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Abstract  

The present work details an experimental study of the cough airflow fields produced by 

subjects infected with influenza and when they have recuperated as convalescent, 

together with data from healthy cohorts. The Particle Image Velocimetry (PIV) and Hot 

Wire Anemometry (HWA) measurements were taken far downstream at 1m from the 

source within a cough chamber, along with droplet sampling at two different locations 

and nasal swabs from the sick subjects. The measured data over different seasons were 

used to evaluate and compare the results from sick, convalescent and healthy subjects. 

Although a total of 7 sick participants from winter 2014 and 2017 yielded positive nasal 

swab analysis, the total number of subjects involved in this work was 49. The results 

from HWA show modest differences between sick and convalescent states of a 

participant, but the normalized cough velocity time histories from both the techniques 

follow similar trends. It is anticipated that a larger samples size will provide a clear 

conclusive difference among coughs from the three categories. 
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Nomenclature 

The following symbols are used generally throughout the text. 

Others are defined as and when used. 

Symbol Description Units 

L Integral length scale mm 

t 

TE 

tp 

ts 

Δt 

u 

ui 

up 

time 

Integral time scale 

The time at the peak of the cough velocity 

The time at the beginning of the cough velocity period 

The time separation between laser pulses 

The axial velocity component   

The local axial velocity component in the field of view 

The axial velocity component at the peak of the cough 

velocity 

Second -(sec) 

sec 

sec 

sec 

µs 

m/s 

m/s 

m/s 

 

up,c Accumulative peak cough velocity m/s 

u‟rms The root mean square of axial fluctuation velocity m/s 

u‟(t) Instantaneous axial fluctuation velocity m/s 

U Dimensionless the axial component of  cough velocity   
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Unorm Normalized velocity  

Up-s 
The moving average velocity from min to max value 

of cough velocity 
m/s 

U(t) Instantaneous axial velocity component m/s 

 ̅    Moving averaging of axial velocity component m/s 

<U> The spatial mean velocity within the field of view m/s 

<U‟> Dimensionless spatially averaged cough velocity  

<V> 
Instantaneous velocity magnitude within the field of 

view 
m/s 

Y The vertical distance of the field of view m 

X The axial distance of the field of view m 

R Autocorrelation  

 

Abbreviations     
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Chapter 1  

1. Introduction 

In this chapter, general introduction about flu outbreak and its effect on the communities 

and how it spread will present in this section. Moreover, the motivation behind the 

research and its objectives both will be presented in individual sections. In addition, 

organization of the thesis will be illustrated in the last section of this chapter.  

 

1.1 General Introduction 

In April 2009, the pandemic influenza A (H1N1) first appeared in North America, and 

spread rapidly around the world (Canadian Institute for Health Information 2010). By the 

beginning of 2010, it had caused about 17,000 deaths around the world after the first 

wave of SARS in 2003 (Aliabadi et al. 2011). Canada was affected from the first wave in 

2003, when the SARS outbreak killed 44 Canadians, caused illness in a few hundred 

more, and resulted in the quarantine of 250,000 residents in one geographic location, the 

city of Toronto (Canadian Institute for Health Information 2010). In general, influenza 

(flu) is caused by airborne contagious pathogens. It infects the human respiratory system 

first. It can cause mild to severe illness that can result in hospitalization or death (NCIRD 

2016) A hundred airborne infectious pathogens can be classified into three major groups 

as follows: Viruses, Bacteria and Fungal Spores (Tang et al. 2011; Bahnfleh and 

Kowalski 1998). The smallest are viruses with diameters in the range of 0.02-0.3 µm, 

while the largest are spores with diameters in the range of 0.5-30 µm (Tang et al. 2011). 

Human respiratory activities are key sources for dispersal of airborne pathogens, namely; 

breathing, speaking, coughing and sneezing. The human expirations (breathing, coughing 

and sneezing) generate the smallest aerosols compared to other sources and these 

expiratory aerosols are particularly important in the spread of airborne infection from 

host to host (Morawska 2006). Coughing is considered to be a discontinuous multiphase 

turbulent flow that is generally composed of buoyant warm moist air and suspended 

droplets of various sizes. These droplets contain pathogens and minerals that can form 
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droplet nuclei after evaporation of the droplet‟s phase (Tellier 2006). These flows retain 

roughly the same shape and their lateral extent increases linearly with distance from the 

source (Tellier 2006). Many factors govern coughing flow, such as mouth opening area, 

flow rate and direction, temperature and, finally, the size distribution of the virus droplets 

and the quantity of virus in the droplet (Gupta et al 2009). These factors are transient and 

can have considerable person-to-person variation. 

Influenza is of great concern to the healthcare community because of annual seasonal 

outbreaks and the potential for newly emerging strains to cause severe global pandemics. 

In enclosed environments the microflora concentration (as bio-aerosols) of a healthy 

work environment are lower than in the outdoor environment (Memarzadeh 2013).   In a 

healthcare setting people with certain health conditions and healthcare workers can more 

readily be infected by pathogens (Kinnamer 2007; Government of Canada 2006; Deller et 

al. 2008). During a pandemic, healthcare workers are at greater risk from exposure to the 

virus as they care for an unforeseen surge in the number of infected patients. Infectious 

agents can be transmitted by direct or indirect contact of droplet or droplet nuclei in 

healthcare settings (Deller et al. 2008). Direct transmission occurs when the transfer of 

microorganisms results from direct physical contact between an infected individual and a 

susceptible host. Droplet transmission occurs when respiratory droplets generated via 

coughing, sneezing or talking contact susceptible mucosal surfaces, such as the eyes, 

nose or mouth. Most respiratory droplets are large and are not able to remain suspended 

in the air. Thus, they are usually dispersed over short distance (Booth et al. 2005). 

Airborne transmission refers to infectious agents that are spread via droplet nuclei 

containing infective microorganisms. These organisms can survive outside the body and 

remain suspended in the air for long periods of time depending on their sizes (Bozzuto 

and Ruggieri 2010). 

Recently, respiratory communicable diseases have developed the potential to cause 

deaths and economic disasters globally. Therefore, the World Health Organization 

(WHO) and developed countries expend a huge effort to prevent and control disease 

outbreaks (Tang et al. 2006). Evidence exists to support the transmission of influenza 

viruses by contact, droplet and airborne transmission. However, experimental studies 
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involving humans are limited (Tang et al. 2006) and the relative contribution of each 

mode of transmission remains unclear. Furthermore, the relative importance of airborne 

transmission in setting the normal air exchange in buildings is unknown (Memarzadeh 

2013). In order to improve our understanding of the dynamic process of person-to-person 

airborne virus transmission, there is a necessity to use realistic airflow and droplet size 

data to develop an effective theoretical model (Holmes and Morawska 2006) and a 

computational fluid dynamics (CFD) model (Holmes and Morawska 2006; Shah et al. 

2006; Zhu et al. 2006). Accurate boundary conditions, which are provided by 

experimental work, are important to gain an accurate prediction of virus transmission. 

Many previous studies have been based on artificial puff sources (Sze To et al. 2008) and 

some other studies have been based on a combination of experimental investigations and 

CFD simulation (Yan et al. 2009). The majority of the previous experimental work was 

conducted to study the relative importance of far-zone airborne transmission and near-

zone large droplet transmission for many diseases (e.g. Influenza, Tuberculosis, and 

Chickenpox, Measles.) by using different techniques (e.g. high speed photograph, 

shadowgraph and schlieren imaging.)  (Yan et al. 2009).  

To perform efficient infection control measures in healthcare facilities, the pathways by 

which the disease transfers from person-to-person need to be identified so that 

transmission can be interrupted. The present research focuses on examining the factors 

influencing the persistence of viable influenza virus in human cough droplets issuing into 

the environment. These factors will establish evidence based guidance for safe separation 

distances to mitigate person-to-person transmission of influenza, notably in healthcare 

settings. The literature review of the work done on this field over the past decades is 

given in the next section to identify the gaps and discrepancies and, thus to come up with 

the objectives and paves the way for road map of the present research work. 
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1.2 Motivation 

Most previous work has examined the near field region, especially close to the mouth, by 

using different techniques. Many factors affect the coughing flow and droplet size 

distribution. Some of these factors are transient, which increases the complexity of the 

coughing flow (Gupta et al 2009). Physiological factors such as gender, weight, height, 

age and health status of the participants play a key role in coughing flow (Nishimura et al 

2013). Moreover, mouth opening area and head direction are factors affecting the cough 

flow direction (Gupta et al 2009). Environmental parameters, such as relative humidity 

(RH) and temperature, in addition to the break-up and collision of saliva droplets, have a 

great influence on the size distribution of droplets (Tang et al. 2009; Tellier 2009;  Lowen 

et al. 2007). All these factors and parameters are considered to be important in the spread 

of general infectious respiratory diseases. Studies on the detailed investigation of the 

dynamics of aerosol droplets within a cough flow which examine the underlying physical 

processes are infrequent, particularly in the far field regime (Bourouiba et al 2014). Some 

studies investigated the initial conditions of coughing, such as mouth opening area, 

volume flow rate, the maximum expiration air velocity and the angle of the coughed air 

in the near field flow (Tang et al. 2009). Previous investigations on the dynamics of 

coughing jet flow used many different techniques and also focused on the near field 

region.  

The measuring technique is a significant factor in an experimental investigation. 

Although intrusive techniques have provided many coughing jet flow details, they still 

have some drawbacks. For example, contamination which is due to deposition of 

impurities in flow on sensor alters the calibration characteristics and reduces frequency 

response. Moreover, intrusive techniques are unable to fully map velocity fields that 

depend strongly on space coordinates and simultaneously on time (Yue and Malmström 

1998). On the other hand, the non-intrusive Particle Image Velocimetry (PIV) technique 

provided the data required to perform both qualitative and quantitative analysis which 

gave a significant advantage over other optical measuring techniques such as 

shadowgraph and schlieren imaging (Raffel et al. 1998). 
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Many factors affect the collection of airborne microorganisms and the measurement of 

the size distribution and concentrations of droplets, as mentioned in the literature review 

section, such as RH, ambient temperature and droplet temperature. The intrusive and 

non- intrusive techniques, which were used in this study, showed similar results as 

compared to the Wells curve and all those measurements were taken near to or 

immediately in front of the mouth. Moreover, by using only real human coughs from the 

sick subjects when they are naturally infected by influenza virus will yield results close to 

reality. Although the World Health Organization rolled that 1-2 m is a safe distance from 

an infected person when taking droplet precautions (Kinnamer 2007; Deller et al. 2008; 

World Health Organization 2006), no tangible supporting evidence exists. The coughing 

flow characteristics and airborne penetration at 1 m distance are not reported. Such an 

investigation would have a significant contribution to our knowledge as it is widely 

assumed that 1 m is safe distance between patients and healthcare workers. 

1.3 Objective 

Contrary to the previous fluid dynamic studies that have measured the velocity flow field 

using artificial aerosol sources or only on healthy subjects, the present work includes up 

to 9 human subjects when they were infected with influenza, and again after they 

recuperated from the respiratory illness. A cohort of up to 11 healthy volunteers was used 

as control. Moreover, measurement data from 17 subjects (summer 2013 and winter 

2014) were used to make general regression analysis of cough flow at 1 m downstream. 

In the present research, the general dynamics of the cough jet aerosols is being examined 

simultaneously along with the bioaerosol sampling processes associated with the virus 

droplet formation and transmission.  

The objectives of this thesis are: 

• Study the penetration of viral droplets into the ambient environment and how far and for 

how long they will be suspended in the air by the cough jet flow. 
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• To rigorously test the “3 feet” or “1 metre” rule which is imposed by the WHO 

(Kinnamer 2007; Deller et al. 2008) as being a safe distance between patients and 

healthcare workers to prevent airborne transmission.  

• Identify host determinants of individuals, according to the gender and age, who will 

emit higher quantities of virus which spread over a wider area, (our recruitments will 

have a limitation of 18-35 years inclusive). 

  

1.4 Organization of the Thesis 

The present research will be conducted in two simultaneous parts experimentally. The 

fluid dynamics of the cough jet aerosols are being examined in parallel along with the 

bioaerosol sampling processes associated with virus droplet formation and transmission. 

This thesis consists of five chapters in addition to the introduction. 

• In chapter 2, the comprehensive literature review will present the previous work 

studying the aerodynamic characteristics of cough flow and the size distribution of 

droplets and viral contents. The concluding discussion of those researches will be 

presented in the last section of the chapter. 

• Chapter 3 describes the experimental details FLUGIE (Fluids from UnderGrads with 

Influenza Enclosure) cough chamber, the PIV system, HWA sensor and their calibration 

facility. Also, the sampling pumps, cassette filters and mid turbinate swab equipment will 

present in this chapter. 

• Chapter 4 describes the experimental methodology followed in this thesis. The 

methodology for achieving the research objectives consists of two parts. The first part 

consist of HWA measurements, bio-aerosol sampling and mid turbinate swab, while the 

second part will cover the followed methodology for PIV measurements. 

• Chapter 5 presents the results of virology analysis and MTS of both studies of winter 

2014 and winter 2017. The results from HWA measurements of winter 2017 will 

illustrate and discuss first. The results from the PIV measurements will present and 
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discusses for studies of summer 2013, winter 2014, winter 2017, and finally summer 

2017. 

• Chapter 6 presents the conclusions of the present research. In this chapter, the findings 

presented in Chapter 5 are summarized with the objectives of identifying and describing 

the common trends and overall dynamics of the coughing phenomena. The viral content 

of the aerosols which were produced during the coughs were collected by the cassette 

filter. Moreover, the identities of the pathogen are summarized for each infected 

participants. Based on the fluid dynamic findings and the bio-aerosols observed in the 

present study, suggestions for future research are made. 
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Chapter 2 

2 Literature Review  

The present chapter reviews the cough jet flow phenomena such as aerodynamic flow 

behavior and the factors affecting the flow in near and far field region. The physical size 

of the droplets and the droplet nuclei produced during coughing and the factors that play 

main roles to suspend them in the air for longer time and at a far distance from cougher 

mouth are also reviewed in detail. Also, in this chapter some challenges faced by earlier 

researchers in their work are also described. All these factors will be discussed to provide 

an essential background and motivation for this current study. 

2.1 Aerodynamic Characteristics of Coughing Jet Flow  

The route of airborne disease transmission starts from infectious viruses exhaled from an 

infected person, and then the viruses are transported in the air (see Fig.1) and, finally, 

inhaled by a susceptible person. According to the cough definition in the introduction, the 

important factors that govern the cough flow dynamics are cough exhaled velocity, flow 

rate, direction, mouth opening area, and temperature. These factors are considered as 

transient boundary conditions for coughing flow (Gupta et al 2009). 

 Experimental observations were conducted to measure the flow dynamics of human 

coughs and flow rates, flow directions and mouth opening areas of coughs collectively 

(Gupta et al 2009). All the experimental measurements were performed near the mouth of 

12 female and 13 male healthy subjects in order to obtain realistic flow features for single 

and sequential coughs. The experimental measurements, which were performed at 330 

Hz by using high-speed camera, showed a very high initial acceleration in exhalation and, 

subsequently, decay. The inhalation volume was very small and may be neglected. A 

large variation existed among the subjects by the conducted measurements. Cigarette 

smoke was used the seeding fluid to measure the flow directions by using moderate speed 

photography (120 Hz / 1 MP), and the sequences of images were taken over time periods 

up to 0.3s. The results showed that the downward jet can be defined with two angles 

θ1and θ2 (see Fig. 1). The 95% confidence bounds for the mean angles were determined 
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to be: θ1 15    5  , θ2 40    4  . The mouth opening area, defined as the area between the 

lips during the cough, was found to be almost constant (4 cm
2
 Male- 3.75cm

2
 female) for 

a period of 0.2 sec when there was flow from the mouth. 

 

   

Figure 1 Definition of Cough Jet Flow Field showing the cough jet width and spread 

angle. 

In addition, the results did not indicate any clear trend between mouth opening area and 

the heights of all the subjects, but the measurements showed that the mean mouth 

opening area for the female subjects was smaller than that of the male subjects. A 

sequential cough was found to be the combination of two single coughs. The first one 

behaved approximately the same as that of a single cough, while the second one was a 

scaled down version of the first one.  

Another study was conducted to measure the airflows generated by a human cough where 

no particles or extraneous gasses were used, ambient temperature and relative humidity 

and ventilation currents were not considered (Tang et al. 2009). This study included 6 

males and 4 female volunteers, divided into five age groups from 20 to 80 years. The 

unobstructed cough was first observed and quantitative velocimetry was performed by 
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tracking turbulent eddies in the expelled jet of air. Then, the effect of wearing either of 

two popular mask types (simple surgical and N95 masks) on the cough airflow was 

assessed by qualitative observation of Schlieren video records. Consecutive frames were 

taken at 330µs apart by using this technology to trace the motion of the expelled cough. 

The fine-scale turbulence evident without „smearing‟ in the measurements attests that the 

motion of the jet of air from these coughs was „frozen‟ by the 1-µs frame exposure.  

The study concluded that the cough jet behaves approximately as a classical round 

incompressible transient turbulent jet with a total spreading angle of approximately 24
o
. 

Sample results of a single cough by a 57-year-old male volunteer without a mask showed 

a maximum average airspeed across the early-stage cough of 8 m/s, with an expected 

greater value for the centreline velocity. Unmasked coughing produced a turbulent air jet 

extending across the Schlieren field-of-view and, probably, well beyond it. The direction 

of the jet varied with each human subject, as well as with their individually adopted body 

attitudes, in both standing and supine position. The results of both masks in coughs had 

minimal momentum. Nonetheless, neither the surgical nor the N95 mask has any 

possibility of passing or containing all of the 2L or so of air expelled in less than a second 

during a cough. Thus, leakage or venting must occur, compromising any existing, 

originally fit-tested seal between the mask and the face of the wearer. The study revealed 

that cough jet may contain infectious aerosolized particles or droplets, but the visualized 

airflow study did not deal with concentrations or size distribution of droplets or of viable 

infectious agents. 

The study of the dynamics of aerosol particles in sneezing and coughing was conducted 

by using a digital high-vision, high-speed video system and vector analyses (Nishimura et 

al 2013). The enhanced obtained images were converted to digital images every 330µs 

and subjected to vector analysis by using processing software. One healthy adult 

volunteer participated in each measurement. This methodology was applied to a cough by 

using smoke exhaled with the cough after smoking one breath of a cigarette, from which 

the dynamics of the fine cough bio-particles invisible with their system could be 

estimated by using the micro-clouds visible in the smoke as aerodynamically acceptable 

surrogates for the particles. The measurements were taken in a laboratory at a 
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temperature of 27 C   and  H of 50 . It was concluded that the smoke cough micro-

clouds had an initial velocity greater than 5 m/s. Moreover, the velocity of the sneeze 

after 0.05 s was about three times higher than the cough and, in contrast to the sneeze, the 

velocity of the cough drastically decreased about 0.05 s after the release. The study 

recommended that in the context of the transmission of respiratory infections such as 

influenza, studies on individuals who contracted the disease would be important for 

infection control. In addition, it is important to test these procedures on many subjects, 

including individuals of different gender, race, age group, and body type, as well as for 

various environmental conditions.  

The measurements of the initial velocity of exhaled airflow from coughing and speaking 

were conducted with 26 tested subjects by using Particle Image Velocimetry (PIV) 

(Kwon et al. 2012), and the results were analyzed to study the angle of the expired air, the 

subject‟s height and the horizontal velocity of exhaled airflow from coughing and 

speaking. For coughing, the results showed that the average initial cough velocity was 

15.3 m/s for the males and 10.6 m/s for the females. The angle of the coughed air was 

around 38
o 
for the males and 32   for the females. Moreover, the coughing velocity 

increased with the subject‟s height. 

The direct experimental observation of sneezing and coughing showed that such flows 

are multiphase turbulent buoyant clouds with suspended droplets of various sizes 

(Bourouiba et al 2014). The study observed that the initial emitted turbulent jet fluid 

entrains the ambient air, leading to the increase of its size and decrease of its mean speed 

with distance from the source. High-speed imaging of various violent expirations was 

recorded with 1–4 kHz frame rate using high-speed video system. The study concluded 

that the turbulent multiphase cloud, which is formed by coughing and sneezing, plays a 

significant role in extending the range of the majority of pathogen-bearing droplet. The 

smaller droplets and their associated droplet nuclei can remain suspended in the cloud for 

a prolonged period and can be resuspended by ambient air currents. For example, a 

droplet of diameter d =10 µm evaporates in 0.027 s, during which it would fall a distance 

of approximately 0.08 mm at a settling speed of approximately 3 mm/sec.  
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A PIV technique was used to measure the velocity distribution around the mouth of the 

three coughing subjects (Zhu et al 2006). The mass of saliva, which was collected from 

cough subjects by using a mask, was assessed with an electronic balance, and flour, 

which was expelled by the coughers, was used as tracer to visualize the dispersion of 

salvia droplets expelled during the cough. The experiments were performed in a styrene- 

board chamber 1.8 x 1.8 x 1.8 m that in order to prevent subjects being harmed by the 

tracer gas or laser beams and to avoid any effects of the ascending warm airflow on the 

coughed airflow. The study concluded that a total of more than 6.7 mg of saliva was 

expelled on aggregate at a maximum velocity of 22 m/s in each cough, with the average 

velocity being 11.2 m/s near the mouth. Furthermore, as the coughed air mass proceeded, 

the frontal flow field was disturbed, and the surrounding air was entrained into the cough 

airflow by the induced eddies around it. In addition to experimental measurements, 

numerical analysis was carried out by using CFD. First, the numerical study analyzed the 

indoor flow field assuming coughing and respiration to be steady phenomena and by 

using the experimental results as boundary conditions. The study subsequently analyzed 

the transport process for droplets with multi diameters in µm. The CFD analysis 

concluded that the diameters of droplets played an essential role to determine which force 

will affect the transport process.  

The expiration air jet velocities and the size profiles of expiratory droplets during 

speaking and coughing in close proximity to the mouth were investigated by using PIV 

and the Interferometric Mie Imaging (IMI) method (Chao et al. 2009). Eleven healthy 

volunteers (3 men and 8 women) were recruited, all of them under 30 years old. The 

study excluded smokers, asthma sufferers, people who were experiencing illness, who 

had recently experienced expiratory problems or were likely to experience discomfort in 

confined spaces. The PIV image pairs were taken at a frequency of 5 Hz. The results 

showed that the maximum expiration air velocity during coughing by the male volunteers 

was 13.2 m/s and by the female volunteers was 10.2 m/s. The average expiration air 

velocity during coughing was 11.7 m/s, while during speaking it was 3.9m/s. All these 

measurements were carried out within 10 - 60 mm of the mouth.  
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The flow field of human coughs was measured by first filling an enclosure with theatrical 

fog and then having 29 healthy volunteer subjects (10 males and 19 females, their ages 

between 22-55) individually cough into the enclosure (Vansciver et al 2011). The 

enclosure had dimensions of 1.2 m length 0.76 m width and 0.67 m height and so its 

limited volume represented a constraint on the study. PIV measurements were conducted 

to determine the velocities of the fog particles. The average cough jet volume to 

enclosure volume ratio was roughly 240, and, thus, little indirect influence of 

recirculating flow can be expected. The study showed that the average velocities over all 

participants ranged from 1.5 m/s to 28.8 m/s, and the overall average maximum cough 

velocity was 10.2 m/s. The study illustrated that the width of the cough expanded linearly 

initially in the flow direction, and then remained constant at distances farther from the 

mouth. This affected the normalized velocity (by max. velocity) profiles, which were 

found to partially collapse when scaled with distance from a virtual origin. Moreover, the 

study showed no correlation between the gender and weight, and that a human cough 

cannot be reduced to a well-defined flow field. 

In particular, the high degree of variance in the velocity data, including the width of the 

jet, the maximum velocities, and the direction of the jet demonstrates that studies of a 

human cough based on numerical or in vitro simulations should consider incorporating a 

wide range of conditions, rather than focus on a single “typical” cough flow. The study 

concluded that, in further work, the cough flow should be mapped at greater distances 

from the mouth in order to evaluate the far field velocities and jet widths and better 

determine the cough‟s penetration into a room.  

A cough “simulator” with an electrically controlled hydraulic actuator was designed and 

used to accurately reproduce cough waveforms in a laboratory setting (Afshari et al. 

2002). The chamber was built by using a 0.1x0.1x0.2 m Plexiglass box covered with non-

reflective black material. The simulator was filled with seed particles (oil droplet less 

than 5µm), which allowed particle dispersion measurements and air velocity vector 

estimation. The air velocities within the environmental chamber were estimated by using 
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PIV at 14.9 Hz for the image pairs during a cough and similar measurements were made 

for a subject with asthma. The study concluded that the PIV makes it possible to 

undertake detailed analyses of average cough flow patterns in an enclosed space, and 

once the flow patterns have been established it would be possible to estimate how 

biological aerosols are transported in an enclosed space during a cough. From the 

previous studies, it is unclear how long cough-generated viral aerosols remain viable in 

the airborne phase. For this purpose, viable P aeruginosa in cough aerosols were 

measured (Knibbs et al. 2014), which were collected with an Anderson Impactor in a 

wind tunnel of modest cross-sectional area at 1, 2 and 4 m from the subject (distance) and 

after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimize 

gravitational settling and inertial impaction. The study reported that patients infected with 

cystic fibrosis (CF) produce cough aerosols containing viable organisms that are capable 

of traveling up to 4 m and persisting in the air for long 45 min.  

Preliminary results were presented by WeCoF aerosol study (Savory et al. 2014). Twelve 

healthy subjects (9 male, 3 females) were involved in this study and the strength of their 

coughs were quantified at a distance of 1m from the mouth. For this purpose, a 1.81 m 

x1.78 m x 1.81 m cough chamber was constructed and PIV was used to conduct these 

measurements. The study illustrated that, as expected, the velocity decreases rapidly in 

the near field at the mouth, but at the far field, i.e. at distance 1m from the cough source, 

the cough front velocity had a magnitude in agreement with the average of the spatially 

averaged maximum velocity magnitude. The measurements showed that there was 

significant air motion, of the order of 0.5 m/s, even at a location as far away as 1 m from 

the mouth. The PIV window size and the variable physical traits of the study participants 

have had some limitations on the study, but it was found that each cough had a significant 

variation in strength and its location. Also a lot of data were missing from those studies 

as most of the imaged field of view was entirely missed for some coughs. The study 

showed that the cough velocity profile has no single characteristic shape and, thus, the 

measurement and analysis of a larger number of coughs than those examined in these 

initial trials, were considered to be an essential part in this study in order to suggest a 

defined envelope of cough profiles.  
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Recently, an experimental study of the two-stage cough jet was performed to examine the 

effects that different boundary conditions such as temporal exit velocity profiles, cough 

duration and velocity scale have on cough flow penetration (Wei and Li 2017). The 

exhaled particles spread by the cough flow were also investigated. The researchers 

simulated the flow of the cough by injecting a volume of dyed water into a large water 

tank. The dyed water was injected through a nozzle (D=10mm or D=4mm) by a piston 

which was controlled by servo motor, and the motor was operated to generate three 

velocity profiles by piston movements. The cough flow is characterized as a two-stage jet 

when the cough starts and flow is released then after the source supply is terminated. 

During the starting stage, the flow rate is a function of time and three temporal profiles of 

the exit velocity (pulsation, sinusoidal and real-cough) were studied. In both the starting- 

and interrupted-jet stages, the cough flows showed the self-preserving property. The 

farthest penetration distances of cough flow were in the 50.6- 85.5 D range. The study 

concluded that the real-cough and sinusoidal cases have greater penetrating ability 

compared with the pulsation cases under the same characteristic Reynolds number and 

cough expired volume. The study concluded that the cough expired volume and Reynolds 

numbers significantly affect the cough flow (Wei and Li 2017). Table (I) in appendix (A) 

summarize most the previous work on the aerodynamic characteristics of coughing jet 

flow as presented in this section.  

 

2.2 Size Distribution of Droplets and Viral Contents 

Respiratory activities, such as coughing, extrude droplets. These droplets will not totally 

evaporate, since they contain substances besides pure water, such as electrolytes, mucus, 

glycoproteins, enzymes, antimicrobial agents, and microorganisms (Bozzuto and 

Ruggieri 2010). Droplet nuclei, which were first identified by Wells in 1934 (Verreault et 

al 2008), exist when droplets evaporate as seen in Fig. 2.  



16 

 

 

 

 

Figure 2 Evaporation of a liquid droplet (left) to a droplet nucleus (right). As the 

liquid evaporates, the non- evaporative content concentrates until a droplet nucleus 

is obtained (Verreault et al 2008 (with authors’ permission)). 

The earliest investigation, made by Wells (Tellier 2009), showed that the expiratory 

droplets and droplet nuclei can function as conveyors of pathogens for the infectious 

disease. The size of the droplets can also affect the possibility of spread as shown in Fig. 

3. Consequently, precise measurements of the size distribution of expiratory droplets and 

droplet dispersion, along with number of the droplets and the concentration, are strongly 

recommended by (Wei and Li 2015).        

         

Figure 3 Three ranges of aerosol droplets are released in turbulent cough jet flow 

(Wei and Li  2015 (with authors’ permission)) 



17 

 

 

 

In general, two steps govern the measurement of virus aerosols, virus droplets are first 

removed from the air and then the collected virus aerosol sample is analyzed. Most 

aerosol sampling devices involve techniques that separate particles from the air stream 

and collect them in, or on, a preselected medium using common techniques involving 

slits, cyclone, impingers, impactors and filters (Wei and Li 2015). Many factors can 

affect the concentration, size distribution of droplets and their airborne dispersion, such 

as droplet temperature, relative humidity, air pollutants, irradiation, and exposure period 

(Xie et al. 2007). However, the droplet size dictates the capacity of a particle to remain 

airborne. In humans, the droplets which have a size distribution larger than 10 µm 

(aerodynamic diameter) will not pass the upper airway, while the minimum sizes of a 

viral aerosol is limited by the virus diameter itself which can be as small as 20 to 30 nm 

(Xie et al. 2007). Fundamentally, bioaerosols are suspensions in air of liquid particles that 

are small enough to remain airborne for a prolonged period of time because of their low 

settling velocity. The settling velocity of droplets in still air can be computed from 

Stokes‟ law (Tellier 2009). 

                                                                                                                       (2.1) 

Where Fd is the drag force of the fluid on a droplet, µ is the fluid viscosity, V is the 

velocity of the droplet relative to the fluid, and d is the diameter of the droplet. For 

example, a 3 m fall of 20 µm particle (aerodynamic diameter) takes 4 min, 10 µm  takes 

17 min and 5 µm takes 67 min (Tellier 2009). It is important to distinguish between the 

initial diameter of droplets, which are generated by human subjects immediately at the 

mouth, and the diameter after water evaporation of the droplets in the ambient air (Tellier 

2009).  The evaporation of falling droplets was first studied by Wells (Verreault et al 

2008) using a simple calculation method and he obtained a classical curve that revealed 

the relationship between droplet size, evaporation, and falling rate. The difference 

between disease transmission via large droplets and by airborne routes was first identified 

by Wells study. Wells found that under normal air conditions, droplets smaller than 100 

µm in diameter would totally dry out before falling to the ground 2 m away, i.e., the 

average human height (Verreault et al 2008). 
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Figure 4 The Wells evaporation–falling curve of droplets [reproduced and modified 

from Wells (1934)], (Xie et al 2007 (with authors‟ permission)) 

Recently, a simple physical model was developed to calculate the droplet lifetimes and 

how droplet size changes with relative humidity and air temperature (Tellier 2009). The 

results reveal that for coughing flows, the sizes of the largest droplets that would totally 

evaporate before falling 2 m away are between 60 and 100 µm at an initial cough velocity 

of 10 m/s. In addition, it was confirmed that small droplets evaporate rapidly and large 

droplets fall to the ground quickly. The size distribution of cough droplets from subjects 

of different ages and gender were investigated to identify the effects of age and gender                                      

(Lowen et al 2007). Experimental results demonstrated that the average size distribution 

of the droplet nuclei ranged between 0.58–5.42 µm, and 82% of droplet nuclei centred in 

the range of 0.74 – 2.12 µm. Moreover, the experimental results indicated that the size 

distribution of coughed droplets peaked at approximately 1 µm, 2 µm, and 8 µm. 

However, the horizontally expelled large droplets can also penetrate a long distance. At a 

low relative humidity, more droplets and droplet nuclei could remain suspended in the 

air, increasing the probability of subsequent inhalation. (Lowen et al 2007) directly tested 

the hypothesis that RH and ambient air temperature impact the efficiency with which 

influenza virus is transmitted. Hartley strain guinea pigs were used as a mammalian 
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animal model, which have been shown to be highly susceptible to infection with human 

influenza viruses. The results showed that airborne transmission (large droplets and/or 

droplet nuclei) was enhanced at low temperature (5   C) and at high temperature (30   C) 

interrupted transmission at all values of  H. At 20   C, transmission was highly efficient 

at an RH of 20 and 35 %, low at 50 %, efficient again at 65 % and completely absent at 

80 %. The authors tentatively attributed the effect of low temperature to the increased 

viral load observed in the animals at this temperature (Lowen et al 2007), but proposed 

no explanation for the effect of high temperature, which interestingly enough, did not 

interfere with contact transmission between animals in the same cage (Lowen et al 2008). 

As the authors noted, the effect of RH is indicative of infectivity decay of influenza virus 

aerosols.  

In another study (Mubareka et al. 2009), the same group again used the guinea pig model 

to show stronger experimental evidence for aerosol transmission when they documented 

instances of transmission within the cage of the contact animal located above the cage of 

the source animal at a separation distance of 80 or 107 cm. Another important 

observation in this study made by them is that different influenza strains differ 

considerably in their capacity for aerosol transmission. Another study supporting this 

observation (Yang et al 2011) showed that not all influenza strains are capable of 

„airborne transmission‟. Another crucial issue related to respiratory infectious 

transmission is exhaled droplet concentration. Even fewer studies have determined the 

droplet concentration in coughing, which is an important aspect to consider as it 

determines the infectious contents of the actual droplet.  

Study conducted by (Yang et al. 2007) showed that the coughed droplet concentrations 

for test subjects wearing a filter mask were markedly lower than for subjects who 

coughed directly into the sample bag. This difference referred to coughed droplets easily 

impacting the inner surface of the mask, reducing sharply the number coughed droplets 

measured. Moreover, they found that the average concentration for males was 

significantly higher than that for females, as males have a longer cough flow rate than 

females. Also, the comparison of droplets concentration among difference age groups 
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showed that subjects in 30-50 years age group had the largest droplet concentrations, as 

subjects in this age group have the largest cough flow rate.   

In another study, the concentration and size distribution of droplet nuclei of influenza 

viruses were measured in a health centre, a day care facility, and aeroplanes during 2009-

2010 flu season (Zayas et al. 2012). Eight out 16 collected samples contained influenza 

(A) viruses (the concentration ranged from 5800 to 37000 genome copies per m
3
). On 

average, 64 % of viruses-laden particles were found to be smaller than 2.5µm, which can 

remain as airborne for hours. The size distribution and concentration of expiratory 

droplets expelled during coughing and speaking and the velocities of the expiration air 

jets of healthy volunteers were measured. These measurements were performed in close 

proximity to the mouth to avoid air sampling losses. The results estimated that 947-2085 

droplets were expelled per cough and 112-6720 droplets were expelled during speaking. 

By using different estimating methods, they found that the droplet concentration ranged 

from 2.4-5.2 per cm
3
 for each cough and 0.004-0.223 per cm

3
 for speaking.  

An experimental study was conducted on 45 healthy non-smokers (Knibbs et al. 2014). A 

laser diffraction system in the open bench was used to obtain accurate, time-dependent, 

quantitative measurements of the size and number of droplets expelled in the cough 

aerosol. Droplets ranging from 0.1 - 900 µm were generated by voluntary coughs. 

Droplets of less than 1 µm represented 97% of the total number of measured droplets 

contained in the cough aerosol. Moreover, the study illustrated that age, sex, weight, 

height, and corporal mass have no statistically significant effect on the aerosol 

composition in terms of size and number of droplets. The study concluded that the cough 

aerosol is the single source of direct, indirect, and/or airborne transmission of respiratory 

infections like the Influenza (A) H1N1 virus. 

 The effects of two stage jet of human cough on the particles transportation were 

investigated experimentally (Wei and Li 2017). A small, medium and large glass beads 

were fed into the discharged dyed water. The flow field was not altered by the presence 

of these particles since, the volume fraction was less than 0.5 %. The results of water tank 

experiments showed that particles of different sizes behaved similarly during the short 
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cough period (0.5 s). They all reached approximately 38 D when the cough was stopped 

(Wei and Li 2017). 

Table (II) in appendix (A) summarize most of the previous work on size distribution of 

droplets and viral contents as presented in this section. 

 

2.3 General Discussion and Summarize of Previous Work 

Based on the classification discussed in the literature review (near-field and far-field), the 

results concerning the aerodynamic characteristics of coughing jet flow may be 

summarized as shown in Fig. 5.The last four studies in near field region, on the right, 

were conducted using PIV, where the overall average is 12 m/s, max is 28.5m/s and min 

0.2 m/s, while the first two used Schlieren optical camera with max spatial average 8 m/s 

( using PIV processing) and a high-speed digital video system with initial velocity 6 m/s 

(vector analysis), respectively. It may be seen that there is a significant difference 

between the male and female subjects. The number of participants involved in these 

studies and their conditions as most of them healthy volunteers. Finally, the velocity 

values for near-field measurements by PIV show comparable results and higher than 

those obtained by using other techniques. Far-field studies were rarely conducted, and the 

results of (Savory et al. 2014) indicated that there was significant air motion during a 

cough, of the order of 0.5 m/s, at a location as far as 1 m from the mouth and the spatial 

average maximum velocity across 27 coughs was 0.41 m/sec and max velocity 4.5 m/s 

for males and around 1 m/s for females. To sum up, succinctly, many techniques were 

used to define all parameters in near field region, which is less than 0.5 m. All results, as 

presented in the literature, showed that there is rapid decay of the velocity after 0.05 

second. The PIV technique gave more reliable data because all previous experiments 

showed a closer agreement with respect to the average of peak cough velocity. 

Physiological factors such as gender, height, weight, and mouth opening area play a main 

role in cough flow in near-field studies. It‟s infrequent to find a far field cough study, 

which means at 1 m or 2 m downstream from the cough source. A novel experimental 

facility – the FLUGIE chamber- overcomes all of the difficulties faced by the earlier 
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researchers in this field. It was designed to study the far-field aerodynamic of human 

coughs as presented in (Savory et al. 2014). 

 

Figure 5  Summary of maximum cough velocity for male and female subjects 

Figure 6 presents the measurements of spread angle in the near-field flow studies using 

different techniques. It can be see that both (Gupta et al 2009; Tang et al. 2009) show 

23.5
o
 ( ±3.5

o
) and 25

o
 ( ±5

o
) mean spread angle across all subjects, using Schlieren 

optical and high-speed camera techniques respectively, while the PIV data of (Kwon et 

al. 2012) shows significant differences between male and females, of 6
o
, and mean spread 

angles that are 10
o
 higher when compared to the other studies.     
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Figure 6 Cough jet flow spread angle 

Figure 7 shows droplet size distributions measured in the near-field region in previous 

work. Different methods and techniques were used to conduct these experimental studies. 

A similar trend was obtained for the first two studies (Zayas et al. 2012; S. Yang et al. 

2007) with a maximum limit of less than 5 µm, while (Knibbs et al. 2014) showed that 

most droplets had a size distribution less than 1 µm. (Chao et al. 2009) showed good 

agreement with the earliest study was conducted by (Duguid 1946). The study illustrated 

that the maximum droplet size was 750 µm for 30 droplets and 6 µm for about 1300 

droplets and minimum size distribution of 3 µm for 86 droplet and mean droplet size was 

13.5 µm. Although virus diameters lie in range of 20-30 nm (Verreault et al 2008), 

droplets which have a distribution size more than 10 µm will not pass the human upper 

airways (Verreault et al 2008). Some studies illustrated that different influenza strains 

differ considerably in their capacity for aerosol transmission (Van Hoeven et al. 2009; 

Yang et al 2011). The effects of RH and ambient temperature on the aerosol transmission 

were studied by many researches (Tellier 2009; A C Lowen et al. 2008). Transmission of 

droplet and droplet nuclei were enhanced at low temperature and interrupted at high 

temperature while low RH showed higher droplet and droplet nuclei transmission. The 
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mean cough flow rate was about 2.5 l/s (Tang et al. 2009; Gupta et al 2009), and the 

minimum number of droplets was around 950 and the maximum was 2100 droplets per 

cough (Chao et al. 2009). Generally, it can be seen that most of these studies were 

conducted in the near rather than the far region of the cough. Rare studies recruited 

infected subjects and used different techniques which showed various results. 

 

Figure 7 The average, max and min droplet size distribution of coughing based on 

different sources 

In this section, the current state of knowledge about cough flow phenomena was 

succinctly summarized and discussed. It is clear from this discussion that all previous 

studies showed limitation on the number of participants. This explains the lack of 

sufficient data to make statistically significant conclusions about three main points 

missed in this knowledge. First, the differences in the flow field among sick, 

convalescent, and healthy coughs at 1 m downstream. In addition, the ability of the 

viruses to spread by coughing beyond 1 m from the source of cough. Finally, identify 

host determinants of high emitters of viral particles via coughing which disperse further. 

These points will be considered as tangible supporting evidences when taking droplet 

precautions as WHO recommended (1-2 m safe distance role). Such an investigation 
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would have a significant contribution to our knowledge as it is widely assumed that 1 m 

is safe distance between patients and healthcare workers. 
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Chapter 3 

3 Experimental Facilities and Equipment 

In this chapter, the experimental facilitates that were used in this research are described, 

namely the FLUGIE chamber and the particle image velocimetry (PIV) equipment, the 

hot wire anemometer system (HWA sensor) and its calibration facilities, together with 

the bio-aerosol pumps and cassette filters and mid-turbinate collection tubes for droplet 

sampling. 

 

3.1 Experimental test chamber (FLUGIE) 

Biocontainment containment level 2 laboratory has a 22 m
2
 plan area. The FLUGIE 

chamber is centred within the lab as shown in Fig 8, occupying about 3.22 m
2
 with a 

significant volume of around 7.15 m
3
 this volume is important to overcome on some of 

the drawbacks mentioned in the literature. All surfaces in the lab are made from non-

absorbable materials such as varnished wood, polymers, aluminum, and coated steel that 

to make them safe and easy to clean. The far-field aerodynamics and aerosol transport of 

droplets produced by the coughs from naturally infected humans are studied using an 

experimental cough chamber facility called the FLUGIE. The experimental test chamber 

FLUGIE was designed to overcome many difficulties as mentioned in the literature. 

Hence, a chamber of adequate size is preferable as a quiescent environment in which a 

cough flow may be studied negating the effect of any turbulence phenomenon from 

uncontrolled surroundings (Savory et al. 2014). 
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Figure 9 Schematic diagram of the Experimental test Chamber (FLUGIE) 

 

The chamber has internal dimensions 1.81 m long, 1.81 m width, and 1.78 m high. These 

dimensions create a large volume to overcome the influence of recirculating flow of the 

cough jet inside the chamber with respect to average cough jet volume. The surfaces are 

made from wood as a solid barrier to avoid any harmful reflection from laser beams and 

isolate the cough flow from the external effects such as participant‟s body heat generated 

Figure 8 Schematic Diagram of Laboratory layout 
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by metabolism, and the inner surfaces are painted by black to avoid any scattering from 

the laser sheet when illuminating the seeding particles. A large glass window on one side 

allows optical access to make the measurements using dual coupled- charge-device 

(CCD) cameras. The test chamber is raised up to 0.41 m above the laboratory floor and 

mounted upon casters to allow quantitative measurements at various streamwise positions 

and to allow laser sheet to enter the test chamber through a glass window and illuminate a 

centreline plane extending from the test chamber floor to the roof as shown in Fig. 9. The 

test chamber is seeded with titanium dioxide particles TiO2 (rutile mineral form), which 

has size distribution ranging from 0.34 to 0.43µm. The TiO2 particles enter a settling 

chamber mounted on top of the test chamber through a tube with perforations. The 

FLUGIE settling and test chambers are separated by a fine mesh, which permits TiO2 

particles, under the action of gravity and local airflow, to gently enter the test chamber 

along its centreline. As shown in Fig. 3.2, there is a small opening for the cougher‟s 

mouth in the front surface of the FLUGIE. The opening is pear-shaped such that the 

participant‟s nose and mouth area are unobstructed whilst a cough is directed into the 

enclosed test chamber (Savory et al. 2014). The major vertical axis of the pear-shaped 

opening is 15 cm high and the base of the opening, where the participant‟s chin rests, is 

67 cm above the chamber floor. The minor horizontal axis of the pear-shaped opening is 

10.5 cm wide. This chamber inlet has a cover which is only opened when a cough is 

introduced into the chamber. In order to examine the cough velocity produced by the 

pulmonary effort alone, the cough should be observed by restricted head motion. A chin 

rest and a forehead rest are used to let the position of the participant‟s head is fixed, such 

that the angle of the cough is horizontal and consistent over multiple trials (Savory et al. 

2014).  

 

3.2 Particle Image Velocimetry System (PIV) 

The measuring technique is a significant factor in an experimental work. The main 

experimental part on the aerodynamics of the cough is conducted in this research by 

using the non-intrusive particle image velocimetry PIV technique. This technique 

provides the data required to perform 2D qualitative and quantitative analyses which 
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gives a significant advantage over other measuring techniques used in the literature. In 

this section, the components of the PIV system illustrated in Fig. 10, A double pulsed Nd: 

YAG crystal laser of power 120 mJ per pulse is used to generate laser beams of 532 nm 

wavelength at 15 kHz that produced high level of illumination with very short intervals 

between two pulses at lower laser power. Although the Nd : YAG double-pulsed system 

is more expensive and more difficult to set up due to the added timing and 

synchronization equipment, it is used because it can provide an illuminated sheet with an 

almost stable and fixed thickness without aberration or diffusion and due to the coherent 

and monochromatic character of the emitted light (Stamhuis 2006). The main component 

to deliver the bright laser sheet is the optical lens system which is located at the end of 

the laser beam generated by the laser head. 

 

Figure 10 Schematic diagram of the used Particle Image Velocimetry 

Photography System 

3.2.1 Selecting the appropriate Laser Sheet Optics 

Each laser system has a set of cylindrical and spherical lenses that are used to produce the 

light- sheet, which illuminates the tracer particles and the flow. The slightly diverging 

light beam produced by a laser is usually transformed into a sheet by converging it with a 

weak positive lens and subsequently makes the beam fan out in one plan as sheet by an 

additional cylindrical lens as shown d in Figure 11. 



30 

 

 

 

 

Figure 11 Basic optical lenses arrangement to produce a light sheet from a laser 

beam: The mildly divergent laser beam coming from the left (b) is collimated by a 

weak positive spherical lens (L) and subsequently fanned out in one plane only by a 

cylindrical lens (C). This results in a sheet (s) with a slightly converging thickness      

( Reproduced from Stamhuis 2006). 

 

The optimum light sheet can be obtained by choosing the correct lenses. Both of the 

cylindrical and spherical lenses control the converging and diverging of the light beams. 

The selected light sheet optics should diverge the laser beam over the imaged area (field 

of view). The laser beam leaves the laser head with 1 to 4 mm diameter as maximum for 

Nd: YAG laser beam (Cao et al 2014). For most PIV experiments a light sheet of less 

than 1 mm thick is desired to guarantee the measured flow field can keep in a plane 

(Stamhuis 2006; Cao et al. 2014), and the spherical lens is used to reduce the light sheet 

thickness. In the present wok, the selected cylindrical and spherical lenses are -15 mm fl 

and 500 mm fl respectively. According to the manufacturer‟s manual (TSI Coorporation 

(TM) 2004), these specifications yield a 1.34 mm as waist thickness and a 336  mm laser 
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sheet width, which can be calculated by using the following formula (TSI Coorporation 

(TM) 2008): 

                                                  Y=
   

 
                                                                          (3.1) 

Where 

W- The beam diameter before passing through the cylindrical lens. (Equal to 6.3 mm) 

(Raffel et al. 1998), X- The distance from the focal point cylindrical lens. (800 mm) 

F- The focal length of the cylindrical lens. (-15 mm.fl) (TSI Coorporation (TM) 2008) 

The main challenge for using lasers as the illumination source, after producing a range of 

light sheet sizes suitable for the laser, is the timing set up. 

 

3.2.2 The time separation (Δt) 

The time separation between the pulses (Δt), is the main important parameter to set when 

using lasers as the illumination source. The time separation determines the particle image 

displacement in PIV images. Therefore, the time delay should not only be long enough to 

determine the displacement of the seeded particles between the two pulses but it also 

needs to be short enough to avoid the seeded particles leaving out the light sheet between 

subsequent illuminations (Cao et al 2014). It is very important to select an appropriate Δt, 

so that particle image displacement is consistent with experimental measurements. Many 

correlation are used to determine the time pulse delay. (Cao et al 2014) recommended 

that the optimum pulse delay depends on the desired interrogation area size dInt (in pixels) 

and on the maximum velocity Umax in airflow fields recorded, given as: 

                                                     

    
    

  

    
  

 

 
  

    

    
                                              (3.2) 

(Li et al. 2010) presented an easier method to determine Δt. A practical relation (Eq. 

(3.3)) between Δt and the maximum velocity at area of interest (Umax) was founded. In 

particular, (Δt increases with the decrease of the maximum velocity within the field of 

view: 

 

                                         Δt (µs)  = 
   

      
                                                                      (3.3) 
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The time separation Δt should be selected so that the displacement follows the “role of 

thumb” of 25  of the intended interrogation region which produced from broken up the 

image frame into a grid of “integration regions”, and to ensure consistency with 

experimental measurements (Cao et al. 2014). In order to optimize Δt, the main step is 

developing an eye observation for it (Cao et al. 2014). Although qualitative, this is a 

critical step in optimizing a particle image velocimetry measurement. According to that, 

if the displacement appears random Δt should be reduced, and if there is little or no 

displacements then Δt should be increased (Cao et al. 2014). In the present work, Δt was 

selected according to the equation 3.2 with average spatial velocity of 0.41 m/s, which is 

the average across 27 cough tests (Savory et al. 2014), and optimized to be 750 µs. 

 

3.2.3 Tracer particles 

Tracer particles, which are seeded inside the cough chamber, play a key role in any PIV 

measurement because, as a non-intrusive technique, PIV actually measures the velocities 

of tracer particles instead of actual airflow velocities. Generally, the size of tracer 

particles should be not only small enough to achieve good tracking behavior of the 

turbulence but also large enough to scatter sufficient light signal for image recording 

devices (Cao et al 2014). In PIV measurements, the tracking behaviors of tracer particles 

are particularly critical for measurement accuracy. In gas flows, such as in the present 

case, safety, health and handling considerations are significant factors when selecting 

appropriate particles. 

Many techniques are used to generate and supply tracer particles for seeding gas flows. 

For example, dry powders can be dispersed in fluidized beds or by air jets. Liquids can be 

evaporated and afterwards precipitated in condensation generators, or liquid droplets can 

directly be generated in atomizers (Raffel et al. 1998). Atomizers can also be used to 

disperse solid particles suspended in evaporating liquids or to generate tiny droplets of 

high vapor pressure liquids (Raffel et al. 1998). Moreover, for flow visualization in wind 

tunnel flows smoke generators and monodisperse polystyrene or latex particles injected 

with water-ethanol are most often used for seeding (Raffel et al. 1998). In the present 
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work, the size of the tracer particles should be optimized to make a balance between the 

tracking behavior and the scattering characteristics. 

Table 1 illustrates the most common seeding materials which are used as tracer 

particles for gas flows (Raffel et al. 1998). 

Type Material Mean diameter (in μm) 

Solid 

Polystyrene 0.5 – 10 

Alumina Al2O3 0.2 -  5 

Titanium dioxide TiO2 0.1 - 5 

Glass micro-spheres 0.1 - 3 

Glass micro-balloons 30 - 100 

Granules for synthetic 

coatings 
10 - 50 

Dioctylphathalate 1 - 10 

Smoke < 1 

Liquid 

Different oils 0.5 - 10 

Di-ethyl-hexyl-sebacate  0.5 – 1.5 

Helium-filled soap bubbles 1000 - 3000 

 

The FLUGIE chamber is seeded with Titanium dioxide particles (TiO2) in rutile mineral 

form. According to the producer specification the particle size distribution ranges from 

0.15 to 0.47 μm, where 69  of the particles are in the 0.34 to 0.43 μm size bin and 29  

of the particles are in the 0.27 to 0.34 μm size bin (Savory et al. 2014). Different methods 

are available for the generation of the particles to seed indoor airflow (Cao et al 2014). 
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Particles should be seeded into airflow with a sufficient, steady and spatially uniform 

concentration. Generally, a higher seeding concentration is preferred for better 

measurement spatial resolution. However, an excessively high-density of seeding may 

lead to poor spatial resolution due to bad scattering performance. The ideal concentration 

of the tracer particles is 5 to 20 particles in an interrogation area (Raffel et al. 1998). 

Ideally, the generators should produce particles with a monodisperse size distribution and 

at a constantly high enough production rate to meet the spatial resolution requirement of 

the PIV experiment. For this purpose, a vacuum-oven is used to dry the titanium dioxide 

(TiO2) powder, which is stored in a vacuum container to minimize clumping and later 

aerosolized using a custom crafted version of the Pitt 3 aerosol generator (Raffel et al. 

1998), as illustrated in Fig 12. 

 

Figure 12 Schematic diagram of the aerosol drum generator   

The aerosol generator consists of a vertical cylindrical drum with two small ports for both 

inlet and outlet near its bottom and top ends, respectively. The drum is filled with TiO2 

powder, which is carried up and out of the drum by the flow driven by a compressed air 

line attached to the inlet port at a 5.0 kPa. A loader speaker is placed at the bottom of the 

drum, which generates sound waves to vibrate and break up the powder particles. The 
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outlet port of the aerosol generator is connected to a settling chamber which is mounted 

on top of the FLUGIE (as shown in Fig.13), by a tube with perforations inside the settling 

chamber to disperse the TiO2 particles. The FLUGIE chamber and settling chamber are 

separated by a fine mesh, which permits TiO2 particles, under the action of gravity and 

local airflow, to gently enter the test chamber along its centreline (Raffel et al. 1998). The 

cough jet flow, which is generated by the participant, moves the TiO2 particles, and the 

camera system captures the successive images to obtain quantitative information of the 

flow field. 

 

Figure 13 Diagrammatic layout of the 1.81 m × 1.78 m × 1.81 m FLUGIE cough 

chamber (Modified from Savory et al 2014), all dimensions shown in metres) 

 

3.2.4 Image Recording Devices 

The most common type of image recording devices used in PIV flow measurements are 

CCD cameras (Coupled Charged Devices). In PIV experiments, CCD cameras have been 

in widespread use for many reasons, such as their spatial resolution, convenient data 

transmission and image processing, minimum exposure time, high light sensitivity at 

532nm and low background noise (Raffel et al. 1998). A CCD element is an electronic 

sensor, which works by converting light into electronic charge in a silicon chip 
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(integrated circuit). This charge is digitized and stored as an image file on a computer 

(Raffel et al. 1998), Fig. 14 describes the CCD structure and the basic working concept.   

 

Figure 14 The structure of CCD Semiconductor (Raffel et al. 1998) 

A CCD is a two-dimensional array of metal-oxide-semiconductor (MOS) capacitors, 

which normally consists of an array of many individual CCD elements, and also called 

pixels (Cao et al. 2014). Nowadays, the sensor resolution of commercially available CCD 

cameras typically has a range from 2M (1600 pixels × 1200 pixels) to 29M (6576 pixels 

× 4384 pixels), and the corresponding frame frequency is from 35 Hz to 2 Hz (Raffel et 

al. 1998). Selecting a CCD camera depends upon the specific application and conditions. 

For instance, the large-scale measurement in a full-size room needs to use a high-

resolution CCD camera, which aims to obtain the complete airflow structures. Contrarily, 

for studying the small-scale turbulent characteristics of airflows, it is more suitable to use 

a high-frequency CCD camera (Cao et al. 2014). The other significant factor is the 

dynamic range of CCD sensors, which is should also be considered to evaluate the signal 

quality per pixel. Normally, a dynamic arrange of 8 or 12 bits data output per pixel is 

sufficient for most PIV purposes (Cao et al. 2014; Raffel et al. 1998).  
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3.2.4.1 PIV cameras calibration procedure 

In order to show the used software how to convert from pixel units on the images, to the 

physical units in the flow space, calibration process are needed to give the software more 

information to be able to convert pixels to mm over the entire image region. The 

calibration process uses a calibration target, which is a rectangular grid of marker points 

with known (X, Y, Z) locations, as present in Fig 15. A single image of a single plane 

target may be used for one camera systems or multiple PIV camera to create a XY (no Z) 

calibration for dewarping (Raffel et al. 1998). The calibrations steps start with align the 

camera using calibration target plane. The centre of target plane, which has dimension 

20x20 cm, locate at 1m downstream the cough inlet and raise by 0.5 m from the chamber 

floor that assume the laser sheet location. The camera focuses on the target plane, capture 

image with single mode and save it in calibration file. The distance between white dots in 

target plane presents 0.1 m, that lets possible to select known distance across the image. 

The selected distance measures in the calibration image menu with the number of pixel to 

find convertor factor. 

 

Figure 15 Plane calibration target 

In the present work as illustrated in Fig.13, two CCD cameras (Model 630057 

POWERVIEW TM Plus 2MP) are used that to cover the field of view centred at 1m 



38 

 

 

 

downstream the cough flow and 0.5 m above the chamber floor for both cameras. The 

calibration process of the camera system yields a spatial resolution of 8.5 pixels per 1 mm 

with a sensor array of 1600 pixels by 1200 pixels, yielding a 99 × 74 array of velocity 

vectors .The longer side of the camera view is oriented vertically for both cameras in this 

experiment, whereas the dual camera setup will increase the field size compared to the 

single one used in (Savory et al. 2014) and, thereby, increasing the field of view. The 

cameras set up focuses upon the light sheet at the chamber centreline with an overlap 

region of about 20% from each one, Fig. 16 shows the dimensions of camera‟s field of 

view.  

 

Figure 16 Schematic diagram of the cameras system field of view within FLUGIE 

(All dimensions in mm) 

3.2.5 The Evaluation Method of Captured Image 

The principle of the PIV technique is based on the direct determination of the two 

fundamental dimensions of the particle velocity which are displacement and time. 

However, direct calculation of the velocity for every particle is a hard task due to the high 
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concentration and the overlaps between particles. Deriving the displacement information 

from raw particle images are conducted by image evaluation methods. The most common 

evaluation method in PIV systems is to capture two images on two separate frames and to 

perform multistep cross-correlation analysis. The magnitude and direction of the velocity 

vector will be provided without ambiguity by using the cross-correlation function, which 

has a significant peak. For calculating the correlation functions, the cross-correlation 

methods, in general, are based on digital Fast Fourier Transform (FFT) algorithms (Raffel 

et al. 1998). The most widely used evaluation method is the cross-correlation map. The 

cross-correlation map method iteratively calculates velocity vectors with an initial 

interrogation area (IA) of size N times the size of the final IA and uses the intermediary 

results as information for the next IA of smaller size, until the final IA size is reached 

(Raffel et al. 1998). IA is a sub-area in the recorded images and its dimensional setting 

directly determines the spatial resolution and accuracy of the measurement (Raffel et al. 

1998). The smaller IA size and higher overlap ratio can achieve higher spatial resolution, 

but require higher quality image recordings and consumes longer computing time (Cao et 

al. 2014). In the present work, the first step is the rotation of the images by     + 90o 

because they are oriented vertically. The cross-correlation analysis for PIV was 

performed for interrogation windows of 32 pixels × 32 pixels with a 50% overlap, 

yielding a 74 × 99 array of velocity vectors (Recursive Nyquist Grids). Using a global 

standard deviation filter followed by local median filters, erroneous vectors were 

identified and rejected. Typically, this filtering process resulted in less than 5% of the 

vectors being removed (Raffel et al. 1998). The data were then interpolated to fill the 

locations where velocity data were rejected (Raffel et al. 1998). 

3.3 Hot Wire Anemometry (HWA) 

In an experimental measurement, it is not question of the best instrument but rather which 

instrument will perform best for the specific application. In contrary to PIV technique, 

the hot wire anemometry probe, which has been used extensively for a long time as a 

research tool in fluid mechanics, is an intrusive measurement technique. This old history 

from using of HWA sensors is attributed to the good frequency response (several hundred 

of kHz), wide velocity range as a magnitude, direction, and a velocity fluctuations, and 
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two phase turbulent flow measurements, temperature measurements (Tropea et al  2007). 

The HWA sensors classified into main categories according to the operating principle as 

follows: constant voltage anemometers (CVA), constant current anemometers (CCA) and 

constant temperature anemometers (CTA).  The mode of operation of CTA gives many 

advantages in front of the other modes. In this section, Description of the HWA- CTA 

probe components, the operating concept, and the calibration method will be provided.  

3.3.1 Basic components and Principle of Operation 

A hot wire anemometer consists of two probes with fine wire, which is of the order of a 

micron, stretched between them. The miniature wire generally made of tungsten or 

platinum with dimensions around 1.25mm long and 5 µm diameter, a small glass-coated 

thermistor bead is often used on CTA circuit probes (Tropea et al  2007)]. Fig. 17 shows 

the structure of hot wire probe. Very often a dedicated Application software for CTA set-

up, data acquisition, and data analysis is part of the CTA anemometer (Yue and 

Malmström 1998). The CTA anemometer works on the basis of convective heat transfer 

from a heated sensor to the surrounding fluid, the heat transfer being primarily related to 

the fluid velocity. By using very fine wire sensors placed in the fluid and electronics with 

servo-loop technique, it is possible to measure velocity fluctuations of fine scales and of 

high frequencies. The advantages of the CTA over other flow measuring principles are 

ease-of-use, the output is an analog voltage, which means that no information is lost, and 

very high temporal resolution, which makes the CTA ideal for measuring spectra. And 

finally, the CTA is more affordable than LDA or PIV systems (Jørgensen 2002).  By 

using very fine wire sensors placed in the fluid and electronics with servo-loop technique 

(Wheatstone bridge configuration) as shown in Fig.18, it is possible to measure velocity 

fluctuations of fine scales and of high frequencies (Tropea et al  2007).  
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Figure 17 Schematic Diagram of the HWA structure (Yue and Malmström 1998) 

 

Figure 18 Principal Circuit of a CTA for hot-wire Measurements (Reproduced from 

Jørgensen 2002) 

3.3.2 General Hot Wire Equation 

 The basic idea to determine the flow velocity by using HWA probe is the heat transfer 

from the heated sensor to the medium flowing around the sensor. The heat can be 

transferred from the sensor by radiation QR, conduction QC, free convection Qfc, and 
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especially by forced convection Qcon. In thermal equilibrium state, the power generated 

by heating equal to (Jørgensen 2002): 

                                                              
   

  
                                                        (3.4) 

and the supplied electrical power 

                                              
  

 
                                                              (3.5) 

Where: 

Cw - Heat capacity of wire (J/ kg K
o
)  

Ew - acquired voltage for the wire (V)       

I - Heating current feeding the wire in (A) 

Qel - Electrical power supplied (W/m
2
 K

o
)              

Qh - Heat transfer rate to ambient surrounding (W/m
2
 K

o
)    

Qi - thermal energy stored in the wire (CwTw) in (W/m
2
 K

o
) 

Rw -  esistance in the wire at the operating temperature (Ω) 

Tw - Temperature of wire (K
o
)              

W- Power generated by joule heating given by I
2
Rw where (Rw = Rw (Tw)) in (Watt) 

and the power generated equal to the heat output carried off by the sensor (Jørgensen 

2002): 

                   W=Qel= QR + Qc + Qfc +Qcon                                                                        (3.6)  

Forced Convection Qcon plays the main role in heat transferred to the surrounding. 

              W=Qel=Qcon=I
2
*RW=           )                                                                                      (3.7) 
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The resistance of a wire is a function of its temperature. For a metallic conductor (Bruun 

1995): 

                         Rw= Ra [1+b1 (Tw-Ta) + b2 (Tw-Ta)
2 
+…]                                               (3.8) 

This can be linearized for a temperature range of up to 200˚C (Bruun 1995): 

                                           Rw= Ra[1+b1(Tw-Ta)]                                                           (3.9) 

This results in the following expression (Bruun 1995): 

                                           
     

     
                                                                (3.10) 

Hence for finite length hot wire anemometer,              

                                           
     

     
                                                                (3.11) 

In terms of the voltage Ew Eqn. 3.11 can be written as (Bruun 1995): 

                                                 
  

  
                                                        (3.12) 

For the CTA the temperature and resistance are constant. Since the frequency response of 

a sensors is mostly flat (linear) over a large range (order of 100 Hz to order of 10000 Hz) 

this allows the instantaneous response of the hot wire to be written, even for unsteady 

flows., in an algebraic form as (Jørgensen 2002; Bruun 1995):   

                                            E
2
=A + B*U

n                                                                                                      
(3.13)  

Where A, B and n are constants determine from calibration.                 

Eqn.3.13 is known by King‟s Law (Jørgensen 2002; Bruun 1995), and in its original form 

n = 0.5. However, the results obtained by Collis and Williams have showed that a good 

estimation for (n) is 0.45 which gives better prediction for the flows within the range of 

0.02<Re<44 (Jørgensen 2002; Bruun 1995). Eqn.3.13 uses for determining the voltage of 

hot wires permits the velocity behavior to be determined, for velocity measurements. An 
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alternative approach is so-called polynomial linearization which approximates the inverse 

of the King‟s Law (Jørgensen 2002; Bruun 1995): 

                              U= f (E) =  
    

 
 

 

                                                                           (3.14)                                                                   

 by usually fourth order polynomial (Krause 2008; Bruun 1995): 

                                         U=A+BE+CE
2
+DE

3
+FE

4
……..

 
                                         (3.15) 

This polynomial equation was tested by using a computer program which could fit a 

polynomial of up to the tenth degree to raw calibration data (Krause 2008). However, the 

solution of the polynomial equation was found to become unstable above the fourth order 

(Krause 2008). In measurement practice, the calibration procedure, which will be 

discussed in the next section, will establish a relation between the HWA output and the 

flow velocity. 

                            

3.3.3 Velocity probe calibration procedure 

A calibration system is normally not considered part of the measuring chain. However, it 

is considered as a significant step for the accuracy and the speed with which an 

experiment can be conducted. Calibration of hot-wire probes at relatively high velocity 

(for example, U > 2 m s−1 for air flow) can be easily carried out by measuring the outlet 

velocity of a calibration nozzle with a „top hat‟ velocity profile (Yue and Malmström 

1998). Calibrations can be performed in a dedicated calibrator with a low turbulent free 

jet, whose velocity is calculated on basis of the pressure drop over its exit (Jørgensen 

2002). Calibrations can also be performed in the wind-tunnel, where the experiments are 

going to take place, with a pitot-static tube used to determine the reference velocity 

through measurement of dynamic pressure (Jørgensen 2002). For all actual 

measurements, direct calibration of the anemometer is necessary, in the present work a 

dedicated calibrator was used to generate a laminar low-velocity pipe flow to calibrate 

the CTA probe as used in (Yue and Malmström 1998). The next subsection will explain 

the details of the calibrator facility. 
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3.3.3.1 Calibration facility 

The probe is placed in a low-velocity air stream of known and adjustable velocities and 

the anemometer output voltage E is measured as a function of the flow velocity U. There 

is a non-linear dependence of the anemometer output voltage on the flow velocity. The 

calibration facility used in this work shown in Fig. 19. 

 

Figure 19 Calibration facility for CTA probe (All dimensions in mm) 

The calibrator consists of a closed water tank with dimension of 0.3 m in diameter and 

0.5 m in high, which is made from plastic, equipped with an inlet tube at the top of the 

tank to generate free air stream, a liquid pressure sensor and a throttling valve at the 

bottom. By using this setup, the calibration process can reliably be performed throughout 

a range of air velocities extending from approximately 0.2 m/s to 2.4 m/s. 
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3.3.3.2 Pressure Sensor Calibration Process 

The first step in the calibration process is a determination of the true value for the air 

velocity. For this propose, the liquid pressure sensor was calibrated with using data sheet 

information provided, which provide by the manufacturer to obtain on the true value. The 

pressure transducer used in this work is from Omegadyne Co., Model PX409-001G5V-

EH, with a pressure range of 0-6.9 kPa and a corresponding voltage output of 0-5Vdc, 

with an uncertainty of +/- 0.05% of 6.9 kPa, the datasheet for this sensor was provided in 

appendix B.  

The tank labeled with ticks has 1 mm resolution, and it is filled up to 0.45 m depth of 

water, and the calibration is performed by turning the valve to a range of different 

openings during a single draining of the tank with 0.05 m step of water depth. This 

procedure gives nine measurement points as voltage readings from the pressure sensor. 

The pressure reading of the sensor, which is provided by the data sheet, is used to 

calculate height the water above the transducer sensor according to the formula of eqn. 

3.16: 

                                                               P   ρ*g*H                                                     (3.16) 

                                                     And H  h + Δ h 

Where: 

P- is liquid pressure, g -is gravity, ρ-is density of water, h- is the height of water within 

the tank and Δ h- is the depth of water from bottom of the tank to the sensor. 

Figure 20 illustrates the comparison of sensor voltage readings vs. water pressure 

between measured and data sheet points. It is clearly evident that the rate of change of 

voltage with pressure from the data sheet range compares well with the measured data 

being 0.7262 v/kPa and 0.7312 v/kPa respectively as shown in Fig.19. These data are 

perfectly acceptable by 0.7 % difference between them and the HWA calibration 

measurements can be carried out confidently. 
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Figure 20 Comparison of voltage vs. pressure points between manufacture’s data 

sheet and measured data 

3.3.4 HWA Probe Calibration Process 

The calibration process of hot wire probes, using the set up shown in Fig.19 and similar 

to that used in (Yue and Malmström 1998), can be summarized in general as first filling 

the tank with water to approximately 45 cm depth. A LabVIEW program, which was 

created for monitoring the pressure sensor and HWA probe voltages, is used for obtaining 

the calibration data. The tank is allowed to sit for a span of approximately 10 minutes in 

order for the water to become stationary. The throttling valve has 1260 degrees of 

rotation available and that corresponds to 3 
 

 
 complete turns. The valve knob has 6 arms 

with these it is easy to determine 1/6 of a turn. The calibration is performed by the 

turning valve to fully open to achieve the first single draining of the tank for 10 s, then 

the valve is closed gradually by third of a turn steps to obtain ten single draining 

increments of the tank water. This allows for rapid calibration without the need for 

refilling the tank between trials. After each interval at the selected valve opening, the tube 

will be completely plugged to allow for the water to become completely stable in the 
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tank. Moreover, this is to allow for easier separation of the data during the data analysis 

stage of the calibration. 

The LabVIEW program records the time history for both the pressure sensor and the 

HWA probe for all draining points. It is important to measure the room temperature and 

room atmospheric pressure because they will be used to determine the probe uncertainty. 

Fig. 21 shows the time history for ten reading points from a calibration process. At each 

draining point, the transition data are excluded to avoid any signal noise and the average 

of the HWA probe output the rate of change of the pressure sensor voltage reading, as 

shown in Fig. 22, were computed. 

 

Figure 21 The time history of ten readings of the pressure sensor and HWA velocity 

probe 
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Figure 22 The time history of the pressure sensor and HWA probe                                          

at the first draining point 

The theoretical velocity is calculated by using the continuity equation for the water tank 

that will give: 

                                                     Uavg= 
  

  
  

  

  
                                                          (3.17) 

Uavg is the air average velocity in the inlet tube,  
  

  
is the change rate of water height in 

the tank 

At is water tank cross-sectional area and Ap is the inlet pipe cross-sectional area. 

 The maximum velocity of the air inside the pipe equal to (White 2010): 

                                                     Umax= 2*Uavg                                                         (3.18) 

Consider the fully developed laminar flow in a round pipe of radius R (White 2010): 
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                                                             (3.19)  

Where: R is the pipe radius, r the position of the probe from the pipe centre.  

From table 2, the curve between E
2
 and    

 is plotted by using each data of ten points for 

three trials. The value of n varies from 0.45 to 0.5. For the present work, n = 0.5 is 

selected since it gives the best fit of data as shown in Fig. 23. According to the selected 

value of n, the trend line will give the calibration coefficients A and B of King‟s law as 

presented in eqn. 3.13. 

From eqn. 3.19, ten points are calculated to obtain values of Upredict at each value of E. 

A polynomial trend line is created between Upredict and E. The polynomial curve fit is 

normally recommended, as it makes very good fits with linearization errors often less 

than1% (Jørgensen 2002; Bruun 1995). Figure 24 shows the recommended fourth order 

polynomial curve fit, which is used in this work, because a higher order results in an 

unstable solution (Bruun 1995). The measured data for three trials are arranged in Table 

2, which shows the rate of water in the tank, the probe voltage, and the theoretical 

velocity, respectively, at each point for all three trials. 

Table 2 The measured data of both the HWA probe and the pressure sensor at the 

ten points with three trials (M-1, M-2, and M-3) 

 

M-1 M-2 M-3 

  P dh/dt E Uth1
n dh/dt E Uth2

n dh/dt E Uth3
n Upredict -/+Error 

1 0.0077 1.66 2.02 0.0076 1.67 2.01 0.0077 1.67 2.01 3.90 0.39 

2 0.0074 1.66 1.98 0.0074 1.66 1.98 0.0074 1.66 1.98 3.76 0.38 

3 0.0068 1.65 1.90 0.0068 1.65 1.90 0.0068 1.65 1.90 3.60 0.36 

4 0.0061 1.63 1.80 0.0062 1.63 1.82 0.0061 1.63 1.80 3.23 0.32 

5 0.0051 1.61 1.65 0.0052 1.61 1.66 0.0051 1.61 1.65 2.82 0.28 

6 0.004 1.58 1.46 0.004 1.58 1.46 0.004 1.58 1.46 2.28 0.23 

7 0.003 1.54 1.26 0.003 1.54 1.26 0.0029 1.54 1.24 1.72 0.17 

8 0.0019 1.48 1.00 0.0019 1.48 1.00 0.0019 1.48 1.00 1.06 0.11 

9 0.001 1.41 0.73 0.001 1.41 0.73 0.0009 1.41 0.69 0.48 0.05 

10 0.0005 1.36 0.52 0.0005 1.36 0.52 0.0005 1.36 0.52 0.22 0.02 
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Figure 23 Trend line Plot of calibration data points 

 

Figure 24 Fourth order polynomial Curve fitting of calibration data points with 

uncertainty values (K, L, M, N, O fitted constants) 
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3.4 Experimental Uncertainty 

Properly reporting an experimental result along with its uncertainty allows other people 

to make judgments about the quality of the experiment, and it facilitates meaningful 

comparisons with other similar values or a theoretical prediction. Experimental 

measurements always have some degree of uncertainty that may come from a variety of 

sources. 

3.4.1 HWA Probe Uncertainty 

The relative expanded uncertainties on a single velocity sample obtained with a single – 

sensor hot wire probe in air (Jørgensen 2002). The calculations for the HWA 

uncertainties attached in Appendix C-1, can be summarized in the following table: 

(Input data are: To= 20.1
o
C, Po = 98.6452 KPa, Tw = 300

o
C, U = 1.5 m/sec.) 

Table 3 Error sources and uncertainties for single velocity sample acquired with a 

CTA including calibrator uncertainty (Jørgensen 2002) 

Source of uncertainty Input variants Typical 

value 

Relative 

output 

variants 

Relative 

standard 

uncertainty 

Calibration Uth 1% C-7 0.092 

A/D resolution EAD   

a 

3 volts 

12 bit 

C-11 0.00116 

Probe Positioning θ 1
o
 C-12 0 

Temperature variations 

(sensor overtemp.) 
ΔT ±1

o
C C-13 0.0043 

Temperature variations  

( ρ,T) 
ΔT 1

o
C C-14 0.0023 

Ambient pressure ΔP 13KPa C-15 0.00045 
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The summation of relative standard uncertainty   0.1047   10.47≈10   which will be 

considered in this study. 

3.4.2 PIV System Uncertainty 

In PIV techniques, the uncertainty is comprised of two components. The first component 

is bias error, which is caused by various aspects of measurements techniques and 

equipment. The second component is the random error, which is due to the statistical 

variation of the measured quantities in multiple measurements. In PIV measurements, 

there are numerous error sources. These error sources are velocity gradient, particle 

seeding diameter, out of plane motion, Interpolation, peak locking (Cowen and 

Monismith 1997). The total error in Particle Image Velocimetry can be calculated by 

adding all the errors caused from different sources (Elatar, 2013). The error estimation 

attached in Appendix C-2 (for participant 221-cough2), and can be summarized in the 

following table: 

Error due to Error symbol Error in pixel Error in m/s 

Velocity gradient εu, εv 
εu = 0.0045 (pixel/pixel) 

εv=0.0050 (pixel/pixel) 
*εV=0.0011  

Particle seeding diameter εdp 0.01 pixel 0.0016  

Interpolation εI 0.08 pixel 0.013 

Out of the plane εop 0 0 

Peak locking εpl 0 0 

 

* εV=√  
    

  
 , which is the total error for velocity vector. The total uncertainty  

(εT    εV + εdp + εI + εop + εpl ) (Elatar, 2013)equal to 0.016 m/s. Considering the 

maximum mean velocity in the measurement plane, 0.89 m/sec, the total error is equal to 

2 %. 
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3.5 Averaging the instantaneous velocity 

Inherent in the collection of data taken over time is some form of random variation, as in 

a cough velocity measurement which is non-stationary phenomena. There exist methods 

for reducing of canceling the effect due to random variation. An often-used technique in 

scientific researching is "smoothing" (Marple 1989) This technique, when properly 

applied, reveals more clearly the underlying trend and periodic components. The main 

smoothing method is the time average method. A moving average is a technique to get an 

overall idea of the trends in a data set; it is an average of any subset of numbers (Marple 

1989). The moving average is extremely useful for forecasting long-term trends. There 

are many approaches for moving average such as simple method, centred method, 

cumulative method, weighted method, exponential method…etc. Centred moving 

average, which is preferred by most analysts because this approach allow to align each 

moving average with the midpoint of the observations that it averages; midpoint refers to 

the middle of a time span (Bohm and Zech 2010). The idea behind this approach to 

getting a moving average that‟s centred on an existing midpoint, that‟s done by taking set 

of consecutive data and averaging them by the procedure as shown in Fig 25. In a brief, 

moving averages remove some of the short-term variation from obtained data, and that 

depends on the window size. A window size is a kind of low-pass filter, so it is important 

to make a judgment about the time scale on which data variations change from being 

merely "noise" to more meaningful indications of true temporal changes in the underlying 

activity (Bohm and Zech 2010). In the present case, the squared values of root mean 

square fluctuation velocity (u‟
2
rms) is plotted viruses of time scale (window size) to get 

good estimation based on adequate values for window size when u‟
2

rms will give constant 

value as shown in Fig.26. Fig 27 shows comparison of instantaneous velocity and moving 

average value of cough velocity. 
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Figure 25 Centered moving average approach (windows size k=3) 

 

Figure 26 Windows size’s check independency 

 

Figure 27 Comparison of moving average and instant velocity profiles of cough 

 

 

Peak of the cough vel. 
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3.6 Cough Velocity Normalization 

For better analysis and more generalized comparison, each cough velocity time history, 

following a moving average filtering is normalized to give exactly 1 at the peak of the 

cough. For this purpose, the equation 3.20 will be used to normalize the velocities which 

were gotten by both HWA and PIV measurements in order to compare all cough velocity 

time histories from all participants. 

 

 

 

 

 

 

 

 

 

 

                                                                     
       

     
                                        (3.20) 

Where: 

U(i) is the instantaneous velocity, Us the velocity of cough at the beginning of the cough 

period as shown in Fig.28, and Up maximum velocity of the cough. 

For the time axis, the time is normalized according to equation (3.21) 

 𝑢𝑝,𝑡𝑝) 

 𝑢𝑠,𝑡𝑠) 

u’(t) 

U (t) 

𝑼     t  

Figure 28 The definition of the cough start and peak points with zoom in sample 
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                                          (3.21) 

Where: 

τ(t)  is the normalized velocity, tp is the time at the peak of the cough velocity, 

ts the time at beginning of cough period and ti is the instantaneous time . 

3.7 Bioaerosol sampling and mid turbinate swab (MTS) 

In order to quantify the factors relating to person-to-person airborne transmission of 

virus, the measurements of the viral content of the droplets produced during real human 

coughs from participants will be carried out. The bioaerosol processes associated with 

virus droplet formation and transmission will be started by droplet sampling onto wet 

polytetrafluoroethylene (PTFE) membrane filters of 1.0 μm pore size and 37 mm 

diameter. The use of the smaller (37-mm) filter will increase the probability of the 

contaminant being deposited onto a smaller area, thus increasing the concentration of the 

droplets collected from the filter (Jensen and Schafer 1998). Filters are often held in 

disposable plastic filter cassettes during bioaerosol sampling as shown in Fig.29. The 

constant-flow air sampling pumps (SKC Inc., Airchek 224-PCXR3) will be operated at a 

flow rate of 4000 ± 40 mL/min. Moreover, a self-collected mid turbinate swab (MTS) 

will be used to determine the identity of the pathogen acquired by each study participant. 

Then, these specimens will be interrogated by multiplex polymerase chain reaction 

(multiplex-PCR) assay for a panel of respiratory viruses (RVP Fast, Luminex) (Savory et 

al. 2014). The viral content from the membranes will be quantified using a virus-specific 

monoplex quantitative real-time PCR assay (Savory et al. 2014). 
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Figure 29 Diagram and photograph of the bioaerosol sampling cassette assembly 

and sampling pump and their positions in FLUGIE chamber (Savory et al 2014 

(with authors’ permission)). 
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Chapter 4 

4 Experimental Methodology  

According to the ethical responsibility, the office of Human Research Ethics in Western 

University (HSREB) reviewed and approved the present study (approval number: 

108945).  The intake steps of the volunteer students will start first after they are assessed 

by a physician in Western Students Health Service (WSHS). Then they are referred to our 

recruiters at the welcome desk to fill a study eligibility form where they are explained 

about the study and obtain an informed consent form from them. The eligibility form 

contains the inclusion and the exclusion criteria. The inclusion criteria are; the 

participants should have fever and cough and/or sore throat in the absence of another 

known cause of illness (e.g. allergies) in last 24 hours and be aged between 18 and 35 

(inclusive). The exclusion criteria exclude any participants who are 

immunocompromised, or with underlying cardiopulmonary disease, pregnant, or a 

smoker. The Thompson Engineering Building (TEB 308) is used for sample collection of 

the coughs (one self-collected mid-turbinate swab and six cough airflows). The eligibility 

form, letter of information, and consent form and Research Ethics Boards (REB) 

approval form included in Appendix (D). The experimental measurements consist of 

three steps, which will be conducted during the research period. In this chapter, more 

details about the experimental methodology include the HWA probe measurements, bio-

aerosol and mid turbinate swab sampling and PIV measurements will be presented. 

 

4.1 HWA probe measurements 

A thermal anemometer, which presented in chapter 3 section 3.3, is used to measure air 

velocities by measuring heat transfer from a small wire immersed in the cough flow field 

at 1 m in axial distance and 0.50 m height from the chamber floor as presented in Fig.30, 

(0.17 m under the centreline of the cough chamber inlet), that because the cough will tend 

to fell down at 1 m downstream as observed from previous study. Hot wire anemometry 

provides an analogue output which represents the velocity in a point. Velocity 
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information is thus available by using HWA_Acq.vi program, which is used to the hot-

wire recording. 30 sec was applied to record the data and cover the whole cough period 

of each cough for all three coughs. Sampling rate at 1 kHz was applied in range of 0 – 3 

V to capture all turbulent scales of the cough. 

 

Figure 30 Hot Wire Anemometry in FLUGIE Chamber 

 

4.2 Bio-aerosol and mid turbinate swab sampling 

Two PTFE membrane filters are suspended from the roof of the chamber at (0.5, 0.89, 

0.72) and (1.0, 0.89, 0.72) m as presented in section 3.5. These filters are connected to 

separate constant flow rate sampling pumps as shown in Fig. 29. Each participant gives 
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three separate coughs, 30 seconds apart. The aerosol sampling and HWA probe 

measurements are conducted simultaneously. Expelled pathogens are collected by the 

membranes and each membrane is saved in an individual swab tube and labeled by the 

participant number and location (0.5 or 1.0 m). The measurements procedures were 

illustrated in Appendix (E) (Lin et al 2014). Finally, the tube is shaken for 10 s by a 

vortex shaker and then stored at -80
o
C in the freezer. In order to identify the virus 

pathogen, a mid-turbinate swab (MTS) specimen is collected after the participant finishes 

these first two measurements. The MTS kit is used to make a self-collected swab. The 

samples are first stored at -20
o
 C freezer (up to 24 hours maximum) in the lab and after 

all the measurements are completed, it is transferred to a -80
o
C freezer before final 

analysis in the Department of Microbiology; Division of Infectious Diseases; Sunnybrook 

Health Sciences Centre and Research Institute (SRI)-University of Toronto.   

4.3 Particle Image Velocimetry Measurements of Coughs 

The last step in the experimental measurements is the PIV measurements. In order to 

quantify the cough flow field, separate measurements are performed by using the optical 

access area into the FLUGIE chamber. The cough chamber is seeded by TiO2. The Nd: 

YAG laser beam is directed into the chamber from a lower glass window by using a 

mirror and diverged and fanned by set of lenses setup (see Fig.13). The laser sheet 

illuminates the seeded particles with 336 mm width at 1 m downstream the cougher 

mouth. The dual CCD cameras system, which is focused on the laser sheet with defined 

flow field as described in Fig. 16, captures the cough flow characteristics within two flow 

fields overlapping by 20% vertically (see Fig. 16). The lower energy Nd: YAG laser is 

used with 15 Hz that allows capture of 80 images during 5 s (the period of capturing 

images). The participant presents three cough at this step, 30 seconds apart. Insight3G 

platform software is used with laser system to control the capture process. The timing 

setup which is used in this experiment is as presented in Table 4. 
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Table 4 PIV Capture Timing Setup 

PIV Frame Mode Straddle 

Pulse Repetition Rate (Hz) 15 

Laser Pulse Delay (µs) 10000 

Delta T (µs) 750 

PIV Exposure (µs) 10375 

The processing of PIV images is started by using the rotation option in the post 

processing suite, which rotates the image +90
o
 to the correct position. The cross-

correlation technique is used to process the images and that can be broken down into 

many steps as follows: generation of grids, masking spots, performing the correlation, 

location of peaks and, finally, performing vector validation and conditioning. The 

parameters which are used to processing the PIV images are presented in Table 5 with 

more explanation (TSI Coorporation (TM) 2008; Raffel et al. 1998). 
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Table 5 Setting up of PIV Parameters for Processing 

Grid Engine Recursive Nyquist Grid Use this plugin to increase accuracy 

or obtain higher spatial resolution. 

Spot Mask Engine Gaussian Mask Use this condition (weight 

function) to give more value to the 

pixel‟s centre and less to the edges 

of the pixels  

Correlation Engine Fast Fourier Transform (FFT) The correlation is compute using a  

FFT and the spots must be squared 

and spot A must be has the same 

size as the spot B. 

Peak Engine Gaussian Peak It locates the correlation peak with 

sub-pixel accuracy by fitting a 

Gaussian curve to the highest pixel 

and its four nearest neighbors. 

Vector Validation 

(Post-processing) 

1-Local Validation 

(Median) 

It is widely used and the velocity 

vectors are the median value of all 

values of all vectors in the 

neighborhood. 

 2-Global Validation 

(Standard Deviation Range) 

The range of valid velocities is 

defined by multiply of standard 

deviation and is centred at the mean 

velocity. 

Vector Conditioning Filling Holes 

(Recursive Filling) 

The filling procedure sorts the 

holes by the number of valid 

neighbors found initially. 
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 The size of the interrogation window was set to 32× 32 pixels, and a 50 % window 

overlap was used to increase the number of vectors. Considering the 1600×1200 pixel 

resolution of the images, an array of 99× 74 velocity vectors, which was oriented 

vertically, was generated from each image pair (TSI Coorporation(TM) 2008). The 

spatially mean velocity, <U>, will be calculated at each captured frame by using the 

following correlation: 

                                    
∑            

   

 
                                                                        (4.1) 

Where: 

<U> is the spatial mean velocity (m/s), N is the total velocity vectors = 7326 for each 

frame 

<    is the local velocity =√  
    

  
 

            are the axial and vertical velocity components respectively.  
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Chapter 5 

5 Results and Discussion 

5.1 Introduction  

In this chapter, virological aerosol sampling, mid-turbinate swab results, hot wire probe 

(H.W.A) and particle image velocimetry (PIV) measurements will be presented, analyzed 

and discussed for each technique. The results from the winter 2016-17 flu season, 

encompass 9 participants who were recruited when they were presumed ill. Experiments 

were conducted for two separate visits; trials were run when the participant was sick, and 

they returned for a convalescent visit. Moreover, the results from trials conducted in 

summer 2013, which are for 12 healthy individuals, will be used in this chapter, as well 

as the results from winter 2014, which includes 5 sick participants and 3 convalesced 

participants.   

 

5.2 Virological analysis and MTS Results  

The target of this study was to recruit 50 participants. Several challenges were met while 

recruiting and the goal was not met. Recruitment via self-referral might have resulted in 

more participants, but could have resulted in participants who would not have had 

respiratory illness. 

5.2.1 The results of WeCoF study of winter 2014: 

From January 9
th

 to March 1
st
 seven students were referred to WeCoF study recruiters by 

the Western Student Health Service (WSHS) doctors of whom five agreed to participate. 

The five participants recruited yielded three participants who tested positive for 

respiratory viruses. The three etiologic agents found were corona virus (CoV) NL63, 

influenza A (H1N1) and respiratory syncytial virus (RSV). Viral RNA was extracted 
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from open-faced cassettes and analyzed using droplet digital PCR. All results were 

negative except one from the influenza-infected participant, where 0.163 copies/µL of 

vRNA were recovered from the filter located at 1m. 

5.2.2 The results of WeCoF study of winter 2017: 

From January 14
th

 to March 30
th

, 2017 a total of nine participants were recruited from 

Western Student Health Service (WSHS) during the flu season. The present study 

resulted 4 out of 9 participants having an illness determined from MTS results, which is 

considered an overall good yield with a limited number of flu cases. Usually in clinical 

studies, the biological sample analysis is performed blinded to avoid any bias, and 

therefore the results presented are without the participant identification number. The four 

etiologic agents found were corona virus (CoV) NL63, (CoV) OC43, influenza A (H3N2) 

and respiratory syncytial virus (RSV). Although the MTS yielded a super positive result, 

the Polymerase Chain Reaction (PCR) data for the filter air samples of the flu A H3N2 

for the participant at 0.5 and 1 m were all negative. All Ribonucleic acid (RNA) was 

extracted using the MagMax bead kit. Table 5.1 summarizes the PCR data and MTS 

result of influenza A H3N2 case. 

Table 6 PCR and MTS data flu A H3N2 patient 

Sample CT* 
quantity 

(copies/well)* 

quantity 

(copies/ml) 
log10/ml 

MTS 20.64 172775.98 10366558.8 7.02 

PTFE 0.5m Undetermined n/a n/a n/a 

PTFE 1m Undetermined n/a n/a n/a 
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*Where: 

 CT: is cycle threshold, or the cycle at which the sample is detected by the machine. 

Copies/well: The flu RNA copies/well is extrapolated from a standard curve which was 

incorporated into the assay (the flu A standard for 10E6 RNA copies has a CT of 20). 

5.3  H.W.A. Results  

The hot wire probe, which was calibrated by the developed facilities within 10% 

uncertainty, provides results for 9 participants. Three voluntarily coughs from each 

participant were collected when they were presumed ill and after they recovered. Data 

was collected for 27 coughs in each category.  

5.3.1 Time history of cough velocity 

A typical sample of the best set of coughs is used to compare the time history for three 

coughs expelled from the same (a) sick and (b) convalescent participant. (Fig. 31: 

participant no 952). The participant was asked to produce a series of three coughs with 

the same strength for each, but the results showed that in the sick case the participant 

produced a peak instantaneous velocity at 0.9, 0.7 and 1.5 m/s for coughs 1, 2, 3, 

respectively. The same participant was asked to produce three coughs of similar strength 

after recovering from illness. The participant produced three coughs with a higher peak 

velocity of 1.2, 1.2 and 2.3 m/s for coughs 1, 2, 3, respectively. The comparison of the 6 

coughs for both cases shows that the strength of the velocity field for convalescent 

coughs is higher than that of the sick coughs.  The time history of the instantaneous 

velocity field depicts the flow as a non-stationary phenomenon. For more informative 
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comparisons, the results are presented in terms of moving average velocity instead of the 

instantaneous velocity, in both cases as illustrated in section 3.6. Fig. 32 shows the 

comparison of the time history of the first cough for the same participant. The peak 

coughs velocities of the sick case are 0.6, 0.53, and 1.1 m/s, respectively, while for the 

convalescent case are 1.49, 1.5 and 1.65 m/s. There is a consistent ratio between up-

instantaneous to up-moving average for all 6 coughs in the order of 1.4 (+/- 10%). 

For a more generalized comparison, the moving average velocity is normalized by using 

the correlations presented in section 3.6. Figure 33 shows the comparison of normalized 

velocity for three coughs for the same participant in each case. 

 

Figure 31 The time history of three coughs of participant no 952 for (a) sick and (b) 

convalescent 

 

 

 

(a) (b

(a) (b) 
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Figure 32 The time history of moving average velocity and instantaneous velocity 

for (a) sick and (b) convalescent 

 

 

Figure 33 Normalized three cough’s velocities for (a) sick and (b) convalescent case 

Participant (952) 

 

 

(a) (b) 

(a) (b

(a) 

𝝉  
𝒕𝒊  𝒕𝒔
𝒕𝒑  𝒕𝒔

 

 U  
𝒖 𝒕   𝒖𝒔

𝒖𝒑  𝒖𝒔
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The comparison of the time history for the sick and convalescent cases provides a good 

insight to the flow behavior of a transient coughing process at a specific point. For these 

6 coughs, it is clear from the following comparison that the sick coughs are weaker than 

convalescent coughs. The moving average velocity gave a good estimation for cough 

velocities in both cases compared to instantaneous velocities because this approach 

removed the short time scale variations. The normalized velocities comparison showed 

that the sick coughs do not collapse very well and the sick coughs took a longer time to 

terminate. 

 

5.3.2 Variability of peak cough velocity  

The measured peak moving average velocity is sorted from the weaker cough to the 

strongest one to compare the variability of peak cough velocity. Figure 34 presents the 

variability of max velocity measurements (m/s) for all trials for sick and convalescent 

period. For sick coughs, trials 26 and 27 showed abnormal peak values, 

 

Figure 34 Variability of peak moving average velocity for all participants 

(a) (b

(b) (a) 
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so both are excluded for analysis in the present study. Whilst comparing the RMS of the 

peak cough velocity, the general trend of variability of the average values across all sick 

coughs ((uP-average) =0.36 m/s) is lower than average of all convalescent coughs ((uP-average) 

=0.57 m/s). The nine weaker coughs, which have uP value ≤ 0.1 m/s, are excluded from 

both sick and convalescent cases, and the normalized moving average velocities are 

compared to understand the general behavior of all coughs in both cases. Figure 35 shows 

normalized velocities of all convalescent & sick coughs. The comparison of normalized 

velocity profiles between the two cases shows that the sick coughs take a long interval to 

terminate because the sick coughs have velocities lower than that of the convalescent 

coughs. All data of dimensionless time history from both cases are lumped together to 

find the general trend by using 5
th

 order Gaussian equation.  

  

Figure 35  Normalized velocities of all (a) sick & (b) convalescent coughs 

 

(a) (b) 
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Figure 36 shows the general trend of time history of all coughs from sick and 

convalescent cases. The R
2
, which is a statistical indication of how close the data are to 

the fitted Gaussian equation, gives a value of 0.84 which is considered as high variability 

of the response data. 

 

 

Figure 36 General trend of all normalized velocities for all both of sick & 

convalescent coughs 

To investigate the dimensionless time history of both sick and convalescent cases, the 

curve fitting is implemented by using the Gaussian 5th order fit equation in the interval (0 

< τ < 1.6). Figure 37 (a) and (b) presents the general trend of dimensionless time history 

for both cases and it can be observed that the coefficient of determination (R
2
) is slightly 

different for sick and convalescent cases (89% for sick, 80% for convalescent). 

  



73 

 

 

 

   

Figure 37 General trend of all normalized velocities for all (a) sick & (b) 

convalescent coughs 

   

The accumulative frequency of all coughs which are sick or convalescent is calculated by 

using eqn. 5.1. 

                                                         𝒖 ,   
∑   , 

   
   

 
                                                       (5.1) 

 

Where:  

             up is the peak of moving average 

           c =1: n and (n is the number of the highest value of up) 

Figure 38 illustrates the variation of the cumulative frequency of the peak moving 

average velocity for sick and convalescent coughs. There is no variation substantially in 

low velocity regime, but remarkable difference is observed in the high velocity regime 

between sick and convalescent coughs. 

(a) 

(a) (b) 
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Figure 38 Cumulative Chart of peak moving average velocity for all sick and 

convalescent coughs 

The percentage difference of the cumulative averaging cough velocity between sick and 

convalescent coughs is roughly 16% for the first cough sample and 45% for the last 

sample (24). Ultimately, the general trend of variability for sick coughs does not vary 

substantially from convalescent coughs. For a more generalized comparison, the 

normalized velocities show a long cough period for sick coughs that which could be 

explained by weaker velocity magnitudes for sick coughs. Although the distribution of 

convalescent coughs missed three coughs from one participant, a slight difference is 

observed between the ensemble average of sick and convalescent coughs. The ensemble 

average of 24 convalescent coughs is 0.57 m/s while for sick coughs is 0.36 m/s across of 

27 coughs. 
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Figure 39 The general trend of Peak coughs velocity of all coughs, (a) for the best 7 

coughs for each case and (b) for all 51 coughs from                                                             

both cases as sick and convalescent 

The peak velocity of the cough is plotted verses the peak time in Fig. 39; the peak 

velocity is calculated from equation 5.2 as follows: 

                             Up-s = up-us                                                                                       (5.2) 

Where up and us are the moving average velocity at the start and peak points as described 

in Fig.25. To leave the weaker coughs out of the present analysis, the best seven coughs, 

which have a peak velocity ≥ 0.20 m/s, are selected from each case. It is clear from 

Fig.39 (a) that the peak velocity is inversely proportional to the time and the peak cough 

interval ranges between 0.5 s to 3 s for most of the strong coughs. In Fig. 39 (b), it is 

noticed that a large variation of the peak cough velocity exists among the participants, 

and the peak cough interval is also extended to 11s for very weak coughs. This clearly 

does not fit the data very well. 

 

(a) (b) 
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5.3.3.   Coughs Turbulent Intensity  

The turbulent intensity for each cough is calculated by using eqn. 5.3 for sick and 

convalescent case (Savory 2015).                                                                                                                                                                                      

                                                                                                                                        (5.3) 

Where: 

             u‟rms   is the root mean square of fluctuation velocity. 

                   is the moving average velocity from min to max value of cough velocity. 

An accumulative chart for turbulent intensity is created by a similar technique to the one 

used in the previous subsection. Fig.40 illustrates the accumulative turbulent intensity for 

sick and convalescent coughs have values mostly in the range of 3 – 6% for both cases. 

The comparison showed that the sick participant produces larger accumulative average 

compared to the convalescent participant, excluding the first three convalescent coughs. 

These are higher than the sick participants, because these three convalescent coughs have 

average velocity smaller than the sick coughs. The power spectral density (PSD) of the 

cough velocity fluctuations represents the distribution of energy in the turbulent mean 

flow. To characterize the spectral energy produced by sick and convalescent coughs, the 

Welch's power spectral density method is employed in a Matlab script (Appendix F-(a)). 

Figure 41 shows a comparison of the power spectral density function between the sick 

and convalescent cough (1
st
 sample of both cases) obtained from participant 952. A -5/3 

slope of the spectra is observed, which confirms the Kolmogorov decay law. It is clear 

that the convalescent cough has a higher peak frequency compared to the sick cough, but 

𝑰𝒖= 
 𝒖′𝒓𝒎𝒔 𝒐𝒇 𝒄𝒐𝒖𝒈𝒉 𝒑𝒆𝒓𝒊𝒐𝒅

𝑼𝒑 𝒔
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it is difficult to propose any general trend from this sort of comparison between the 

power spectrum energy of the first cough sample in sick and convalescent case.  

 

Figure 40 Cumulative chart of turbulent intensity for all sick and convalescent 

coughs 

  

Figure 41 Power spectral density of the first sick and convalescent cough for 

participant 952 
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For this reason, the power spectral energy for all coughs of participant 952 was plotted in 

Fig. 43 to compare and extract any trend for these coughs. 

 

Figure 42 Power spectral density of no flow period for all coughs (a) sick and (b) 

convalescent cases 

To quantify the noise level in the power spectral density (PSD) of all coughs for both sick 

and convalescent cases, a PSD function of all coughs during no flow period is plotted for 

each sick and convalescent case of participant 952. From Fig. 42, it is seen that any signal 

≤ 10
-8

 is purely noise, so the power spectrum should end with a lower limit of 10
-8

 

(m/s)
2
/Hz. Since no power spectra have any turbulent energy above the noise level at 

higher frequencies, the frequency that can be resolved in the spectrum will be half of the 

sampling rate, i.e. 500 Hz as presented in Fig. 43. The power spectral density information 

will be utilized later to compute the turbulence intensity. From Fig. 43, it is clear from 

this pictorial comparison of the power spectral density (PSD) for all 6 sick and 

convalescent coughs (participant 952), the behavior of power spectral for each cough is 

not similar due to different flow conditions of each single cough.  

(a) (b) 
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Figure 43 Power spectral density of all coughs from participant 952 

 

Figure 44 Power spectral density per u’rms
2
 of all coughs from participant 952 
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Fig.44 illustrates the normalized power spectrum energy of all convalescent and sick 

coughs. The curves are normalized by     
′ , and this comparison shows that the results of 

all coughs decay according to -5/3 law. The areas under the curves are roughly equal to 

0.5. The turbulence intensity of sick coughs (average Iu = 7 %) is slightly higher than 

convalescent coughs (average Iu = 6%) as present in table 7. Turbulent intensity is 

calculated by using eqn. 5.3 and by integrating the area under the spectrum curve by 

using the trapz function in Matlab given by eq. (5.4) 

                                                           A=0.5*     
′                                                        (5.4) 

The results show a slight difference between sick coughs (the average of Iu from trapz 

function 11%) and convalescent coughs (the average of Iu from trapz function 6%) 

computed by two methods. The low frequency showed differences for all coughs 

compared to high frequency regions which are similar. These differences in low 

frequencies regions of all coughs may be imputed to large-scale variations due to the 

initial cough angle, the mouth opening area and movement by the subject during the 

cough, as well as any initial ambient air movement in the cough chamber. 
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Table 7 Turbulent fluctuation velocities and turbulent intensities of all coughs 

 u'rms u'rms(tpz)  ̅  ̅   Iu (mv) Iu(tpz) 

cough-1C 0.08 0.09 1.49 0.06 5.34 5.80 

cough-2C 0.08 0.07 1.43 0.06 5.70 5.10 

cough-3C 0.16 0.13 1.58 0.06 7.30 8.11 

cough-1S 0.06 .08 0.47 0.05 11.63 16.17 

cough-2S 0.03 .04 0.49 0.05 5.71 8.01 

cough-3S 0.07 .09 1.14 0.05 6.20 8.19 

Where:  

u'rms is the fluctuation velocity of moving average values  

u'rms (tpz) is the fluctuation velocity from integrated of the spectra curve 

 ̅ is the mean of moving average velocity 

Iu (mv) is turbulent intensity of moving average values 

Iu (tpz) is turbulent intensity of integrated of the spectra curve 

Since the measurements were done at a fixed point in space, an estimate of the 

autocorrelation function will be considered in this study. The autocorrelation represents 

the correlation between two variables at different points in time, t. The autocorrelation is 

always computed between the same variable; the velocity fluctuations ui. The 

autocorrelation relates the velocity at time t to the same velocity at time t + Δt as 

presented in equation (5.5). 
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                                 (τ)    (rΔt) =
 

       
 

   
∑           

   
                                             (5.5)               

Where:     R is the autocorrelation, r = 0, 1, 2, 3, …., N. (N is the maximum lag number). 

Fig. 45 shows the time interval from 0 to 0.1, which presents the initial portion of the 

autocorrelation.  

   

Figure 45 Autocorrelation for interval from 0 to 0.1s 

Table 8 Results of computing the time scales and length scales of the flow 

 
cough1S cough2S cough3S cough1C cough2C cough3C 

Integral length 

scale, L (mm) 
4.1 0.6 0.28 4.60 11.00 22.10 

Integral time 

scale, TE (s) 
0.023 0.0022 0.0005 0.0062 0.0153 0.028 

 

Figure 45 shows that the auto correlation reaches its first zero value roughly at 0.02, 0.03, 

0.052 seconds, for the three sick coughs respectively, and 0.015, 0.078, 0.062 second for 

the three convalescent coughs. The area under each curve is the integral time scale of 

(a) (b) 
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residual turbulence, TE. The integral time scale was computed by using the numerical 

approximation of the second derivative of the autocorrelation, given by equation 5.6  

(Savory 2015): 

                                       TE= 
 

√      
            as   τ               0                                         (5.6) 

Where: 

                is the autocorrelation, τ is the time lag, τ  r Δt. 

From Fig. 45, an estimation of the integral time scale can be done by integrating the area 

under the autocorrelation curve bounded by time equals zero and the time at which the 

first zero autocorrelation takes place. This time scale, which is calculated using eqn. 5.6, 

will be used to compute the length scales as described in eqns. 5.7 (Savory 2015),  

                                                         L≈  ̅                                                                     (5.7) 

Where: 

L is the integral length scale,  ̅ is the local mean velocity ( ̅=0.5x (up-us)),    is the 

integral time scale. The integral time scale was found using trapezoidal role. The results 

of time and length scales are listed above in Table 5.3.  
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5.4 Particle Image Velocimetry (PIV) Measurements 

Particle image velocimetry (PIV) techniques were used for measuring the two-

dimensional velocity fields in a vertical plane (see Fig. 16). The field of view was 

positioned within the FLUGIE chamber at 1 m downstream from the cough inlet 

chamber. The PIV measurements were conducted in this study by using a double pulsed 

Nd: YAG crystal laser of power 120 mJ per pulse to generate a laser sheet of 532 nm 

wavelength at 15 kHz with two CCD cameras (see Fig. 10). In this section, results from 

Western Cold and Flu (WeCoF) aerosol studies, which were conducted by PIV technique, 

will also be presented. 

5.4.1   Results of summer 2013 WeCoF Aerosol Study 

The far field aerodynamics of human coughs, which was produced by the healthy 

subjects, had been studied in FLUGIE chamber using the prior mentioned Nd: YAG laser 

system with one 4 MP CCD camera. A cohort of 12 healthy individuals had been carried 

out to quantify the strengths of their coughs 1 m away from the mouth (Savory et al. 

2014). The velocity fields associated with 36 coughs from 12 healthy young adults (9 

males and 3 females ages 20 to 32) were quantified by the PIV (Savory et al. 2014) 

measurement techniques. The time histories of spatially averaged velocity <U> values for 

all 29 coughs of the participants are presented in the figure 46. Seven coughs out of 36, 

have a peak cough velocity less than 0.1 m/s, and are excluded from this comparison.  It 

is seen that, in all cases, the cough velocity through the field of view, (174.8 mm x 233.1 

mm), is clearly defined with initial rapid increase of cough velocity followed by a slower 

decay. The study showed that, the limitation on the PIV window size and variable 

physical traits of the study participants, had considerable variation in location and 
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strength of each cough, with some coughs missing most of the imaged field of view 

entirely (Savory et al. 2014). 

 

 

Figure 46 Time histories of all 29 coughs from 9 males and 3 females (Summer 2013)  
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Figure 47 The peak, spatially-averaged velocity magnitudes across all 36 coughs 

 

The variability of maximum spatially averaged velocity magnitudes across all 36 trials 

are presented here in Fig.47. The average value of all 36 coughs at 1m downstream is 

0.42 m/s, which reflects significant air motion of the cough at that location from the 

source. To make an observation for the general trend of all coughs, the time histories of 

all 29 coughs are normalized as described in section 3.5. The normalized cough velocities 

of all coughs are plotted in Fig.48 (a) against dimensionless time (τ). To describe the 

general characteristics of all measured cough velocities, a third order Gaussian curve 

fitting analysis was performed in MATLAB to obtain the regression trend of these 

coughs up to (τ)   1.6 as shown in Fig. 48(b). The coefficient of determination was R
2 

= 

78%. 
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Figure 48 Normalized cough velocities (a) and the Gaussian curve fitting (b) for all 

29 coughs (Summer 2013) 

 

 

5.4.2  Results of winter 2014 WeCoF Aerosol Study 

In the flu season of winter 2014, a total of five participants agreed to participate in 

WeCoF aerosol study, and a similar set up of FLUGIE of WeCoF 2013 was used. Two 

out of five participants did not return for convalescent visits, which produced 24 coughs 

in total, 3 coughs from each participant from a single visit. A typical time history of 7 

sick coughs, which have a peak velocity greater than 0.1 m/s, is presented here in Fig. 49 

(a) and for 7 convalescent coughs in Fig 49 (b). The mean of the peak sick coughs is 0.33 

m/s, while 0.22 m/s is the mean of peak convalescent coughs. 

(a) (b) 
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Figure 49 The time history of 7 sick coughs (a) and 7 convalescent coughs (b), 

(Winter 2014) 

 The variability of the spatially averaged peak velocity in Fig 50 ranged between 0.02 to 

1.2 m/s. The average value across all 24 coughs is 0.34 m/s. The time histories of all 

these 14 coughs are shown in Fig. 51. To perform the regression analysis for all cough 

flows, normalization of all 14 coughs is done using MATLAB as described in section 3.5 

(see Fig. 52 (a)).  

(a) (b) 
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Figure 50 The peak, spatially-averaged velocity magnitudes across all coughs 

(Winter 2014) 

 

Figure 51 The time history of all coughs (Winter 2014) 
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Figure 52 Normalized of all 14 coughs velocity (a) and Gaussian curve fitting (b) 

The general trend for all normalizing coughs was generated by fitting a third order 

Gaussian curve with coefficient of determination of R
2 

= 81% as illustrated in Fig. 52 (b). 

An instantaneous vector field of the third cough of participant 38 is presented in Fig. 53. 

The peak period of the cough velocity took about 2 seconds to disperse. The green 

vectors which were generated and validated by Insight3G processing represent the cough 

flow field and yellow vectors represent the interpolated vectors. From Fig. 53, it can be 

observed that, though the used camera captures majority of the flow field, a significate 

part of the cough was missed from the field of view of the used camera. This can be 

considered as a major limitation for 174.8 x 233.1 mm field of view of the used camera. 

 

(b) (a) 
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Figure 53 Time history of an instantaneous vector field through field of view 

obtained during participant 38 sick’s cough (no. 1),                                                   

(Lin et al. 2014 (with author's premission)) 

5.4.3 Results of winter 2017 WeCoF Aerosol Study 

To expand our field of view, two cameras were used. This yielded 140.73×336.3 mm 

field of view, which is considered as an overall good extent of space to cover the cough 

flow field at 1 m downstream from the cough inlet of the FLUGIE chamber. The field of 

view has been increased in this study, compared with the previous studies, to view a 

wider range of flow dynamics of the coughs. In winter season of 2017, the recruitment 

procedure took place in the period between January 14
th

 and March 30
th

. Nine students 

had agreed to participate in this study and all of them participated in the experimental 

measurements twice, first when they were sick and after they recuperated. Although the 
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PIV system was calibrated before the recruitment procedure for PIV measurements, the 

data captured by the PIV system were affected by unexpected change of a set frequency. 

Therefore, all the data from the winter 2017 PIV study are not considered for 

measurement analysis in this thesis. 

5.4.4 Results of summer 2017 WeCoF Aerosol Study 

In summer 2017 season, according to the recommendations from the previous WeCoF 

studies, two cameras were used to generate field of view of cough velocity at 1 m 

downstream of the cough source to let each camera capture majority or minority of the 

cough depending on the initial boundary conditions of the cough. For example, Fig. 54 

shows the time history of spatially averaged velocity of a trial cough during calibration 

process. The lower camera captured majority of the cough flow as shown in Fig. 54 (a), 

while some of the cough was captured by the upper camera as in (b). Matlab script was 

written (Appendix F- (b)) to generate one field of view from two cameras as shown in Fig 

54, which presents the time history of cough trial during the calibration steps. 
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Figure 54 Time history of cough velocity captured (a) lower and (b) upper camera. 

 

Figure 55 Time history of cough velocity within the generated field of view 

In this season, we aimed to recruit a cohort of 25 healthy individuals. Eleven participants 

conducted the WeCoF measurements before the lower camera started malfunctioning. 

The results from 3 participants showed good quality coughs from both the used cameras 

and those results were used in this analysis. To analyze the healthy cough flow from the 

(a) 
(b

(b) 
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present measurements, a typical cough no. 2 of participant 221, with a peak spatial 

averaged velocity profile around 0.8 m/s, was selected. Figure 56 shows the time history 

of spatially averaged velocity for a whole field of view captured by two cameras. It is 

seen that the cough peak period lasted for almost 2 seconds (0.5-2.5 secs) with peak 

velocity of 0.89 m/s at 0.73 sec. To investigate the time history of the cough velocity in 

the shared area between the two cameras, one point was selected to present the time 

history in Y- direction at vector 37. Figure 57 presents the time history at the captured 

frame number 11 and point (37, 99) within the vector field of both cameras. It is clear 

that the time history of the velocity magnitude at the shared area shows good agreement. 

 

Figure 56 Time history of a whole field of view for cough no. 2, participant -221 
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Figure 57 The time history of the instantaneous velocity to check the shared area 

 

Figure 58 Time history of cough velocity at two points C and G participant-221, 

cough no.2 

Fig. 58 illustrates the time history of the velocity magnitude at the first point (G) at HWA 

position (0.0847 m, 0.0664 m), and the second point (C) at the centreline (0.0847 m, 
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0.2864 m) as described in Fig. 16. The time history of cough velocity at HWA point (YG) 

provides an instantaneous peak velocity of 0.83 m/s at 0.8 sec with a peak period of 

almost 2 seconds. The time history at centreline point (YC) shows a high peak with higher 

value of 1.1 m/s at 0.85 s in the cough peak period. In order to make observation for the 

whole flow field captured by both cameras, a sequence of velocity contours is shown in 

Fig. 59. The lower right corner of field of view, which shows spots with high velocities, 

is effected by camera malfunction. Moreover, from the successive images of velocity 

contours, it can be inferred that the majority of cough flow falls in the region field 

between the two points G and C which is equal to 0.22 m. 

 

 

The variability of the maximum spatially averaged velocity of the 6 coughs from this 

study ranges between 0.23 to 1.02 m/s as shown in Fig. 60. The average value across all 6 

good coughs is 0.6 m/s. The time history of spatially averaged cough velocity for all 6 

Figure 59 Time history of instantaneous velocity contour field through field of view 

obtained from healthy participant-221, cough (no. 2) 

Cough inlet centreline “C” 

H.W.A  “G” 
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good coughs is presented in Fig. 61. It is clearly seen that, in all suitably defined 6 

coughs, an initial rapid increase of cough velocities is observed as expected, followed by 

a gradual decay. There is, however, a significant variation of spatially averaged velocity 

among coughs from the same participant, and also between participants. 

 To investigate this variation, regression analysis was performed by normalizing all 

velocities as shown in Fig. 62 (a). The curve fitting by using Gaussian third order 

function was performed, with the coefficient of determination calculated as R
2
 = 74% 

(illustrated in Figs 62 (b). 

 

Figure 60 The peak, spatially-averaged velocity magnitudes across all 6 coughs  

(Summer 2017) 
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Figure 61 Time history of all 6 coughs from participants 221, 880, and 950 

 (Summer 2017) 

  

Figure 62 Normalized of all coughs velocity (a) and Gaussian curve fitting (b) 

 

 

(a) (b

(a) (b) 
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5.4.5 The PIV results of all WeCoF studies 

In order to make a comprehensive analysis for all the data, which were measured by used 

PIV technique, the time history of all 49 coughs (Fig. 63) obtained from sick, 

convalescent and healthy participants, are compared in this analysis. Around three 

quarters of the coughs have maximum spatially averaged velocities less than 0.50 m/s and 

the highest peak velocity is at 2.25 m/s. To make total regression analysis for all data, all 

cough velocities were normalized as described in section 3.5 and presented in Fig 64 (a). 

The curve fitting by using a Gaussian, third order equation was performed with the help 

of MATLAB software, and the coefficient of determination was found to be R
2
 = 74.1% 

for all coughs (Fig. 64 (b)). 

 

Figure 63 The time history of all 49 coughs measured by PIV during WeCoF studies 

 

 

(b(a) 
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Figure 64 Normalized of all coughs velocity (a) and Gaussian curve fitting (b) for all 

49 coughs measured by PIV during WeCoF studies. 

 

 

 

 

(a) (b) 
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Chapter 6 

6 Conclusion and Recommendations for Future Work  

This study is considered as a part of the Western cold and flu aerosol (WeCoF) studies, 

which started back in summer 2013. The aim of the present study is to provide 

experimental statistics of coughs from sick, convalescent, and presumed healthy 

individuals to identify the factors responsible for the transmission of airborne disease at a 

distance 1 m away from the source of the cough. This distance has been considered the 

safe distance between healthy individuals and sick patients. In this chapter the results 

from aerosol sampling, mid turbinate swab (MTS) analysis, hot wire anemometer (HWA) 

and particle velocimetry (PIV) measurements are concluded respectively.  Moreover, 

recommendations for future work are provided. 

6.1 Conclusion 

6.1.1 Virological analysis and MTS Results 

In the present study, the MTS results showed that 4 out of 9 participants had an illness.  

Good results were yielded, considering the limited number of flu cases. The four 

etiologic agents were corona virus (CoV) NL63, (CoV) OC43, Influenza A (H3N2) and 

Respiratory syncytial virus (RSV). The PCR data of Influenza A (H3N2) case, which 

were extracted from both PTFE membrane filters at 0.50 m and 1.00 m, were negative in 

all cases. Moreover, the PCR data analysis confirmed that an H3N2 case produced a 

super-positive MTS result. In fact, the residue of TiO2 particles on the FLUGIE interior 

surfaces, which were used as tracking particles of the used PIV system, might have 

reduced the ability to obtain Virological samples by surface sampling (Lin et al. 2014). 

As mentioned in section 4.2, each PTFE filter was connected to constant air flow 

sampling pump, which drew air at a flow rate of 4000 +/- 40 mL/min. The sampled air 

volume was equivalent to 0.07% of the FLUGIE volume for each sampling pump. Based 

on the preliminary results from the LES model (Bi et al 2017), droplets size in order of 

1.00 µm will remain suspended up to 3 seconds at distance of 1.00 m downstream of the 

cough source, while the larger droplet sizes will have a rapid drop in their speed in the 
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near region (less than 0.5 m). These results, as expected from the literature, confirmed 

that the largest droplet could be collected at a distance lower than the cough centreline in 

the near field region (X < 0.50 m), whereas the fine droplets could be collected around 

the cough centreline in far field region (X >0.50 m). 

6.1.2 HWA measurements 

In winter 2014 study, a single-wire HWA probe was placed outside the PIV field of view 

at greater than one metre distance from the cougher (Lin et al. 2014). The probe, which 

was used in this study, was not calibrated, and it was used as an additional check that 

whether a transient flow was indeed produced in the PIV imaged region. The voltage 

output from this probe showed an intermittent variation of the cough airflow. The study 

concluded that for coughs produced during illness, the peak of the signal was prominent 

and lasted approximately for five seconds. For coughs after convalescence, the peak 

signal was more gradual with a lesser peak voltage and a longer duration approaching ten 

seconds.  

In the present study, a HWA sensor, which is the basic tool for turbulence measurements, 

was used to study the dynamics of the cough flow and characterize the turbulence 

properties of cough with 10% uncertainty. Measurements were taken both at the 

centreline location of 1.00 m downstream from the cough source and also at 0.22 m lower 

than the centreline. 27 coughs are analyzed from the sick participants and 24 coughs from 

their convalescent visits.  In general, the sick coughs showed a weaker cough velocity 

when compared to convalescent coughs, but with higher turbulence intensity. The 

average value of maximum moving average velocity across all coughs is equal to 0.36 

m/s for sick participants and 0.5 m/s when they are convalescent. The peak air velocities 

produced by the sick participants took a longer time to decay when compared with 

convalescent coughs. The ensemble average of peak mean velocity across all 51 trials is 

equal to 0.43 m/s. The turbulence intensity for participants with acute respiratory 

infections ranged between 3 to 9 %, while it ranged between 3 to 6 % on their 

convalescent visits. A typical sample out of the lot was selected to compare the 

differences between sick and convalescent coughs. As a typical example, participant 952 

showed high cough velocity magnitudes when the participant recuperated, when 
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compared to the sick condition. The turbulence intensity obtained was slightly higher in 

sick case with an average of 7.85 % compared to 6.30 % in the convalescent case. The 

integral length scales estimated from the residual turbulence of 6 coughs were 8.4 mm. In 

order to quantify the distribution of turbulent energy, the power spectral density was 

presented for 6 coughs. The comparison between the spectra for all coughs showed a 

peak value in the range of 5 – 10 Hz; and a universal slope of -5/3 (Kolmogorov decay 

law) was also achieved. 

6.1.3 PIV measurements 

A modified setup of two cameras was used in the present study to extend the field of 

view and cover a large part of the cough at 1 m downstream the source. An unanticipated 

change in the set frequency of the used PIV system affected all the data captured during 

winter 2017 flu season. The results from summer 2017 season, where we aimed to recruit 

25 healthy participants before the lower camera started malfunctioning interrupting the 

measurements, provided an overall 6 good quality coughs from 3 healthy participants. 

The ensemble average of the spatially peak averaged velocities across all these 6 coughs 

were 0.58 m/s. The two-camera set up was able to capture most of the full-scale flow 

fields of the cough as evident from the vectors and velocity contours. The results from 

winter 2014 provided us with 24 cough samples from 5 sick participants during their first 

and return visit, excluding 2 participants who did not return. The ensemble average of the 

spatially peak average velocity was equal to 0.29 m/s, with the sick coughs having an 

average of 0.33 m/s while for the 9 convalescent coughs it was 0.22 m/s. The summer 

2013 study showed an ensemble average of 0.51 m/s from 36 coughs of 12 healthy 

individuals. These results showed a marked variation of air motion which were caused by 

coughs from sick, convalescent, and healthy subjects at 1.00 m downstream of the cough 

inlet. 

To conclude, this study mainly focused on characterizing the flow dynamics of a human 

cough in the far field region of (1.00 m downstream). Cough velocities were measured 

when the subjects were sick, convalescent, and healthy. This is considered as the main 

key contribution from this study. These findings will be used to validate a LES numerical 

model which is presently under development and showing promising results (Bi et al 
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2017). In addition to this, the LES model will also be used to investigate the spatial 

distribution of expiratory aerosols, penetration of viral droplets to the ambient 

environment, and how far and for how long will they be suspended in the air by the 

cough jet flow. The numerical study is expected to cover the technical aspects that are 

missed in the experimental work. 

Compared to the previous WeCoF studies, when non-calibrated probe was used in out the 

PIV view field, a calibrated HWA probe was used in the present study to measure the 

flow and characterize the turbulence at specific point. Moreover, two cameras were used 

to cover a wider field of view (140.73 mm x 336.3 mm) compared with the previous PIV 

studies. Although a limited number of participants agreed to participate in this study, 

strong evidence suggests that there is no single unique characteristic shape for cough 

velocity profile, but a general trend was noticed and it could be used to help validate the 

CFD models.  

Within the context of the limited no of subjects studied ( 42 sick coughs, 33 convalescent 

coughs and 42 healthy coughs), a tentative conclusion about the statistically different 

characteristics of cough aerodynamics (i.e. cough‟s velocity, turbulence intensity, and 

length scale) from the sick, convalescent and healthy participants, were obtained during 

this study. Significant air motion was noticed at 1.00 m downstream of the source with 

slight difference among three categories. It is anticipated that as the database is enlarged 

it will likely be possible to make greater definitive statements concerning differences 

among coughs from sick, convalescent and healthy subjects, as well as the capability of 

viral droplets to penetrate to x = 1 m 
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6.2 Recommendations and Future Work 

• For a statistically significant cohort, more participants are required, to come up with 

final recommendations for thesis objectives, to conclude important points for 

implementing precaution of any measures in the future to mitigate the spread of any 

disease during epidemics. 

• Measurements should be taken with more sick participants to define an envelope of 

cough profiles, 1 m downstream, and there is a need to announce about the study early in 

on-campus multimedia and social media in parallel with recruiting from student health 

service at the University of Western Ontario (SHSW). 

• A separate group of measurements with a limited number of trials should be taken in the 

near field region to compare the profiles with literature and the numerical model. 

• Periodic and short calibration process should be conducted for PIV system and HWA 

probe to confirm the accuracy of the measurement from the used tools. 

• Further study is required to quantify the viral content of the aerosols produced during 

the three coughs of each participant within the FLUGIE chamber by relocating the PTFE 

positions and using greater sampled air volume devices. 

All of these points are important for implementing precaution any measures in the future 

for mitigation during epidemics. Moreover, the experimental data and analysis, which 

will continue through to the end of 2018, will be linked to validate the CFD model based 

on Large Eddy Simulation (LES). This numerical work is expected to aid the challenges 

of the experimental work in determining the cough aerodynamics and droplet transport in 

a realistic three-dimensional domain. 
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Appendix (A) Previous literature on Aerodynamic Characteristics and Droplet Size 

Distribution  

Table 9 Previous literature on Aerodynamic Characteristics of Coughing Jet Flow 

 

Authors, References 

Year 

 

Method, Technology 

 

Subjects 

 

Field  

(Region) 

 

Results 

Gupta.et al. 

(2009) 

Moderate speed 

photography120 Hz 

( Smoke) 

   12 Females 

13 Males 

Near field 

(near mouth) 

Mean angles Θ1 40 4, Θ2=15±5,  average mouth 

opening area 4.00± 0.95 cm
2 
&3.37±1.4 cm

2
 for male 

and females, The study measured  medical parameters 

such as CPFR,PVT,CEV. 

Tang et al 

(2009) 

Schlieren Video 

Records 

(Smoke) 

6 Males 

  4 Females 

Near field 

(near mouth) 

Cough considered as classical incompressible 

turbulent jet with spread angle 23.9
o
, 2 litres or so far 

expelled each cough with average max. velocity 8 

m/sec. 

Nishimura et al 

(2013) 

Digital high-vision 

High-speed video and 

vector analysis  

One healthy 

subject 

84 cm  from the mouth Cough velocity at near region greater than 5 m/sec and 

decreased  after 0.05 sec. 
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Kown et al 

(2012) 

PIV 

(oil) 

 

26 Subjects 

Near field(initial velocity 

immediately at the mouth) 

Cough velocity and spread angles respectively  

Males=15.3m/s,38
 o 

Females=10.6m/s, 32
o
  

Bourouiba et al 

(2014) 

High speed camera 1 subject 70 cm  

from the mouth 

Turbulent multiphase puffs & self-similar leading to 

increase of its size and decrease  its mean speed with 

distance from source., d=10µm will fall at distance of 

0.08mm at speed 3mm/s. 

Zhu et al 

(2006) 

 

PIV 

(flour) 

3 healthy students Near field 

(near mouth) 

6.7mg of saliva was expelled with 22 m/sec and 

average velocity11.2 m/sec. Indoor flow field, flow 

filed weakened & gravity affected transport process of 

droplets  

Chao et al 

(2009) 

PIV 

(oil mist) 

Interferometric  

Healthy 

3 males ,9 females 

Near field  

10-60 mm from the mouth 

Air velocity of coughing Male=13.2 m/sec, 

Female=10.2m 

Average max. velocity=11.7 m/sec 

VanScriver et al 

(2011) 

PIV 

(theatrical fog) 

10 males 

19 females 

Within chamber of 

(25*15) 

Cough velocity ranged from 1.5 m/sec-28.8m/sec 

overall average max cough velocity 10.2 m/sec, no 

correlation found between sex & weight expanded 

linearly initially constant at distance from the mouth  
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Afshari et al 

(2002) 

PIV 

(oil droplets) 

Cough simulator Within chamber of 

dimension 

(4‟*4‟*8‟) 

PIV makes possible to undertake detailed analysis of 

cough flow pattern in an enclosed space. 

Savory et al. 

(2014) 

PIV 

(TiO3) 

Healthy students 

3 Females 9 Male 

Far field  

1 m 

Significant motion & average air velocity of 0.5 m/sec, 

velocity profiles have no single characteristic shape 

for cough. 
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Table 10 Previous Literature on Droplet Size Distribution of respiratory activities and concentrations 

Authors, 

References 

& 

Date 

Method, Technology Subjects 

Field 

(Region) 

Results 

Xie et al 

(2007) 

Theoretical  

Simple Physical 

 model 

- Up to 2 m 

 Examined for free-falling droplets when the relative humidity of the indoor 

air environment was 0 , 50 , 70 , and 90 ,and found that “large droplets” 

were larger than 125, 100, 85, and 60 µm, respectively. The study found that 

expelled large droplets were carried more than 2 m away at a velocity of 

10 m/s. 

Yang, S. et 

al (2007) 

Aerodynamic particle 

sizer (APS) and 

scanning mobility 

particle sizer (SMPS) 

54 healthy 
Near the 

mouth 

 Studied effects of age and gender on droplet and airborne distribution sizes. 

Total average size distribution of the droplet nuclei was 0.58–5.42 µm, and 

82% of droplet nuclei in the range of 0.74–2.12 µm, the size distribution of 

coughed droplets peaked at approximately 1 µm, 2 µm, and 8 µm. At a low 

relative humidity, more droplets and droplet nuclei could remain suspended 

in the air 

Lowen et. al. 

(2007) 
Mammalian model 

Hartley strain 

guinea pigs 
- 

Large droplets and/or droplet nuclei were enhanced at low 

temperature (5
o
C) and high temperature (30

o
C) interrupted airborne 

transmission at all values of  H. At 20   C, transmission was highly 

efficient at an RH of 20 and 35 %, low at 50 %, efficient again at 65 

% and absent at 80 %  
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Mubareka, S. 

(2009) 

Mammalian model 
Guinea pig 

model 
80 or 107 cm 

The study showed that different influenza strains differ considerably 

in their capacity for aerosol transmission 

Van Hoeven, 

N.(2009) 
Ferret model 

Genetic 

determinants that 

confer the 

transmission 

phenotype 

- 

Not all influenza strains are capable of „airborne transmission‟, by 

which they meant large droplets and/or aerosols, as their 

experimental set-up did not allow for the distinction. 

Yang, W. et 

al (2011) 
Filter extracts 

Health centre, a 

day-care facility 

and onboard 

aeroplanes 

16 samples 

8 out 16 collected samples contained influenza (A) viruses by the 

concentration ranged from 5800 to 37000 genome copies per m
3
. On 

average, 64% of viruses-laden particles were found to be associated 

with particles smaller than 2.5µm, which can remain as airborne for 

prolonged time 

Chao, et al 

(2009) 

Interferometric Mie 

Imaging (IMI) 

Healthy 

8 males 

3 females 

close 

proximity to 

the mouth 

The results estimated that 950-2100 droplets were expelled per 

cough. The study found that the droplet concentration ranged from 

2.4-5.2 per cm
3
 for each cough 

Zayas et al., 

(2012) 

Laser diffraction 

system in the open 

bench 

45 healthy non-

smokers  

close 

proximity to 

the mouth 

Droplets ranging from 0.1 - 900 µm in size were generated by 

voluntary coughs. Droplets of less than one micron size represent 

97% of the total number  
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Appendix (B): Pressure transducer final calibration 

Table 11 Pressure transducer final calibration (Manufacture’s Datasheet) 
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Appendix (C) 

C-1 : HWA Error calculations 

The following subsection provides the uncertainty of a single velocity sample which is 

acquired by a CTA anemometer with a single-sensor probe. The relative standard 

uncertainty u(yi) is a function of the standard deviation of the input variance (Coleman 

2009): 

                                           
 

  
    

  

  
                                              (C-1) 

Where: 

S = 
   

   
  is the sensitivity factor,    is the coverage factor related to the distribution of the 

input variance (Gaussian, rectangular etc.).  

In general, a Gaussian error distribution is assumed and the highest confidence level, 

which is normally required, is achieved by multiplying the standard uncertainty with the 

coverage factor k=2. The total relative expanded uncertainty then becomes (Coleman 

2009): 

                                        U (tot) =2*       
  )                                       (C-2) 

The uncertainty of CTA anemometer measurements is a combination of the calibration 

equipment, instrumentation, and experimental conditions. 
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C-1.1 The Uncertainty of the Calibration Equipment 

The major source of uncertainty comes from the calibration when it is performed with a 

dedicated calibrator such as that used in the present work. The uncertainty is computed 

by using the root sum squared R.S.S. method on equation C-3 that recall (Coleman 2009; 

Jørgensen 2002), 

                                        Uth =   
  

  
  

  

  
     

  

                                (C-3) 

Let us consider  
  

  
 = S and rewrite eqn. (C-1) 

                                       Uth =   
  

  
        

  

                                   (C-4) 

∆u can be obtained From R.S.S. method then 

                                    =  (
    

  
    )

 

                                           (C-5) 

where: 

     is the uncertainty in the final measured result (Uth) due to the uncertainties in each S. 

  Δs  is the uncertainty of the measured result (S)  which equals to 0.00035. 

Equation C-5 may be rearranged to yield: 

                                √(
    

  
     )

 

  
    

  
                                   (C-6) 

Differentiating eqn. C-2 with respect to S and substituting in eqn. C-6 yields: 
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                       ∆u =   
  

  
  (  

  

  
 )                                                  (C-7) 

where:  

r- The probe position from the pipe centre = 0.001075 m 

R – The pipe radius =0.00925m 

At – Water tank cross section area, Rt = 0.1507m 

Ap- Pipe cross section area 

 

 

C-1.2 A/D board resolution 

The resolution uncertainty, which is related to data acquisition, is stochastic with a square 

distribution and it is relative standard uncertainty can be expressed as (Jørgensen 2002; 

Coleman 2009):   

                                      
 

  
 

 

 
  

   

   
  

  
                                         (C-8) 

Where: 

U the air velocity, EAD is the A/D board input range (3V), n is its resolution in bits (a=12) 

  

  
    is the slope (sensitivity factor) of the inverse calibration curve. 
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From king‟s law           , then 

                               (
    

 
)

 

 
                                                                (C-9) 

Differentiating eqn. (C-9) yields: 

                            
  

  
  

 

 
 (

    

 
)

   

 
 

  

 
                                             (C-10) 

Substitute eqn. C-8 to C-10 and rearrange eqn. C-10 will yield:                        

                            
 

  
 

 

 
  

   

   
 

 
 (

    

 
)

   

 
 

  

 
                    (C-11) 

where:  

A and B are King‟s law coefficients and from the calibration process they typically have 

values 1.5719 and 0.6081, respectively, and so accordingly   E =1.36 v. 

C-1.3   Uncertainties of experimental conditions 

The uncertainties related to experimental conditions include probe positioning, 

temperature variations, and ambient pressure variations. In following subsections these 

uncertainties are presented (Jørgensen 2002; Coleman 2009). 

C-1.3a Probe Positioning 

This is related to the probe alignment in the experimental setup after calibration, and can 

be calculated by this expression (Jørgensen 2002): 

                                                     
 

  
                                    (C-12) 
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In general, the probe can be positioned with an uncertainty of        , (Jørgensen 

2002). 

C-1.3b Temperature Variation 

This is considered as systematic error produced from the calibration to experiment or 

during an experiment. It caused a stochastic uncertainty when a changes in temperature 

changes the sensor over-temperature. The relative standard uncertainty can be expressed 

as (Coleman 2009):   

                                   
 

  
  

 

 
 

 

     
 (

 

 
        )                  (C-13) 

Where Tw is the sensor temperature= 300
o
C, T0 the ambient reference temperature 

=20.1
o
C, and the uncertainty due to changes in air density with temperature alone can be 

calculated from the following correlation (Coleman 2009): 

                                ,      
 

  
 

  

   
                                                     (C-14) 

Where:   T is the difference between the ambient reference temperature and the 

temperature during the measurement. 

C-1.3c Ambient pressure variations 

This contributes as a stochastic uncertainty because the ambient pressure variations 

influence the density and, hence, the calculated velocity and can be expressed as (Hugh 

W. Coleman 2009): 

                                  ,   
 

  
  

  

     
                                                    (C-15) 
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Where: ΔP is the pressure drop, Po    is the ambient pressure. 

C-2: PIV Error Calculations 

In particle image velocimetry measurements as in any an experimental measurements the 

main source of errors comes from two components. The first component systematic error, 

also known as bias error, which comes from which is caused by many aspects of the 

measurement technique and equipment. The second component is the random error, 

which is come by the statistical variation of the measured quantities (Khadive, 2012.; 

Tari, 2012.; Elatar, 2013.). These errors can be combined and regrouped in terms of error 

due to velocity gradient, the seeding particles diameter, out of plane motion of particles, 

peak-locking bias error, and finally the interpolation of velocity vectors (Cowen and 

Monismith 1997). 

The error due to each of these parameters has been investigated and the total 

measurement error has been calculated accordingly. 

 

C-2.1 The velocity gradient error: 

The raw PIV data were used to compute the largest mean velocity in pixel/pixel. The 

Matlab code (Appendix F-b) used to calculate the velocity gradients which are: 

  

      
           , and   

  

  
         (pixel/pixel) 

Using figure 5(e) (Cowen and Monismith 1997), the error associated with velocity 

gradient are computed for RMS error and were found to be approximately: 

εu = 0.0045 pixel  and εv = 0.005 pixel. 
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C-2.2 The error due to seeding particles diameter: 

In the present study and as mentioned in section 3.2.3, the maximum diameter for seeding 

particles equal to 0.47µm which means less than micron. According to the calibration 

process the particle diameter in image size will equal 0.004 pixel. However, the error 

associated to the particle diameter cannot be resolved by using figure 5(a) (Cowen and 

Monismith 1997), where the smallest size of particles is 0.06 pixel. Prasad (Prasad et al. 

1992) provided in his work a good estimation of the increasing in uncertainty due to 

particle diameter. Figure 13 (Prasad et al. 1992) present the variation of bias and random 

errors with the ratio of bias and random error s with the ratio of ratio of pixels per 

particles (dτ/dpix). The pixel spacing of the used PowerView2MP cameras is 7.4 micron 

and the absolute size of the particle image is 0.004 pixel. Then dτ/dpix = 0.054. The 

particle image error from Fig.13 (Prasad et al. 1992) equal to 0.01 pixel. 

 

C-2.3 The interpolation error: 

In the PIV measurements, it is required to interpolate the randomly located data grid in 

order to calculate turbulent statistics (Cowen and Monismith 1997; Taravat Khadive, 

2012.). Figure 5f (Cowen and Monismith 1997) shown the results for the dynamic range 

sensitivity tests are unaffected. In Fig.5f, only the RMS error shown since the mean 

results are unaffected. From Fig5f, it is clear that the error due to interpolation is almost 

constant with 0.08 pixel (Cowen and Monismith 1997). 

 

C-2.4 The error due to out of the plane: 

The out of plane particle error is estimated by computing the maximum in plane 

displacements (Tari, 2012.). The thickness of the laser sheet in the present work is 1.34 

mm in the measured area, which according to the calibration coefficients equals to 11.48 

pixel. The largest in plane displacement in this work (participant 221- cough2) is 4.8 

pixel, which is less than the laser sheet thickness. Assuming that the out of plane pixel 

displacement is less than the in plane displacement (Khadive, 2012.; Tari, 2012.; 
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Elatar,2013.), it can be inferred that the estimated error due to out of plane motion of the 

particles is negligible in the current scenario.  

 

C-2.5 Peak locking bias error: 

Peak locking bias error is defined as the particle displacements towards integer pixel 

values, which is a result of both the choice of sub-pixel fit estimator, and under- resolved 

optical sampling of the particle images (Khadive, 2012.; Kähler, Scharnowski, and 

Cierpka 2012). The RMS velocity and Reynolds stress are sensitive to peak locking, 

however, the mean velocity profiles are insensitive to this effect (Kähler et al 2012). 

Despite the various proposed sub fit estimators, Westerweel has shown that sub-pixel 

estimation is capable of reducing the effect of peak locking significantly compared to 

other method (Westerweel 1997). In the present work, Insight 3G PIV software, is used 

to process the captured data, implements a Gaussian sub-pixel estimator for the 

correlation peak. Therefore, the peak-locking error has been assumed to be negligible 

(Khadive, 2012.). 
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Appendix (D) Approved Documents 
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Appendix (E): FLUGIE Procedures  

Install the virus sampling cassettes 

 Put on gloves and N95 mask. Do not touch virus sampling cassettes with bare 

hands or breathe on them. 

 Note the two rings where the tape around the cassette circumference can be cut open 

 

 Take two cassettes, a cutting tool and a ziplock bag. Enter box. Attach cassettes to 

hanging tubes as follows: 

1. Pull the green plug out of cassette and place the plug in the ziplock bag 

 

2. Attach the fitting at the end of the hanging tube to the cassette port where the 

green plug was attached. 
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3. Using the cassette opener, cut the tape around the ring closest to the blue plug. 

Remove and place the cassette end with the blue plug in the ziplock bag. The 

sampling surface in the cassette is now exposed so be careful not to 

contaminate it by touch or breath. 

 

4. Check each tube is hanging over a white hook and string at the box roof. This step 

ensures the cassette will be at the correct distance from the cough inlet and on the 

box centreline. 
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5. Verify that the cassettes are in the cough path. 

 

PIV pre-prep before the study participant arrives 

 Check box is at 1 m position (duct tape marker on floor) 

 

     Put on laser safety goggles. 
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 On the two laser units, turn key right to the „ON‟ position. Turn flash lamp knob to 

min power. 

 On the laser units, hold „STANDBY‟ button for one second and release. Lasers 

should be humming now. Turn flash lamp knob to max power. 

 Turn on synchronizer by pressing power switch (front face, upper right corner). 

 Plug camera into power mains. Remove lens cap. 

 Start Insight3G on PIV computer. Right-click desired data folder to save to in the 

Experiment Tree and set current run. Click 2
nd

 tab at lower left and verify settings:  

Mode: PIV, Exposure: Synchronized, Capture: Sequence, Laser A: Low, Laser B: Low, 

Δt   750 us. 

Other pre-prep 

 Clean window on box floor. Shut and lock the door. Dispose of waste in an orange 

bio-waste bag. 

 

 Turn hallway laser warning sign on (switch is in interior lab room on the wall to your 

left upon entry) 

 Take $50 from the safe and place with a receipt into an accessible drawer 

 Put on official study name badge (keep on top of safe/yellow cabinet) 
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Greet the study participant 

 Collect a completed consent form 

 Note the participant identifier number. 

Conduct virus sampling and cassette recovery 

 Seat the participant at the cough inlet  

 Remove inlet cover (white plastic) from screw. Wipe the inlet surfaces with Virox. 

 Adjust seat height such that chin rests comfortably on the cough inlet bottom. 

 

 Adjust forehead rest by unlocking screws (move rods up/down and lock screws). 

     

 With participant in coughing posture, view their head in profile to ensure head angle 

is such that the cough will be emitted horizontally. 

 Replace inlet cover on screw. 

 Give coughing instructions: Turn head to side and away from inlet, inhale deeply and 

naturally, and open inlet cover by rotating and holding it to one side. Rest chin on 

lower padding on inlet cutout and forehead on upper padded band. Cough straight 

forward (not up or down) with the hot-wire sensor as a target. Close inlet cover. 
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 Turn on the two air sampling pumps with small screwdriver.  

 Turn on hot-wire sensor by plugging into power bar. 

 Ask participant if ready to cough. If yes, press Run arrow in 'HWA_Acq.vi' program 

to start the hot-wire recording (30 sec to collect a cough).  

  Rename HWA datafile with Participant ID # and Cough #. 

 Repeat and collect data for three coughs. 

 Two minutes after the last cough, turn off the two air sampling pumps. 

 Open roof flap and pull up the cassette. Replace the blue cap end onto the cassette, 

remove the cassette from tube and replace the green cap. Sanitize the cassette exterior 

and tubing with Virox wipe. Note cassette location (0.5 m or 1.0 m)! Place a new 

cassette on the tubing, place over hook and string, and lower into box. Close and lock 

roof flap. Repeat for second cassette. 

 Label the cassettes with participant identifier number, location (0.5 or 1.0 m) 

Store cassettes in fridge. 

 

Conduct MT swabbing 

 Remove swab kit from the lab fridge with correct participant ID # and open it with 

the participant. 

 Ensure instructions are fully understood: 

1. Insert in nose up to measured point 

2. Twirl around 

3. Place in tube 

4. Snap off upper portion 
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 Ask the participant to perform the MT swab in the washroom or lab 

 Ensure participant identifier number is on the tube 

 Place tube in fridge (max 24 hrs.) 

 

Conduct flow measurements 

 Equip all eyes present in the laboratory with laser safety goggles  

 Explain laser safety essentials 

 Turn on TiO2 seeding from Pitt3 aerosol generator 

o Attach power plug for acoustic speaker to the mains socket 

o Ensure valve is fully shut to start (red handle as shown in photo) 

 

o Attach hose coupling to the 40 psi air line at the workbench 

 

o Pull yellow cap on regulator down to unlock the pressure adjustment knob 

o Slowly turn yellow cap right to increase pressure to around 2 psi 

o Fully open valve (turn red handle 90° right) 
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 Lock lab door to hallway and shut interior lab door. Shut lights in lab. 

 When light sheet is full of particles (~ 1 minute of seeding), fully shut the valve 

(red handle as shown in photo). Wait for uniform particle distribution (~ 2 

minutes). 

                                

                  Initial seeding distribution            Uniform seeding distribution 

 

Measure the coughs 

 Seat the participant (wearing laser goggles) at the cough inlet  

 Remind the participant of the coughing instructions and not to inhale dust from 

inside the box when the inlet cover is open:  

o Turn head to side and away from inlet 

o Inhale deeply and naturally  
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o Open inlet cover by rotating on screw and holding to one side 

o Chin on lower padding on inlet cutout and forehead on upper 

padding 

o Cough straight forward (not up or down) with the hot-wire sensor 

as a visual aid for target height. 

o Close inlet cover 

 Ask participant if ready to cough. If yes, press Run arrow in 'HWA_Acq.vi' 

program to start the hot-wire recording (30 sec to collect a cough). Press the 

„Capture‟ button in Insight3G to start the first PIV recording. 

 Observe particle motion visually inside the box.  

 Note any visual observations of the cough motion (e.g. too high, too low) and 

advise the participant. 

 Note start and end frame numbers in Insight3G for each cough. Press 'Save RAM 

images' button. Ensure previous frame numbers are not saved over (click folder 

button by 'Capture: Sequence' dropdown menu). 

 Rename text file output from HWA (i.e. Participant273-Cough1, Participant273-

Cough2, and Participant273-Cough3). 

 Repeat for a total of three coughs from the study participant. 

 Unplug hot-wire from power bar. 

 

Discharge study participant 

 Complete both halves of the compensation receipt 

 Give $50 and the appropriate half of the receipt page to the participant. 

 Keep the researcher half of the receipt. 

 Upon request, give participant identifier number and Dr. Mubareka‟s contact info. for 

MT swab result. 

Put the virus samples in -80 °C freezer 

 Put on gloves and mask. Prepare access to orange biohazard bag. 

 Get tweezers, storage tubes (CA330C 3ml of UTM-RT with glass beads). 
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 Mark two storage tubes with the participant identifier and location number. 

 Get the two cassette samples from fridge. 

1. Cut tape around the ring closest to the green plug and open the cassette at this ring 

for the cassette sample at 0.5 m. 

2. Discard the cassette half without the membrane (blue plug) into biohazard bag. 

3. Using tweezers carefully separate the membrane from the cassette. 

4. Insert the membrane into a storage tube such that the exposed side is towards 

inside of the tube. 

5. Fasten the storage tube cap 

6. Discard cassette half in the orange biohazard bag 

7. The tube should be shaken for 10 sec by a vortex shaker and then stored. 

 Get the MT swab from the fridge. 

 Verify membranes and swab labels have same participant identifier number. 

 Attach label with following info: „Prof. Savory, TEB 308, sealed membranes and 

swab with influenza virus, Participant #‟ 

 Wipe down the zip lock bag and your gloves with Virox. 

o  Keep bio-samples in TEB 308 fridge if all else fails (max 24 hr.) and 

inform Prof. Savory. 

o Verify freezer temperature from external display is at -80 °C. 

o Limit the time that their freezer is open to < 30 seconds. 

o Fill out the user log on the freezer door. 

 Update record keeping of Participant # samples in -80 freezer. 

  Use Vac. machine, insert hose into box and suck for 15+ minutes to evacuate TiO2. 



147 

 

 

 

 

Post-lab tasks 

 Use Virox wipes to clean any surfaces touched by the participant (e.g. cough inlet, 

inlet cover, forehead rest, chair, lab door handles, fridge door handle, and 

workbench). 

 Press „Off‟ button on synchronizer. Press 'STOP' button on laser units. Turnkey on 

laser unit to off. Turn switch on back of laser units to off. Unplug PIV camera from 

power. Verify hot-wire is unplugged. Disconnect Pitt3 hose from 40 psi air-line. Turn 

off hallway laser warning sign. Do not shut down PCs or power bar. 

 Leave eligibility form, consent form and receipt in locked box for Prof Savory. 

 Copy data to external hard drive and analysis PC. 

 Take orange bio-waste bag to autoclave for decontamination and disposal (When 

it is partially filled (  after 5 participants )) 
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Appendix (F): Matlab Codes 

F-(a) Hot Wire Anemometer data processing 

 

%                     Western University 

%                  Faculty of Engineering 

%                Mechanical and Material Department 

%               Hot Wire Anemometer data processing 

%                      Winter- 2017 

%**********************************************************

*************** 

clc 

clear 

close all 

% Import data files 

dataMatrix3=importdata('952-3.txt'); 

dataMatrix2=importdata('952-2.txt'); 

dataMatrix1=importdata('952-1.txt'); 

  

%Recognize of cough's data file 

  

t1=dataMatrix1(:,1); 

E1=dataMatrix1(:,2); 

% 

t2=dataMatrix2(:,1); 

E2=dataMatrix2(:,2); 

% 

t3=dataMatrix3(:,1); 

E3=dataMatrix3(:,2); 

  

  

%%Extracting data based on range 

  

i1=1; % initial counter 

iend=30000; % last counter 

  

t1=t1(i1:iend); 

E1=E1(i1:iend); 

% 

t2=t2(i1:iend); 

E2=E2(i1:iend); 

% 

t3=t3(i1:iend); 

E3=E3(i1:iend); 
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jump=1; 

% converts the voltage reading to the velocity according to 

the polynomial eqn. 

 

% 1st cough  

t1=t1(1:jump:end); 

E1=E1(1:jump:end); 

U1 = 2.70515928e+00*E1.^4 - 9.13660081e-09*E1.^3 - 

8.50447972e+00*E1.^2 - 2.01192272e-08*E1 + 6.68409586e+00; 

%2nd cough 

  

t2=t2(1:jump:end); 

E2=E2(1:jump:end); 

U2 = 2.70515928e+00*E2.^4 - 9.13660081e-09*E2.^3 - 

8.50447972e+00*E2.^2 - 2.01192272e-08*E2 + 6.68409586e+00; 

%3th cough 

t3=t3(1:jump:end); 

E3=E3(1:jump:end); 

U3 = 2.70515928e+00*E3.^4 - 9.13660081e-09*E3.^3 - 

8.50447972e+00*E3.^2 - 2.01192272e-08*E3 + 6.68409586e+00; 

  

%******************** 1st cough*********************** 

%window size 

k1=299; 

UM1=movmean(U1,k1); 

UMAX1=max(UM1); 

UMIN1=min(UM1); 

figure 

plot(t1,U1,'g') 

title('Move averaging of 1st cough data ') 

xlabel('Time(Sec)') 

ylabel('Velocity (m/sec)') 

grid on 

hold on 

plot(t1,UM1,'B') 

grid on 

hold on 

  

 UF1=U1-UM1; 

% figure 

% plot(t1,UF1,'b') 

% grid on 

  

%************ Turbulent Intensity Iu1************** 

%**********************cough1****************************** 
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figure 

plot(t1,U1) 

[tmin1,Umin1] = ginput(1); 

[tmax1,Umax1] = ginput(1); 

close 

%%%Finding indices corresponding to tmin1 and tmax1 

difftmin1=abs(tmin1-t1); 

itmin1=find(difftmin1==min(difftmin1)); 

itpeak1=find(UM1==max(UM1)) 

  

difftmax1=abs(tmax1-t1); 

itmax1=find(difftmax1==min(difftmax1)); 

  

UFrms1=rms(UF1(itmin1:itmax1)); 

%Intensity Array for the cough period 

Iu1=UFrms1./UM1(itmin1:itmax1)*100;  

%Intensity at the cough peak velocity 

PUM1=max(UM1)-min(UM1); 

IuPV1=(UFrms1./(PUM1))*100; 

TKE1=(3/2)*max(UF1)^2; 

% USUP1=UM1(itmin1:itpeak1); 

% tStP1=t1(itmin1:itpeak1); 

  

%%%%% power spectrum of Cough %%%%% 

% 

%   Pwelch Transform 

[pxxUF1,fUF1] = 

pwelch(UF1(itmin1:itmax1),[],[],[],1000,'twosided');... 

    ...%power density fuction(Welich)  

  

ArUcvPSC1=trapz(fUF1,pxxUF1);% area under the curve before 

normalization 

pxxUF1PUF1=pxxUF1/(ArUcvPSC1*2);% normalization of power 

spectrum u' 

ArUcvPSCNorm1=trapz(fUF1,pxxUF1PUF1);% area under the curve 

... 

...after normalization 

  

UFNF1=UF1(1:itmin1); 

[pxxUFNF1,fUFNF1] = 

pwelch(UFNF1(1:itmin1),[],[],[],1000,'twosided');... 

    ...%power density fuction(Welich) 

tNF1=t1(1:itmin1); 

UrmsNF1=sqrt(mean(UFNF1.^2)); 

freqNF1= 1000; %1/t1(itmin1)-t1(1)) 

PSNF1=((UrmsNF1)/(freqNF1)); 

%UF unfiltered function 
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% new figure 

figure 

loglog(fUF1,pxxUF1); 

title('Power spectrum of 1st cough data ') 

xlabel('frequncy(Hz)') 

ylabel('Power spectrum energy of velocity flacutation ') 

hold on 

grid on  

box on 

  

%Area under curve to get u'^2 

IuCurve1=sqrt(2.*(trapz(fUF1,pxxUF1)))/(max(UM1)-

min(UM1))*100; 

ufsq1=trapz(fUF1,pxxUF1); 

ufrmsps1=sqrt(2.*(ufsq1)); 

PUM1NF=mean(UM1(1:itmin1)); 

IucurvNF1=sqrt(2.*(trapz(fUFNF1,pxxUFNF1)))/PUM1NF*100; 

ufsqNF1= trapz(fUFNF1,pxxUFNF1); 

  

%%% Independence check for normalized power spectrum 

%  

for i=itmin1: itmax1 

 UFrmsCheck1(i-itmin1+1)=rms(UF1(itmin1:i)); 

 end 

SampleNo1=1:length(UFrmsCheck1); 

figure 

plot(SampleNo1,UFrmsCheck1) 

% 

%********************************************************** 

%********************* 2nd  cogh*************************** 

%window size 

k2=199; 

UM2=movmean(U2,k2); 

UMAX2=max(UM2); 

UMIN2=min(UM2); 

figure 

plot(t2,U2,'g') 

title('Move averaging of 2nd cough data ') 

xlabel('Time(Sec)') 

ylabel('Velocity (m/sec)') 

grid on 

hold on 

plot(t2,UM2,'b') 

grid on 

hold on 

UF2=U2-UM2; 

% figure 
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% plot(t2,UF2,'b') 

% grid on 

  

%************ Turbulent Intensity Iu2********************** 

%**********************cough2****************************** 

figure 

plot(t2,U2) 

[tmin2,Umin2] = ginput(1); 

[tmax2,Umax2] = ginput(1); 

close 

%%%Finding indices corresponding to tmin1 and tmax1 

difftmin2=abs(tmin2-t2); 

itmin2=find(difftmin2==min(difftmin2)); 

  

difftmax2=abs(tmax2-t2); 

itmax2=find(difftmax2==min(difftmax2)); 

  

UFrms2=rms(UF2(itmin2:itmax2)); 

%Intensity Array for the cough period 

Iu2=UFrms2./UM2(itmin2:itmax2)*100;  

%Intensity at the cough peak velocity 

PUM2=max(UM2)-min(UM2); 

IuPV2=(UFrms2./(PUM2))*100; 

TKE2=(3/2)*max(UF2)^2 

  

  

%%%%% power spectrum of Cough %%%%% 

% 

% Transform 

[pxxUF2,fUF2] = 

pwelch(UF2(itmin2:itmax2),[],[],[],1000,'twosided');... 

    ...%power density fuction(Welich) 

  

ArUcvPSC2=trapz(fUF2,pxxUF2);% area under the curve before 

normalization 

pxxUF2PUF2=pxxUF2/(ArUcvPSC2*2);% normalization of power 

spectrum u' 

ArUcvPSCNorm2=trapz(fUF2,pxxUF2PUF2);%... 

...area under the curve after normalization 

  

UFNF2=UF2(1:itmin2); 

[pxxUFNF2,fUFNF2] = 

pwelch(UFNF2(1:itmin2),[],[],[],1000,'twosided');... 

    ...%power density fuction(Welich) 

tNF2=t2(1:itmin2); 

UrmsNF2=sqrt(mean(UFNF2.^2)); 

freqNF2= 1000 %1/t1(itmin1)-t1(1)) 
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PSNF2=((UrmsNF2)/(freqNF2)); 

%UF unfiltered function 

% new figure 

figure 

loglog(fUF2,pxxUF2) 

title('Power spectrum of 2nd cough data ') 

xlabel('frequncy(Hz)') 

ylabel('Power spectrum energy of velocity flacutation ') 

hold on 

grid on  

box on 

  

  

%Area under under curve to get u'^2 

IuCurve2=sqrt(2.*(trapz(fUF2,pxxUF2)))/(max(UM2)-

min(UM2))*100; 

ufsq2=trapz(fUF2,pxxUF2); 

ufrmsps2=sqrt(2.*(ufsq2)); 

PUM2NF=mean(UM2(1:itmin2)); 

IucurvNF2=sqrt(2.*(trapz(fUFNF2,pxxUFNF2)))/PUM2NF*100; 

ufsqNF2= trapz(fUFNF2,pxxUFNF2); 

  

%%% Independence check for normalized power spectrum 

%  

for i=itmin2: itmax2 

 UFrmsCheck2(i-itmin2+1)=rms(UF2(itmin2:i)); 

 end 

SampleNo2=1:length(UFrmsCheck2); 

figure 

plot(SampleNo2,UFrmsCheck2) 

% 

  

%********************************************************** 

%******************* 3th cough ***************** 

%window size 

k3=101; 

UM3=movmean(U3,k3); 

UMAX3=max(UM3); 

UMIN3=min(UM3); 

figure 

plot(t3,U3,'g') 

title('Move averaging of 3th cough data ') 

xlabel('Time(Sec)') 

ylabel('Velocity (m/sec)') 

grid on 

hold on 

plot(t3,UM3,'b') 
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grid on 

hold on 

UF3=U3-UM3; 

% figure 

% plot(t3,UF3,'b') 

% grid on 

% hold on 

  

  

%************ Turbulent Intensity Iu3 ********************* 

 

%**********************cough3****************************** 

figure 

plot(t3,U3) 

[tmin3,Umin3] = ginput(1); 

[tmax3,Umax3] = ginput(1); 

close 

%%%Finding indices corresponding to tmin1 and tmax1 

difftmin3=abs(tmin3-t3); 

itmin3=find(difftmin3==min(difftmin3)); 

  

difftmax3=abs(tmax3-t3); 

itmax3=find(difftmax3==min(difftmax3)); 

  

UFrms3=rms(UF3(itmin3:itmax3)); 

%Intensity Array for the cough period 

Iu3=UFrms3./UM3(itmin3:itmax3)*100;  

%Intensity at the cough peak velocity 

PUM3= max(UM3)-min(UM3); 

IuPV3=(UFrms3./(PUM3))*100; 

TKE3=(3/2)*max(UF3)^2; 

  

%%%%% power spectrum of Cough %%%%% 

% 

% Transform 

[pxxUF3,fUF3] = 

pwelch(UF3(itmin3:itmax3),[],[],[],1000,'twosided');... 

    ...%power density fuction(PWelich) 

  

ArUcvPSC3=trapz(fUF3,pxxUF3);% area under the curve before 

normalization 

pxxUF3PUF3=pxxUF3/(ArUcvPSC3*2);% normalization of power 

spectrum u' 

ArUcvPSCNorm3=trapz(fUF3,pxxUF3PUF3);%... 

...area under the curve after normalization 

  

UFNF3=UF3(1:itmin3); 
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[pxxUFNF3,fUFNF3] = 

pwelch(UFNF3(1:itmin3),[],[],[],1000,'twosided');%... 

...power density fuction(Welich) 

tNF3=t3(1:itmin3) 

UrmsNF3=sqrt(mean(UFNF3.^2)) 

freqNF3= 1000 %1/t1(itmin1)-t1(1)) 

PSNF3=((UrmsNF3)/(freqNF3)) 

%UF unfiltered function 

% new figure 

figure 

loglog(fUF3,pxxUF3) 

title('Power spectrum of 3th cough data ') 

xlabel('frequncy(Hz)') 

ylabel('Power spectrum energy of velocity flacutation ') 

hold on 

grid on  

box on 

  

%Area under under curve to get u'^2 

IuCurve3=sqrt(2.*(trapz(fUF3,pxxUF3)))/(max(UM3)-

min(UM3))*100; 

ufsq3=trapz(fUF3,pxxUF3); 

ufrmsps3=sqrt(2.*(ufsq3)); 

PUM3NF=mean(UM3(1:itmin3)); 

IucurvNF3=sqrt(2.*(trapz(fUFNF3,pxxUFNF3)))/PUM3NF*100; 

ufsqNF3= trapz(fUFNF3,pxxUFNF3); 

  

%%% Independence check for normalized power spectrum 

%  

for i=itmin3: itmax3 

 UFrmsCheck3(i-itmin3+1)=rms(UF3(itmin3:i)); 

 end 

SampleNo3=1:length(UFrmsCheck3); 

figure 

plot(SampleNo3,UFrmsCheck3) 

% 

%%%%%%%%%%%%Autocorrelation function%%%%%%%%%%%% 

  

time_interval=1/1000; 

lag_time=1; 

max_lag=lag_time/time_interval; 

Ucough3=U3(itmin1:itmax1); 

UFcough3=UF3(itmin1:itmax1); 

UMcough3=UM3(itmin1:itmax1); 

  

for r=1:max_lag+1 

    Rtau3(r)=0; 
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    for n=1:(length(Ucough3)-r) 

        Rtau3(r)=Rtau3(r)+1/mean( UFcough3.^2 

)/(length(Ucough3)-r-1)*... 

            UFcough3(n)*UFcough3(n+r-1); 

    end 

    tau3(r)=(r-1)*time_interval; 

end 

figure; 

plot(tau3,Rtau3) 

hold on 

xlabel('\tau3, s');ylabel('R(\tau3)');grid; 

title('Autocorrelation function3'); 

  

% Integral length scale and Taylor micro length scale  

for r0=1:max_lag 

    if Rtau3(r0)*Rtau3(r0+1)<=0 

        break 

    end 

end 

tau03=tau3(r0);  %First tau at which Rtau=0 

time_scale3=0; 

for j=1:r0 

    

time_scale3=time_scale3+(Rtau3(j)+Rtau3(j+1))*time_interval

…/2; 

end 

length_scale3=time_scale3*(max(UM3)-min(UM3))*0.5; %... 

    ...Integral length scale in m 

Taylor_time3=tau3(2)/sqrt(1-Rtau3(2)); 

Taylor_length_longitudinal3=Taylor_time3*(max(UM3)-

min(UM3));% ... 

    ...%Taylor longitudinal length scale in m 

Taylor_length_transverse3=Taylor_length_longitudinal3/sqrt(

2); % 

...Taylor transverse length scale in m 

  

%%%%%%%%%%%%Autocorrelation function cough1%%%%%%%%%%%% 

  

time_interval=1/1000; 

lag_time=1; 

max_lag=lag_time/time_interval; 

Ucough1=U1(itmin1:itmax1); 

UFcough1=UF1(itmin1:itmax1); 

UMcough1=UM1(itmin1:itmax1); 

  

for r=1:max_lag+1 

    Rtau(r)=0; 
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    for n=1:(length(Ucough1)-r) 

        Rtau(r)=Rtau(r)+1/mean( UFcough1.^2 

)/(length(Ucough1)-r-1)*... 

        UFcough1(n)*UFcough1(n+r-1); 

    end 

    tau(r)=(r-1)*time_interval; 

end 

figure; 

plot(tau,Rtau) 

hold on 

xlabel('\tau, s');ylabel('R(\tau)');grid; 

title('Autocorrelation function1'); 

  

%%%%%%%%%%%% Integral length scale and Taylor micro length 

scale %%%%%%%%%% 

for r0=1:max_lag 

    if Rtau(r0)*Rtau(r0+1)<=0 

        break 

    end 

end 

tau0=tau(r0);  %First tau at which Rtau=0 

time_scale=0; 

for j=1:r0 

    

time_scale=time_scale+(Rtau(j)+Rtau(j+1))*time_interval/2; 

end 

length_scale=time_scale*(max(UM1)-min(UM1))*0.5;%Integral 

length scale in m 

Taylor_time=tau(2)/sqrt(1-Rtau(2)); 

Taylor_length_longitudinal=Taylor_time*(max(UM1)-

min(UM1));... 

    ...%Taylor longitudinal length scale in m 

Taylor_length_transverse=Taylor_length_longitudinal/sqrt(2)

;... 

...%Taylor transverse length scale in m 

  

%%%%%%%%%%%%Autocorrelation function cough2 %%%%%%%%%%%% 

  

time_interval=1/1000; 

lag_time=1; 

max_lag=lag_time/time_interval; 

Ucough2=U2(itmin1:itmax1); 

UFcough2=UF2(itmin1:itmax1); 

UMcough2=UM2(itmin1:itmax1); 

  

for r=1:max_lag+1 

    Rtau2(r)=0; 



158 

 

 

 

    for n=1:(length(Ucough2)-r) 

        Rtau2(r)=Rtau2(r)+1/mean( UFcough2.^2 

)/(length(Ucough2)-r-1)*... 

            UFcough2(n)*UFcough2(n+r-1); 

    end 

    tau2(r)=(r-1)*time_interval; 

end 

figure; 

plot(tau2,Rtau2) 

hold on 

xlabel('\tau2, s');ylabel('R(\tau2)');grid; 

title('Autocorrelation function2'); 

  

%%%%%%%%%%%% Integral length scale and Taylor micro length 

scale %%%%%%%%%% 

for r0=1:max_lag 

    if Rtau2(r0)*Rtau2(r0+1)<=0 

        break 

    end 

end 

tau02=tau2(r0);  %First tau at which Rtau=0 

time_scale2=0; 

for j=1:r0 

    

time_scale2=time_scale2+(Rtau2(j)+Rtau2(j+1))*time_interval

/2; 

end 

length_scale2=time_scale2*(max(UM2)-min(UM2))*0.5;  

%Integral length scale in m 

Taylor_time2=tau2(2)/sqrt(1-Rtau2(2)); 

Taylor_length_longitudinal2=Taylor_time2*(max(UM2)-

min(UM2));... 

    ...%Taylor longitudinal length scale in m 

Taylor_length_transverse2=Taylor_length_longitudinal2/sqrt(

2);... 

...%Taylor transverse length scale in m 

figure; 

plot(tau,Rtau) 

hold on 

plot(tau2,Rtau2) 

plot(tau3,Rtau3) 

xlabel('\tau2, s');ylabel('R(\tau2)');grid; 

title('Autocorrelation function2'); 

%********************************************************** 

 

%******* characteristics of three coughs flow************** 

 figure 
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 plot(t1,U1,'g')  

 hold on 

 plot (t2,U2,'b') 

 hold on 

 plot (t3,U3,'r') 

 hold on 

 grid on  

 box on 

 legend ('Cough1', 'Cough2', 'Cough3'); 

 title('Time Histroy of three coughs ') 

 xlabel('Time (sec)') 

 ylabel('Velocity(m/sec) ') 

 U1max=max(U1); 

 U2max=max(U2); 

 U3max=max(U3); 

  

%**************cough normalizing************************* 

%***************************cough1************************* 

ipeak1=find(UM1==max(UM1)); 

ipeak1=ipeak1(1);% to select the first max element of 

array... 

...if we have more than one 

tpeak1=t1(ipeak1); 

USUP1=(max(UM1)-UM1(itmin1)) 

tStP1=(tpeak1-t1(itmin1)) 

Unormal1=(UM1-UM1(itmin1))/(max(UM1)-UM1(itmin1));... 

    ...%normalize the cough velocity 

  

tnormal1=(t1-t1(itmin1))/(tpeak1-t1(itmin1));... 

    ...%normalize the cough time period 

%*****************************cough2*********************** 

%  

ipeak2=find(UM2==max(UM2)); 

ipeak2=ipeak2(1);%... 

...to select the first max element of array if we have more 

than one 

tpeak2=t2(ipeak2); 

USUP2=(max(UM2)-UM2(itmin2)) 

tStP2=(tpeak2-t2(itmin2)) 

Unormal2=(UM2-UM2(itmin2))/(max(UM2)-UM2(itmin2));%... 

...normalize the cough velocity 

  

tnormal2=(t2-t2(itmin2))/(tpeak2-t2(itmin2));% ... 

...normalize the cough time period 

% 

%*******************************cough3********************* 

ipeak3=find(UM3==max(UM3)); 
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ipeak3=ipeak3(1);%... 

...to select the first max element of array if we have more 

than one 

tpeak3=t3(ipeak3); 

USUP3=(max(UM3)-UM3(itmin3)) 

tStP3=(tpeak3-t3(itmin3)) 

Unormal3=(UM3-UM3(itmin3))/(max(UM3)-UM3(itmin3));%... 

...normalize the cough velocity 

  

tnormal3=(t3-t3(itmin3))/(tpeak3-t3(itmin3));... 

    ...% normalize the cough time period 

   

%************** plot three normalize coughs************* 

figure 

plot(tnormal1,Unormal1) 

 xlabel('\tau,(Time dimensionless)') 

ylabel('Dimensionless cough velocity of three trials ') 

hold on 

grid on 

box on 

plot(tnormal2,Unormal2) 

plot(tnormal3,Unormal3) 

legend ('Cough1', 'Cough2', 'Cough3'); 

%********************************************************** 

jump=1; 

tref1=t1(itmin1:jump:end)-t1(itmin1); 

Uref1=U1(itmin1:jump:end); 

tref2=t2(itmin2:jump:end)-t2(itmin2); 

Uref2=U2(itmin2:jump:end); 

tref3=t3(itmin3:jump:end)-t3(itmin3); 

Uref3=U3(itmin3:jump:end); 

figure 

hold on 

grid on 

box on 

plot(tref1,Uref1) 

title('refined All three coughs instant'); 

plot(tref2,Uref2) 

plot(tref3,Uref3) 

legend ('Cough1', 'Cough2', 'Cough3'); 

%********************************************************** 

%%******** create file of turbulent intensity table 

fid=fopen('par-PSCD-952s.txt','w'); 

fprintf(fid, 'UFrms-of moving average\n'); 

  

fprintf(fid, '%f %f %f  \n', [ UFrms1 UFrms2 UFrms3]'); 
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fprintf(fid, 'Turbulance Intensity Iu\n'); 

  

fprintf(fid, '%f %f %f  \n', [ IuPV1 IuPV2 IuPV3]'); 

fprintf(fid, 'Turbulance Intensity Iu-trapz function\n'); 

fprintf(fid, '%f %f %f  \n', [ IuCurve1 IuCurve2 

IuCurve3]'); 

fprintf(fid, 'Turbulance Intensity Iu-no flow\n'); 

fprintf(fid, '%f %f %f  \n', [ IucurvNF1 IucurvNF2 

IucurvNF3]'); 

fprintf(fid, 'UFrms-of trapz function curve\n'); 

  

fprintf(fid, '%e %e %e  \n', [ ufrmsps1 ufrmsps2 

ufrmsps3]'); 

fprintf(fid, 'PUM1  PUM2  PUM3\n'); 

fprintf(fid, '%f %f %f  \n', [ PUM1 PUM2 PUM3]'); 

fprintf(fid, 'PUM1NF  PUM2NF  PUM3NF\n'); 

fprintf(fid, '%f %f %f  \n', [ PUM1NF PUM2NF PUM3NF]'); 

fprintf(fid, 'ArUcvPSC1  ArUcvPSC2  ArUcvPSC3\n'); 

fprintf(fid, '%f %f %f  \n', [ ArUcvPSC1 ArUcvPSC2 

ArUcvPSC3]'); 

fclose(fid);true 

% 

fid=fopen('par-PSCh1-952s.txt','w'); 

fprintf(fid, '%e %e \n', [ pxxUF1 fUF1]'); 

fclose(fid);true 

% 

fid=fopen('par-PSCh2-952s.txt','w'); 

fprintf(fid, '%e %e \n', [ pxxUF2 fUF2]'); 

fclose(fid);true 

% 

fid=fopen('par-PSCh3-952s.txt','w'); 

fprintf(fid, '%e %e \n', [ pxxUF3 fUF3]'); 

fclose(fid);true 

 %create file one for moving average velocity 

fid=fopen('participant952s.txt','w'); 

fprintf(fid, 'TKE\n'); 

  

fprintf(fid, '%f %f %f  \n', [ TKE1 TKE2 TKE3]'); 

  

fprintf(fid, 'Turbulance Intensity Iu\n'); 

  

fprintf(fid, '%f %f %f  \n', [ IuPV1 IuPV2 IuPV3]'); 

fprintf(fid, 'Maximum averging velocity for three 

coughs\n'); 

fprintf(fid, '%f %f %f  \n', [ max(UM1) max(UM2) 

max(UM3)]'); 

fprintf(fid, '%f %f %f  \n', [ USUP1 USUP2 USUP3]'); 
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fprintf(fid, '%f %f %f  \n', [ tStP1 tStP2 tStP3]'); 

fprintf(fid, '%e %e %e %e %e %e \n',... 

[ tnormal1 Unormal1  tnormal2 Unormal2 tnormal3 

Unormal3]'); 

fclose(fid);true 

  

% % %****************** Widows size independent *********** 

WindowMaxLimit=1000; 

  

for i=1:WindowMaxLimit/2 

k1(i)=2*i-1; 

UM1=movmean(U1,k1(i)); 

UF1=U1-UM1; 

UFrms1(i)=sqrt(mean(UF1.^2)); 

  

end 

figure 

plot(k1,UFrms1) 

legend('cough 1') 

xlabel('Window Size') 

ylabel('Ufrms^2) ') 

% hold on 

for i=1:WindowMaxLimit/2 

k2(i)=2*i-1; 

UM2=movmean(U2,k2(i)); 

UF2=U2-UM2; 

UFrms2(i)=sqrt(mean(UF2.^2)); 

  

end 

figure 

plot(k2,UFrms2) 

legend('cough 2') 

xlabel('Window Size') 

ylabel('Ufrms^2) ') 

for i=1:WindowMaxLimit/2 

k3(i)=2*i-1; 

UM3=movmean(U3,k3(i)); 

UF3=U3-UM3; 

UFrms3(i)=sqrt(mean(UF3.^2)); 

  

end 

figure 

plot(k3,UFrms3) 

legend('cough 3') 

xlabel('Window Size') 

ylabel('Ufrms) ') 
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F-(b) PIV data processing 

 

%                     Western University 

%                  Faculty of Engineering 

%             Mechanical and Material Department 

%                     PIV data processing 

%                         Summer- 2017 

%********************************************************** 

clear 

clc 

close all 

  

%%%% input participant and cough numbers 

HealthySick='healthy'; % Name of parent folder 

Participant='Analysis-221'; % Input the forlder name of the 

participant 

CoughNo='cough5';   %Input cough number folder name 

  

  

%%%%% Inputs and conversions 

convfacvel =((1.1905e-4*1000000)/750);%... 

...This factor was used to convert from Pixel to Physical 

unit(m) 

convfacdis =1.1905e-4; 

NCellX=74;  %Vector field in X direction 

NCellY=99; %Vector field in Y direction 

IntersectionLength=0.039+0.0104; 

CameraHeight=0.1885; % Max Y value from the given data 

FrameToCheck=11; 

XToCheck=37; % X index varies from 1 to 74 

  

%%%% Reading 

cd(char(HealthySick)); %% Change directory... 

...It will direct you to the folders of Sick or Healthy 

cd (char(Participant)); %% Change directory... 

...It will direct you to the folder of the participant 

cd (char(CoughNo)); % select the cough number folder 

cd 'RH';  % Select the right camera folder 

  

folder=pwd; %pwd means current folder 

filetype='*.vec'; … 

… % "Insigh3G-PIV platform" output files format 

  

%%% Reading all vec files inside the given cough 

f=fullfile(folder,filetype); 
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dR=dir(f); 

  

for k=1:numel(dR) %Number of files or frames 

  dataR{k}=importdata(fullfile(folder,dR(k).name)); 

end 

  

  

cd ..;  %%Back one level 

cd LH 

  

  

folder=pwd; %pwd means current folder 

filetype='*.vec';  % "Insigh3G-PIV platform" output files 

format 

f=fullfile(folder,filetype); 

dL=dir(f); 

  

for k=1:numel(dL) 

  dataL{k}=importdata(fullfile(folder,dL(k).name)); 

end 

  

NfigsR=numel(dR); %Number of frames right 

tR=0:5/(NfigsR-1):5; 

  

NfigsL=numel(dL); %Number of frames left 

tL=0:5/(NfigsL-1):5; 

  

  

%%% We used the first frame to define x and y since they do 

...not change with time 

  

%%% Here, xR is similar to xL and yR is similar to yL 

xR=dataR{1,1}.data(:,1)*convfacdis; 

yR=dataR{1,1}.data(:,2)*convfacdis; 

  

xL=dataL{1,1}.data(:,1)*convfacdis; 

yL=dataL{1,1}.data(:,2)*convfacdis; 

  

for i=1:NfigsR %This will create a matrix for each variable 

%with a size of (74*99) x65 

% where 74*99 is the total number of data points in one 

%frame and 65 is the number of frames 

uStakR(:,i)=dataR{1,i}.data(:,3)*convfacvel;  

%dataR{1,i}.data(:,3) to read the u velocity from the third 

column of the data matrix 

vStakR(:,i)=dataR{1,i}.data(:,4)*convfacvel; 
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velmagStakR=sqrt(uStakR.^2+vStakR.^2); 

velMagMaxR(i)=max(velmagStakR(:,i)); 

velMagMeanR(i)=mean(velmagStakR(:,i)); 

  

uStakL(:,i)=dataL{1,i}.data(:,3)*convfacvel; 

vStakL(:,i)=dataL{1,i}.data(:,4)*convfacvel; 

  

velmagStakL=sqrt(uStakL.^2+vStakL.^2); 

velMagMaxL(i)=max(velmagStakL(:,i)); 

velMagMeanL(i)=mean(velmagStakL(:,i)); 

  

end 

  

  

  

%%%% To calculate the velocity for upper camera in pixels 

for uncertainty 

for i=1:NfigsL 

    %This will create a matrix for each variable with a 

size of (74*99) x65 

    % where 74*99 is the total number of data points in one 

frame and 65 is 

    % the number of frames 

ibadL=find (dataL{1,i}.data(:,5)<=0); 

 uStakLi=dataL{1,i}.data(:,3); 

 vStakLi=dataL{1,i}.data(:,4); 

 uStakLi(ibadL)=[]; 

  vStakLi(ibadL)=[]; 

 uPixelmaxL(i)=max(uStakLi);%dataR{1,i}.data(:,3) to read 

the u velocity from the third column of the data matrix 

vPixelmaxL(i)=max(vStakLi); 

  

end 

  

%%%% To calculate the velocity for lower camera in pixels 

…for uncertainty 

for i=1:NfigsR 

%This will create a matrix for each variable with a size of 

(74*99) x65 

% where 74*99 is the total number of data points in one 

frame and 65 is 

% the number of frames 

ibadR=find (dataR{1,i}.data(:,5)<=0); 

 uStakRi=dataR{1,i}.data(:,3); 

 vStakRi=dataR{1,i}.data(:,4); 

 uStakRi(ibadR)=[]; 

  vStakRi(ibadR)=[]; 
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 uPixelmaxR(i)=max(uStakRi);  %dataR{1,i}.data(:,3) to read 

the u velocity from the third column of the data matrix 

 vPixelmaxR(i)=max(vStakRi); 

  

end 

  

%%%%%%%%%%%% Combining L and R Shifting Upper camera … 

upwards by the difference between height and intersection 

length 

  

NfigsR=numel(dR); %Put number of files needed here 

  

yR=dataR{1,1}.data(:,2)*convfacdis+CameraHeight-

IntersectionLength; 

%%% {Cell}    (Matrix) 

  

%%%To check shared area consistence 

  

  

for i=FrameToCheck:FrameToCheck 

  

XR=repmat(xR(1:NCellX)',NCellY,1); %Repeat X vector to form 

a matrix of 99*74 

  

  

        % yR(1: Jump (74): End (7326)) 

YR=repmat(yR(1:NCellX:NCellX*NCellY),1,NCellX); %Repeat Y 

vector to form a matrix of 99*74 

  

% converting the cell to matrix (No repetition in velocity) 

VR=vec2mat(velmagStakR(:,i),NCellX); 

uR=vec2mat(uStakR(:,i),NCellX); 

vR=vec2mat(vStakR(:,i),NCellX); 

  

  

  

XL=repmat(xL(1:NCellX)',NCellY,1); 

YL=repmat(yL(1:NCellX:NCellX*NCellY),1,NCellX); 

VL=vec2mat(velmagStakL(:,i),NCellX); 

uL=vec2mat(uStakL(:,i),NCellX); 

vL=vec2mat(vStakL(:,i),NCellX); 

  

  

%%% Shared area indices 

[shareiR,sharejR]=find(YR<=CameraHeight); 

[shareiL,sharejL]=find(YL>=(CameraHeight-

IntersectionLength)); 
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%Number of shared rows in both right and left cameras 

NshareRowsR=length(shareiR)/NCellX; 

NshareRowsL=length(shareiL)/NCellX; 

  

% Extracting shared data for right and left 

VshareR=VR(end-NshareRowsR+1:end,:); 

ushareR=uR(end-NshareRowsR+1:end,:); 

vshareR=vR(end-NshareRowsR+1:end,:); 

XshareR=XR(end-NshareRowsR+1:end,:); 

YshareR=YR(end-NshareRowsR+1:end,:); 

  

VshareL=VL(1:NshareRowsR,:); 

ushareL=uL(1:NshareRowsR,:); 

vshareL=vL(1:NshareRowsR,:); 

XshareL=XL(1:NshareRowsR,:); 

YshareL=YL(1:NshareRowsR,:); 

  

%%%% Take the average of right and left shared velocties 

Vshare=0.5*VshareR+0.5*VshareL; 

ushare=0.5*ushareR+0.5*ushareL; 

vshare=0.5*vshareR+0.5*vshareL; 

Xshare=0.5*XshareR+0.5*XshareL; 

Yshare=0.5*YshareR+0.5*YshareL; 

  

VpureR=VR(1:end-NshareRowsR,:); 

upureR=uR(1:end-NshareRowsR,:); 

vpureR=vR(1:end-NshareRowsR,:); 

XpureR=XR(1:end-NshareRowsR,:); 

YpureR=YR(1:end-NshareRowsR,:); 

  

VpureL=VL(NshareRowsR+1:end,:); 

upureL=uL(NshareRowsR+1:end,:); 

vpureL=vL(NshareRowsR+1:end,:); 

XpureL=XL(NshareRowsR+1:end,:); 

YpureL=YL(NshareRowsR+1:end,:); 

  

  

%%%% Combined data cell array for both cameras at each 

frame 

Vall{1,i}=[VpureR;Vshare;VpureL]; %Magnitude 

uall{1,i}=[upureR;ushare;upureL]; % vel in x 

vall{1,i}=[vpureR;vshare;vpureL]; % vel in y 

Xall{1,i}=[XpureR;Xshare;XpureL]; % X does not change with 

frames but was written for consistency 

Yall{1,i}=[YpureR;Yshare;YpureL]; 
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Vortall{1,i}=curl(Xall{1,i},Yall{1,i},uall{1,i},vall{1,i}); 

  

end 

figure 

plot(VR(:,XToCheck),YR(:,XToCheck),VL(:,XToCheck),YL(:,XToC

heck)) 

h=xR(2)-xR(1); 

 

for i=1:NfigsR 

XR=repmat(xR(1:NCellX)',NCellY,1); %Repeat X vector to form 

a matrix of 99*74 

% yR(1: Jump (74): End (7326)) 

YR=repmat(yR(1:NCellX:NCellX*NCellY),1,NCellX); %Repeat Y 

vector to form a matrix of 99*74 

  

% converting the cell to matrix (No repetition in velocity) 

VR=vec2mat(velmagStakR(:,i),NCellX); 

uR=vec2mat(uStakR(:,i),NCellX); 

vR=vec2mat(vStakR(:,i),NCellX);  

XL=repmat(xL(1:NCellX)',NCellY,1); 

YL=repmat(yL(1:NCellX:NCellX*NCellY),1,NCellX); 

VL=vec2mat(velmagStakL(:,i),NCellX); 

uL=vec2mat(uStakL(:,i),NCellX); 

vL=vec2mat(vStakL(:,i),NCellX); 

%%% Shared area indices 

[shareiR,sharejR]=find(YR<=CameraHeight); 

[shareiL,sharejL]=find(YL>=(CameraHeight-

IntersectionLength)); 

  

%Number of shared rows in both right and left cameras 

NshareRowsR=length(shareiR)/NCellX; 

NshareRowsL=length(shareiL)/NCellX; 

  

% Exracting shared data for right and left 

VshareR=VR(end-NshareRowsR+1:end,:); 

ushareR=uR(end-NshareRowsR+1:end,:); 

vshareR=vR(end-NshareRowsR+1:end,:); 

XshareR=XR(end-NshareRowsR+1:end,:); 

YshareR=YR(end-NshareRowsR+1:end,:); 

  

VshareL=VL(1:NshareRowsR,:); 

ushareL=uL(1:NshareRowsR,:); 

vshareL=vL(1:NshareRowsR,:); 

XshareL=XL(1:NshareRowsR,:); 

YshareL=YL(1:NshareRowsR,:); 

  

%%%% Take the average of right and left shared velocties 
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Vshare=0.5*VshareR+0.5*VshareL; 

ushare=0.5*ushareR+0.5*ushareL; 

vshare=0.5*vshareR+0.5*vshareL; 

Xshare=0.5*XshareR+0.5*XshareL; 

Yshare=0.5*YshareR+0.5*YshareL; 

  

VpureR=VR(1:end-NshareRowsR,:); 

upureR=uR(1:end-NshareRowsR,:); 

vpureR=vR(1:end-NshareRowsR,:); 

XpureR=XR(1:end-NshareRowsR,:); 

YpureR=YR(1:end-NshareRowsR,:); 

  

VpureL=VL(NshareRowsR+1:end,:); 

upureL=uL(NshareRowsR+1:end,:); 

vpureL=vL(NshareRowsR+1:end,:); 

XpureL=XL(NshareRowsR+1:end,:); 

YpureL=YL(NshareRowsR+1:end,:); 

  

  

%%%% Combined data cell array for both cameras at each 

frame 

Vall{1,i}=[VpureR;Vshare;VpureL]; %Magnitude 

uall{1,i}=[upureR;ushare;upureL]; % vel in x 

vall{1,i}=[vpureR;vshare;vpureL]; % vel in y 

Xall{1,i}=[XpureR;Xshare;XpureL]; % X does not change with 

frames but was written for consistency 

Yall{1,i}=[YpureR;Yshare;YpureL]; 

%%%%Vorticity vector 

Vortall{1,i}=curl(Xall{1,i},Yall{1,i},uall{1,i},vall{1,i}); 

  

%%Gradient matrix GX=dV/dX, GY=dV/dY 

  

[GVX,GVY]=gradient(Vall{1,i},h); 

[GuX,GuY]=gradient(uall{1,i},h); 

[GvX,GvY]=gradient(vall{1,i},h); 

  

DV_DX_SpAvg(i)=mean(mean(GVX))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 

DV_DY_SpAvg(i)=mean(mean(GVY))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 

Du_DX_SpAvg(i)=mean(mean(GuX))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 

Du_DY_SpAvg(i)=mean(mean(GuY))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 

Dv_DX_SpAvg(i)=mean(mean(GvX))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 



170 

 

 

 

Dv_DY_SpAvg(i)=mean(mean(GvY))*convfacdis/convfacvel;%%%% 

To convert m/m to pixels/pixel 

end 

DV_DX_SpAvgTimeMax=max(DV_DX_SpAvg) 

DV_DY_SpAvgTimeMax=max(DV_DY_SpAvg) 

Du_DX_SpAvgTimeMax=max(Du_DX_SpAvg) 

Du_DY_SpAvgTimeMax=max(Du_DY_SpAvg) 

Dv_DX_SpAvgTimeMax=max(Dv_DX_SpAvg) 

Dv_DY_SpAvgTimeMax=max(Dv_DY_SpAvg) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for i=1:NfigsR 

   %%Get the velocity column at each frame 

    velmagStakR_i=velmagStakR(:,i); 

    velmagStakL_i=velmagStakL(:,i); 

     

        uStakR_i=uStakR(:,i); 

    uStakL_i=uStakL(:,i); 

    % find bad vectors 

 ibadR=find (dataR{1,i}.data(:,5)<=0); 

 ibadL=find (dataL{1,i}.data(:,5)<=0); 

  

 %Remove bad vectors from the column at each frame 

 velmagStakR_i(ibadR)=[]; 

 velmagStakL_i(ibadL)=[]; 

 uStakR_i(ibadR)=[]; 

 uStakL_i(ibadL)=[]; 

  

 %Merging both camera data 

 velmagStakAll=[velmagStakR_i;velmagStakL_i]; 

  uStakAll=[uStakR_i;uStakL_i]; 

  

 VallMax(i)=max(velmagStakAll); 

  uallMax(i)=max(uStakAll); 

   

 VallMean(i)=mean(velmagStakAll); 

 

VallWeightMean(i)=sum(velmagStakAll.^2)/sum(velmagStakAll); 

end 

  

%%% Plotting mean with time 

  

figure 

plot(tR,VallMean,'--ro'); 

title('Mean velocity (Two Cameras)') 

xlabel('time(sec.)') 
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ylabel('Mean Velocity (m/sec)') 

hold on 

grid on  

box on 

ax = gca; 

ax.XTick =0:0.2:5; 

hold on 

  

%%% Plotting max with time 

figure 

plot(tR,VallMax,'--ro'); 

title('Maximum velocity (Two Cameras)') 

xlabel('time') 

ylabel('Max.Velocity (m/sec.)') 

hold on 

grid on  

box on 

ax = gca; 

ax.XTick =0:0.2:5; 

  

%%%% *****************Contour Plotting************** 

  

for i=1:NfigsR 

figure1=figure; 

axes1 = 

axes('Parent',figure1,'BoxStyle','full','Layer','top',... 

    'FontWeight','bold',... 

    'FontSize',12,'FontName','Times New Roman'); 

box(axes1,'on'); 

hold(axes1,'on'); 

[C,h] = contourf(Xall{1,i},Yall{1,i},Vall{1,i}); 

  

h.LevelStep=2/100; 

h.LineStyle='none'; 

colormap('jet') 

  

  

hold on 

 

xlabel('x','FontWeight','bold','Rotation',0,'FontSize',12,'

FontName',... 

'Times New Roman'); 

 ylabel( 

'y','FontWeight','bold','Rotation',90,'FontSize',12,'FontNa

me',... 

     'Times New Roman'); 
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  ax = gca; 

  

 intervCountX=10; 

     XMIN=min(xL); 

     XMAX=max(xR); 

     ax.XLim=[XMIN XMAX]; 

     ax.XTick=XMIN:(XMAX-XMIN)/intervCountX:XMAX; 

     ax.XTickLabel=sprintf('%0.3f\n',ax.XTick); 

      

     intervCountY=10; 

     YMIN=min(yL); 

     YMAX=max(yR); 

     ax.YLim=[YMIN YMAX]; 

     ax.YTick=YMIN:(YMAX-YMIN)/intervCountY:YMAX; 

     ax.YTickLabel=sprintf('%0.3f\n',ax.YTick); 

      

     c = colorbar; 

    c.LineWidth=1.5; 

    title(['Two Cameras' ' ' sprintf('%03d',i)]) 

  %c.Ticks=0:0.1:0.7;*********************** 

  

%c.TickLabels=sprintf('%0.1f\n',c.Ticks);******************

***** 

    caxis([0 1.2])  

   %  title(c,'B(\xi,\zeta)', 'Position',[-16.4 

429.600005080157 0])***** 

%%%This will save the figure as png with format fig1, fig2, 

...figN******** 

saveas(gcf,['Velocity Contour' sprintf('%03d',i) '.png']) 

hold on 

close 

end 

  

 

%***************************Vorticity********************** 

for i=1:NfigsR 

figure2=figure; 

axes1 = 

axes('Parent',figure2,'BoxStyle','full','Layer','top',... 

    'FontWeight','bold',... 

    'FontSize',12,'FontName','Times New Roman'); 

box(axes1,'on'); 

hold(axes1,'on'); 

[C,h] = contourf(Xall{1,i},Yall{1,i},Vortall{1,i}); 

h.LevelStep=2/10; 

h.LineStyle='none'; 
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colormap('jet') 

hold on 

 

xlabel('x','FontWeight','bold','Rotation',0,'FontSize',12,'

FontName','Times New Roman'); 

 ylabel( 

'y','FontWeight','bold','Rotation',90,'FontSize',12,'FontNa

me','Times New Roman'); 

  

  ax = gca; 

  

 intervCountX=10; 

     XMIN=min(xL); 

     XMAX=max(xR); 

     ax.XLim=[XMIN XMAX]; 

     ax.XTick=XMIN:(XMAX-XMIN)/intervCountX:XMAX; 

     ax.XTickLabel=sprintf('%0.3f\n',ax.XTick); 

      

     intervCountY=10; 

     YMIN=min(yL); 

     YMAX=max(yR); 

     ax.YLim=[YMIN YMAX]; 

     ax.YTick=YMIN:(YMAX-YMIN)/intervCountY:YMAX; 

     ax.YTickLabel=sprintf('%0.3f\n',ax.YTick); 

      

     c = colorbar; 

    c.LineWidth=1.5; 

    caxis([-600 800])  

    title(['Two Cameras' ' ' sprintf('%03d',i)]) 

 saveas(gcf,['Vort and Vector' sprintf('%03d',i) '.png']) 

 close 

end 

  

  

%%%******************* Vector Plotting ************** 

for i=1:NfigsR 

  figure 

    quiver(Xall{1,i},Yall{1,i},uall{1,i},vall{1,i},3) 

    Color='k'; 

    AutoScaleFactor=20; 

    LineWidth=25; 

    title(['Two Cameras' ' ' sprintf('%03d',i)]) 

    saveas(gcf,['Vector' sprintf('%03d',i) '.png']) 

    close 

end 
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%%%********************PDF********************************* 

for i=1:NfigsR 

%This is to convert the matrix to a single column for  

%easier manipulations 

   VallColumnVec=reshape(Vall{1,i},[numel(Vall{1,i}),1]); 

   % Data density function 

%Input for the interval 

IntervalR=0.05; 

%Number of intervals 

NintervalsR=round((max(VallColumnVec)-

min(VallColumnVec))/IntervalR); 

%Minimum instantaneous velocity 

UminR=min(VallColumnVec); 

for j=1:NintervalsR 

  % Finding the indices of samples which lie in every 

interval 

    NindexR=find((UminR+IntervalR*(j-1))<=VallColumnVec 

&VallColumnVec<=(UminR+IntervalR*j)); 

   %Calculating the number of samples for every interval 

    NcountR(j)=length(NindexR); 

   %Calculating the instantaneous velocity at the centre of 

the interval 

    UcR(j)=UminR+(j-1/2)*IntervalR; 

end 

%Calculating probability density function 

NR=length(VallColumnVec); % Number of samples 

BUFR=NcountR./NR;%/Interval; %PDF 

%Plotting the PDF 

figure 

bar(UcR,BUFR) 

xlabel('U (m/s)') 

ylabel('No of sample per bin/Total No of samples') 

title(['Two Cameras' ' ' sprintf('%03d',i)]) 

saveas(gcf,['pdffig' sprintf('%03d',i) '.png']) 

close 

end 

  

%%%%%% to find the transient profile of a selected point 

Xp=[0.0847 0.0847]; 

Yp=[0.06641 0.28641]; 

Yt={'YC' 'YG'}; 

figure 

for j=1:length(Xp) 

Xallmat=Xall{1,1}; 

diffX=abs(Xallmat-Xp(j)); 

[ip,jp]=find(diffX==min(min(diffX))); 

jp1=jp(1); %%%Select only one as they are the same 
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Yallmat=Yall{1,1}; 

diffY=abs(Yallmat-Yp(j)); 

[ip,jp]=find(diffY==min(min(diffY))); 

ip1=ip(1); %%%Select only one as they are the same 

  

  

for i=1:NfigsR 

   Vp(i)=Vall{1,i}(ip1,jp1); 

     

end 

  

  

  

plot(tR,Vp) 

title('Velocity') 

  

itext=find(Vp==max(Vp)); 

text(tR(itext),Vp(itext),['\leftarrow ' Yt{j} ]) 

hold on 

  

end 

fid=fopen('Part950cough2vel.txt','w'); 

fprintf(fid, '%f %f \n', [ tR;VallMean]); 

fclose(fid);true 
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