bridges. The 

glycan chains are composed of alternating units of N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc), and the carboxyl group of each MurNAc residue is substituted by 

a short stem peptide subunit. The formation of the three-dimensional structure of peptidoglycan is 

ensured by cross-linking between the peptide subunit of one chain to that of a neighboring chain. 
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It is a distinctive feature of staphylococci that the degree of cross-linking, which is determined as 

a ratio of bridged peptides to the total amount of all peptide ends, is extremely high, on the order 

of 80 to 90%, compared to 50% cross-linking in the walls of bacilli (26–28). 

The characteristic stem peptide branching off the MurNAc unit is synthesized in S. aureus by three 

non-ribosomal peptidyl-transferases; FemX, FemA, and FemB. Using Gly-tRNA as a donor, and 

the peptidoglycan precursor lipid II as a substrate, they add five glycine residues in a sequential 

fashion to form the pentaglycine (Gly5) interpeptide (29). Cross-linking of adjacent peptidoglycan 

strands and anchoring of surface proteins, contributing to the virulence of S. aureus, occurs via 

this Gly5-interpeptide structure (30). An incomplete Gly5 interpeptide leads to aberrant growth, 

requiring compensatory mutations to guarantee survival, while a complete lack is lethal (31–33). 

Importantly, antibiotic resistant S. aureus depend on the correct formation of the peptidoglycan 

precursor, including a complete Gly5 chain, for high-level resistance (34). After transport across 

the cytoplasmic membrane, the peptidoglycan precursor is incorporated into the existing cell wall 

by the penicillin binding proteins (PBPs), which are enzymes that catalyze transglycosylation of 

the sugar moiety and transpeptidation of the Gly5 chain. Since bacterial cell wall synthesis is 

essential to growth, cell division, and maintaining cellular structure, it has been an attractive target 

for antibiotics. For example, β-lactam antibiotics act by inhibiting the synthesis of peptidoglycan, 

specifically by targeting the transpeptidation reaction catalyzed by the PBPs. Synthesis of 

peptidoglycan and the major constituents of the S. aureus cell wall are summarized in Figure 1.1. 

Wall teichoic acids (WTAs) are another component of the staphylococcal cell wall known to 

contribute to cell morphology and division. WTA polymers play numerous, varied roles in the cell 

wall owing to their location, abundance, and polyanionic nature (35). S. aureus mutants lacking 

these polymers exhibit numerous morphological abnormalities, including a non-uniform 

thickening of the peptidoglycan, increased cell size, and defects in septal positioning and number 

(36, 37).  In addition, WTAs and their attached substituents contribute to cell surface charge and 

hydrophobicity, which in turn affects binding of extracellular molecules and plays a role in 

protection. For example, WTA-deficient cells are more susceptible to antimicrobial fatty acids, 

presumably because the hydrophobic fatty acids can penetrate the less hydrophilic mutant cell wall 

more easily, and bind to the cell membrane where they can elicit their antibacterial effects (38). 

Additionally, blocking WTA synthesis renders S. aureus sensitive to β-lactam antibiotics (39).  
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Figure 1.1 Overview of peptidoglycan synthesis in S. aureus. The process begins in the 

cytoplasm, where the Lipid II precursor is formed. A peptide crossbridge of five glycine residues 

is added at the third amino acid by the non-ribosomal peptidyl-transferases FemX, FemA, and 

FemB. Lipid II-Gly5 is then flipped to the external side of the cell membrane, where it is 

incorporated into nascent peptidoglycan by penicillin binding proteins (PBPs). PBPs catalyze 

transglycosylation and transpeptidation reactions, resulting in the respective polymerization and 

crosslinking of the glycan strands via flexible peptides. Figure adapted from Pinho et al. (40). 
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1.1.4 Emergence of Antibiotic Resistance 

The combination of virulence factors and staggering rates of antibiotic resistance of S. aureus has 

led to its classification of a ‘superbug’. During the Second World War, Fleming’s discovery of 

penicillin was a revolutionary event, providing an effective antibiotic for the treatment of S. aureus 

infections. Penicillin is a member of the β-lactam family, which is a class of broad-spectrum 

antibiotics that prevent cell wall biosynthesis by binding to and inhibiting PBPs. Yet, only a few 

years after its introduction into clinical practice, penicillin resistance was encountered in hospitals 

and, within a decade, had become a significant problem in the community (41). In 1944, Kirby 

was the first to demonstrate that penicillin was inactivated by penicillin-resistant strains of S. 

aureus, and soon after, Bondi and Dietz identified the specific role of the penicillinase enzyme in 

penicillin resistance (42, 43). To overcome penicillin resistance, penicillinase-resistant antibiotics 

were developed, and methicillin was the first to be produced. Methicillin is a narrow-spectrum 

antibiotic also part of the β-lactam family, however, the first methicillin-resistant S. aureus 

(MRSA) were discovered in the same year methicillin reached the market (44). 

Although the basis of methicillin resistance was not identified until more than 20 years later, it 

was known that the resistance mechanism was different from penicillinase, as there was no drug 

inactivation (41). After examining the PBP patterns of methicillin resistant staphylococci, an 

additional PBP was discovered that conferred resistance to methicillin and all available β-lactam 

antibiotics (45). Whereas non-resistant S. aureus normally employ three PBPs, PBPs 1, 2, and 3, 

to catalyze cross-linking of peptidoglycan, MRSA have an additional PBP, named PBP2a, which 

is encoded by mecA and confers resistance to methicillin. The mecA gene is carried by large (32–

60 kb) sections of chromosomally inserted DNA, which has been termed the staphylococcal 

cassette chromosome mec (SCCmec), likely acquired through horizontal gene transfer from 

Staphylococcus epidermidis (46). Although the mechanism of gene acquisition is not known, two 

genes, ccrA and ccrB, present on the SCCmec have been shown to code for recombinase proteins, 

which are responsible for site-specific excision and insertion into the chromosome (47). During 

the onset of MRSA emergence, isolates were largely restricted to hospitals in large urban centres; 

however, throughout the last few decades, there has been a larger spread of MRSA into smaller 

hospitals and even into the community, referred to as healthcare-associated MRSA (HA-MRSA) 

and community-associated MRSA (CA-MRSA), respectively. One of the major strains attributing 
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to the epidemic wave of CA-MRSA in North America is the USA300 clone. Although USA300 

isolates were initially resistant only to β-lactam antibiotics, mediated by mecA, and macrolides, 

mediated by msrA, they have broadened their resistance profiles considerably over the last 5 years. 

This includes additional resistance to clindamycin, due to the acquisition of ermA and ermC, and 

tetracycline, due to the acquisition of tetK and tetM, as well as resistance to mupirocin, 

fluoroquinolones, vancomycin, and, in some cases, to daptomycin (48–51). 

1.1.5 Origins of Strain USA300 

The increasing prevalence of strain USA300 in the community is of special concern to the medical 

establishment. Perhaps the most notable and well-documented epidemic of CA-MRSA has been 

in the United States, and is attributed to the USA300 strain. The name USA300 describes one of 

many MRSA strains identified in the United States through genomic DNA examination of pulsed-

field gel electrophoresis (PFGE) patterns (52). The strain emerged within S. aureus multilocus 

sequence typing (MLST) clonal complex 8, which is the presumptive ancestor of the first MRSA 

strain, and carried SCCmec (53). MRSA PFGE type USA300 differs from its ancestor strain by at 

least 20 genes, a significant number of which are potentially mobile elements (49). The most 

characteristic genes of USA300 are the Panton-Valentine Leukocidin (PVL) genes and the arginine 

catabolic mobile element (ACME).  

Infections caused by USA300 were first noted in a Mississippi state prison in 1999 where 59 

inmates were infected (54). The infections associated with colonization included moderate to 

severe skin and soft tissue infections (SSTIs) and more invasive infections, including necrotizing 

pneumonia, fasciitis, and bone and joint infections. During the next few years after the first 

outbreak, further outbreaks appeared in which infected individuals had no link to healthcare 

systems. These outbreaks occurred among prisoners, children, and athletes. Although there were 

no ascertainable links between the various outbreaks, the PFGE patterns of the isolates recovered 

from all the involved individuals were mostly type USA300 (48). Since then, USA300 has become 

one of the most commonly isolated strain types recovered in community settings.  
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1.2 USA300 Virulence 

1.2.1 Spread of USA300 

Investigations of CA-MRSA outbreaks in prisons, athletic quarters, daycares, and military recruits 

have all contributed to our understanding of the development and spread of MRSA infections. 

Investigations of various outbreaks identified several critical risk factors contributing to the spread 

of infection, including sharing towels and razors, frequent skin to skin contact, unattended skin 

abrasions, and lack of attention to cleaning of environmental surfaces and athletic equipment (55). 

In addition, the high rate of antibiotic use among individuals has acted as a selective factor for 

MRSA disease. Thus, USA300 is well adapted to spread and cause infections in the community 

and healthcare settings. 

International and intercontinental spread of epidemic S. aureus strains, including MRSA type 

USA300, is not a new phenomenon, but is arguably being facilitated by increasing volumes of 

international travel and migration. Within a few years of its first description, USA300 SSTIs have 

been reported in 36 countries on five continents (56). Furthermore, autochthonous acquisition has 

been documented in Canada, 10 European countries, Colombia, Trinidad and Tobago, Israel, 

Japan, and Samoa (56). The sustained spread of CA-MRSA may, in principle, be due to the total 

number of infections and direct transmission from infected patients, and thus to infectivity or 

virulence. However, CA-MRSA may also show increased transmissibility and colonization 

characteristics due to acquisition of virulence factors encoded by unique genomic contents. 

1.2.2 Unique Genomic Contents  

Many different lineages of CA-MRSA cause outbreaks and invasive infections, but in North 

America, none are as prevalent as the epidemic strain USA300. These clones have acquired many 

genes in the form of mobile genetic elements (MGE) that may confer a selective advantage over 

other CA-MRSA strains. The USA300 chromosome can be divided into a core component, 

consisting of gene regions shared by all strains of S. aureus, and an accessory component, which 

includes gene regions that are absent in closely related strains. Virtually all unique genes in 

USA300 cluster in five novel allotypes of MGEs that encode virulence or resistance determinants, 

and the capacity of USA300 to cause severe disease is attributable to one or more of these elements.  
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The first genetic element is known as SCCmec, which encodes the mecA gene and is located on a 

MGE. There are currently eight recognized types of SCCmec, with types I, II, and III containing 

additional drug resistance determinants, and types IV, V, VI, and VII harboring resistance only to 

β-lactams through the mecA gene (57). In the absence of antibiotic pressure, the SCCmec element 

is thought to reduce the biological fitness of MRSA (58). However, strains of CA-MRSA such as 

USA300 carry the type IV allotype of SCCmec, which is smaller than the other types, and 

therefore, may impose less of a fitness cost (59). Thus, it is thought that harboring SCCmecIV, as 

opposed to other SCCmec types, imparts CA-MRSA with an advantage in its ability to cause 

infection in healthy individuals. 

Adjacent to the SCCmec element of USA300 is the pathogenicity island ACME, which is the 

largest genomic region distinguishing USA300 from other S. aureus strains, and the physical 

linkage between these two elements suggests that selection for pathogenicity and selection for 

antibiotic resistance are interconnected (59). Evidence has indicated that the initial assembly of 

the ACME locus originated in S. epidermidis or other coagulase negative staphylococci, and was 

acquired by USA300 through a single horizontal gene transfer (60). ACME encodes a complete 

arginine deiminase pathway, which converts L-arginine to carbon dioxide, ATP, and ammonia. 

Although the functional relevance of ACME to infection and disease remains unclear, the ACME 

element has been suggested to promote survival of USA300 on human skin and persistence within 

cutaneous abscesses (61). The ACME locus is composed of at least 33 putative genes and two 

operons, referred to as opp and arc (60). The opp operon encodes an oligopeptide permease or 

metal transporter, and homologous genes have been implicated in virulence of Streptococcus 

pyogenes (62). The arc operon encodes genes thought to be involved in arginine catabolism, and 

have been implicated in USA300 survival in acidic environments that mimic human skin (61). 

Host arginine feeds multiple pathways during a typical immune response; initially, macrophages 

in infected tissue primarily consume arginine via nitric oxide synthase (NOS) enzymes to generate 

nitric oxide (NO) (63, 64). However, over time, the host response shifts away from NO production 

and towards an anti-inflammatory phase, where macrophages redirect arginine consumption 

towards the production of ornithine, which can be further converted to polyamines (61, 63, 64). 

Consequently, since ACME-arc promotes long-term survival of USA300 in acidic environments 

such as the skin, it indirectly drives excessive production of host polyamines, which are uniquely 

toxic to S. aureus. To mitigate this, ACME also encodes the spermidine acetyltransferase SpeG, a 
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polyamine-resistance enzyme that is essential for combating excess host polyamines in a murine 

SSTI model (61).  

In addition to SCCmec and ACME, USA300 contains a novel staphylococcal pathogenicity island, 

SaPI5, that encodes two enterotoxins. These enterotoxins are closely related to enterotoxins SEQ 

and SEK, which are pyrogenic toxin superantigens belonging to the HA-MRSA clone COL. Since 

the SaPI5 enterotoxins of USA300 share more than 98% identity in amino acid sequences to those 

in COL, these molecular variants probably stimulate a similar subset of T cells (65). The fourth 

genetic element present in USA300 is prophage ϕSA2usa, which harbours the genes that encode 

PVL, a pore-forming toxin that induces polymorphonuclear cell death by apoptosis. PVL is 

strongly associated with invasive disease and virulence of USA300 and other CA-MRSA strains 

(66). The fifth genetic element of USA300 is prophage ϕSa3usa, encoding staphylokinase and a 

chemotaxis inhibiting protein (65). Staphylokinase is a potent plasminogen activator that could 

facilitate bacterial spreading, and the chemotaxis-inhibiting protein is an anti-inflammatory agent 

that inhibits C5a-dependent recruitment of neutrophils (67). These five genetic elements of 

USA300 most likely account for phenotypes of interest, as they carry known virulence factors and 

resistance determinants that could allow for success of USA300 in colonization and pathogenesis. 

1.2.3 Virulence Factors 

In addition to possessing antibiotic resistance, USA300 is more virulent and causes more severe 

disease than other CA-MRSA strains due to high expression of genomic virulence determinants. 

In animals, USA300 has exhibited enhanced production of dermonecrotic lesions in skin abscess 

models when compared to other MRSA clones, and USA300 was more lethal in a rat model of 

pneumonia compared with a USA400 isolate (53, 68, 69). Within abscesses, S. aureus reduces its 

expression of adhesion proteins and produces large amounts of toxins, immune evasion factors, 

and tissue degrading enzymes, all of which contribute to the remarkable pathogenicity of USA300. 

The success of CA-MRSA infection depends mostly on efficient evasion of attacks by human host 

defenses, for which S. aureus has developed many different strategies. The most crucial strategy 

that allows USA300 to invade human hosts is likely the production of toxins that kill human 

leukocytes, especially neutrophils, as they represent the main leukocyte type responsible for the 

elimination of bacterial pathogens (11). Many S. aureus toxins and virulence determinants are 
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encoded on MGEs, including the leukolytic toxins, collectively called leucocidins, and are the 

toxins responsible for destroying neutrophils after uptake. Most work has been performed on PVL, 

owing to the initially strong epidemiological correlation with CA-MRSA infections (70). PVL is 

a two-component exotoxin that forms pores in the membranes of leukocytes, causing their lysis. 

PVL has also been indicated to activate leukocytes to release pro-inflammatory cytokines, 

including IL-8, which drive inflammation (71). Although this attracts immune cells to the site of 

infection, a strong inflammatory effect may lead to tissue destruction and exacerbation of infection, 

even in the absence of leukocyte lysis. Epidemiological and clinical reports indicate a strong 

correlation between PVL production and severe SSTIs, as well as necrotizing pneumonia and 

fasciitis (72). Thus, PVL is significantly correlated with invasive CA-MRSA disease.  

Another pore-forming leukocyte toxin, α-toxin, also known as α-hemolysin, has been well 

described as a virulence factor in many S. aureus strains, including USA300. Unlike PVL, secreted 

α-toxin does not lyse neutrophils, but instead lyses other immune cells such as macrophages and 

lymphocytes. At lower concentrations, α-toxin forms a complex with a protein belonging to a 

disintegrin and metalloproteinase (ADAM) family, which allows it to form a pore in the membrane 

and cause apoptosis (73). At higher concentrations, α-toxin non-specifically absorbs into cellular 

membranes and causes the release of calcium ions and subsequent cell necrosis (74). The secretion 

of α-toxin is an important determinant of virulence in CA-MRSA models, and is consistently 

expressed at higher levels in USA300 compared to less pathogenic strains of S. aureus (75). 

Additional virulence factors that are also expressed at higher levels in USA300 include the phenol-

soluble modulins (PSMs), which have potent leukocidal and chemotactic properties, and are able 

to recruit, activate and lyse human neutrophils (76).  

Strains of S. aureus also express several secreted proteases that mediate the breakdown of host 

tissue, specifically fibrotic tissue synthesized to confine lesions containing S. aureus. As with α-

toxin and PSMs, USA300 clones are also known to excrete proteases in excess, potentially limiting 

the ability of the host to control minor SSTIs (77). These secreted proteases have been identified 

as important contributors to virulence through cleavage of specific host proteins, and S. aureus 

possesses several major secreted proteolytic enzymes. These include the serine protease SspA, the 

cysteine protease SspB, the metalloprotease Aur, and six serine-like proteases that are SspA 

homologues (SplABCDEF) (78). SspB, for example, can degrade human fibronectin, fibrinogen, 
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and kininogen, and may therefore contribute to the ability of S. aureus to disseminate (79). 

Secreted proteases can also cleave the heavy chains of all human immunoglobulin classes, and 

elastin, which aids in tissue evasion (80, 81). In addition to their interaction with the host, 

extracellular proteases are also capable of modulating the stability of self-derived virulence 

determinants. Specifically, SspA was shown to cleave surface proteins, including fibronectin-

binding protein and surface protein A (82, 83). As a result, the cleavage of these proteins by 

proteases is thought to affect the transition from an adhesive to an invasive phenotype. Several of 

the S. aureus proteases are expressed as inactive pro-enzymes that can be activated in a sequence 

known as the staphylococcal proteolytic cascade (SPC) pathway. The SPC pathway is induced in 

response to unsaturated free fatty acids, such as those encountered on the skin or in infected abscess 

tissue, and thus, acts as an environmental signal-response pathway for S. aureus to survive in these 

conditions with increased virulence (84). Similarly, it has also been suggested that extracellular 

proteases can cleave secreted toxins to regulate the abundance of virulence factors, depending on 

the specific niche encountered within the host (85). The over-production of toxins and proteases, 

in combination with the ability of S. aureus to sense changes in the environment, confers the 

selective advantage that explains the overwhelming success of the USA300 strain. 

1.2.4 Invasion of Skin Innate Immune Defenses 

Bacterial strains that cause epidemics, such as USA300, commonly combine extraordinary 

virulence with efficient colonization. The skin provides a formidable barrier to infection, yet recent 

evidence suggests an ability of USA300 to colonize the skin at higher rates than other strains (86). 

To successfully colonize, this clone must be able to evade host defense mechanisms, and the first 

line of defenses encountered are those belonging to the innate immune system. The innate immune 

system harbors a multitude of different receptor systems and cells that are constantly prepared to 

sense and eliminate invading microbial pathogens. When encountering the host, S. aureus cells 

interact with and adhere to epithelial surfaces on the skin and mucosa. Most of the defensive 

functions of the epidermis localize to the stratum corneum, the outermost layer, which limits 

pathogen colonization through its low water content, acidic pH, resident microflora, and secretions 

of polyamines and antimicrobial lipids (87, 88). Sweating and drying of the skin also means 

considerable changes in osmolarity, salt concentration and mechanical stress. Polyamines, notably 

putrescine, spermidine, and spermine, are synthesized from L-arginine and their secretion 
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facilitates countless cellular functions, including wound healing and inflammation (87). 

Interestingly, most S. aureus clones are sensitive to exogenous polyamines in culture, except for 

USA300 (65). USA300 is notably capable of growing despite the presence of polyamines due to 

speG, encoded by the ACME cassette (86).  

Another key physical feature preventing bacterial colonization of the skin is its acidic pH, which 

is the result of many factors including the secretions of lactic acid, amino acids, and fatty acids 

(89). The naturally low pH of skin and sweat (pH ~ 4.5-5.9) is well below the optimal pH of many 

bacteria, including S. aureus, and it has long been documented that patients with a higher natural 

skin pH are more susceptible to infections (90). Remarkably, USA300 is again capable of 

tolerating these acidic conditions due to the acquisition of ACME, which increases the production 

of ammonia from L-arginine catabolism, thereby countering the acidic stress (61). The constitutive 

activity of ACME drives ammonia production regardless of the presence of glucose or oxygen, a 

unique feature of ACME that sets it apart from the arginine deiminase system encoded in the 

chromosome of all S. aureus strains (61). Thus, through ACME, USA300 is better able to resist 

the acidic environment of the skin, implying a unique colonization advantage for this strain.  

Sebum, a liquid phase lipid mixture secreted from the sebaceous glands of the skin, is another 

important aspect of skin innate immune defenses, consisting of approximately 28% free fatty acids, 

32% triglycerides, 25% wax esters, and 11% squalene (91, 92). These free fatty acids contribute 

to most of the antimicrobial activity of the sebum, with the saturated fatty acid lauric acid, and the 

unsaturated fatty acid sapienic acid, being the most notable (91). The importance of sapienic acid 

as an innate defense mechanism is evident in atopic dermatitis, where the skin is deficient in this 

fatty acid, and there is a near 100% recovery of S. aureus from the skin of atopic dermatitis patients 

(93). Similarly, nasal secretions also contain antimicrobial fatty acids, primarily linoleic acid (LA), 

arachidonic acid (AA), and palmitoleic acid or their corresponding cholesterol esters, and infected 

abscess tissue also contains abundant antimicrobial fatty acids (94–96). Consequently, S. aureus 

is exposed to antimicrobial fatty acids not only during colonization, but also during infection, and 

thus it is likely that S. aureus has evolved mechanisms of intrinsic resistance. 
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1.2.5 Resistance to Antimicrobial Fatty Acids 

The human skin is rich in antimicrobial fatty acids produced by the sebaceous glands, and there is 

increasing evidence that S. aureus produces dedicated proteins that protect against the antibacterial 

activity of fatty acids. The heme coordinating surface protein, iron surface determinant A (IsdA), 

S. aureus surface protein F (SasF), and teichoic acids have all been implicated to contribute to fatty 

acid resistance (38, 97, 98). Recently, an efflux pump in S. aureus USA300 has also been 

characterized to play a role in mediating resistance to LA and AA specifically (99).  

Although different mechanisms have been put forward for the bactericidal effects of free fatty 

acids, in S. aureus, the main mechanism appears to be membrane disruption and correspondingly 

the collapse of energy metabolism, which relies on a proton gradient involving the membrane 

(100). Recent research has expanded this idea, suggesting that the accumulation of unsaturated 

free fatty acids that possess surfactant properties, such as palmitoleic acid, disrupt the phospholipid 

bilayer to such an extent that solutes such as ATP, and even larger proteins, are able to diffuse out 

(101). Since fatty acids require hydrophobic interactions for their activity, many defense 

mechanisms employed by S. aureus alter the hydrophobicity of the cell wall. One of these 

mechanisms is IsdA, which renders the cell more hydrophilic via its C-terminal domain, thereby 

leading to decreased efficiency of fatty acids at gaining access to the cell (97). Similarly, WTAs 

contribute to resistance by blocking the hydrophobic fatty acids from penetrating the cell wall and 

binding to the cytoplasmic membrane where their antimicrobial activity is exerted (38). In addition 

to these cell wall modifiers, S. aureus also secretes a fatty acid-modifying enzyme (FAME) that 

esterifies fatty acids with cholesterol or short-chained alcohols, thereby inactivating them (102).  

To combat a wide variety of host compounds, some bacteria also possess efflux pumps, for which 

fatty acids are known substrates (103). An efflux pump belonging to the resistance-nodulation-

division (RND) family of transporters has recently been identified in USA300 to confer resistance 

to LA and AA that would normally be encountered on the skin or in a tissue abscess (99). This 

novel gene pair, farR-farE (fatty acid resistance), constituting divergently transcribed genes, is the 

first known description of a dedicated and inducible mechanism of S. aureus resistance to 

antimicrobial fatty acids. The efflux of fatty acids by FarE contributes to the growth of S. aureus 

in the presence of LA, and provides one example of the diversity of substrates transported by efflux 
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pumps. There is now accumulating evidence that certain classes of efflux pumps, such as the RND 

family, not only confer resistance to drugs used in therapy, but also have a role in the colonization 

and the survival of bacteria in the host. 

1.3 The RND Superfamily  

1.3.1 Features 

Found ubiquitously in all domains of life, multidrug efflux transporters have gained recognition 

as a major contributor to many resistant bacterial infections. Efflux proteins identified to date have 

been classified into five families, and of these, proteins belonging to the RND superfamily play an 

important role in the intrinsic resistance of bacterial pathogens and confer resistance to the broadest 

range of antimicrobial agents (104). Although the importance of the RND family of transporters 

in drug resistance has made them an attractive target of new therapeutic agents, most knowledge 

of their structure and function is derived from Gram-negative bacteria and remain poorly 

understood in Gram-positive bacteria. While efflux pumps are mostly known for their transport of 

drugs from the cytoplasm, other pump substrates include sugars, lipids, proteins, synthetic 

compounds, toxic metabolites, and host defense molecules (105). Such a heterogeneous substrate 

profile allows bacterial efflux pumps to play diverse roles in drug resistance and virulence, and 

promote key physiological processes (106).  

The RND superfamily can be classified into eight recognized phylogenetic families, three of which 

are largely restricted to Gram-negative bacteria and include the heavy metal efflux (HME), the 

hydrophobe/amphiphile efflux-1 (HAE-1), and the nodulation factor exporter (NFE) families 

(107). RND pumps with features comparable to the well characterized AcrA-AcrB-TolC complex 

from Escherichia coli comprise the HAE-1 family, which are characterized for their role in 

antibiotic resistance (108). Although AcrB belongs to this subfamily, its physiologic function is 

likely to facilitate efflux of fatty acids that must be replaced due to membrane damage or 

phospholipid turnover, or to facilitate efflux of host-derived toxic compounds, including fatty acids 

and bile salts encountered in the intestine (103, 109). Similar functions of AcrB homologs in other 

species have also been reported, including in Pseudomonas aeruginosa, Neisseria gonorrhoeae, 

and Salmonella typhimurium (110–112). These observations suggest that bacterial efflux pumps, 

such as those belonging to the RND superfamily, have the capacity to transport various host-
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derived antimicrobial compounds and can therefore facilitate the adaptation and survival of 

bacteria in their ecological and physiological niches. Other phylogenetic families that make up the 

RND superfamily include (i), the SecDF family, found in both Gram-negative and -positive 

bacteria as well as archaea; (ii), the hydrophobe/amphiphile efflux-2 (HAE-2) family, restricted to 

Gram-positives; (iii), the eukaryotic sterol homeostasis (ESH) family; (iv), the 

hydrophobe/amphiphile efflux-3 (HAE-3) family; and (v), a more recently identified family that 

includes a probable pigment exporter in Gram-negative bacteria (107, 113). Extensive studies on 

the representative AcrB pump complex from E. coli in recent years have revealed both the structure 

and functional mechanisms of RND pumps in the efflux of a wide range of agents. 

1.3.2 Structure-function analysis of AcrB in E. coli 

Recent cryo-electron microscopy of the AcrA-AcrB-TolC pump structure has provided insight into 

subunit cooperation and how each of the protein components fit together into an operating machine 

(114, 115). In Gram-negative bacteria, many of these transporters form multicomponent pumps 

that span both the inner and outer membranes to efflux substrate out of the cell. The model system 

for such a pump, the AcrA-AcrB-TolC assembly, comprises the outer-membrane channel TolC, 

the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which 

bridges these two integral membrane proteins (114). AcrB, anchored in the inner membrane, is the 

RND protein component of this complex, while AcrA and TolC are members of the outer 

membrane factor (OMF) family and membrane fusion protein (MFP) family, respectively (116, 

117). The RND proteins of these tripartite complexes function as an energy module with the help 

of the proton motive force to efflux substrate. These three protein components form a continuous 

channel across the Gram-negative cell envelope, gathering substrates from the outer leaflet of the 

inner membrane and periplasm to the cell exterior, with the absence of any component rendering 

the entire complex non-functional. 

Although RND efflux pumps are found in all three domains of life in differing cell envelope 

architectures, these proteins share a common organization. To date, the five available RND protein 

structures (AcrB, CusA, MexB, ZneA, and MtrD) reveal that they function as homotrimers, 

wherein each protomer harbors 12 transmembrane (TM) helices, with N-terminal and C-terminal 

periplasmic domains inserted between TM1 and TM2, and between TM7 and TM8, respectively 
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(118–120). AcrB operates as a trimer, rotating through three distinct conformation states of open, 

binding, and extrusion conformations to facilitate efflux in the presence of its substrate (121). 

Recent modeling of the tripartite systems shows that, in addition to the AcrB trimer, the assembly 

comprises an AcrA hexamer and a TolC trimer (114). The AcrB trimer can be divided into a TM 

domain and an extensive periplasmic domain, comprising a distinct porter domain and a docking 

domain (122). The porter domain is located closest to the inner membrane and can be subdivided 

into four subdomains, PN1 and PN2, situated in the N-terminal portion of the protein between TM 

helices 1 and 2, and subdomains PC1 and PC2, situated in the C-terminal portion between TM 

helices 7 and 8 (122). These four subdomains meet to form proximal and distal binding pockets, 

both of which are enriched in aromatic, polar, and charged amino acid residues, forming a 

hydrophobic interior that interacts with substrates for transport (115). These two pockets might 

each contribute to the substrate poly-specificity of AcrB, as the pockets appear to have different 

substrate preferences (115, 122). Substrates may enter AcrB either from the outer leaflet of the 

cytoplasmic membrane, or from the periplasm, through three open channels, as well as a central 

cavity between the porter and TM domains (115). A vertical groove on the membrane-exposed 

surface of the protein, between TM segments 7 and 8, is suggested to provide access for membrane 

located substrates (117). The upper regions of subdomains PC1 and PC2 of AcrB are involved in 

defined interactions with specific domains of AcrA protomers (114). Also in the periplasmic 

domain, AcrB monomers are tightly interlocked and form a closed central pore, with the top of the 

protein forming a funnel-like structure, collectively called the docking domain, and is thought to 

dock TolC. The docking domain consists of subdomains DN and DC (Figure 1.2).  

Substrate efflux through the transporter is coupled with proton translocation through AcrB, and 

crystallographic evidence supports a proton pathway involving the TM domains (123). 

Specifically, asparagine and lysine located in the middle of TM helices 4 and 10 are required. 

When AcrB protomers are in their open and binding states, the asparagine side chain forms a salt 

bride with the two lysine residues, and in the extrusion conformation, the salt bridges are broken 

by internal movement (124). Therefore, protonation and conformational switching are coupled 

during transport due to structural changes of the protein that influence the environment around the 

proton pathway. In this way, the proton relay network through the pump provides energy for efflux 

via the proton motive force. 
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Increasing numbers of small proteins are being identified to interact with RND proteins but their 

functions and influences on transport are largely unknown. Small protein binding partners of AcrB, 

such as the protein known as AcrZ, have been identified to enhance transport activity of AcrB for 

certain substrates (125). AcrZ folds into a long, largely hydrophobic α-helix that fits into a wide 

groove located in the TM domain of AcrB (114). Modeling of AcrZ has shown that its N-terminus 

is positioned in the periplasm, and its C-terminus is in the cytoplasm where it interacts with the 

hydrophilic surface of AcrB near the membrane (114). However, it is still not clear as to how AcrZ 

modulates the activity of the transporter for specific substrates. Potential mechanisms could 

involve conformational changes of the substrate binding pockets, or the organization of lipids near 

the substrate portal sites (115). Given that the surface of AcrB that interacts with small proteins is 

conserved among RND family proteins, it seems likely that other RND transporters may similarly 

be modulated by protein-protein interactions in the membrane. 
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Figure 1.2 Secondary structure of the AcrB monomer in E. coli. The transmembrane domain 

of the AcrB monomer consists of 12 TM helices, numbered 1 to 12. The first six helices are located 

in the N-terminal portion of the protein, and the other six are located in the C-terminal portion. 

The porter domain consists of four subdomains, PN1, PN2, PC1, and PC2. The docking domain 

has two subdomains, DN and DC. N, N, C and C are -helices and -sheets of the N-terminal part or 

the C-terminal part of the periplasmic domain. N-and C-terminal portions are depicted in blue and 

magenta, respectively. Figure adapted from Seeger et al. (126). 
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1.3.3 Function in Gram-positive Bacteria and Mycobacteria 

Since Gram-positive bacteria differ in cell wall structure compared to their Gram-negative 

counterpart, the HAE-2 family of RND efflux pumps in Gram-positive bacteria are more closely 

related to the ESH family than to the Gram-negative HAE-1 proteins (107, 127). A prototypic 

member of the ESH family is the Nieman Pick Type C protein NPC1, which binds cholesterol in 

late endosomes/lysosomes and promotes its transport into the cytosol (128). One member of the 

Gram-positive HAE-2 family that is also involved in lipid transport is the mycobacterial membrane 

protein large (MmpL) proteins from Mycobacterium tuberculosis, which have been implicated in 

mediating substrate transport across the mycobacterial membrane, mainly cell wall lipids (129). 

The M. tuberculosis genome possess 15 different genes encoding RND proteins (105), 14 of which 

belong to the MmpL protein family (130). Recently, three-dimensional molecular modeling of 

MmpL transporters has revealed that these proteins have homologous structural architecture to 

other RND superfamily proteins, including AcrB (130). MmpL proteins contain a periplasmic 

headpiece and a TM region, and form a channel-like arrangement of trimeric structures. According 

to conserved domain studies, it is evident that the MmpL proteins possess AcrB, ActII, sterol 

sensing and hopanoid biosynthesis related domains, which signify similarity of the MmpL proteins 

with the well-known RND superfamily members (130). Using pairwise comparison of MmpL 

proteins with each other, two common motifs in TM helix 4 and 10 have been identified. More 

specifically, molecular modeling has shown the contribution of the conserved amino acid pair 

aspartic acid and tyrosine to the proton relay, substantiated by the fact that they are in the same 

position as the essential residues involved in the proton relay network of AcrB (124, 131, 132). 

These amino acids are highly conserved in all MmpL proteins and form an aspartic acid/tyrosine 

pair within TM helix 10. This amino acid pair, along with one additional aspartic acid residue in 

TM helix 4, serve as essential elements for the proton relay pathway in MmpL transporters (131). 

This finding was further supported in studies showing that a tyrosine to phenylalanine mutation in 

two types of MmpL pumps abolish their function, suggesting the necessity of Tyr-OH mediated 

proton transport (131).  

Since M. tuberculosis contains 15 different genes encoding RND proteins, some of these 

transporters have been found to be redundant, whereby inactivation of one pump causes increased 

activity of another. Specifically, MmpL4 and MmpL5 have redundant functions in siderophore 
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export, and a double MmpL4/5 mutant cannot be constructed, suggesting that they are essential 

for siderophore-mediated iron acquisition (133). This is comparable to RND efflux pumps 

operating in E. coli and Salmonella, as the antimicrobial susceptibility of deletion mutants and 

strains with an increased expression of certain RND efflux pumps indicates an overlap or 

redundancy between the antimicrobials, biocides, dyes and detergents that can be transported by 

the different RND pumps (134, 135). 

Also comparable to RND efflux pumps of Gram-negative bacteria, many MmpL transporters 

appear to cooperate with smaller accessory proteins called mycobacterial membrane protein small 

(MmpS), which are involved in scaffolding and are predicted to have only one N-terminal TM 

domain with an extra-cytoplasmic C-terminus (136). However, unlike most Gram-negative RND 

transporters, MmpL proteins are not believed to export antibiotics and seem to be much more 

specific for their substrate, interacting with only one lipid metabolite (136, 137). Furthermore, 

whereas RND family members from Gram-negative bacteria act purely as efflux pumps, RND 

transporters in Gram-positive bacteria may also be involved in the synthesis of certain molecules. 

For example, in M. tuberculosis, MmpL8 plays a role in the synthesis of sulfolipid-1, possibly by 

transporting a precursor of this molecule to the cell surface (136).  Indeed, it is believed that MmpL 

transporters, in conjunction with their MmpS accessory proteins, are responsible for coupling lipid 

biosynthesis and export, transporting fatty acid and lipid components that are required to produce 

the lipid rich mycobacterial cell wall, such as monomeromycolyl diacylglycerol (MMDAG), 

mycolate ester wax, trehalose monomycolate, sulfolipids, and even siderophores (105, 130, 133, 

138, 139). Most mmpL and mmpS genes are located close to genes involved in the synthesis or 

modification of polyketides, and MmpS proteins may promote interactions between various 

proteins involved in biosynthetic pathways. These small MmpS TM proteins may promote protein 

interactions via their extracytoplasmic C-terminal domains, which stabilizes the protein complex 

and enhances synthesis and export (136). This observation is apparent in some MmpL proteins 

such as MmpL11, which promotes export of mycolic acids. MmpL11 has two smaller 

extracytoplasmic domains and a large cytoplasmic C-terminal domain compared to that of AcrB. 

The large C-terminal cytoplasmic segment is thought to facilitate localization of the protein to the 

septum of dividing cells, where mycolic acid is being synthesized and exported (140). It is 

proposed that its extracytoplasmic C-terminal domain facilitates protein interaction in the 

cytoplasm, a key process for its function. Although MmpS proteins display no similarity to the 
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MFP family of Gram-negative bacteria, the close association of mmpS and mmpL genes suggests 

that MmpS proteins may be the functional homologues of MFPs. Similarly, related HAE-2 

transporters ActII-3 in Streptomyces coelicolor, and YerP/SwrP in Bacillus subtilis are also 

suggested to couple the synthesis and export of their substrates (141, 142). These observations 

suggest that microbial RND efflux pumps support physiological processes that are defining traits 

of a genus or species, and that protein-protein interactions may be essential to their function.  

1.3.4 Function in S. aureus  

Most studies on RND pump structure and function focus on those found in Gram-negative bacteria; 

however, research on RND efflux pumps in Gram-positive bacteria has become increasingly more 

prevalent. In S. aureus, three RND proteins are present: SecDF, FarE, and SAUSA300_2213, 

which is currently uncharacterized. SecDF is an accessory factor of the conserved Sec protein 

translocation machinery and belongs to the RND family of multidrug exporters. SecDF has been 

shown in both E. coli and B. subtilis to be involved in the export of proteins. In S. aureus, lack of 

SecDF affects cell separation, resistance, and virulence factor expression, suggesting its 

importance in pathogenesis (143, 144).  

Recently, through comparative genome sequencing of S. aureus USA300 variants that were 

selected for enhanced resistance to LA, a regulator of fatty acid resistance, farR, and an effector 

of fatty acid resistance, farE, were identified; this is the first description of a dedicated and 

inducible mechanism of S. aureus resistance to antimicrobial fatty acids (99). These genes bear 

similarity to the acrR and acrB model in E. coli, and protein structural modeling and homology 

searches indicate that FarR belongs to the TetR/AcrR family of regulators, while FarE belongs to 

the RND family of multidrug efflux pumps (99). Although AcrB family efflux pumps have been 

most extensively characterized as mediators of multidrug resistance, the primary function of FarE 

is to promote efflux of antimicrobial fatty acids that would be encountered during colonization or 

within a tissue abscess. This is consistent with the belief that members of the AcrB family have 

evolved to promote efflux of host-derived toxic compounds, including bile salts and fatty acids 

(99, 103). Although recent studies reveal important observations on the role of FarE in fatty acid 

efflux, functional redundancy with the third uncharacterized RND transporter in S. aureus remains 

to be investigated. 
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The SecDF and FarE transporters of S. aureus represent two of three RND-family transporters that 

are conserved among staphylococci. A third conserved RND transporter, SAUSA300_2213, that 

has not been characterized is adjacent to femX (SAUSA300_2214), a gene that is essential for 

viability of S. aureus due to its role in synthesis of the Gly5 cross-bridge structure that is a unique 

trait of staphylococcal peptidoglycan (29). This arrangement is conserved among staphylococci, 

implying that SAUSA300_2213 may have a role in transport of this structure, which is assembled 

on a lipid carrier. Importantly, synthesis of other non-ribosomal peptides/polyketides like FemX 

is a common trait in the assembly of mycobacterial glycolipid, actinorhodin of S. coelicolor, and 

lipopeptide surfactant of B. subtilis, all of which are transported by RND efflux pumps (141, 142). 

Hence, we refer to SAUSA300_2213 as FemT to denote a predicted role in transport of 

peptidoglycan precursor, however, the function of FemT and its role in cell wall synthesis remains 

to be elucidated.  

Comparing structural features, AcrB and FemT share a striking alignment of TM segments and 

extracytoplasmic domains, which were modeled using Phyre2 (145) (Figure 1.3). Phyre2 predicted 

with 100% confidence that FemT has porter and docking domains similar to AcrB. Moreover, 

FarE, FemT and AcrB all appear to share high structural conservation in their membrane domain 

segments. However, FarE has significantly smaller porter domains, and lacks a defined docking 

domain. These predictions are supported by analyses of MmpL proteins; for example, 

crystallization of the soluble D2 domain of MmpL11, which resembles the porter domain of AcrB, 

is significantly smaller (~150 residues) compared to other RND transporters (~300 residues). In 

addition, MmpL11 lacks a docking domain and contains a large C-terminal cytoplasmic segment 

(140). Although the functions and structure of RND transporters are being extensively studied in 

both Gram-negative and Gram positive bacteria, many outstanding questions remain regarding the 

characterization of this family of transporters in S. aureus.  
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Figure 1.3 Structures of AcrB, FemT, and FarE efflux pumps. AcrB is annotated from its 

known structure (122) and compared to predicted structures of FemT and FarE, which were 

modeled using Phyre2 (145). The docking domain, coloured in magenta, the porter domain, in 

grey, and the transmembrane domain, in blue, are indicated. 
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1.4 Hypothesis and Research Objectives 

Although RND pumps are known to play critical roles in physiological function and antimicrobial 

resistance, the function of FemT, and the relationship between FemT and FarE in staphylococci 

have not been identified. Thus, the goal of this research was to elucidate the specific role of FemT, 

and to identify a relationship between FemT and FarE in S. aureus. We hypothesized that FemT, 

which is conserved among staphylococci, plays a role in cell wall synthesis by promoting transport 

of a peptidoglycan precursor. We further hypothesized that redundancy in substrate efflux may 

occur between FemT and FarE, as both are RND efflux pumps with implicated roles in 

physiological processes.  

To test this hypothesis, we pursued two different research objectives. The first objective was to 

evaluate the role and impact of FemT in S. aureus by examining the phenotype of a femT-deletion 

mutant. To accomplish this, the FemT-deficient mutant was evaluated for perturbations in growth 

under various growth and stress conditions. The second objective was to identify a relationship 

between FemT and FarE transporters in S. aureus, specifically by evaluating whether inactivation 

of one pump caused an increase in expression of the other pump, and assessing the extent of 

substrate redundancy among these two RND pumps. To achieve this, both farE and femT 

expression were examined in a strain deficient in either FemT or FarE, respectively. Overall, this 

detailed evaluation of the function of both RND efflux pumps operating in S. aureus will provide 

new insight into the biology of staphylococci and further our understanding of this family of 

proteins in Gram-positive bacteria.  

 

 

 

 

 

 



 

 

26 

2 Materials and Methods 

2.1 Storage and Growth of Strains 

A list of bacterial strains and plasmids that were used or constructed in this study is provided in 

Table 2.1. Cultures were maintained as frozen stocks (−80°C) in tryptic soy broth (TSB; Difco™) 

with 20% glycerol. To generate single colonies, S. aureus strains were streaked onto tryptic soy 

agar (TSA; 1.5% Difco™ Agar) plates supplemented, when required, with 10 µg/mL of 

erythromycin or chloramphenicol for propagation of strains bearing resistance markers. E. coli 

strains were grown on Luria-Bertani (LB; Sigma) agar or in LB broth containing 100 µg/mL 

ampicillin or 50 µg/mL kanamycin when required. Unless otherwise stated, inoculum cultures 

were prepared by transferring cells from a single colony into 13-mL polypropylene tubes 

containing 3 mL of broth supplemented with antibiotic, as required, followed by overnight 

incubation at 37°C with shaking at 200 rpm.  
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Table 2.1 Strains and plasmids used in this study 

Strain or plasmid Description Source  

Strains   

S. aureus   

USA300 CA-MRSA, wild-type strain cured of resistance 
plasmids 

(84) 

RN4220 Restriction endonuclease deficient lab strain, 
capable of accepting foreign DNA 

(146) 

USA300ΔfarER USA300 with markerless deletion of farE and farR 
(SAUSA300_2489 and 2490) 

(147) 

USA300ΔfemT  USA300 with markerless deletion of femT 
(SAUSA300_2213) 

This study 

USA300ΔfarER-femT USA300 with markerless deletion of farE, farR, 
and femT (SAUSA300_2489, 2490, and 2213) 

This study 

USA300 ΔfemT 
(pALCfemT) 

USA300 ΔfemT complemented with native femT, 
cloned in pALC2073, CmR  

This study 

USA300 ΔfarER-femT 
(pALCfemT) 

USA300 ΔfarER-femT complemented with native 
femT, cloned in pALC2073, CmR  

This study 

USA300 (pALC2073) USA300 with empty pALC2073 vector, CmR  This study 

E. coli    

DH5α λ− ϕ80dlacZΔM15 Δ(lacZYA-argF)U169 recA1 
endA1 hsdR17(rK

− mK
−) supE44 thi-1 gyrA relA1 

Invitrogen 

BL21 (DE3) F- ompT gal dcm lon hsdSB (rB
- mB

+) λ (DE3 [lacI 
lacUV5-T7 gene 1 ind1 sam7 nin5]) 

Novagen 

 
Plasmids 

  

pGYlux E. coli-S. aureus shuttle vector carrying a 
promoterless luxABCDE operon; AmpR, CmR 

(148) 

pGYfarE::lux E. coli-S. aureus shuttle vector carrying a putative 
farE promoter for luxABCDE operon; AmpR, CmR 

(147) 
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pKOR1 E. coli-S. aureus shuttle vector; contains xyl-tetO 
promoter, expresses antisense secY RNA; AmpR, 
CmR, TetR 

(149) 

pKORΔfemT  pKOR1 containing upstream and downstream 
flanking sequences for deletion of femT; AmpR, 
CmR, TetR 

This study 

pALC2073 E. coli-S. aureus shuttle vector with xyl/tetO 
promoter-operator region; CmR, TetR 

(150) 

pALCfemT  Native femT gene cloned in SacI site for 
expression from xyl/tetO promoter; CmR, TetR 

This study 

pET28a(+) E. coli shuttle vector; overexpression vector for 
6xHis-tagged proteins; KmR 

Novagen 

pETfemT femT porter domain cloned in NheI and BamHI 
sites for overexpression of 6xHis-tagged femT 
porter domain; KmR 

This study 

pETfarE farE porter domain cloned in NdeI and BamHI 
sites for overexpression of 6xHis-tagged farE 
porter domain; KmR  

This study 

Abbreviations: AmpR – ampicillin resistance; CmR – chloramphenicol resistance; TetR – 

tetracycline resistance; KmR – kanamycin resistance.  
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2.2 DNA Methodology 

2.2.1 Plasmid Isolation from E. coli 

Plasmid DNA from E. coli strains was isolated using the Presto™ Mini Plasmid Kit (Geneaid) 

following the instructions provided by the manufacturer. Briefly, 3 mL of E. coli culture at 

stationary phase was pelleted via centrifugation and then resuspended in 200 µL Solution I             

(50 mM Tris, pH 8.0, 20 mM EDTA, 100 µg/mL RNaseA). Cells were then lysed via the addition 

of 200 µL Solution II (200 mM NaOH, 1% w/v SDS), and then incubated for 2 minutes until lysate 

became homogenous. The solution was then neutralized with the addition of 300 µL Solution III 

(guanidine hydrochloride with acetic acid), and inverted several times until a flocculent precipitate 

formed. Subsequently, samples were centrifuged for 8 minutes at 14,500 × g to pellet the insoluble 

precipitate. The supernatant was then transferred to a column and centrifuged for 1 minute. To 

wash the column, 600 µL of Wash Buffer diluted with absolute ethanol was then added to the 

column and centrifuged for an additional minute. The column was then centrifuged for 3 minutes 

to dry and remove any remaining ethanol. Plasmid DNA was then eluted from the column and into 

a microcentrifuge tube by the addition of 30 µL elution buffer (10 mM Tris-HCl, pH 8.5) to the 

column, and subsequent centrifugation at 14,500 × g for 2 minutes. 

2.2.2 Plasmid Isolation from S. aureus 

Plasmid DNA isolation from S. aureus was accomplished following the same protocol as described 

for E. coli, with the following one modification. The pellet of 3 mL S. aureus culture at stationary 

phase was resuspended in 200 µL Solution I with the addition of 50 µg/mL lysostaphin. Cells were 

then incubated at 37°C for 30 minutes to lyse the cells prior to addition of Solution II.  

2.2.3 Chromosomal DNA Isolation from S. aureus  

Chromosomal DNA from S. aureus was prepared using the GenElute™ Bacterial Genomic DNA 

Kit (Sigma) following the instructions provided by the manufacturer. In brief, 1.5 mL of S. aureus 

culture at stationary phase was pelleted via centrifugation and resuspended in 200 µL solution of 

2.1 × 106 units/mL lysozyme (Sigma) supplemented with 50 µg lysostaphin. Cells were then 

incubated at 37°C for 30 minutes to allow for lysis. After incubation, 20 µL proteinase K and      
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200 µL Lysis Solution C were added to the cells, which were then vortexed and incubated at 50°C 

for 10 minutes. Simultaneously, a GenElute Miniprep Binding Column was prepared with the 

addition of 500 µL Column Preparation Solution and subsequent centrifugation at 13,000 × g. The 

cell lysate was then prepared for binding by the addition of 200 µL absolute ethanol, followed by 

10 seconds of vortex prior to loading into the Binding Column. The column was then centrifuged 

at 5,000 × g for elution. To wash away protein contaminants, 500 µL of Wash Solution 1 was 

added to the column, followed by centrifugation at 5,000 × g. Afterwards, the column was loaded 

with Wash Solution Concentrate (containing 70% ethanol) and centrifuged for 3 minutes at   

13,000 × g to dry the column. Genomic DNA was then eluted into a new microcentrifuge tube by 

the addition of 100 µL elution solution to the column and subsequent centrifugation at 5,000 × g 

for 1 minute. 

2.2.4 Restriction Enzyme Digestions  

All restriction enzymes used in this study were purchased from New England Biolabs (NEB). 

Digestions occurred in 25 µL volumes and were incubated for 2-4 hours at 37°C. Digested DNA 

was cleaned using a GenepHlow™ Gel/PCR Kit (Geneaid) following instructions provided by the 

manufacturer. Briefly, 125 µL Gel/PCR Buffer was added to each digestion reaction and mixed by 

vortex. The sample mixture was then added to a DFH Column and centrifuged at 14,500 x g for   

1 minute. To wash the column, 600 µL of Wash Buffer diluted with absolute ethanol was added, 

and contents were centrifuged at 14,500 × g for 1 minute. The column was then centrifuged for     

3 minutes to dry and remove any remaining ethanol. DNA was then eluted from the column and 

into a microcentrifuge tube by the addition of 30 µL elution buffer (10 mM Tris-HCl, pH 8.5) to 

the column, and subsequent centrifugation at 14,500 × g for 2 minutes.  

2.2.5 DNA Ligations 

DNA ligations were accomplished using T4 DNA ligase purchased from NEB. In brief, DNA 

fragments were ligated in 20 µL volumes and were incubated at room temperature overnight. 

Briefly, a 20 µL reaction was composed of 2 µL 10 × T4 DNA ligase reaction buffer, 1 µL T4 

DNA ligase (4 × 105 units/mL), and a 5:1 molar ratio of insert to vector. 
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2.2.6 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used for separation and visualization of DNA fragments. Agarose 

gels (0.8% w/v) were prepared using a 1 × TAE buffer (40 mM Tris acetate, 1 mM EDTA) 

supplemented with 1.5 µg/mL ethidium bromide (Sigma) to allow visualization. To run gels, DNA 

samples, typically 5 µL, were mixed with 6× loading buffer and added into the well of the gel. 

Electrophoresis was performed utilizing a BioRad PowerPac 300 set at 120 V and samples were 

run for 30-40 minutes. A 1 kb ladder (NEB) was utilized to determine DNA fragment size. DNA 

fragments were visualized using a Syngene G-Box.  

2.2.7 DNA Isolation from Agarose Gels 

To isolate specific DNA fragments from restriction enzyme digestions, fragments were visualized 

with UV light and extracted from 0.8% w/v agarose gels with razor blades. DNA fragments were 

then cleaned using a GenepHlowTM Gel/PCR Kit (Geneaid) following instructions provided by the 

manufacturer. Briefly, DNA fragments were excised from the agarose gel, and gel slices were 

transferred to a 1.5 mL microcentrifuge tube. Next, 500 µL of Gel/PCR Buffer was added to the 

tube and mixed by vortex. Samples were then incubated at 55-60°C for 10-15 minutes to 

completely dissolve the agarose gel slices. Once the dissolved sample cooled to room temperature, 

the mixture was added to a DFH column and centrifuged at 14,500 × g for 1 minute. Flow-through 

was discarded and 400 µL W1 Buffer was added to the column and centrifuged for an additional 

minute. Next, 600 µL Wash Buffer diluted with absolute ethanol was added to the column and 

contents were centrifuged at 14,500 × g for 1 minute. The column was then centrifuged for an 

additional 3 minutes to dry and remove any remaining ethanol. DNA was then eluted from the 

column and into a microcentrifuge tube by the addition of 30 µL elution buffer (10 mM Tris-HCl, 

pH 8.5), and subsequent centrifugation at 14,500 × g for 2 minutes. 

2.2.8 Polymerase Chain Reaction (PCR) 

PCR reactions occurred in 50 µL volumes following protocols outlined by GenScript. A 50 µL 

reaction was composed of 5 µL 10 × Taq buffer containing Mg2+, 1 µL 10 mM dNTP, 1 µL forward 

primer (100 µM), 1 µL reverse primer (100 µM), 1 µL template DNA (1-100 ng/µL), 40.5 µL 

sterile Milli-Q water, and 0.5 µL Taq polymerase (5 units/µL). Oligonucleotides used in this study 
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are listed in Table 2.2. PCRs were carried out utilizing a PTC-100 Programmable Thermal 

Controller (MJ Research Inc.) optimized for specific primer annealing temperatures and DNA 

fragment lengths.  

2.2.9 Nucleotide Sequencing 

Nucleotide sequencing was performed at the London Regional Genomics facility of the Robarts 

Research Institute (London, ON) with samples prepared according to their specifications. In brief, 

10 µL DNA (50-150 ng/µL) and 5 µL oligonucleotide primer (20 µM) were combined and sent for 

analysis.  

2.2.10 Computer Analyses 

Analyses of sequenced DNA and designing of primers were completed with MacVector 

(MacVector, Inc, Cambridge, United Kingdom). Protein and DNA BLAST searches were 

accomplished utilizing the National Center for Biotechnology Information (NCBI) website 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).   
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Table 2.2 Oligonucleotides used in this study 

Primer Name Sequencea 

FemTUP_SacIIb ggacctccgcggCTTATTCCCTAAAGAAAATTGTAATAGC 

FemTUP_attB1c attB1-CAAAAGACTACATCCAACCACG 

FemTDW_SacIIb ggacctccgcggACACTTGTAGTTGTACCAGT 

FemTDW_attB2d attB2-TGTTCTGTCACTGTTATCCCTTC 

femT_Del_F2 GTGAACATGGTGCAACAACTTACG 

femT_Del_R2 GTCGGTAATGTCGAAGTGACAGG 

femT-DEL_For CGAAGAATCGCTGTAGGTCGTGAC 

femT-DEL_Rev TTCCAAACATCACAAAGGCACC 

pALCfemT_FPe ggttgagtaaaatatttttggagctcGTGAAAGAGGGGGAAGTACTGTG 

pALCfemT_RPe cggattacatgttgagctcCAGTATTGTTTTATTAACACATCG 

GYfarE_Ff cccggatccTTGTACGGTGTACGAGTGCG  

GYfarE_Rg cccgtcgacCGGTGCATTTGTAGCAAGTG  

femT::lux_Bamf gattatgtattgaatcagccatggatccAATTAATTGAGCAAGTTAAACC 

femT::lux_Salg ctaatttcaatttagcagtcgacTATACACCGCCCAAGA 

femT_Port Fh aacacagctagcTTTGGAGGACCGAGACTAGGCAC 

femT_Port Rf aacacaggatccATCTGATGCACCACCGATATTAACC 

MMP_pET28_FPi ctgcattaacgcatatgTTTGGAAAAGGT 

MMP_pET28_RPf cccggatccGTCATTGATAGACATTTAAA 

 
aLower case denotes 5′ additions. Restriction sequences are underlined. 
bSacII 
cattB1 site for cloning in pKOR1: GGGGACAAGTTTGTACAAAAAAGCAGGCT 
dattB2 site for cloning in pKOR1: GGGGACCACTTTGTACAAGAAAGCTGGGT 
eSacI 
fBamHI 
gSalI 
hNheI 
iNdeI 
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2.3 Transformation Methodologies 

2.3.1 Preparation of Transformation Competent E. coli  

Calcium chloride competent E. coli DH5α or BL21 (DE3) cells were prepared for transformation 

following an established lab protocol (151). Briefly, the optical density (OD) of overnight 

stationary phase DH5α cells was measured at 600 nm wavelength (OD600) using a Beckman 

Coulter spectrophotometer, and the volume equivalent of 0.01 OD600 was sub-cultured into          

400 mL LB. When this culture reached mid-exponential phase (OD600 ~0.5), cells were placed on 

ice to cool for 20 minutes. The culture was then pelleted at 4,000 × g at 4°C for 10 minutes, and 

washed through resuspension in 100 mL ice cold 0.1 M CaCl2 containing 15% glycerol (v/v). This 

mixture was then left on ice for 30 minutes and centrifuged again to pellet cells. After 

centrifugation, the supernatant was discarded and the pellet was resuspended in 4 mL 0.1 M CaCl2, 

15% glycerol (v/v) to aliquot into 100 µL volumes. Competent cells were then flash frozen and 

placed in a -80°C freezer for storage until future use.  

2.3.2 Transformation of Competent E. coli  

Calcium chloride competent E. coli DH5α or BL21(DE3) cells were transformed with plasmid 

prepared via techniques described above. Once prepared, 5 µL plasmid or 10 µL ligation mixture 

was added to an aliquot of thawed competent E. coli cells and incubated on ice for 30 minutes. 

Subsequently, cells were heat shocked at 42°C for 2 minutes to allow DNA to enter the cells, 

followed by a 2-minute incubation on ice. Cells then received 900 µL LB containing relevant 

antibiotics at a 1/10 dilution and left to resuscitate at 37°C. Cells were incubated for 1 hour to 

allow recovery before plating on LB agar containing selective antibiotics. Plates were grown 

overnight at 37°C and examined for single colonies the following day.  

2.3.3 Preparation of Transformation Competent S. aureus  

Electro-competent S. aureus RN4220, USA300, and USA300 derivatives were prepared for 

transformation utilizing established lab protocols (146). Overnight stationary phase S. aureus cells 

were used to inoculate 400 mL TSB to an OD600 of 0.01. When this culture reached mid-

exponential phase (OD600 ~ 0.5), cells were placed on ice to cool for 10 minutes. The culture was 
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then pelleted at 4,000 × g at 4°C for 10 minutes, and washed through resuspension in 40 mL ice 

cold 0.5 M sucrose. This mixture was then left on ice for 20 minutes and centrifuged again to pellet 

cells. After centrifugation, the cell pellet was resuspended in 5 mL 0.5 M sucrose, and centrifuged 

a second time. The new pellet was then resuspended in 4 mL 0.5 M sucrose and aliquoted into    

100 µL volumes. Competent cells were then flash frozen and placed in a -80°C freezer for storage 

until future use.  

2.3.4 Transformation of Competent S. aureus  

Electro-competent S. aureus cells were transformed with plasmid extracts prepared from other 

cells. All recombinant plasmids were first constructed as shuttle vectors in E. coli DH5α. The 

integrity of plasmids isolated from E. coli was confirmed by restriction enzyme digestion and 

nucleotide sequencing of the cloned DNA fragments, as described previously, prior to introduction 

into S. aureus RN4220. Importantly, RN4220, a restriction endonuclease deficient strain, could be 

transformed with plasmid from E. coli and was used as an intermediate host prior to introduction 

into USA300 and its isogenic variants. To transform competent S. aureus, 3 µL of plasmid was 

added to an aliquot of thawed competent cells and incubated on ice for 30 minutes. The cell mixture 

was then transferred to a col 2 mm electroporation cuvette (VWR) and electroporated using a Bio-

Rad Gene Pulser II, set to 2.5 KV, 200 Ω, and 25 µF. Electroporated cells then received 900 µL 

TSB containing relevant antibiotics at a 1/10 dilution and left to resuscitate at 37°C. Cells were 

incubated for 1 hour to allow recovery before plating on TSA containing selective antibiotics. 

Strains transformed with larger plasmids (>10 kb) were plated with top agar (0.8% agar) to provide 

a slower introduction to antibiotics. Plates were grown overnight and examined for single colonies 

the following day. 

2.4 Mutagenesis and DNA Cloning Methods 

2.4.1 Generation of an In-Frame Mutation  

Deletion of the femT gene was generated utilizing the temperature sensitive plasmid pKOR1 (149). 

This plasmid possesses several important features to allow in-frame deletion of genes, including 

the cat gene to encode chloramphenicol resistance for positive selection, the attP sequences to 

allow recombination with genetic material possessing attB sequences, and the repF gene to permit 
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replication at 30°C, but not at 42°C. It also possesses a tetR and secY570 cassette to allow for 

negative selection utilizing anhydrotetracycline (aTc), which drives production of antisense secY 

that inhibits bacterial growth and survival. For construction of a femT deletion, two sequences of 

approximately 1 kb flanking the femT gene were amplified with the primers FemTUP_attB1 and 

FemTUP_SacII for the upstream segment, and FemTDW_SacII and FemTDW_attB2 for the 

downstream segment (Figure 2.1). Once amplified, the downstream and upstream segments were 

digested with SacII and ligated to produce a fusion of the upstream and downstream segments 

flanking femT. This 2-kb construct was then cloned into pKOR1 through site-specific 

recombination between the attP and attB sites utilizing Gateway® BP Clonase II (Life 

Technologies) following instructions provided by the manufacturer. In brief, DNA fragments were 

recombined in a 10 µL reaction volume containing 15-150 ng attB product, 1 µL BP Clonase II, 

150 ng pKOR1 plasmid, and TE buffer. The reaction was incubated for 4 hours at room 

temperature, generating pKORΔfemT. The plasmid was subsequently transformed into E. coli 

DH5α and after confirmation by SacII digestion and nucleotide sequencing of the cloned fragment, 

was transformed into S. aureus strain RN4220 as described previously. After selection for 

chloramphenicol resistant colonies at 30°C, plasmid was extracted and transformed into wild-type 

USA300 and USA300ΔfarER through electroporation. To promote integration of pKORΔfemT 

into the target gene via homologous recombination, 3 mL cultures were incubated at 32°C for          

2 hours, after which the temperature was increased to 42°C. After overnight incubation, cells were 

plated on TSA supplemented with chloramphenicol and incubated at 42°C to select for integration 

of the plasmid with the target gene. Single colonies were then selected and grown at 30°C with 

shaking to allow the plasmid to excise from the chromosome. These cultures were then plated on 

TSA with aTc (20 µg/mL) to select for colonies cured of the plasmid, as the lethal antisense secY 

on pKOR1 is induced by aTc. Colonies were subsequently screened for sensitivity to 

chloramphenicol, confirming the removing of the plasmid. Deletion of femT in both USA300 and 

USA300ΔfarER was confirmed via PCR and nucleotide sequencing. An overview of femT mutant 

construction using pKOR1 is presented in Figure 2.2. 
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Figure 2.1 Genetic organization of the femT region for pKOR1 markerless mutagenesis. Map 

of femT (SAUSA300_2213) with primers annotated for pKOR1 mutagenesis. The region between 

the femT upstream and downstream segments are ligated together following SacII digestion. attB 

sites are located on each end of the upstream and downstream segments. 
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Figure 2.2 Construction of femT mutant using pKOR1 markerless mutagenesis.  (A) Map of 

the pKOR1 plasmid. pKOR1 encodes repF (replication gene), secY570 (N-terminal 570 

nucleotides of secY), cat (chloramphenicol acetyltransferase), attP (phage lambda attachment site), 

ori(-) (plasmid replication origin), and bla (β-lactamase). attP sequences allow recombination with 

attB sequences. (B) Map of pKOR1 with ΔfemT fusion inserted; not to scale. (C) Hypothetical 

integration of pKORΔfemT into the genome by homologous recombination. Blue and grey shapes 

represent genes in the pKOR1 plasmid, while the green arrows indicate genes present in the 

USA300 genome. (D) The pKOR1 plasmid is excised with genomic femT, resulting in the deletion 

of femT and the insertion of the upstream-downstream fusion in the genome. Bacteria were then 

selected for plasmid loss. 



 

 

39 

2.4.2 Construction of pGYlux Reporter Strains  

To construct pGYfarE::lux and pGYfemT::lux reporter strains, where the promoter of farE or femT 

drives expression of the luciferase operon, a fragment containing the promoter site of the gene was 

first amplified. For pGYfarE::lux, a 396-bp fragment containing the promoter site for farE was 

amplified via PCR with the primers GYfarE_F and GYfarE_R (Table 2.2). For pGYfemT::lux, the 

primers femT::lux_Bam and femT::lux_Sal were used to amplify a 276-bp fragment containing 

the predicted promoter site of femT. After PCR amplification, clean up, and digestion with 

endonucleases BamHI and SalI, these segments were ligated into pGYlux, which had previously 

been digested with BamHI and SalI. Both recombinant plasmids were first constructed as shuttle 

vectors in E. coli DH5α. The integrity of plasmids isolated from E. coli was confirmed by 

restriction enzyme digestion and nucleotide sequencing of the cloned DNA fragments prior to 

electroporation into S. aureus RN4220 as an intermediate host. From RN4220, the individual 

plasmids were then introduced, via electroporation, into USA300 or isogenic derivatives as 

required. 

2.4.3 Construction of pET28 Recombinant Plasmids  

To construct pETfemT and pETfarE recombinant plasmids, primers were designed according to 

the porter domain sequence of femT, and the C-terminal cytoplasmic segment of farE. For the 

porter domain of femT, a 900-bp fragment was amplified via PCR with the primers femT_Port F 

and femT_Port R (Table 2.2). For amplification of the C-terminal cytoplasmic domain of farE, a 

471-bp fragment was amplified using the primers MMP_pET28_FP and MMP_pET28_RP. After 

PCR amplification, clean up, and digestion with endonucleases NheI and BamHI for femT, and 

NdeI and BamHI for farE, these segments were ligated into pET28a(+), which was digested with 

the same restriction enzymes, generating the recombinant plasmids pETfemT and pETfarE. The 

E. coli strain BL21 (DE3) was used for transformation of both recombinant plasmids. The 

transformed bacteria were selected by screening the colonies on kanamycin (50 µg/mL) containing 

media and subsequent plasmid purification. Positive colonies were confirmed by restriction 

enzyme digestion and nucleotide sequencing.  
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2.4.4 Complementation of Mutants  

To restore femT in deficient strains, the vector pALC2073 was used. Briefly, PCR conducted with 

primers pALCfemT_FP and pALCfemT_RP (Table 2.2) was performed to amplify femT. This 

product was then digested with SacI and ligated into the pALC2073 shuttle vector, creating 

pALCfemT. After transformation into E. coli DH5α, colonies were screened through restriction 

enzyme digest and sequencing to determine the orientation of the femT insert with respect to the 

xyl/tetO promoter. Fragments confirmed in the correct orientation were then electroporated into 

RN4220 before being introduced into USA300 isogenic derivatives. To induce expression of femT 

from the xyl/tetO promoter, 20 ng/mL aTc was added to cultures containing pALCfemT.  

2.5 Protein Methodologies 

2.5.1 SDS-PAGE 

Proteins in culture were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) (152). Protein samples were prepared and resuspended in 1 × Laemmli loading 

buffer (4 × buffer: 240 mM Tris-Cl pH 6.8, 8% w/v SDS, 40% v/v glycerol, 20% β-

mercaptoethanol, 0.01% bromophenol blue and milli-Q water). The entire sample and a pre-stained 

protein ladder (Frogga Bio) were then loaded into a 12% bis-acrylamide gel and run at 100 V for 

approximately 90 minutes. The separated protein bands were then stained for 18 hours with 

Coomassie blue stain for visualization, or transferred onto a membrane for Western blotting. 

Stained gels were then destained with buffer composed of 40% methanol, 10% acetic acid, and 

50% dH2O by volume, and visualized. 

2.5.2 Expression and Purification of Recombinant FemT and FarE 

For purification of FemT and FarE, a single colony of E. coli BL21 (DE3) with pETfemT or 

pETfarE was incubated in 30 mL LB, containing 50 µg/mL kanamycin, overnight at 37°C with 

shaking. The next day, the entire 30 mL culture was added to 1 L LB broth and grown at 37°C 

with shaking to an OD600 of ~0.7. Isopropyl-β-D-thiogalactopyranoside (IPTG) was then added to 

a final concentration of 0.5 mM for expression of FemT and FarE. The cells were then grown for 

an additional 18 hours at room temperature with shaking, after which cells were collected via 
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centrifugation at 3,000 × g for 12 minutes at 4°C. The cell pellets were then resuspended in 30 mL 

binding buffer (10 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM imidazole, filter sterilized). The 

cells were then lysed using a cell disrupter (Constants Systems Ltd.) at 30 psi, and cultures were 

centrifuged at 4,000 × g for 15 minutes at 4°C. From this point, any remaining cellular debris in 

the BL21 (DE3) pETfemT culture was removed by ultracentrifugation at 50,000 × g for 45 minutes 

at 4°C in a Beckman Coulter Optima® L-900K ultracentrifuge. For BL21 (DE3) cultures 

containing pETfarE, the pelleted debris after cell disruption was resuspended in 30 mL buffer B 

(100 mM NaH2PO4, 10 mM Tris-Cl, 8 M urea, adjusted to pH 8.0) for denaturing conditions to 

solubilize inclusion bodies. The pellet was incubated in buffer B for 1 to 2 hours with agitation 

prior to ultracentrifugation at 50,000 × g for 45 minutes at 4°C in a Beckman Coulter Optima® L-

900K ultracentrifuge. After ultracentrifugation, the soluble lysate of both cultures was passed 

through a 0.45 µM nylon filter (VWR) before being passed through a nickel-loaded 1-mL HisTrap 

column (GE Healthcare) equilibrated with binding buffer or urea buffer for FemT and FarE 

samples, respectively. The 6×His-tagged FemT protein was eluted from the column with a gradient 

of 0.1 M to 0.5 M imidazole. Conversely, FarE protein was eluted from the column with two passes 

of buffer B adjusted to pH 5.9, and two passes of buffer B adjusted to pH 4.5. Eluted fractions 

were analyzed via SDS-PAGE on a 12% bis-acrylamide gel run at 100 V for approximately 90 

minutes to determine which fractions contained the highest amount of purified protein. FemT 

fractions eluted with 0.2, 0.3, and 0.4 M imidazole were then combined, and FarE fractions eluted 

with the second pass of buffer B pH 5.9 and both passes of buffer B pH 4.5 were combined. 

Combined fractions were then dialyzed overnight at 4°C against 10 mM Tris pH 8.0. Protein purity 

was then confirmed using SDS-PAGE, described above, and protein concentrations were 

determined through Bradford assay using the Bio-Rad Protein Assay Dye (Bradford) Reagent 

Concentrate (5X). Samples were read at absorbance OD595 and a standard curve was made for each 

concentration determination with 1 mg/mL bovine serum albumin (BSA). 

2.5.3 Western Blot 

Rabbit polyclonal antisera recognizing FarE and FemT were generated by ProSci (Poway, CA) 

with protein prepared as described above. For blots with FemT antisera, single colonies of S. 

aureus USA300 or its isogenic variants were inoculated in 3 mL TSB, supplemented with 

antibiotics, if necessary, and incubated at 37°C for 8 hours with shaking. Cultures were then sub-
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cultured into 25 mL TSB at a volume equivalent to 0.01 OD600 and incubated at 37°C for 18 hours 

with shaking. Conversely, for blots with FarE antisera, single colonies of S. aureus USA300 or its 

isogenic variants were inoculated in 3 mL TSB, supplemented with antibiotics, if necessary, and 

incubated at 37°C for 18 hours with shaking. Cultures were then sub-cultured at a volume 

equivalent to 0.01 OD600 into 25 mL TSB supplemented with 20 µM LA (Sigma) and 0.1% DMSO 

(v/v) (Sigma), and incubated at 37°C to mid-exponential phase, or an OD600 of ~0.5. After 

incubation, all cultures were harvested by centrifugation at 3,000 × g for 15 minutes, and cells 

were washed with 1 × PBS to remove residual media. After additional centrifugation, the pellet 

was resuspended in 3 mL lysis buffer (150 mM NaCl, 5 mM EDTA pH 8.0, 50 mM Tris-HCl pH 

8.0, 1% (v/v) Triton X-100, 0.5% (v/v) SDS, 5 µg lysostaphin) and incubated at room temperature 

for 2 hours with agitation. Samples were then centrifuged at 4,200 × g for 20 minutes and 

supernatant was collected in a new tube. Protein concentrations were determined through Bradford 

assay using the Bio-Rad Protein Assay Dye (Bradford) Reagent Concentrate (5X). Samples were 

read at absorbance OD595 and a standard curve was made for each concentration determination 

with 1 mg/mL BSA. Samples were then aliquoted in volumes equal to 25 µg protein along with   

10 µL 1 × Laemmli buffer and mixed by vortexing. This mixture was then incubated at 37°C for 

30 minutes and loaded onto a 10% bis-acrylamide gel and separated by SDS-PAGE.  

  Resulting protein bands on the gel were then transferred onto a FluoroTrans PVDF 

membrane (PALL Life sciences) in a system submerged in transfer buffer consisting of 200 mL 

methanol, 14.4 g glycine, and 3.03 g of Tris filled to 1 L with dH2O (153). The membrane was 

then incubated overnight with blocking buffer (1 g skim milk powder (EMD) with 20 mL with      

1 × PBS). The next day, the membrane was incubated in 25 mL 1 × PBS supplemented with 0.1% 

tween20 (Sigma) (PBS-T) and 0.5 g skim milk powder with rabbit polyclonal antiserum diluted 

1:1000 and incubated for 2 hours at room temperature. After incubation, the membrane was 

washed three times with PBS-T for 10-minute time periods. The blot was then incubated for 

another 2 hours at room temperature with secondary antibody, anti-rabbit IgG conjugated to IRDye 

800 (Li-Cor Biosciences, Lincoln, NE), at a 1:20000 dilution. After incubation, the blot was 

washed three time with PBS-T for 10-minute periods, and washed a final time with 1 × PBS for 

10 minutes prior to scanning on a Li-Cor Odyssey Infrared Imager (Li-Cor Biosciences) and 

visualized using Odyssey V3.0 software. 
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2.6 Experimental Methodologies 

2.6.1 Growth Analysis 

To evaluate the effect of different conditions on the growth of S. aureus USA300 or its isogenic 

variants, overnight cultures were inoculated into 25 mL volumes of media at the volume equivalent 

of 0.01 OD600 and supplemented with indicated concentrations of fatty acids or other reagents. 

Unless otherwise indicated, all growth assays were conducted in 125 mL Pyrex Erlenmeyer flasks 

and cultures were incubated in a 37°C incubator with orbital shaking at 180 rpm. Measurements 

of OD600 were taken at hourly intervals. Liquid growth media used for analysis included Mueller-

Hinton broth (MHB; Sigma), brain-heart infusion (BHI; VWR) broth, and Roswell Park Memorial 

Institute (RPMI; Gibco) broth. All solutions and media were made using water purified with Milli-

Q water purification system (Millipore). 

2.6.2 Bactericidal Assays 

Overnight pre-cultures were inoculated at a volume equivalent to 0.01 OD600 into flasks containing 

25 mL TSB supplemented with 20 µM LA (Sigma) and 0.1% DMSO (v/v) to ensure fatty acid 

dissolution. A 5-mM stock solution of LA was produced by diluting pure fatty acids in 5 mL TSB 

with vigorous vortexing. These cultures were then grown to mid-exponential phase (2-3 hours; 

OD600 ~0.5) and inoculated into 25 mL fresh TSB containing a bactericidal (100 µM) concentration 

of LA and 0.1% (v/v) DMSO and grown at 37°C with shaking. To determine bactericidal activity, 

aliquots were withdrawn at hourly intervals, and diluted and plated on TSA at 100 to 103 dilutions 

with quadruplicate technical replicates. After incubation overnight, colonies were counted and 

viable CFU/mL counts were determined.  

2.6.3 Luciferase Assays 

Luciferase assays were conducted using growth analysis conditions described above. Cultures 

harboring pGYlux, pGYfemT::lux, or pGYfarE::lux plasmids were prepared in triplicate flasks 

and grown in specified conditions. At indicated time points, aliquots were removed from each 

culture for OD600 measurements, and concurrently, 4 × 200 µL technical replicates were withdrawn 

from each flask for quantification of luciferase activity. Specifically, each 200 µL aliquot was 
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added to individual wells of a flat-bottom, opaque white 96-well microtiter plate (Greiner Bio-

One). The wells were then supplemented with 20 µL 0.1% (v/v) decanal in 40% ethanol, followed 

by immediate measurement of luminescence utilizing a Biotek Synergy H4 Hybrid Reader, with 

an integration time of 1 second and a gain of 200. Luminescence background was removed from 

the relative light unit (RLU) measurements by averaging the technical replicates and subtracting 

the observed RLU from the promoterless pGYlux reporter. These data were then standardized by 

dividing individual RLU readings with the OD600 reading of the culture, producing RLU/OD600 

measurements. 

2.6.4 Lysis Assays 

Cultures of S. aureus USA300 or its isogenic variants were grown in 3 mL TSB overnight at 37°C. 

Cells were then inoculated at a volume equivalent to 0.01 OD600 into flasks containing fresh            

25 mL TSB and grown with shaking at 37°C to an OD600 of ~1.0. Cells were harvested by 

centrifugation (4,000 × g; 10 min) and washed twice with phosphate-buffered saline (PBS). The 

pellet was then resuspended in either 1 × PBS to an OD600 of 1.0, used as a control, or in 1 × PBS 

to an OD600 of 1.0 in the presence of a cell wall stressor, including Triton X-100, lysostaphin, or 

lysozyme. Cultures were then incubated at 37°C with shaking. Cell lysis was measured as a 

decrease in OD600 over time and represented as percent of initial OD600, calculated by subtracting 

individual OD600 readings at timely intervals with the initial OD600 at time zero. 

2.6.5 Antibiotic Susceptibility Assays 

To evaluate the minimum inhibitory concentration (MIC) of several antibiotics, cultures of 

USA300 or its isogenic variants were grown in 3 mL MHB overnight at 37°C with shaking. Cells 

were then inoculated at a volume equivalent to 0.01 OD600 into flasks containing fresh 25 mL 

MHB and grown with shaking at 37°C to an OD600 of ~0.5, and turbidity was adjusted so that it 

was equal to that of a McFarland 0.5 standard. A total of 100 µL of the 0.5 McFarland suspension 

was plated on a Mueller-Hinton agar plate. When the surface of each plate had dried, one 

Epsilometer test (E-test) strip was placed in the centre of each plate. Plates were then incubated at 

37°C for 24 hours. MICs in µg/mL were read directly from the test strip according to the 

instructions provided by the manufacturer, where the elliptical zone of inhibition intersected with 

the MIC scale on the test strip.  
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2.6.6 Statistical Analysis 

All data generated by the assays described above were plotted using Graphpad PRISM software, 

version 6.0f. Significance at specific points was determined using unpaired one-tailed Student’s t-

tests utilizing the statistics portion of Graphpad PRISM.  
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3 Results 

3.1 Evaluation of the Role of FemT in Cell Wall Synthesis 

3.1.1 Deletion of the femT locus 

The first objective of this study was to determine the role of the RND efflux pump encoded by 

femT (SAUSA300_2213). The femT gene is 3,168 bp and encodes a protein containing 1,055 

amino acids, with a predicted molecular mass of 114.7 kDa. To assess the importance of FemT 

during growth, a femT deletion was constructed in a wildtype USA300 background, generating 

USA300ΔfemT, and in a USA300 background with farER deleted, producing USA300ΔfarER-

femT, as described in the Materials and Methods section. A diagram of the femT locus with 

indicated primers for PCR screening is illustrated in Figure 3.1A. PCR amplification with the 

femT_Del_F2 and femT_Del_R2 primers across the femT locus of wildtype S. aureus USA300 

and both mutants, USA300ΔfemT and USA300ΔfarER-femT, confirmed the deletion of femT in 

both strains (Figure 3.1B). With these PCR primers, the expected size of wild-type USA300 is 

4,070 kb and the size of the product amplified for the femT deletions is expected to be 900 kb. In 

addition, the femT mutation was confirmed through nucleotide sequencing using primers further 

upstream and downstream of the femT locus, femT-DEL_For and femT-DEL_Rev. PCR was also 

used to confirm the deletion of farER once USA300∆farER-femT was created. Western blot 

analysis of USA300, femT mutants, and complemented femT mutants was also performed with 

specific antibodies generated against FemT (Figure 3.1C). Membrane fractions of each sample 

were used for analysis, and 25 ng protein was loaded into each well for detection. Detected FemT 

protein was of expected size. 
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Figure 3.1 Confirmation of femT deletion. (A) Map of the femT locus with primers, indicated 

by blue arrows, used for PCR amplification. (B) Genomic DNA of wildtype USA300 and the 

deletion mutants USA300ΔfarER-femT and USA300ΔfemT was used as a template for PCR with 

primers flanking the femT region. (C) SDS-PAGE stained with Coomassie blue for visualization 

of FemT porter domain used for antibody production. The predicted molecular mass of the FemT 

porter domain is 42 kDa. (D) Western blot with FemT antisera confirming the deletion and 

complementation of femT. Membrane fractions of each sample were used for detection; 25 µg of 

protein was loaded into each well. The predicted molecular mass of FemT is 114.7 kDa. 
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3.1.2 Deletion of femT improves growth of USA300 in Mueller-Hinton broth 

To assess the importance of FemT on the growth of USA300, cultures of USA300 and RND pump 

mutants USA300∆farER, USA300∆femT and USA300∆farER-femT were grown in different types 

of media. Specifically, four different types of liquid growth media were chosen for analysis, 

namely TSB, BHI broth, MHB, and RPMI media. TSB and BHI were chosen as nutritious, general-

purpose growth media that are widely used for cultivating S. aureus. Conversely, MHB and RPMI 

media were chosen for comparison as they are more depleted in nutrients. More specifically, both 

MHB and RPMI lack glucose and contain only free amino acids as a source of protein, compared 

to TSB and BHI, which both contain glucose and more complex forms of protein such as peptone. 

Since glucose is not present in MHB and RPMI, S. aureus must grow on non-preferred carbon 

sources to facilitate gluconeogenesis. In addition, much antibiotic work employs Mueller-Hinton 

medium, and the fatty acid composition of S. aureus membrane glycerolipids has shown to be 

altered when grown in MHB compared to TSB (154). Upon analysis, no difference in growth was 

observed between USA300 and the three RND pump mutants in TSB, BHI, and RPMI media 

(Figure 3.2). However, when these strains were cultured in MHB, USA300∆femT appears to reach 

the logarithmic phase of growth faster than wildtype USA300 and the two other mutants. 

Therefore, the deletion of femT does not affect the growth of USA300 in TSB, BHI, and RPMI, 

but does, however, improve growth of USA300 in MHB.  
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Figure 3.2 Growth analysis of USA300 and RND pump mutants in TSB, BHI, MHB, and 

RPMI. Growth of USA300, USA300∆farER, USA300∆femT and USA300∆farER-femT cultured 

in (A) TSB, (B) BHI, (C) MHB, and (D) RPMI. Each data point represents the mean value of 

triplicate cultures; error bars represent the standard error of the mean. 
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3.1.3 USA300∆femT is more susceptible to lysostaphin 

To test our hypothesis of FemT involvement in cell wall synthesis, we investigated the potential 

effect of two cell wall stressors on lysis of USA300 and USA300∆femT. Cells were incubated with 

the metalloendopeptidase lysostaphin, which cleaves the cross-linking Gly5 bridges in the cell 

wall, or incubated with the glycoside hydrolase lysozyme, which catalyzes the hydrolysis of 1,4-

β-linkages between MurNAc and GlcNAc residues in peptidoglycan. The lytic activity of 

lysostaphin was compared between USA300 and USA300∆femT to determine if the Gly–Gly bond 

in the Gly5 crossbridge was altered in the mutant. Gründling et al. have demonstrated that 

truncations in staphylococcal cross bridges, of either one glycine or three glycine units, causes the 

observed increase in lysostaphin resistance of staphylococci (155). Additionally, Morikawa and 

co-workers using S. aureus N315 showed that cell wall thickness also plays important roles in 

lysostaphin sensitivity, whereby S. aureus cells with thinner envelopes demonstrated increased 

sensitivity to lysostaphin (156). Although S. aureus peptidoglycan is completely resistant to the 

hydrolytic activity of lysozyme, this is a function of a number of factors, including the wall teichoic 

acid composition, the degree of peptidoglycan cross-linking, and the degree of peptidoglycan 

acetylation (157). Therefore, sensitivity to lysozyme was also investigated as a potential marker 

of the influence of femT on cell wall integrity. To evaluate the sensitivity of USA300 and 

USA300∆femT in both conditions, the decline in OD600 of triplicate cultures was measured 

following the addition of 1 mg/mL lysozyme, or 50 ng/mL lysostaphin. USA300 and 

USA300∆femT were first grown in MHB to an OD600 of ~1.0, and cells were then resuspended in 

PBS as a control, or PBS containing one of the two stressors. 

Although previous research has indicated that 0.8 mg/ml lysozyme is sufficient to differentiate 

lysozyme sensitive mutants from wild type S. aureus (158), USA300 and USA300∆femT exhibited 

little to no lysis after 2 hours of incubation in 1 mg/ml lysozyme, as illustrated by a similar decline 

in their ODs over time (Figure 3.3A). However, when cell lysis was determined in the presence of 

lysostaphin, USA300∆femT cells lysed significantly more at indicated time points compared to 

USA300, as illustrated by a more rapid decline in OD600, graphed as percent of initial OD (Figure 

3.3B). This indicates that USA300∆femT is more susceptible to lysostaphin-induced cell lysis 

compared to USA300.  
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Figure 3.3 Deletion of femT increases sensitivity of USA300 to lysostaphin. Lysis assays of 

USA300 and USA300∆femT were carried out with cells resuspended in PBS alone (open symbols), 

or in PBS containing (A) 1 mg/mL lysozyme, and (B) 50 ng/mL lysostaphin. OD600 measurements 

were taken at timely intervals and data points were calculated as a percentage of their initial OD600. 

Each data point represents the mean value of triplicate cultures; error bars represent the standard 

error of the mean. Significant differences in % initial OD600 of cultures exposed to lysostaphin 

were determined by an unpaired one-tailed Student's t test (*, p < 0.05; **, p < 0.01).  
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3.1.4 Deletion of femT slightly increases sensitivity of USA300 to select 
antibiotics 

To test our hypothesis that FemT contributes to cell wall synthesis and integrity, we evaluated the 

sensitivity of USA300 and the RND pump mutants USA300∆farER, USA300∆femT and 

USA300∆farER-femT to various antibiotics. Sensitivity to daptomycin was tested, as this 

membrane-active antibiotic has been shown to induce femT transcription 2.0-fold (159). 

Vancomycin, a glycopeptide antibiotic, and oxacillin, a β-lactam, were also evaluated, as they both 

inhibit cell wall synthesis. Specifically, vancomycin binds to the stem peptide of the membrane-

anchored lipid II precursor at its dipeptide moiety, Lys-D-Ala-D-Ala residue, and thus prevents 

the precursor from being incorporated into the nascent peptidoglycan chain (160–162). Oxacillin, 

as a β-lactam antibiotic, inhibits cell wall synthesis through binding and inactivating PBPs. 

To assess the sensitivity of USA300 and RND mutants to these antibiotics, MIC evaluations were 

performed using E-test strips, as described in the Materials and Methods section. When plated on 

Mueller-Hinton agar plates with a daptomycin E-test, all four cultures were shown to be equally 

sensitive to daptomycin, with an MIC of 1 µg/mL (Figure 3.4A). USA300 was slightly less 

susceptible to vancomycin, with an MIC of 2 µg/mL, compared to the three RND pump mutants, 

which all had the same MIC of 1 µg/mL (Figure 3.4B). Interestingly, USA300 and USA300∆farER 

were equally sensitive to oxacillin, with an MIC of 0.12 µg/mL (Figure 3.4C).  However, the femT 

mutants, USA300∆femT and USA300∆farER-femT, were visibly more sensitive to oxacillin, with 

an MIC of 0.06 µg/mL. Antibiotic MIC results of each strain are summarized in Table 3.1. 
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Table 3.1 Resistance profiles of S. aureus strains USA300, USA300∆farER, USA300∆femT, 
and USA300∆farER-femT 

Antibiotic 
MIC [µg/mL] 

USA300 USA300∆farER USA300∆femT USA300∆farER-femT 

Daptomycin 1 1 1 1 

Vancomycin 2 1 1 1 

Oxacillin 0.12 0.12 0.06 0.06 
 
 

 

C 

Figure 3.4 E-test results for determination of antibiotic sensitivity. Cultures of USA300, 

USA300∆farER, USA300∆femT, and USA300∆farER-femT were spread onto Mueller-Hinton agar 

plates with (A) daptomycin, (B) vancomycin, and (C) oxacillin E-tests. MICs (µg/mL) were read 

directly from the test strip, where the elliptical zone of inhibition intersected with the MIC scale on 

the test strip. 
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3.2 Evaluation of Substrate Redundancy between FemT and FarE 

3.2.1 femT expression is not upregulated in USA300∆farER  

To test for redundancy in substrate efflux between the two RND transporters in S. aureus, the 

expression of femT was evaluated in the USA300∆farER deletion background, to observe whether 

the deletion of farE would cause increased expression of femT. To evaluate femT expression, a 

promoter-reporter expression system was utilized. femT is partially co-transcribed with femX, and 

the genetic organization of femX-femT is conserved among all published annotated staphylococcal 

species (12). Both femX and femT lie on the negative strand of the S. aureus chromosome, and are 

separated by a 116 bp intergenic segment. In addition to the promoter upstream of femX, an 

additional predicted promoter in the intergenic region between femX and femT has been identified 

(163). To evaluate whether the predicted promoter in this region is active, the entire 116 bp 

segment between femX and femT was amplified and cloned into the pGYlux expression vector, 

creating pGYfemT::lux. This construct was then introduced into E. coli DH5α, where luciferase 

activity was monitored at different time points in growth and compared to the activity of the farE 

promoter (Figure 3.5A). Although the femT promoter is not expressing to the same level as the 

farE promotor, the pGYfemT::lux construct is active, and the promoter is driving detectable levels 

of luminescence in E. coli DH5α. 

Once promoter activity was confirmed in E. coli, femT expression was measured in USA300 and 

USA300ΔfarER. Since farE is known to be induced in LA, femT expression was measured in 

USA300ΔfarER in the presence of LA to determine if LA, in the absence of farE, would induce 

expression of femT as a compensatory mechanism. Therefore, USA300 and USA300ΔfarER 

harboring pGYfemT::lux were cultured into triplicate flasks containing either TSB or TSB 

supplemented 20 µM LA (Figure 3.5B). Luminescence measurements suggest that the deletion of 

farER does not cause an increase in femT expression when exposed to TSB alone, or TSB 

supplemented with LA. Although the predicted femT promoter was shown to be highly active when 

monitored in E. coli, expression in S. aureus could only be briefly observed at a low level during 

early exponential growth in USA300 grown in TSB. Time points earlier than 1 hour were not 

measured, as the OD600 readings would be too low for standardization with RLU measurements.  
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Figure 3.5 Assay of femT expression in E. coli, USA300, and USA300∆farER. Growth (OD600; 

open symbols) and relative luminescence units normalized by OD600 (RLU/OD600; closed symbols) 

of (A) E. coli DH5α carrying pGYfarE::lux or pGYfemT::lux, and (B) USA300 and 

USA300∆farER with the pGYfemT::lux reporter vector grown in TSB or TSB with 20 µM LA. 

Each value represents the mean and standard deviation of four separate cultures, and each culture 

was subjected to quadruplicate luminescence readings at each time point.  
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3.2.2 farE exhibits loss of inducible expression in USA300∆femT  

To test whether the deletion of FemT causes a change in farE expression, a promoter gene assay 

was performed measuring farE expression in a USA300∆femT mutant background. To accomplish 

this, the putative promoter of farE was cloned in front of the luciferase operon on the pGYlux 

plasmid and transformed into USA300 and USA300∆femT. Expression of farE was then monitored 

during growth in TSB in the presence and absence of sub-inhibitory (20 µM) concentrations of LA 

and AA (Figure 3.6). As expected from previous experiments, the expression of farE is inducible 

in USA300 when cultured in 20 µM LA and AA, compared to TSB in which farE is not expressed 

(99). Interestingly, inducible expression of farE was lost in the USA300∆femT background when 

cultured in both LA and AA, and expression remained minimal. This is illustrated as a decrease in 

farE expression, measured as RLU/OD600, in USA300∆femT compared to its expression in wild-

type USA300, when grown in LA and AA. The data, therefore, do not support the contention that 

increased expression of farE compensates for inactivation of femT. However, farE expression is 

significantly reduced in USA300∆femT compared to USA300, suggesting perhaps that another 

mechanism is involved. To confirm this phenotype, Western blot analysis of USA300, femT 

mutants, and complemented femT mutants was also performed with specific antibodies generated 

against FarE, as described in the Materials and Methods section. However, attempts of this 

Western blot have been unsuccessful due to a low concentration FarE recovered from the 

immunized rabbit. 
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Figure 3.6 farE loses inducible expression in USA300∆femT. Growth (OD600; open symbols) 

and relative luminescence units normalized by OD600 (RLU/OD600; closed symbols) of USA300 

and USA300∆femT harboring the pGYfarE::lux reporter vector. (A) Cultures were grown in TSB 

in the presence and absence of (A) 20 µM linoleic acid (LA); and (B) 20 µM arachidonic acid 

(AA). Each value represents the mean and standard deviation of triplicate cultures, and each culture 

was subjected to quadruplicate luminescence readings at each time point. Significance values of 

RLU/OD600 are shown between (A) USA300 pGYfarE::lux in TSB + LA and USA300∆femT 

pGYfarE::lux in TSB + LA; and (B) USA300 pGYfarE::lux in TSB + AA and USA300∆femT 

pGYfarE::lux in TSB + AA, as determined by unpaired one-tailed Student’s t tests (*, p < 0.05; 

**, p < 0.01; ***, p < 0.001).  
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3.2.3 USA300∆femT is more susceptible to killing by bactericidal concentration 
of linoleic acid 

To further investigate the reduced expression of farE in USA300∆femT, we investigated the 

hypothesis that the cell wall of USA300∆femT is altered in such a way that does not allow fatty 

acids to enter the cell and induce farE expression. To accomplish this, a bactericidal assay was 

performed to assess bactericidal activity of LA on USA300, USA300∆femT, and USA300∆femT 

containing pALCfemT for complementation. Cultures were grown to exponential phase in TSB 

supplemented with a sub-inhibitory concentration (20 µM) of LA, and then inoculated into flasks 

containing 100 µM LA, a bactericidal concentration. Control curves of USA300 and 

USA300∆femT grown in TSB without LA were not included as both strains grow similarly in TSB, 

which is demonstrated in Figure 1. Interestingly, when grown in bactericidal concentrations of LA, 

the USA300∆femT pALC2073 mutant demonstrated significantly lower survival every hour after 

initial inoculation compared to wild-type USA300 and the USA300∆femT complement (Figure 

3.6). This data shows that mutants that are deficient in femT are more susceptible to killing by 

bactericidal unsaturated free fatty acids, such as LA. Notably, complementation of femT restored 

cell killing to levels not significantly different from wild-type USA300.  
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Figure 3.7 Sensitivity of USA300 and USA300ΔfemT to the bactericidal activity of linoleic 

acid. Cultures of USA300 pALC2073, USA300ΔfemT pALC2073, and USA300ΔfemT 

pALCfemT were exposed to 100 µM LA after growth to mid-exponential phase in TSB–20 µM 

LA. Each data point represents the mean value of quadruplicate cultures. Significant differences 

in viability between USA300 pALC2073 and USA300ΔfemT pALC2073 were determined by 

unpaired one-tailed Student’s t tests (***, p < 0.001). 
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3.2.4 Failure to express farER is responsible for increased sensitivity of femT 
deficient strains to killing by linoleic acid 

Upon determining that USA300ΔfemT had significantly reduced survival in bactericidal 

concentrations of LA compared to wild-type USA300, we wanted to investigate if this phenotype 

was due to loss of farE expression in the femT mutant. To evaluate the role of farE in the increased 

susceptibility of USA300ΔfemT, the mutant strain USA300ΔfarER-femT was utilized, along with 

the femT-complemented version USA300ΔfarER-femT pALCfemT. Bactericidal assays with 

USA300 pALC2073, USA300ΔfarER-femT pALC2073, and USA300ΔfarER-femT pALCfemT 

were carried out under the same conditions tested previously; cells were grown to mid-exponential 

phase in TSB–20 µM LA and then inoculated into flasks containing 100 µM LA.  

As expected, the USA300ΔfarER-femT mutant demonstrated notably lower survival compared to 

wild-type USA300 (Figure 3.7), but when the USA300ΔfarER-femT mutant was complemented 

with pALCfemT, viability was not restored and remained significantly lower than USA300 at all 

time points after initial inoculation. Therefore, USA300ΔfemT and USA300ΔfarER-femT both 

exhibit reduced viability in the bactericidal assay, and viability can be restored by complementing 

with pALCfemT in USA300ΔfemT, but not in USA300ΔfarER-femT. Taken together, these data 

indicate that that farER is not inducible in USA300ΔfemT, leading to reduced viability when 

challenged with bactericidal levels of LA. 
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Figure 3.8 Sensitivity of USA300∆farER-femT to killing by linoleic acid occurs in a farER-

dependent manner. Cultures of USA300 pALC2073, USA300ΔfarER-femT pALC2073, and 

USA300ΔfarER-femT complemented with pALCfemT were exposed to 100 µM LA after growth 

to mid-exponential phase in TSB–20 µM LA. Each data point represents the mean value of 

quadruplicate cultures. Significant differences in viability between USA300 pALC2073 and 

USA300ΔfarER-femT pALCfemT were determined by unpaired one-tailed Student’s t tests (*, p 

< 0.05; **, p < 0.01; ***, p < 0.001).  
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4 Discussion 

The emergence of MRSA has become a significant disease burden worldwide, and S. aureus 

USA300 is a prominent strain of CA-MRSA responsible for severe invasive infections in humans. 

However, to colonize successfully and establish infection, USA300 must overcome host defense 

mechanisms, including antimicrobial unsaturated free fatty acids that are encountered on the skin 

and in soft tissue abscesses. A contributing factor known to play a vital role in the intrinsic defense 

mechanisms of bacterial pathogens is the RND superfamily of efflux pumps, which are ubiquitous 

among bacteria. In addition to their diverse roles in drug resistance, virulence, and promoting key 

physiological processes, RND efflux pumps in many bacterial pathogens are required for causing 

infection. Although the structure and functions of RND transporters are being extensively studied 

in both Gram negative and Gram positive bacteria, many outstanding questions remain regarding 

the characterization of this family of transporters in S. aureus. 

In addition to our own work, which identifies mild phenotypes of the RND transporter mutant 

USA300ΔfemT in conditions that impose stress on the cell wall, Quiblier et al. using a different 

approach with S. aureus Newman demonstrated that FemT (SA2056) interacted with some of the 

FemABX factors and the PBPs, suggesting a subsidiary role in peptidoglycan synthesis (163). 

Despite the extensively characterized roles of RND family efflux pumps as mediators of multidrug 

resistance, we proposed that the function of FemT is to contribute to the basic biology of S. aureus, 

namely to cell wall synthesis. This is consistent with the role of RND transporters in M. 

tuberculosis, where the primary role of most MmpL RND proteins appears to be the transport of 

lipids to be incorporated on the cell envelope (164). To elucidate the role of FemT in S. aureus 

USA300, analysis of the markerless femT knock-out mutant was extended to various growth and 

stress conditions. 

First, once femT deletions in USA300 and USA300ΔfarER were created, growth of the mutants 

was analyzed in four different types of media. Typically, a range of different media are used for 

cultivating S. aureus in studies from different laboratories; these are mostly complex media such 

as TSB, BHI broth, MHB, and LB broth (165). Evaluating the growth of mutants in different media 

is important, as previous research has indicated that different media have major effects on the 

expression of selected target virulence and regulatory genes (165, 166). Interestingly, the femT 
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deletion mutant grew at a slightly faster rate during mid-exponential growth compared to wild-

type in MHB. In comparison, all strains grew at approximately equal rates in the other media 

tested. MHB is composed of beef extract powder (2 g/L), acid digest of casein (17.5 g/L), and 

soluble starch (1.5 g/L). Thus, by far the major component of this medium is acid digest of casein, 

and this is expected to be high in free amino acids, and may have an impact on bacterial cell 

properties. Indeed, Sen et al. have demonstrated that the balance of branched-chain fatty acids and 

straight-chain fatty acids in the membranes of USA300 strains JE2 and SH1000 was affected 

considerably by growth in different media; in particular, MHB resulted in high branched-chain 

and low straight-chain fatty acids, whereas growth in TSB and BHI broth led to a reduction in 

branched-chain and an increase in straight-chain fatty acids (167). In addition, the membranes of 

MHB- and serum-grown cells were significantly less fluid compared to cells grown in other media, 

possibly due to the higher carotenoid contents of cells grown in MHB, which rigidifies the 

membrane (167). Taken together, these altered membrane characteristics of MHB-grown cells 

suggest that the ratio of components in MHB differ from TSB, BHI broth, and RPMI broth in such 

a way that enhances growth of USA300ΔfemT in MHB, which perhaps is attributable to membrane 

perturbations of cells grown in this media. Glucose, for example, is absent in MHB, but present in 

TSB, BHI broth, and RPMI broth, and may possibly account for this phenotype. When S. aureus 

cultures are grown in media lacking glucose, cells are forced to utilize secondary sources of carbon, 

such as amino acids (168). Under these conditions, perhaps the femT-deficient mutant is better able 

to accommodate the metabolic changes, and thus, can grow at a faster rate compared to wild-type. 

Growing these cultures in TSB without glucose, or in MHB supplemented with glucose, would 

prove valuable to examine the role of glucose in this phenotype. Interestingly, Huang et al. found 

the opposite effect, where the deletion of the RND pump smeIJK in Stenotrophomonas maltophilia 

mediated growth retardation in MHB, which was reversible when the cultured environment was 

changed from MHB to LB broth (169). The mechanism behind the growth perturbation remains 

as a future area of study; for example, it may be useful to examine the membrane properties of 

USA300ΔfemT when grown in each media. 

Hypothesizing that FemT plays a role in cell wall synthesis, it is noteworthy that the femT mutant 

was more susceptible to lysis with lysostaphin compared to wild type USA300, as this phenotype 

may suggest that FemT contributes to biosynthetic pathways for cell wall assembly. Lysostaphin 

is a endopeptidase produced by Staphylococcus simulans biovar staphylolyticus and lyses 
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staphylococcal cells by hydrolyzing the Gly5 bridges that cross-link the peptidoglycan of several 

members of this genus, including S. aureus (170). Although mutants defective in either the femA 

or femB genes are more resistant to lysostaphin due to shortened Gly5 interpeptides, Morikawa et 

al. using S. aureus N315 showed that cell wall thickness also plays important roles in lysostaphin 

sensitivity, whereby cells with thinner envelopes demonstrated increased sensitivity to lysostaphin 

(156). Based on these findings, it is possible that the glycine-glycine bond of the crossbridge is not 

altered in the femT mutant, but it may be possible that the cell wall of USA300ΔfemT is marginally 

thinner than wild-type, contributing to increased lysostaphin sensitivity. This alleged phenotype 

of the mutant could also explain its increased sensitivity to antibiotics that target the cell wall.  

Research by Cui and colleagues demonstrated a significant statistical correlation between the cell 

wall thickness of 48 S. aureus strains and vancomycin MICs; specifically, the thickening of the 

cell wall is closely associated with the mechanism of vancomycin resistance in resistant strains 

(171). In this mechanism proposed by several researchers, trapping of vancomycin molecules in 

the cell wall peptidoglycan would be the essential contributor; the thicker the cell wall, the more 

vancomycin molecules trapped within the cell wall, thus allowing fewer molecules to reach the 

cytoplasmic membrane where the real functional targets of vancomycin are present (171–174). 

Vancomycin binds to the stem peptide of the membrane-anchored lipid II precursor at its dipeptide 

moiety, Lys-D-Ala-D-Ala residue, and thus prevents the precursor from being incorporated into 

the nascent peptidoglycan chain (160–162). In addition, a thicker peptidoglycan layer also 

significantly reduces the time that vancomycin completely inhibits peptidoglycan synthesis. This 

theory holds true of glycopeptide antibiotics, including vancomycin and teicoplanin, and also of 

β-lactams, including imipenem and oxacillin, although to a lesser extent (171). Conversely, the 

opposite could hold true for strains with a thinner cell wall, as a thinner peptidoglycan layer may 

allow vancomycin to more readily reach the cytoplasmic membrane and completely inhibit 

peptidoglycan synthesis. In E. coli, cells with reduced peptidoglycan content were more sensitive 

to β-lactam antibiotics, including penicillin and other damaging agents, and cells withstood this 

drastic reduction in the amount of peptidoglycan without detectable alterations in their 

morphology, growth, division, and viability in the stationary phase (175). Based on these findings, 

if the cell wall of USA300ΔfemT is slightly thinner than wild-type, it seems likely that this would 

contribute to the increased sensitivity of the mutant to both vancomycin and oxacillin, without 

affecting growth in culture. 
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Additionally, while the femT mutant showed an increased sensitivity to lysostaphin, vancomycin 

and oxacillin, the deletion mutant was not found to be differentially affected by lysozyme 

compared to wild-type. Lysozyme is one of the most important enzymes of the innate immune 

system, as it is a component of neutrophil granules, the major secretory product of macrophages, 

and it is also found in mammalian secretions and tissues (176, 177). Although lysozyme 

preferentially hydrolyzes the β-1,4-glycosidic linkages between MurNAc and GlcNAc, it does not 

recognize peptidoglycan modified with O-acetyl groups, which enables pathogenic bacteria such 

as S. aureus to overcome this innate defense mechanism (178). S. aureus acetylates its cell wall at 

the C-6 position of MurNAc, producing the 2,6-N,O-diacetylmuramic acid derivative (158). This 

modification acts as a steric hindrance and inhibits the binding of the lysozyme to the 

polysaccharide substrate. Bera et al. have previously provided evidence that the O-acetylation of 

peptidoglycan correlates with the observed high lysozyme resistance by S. aureus, which is 

mediated by a peptidoglycan-specific, membrane-bound O-acetyltransferase (OatA) (158). In this 

study, researchers show that OatA is widespread among pathogenic staphylococci, whereas 

nonpathogenic staphylococci are lysozyme sensitive and possess no O-acetylated peptidoglycan 

(158). Therefore, to investigate whether FemT played a role in the acetylation of peptidoglycan, 

we tested the growth of the femT mutant compared to wild-type USA300 when exposed to 

lysozyme. However, both appeared to be equally resistant to lysozyme, which suggests that 

peptidoglycan acetylation was not altered in USA300∆femT.  

Although a striking phenotype of USA300∆femT was not found upon exposure to several of the 

conditions tested, the mutant was identified to grow faster in MHB, and is slightly more sensitive 

to vancomycin, oxacillin, and lysostaphin compared to wild-type; however, femT was not required 

for S. aureus growth or stress tolerance when grown in culture and upon exposure to lysozyme and 

daptomycin. However, the increased sensitivity of USA300∆femT to lysostaphin and cell wall-

targeting antibiotics may implicate an accessory role for FemT in cell wall biosynthesis. It is 

possible that FemT and other proteins share redundancy in substrate efflux, as cell wall synthesis 

genes are especially redundant, and that deletion of femT alone does not impair S. aureus 

sufficiently to produce a striking phenotype. Interestingly, S. aureus can survive with minimal 

peptidoglycan synthesis genes, and Reed et al. demonstrated that as many as seven of the nine 

genes encoding synthesis enzymes can be deleted without affecting normal growth or cell 

morphology; however, virulence and antibiotic resistance are sacrificed in these mutants (179). 
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Therefore, future research should be directed at examining the virulence of USA300∆femT and 

USA300∆farER-femT in a murine colonization model to extend the evaluation of FemT in vivo.  

A common feature of bacterial pathogens encoding multiple RND pumps is that their functions in 

substrate efflux tend to be redundant. For example, P. aeruginosa has more than ten RND family 

transporters, of which nine transport multiple, often the same, antibiotic substrates (180). Due to 

the redundancy of RND pumps, potential exists for the loss of certain pump components to be 

compensated by increased expression of a homologous pump that could accomplish, at least to 

some extent, the same function. For example, Eaves et al. demonstrated that when acrB or acrF 

of Salmonella was inactivated, the expression of acrD increased (181). Similarly, Blair et al. have 

shown that the expression of all RND efflux pump genes in S. typhimurium can be altered when 

single or multiple acr genes are inactivated (182). Comparably, RND transporters MmpL4 and 

MmpL5 in M. tuberculosis have redundant functions in siderophore export, whereby inactivation 

of either pump increases expression of the other, but a double MmpL4/5 mutant is lethal (183). 

Since these transporters efflux a wide range of substrates, inactivation of one transporter may alter 

the balance of metabolites in the cell, and expression of other RND transporters may be adjusted 

accordingly. Therefore, the redundancy feature of RND transporters contributes to bacterial 

resilience in many different growth conditions. 

Interestingly, when testing for substrate redundancy between FemT and the fatty acid resistance 

transporter, FarE, our results show that femT expression via the predicted promoter is unchanged 

in the farER-deletion mutant. Conversely, we observed a loss of inducible farE expression in the 

femT-deletion mutant. In wild-type, farE is only expressed in TSB supplemented with LA and AA, 

but in USA300∆femT, farE is not expressed under these conditions. The data, therefore, do not 

support the contention that increased expression of farE compensates for inactivation of femT. 

These results suggest that perhaps another mechanism is involved, or that the cell of 

USA300∆femT is altered in such a way that does not allow LA or AA to induce farE expression. 

One simple solution could be that FemT acts as both an efflux pump and a portal of entry for 

certain molecules, such as fatty acids. If this was the case, it would explain why farE loses 

inducible expression in the femT deletion mutant, as fatty acids are unable to enter the cell and 

induce expression. It would also explain why the USA300ΔfemT mutant is more susceptible to LA 

in a bactericidal assay, and when introducing femT back in trans, viability is restored. However, 
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this idea still raises some questions as to specificity of fatty acid entry over other metabolites, and 

the mechanism by which this process would occur. 

Although the mechanism by which farE is induced by LA and AA remains to be determined, it is 

probable that exogenous fatty acids must enter the cell to induce farE expression. Therefore, it 

seems likely that the femT mutant is altered in such a way that does not allow entry of fatty acids. 

Alternatively, it is possible that the regulation of farE requires specific forms of phosphorylated 

fatty acids, and not free fatty acids, to promote farE expression. As discovered by Parsons et al., 

fatty acid kinase A (FakA) is an integral part of the fatty acid kinases, which carries out the first 

step of incorporating fatty acids into the cell membrane by phosphorylating them into acyl-PO4 

(184). If farE does indeed require the phosphorylated forms of fatty acids, perhaps the fatty acid 

kinase pathway is altered in USA300∆femT, and is therefore unable to induce expression of farE. 

First, an altered cell membrane will be considered. 

Extracellular fatty acids translocate to the inner leaflet of the cell membrane by spontaneous 

flipping via the membrane pH gradient, and once inside the cell, they are phosphorylated by the 

fatty acid kinases (184, 185). Since fatty acids must insert into the membrane to exert their effects, 

the ability of some bacteria to change their cell surface hydrophobicity may explain why certain 

strains of the same species differ with respect to their susceptibility to antimicrobial fatty acids 

(97, 186). For example, the femT mutant may contain fewer proteins in its cell membrane, which 

makes the cell surface less charged and more hydrophobic. Thus, free fatty acids are more attracted 

to the cell and are more likely to insert into the membrane, exerting their toxic effects (97, 186, 

187). This is consistent with our observation that USA300∆femT is more susceptible to killing by 

bactericidal concentrations of LA compared to wild-type. An example of such a component in the 

membrane that contributes to this phenotype is the membrane-located carotenoids. Carotenoids 

are antioxidants that also stabilize the cell membrane by decreasing fluidity and, if they are 

increased in number, their presence may counteract the effects of free fatty acid degradation 

products or fatty acid-induced increases in membrane fluidity (188). Indeed, strains of S. aureus 

containing high levels of carotenoids are less susceptible to the antibacterial effects of unsaturated 

fatty acids than strains with lower quantities of carotenoids in their membranes (95, 188). 

Therefore, it seems likely that if S. aureus strains such as USA300∆femT contain reduced amounts 

of membrane carotenoids or other large membrane proteins, these cells would be more susceptible 
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to fatty acids. Interestingly, in some species, RND family transporters are thought to be utilized to 

replace fatty acids from membranes as part of maintaining homeostasis (189). Although this 

mechanism is not currently understood, this phenomenon, along with a decrease in other 

membrane proteins, could explain why, when femT is deleted, the membrane may be more fluid 

and more susceptible to the insertion of fatty acids. In addition, a more fluid membrane of femT-

deficient cells could explain its enhanced growth in MHB, as this media promotes a higher 

proportion of branched-chain fatty acids and carotenoids in the cell membrane, which may aid the 

growth of USA300∆femT compared to cells with a naturally more rigid membrane.  

Increased susceptibility of the femT mutant to LA may also be due to the proposed thinner cell 

wall. In addition to altered membrane properties of the cell, differential susceptibility of bacterial 

species to the action of fatty acids is also likely to be due to the ability of exogenous fatty acids to 

permeate the cell wall, which will enable access to the sites of action on the membrane (187). 

Interestingly, S. aureus appears to upregulate the expression of genes encoding cell wall synthesis 

proteins upon exposure to unsaturated free fatty acids, a strategy that serves as a protective 

measure, as a thicker cell wall makes it more difficult for fatty acids to penetrate and exert their 

antibacterial effects at the membrane (185). An altered cell membrane and/or cell wall provides a 

reasonable interpretation of the increased susceptibility of USA300∆femT to LA. However, it does 

not explain the loss of inducible farE expression. Before a definitive explanation for this phenotype 

can be determined, the mechanism by which farE is induced by LA and AA needs to be 

investigated. One possible theory that will be discussed further is the disruption of the fatty acid 

kinase pathway.  

In the USA300 genome, farE is divergently transcribed with farR, a regulator of fatty acid 

resistance, and expression of farE is induced in a farR-dependent mechanism in response to 

exogenous fatty acids (99). It is believed that FarR may function as a repressor of farE in the 

absence of inducer, and in the presence of exogenous fatty acids, may serve to promote expression 

of farE (99). While farE was found to be induced by exposure to fatty acids, it is unknown whether 

the induction requires free fatty acids or if it requires specific forms of phosphorylated acyl-PO4 

fatty acids that have been incorporated into S. aureus by the fatty acid kinases. Interestingly, when 

farE expression was measured in a fakA-deficient mutant (USA300ΔfakA), farE expression, in 

media alone and media supplemented with LA, was significantly reduced compared to its 
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expression in USA300 grown in LA (147). Moreover, farE loses its inducible expression in LA in 

the fakA mutant. These results are very similar to the expression of farE in the femT-deficient 

mutant, where farE loses its inducible expression in both LA and AA. Taken together, these results 

are consistent with the notion that the regulation of farE requires specific forms of acyl-PO4 and 

not free fatty acids to promote farE expression. Therefore, if the fatty acid kinase pathway was 

disrupted in the USA300ΔfemT mutant, it would explain the lack of change in farE expression 

between USA300ΔfemT grown in TSB or in fatty acids. Although the mechanism is not currently 

understood, what is known is that farE expression is significantly reduced in femT deficient 

mutants. This is consistent with the observation that USA300ΔfemT and USA300ΔfarER-femT 

both exhibit reduced viability in the bactericidal assay, and viability can be restored by 

complementing with pALCfemT in USA300ΔfemT, but not in USA300ΔfarER-femT. To confirm 

this phenotype is due to loss of farE, complementing USA300ΔfarER-femT with pALCfarE would 

prove valuable. Identifying why fatty acid kinase activity might be altered in USA300ΔfemT and 

identifying specific regulation of farE remains a future area of study. Since the inactivation of the 

fatty acid kinases severely attenuates virulence factor production in S. aureus, it would prove 

highly valuable to examine the virulence of USA300ΔfemT (184).  

In summary, we have examined the involvement of FemT in cell wall synthesis and the relationship 

between FemT and FarE transporters in S. aureus resistance to unsaturated free fatty acids. Results 

of this study implicate a possible involvement of FemT in cell wall biosynthesis, and identified a 

multifactorial relationship between RND transporters FemT and FarE. Notably, farE loses 

inducible expression in mutants lacking FemT. The USA300ΔfemT mutant was also significantly 

more susceptible to bactericidal concentrations of unsaturated free fatty acids compared to wild-

type. Cumulatively, these findings represent the first description of both RND efflux systems 

operating in S. aureus. Detailed evaluation of RND transporter function will provide novel insight 

into the biology of staphylococci and further our understanding of this ubiquitous family of 

proteins in Gram positive pathogens.  
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