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Abstract Label ordering, the specification of subset-

superset relationships for segmentation labels, has been

of increasing interest in image segmentation as they

allow for complex regions to be represented as a col-

lection of simple parts. Recent advances in continuous

max-flow segmentation have widely expanded the possi-

ble label orderings from binary background/foreground

problems to extendable frameworks in which the label

ordering can be specified. This article presents Directed

Acyclic Graph Max-Flow (DAGMF) image segmenta-

tion which is flexible enough to incorporate any label

ordering without constraints. This framework uses aug-

mented Lagrangian multipliers and primal-dual opti-

mization to develop a highly parallelized solver imple-

mented using GPGPU. This framework is validated on

synthetic, natural, and medical images illustrating its
general applicability.

Keywords continuous max-flow · image segmenta-

tion · convex optimization · variational optimization ·
ASETS

1 Introduction

Techniques in Markov Random Field estimation and so-

lution have been immensely useful in the field of image

analysis, specially image segmentation. Pseudo-boolean

programming [7,27] and fast optimization techniques

such as graph-cuts [8] have allowed for exact solutions

to Markov Random Field models with submodular en-

ergies [6,7,30] giving them increased applicability. Bi-

nary graph-cuts have also been the basis for algorithms
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such as α-expansion and α-β swap [9] which approx-

imate solutions to NP-hard (non-sub-modular) multi-

region segmentation problems [30].

Of particular interest are extendable algorithms,

that is, a single algorithm or algorithmic framework

which can address problems with an arbitrarily high

number of labels, rather than a fixed number, and frame-

works that address different label orderings, i.e. con-

straints on the labels in terms of subset-superset re-

lationships. Algorithms such as α-expansion and α-β

swap [9] have provided a graph-cut based framework for

addressing the Potts model [33]. In terms of label or-

derings, this model constrains the labels to be disjoint

and form a valid partition of the image. Ishikawa et

al. [26] developed a framework for minimizing energies

with multiple linearly ordered labels. Delong et al. [16]

extended this to models composed of sub-modular in-

clusion terms and super-modular exclusion terms. Both

frameworks maintain a sub-modular energy, allowing

them to achieve global optimality. Delong et al. [17]

also presented an extendable framework for hierarchi-

cal label orderings using α-expansion as a subroutine.

These frameworks have constrained label orderings in

that no framework can optimize a problem with arbi-

trary subset-superset relationships.

Parallel to discrete graph-cut models, continuous

analogs have also gained increasing attention, using vari-

ational optimization to describe the image space not as

a discrete collection of pixels but as a bounded con-

tinuum of locations. These have been shown to reduce

metrication artifacts associated with graph-cut segmen-

tation. [32,41,42] Primal-dual optimization provided an

efficient framework for solving these models iteratively

[11,41]. Extendable max-flow models, ones which han-

dle an arbitrary number of labels, analogous to the

above have been proposed and are described with more
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Continuous or
Discrete?

Possible label orderings Approach Optimality?

Billionnet Discrete Submodular functions Single graph cut Global binary
& Minoux [6]
Boykov et al. [9] Discrete Potts model α-expansion proposed Approximate binary

α-β-swap proposed
Ishikawa et al. [26] Discrete Linear ordering Single graph cut Global binary

(Ishikawa model)
Kolmogorov Discrete Submodular functions Single graph cut Global binary
& Zabih [30]
Schlesinger Discrete Linear ordering Single graph cut Global binary
& Flach [37]
Pock et al. [32] Continuous Potts model Primal-dual optimization Global fuzzy

Projected gradient descent
Delong et al. [16] Discrete Sub/supermodular models Single graph cut Global binary

(subset of partial orderings)
Yuan et al.[42] Continuous Potts model Primal-dual optimization Global fuzzy

Augmented Langrangian
Delong et al. [17] Discrete Hierarchical models α-expansion-based Approximate binary

(subset of partial orderings)
Bae et al. [2] Continuous Ishikawa model Primal-dual optimization Global fuzzy &

(linear ordering) Augmented Langrangian Global binary
Baxter et al.[3,34] Continuous Hierarchical models Primal-dual optimization Global fuzzy

(subset of partial orderings) Augmented Langrangian

Table 1: Extendable Max-Flow/Min-Cut Segmentation Frameworks

detail in Section 2. In these models, multiple labels are

represented in separate continuous spaces connected in

such a manner as to encode topological information.

Contributions: This article describes a continuous max-

flow framework that allows for labels to be organized as

a set of continuous spaces linked as a directed acyclic

graph (DAG), which is a strict generalization of previ-

ous, more constrained algorithms [3,34,42]. This article

also derives two solution algorithms for this framework

derived from primal-dual optimization: the first based

on augmented Lagrangian optimization, and the sec-

ond on proximal Bregman projections. This framework

is sufficiently powerful to represent any arbitrary col-

lection of subset-superset relationships and thus can be

considered to optimize unconstrained label orderings.

2 Previous Extendable Max-Flow Approaches

Previous approaches to continuous max-flow segmenta-

tion with an arbitrary number of labels include those

with a rigidly defined topology and those where the

topology can be more flexible. Both these framework

and extendable discrete frameworks are summarized in

Table 1. (Continuous or Discrete? refers to whether

the problem theoretically considers the image domain

to be a continuum or a discrete collection of voxels.

Optimality? refers to whether the framework guaran-

tees a globally optimal solution or an approximate one,

and whether that guarantee applies to a binary labeling

problem or fuzzy labeling problem.)

The notation for each of the methods have been re-

written to emphasize the similarities between the dif-

ferent frameworks. Specifically, in each method, L rep-

resents a label or object in the image, with S as the

source label representing the entire domain of the im-

age Ω. The function uL(x) is the labeling function, that

is, uL(x) ≈ 1 means that location x ∈ Ω is within ob-

ject L and uL(x) ≈ 0 means that location x ∈ Ω is not

within object L. DL(x) and RL(x) are the data terms

and regularization or smoothness terms, respectively,

which correspond to costs minimized by the optimiza-

tion process. We will also use the notation L to refer

to the labels forming the partition of the image domain

Ω.

Rigidly-Defined Topology:

The continuous Potts model [32,42] was the first con-

tinuous max-flow model which allowed for the incor-

poration of more labels than the standard foreground/

background and minimizes the segmentation energy:

E(u) =
∑
∀L

∫
Ω

(DL(x)uL(x) +RL(x)|∇uL(x)|) dx

s.t.
∑
∀L∈L

uL(x) = uS(x) = 1

uL(x) ≥ 0

(1)

In this model, the only notion of topology is that all la-

bels are disjoint (the only labels present are the source
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label, S, and the labels forming the partition L); there

is no regularization considerations for grouping labels.

The fuzzy segmentation problem (where uL(x) ∈ [0, 1])

can be solved with global optimality for these prob-

lems, but the binary equivalent (where uL(x) ∈ {0, 1})
is known to be only approximately optimal.

The continuous analogue to the Ishikawa model [2]

took label topology into account by introducing the no-

tion of a more complex label ordering. However, in the

Ishikawa model, the only label orderings supported are

linear orderings, that is, each label is either a subset or

a superset of another label; no two labels can be dis-

joint as in the Potts model. This model minimizes the

energy:

E(u) =
∑
∀Li

∫
Ω

(
DLi

(x)(uLi
(x)− uLi+1

(x))

+RLi
(x)|∇uLi

(x)|) dx
s.t. uL0

(x) = 1

uLi
(x) ≥ uLi+1

(x)

(2)

In these models, L0 plays the role of S, and the parti-

tion is L = {L0 \ L1, L1 \ L2, . . . LN−1 \ LN , LN}. Sim-

ilar to the continuous Potts model, the fuzzy segmen-

tation problem (where uLi
(x) ∈ [0, 1]) can be solved

with global optimality. The binary equivalent (where

uL(x) ∈ {0, 1}) can also be optimally solved via a

thresholding system on the fuzzy label values. [2]

Neither of these models allows for the label order-

ing itself to be specified. The Potts model only allows

for completely unordered labels and the Ishikawa model

only allows for fully ordered labels. Recent approaches

in partially ordered labels in continuous max-flow im-

age segmentation [35] illustrated that relaxing these

constraints on extendable models could have practical

significance, using a flexible label ordering to encode

knowledge about the scene composition.

Flexible Topology:

Hierarchical continuous max-flow image segmentation

(HMF) [3,34] allowed for non-linear label orderings to

be defined with one stipulation, that the label ordering

was hierarchical. The practical implication is that two

labels could either be entirely disjoint as in the Potts

model or one is a superset of the other as in the Ishikawa

model. This model minimizes the energy:

E(u) =
∑
∀L

∫
Ω

(DL(x)uL(x) +RL(x)|∇uL(x)|) dx

s.t. uS(x) = 1∑
L′∈L.C

uL′(x) = uL(x) if L.C 6= ∅

uL(x) ≥ 0

(3)

Fig. 1: Example label ordering diagram with four leaf-

labels (L = {A,B,D,E}) with parent and child opera-

tors, L.P and L.C respectively, explicitly written. This

label ordering is suitable for HMF as it is a valid hierar-

chy; each label has exactly one parent except the source

label S, representing the entire image, which has none.

In these models, each label L is either a leaf-label or

is recursively partitioned into a set of other, simpler

labels L.C. The partition of the image is therefore L =

{L|L.C = ∅}. We will use the same notation as Baxter

et al. [3] in that L.C refers to the set of children of L and

L.P refers to the set of parents of L. The hierarchical

constraint is that this label ordering can be expressed

as a tree rooted at a node representing label S. (That is,

for every label L 6= S, L.P consists of a single element.)

We will also use the star notation, L.C∗ to denote the

descendants of L, that is, L.C ∪ {L′.C|L′ ∈ L.C} ∪
{L′′.C|∃L′ ∈ L.C(L′′ ∈ L′.C)} ∪ . . .. Similarly, L.P ∗

denotes the ancestors of L, that is L.P ∪ {L′.P |L′ ∈
L.P} ∪ {L′′.P |∃L′ ∈ L.P (L′′ ∈ L′.P )} ∪ . . .

The goal of HMF solvers [3,34] was to have a sin-

gle unified framework that solved any of these mod-

els, rather than specifying a particular model. This is

in contrast to earlier work in hierarchical max-flow la-

bel ordering in which the particular label ordering (and

thus the number of labels) was fixed. [35] The solvers

guarantee global optimality for fuzzy labels where uL(x) ∈
[0, 1], but as this framework is a strict generalization of

the Potts model, it cannot in general guarantee an glob-

ally optimal binary labeling where uL(x) ∈ {0, 1}.
The ultimate purpose of this article is to remove

the constraint that L.P consists of a single element,

developing a solution algorithm suitable for any possi-

ble directed acyclic graph. By allowing a label to have

multiple parents, regions can be grouped in a way that
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is distinctly non-hierarchical, such as areas of overlap

between two distinct regions, addressing a number of

useful but previously insoluble label orderings such as

the Venn diagram model in Section 6.1. Additionally,

Section 5 demonstrates that DAGs are sufficiently pow-

erful to represent any label ordering, that is, to apply a

regularization term to any arbitrary grouping of labels.

3 Continuous Max-Flow Model

The Directed Acyclic Graph Max-Flow (DAGMF) seg-

mentation model this article addresses is the minimiza-

tion of the convex energy functional:

E(u) =
∑
∀L

∫
Ω

(DL(x)uL(x) +RL(x)|∇uL(x)|) dx

s.t. uS(x) = 1∑
L′∈L.C

w(L,L′)uL′(x) = uL(x) if L 6∈ L

uL(x) ≥ 0

(4)

Similar to HMF, the partition L = {L|L.C = ∅} is

the set of leaf-labels or labels with no children. Unlike

HMF, L.P does not have to consist of a single element,

but each label can have multiple parents. The non-

negative weight terms w(L′,L) determine what weight

to give the labeling function of L when calculating the

labeling function of its parent label, L′. These terms

must sum to 1 over the parents of each label, that is:

∑
∀L′∈L.P

w(L′,L) = 1 (5)

which will guarantee a valid partition of Ω into the leaf-

labels, that is,
∑
∀L∈L uL(x) = 1 (Shown in Sec. 3.3).

It is clear that HMF is a subset of these models as L.P

having a single element implies w(L′,L) = 1 showing

that equation (3) is a special case of equation (4). We

can assume, without loss of generality, that DL(x) = 0

whenever L /∈ L. This is achievable by pushing down

the data terms to the labels children, i.e. DL(x)uL(x) =∑
L′∈L.C DL(x)w(L,L′)uL′(x).

The modeling approach is derived from those pre-

sented by Yuan et al.[41][42] and follows the same for-

mat, showing the duality of a max-flow primal forma-

tion to this minimization problem through an interme-

diate primal-dual optimization problem. An augmented

Lagrangian framework and a proximal Bregman frame-

work are proposed for minimizing this intermediate rep-

resentation.

3.1 Primal Formulation

The primal model represents network flow maximiza-

tion through a large graph with only the sink flows con-

strained. The dual of this formulation is the DAGMF

equation (4) as we shall prove in the following section.

We can write the primal model as:

max
p,q

∫
Ω

pS(x)dx

pL(x) ≤ DL(x) where L ∈ L
|qL(x)| ≤ RL(x) where L 6= S

0 = div qL(x) + pL(x)−
∑

L′∈L.P
w(L′,L)pL′(x)

where L 6= S

(6)

This is equivalent to a multi-flow problem over a

large graph constructed from the image dimensions with

the provided directed acyclic graph as overall architec-

ture. Other than constraints put on the magnitude of

the spatial flows, qL(x), and the capacity of the sink

flows (pL(x) where L.C = ∅), the system is assumed to

have infinite capacity. The flow conservation constraint :

GL(x) = div qL(x) + pL(x)−
∑

L′∈L.P
w(L′,L)pL′(x) = 0

(7)

ensures that no flow enters the network except through

the source flow pS(x) or exits the network except through

the outgoing flows pL(x) at the leaf labels L ∈ L. This

is a strict generalization of the hierarchical form ex-

plored by Baxter et al.[3] considering hierarchies to be

a specific class of rooted DAG.

3.2 Primal-Dual Formulation

The primal model can be converted to a primal-dual

model through the use of Lagrangian multipliers over

the flow conservation constraint GL(x) yielding the La-

grangian:

min
u

max
p,q

∫
Ω

pS(x)dx+
∑
∀L6=S

∫
Ω

uL(x)GL(x)dx


pL(x) ≤ DL(x), where L ∈ L
|qL(x)| ≤ RL(x) L 6= S .

(8)

First, we must ensure that equation (8) is convex

with respect to u, considering p, q to be fixed, and con-

cave with respect to p, q with u fixed, as to meet the re-

quirements of the minimax theorem (Ekeland & Temam
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[19], pp. 176). Considering p, q as fixed, G is obviously

fixed as well, implying that equation (8) is linear over u

and therefore convex. It should also be noted that G is

a linear function of p, q, meaning that (8) is again linear

and therefore concave with respect to p and q. This im-

plies the existence of a saddle point and the equivalence

of the formulation regardless of the order of the prefix

max and min operators under the minimax theorem.

(Ekeland & Temam[19], pp. 176)

3.3 Dual Formulation

To convert the primal-dual model into the original min-

imization problem, we can find the saddle point through

the optimization of each isolated variable. We proceed

through the sink-flow variables, pL, working bottom-

up from the leaf-labels L, then address the spatial flow

variables, qL, within each label. Starting with any leaf-

label, L ∈ L, we can isolate pL in (8) giving:

min
uL

max
pL(x)≤DL(x)

∫
Ω

uL(x)pL(x)dx

= min
uL(x)≥0

∫
Ω

uL(x)DL(x)dx

(9)

when uL(x) ≥ 0. (If uL(x) < 0, the function can be

arbitrarily maximized by pL(x) → −∞.) Moving onto

every branch label, L, where L.C 6= ∅ and L.P 6= ∅, pL
can be isolated in (8) as:

min
u

max
pL(x)

(∫
Ω

uL(x)pL(x)dx

−
∑

∀L′∈L.C

∫
Ω

w(L,L′)uL′(x)pL(x)dx

)
= 0

(10)

at the saddle point uL(x) =
∑
∀L′∈L.C w(L,L′)uL′(x).

Lastly, the source flow, pS , can be isolated in a similar

manner, that is:

min
u

max
pS(x)

(∫
Ω

pS(x)dx

−
∑

∀L′∈S.C

∫
Ω

w(S,L′)uL′(x)pS(x)dx

)
= 0

(11)

at the saddle point, 1 =
∑
∀L′∈S.C w(S,L′)uL′(x). These

constraints can be combined to yield the labeling con-

straints in the original formulation. The maximization

of the spatial flow functions can be expressed in a well-

studied form (Giusti [20], pp. 3-4) as:

max
|qL|≤RL(x)

∫
Ω

uL(x) div qL(x)dx =

∫
Ω

RL(x)|∇uL(x)|dx

(12)

through the application of Gauss-Ostrogradsky theo-

rem:∫
Ω

uL(x) div qL(x)dx = −
∫
Ω

qL(x) · ∇uL(x)dx (13)

which implies that we can express the saddle point of

equation (8) as the original energy functional, (4), and

therefore, finding the saddle point of (8) is equivalent

to solving the DAGMF problem.

4 Solutions to the Primal-Dual Formulation

4.1 Augmented Lagrangian Approach

One way to address the primal-dual optimization prob-

lem in equation (8), is to augment the Lagrangian with

a quadratic penalty term. This augmented Lagrangian

is equivalent to the unaugmented Lagrangian, but en-

courages faster convergence to solutions which fulfill

the optimization constraint, in this case GL(x) = 0.

[5] Such an augmentation yields the formula:

min
u

max
p,q

∫
Ω

pS(x)dx+
∑
∀L 6=S

∫
Ω

uL(x)GL(x)dx

− c
2

∑
∀L 6=S

∫
Ω

GL(x)2dx


pL(x) ≤DL(x), ∀L ∈ L
|qL(x)| ≤RL(x), L 6= S

(14)

where c is the quadratic penalty parameter. Using this

formula, we can iteratively maximize each component.

To simplify the notation, we will denote the incoming

flow to a label as:

ζL(x) =
∑

L′∈L.P
w(L′,L)pL′(x) (15)

Equation (14) can be optimized iteratively by hold-

ing each variable fixed except one which is used to

maximize (in the case of qL(x), pL(x), and pS(x)) or

minimize (in the case of uL(x)) the objective function

accordingly similar to previous augmented Lagrangian

approaches to continuous max-flow models [2,3,34,41,

42]. Therefore, the solution steps for the augmented La-

grangian approach are:
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1. Maximize (14) over the spatial flows qL approxi-

mately for each label via iterative application of:

Proj
|qL(x)|≤RL(x)

(
qL(x) + τ∇(div qL(x)

+ pL(x)− ζL(x)− uL(x)/c)

)
which is a Chambolle projection iteration. [11] τ is a

small positive gradient descent parameter. In prac-

tice, one iteration has been found to be sufficient

and computationally preferable. [2,3,41,42]

2. Maximize (14) the outgoing flow to the sink, pL
where L.C = ∅, analytically as:

min{DL(x), ζL(x)− div qL(x) + uL(x)/c}
3. Maximize (14) the outgoing flow for each label, pL

where L.C 6= ∅ and L.P 6= ∅, analytically as:

1

1 +
∑

L′∈L.C
w2

(L,L′)

(
ζL(x)− div qL(x) + uL(x)/c

+
∑

∀L′∈L.C

w(L,L′)

(
pL′(x) + div qL′(x)

− ζL′(x) + w(L,L′)pL(x)− uL′(x)/c
))

4. Maximize (14) over the source flow, pS , analytically

as:
1∑

L′∈S.C w
2
(S,L′)

(
1

c
+

∑
∀L′∈S.C

w(S,L′)(div qL′(x)

+ pL′(x)− ζL′(x) + w(S,L′)pS(x)− uL′(x)/c)

)
5. Minimize (14) over uL for each label analytically as:

uL(x)− c (div qL(x)− ζL(x) + pL(x))

The precise pseudo-code is given in Algorithm 1. The

convergence of said augmented Lagrangian algorithm

is on the order of O(1/N) similar to other primal-dual

approaches [12]. This was shown by Hong and Luo [25]

for multi-block alternating direction method of multi-

pliers algorithms such as our algorithm. This conver-

gence relies on the decomposition of cost function and

constraints across each block having particular, restric-

tive properties which are upheld for all inter-node flows,

pL. The use of a proximal term, − τ2 |qL(x) − qoldL (x)|2,

on the spatial flow updates corrects for not upholding

all these properties. This guarantees linear convergence

under weaker restrictions [25] and provides a theoreti-

cal justification for the use of only a single Chambolle

iteration per update step.

Note that within each step there exists a large amount

of inherent parallelism allowing for general purpose pro-

gramming on graphics processing units (GPGPU) accel-

eration of each step with relative ease. This solver and

GPGPU accelerated variants are available open-source

at www.advancedsegmentationtools.org.

4.2 Proximal Bregman Approach

The augmented Lagrangian approach for DAGMF pre-

sented in Section 4.1 may not be the most efficient so-

lution algorithm under certain conditions, particularly

due to the potentially prohibitive memory requirements

of saving all the flow variables. Pseudo-flow approaches

[1] use Bregman proximal projection operators in the

optimization process, implicitly representing the inter-

node flow variables (the flow variables pL), and allowing

for more memory efficient and possibly more compu-

tationally efficient solution algorithms.We will be us-

ing a similar approach to Bae et al.[1] to develop a

novel proximal Bregman or pseudo-flow approach for

addressing DAGMF problems. Such proximal point ap-

proaches to variational optimization are known to have

weak convergence (i.e. for any collection of smooth func-

tions yL(x), L ∈ L, the value
∑
L∈L

∫
Ω
ukL(x)yL(x)dx

converges to
∑
L∈L

∫
Ω
u∞L (x)yL(x)dx where uk is the

labeling at iteration k and u∞ is the optimum of Eq

(4).)[36] This was explicitly demonstrated for Bregman

distance functions by Censor and Zenios (Censor and

Zenios [10], Theorem 3.6) as well as Chen and Teboulle

(Chen and Teboulle [13], Theorem 3.4).

Before developing a pseudo-flow approach, it is nec-

essary to develop some simplifying notation. The spe-

cific notation introduced is dL(x) where L ∈ L which

represents the flow excess of the label, L, taking into

account its ancestors, and W(A,B) is the amount of la-

beling weight assigned to a ancestor label A derived

from a descendant label B. dL(x) can be defined recur-

sively as:

dL(x) =


0, if L = S

DL(x) + div qL(x) +
∑

L′∈L.P
w(L′,L)dL′(x),

if L ∈ L
div qL(x) +

∑
L′∈L.P

w(L′,L)dL′(x), else

(16)

which mirrors the top-down process of excess flow ac-

cumulation, and W(A,B) can also be defined recursively

as:

W(A,B) =
∑

p∈path(A,B)

∏
(M,N)∈p

w(M,N)

=


1, if A = B∑
∀L∈A.C

w(A,L)W(L,B), if B ∈ A.P∗

0, else

(17)

which mirrors the bottom-up process of label accumu-

lation.

With this notation, we can develop a pseudo-flow

representation which is amenable to solving through a

www.advancedsegmentationtools.org
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Algorithm 1: Augmented Lagrangian solution to the DAGMF problem. This algorithm implements the steps described in Section 4.1,

taking the data terms DL(x), smoothness terms RL(x), gradient descent step size τ , and quadratic penalty constant c as input, yielding

the labeling uL(x) which minimizes Equation (4).

Topological sort the DAG into the sorted list O (begins with source label S) with reverse list O−1 (ends with source label S);
InitializeSolution() ;
while not converged do

UpdateFlows() ;
for ∀L do
∀x, uL(x)← uL(x)− c (div qL(x)− ζL(x) + pL(x)) ;

end

end

which uses the subroutines:

InitializeSolution()
Clear uL(x), qL(x) for all labels;

for each L in order O−1 do
∀x, pL(x)← min

L′.C=∅
DL′ (x) ;

∀x, ζL(x)← min
L′.C=∅

DL′ (x) ;

if L.C = ∅ then
if L ∈ argmin

L′.C=∅
DL′ (x) then

∀x, uL(x)← 1/|argmin
L′.C=∅

DL′ (x)| ;

else
∀x, uL(x)← 0 ;

end

end

for each L′ ∈ L.P/{S} do
∀x, uL′ (x)← uL′ (x) + w(L′,L)uL(x) ;

end

end

UpdateFlows()
for ∀L 6= S do
∀x, qL(x)← Proj|qL(x)|≤RL(x) (qL + τ∇ (div qL(x) + pL(x)− ζL(x)− uL(x)/c)) ;

end
Clear ζL(x) for all labels ;
for each L in order O do

for each L′ ∈ L.C do
∀x, ζL′ (x)← ζL′ (x) + w(L,L′)pL(x) ;

end
if L.C 6= ∅ and L.P 6= ∅ then
∀x, σL(x)← ζ(x)− div qL(x) + uL(x)/c ;

else if L = S then
∀x, σS(x)← 1/c ;

end

end

for each L in order O−1 do
if L.C = ∅ then
∀x, pL(x)← min{DL(x), ζL(x)− div qL(x) + uL(x)/c} ;

for L′ ∈ L.P do
∀x, σL′ (x)← σL′ (x) + w(L′,L)

(
div qL′ (x) + pL′ (x)− ζL′ (x) + wL′,LpL(x)

)
;

end

else if L = S then
∀x, pS(x)← 1∑

L′∈S.C
w2

(S,L′)
σS(x) ;

else
∀x, pL(x)← 1

1+
∑

L′∈L.C
w2

(L,L′)
σL(x) ;

for L′ ∈ L.P do
∀x, σL′ (x)← σL′ (x) + w(L′,L)

(
div qL′ (x) + pL′ (x)− ζL′ (x) + wL′,LpL(x)

)
;

end

end

end
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Algorithm 2: Proximal Bregman solution to the DAGMF problem. This algorithm implements the steps described in Section 4.2, taking

the data terms DL(x), smoothness terms RL(x), gradient descent step size τ , and proximity weighting constant c as input, yielding the

labeling uL(x) which minimizes Equation (4).

Topological sort the DAG into the sorted list O (begins with source label S) with reverse list O−1 (ends with source label S);
∀L ∈ L, uL(x)← 1/|L|;
while not converged do
∀L, ∀x, dL(x)← div qL(x);
∀L ∈ L, ∀x, dL(x)← dL(x) +DL(x);
for L in order O/{S} do

for L′ ∈ L.C do
∀x, dL′ (x)← dL′ (x) + w(L,L′)dL(x);

end

end

∀L ∈ L, ∀x, uL(x)← uL(x) exp
(
− dL(x)

c

)
;

∀L ∈ L, ∀x, dL(x)← uL(x);
∀x, a(x)←

∑
∀L∈L uL(x);

∀L ∈ L, ∀x, uL(x)← uL(x)/a(x);
∀L /∈ L, ∀x, dL(x)← 0;

for L in order O−1/{S} do
∀x, qL(x)← Proj|qL(x)|≤SL(x) (qL(x)− cτ∇dL(x)) ;

for L′ ∈ L.P/{S} do
∀x, dL′ (x)← dL′ + w(L′,L)dL(x);

end

end

end

mixture of Bregman proximal projections and Cham-

bolle iterations. The entropic distance metric used in

this formulation is:

distg(u, v) =
∑
∀L∈L

∫
Ω

uL(x) ln

(
uL(x)

vL(x)

)
dx

+
∑
∀L∈L

∫
Ω

(−uL(x) + vL(x)) dx

(18)

which can be verified to be a Bregman distance (when

∀L, uL(x) ∈ [0, 1]) using the entropy function:

g(u) =
∑
∀L∈L

∫
Ω

(uL(x) lnuL(x)− uL(x)) dx . (19)

The non-smooth pseudo-flow formulation for DAGMF

is:

max
|qL(x)|≤RL(x)

∫
Ω

min
L∈L

(dL(x)) dx (20)

Using the equivalence between Eq’s (4),(8) and (6), we

can introduce constraints on uL(x) present in Eq. (4)

into Eq. (8). Thus, the pseudo-flow formulation can be

derived from Eq. (8) through the following series of

steps. First, we must switch the order of the max and

min operators, which as stated in Section 3.2 is allow-

able, giving us:

max
p,q

min
u

∫
Ω

(
pS(x) +

∑
∀L

uL(x)GL(x)

)
dx

∀L ∈ L, pL(x) ≤ DL(x) and ∀L 6= S, |qL(x)| ≤ RL(x)

(21)

By explicitly introducing the constraints uS(x) = 1 and

uL(x) =
∑
L′∈L.C w(L,L′)uL′(x) from Eq. (4) (along

with expanding GL(x) according to its definition in Eq.

(7)) we can group together terms allowing us to elimi-

nate the variable pS(x) , yielding:

max
p,q

min
u

∫
Ω

(∑
∀L

uL(x) div qL(x)

+
∑
∀L∈L

uL(x)pL(x)

)
dx

∀L ∈ L, pL(x) ≤ DL(x) and ∀L 6= S, |qL(x)| ≤ RL(x)

uS(x) = 1, and ∀L /∈ L, uL(x) =
∑

L′∈L.C
w(L,L′)uL′(x)

(22)

By explicitly introducing the constraint uL(x) ≥ 0,

which implies that max
pL(x)≤DL(x)

uL(x)pL(x) = uL(x)DL(x),

we can eliminate the remaining inter-node flow vari-

ables pL(x) yielding:

max
q

min
u

∫
Ω

(∑
∀L

uL(x) div qL(x)

+
∑
∀L∈L

uL(x)DL(x)

)
dx

∀L 6= S, |qL(x)| ≤ RL(x) and ∀L, uL(x) ≥ 0

uS(x) = 1, and ∀L /∈ L, uL(x) =
∑

L′∈L.C
w(L,L′)uL′(x)
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(23)

Since uL(x) =
∑
L′∈L.C w(L,L′)uL′(x) we can use the

definition of dL(x) to simplify the optimization, remov-

ing every branch-label’s uL(x) from the objective func-

tion, which gives us:

max
q

min
u

∫
Ω

∑
∀L∈L

uL(x)dL(x)dx

∀L 6= S, |qL(x)| ≤ RL(x) and ∀L, uL(x) ≥ 0

uS(x) = 1, and ∀L /∈ L, uL(x) =
∑

L′∈L.C
w(L,L′)uL′(x)

(24)

Note that by the construction of the DAG, uS(x) =

1 and uL(x) =
∑
L′∈L.C w(L,L′)uL′(x) together imply∑

∀L∈L uL(x) = 1. This allows us to remove all branch-

label’s uL(x) from the constraint set, replacing them

with the constraint
∑
∀L∈L uL(x) = 1. This removes

uL(x) entirely from the optimization problem, except

in the case of leaf-labels, yielding the equation:

max
q

min
u

∫
Ω

∑
∀L∈L

uL(x)dL(x)dx

∀L 6= S, |qL(x)| ≤ RL(x)∑
∀L∈L

uL(x) = 1, and ∀L, uL(x) ≥ 0

= max
|qL(x)|≤RL(x)

∫
Ω

min
L∈L

(dL(x)) dx .

(25)

We can combine this representation with the en-

tropic distance to yield an improved labeling u(x) prox-

imal to v(x) as:

arg min
u

max
q

∫
Ω

∑
∀L∈L

uL(x)dL(x)dx+ c distg(u, v)

∀L 6= S, |qL(x)| ≤ RL(x)∑
∀L∈L

uL(x) = 1, and ∀L, uL(x) ≥ 0

(26)

given a constant non-negative proximity weighting pa-

rameter, c ≥ 0. This proximal projection operation can

be solved analytically for all leaf-labels L ∈ L by placing

a Lagrange multiplier on the constraint
∑
∀L∈L uL(x) =

1 which yields the formula:

uL(x) =
vL(x) exp

(
−dL(x)

c

)
∑
∀L′∈L vL′(x) exp

(
−dL′ (x)c

) (27)

which fulfills the constraint uL(x) ≥ 0 provided that

vL(x) ≥ 0. The labeling functions at the leaf-labels can

be propagated upwards using the labeling constraints

uL(x) =
∑
L′∈L.C w(L,L′)uL′(x) to get the value of uL(x)

where L /∈ L. A corollary to this is that this label up-

date equation approaches the non-smooth pseudo-flow

representation, Eq. (20), as c→ 0.

Lastly, we must consider updating the spatial flows,

once again by finding the gradient of equation (26) with

respect to div qL(x). Doing so yields another Chambolle

iteration [11] with positive gradient descent parameter

τ :

qL(x)← Proj|qL(x)|≤RL(x) (qL(x)− cτq′L(x)) (28)

where q′L(x) is:

q′L(x) =

∇
(
vL(x) exp

(
−dL(x)

c

))
if L ∈ L

∇
(∑

L′∈LW(L,L′)vL′(x) exp
(
−dL′ (x)c

))
else

(29)

Combining these processes together, the solution steps

for the proximal Bregman approach are:

1. Calculate the values of dL(x) in a top-down manner.

2. Minimize (26) over uL where L ∈ L using Eq. (27)

3. Maximize (26) over qL for each label using the Cham-

bolle iteration Eq. (28). This can be done efficiently

in a bottom-up manner. As with the augmented La-

grangian approach, one iteration has been found to

be sufficient for proximal Bregman approaches to

continuous max-flow. [1]

The precise pseudo-code is given in Algorithm 2.

Again, each step displays a large amount of inherent

parallelism allowing for GPGPU acceleration of each

step with relative ease. The formulation also implicitly

represents the labeling and inter-node flows, requiring

much lower memory use which make make it more effi-

cient for implementing large problems with constrained

GPU memory resources. This solver is available open-

source at www.advancedsegmentationtools.org.

4.3 Discretization and Memory Consumption

Both Algorithm 1 and 2 are formulated in a way that

is agnostic to how Ω is discretized. In our implemen-

tations, Ω is discretized into a grid similar to previous

continuous max-flow approaches [2,3,34,41,42].

The memory requirements for both algorithms are

dominated by the space required buffers storing the

primal/dual optimization variables, intermediate opti-

mization variables, and input data and regularization

terms. Each of these grows linearly with the size of the

image in our discretization approach. Given a model

with NL leaf-labels and NB branch-labels (labels that

are not the source S or a leaf-label), the number of

www.advancedsegmentationtools.org
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(a) DAG with edge multiplicity (b) DAG with weighted edges

Fig. 2: DAG for segmentation into labels L = {A,B,C,D,E} in which label groups G = {AB,BC,CD} are

regularized. Note that this would be impossible in a hierarchical model since the regularization groups conflict

with each other. Fig. 2(a) shows the intermediate multi-edged, unweighted DAG. Fig. 2(b) shows this DAG with

weights explicitly recorded rather than through multiplicity which is used by the solution algorithms.

buffers required by the augmented Lagrangian algo-

rithm (Algorithm 1) is 5NL + 6NB + 2 buffers for 2D

images and 6NL+7NB +2 buffers for 3D volumes. The

proximal Bregman (Algorithm 2) requires fewer buffers,

specifically 4NL + 3NB + 1 buffers for 2D images and

5NL+4NB +1 for 3D volumes. The proximal Bregman

approach therefore uses between 25% to 50% memory

required for the augmented Lagrangian algorithm for

segmentation problems with a large number of labels,

depending on how many are leaf-labels versus branch-

labels. This decrease can play a large role in the feasi-

bility of large segmentation problems, especially when

implemented using the limited memory space available

to the GPU.

5 Arbitrary Region Regularization

With the increasing complexity of part-whole and mu-

tual exclusion relationships being integrated into opti-

mization based segmentation, it is important to show

the capability of DAGMF to address the regularization

of arbitrarily defined label structures, that is, the incor-

poration of any label ordering. First, we must express

the segmentation in terms of its partition set, L, and a

finite set of grouped-labels G ⊂ 2L, each a union of a

set of leaf-labels, defining the groups we want to apply

a regularization term to. For brevity, we will consider

the segmentation problem to be stated in this form.

To show how arbitrary region regularization can be

implemented with DAGMF, we must consider the con-

struction of a DAG with associated transformations on

smoothness parameters. First, create a graph with one

vertex corresponding to each element of L and one for

each element of G and one for the source node, S.

Create an edge from the source vertex to each vertex

corresponding to an element of G. For each element

G ∈ G, create an edge from vertex corresponding to

G to each vertex corresponding to an element L ∈ G.

Now, find the vertex with the maximal in-degree which

corresponds to an element in L and call this in-degree

r. Add sufficient edges from the source vertex to each

vertex in L to ensure that the in-degree for each is r.

Figure 2(a) shows an example of this for the problem

L = {A,B,C,D,E} with G = {AB,BC,CD}.
This process yields an unweighted multi-graph in

which the multiplicity of any given edge is indicate of

the weight to be assigned to the corresponding edge in

the weighted DAG proportional to adjacent incoming

edges. Taking the example used in Figure 2(a) and ap-

plying the required normalization yields that shown in

Figure 2(b).

To determine the appropriate smoothness terms, we

note that for each vertex associated with element G ∈
G, we have the labeling constraint:

uG(x) =
∑
L∈G

1

r
uL(x) (30)

from the construction of the graph. This means that

whatever smoothness term that is desired for G must

be multiplied by r to account for the factor of 1/r.

This is not the only way to create a DAGMF model

for a given problem, and many segmentation problems

defined in such a way can be implemented by multi-

ple DAGMF structures. In that respect, the DAGMF

structure is not necessarily unique and optimization of

the structure to improve performance may be possible.
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6 Experiments

6.1 Synthetic Image: Venn Diagram

To test the efficacy of the segmentation algorithm and

to highlight the improvements of arbitrary region reg-

ularization made possible through DAGMF, we con-

structed the example segmentation given in Figure 4.

This image involves two overlapping objects, each of

which is regularized by the proposed DAGMF model

using the structure showing in Figure 3, but such a

regularization scheme is not possible in HMF, as the

dark yellow intersection has more than one parent re-

gion. (In HMF, the intersection can be denoted either

as part of the red square or green circle but not both.)

The data term for each leaf-label is:

DL(x) = |I(x)− ĪL| (31)

where I(x) is the RGB intensity of the pixel and ĪL is

the RGB intensity of the label L prior to the addition

of noise. The regularization terms RL(x) were all con-

stants, tuned individually to improve the performance

of each method. Note that the DAGMF reconstruction

substantially improves the crispness of the area where

all four regions meet which is heavily distorted in the

other three segmentation techniques.

6.2 Medical Images - Brain Tissue Segmentation

To demonstrate the applicability of this technique in

medical image segmentation, consider segmentation of

the brain into background (K), external cerebrospinal

fluid (eCSF), cortical gray matter (cGM), white mat-

ter (WM), subcortical gray matter (sGM) and ventri-

cles (V). In this example, we are using the BrainWeb

[14] database to provide a realistic digital phantom,

providing an exact ground truth labeling. The data

terms (shown in Fig. 7) were developed using a sim-

ple Bayesian framework which includes both intensity

and localization components and are representative of

those one would derive for this segmentation problem

on clinical images [31]. The DAG used for segmentation

is provided in Figure 6. The smoothness terms were all

constants, that is, RL(x) = αL, meaning that no con-

trast sensitive terms were used to localize edges, but

only uniform regularization was used to penalize longer

boundaries between regions. The data terms, shown in

Figure 7, follow the Bayesian formula:

DL(x) = − lnP (I(x)|x ∈ L) + dist(x,RL) (32)

where P (I(x)|x ∈ L) is the probability of voxel x having

intensity I(x) given it is in label L, and dist(x,RL) is an

Fig. 3: Directed acyclic graph and weights used for

DAGMF segmentation shown in Figure 4. The nodes

circle and square denote the labels associated with the

union of green with yellow and red with yellow respec-

tively.

(a) Original (b) Noisy

(c) Potts (DSC 94.6%) (d) DAGMF (DSC 95.4%)

(e) HMF #1 (DSC 95.0%) (f) HMF #2 (DSC 94.9%)

Fig. 4: Synthetic image (a) polluted with noise (b) and

reconstructed using a Potts model (c), DAGMF (d) and

HMF models with either the red square (e) or green

circle (f) regularized.Weighted DSC is given for each

segmentation.
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(a) Image (b) Ground truth labeling (c) DAGMF

(d) HMF (sGM grouped with V) (e) HMF (sGM grouped with WM) (f) Potts Model

Fig. 5: Brain tissue segmentation using DAGMF using data terms in Fig. 7 and constant smoothness terms. Note

the improvement in the pink subcortical gray matter region.

Fig. 6: DAG representing the brain tissue segmentation

problem in Fig. 5.

estimated distance between x and the region associated

with label L. The segmentation is shown in Figure 5.

The construction of the DAG is motivated by the

grouping of adjacent regions with similar regulariza-

tion requirements (such as the grouping of the eCSF

and cGM) or by grouping regions that, when grouped,

have a significantly less tortuous boundary (such as the

grouping of all brain regions into a common superlabel

opposed to the background or K label). Notably, a Venn

diagram model (similar to Fig. 3) represents the sub-

cortical labels, using the geometrical intuition that the

subcortical gray matter could be interpreted spatially

as the overlap of the WM and V regions.

The primary benefit of DAGMF in the context of

medical image segmentation in particular is that the
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(a) Data Term (K) (b) Data Term (eCSF)

(c) Data Term (cGM) (d) Data Term (WM)

(e) Data Term (sGM) (f) Data Term (V)

Fig. 7: Bayesian data terms used in Fig. 5.

(a) Potts Entropy (b) DAGMF Entropy

Fig. 8: Segmentation uncertainty (entropy) from Figure

5. The Potts model has much higher uncertainty in the

background segmentation around the frontal lobe.

Region DAGMF HMF 1 HMF 2 Potts
K 99.2% 99.2% 99.2% 98.8%
eCSF 74.9% 76.5% 76.5% 72.5%
cGM 91.1% 91.0% 91.0% 90.6%
WM 95.9% 95.7% 95.7% 95.9%
sGM 81.3% 76.1% 77.3% 76.6%
V 95.7% 96.1% 95.9% 95.1%

Table 2: Dice coefficient for segmentations in Fig. 5.

regularization of any label group allows for the segmen-

tation algorithm designers to incorporate multiple reg-

ularization schemes without prohibiting others. Analo-

gous to Section 6.1, HMF could be used to regularize

sGM with either V or WM, but not both. DAGMF

allowed for both regularization schemes to be imple-

mented simultaneously. This improved the segmenta-

tion accuracy of the subcortical gray matter over the

Potts model and both HMF models as highlighted in

Table 2, despite having the same data terms and uni-

form regularization.

In addition, the DAGMF result had a lower entropy,

implying that the segmentation was more certain than

that of Potts as shown in Figure 8. The entropy of the

fuzzy labeling at each voxel can be used as a surrogate

for the uncertainty of the binary labeling marginalized

at each voxel. Note however that this is only an approx-

imation, as the theoretical basis of segmentation uncer-

tainty in (both binary and fuzzy) continuous max-flow

models has yet to be investigated.

6.3 Natural Images: Scene Decomposition

Natural image segmentation tasks that could benefit

from unconstrained label orderings include scene de-

composition [24]. As shown by Delong et al. [16], ge-

ometric context often requires non-hierarchical regu-

larization schemes. This segmentation problem is com-

posed of five distinct regions (F -front, T -top,B-bottom,

L-left, R-right) as shown in Figure 9(a). Strong priors

are available for the T , B, L and R regions but often

not the F region. For regularization purposes, one could

consider F as the intersection of each of the four side

regions, taking advantage of their priors and encour-

age a more central position in the segmented image. In

previous approaches, such as HMF, such regularization

would not be possible. The DAG representing this reg-

ularization structure is given in Figure 9(b). Unlike pre-

vious discrete approaches [16], the image is partitioned

into the label regions {T,B,L,R} thus preventing er-

rors such as labelling a single pixel as being in both L

and R regions.



14 John S.H. Baxter et al.

(a) Scene Decomposition

(b) Segmentation DAG

Fig. 9: Segmentation structure used in scene decompo-

sition into F -front, T -top, B-bottom, L-left, R-right.

The color code corresponds to that used in Figure 10.

An example segmented image using this framework

is shown in Figure 10. These images were collected from
the Geometric Context dataset [24] and the data terms

used were derived from the Surface Layout classification

framework [24]. Specifically, the data terms for each

region in the partition, i.e. labels L ∈ L, are:

DL(x) = − lnPL(x) (33)

where PL(x) is the likelihood estimate of pixel x be-

longing to label L as determined by the Surface Layout

classification framework [24]. The regularization terms,

RL(x) were all the same constant for the regions LF ,

RF , BF , and TF and were zero for all end-labels.

For quantitative validation, this scene decomposi-

tion model was applied to the Stanford indoor image

dataset [15] (48 images) using the classifiers developed

by Hoiem et al. [24] as the basis for the data terms. The

regularization terms, given in Table 3, determined by a

exhaustive search on a subset of the database (first 4

images). Qualitative segmentation results for DAGMF

as well as the continuous Potts model [42] and HMF

(a) Original Image

(b) Segmentation (Accuracy rate = 93.0%)

(c) Original Image

(d) Segmentation (Accuracy rate = 90.5%)

Fig. 10: Example outdoor scene segmentation. Accu-

racy rate is given for each segmentation. The color code

for the segmented images are shown in Figure 9.
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(a) Original Image (b) Manual Segmentation (c) Data term only (Accuracy: 82.0%)

(d) DAGMF (Accuracy: 85.7%) (e) HMF 1 (Accuracy: 85.4%) (f) HMF 1 Hierarchy

(g) Potts (Accuracy: 84.3%) (h) HMF 2 (Accuracy: 85.0%) (i) HMF 2 Hierarchy

Fig. 11: Example scene segmentation from the Stanford indoor dataset [15]. Accuracy rates are given for each

segmentation. Label orderings used in the first and second HMF segmentation are shown in (f) and (i) respectively.

The color code for the segmented images are shown in Figure 9 and in (f) and (i).

Model - Label Value

Potts 10
HMF 1 - TFB 5
HMF 1 - L ∈ L 7.5
HMF 2 - LFR 5
HMF 2 - L ∈ L 7.5
DAGMF - LF,RF,BF, TF 5
DAGMF - L ∈ L 9

Table 3: Value of the constant regularization terms used

in the various max-flow models.

Accuracy Rate
(n=48) Original Improvement over DTO
DTO 84.4%± 6.7%
Potts 85.6%± 7.1% 1.2%± 1.2%
HMF 1 85.7%± 6.9% 1.3%± 1.1%
HMF 2 85.7%± 7.0% 1.3%± 1.0%
DAGMF 85.9%± 7.0% 1.5%± 1.2%

Table 4: Accuracy rates for segmentations in the Stan-

ford indoor dataset such as that shown in Fig. 11. DTO

refers to the “data term only” method.
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models [3,34] are shown in Figure 11 taken from the

testing dataset with quantitative results in Table 4. The

“data term only” (DTO) results reflect the accuracy of

the classifiers developed by Hoiem et al. [24].

The use of simple constant regularization improves

the accuracy slightly overall, with all regularized meth-

ods showing a statistically significant improvement over

the data-term-only method. The more representative

DAGMF model has slightly higher accuracy than the

previous max-flow models, however, due to the size of

the dataset and similarity between methods, no statis-

tical significance was detected. This is largely due to

the data-term generation, which was based on super-

pixels and thus assigns a constant data term to a local

region, the boundaries of which were not considered in

the regularization. The results for each max-flow model

could readily be improved by creating more complex

regularization terms cognizant of these boundaries.

6.4 Natural + Synthetic Images: Hue Reconstruction

Another application which is not currently possible with

existing continuous max-flow methods is hue denoising

in color images. The problem of hue reconstruction is of

particular interest as the hue displays distinctly cyclic

behaviour, meaning that it is especially ill-suited for

Ishikawa models [26] more traditionally used for image

reconstruction. In addition, hue offers a color property

that is, in theory, invariant to lighting and atmospheric

conditions but is sensitive to RGB additive noise espe-

cially at low brightness and saturation.

The first step in hue reconstruction with DAGMF

is the construction of an appropriate DAG. In this sce-

nario, the DAG can follow a relatively simple two-layer

formula. The bottom layer consists of N nodes repre-

senting the discrete bins the hues are grouped into. The

second layer is a regularization layer with N nodes, each

with M < N/2 edges to the lower layer. These edges are

arranged in a cyclic manner, each regularization node

being connected to M consecutive hues. The result is

truncated linear regularization. Between two hue nodes

the regularization grows linearly with the distance be-

tween them if less than M , else, the regularization is

constant. Fully linear regularization can be achieved by

setting M = bN/2c. An example of these types of DAGs

is given in Figure 12. Note that in this case, using the

Potts model for hue reconstruction can be expressed as

a limiting case as this framework with M = 1.

In Figure 13, RGB additive noise was applied to a

synthetic image with 50% saturation and 25-75% bright-

ness. Reconstructing the hue using a DAGMF hue re-

construction model (N = 36,M = 16) allowed for linear

regularization across hues resulting in a 79% decrease

Fig. 12: Example DAG for hue reconstruction with N =

9 discrete hues and a truncated linear model of width

M = 3. Although not shown, the weight of each edge

on the top level is 1, and 1/M on the bottom layer.

(a) Original Image (b) Gold Standard Hue

(c) Image + Noise (d) Hue of Image + Noise
(Error: 32%)

(e) Potts (Error: 5%) (f) DAGMF (Error: 3%)

Fig. 13: Hue reconstruction on synthetic image with

corresponding normalized hue error.
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(a) Original Photograph

(b) Original Hue

(c) Potts Model

(d) DAGMF Model

Fig. 14: Example hue reconstruction on natural images

with DAGMF model (N = 36,M = 16).

in the hue error, compared to 64% using a Potts model

with the same data terms and regularization values.

The data term used was:

DL(x) = |I(x)− ĪL| (34)

where I(x) is the RGB-valued intensity of pixel x and

ĪL is the RGB-valued intensity of the highest saturation

colour corresponding to hue L.

The same pipeline can be used on natural images

to robustly estimate hue in the presence of noise and

lighting effects. Figure 14 displays this hue reconstruc-

tion on natural images in the presence of shadows and

atmospheric perspective effects. Compared to the Potts

model, the cyclic DAGMF model retains much more de-

tail at the same level of regularization, preserving fea-

tures such as smaller windows and doors.

6.5 Medical Images - MRI Phase Reconstruction

Similar to hue reconstruction in Section 6.4, phase re-

construction requires that the field being reconstructed

is represented cyclically, which is not suitable to cur-

rent continuous max-flow solvers. Often, in order to per-

form simple MR phase processing, the original phase,

represented in the interval [−π, π], is first unwrapped

to the interval (−∞,∞) minimizing the differences in

phase over a local neighbourhood [39]. However, phase

unwrapping techniques can be error-prone in the pres-

ence of noise [38], necessitating filtering approaches that

do not rely on unwrapped phase. [18] Phase smoothing

is used to extract residual or high-pass phase compo-

nents for MR imaging types dependent on phase in-

formation such as susceptibility weighted imaging [23].

Figure 15 demonstrates the application of the previ-

ous cyclic DAGMF model (Figure 12) with 40 equally-

spaced phase labels to reconstructing the background

phase in a 3T cranial MRI, using the data term:

DL(x) = |θ(x)− θL| (35)

where θ(x) is the phase measured at voxel x and θL is

the phase associated with label L. Figure 15(d) displays

the residual phase information after smoothing.

7 Discussion and Future Work

From a theoretical point of view, DAGMF illustrates

that any label ordering is possible to incorporate into

a continuous max-flow segmentation paradigm using

primal-dual optimization with augmented Lagrangian

multipliers. Thus, further work in continuous max-flow

theory should focus on the development of more spe-

cific solvers for segmentation problem sub-classes. One
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(a) Original MR Image Magnitude (b) Original MR Image Phase

(c) Reconstructed Phase (d) Residual Phase

Fig. 15: Phase reconstruction of an 3T cranial MRI using 40 equal-spaced phase labels in a cyclic DAGMF model.

area of future work could be the development of a dedi-

cated continuous max-flow optimization framework for

hue and phase reconstruction (Sections 6.4 and 6.5 re-

spectively) which takes advantage of the high degree of

inherent symmetry in the problem definition and resul-

tant DAG.

As stated in Section 5, there are multiple ways to

construct a DAG that are mathematically equivalent

but require different computation time and memory

amounts. In addition, for certain subclasses of prob-

lems, a DAG may not be the most computationally ef-

ficient structure over which to perform max-flow. For

problems in co-segmentation of multiple images simul-

taneously [22,28] or segmentation based on a partially-

annotated multi-atlas [29], other max-flow structures

can take advantage of symmetry in the energy func-

tional to reduce the number of, and simplify the in-

teraction between, labellings ultimately creating more

efficient algorithms. That being said, if that symmetry

is removed or modified, such frameworks are no longer
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applicable. DAGMF provides, in such scenarios, an ini-

tial framework in which accuracy can be evaluated sep-

arate from computability concerns, decoupling the pro-

cesses of model creation and solver optimization. Our

future work along these lines consists of being able to

take regularization descriptions similar to those given

in Section 5 and automatically optimize the structure

used for maximum computational efficiency while en-

suring mathematical equivalence.

Another area of future work is the incorporation of

star convexity constraints [21,40] into a subset of the

labels, allowing for both topological and shape informa-

tion to be optimized for simultaneously. These shape

constraints have already been integrated into binary

[43] and hierarchical [4] continuous max-flow formula-

tions.

8 Conclusions

This article presents a novel segmentation framework

called Directed Acyclic Graph Max-Flow (DAGMF) seg-

mentation which optimizes the variational continuous

max-flow problem over a directed acyclic graph with

each node representing a continuous labeling space. Two

solution algorithms were proposed: one based on aug-

mented Lagrangian multipliers in which the labeling

constraints result from the characterization of the saddle-

points; and one based on proximal Bregman projections

in which the labeling constraints are explicitly enforced,

but minimizes memory requirements by implicitly rep-

resenting inter-node flow. These multiple solution algo-

rithms allow for this framework to be adapted to the

available computational resources.

This framework is a generalization of earlier extend-

able continuous max-flow approaches and is shown to be

flexible enough to optimize any possible label ordering.

The general applicability of this framework was demon-

strated using a variety of synthetic, natural, and med-

ical images where previous approaches could only ap-

proximate the required label ordering. This algorithm

is highly parallelizable and has been implemented using

GPGPU acceleration to ensure high performance.
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