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Patrı́cia M. Martinelli1, Lı́gia A. Naves2, Vânia F. Prado4, Marco A. M. Prado4, Cristina Guatimosim1*

1 Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil, 2 Departamento de Fisiologia e Biofı́sica, ICB, Universidade Federal de
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Abstract

In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside
synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KDHOM)
with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a
decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KDHOM mice
presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1–43 staining intensity, total
number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical
stimulation or no stimulation, VAChT KDHOM neuromuscular junctions did not differ from WT on total number of vesicles but
showed altered distribution. Additionally, motor nerve terminals in VAChT KDHOM exhibited small and flattened synaptic
vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results,
we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content
affects vesicles shape.
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Introduction

Acetylcholine (ACh) plays an important role during nervous

system development [1,2,3]. In mammalian neuromuscular

junction (NMJ), ACh is synthesized in presynaptic terminals of

cholinergic neurons from choline and acetyl-coenzyme A (acetyl-

CoA) by choline acetyltransferase (ChAT) and then transported

into synaptic vesicles (SVs) by the vesicular acetylcholine

transporter (VAChT) [4]. After depolarization, ACh is released

into the synaptic cleft and binds to nicotinic receptors present on

the postsynaptic muscle membrane, transmitting the signal for

muscular contraction [4,5].

The release of neurotransmitters depends on its storage into SVs

[6,7,8], and VAChT expression represents a key point in the

regulation of cholinergic transmission [9,10]. VAChT knockout

(VAChTdel/del) mice appear to have normal SV recycling, but they

are unable to store or release sufficient ACh in response to neural

activity. As a consequence, they do not survive more than few

minutes after birth [3]. In contrast, mice with 70% reduced

VAChT expression (VAChT KDHOM) reach adulthood, but these

animals show cardiac dysfunction and cognitive alterations

[3,9,11]. In addition, VAChT KDHOM mice present a pro-

nounced deficit in neuromuscular transmission characterized by a

reduction in quantal content and size, reduced miniature end-plate

potentials frequency, impairment of motor performance and

severe deficit in muscle strength [9,10]. Understanding how

synaptic terminals respond to reduced expression of this

transporter is relevant, as decreased levels of VAChT have been

reported in response to drug treatments [12,13], as well as in

distinct neurodegenerative diseases [14,15]. To investigate wheth-

er decreased levels of VAChT, and consequently reduced ACh

storage, can regulate any aspect of the SV cycle, studies using the

NMJ are ideal, due to the homogenous cholinergic nature of this

synapse and its accessibility to imaging and electron microscopy.

Although studies using the fluorescent dye FM1-43 suggested

that VAChT KDHOM mice appear to have normal SV cycle [9], a

detailed ultrastructural investigation of the NMJ in these mice was

not performed. In the present study we characterized, at the

ultrastructure level, the morphology of synaptic nerve terminals

from diaphragm muscles of VAChT KDHOM mice. Our data

show that reduced expression of VAChT does not interfere with

the overall morphology of the NMJ, but changes the distribution
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of SV within the nerve terminal. In addition, reduced expression

of VAChT changes the shape of SVs suggesting that neurotrans-

mitter content may play a key role in maintaining their structure.

Our results demonstrate a link between ACh storage and

regulation of SV recycling.

Materials and Methods

Drugs and chemicals
FM1-43fx and ProLongH Gold antifade were purchased from

InvitrogenTM; d-tubocurarine, ADVASEP-7, (6)-Vesamicol hy-

drochloride were purchased from Sigma-Aldrich and m-conotoxin

was obtained from Alomone Labs. All other chemical and reagents

were of analytical grade.

Ethics Statement
All experimental procedures were carried out in accordance

with protocol approved by the local animal care committee

(CETEA-UFMG – protocol 40/2009) and followed NIH guide-

lines for the Care and Use of Animals in Research and Teaching.

Nerve-muscle preparation
Generation of VAChT KDHOM mice has been previously

described in detail [9]. The experiments were performed using

adult 3 month-old VAChT WT and VAChT KDHOM mice. The

diaphragm muscle associated with the corresponding nerve were

dissected out, split in two hemidiaphragms and bathed in mouse

Ringer solution (135 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM

MgCl2, 12 mM NaHCO3, 1 mM NaH2PO4, 11 mM D-glucose,

pH 7.4) and bubbled with a mixture of 5%CO2/95%O2. In

transmission electron microscopy experiments, diaphragm muscles

were fixed in ice-cold modified Karnovsky solution fixative (4.0%

paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium

cacodylate buffer).

Monitoring endocytosis with FM1–43fx
Experiments with FM1-43 were performed according to the

protocol previously described [16,17] except that a fixable (fx)

FM1-43 analog was used. Diaphragm muscles were stimulated

with hypertonic sucrose solution (500 mM) containing FM1-43fx

(8 mM) for 10 min. After stimulation, the preparation was

maintained at rest in normal Ringer solution with FM1-43fx for

10 min to guarantee maximal FM1-43fx uptake during compen-

satory endocytosis. Following labeling, muscles were washed for

1 hour in normal mouse Ringer containing Advasep-7 (1 mM) to

remove extracellular FM1-43fx. For labeling of nicotinic acetyl-

choline receptor (nAChR) clusters, the preparations were exposed

to a-bungarotoxin-Alexa 594 (12 mM) during 20 minutes and then

washed [16]. Diaphragms were post-fixed with paraformaldehyde

4% in PBS for 40 min and mounted onto glass slide using

ProLongH Gold antifade reagent.

Confocal microscopy and image analysis
Images of NMJs stained with FM1-43fx and a-bungarotoxin

were acquired using a 40x oil immersion (NA 1.30) objective

attached to a laser-scanning confocal microscope (Zeiss 510

META) located at Center of Acquisition and Processing of Images

(CAPI) – ICB – UFMG. An argon (488 nm) and helium-neon

(543 nm) laser were used for excitation of terminals stained with

FM 1–43fx and nAChR cluster marked with a-bungarotoxin,

respectively. Z series optical sections were collected at 2.0 mm

intervals and the whole hemidiaphragms were scanned. The nerve

terminals were indentified considering their colocalization with

nAChR clusters. Images were converted to gray scale format (8

bits) and each synaptic element was individually evaluated and the

mean fluorescence intensity was considered for comparison

between genotypes.

Electrophysiological recordings
Standard intracellular recording techniques were used to record

miniature endplate potentials (MEPPs) with an Axopatch-200

amplifier (Molecular Devices). Recordings were low-pass filtered at

5 KHz and amplified 50X prior to digitization and acquisition on

a computer running WinEDR (John Dempster, University of

Strathclyde). Microelectrodes were fabricated from borosilicate

glass and had resistances of 8–15 MV when filled with 3 M KCl.

MEPPs were recorded during 10 min in presence of normal

Ringer and during exposure to sucrose hypertonic solution

(500 mM). m-Conotoxin GIIIB (0.37 mM) was added to avoid

muscle contraction. MEPP amplitudes were recorded and scaled

for differences in resting potential using 270 mV as the standard.

MEPPs were recorded in the same fiber for 10 min before and

during application of hypertonic sucrose.

Transmission Electron Microscopy (TEM)
For ultrastructural characterization, VAChT WT and VAChT

KDHOM mice were anesthetized with ketamine/xilazine (70/

10 mg/kg) i.p. and transcardially perfused with ice-cold PBS for

10 min, followed by ice-cold fixative modified Karnovsky solution

for 10 min. Perfused diaphragm muscles were maintained in

fixative solution overnight at 4uC. For experiments with stimula-

tion, nerve muscle preparations were electrically stimulated

(20 Hz/5 min) through the phrenic nerve (calcium-dependent

stimuli) and immediately fixed or stimulated with hypertonic

sucrose solution (500 mM) for 10 min (calcium-independent

stimuli). After stimulation, the preparation was maintained at rest

for 10 minutes in mouse Ringer solution without sucrose and fixed

in ice-cold modified Karnovsky solution overnight at 4uC.

Figure 1. Alteration in SVs recycling and distribution after hypertonic sucrose stimulation in VAChT KDHOM NMJs. A and B –
Representative records of MEPPs obtained from the diaphragm muscle of VAChT WT and VAChT KDHOM mice, respectively, measured in the presence
of hypertonic sucrose solution (500 mM) at the end of 10 minutes. C -Graph comparing the mean values of normalized MEPPs frequency measured in
the presence of hypertonic sucrose during 10 minutes. The results were normalized using the basal MEPPs values for each genotype. D – Graph
showing the mean values of MEPP amplitude before (time zero) and during 10 minutes in hypertonic solution. In C and D all results are expressed as
mean 6 SEM. * p,0.05; n = 4 animals per genotype E– Confocal representative images of NMJs from the diaphragm muscle of VAChT WT (E1–E3) and
VAChT KDHOM mice (E4–E6): E1 and E4– presynaptic terminals stained with FM1-43 fx after hypertonic stimulation for 10 min; E2 and E5– postsynaptic
nAChR clusters stained with a-bungarotoxin-Alexa 594; E3 and E6– colocalization of synaptic elements. Scale bar = 10 mm. F– Graph showing the
fluorescence intensity of the presynaptic terminal in arbitrary units (A.U.) (* p,0.05). G– Graph comparing the fluorescence intensity of the
postsynaptic nAChR clusters in arbitrary units (A.U.). (n = 3 animals of each genotype). H and I– Representative electron-micrographs of two
diaphragm NMJs profiles of VAChT WT and VAChT KDHOM mice after hypertonic stimulation for 10 min, showing altered distribution and reduced
number of SVs inside the areas labeled within the circles: 50 and 300 nm from the membrane, small and big circles respectively. Scale bar = 500 nm.
Magnification 50.000x. J– Graph comparing the relationship of SVs/mm2 of presynaptic terminal. (** p,0.01). K– Graph showing the average number
of SVs located at different distances from the presynaptic active zones. (n = 3 individual animals per genotype; * p,0.05).
doi:10.1371/journal.pone.0078342.g001
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Figure 2. The reduced expression of VAChT alters SVs distribution involved in eletrically stimulated NMJs. A and B – Representative
images of two NMJs from diaphragm muscle of VAChT WT and VAChT KDHOM mice after electrical stimulation (20 Hz for 5 minutes) showing an
altered SVs distribution from the active zone within the circles: 50 and 300 nm from the membrane, small and big circles respectively. Scale bar
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To investigate the effects of reduced ACh storage in SVs

morphology, the diaphragm muscle from C57BL/6 mice was

electrically stimulated (3 Hz/20 min) through the phrenic nerve in

the presence of (6)-vesamicol (4 mM), a VAChT inhibitor [18]

and immediately fixed overnight at 4uC.

After fixation, samples were washed with cacodylate buffer

(0.1 M), cut into several pieces, post-fixed in reduced osmium (1%

osmium tetroxide containing 1,6% potassium ferrocyanide),

contrasted en bloc with uranyl acetate (2% uranyl acetate in

deionized water), dehydrated through an ascending series of

ethanol solutions and embedded in EPON. Blocks were sectioned

(50 nm) and collected on 200 or 300 mesh copper grids and

contrasted with lead citrate. Serial ultrathin sections (50 nm) were

collected and mounted on formvar-coated slot cooper grids and

contrasted with lead citrate. Sections were viewed with a Tecnai-

G2-Spirit-FEI/Quanta electron microscope (120 kV Philips)

located at Microscopy Center – UFMG or with an EM 10 Zeiss

electron microscope (80 Kv) located at CAPI (ICB – UFMG).

TEM image analysis
NMJs of interest were selected based on the presence of

junctional folds in the postsynaptic membrane. Single sections

through NMJs of interest were traced and the terminal areas

(cross section area of each nerve terminal), postsynaptic

junctional folds length and SV number were determined. SV

distribution was evaluated by quantification of the vesicles located

at different distances from the active zone within the selected area

(small and big circle), as previously described [19,20] and vesicles

counted were marked to prevent their recounting. Vesicles within

50 to 300 nm of the presynaptic membrane were counted in

50 nm bins. We have defined active zone as presynaptic regions

immediately opposed to postsynaptic fold within 300 nms from

the plasma membrane. Vesicle circumference was measured

using the equation 2p [(d1
2+d2

2)/2]0.5 considering the longest

diameter (d1) and the diameter at right angles (d2) [8]. SVs shape

was determined using the equation: shape factor = (46 p 6
area)/(perimeter)2. This parameter reaches a maximum of 1 for a

circular object [21]. All image analysis in this study was

performed ‘‘blind’’ in the sense that the person performing the

analysis did not know what genotype or treatment the sample had

received.

Statistical Analysis
Image analysis was performed using the program Image J

(Wayne Rasband, National Institutes of Health, USA) or Image-

Pro PlusH 4.0 (4.5 (Media Cybernetics, Silver Spring, MD, EUA)

or AxioVision 4.8 (Carl Zeiss). Data were analyzed in Microsoft

Excel and plotted using the program SigmaPlot 10.0 (SyStat

Software) or GraphPad Prism 4 or Igor (Wavemetrics). The

averages 6 standard error of the mean (SEM) from each group

were calculated and compared. Statistical significance was

evaluated using the paired or un-paired Student’s t-test or the

Komogorov-Smirnov test, as described in the text. Values of

P,0.05 were considered significant.

Results

Previous studies from our research group showed that

internalization of FM1-43 by motor terminals of VAChT KDHOM

mice and WT controls in response to electrical stimulation is very

similar, suggesting that endocytosis is not affected in VAChT

KDHOM mice [9]. Likewise, internalization of FM1-43 by NMJs of

VAChTdel/del mice indicates the existence of bulk SV recycling

even in the absence of this transporter [3]. To further investigate

the recycling and distribution of SV from the readily releasable

pool (RRP) in nerve terminals from diaphragm muscle of VAChT

KDHOM mice we used hypertonic sucrose (500 mM) as a stimulus

[22]. Hypertonic extracellular solution has been shown to increase

the frequency of MEPPs at the frog and rat NMJs [23,24,25,26].

The mechanism behind this increase is still unknown, however, it

has been described that hypertonicity does not require Ca2+ influx

or release from internal stores and may facilitate fusion of docked

vesicles [22,27]. Figures 1A and 1B show two representative traces

of MEPPs measured from diaphragm neuromuscular preparations

of VAChT WT and KDHOM, respectively, at the end of

10 minutes in the presence of hypertonic sucrose solution

(500 mM). Before hypertonic solution, MEPPs frequencies were:

VAChT WT (0.460.1 s21) and VAChT KDHOM (0.760.1 s21)

(mean 6 SEM). Application of hypertonic solution increased

MEPPs frequency in both WT and VAChT KDHOM prepara-

tions. In WT, the increased frequency was sustained for

ten minutes. In contrast, MEPPs frequency in VAChT KDHOM

decreased steadily from the peak. After 10 minutes of hypertonic

stimulation, the MEPPs frequency in VAChT WT was

16.63.7 times the pre-stimulation frequency whereas in VAChT

KDHOM frequency was only 3.160.8 times the pre-stimulation

value (Figure 1C – p,0.05; unpaired Student’s t-test; 4 muscle

fiber for each genotype). Before hypertonic solution, MEPP

amplitude was: VAChT WT (1.160.2 mV) VAChT KDHOM

(1.060.2 mV) (mean 6 SEM). Application of hypertonic solution

decreased MEPP amplitude in the mutants but not in WT. The

decrease in amplitude in VAChT KDHOM was seen as soon as the

first minute, where MEPP amplitude was 0.660.1 mV (Figure 1D

– p,0.05; paired Student’s t-test; 4 muscle fiber for each

genotype). These data suggest that during hypertonic stimulation,

vesicle filling cannot keep up with release and VAChT KDHOM

mutants release partially filled vesicles. The decrease in frequency,

which occurs later, may reflect either reduced release or release of

empty vesicles. If the latter, it suggests that vesicles filling occurs in

at least two stages.

One potential mechanism to explain these results is that some

synaptic vesicles in the RRP of VAChT KDHOM mice have low

levels of neurotransmitter that make them invisible for electro-

physiology recordings. A second potential mechanism is that in the

absence of VAChT, a population of SVs in the RRP is impaired.

To determine which of these two potential mechanisms are

involved with reduced MEPP frequency in VAChT KDHOM mice

in response to hypertonic stimulation, we initially measured

internalization of FM1-43fx to evaluate endocytosis under this

condition. Figures 1E1 and E4 show representative images of

diaphragm nerve terminals labeled with FM1-43 fx from VAChT

WT and VAChT KDHOM mice, respectively. When we measured

fluorescence intensity, we observed that the presynaptic terminals

= 500 nm. Magnification 50.000x. C– Graph of the ratio SVs/area of presynaptic terminal in mm2. D – Graph showing the average number of SVs
located at different distances from the presynaptic active zones. E and F– Four serial sections of NMJs from VAChT WT (E1–E4) and VAChT KDHOM (F1–
F4) diaphragm showing the altered SVs distribution in the active zone (* represent areas depleted of SVs touching the membrane) of motor terminals
of VAChT KDHOM after electrical stimulation. Scale bar = 500 nm. Magnification 50.000x. (n = 3 individual animals per genotype. * p,0.05, ** p = 0.005;
*** p = 0.0006).
doi:10.1371/journal.pone.0078342.g002
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Figure 3. VAChT KDHOM NMJs have normal morphology but altered SVs distribution in the absence of stimulus. A and B–
Representative images of nerve terminal profile from VAChT WT and VAChT KDHOM mice in the absence of stimulation showed a altered SVs
distribution from the active zone within the circles: 50 and 300 nm from the membrane, small and big circles respectively. Scale bar = 500 nm.
Magnification 50.000x. C– Graph showing the area of the presynaptic terminals in mm2. D– Graph comparing the total postsynaptic membrane lenght

Synaptic Vesicle Biogenesis in Cholinergic Deficit
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of VAChT KDHOM showed decreased fluorescent signal when

compared to terminals from VAChT WT mice [WT = 45.876

4.190 A.U. (mean 6 SEM); KDHOM = 31.6062.809 A.U.;

p,0.05; unpaired Student’s t-test], suggesting that recycling of

SVs of the RRP in VAChT KDHOM might be reduced (Figure 1F

– quantification of 1248 and 572 presynaptic nerve terminal in

WT and KDHOM, respectively; n = 3 mice per genotype). Because

hypertonic stimuli recruit a small number of SVs, FM1-43 fx

internalization and fluorescence levels of presynaptic terminals are

reduced in both genotypes. So to ensure that the measurement of

fluorescent signal was really occurring at the nerve terminals level

we performed the labeling of postsynaptic nAChR clusters with a-

bungarotoxin to identify the precise location of the presynaptic

terminals. Figures 1E2 and E5 show representative images of

diaphragm postsynaptic nAChR clusters labeled with a-bungaro-

toxin-Alexa 594 from VAChT WT and VAChT KDHOM mice,

respectively. We observed that fluorescence intensity of postsyn-

aptic elements was similar between genotypes [WT = 56.216

4.088 A.U. (mean 6 SEM); KDHOM = 50.6765.285 A.U.;

p = 0.4535; unpaired Student’s t-test] (Figure 1G –quantification

of 1814 and 1609 postsynaptic nAChR clusters in WT and

KDHOM, respectively; n = 3 mice per genotype). Figures 1E3 and

E6 show the colocalization of pre and postsynaptic elements in

diaphragm muscle from VAChT WT and VAChT KDHOM mice,

respectively.

To precisely determine whether the NMJ of VAChT KDHOM

mice show reduction in the number of SVs from RRP when

submitted to hypertonic stimulation, we used transmission electron

microscopy. Ultrastructural analysis showed a reduction in the

total number and altered distribution of SVs in presynaptic nerve

terminals from VAChT KDHOM animals compared to WT

(Figure 1H and 1I – small and big circles standing for synaptic

vesicles located within 50 and 300 nm from the plasma membrane

respectively). Morphometric analysis confirmed that the total

number of SVs/mm2 was significantly reduced in VAChT

KDHOM mice (17.060.0 SVs) when compared to WT controls

(27.061.0 SVs) (Figure 1J – p,0.01, unpaired Student’s t-test).

Additionally, we analyzed the distribution of SVs in motor nerve

terminals of VAChT KDHOM mice after sucrose stimulation and

found a altered distribution of SVs located near the presynaptic

active zones when compared with VAChT WT mice (Figure 1K –

250 nm: WT = 5.0 SVs (mean), KDHOM = 4.0 SVs; 300 nm:

WT = 6.0 SVs, KDHOM = 4.0 SVs; p,0.05, unpaired Student’s t-

test; 15 nerve terminal profiles per genotype; n = 3 mice per

condition).

We next investigated at the EM level, the distribution and

recycling of SVs in diaphragm nerve terminals of VAChT

KDHOM mice after electrical stimulation (20 Hz/5 min). We

observed an altered distribution of SVs near the presynaptic active

zones from NMJs of VAChT KDHOM (Figure 2A and 2B – small

and big circles standing for synaptic vesicles located within 50 and

300 nm from the plasma membrane respectively). However, we

did not observe any difference in the total number of SVs/mm2 of

terminal between genotypes (Figure 2C – WT = 29.064.0 SVs

[mean 6 SEM]; KDHOM = 29.063.0 SVs; p.0.05; unpaired

Student’s t-test; 15 nerve terminals profile per genotype; n = 3

mice per genotype), confirming our previous observation that SV

recycling evoked by electrical stimulation is normal in VAChT

KDHOM nerve terminals [9]. Quantitative analysis confirmed that

the NMJs of VAChT KDHOM mice exhibited an altered

distribution of SVs located at different distances from presynaptic

active zone after electrical stimulation when compared with the

VAChT WT mice [Figure 2D – 50 nm: WT = 3.0 SVs (mean),

KDHOM = 2.0 SVs; 100 nm: WT = 4.0 SVs, KDHOM = 3.0 SVs;

150 nm: WT = 6.0 SVs, KDHOM = 4.0 SVs; 200 nm: WT = 8.0

SVs, KDHOM = 5.0 SVs; 250 nm: WT = 9.0 SVs, KDHOM = 6.0

SVs; 300 nm: WT = 11.0 SVs, KDHOM = 6.0 SVs; p,0.05,

unpaired Student’s t-test; we analyzed 15 nerve terminals profiles

per genotype; n = 3 mice per genotype]. Figures 2E and 2F show

four serial sections (50 nm thick) of NMJs of VAChT WT (E1–E4)

and VAChT KDHOM (F1–F4) mice after electrical stimulation

(20 Hz/5 min), respectively. These serial sections of NMJs of

VAChT KDHOM animals illustrate the altered distribution of SVs

in the presynaptic terminals of the diaphragm muscle after

electrical stimulation (Figure 2– F1–F4 – asterisks represent areas

depleted of SVs near the plasma membrane).

We also looked at the ultrastructure of motor endplates from the

diaphragm of VAChT KDHOM and WT mice in absence of

stimulation. We found that the NMJs of VAChT KDHOM and

WT mice presented a very similar morphology, regarding terminal

area, postsynaptic length and total number of SVs (Figure 3A and

3B- small and big circles standing for synaptic vesicles located 50

and 300 nm from the plasma membrane respectively). Morpho-

metric analysis showed that there was no difference in the surface

area of nerve endings (cross section area of nerve terminals)

comparing VAChT WT (3.63560.4854 mm2) and VAChT

KDHOM mice (3.60160.6639 mm2) (Figure 3C – p.0.05;

unpaired Student’s t-test; 25 nerve terminals per genotype; n = 5

mice per condition). We also measured the length of the

postsynaptic junctional folds considering possible compensatory

changes in muscle cell due to the cholinergic deficit, but no

differences were observed between genotypes (Figure 3D – WT =

15.9661.458 mm [mean 6 SEM]; KDHOM = 14.5161.377 mm;

p.0.05; unpaired Student’s t-test; 25 nerve terminals profile per

genotype; n = 5 mice per genotype).

Considering that VGLUT1 KO mice exhibit a reduction in the

number of SVs in non-stimulated glutamatergic nerve terminals

[28], we asked whether the decreased VAChT levels could have a

similar effect in the number of SVs in cholinergic motor terminals.

However, we observed no difference in the total number of SVs/

mm2 of terminal between VAChT WT (25.063.0 SVs [mean 6

SEM]) and VAChT KDHOM (26.062.0 SVs) in the absence of

stimulation (Figure 3E – p.0.05; unpaired Student’s t-test; 25

nerve terminal profiles per genotype; n = 5 mice per genotype).

However, quantitative analysis showed an altered distribution of

SVs located at different distances from the presynaptic active zone

in VAChT KDHOM when compared to VAChT WT mice in the

absence of stimulation [Figure 3F –50 nm: WT = 6.0 SVs (mean),

KDHOM = 3.0 SVs; 100 nm: WT = 12.0 SVs, KDHOM = 6.0

SVs; 150 nm: WT = 17.0 SVs, KDHOM = 9.0 SVs; 200 nm: WT

= 23.0 SVs, KDHOM = 14.0 SVs; 250 nm: WT = 29.0 SVs,

KDHOM = 17.0 SVs; 300 nm: WT = 35.0 SVs, KDHOM = 20.0

SVs; p,0.05, unpaired Student’s t-test; (25 nerve terminals profiles

per genotype; n = 5 mice per genotype)]. Figures 3G and 3H show

four serial sections (50 nm thick) of unstimulated NMJs of VAChT

WT (G1 – G4) and VAChT KDHOM (H1–H4) mice, respectively,

(mm). E – Graph of the ratio SVs/area of presynaptic terminal in mm2. F– Graph showing the average number of SVs located at different distances from
the presynaptic active zones. G and H– Four serial sections of the profile of NMJs of VAChT WT (G1–G4) and VAChT KDHOM (H1–H4) mice showing the
altered SVs distribution in the active zone (* represent depletion areas of SVs) of motor terminals of VAChT KDHOM in the absence of stimulus. Scale
bar = 500 nm. Magnification 50.000x. (n = 5 individual animals per genotype. * p,0.05).
doi:10.1371/journal.pone.0078342.g003
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Figure 4. SVs morphology in nerve terminal from VAChT KDHOM mice is influenced by neurotransmitter content. A and B –
Representative images of nerve terminal profile from VAChT WT and VAChT KDHOM mice after electrical stimulation (20 Hz for 5 minutes). Scale bar
= 500 nm. Magnification 50.000x. C– Representative image of nerve terminal profile from diaphragm muscle of WT mice after treatment with (6)-
vesamicol (4 mM) during electrical stimulation (3Hz/20 min). Scale bar = 500 nm. Magnification 50.000x. D– Graph showing the average number of
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which allows a more accurate monitoring of the distribution of

SVs in motor terminals. Altered distribution of SVs near active

zones in nerve terminals of VAChT KDHOM does not account for

a change in the total number of vesicles (Figure 1E), probably

because the SVs near active zones represent only a small fraction

of the total number (about 500,000) of vesicles present in motor

terminals of vertebrates [29].

The size and shape of SVs and specialized secretory granules

can be influenced by changes in neurotransmitter transporter

expression or by the amount of transmitter stored. For instance,

overexpression or reduced expression of VGLUT in Drosophila

NMJs determine an increase or decrease in the diameter of SVs,

respectively [30,31]. Increased vesicular loading is coupled with an

increase in specialized secretory vesicle volume [32,33]. Addition-

ally, the morphology of SVs also seem to correlate with

neurotransmitter filling [8,34]. Consistent with these findings, in

the present work we observed that NMJs of VAChT KDHOM mice

show numerous vesicles with irregular morphology (flattened and

elliptical) (Figure 4). To test whether the change in shape of SVs in

motor terminals of VAChT KDHOM mice occurs due to a

reduction in ACh quantal content, we compared the circumfer-

ence and shape of SVs of motor terminals from VAChT WT

(Figure 4A), VAChT KDHOM mice (Figure 4B) and WT mice

treated with (6)-vesamicol (Figure 4C), a VAChT blocker

[35,36,37]. Quantitative analysis show a similar total number of

SVs in nerve terminals of VAChT KDHOM, VAChT WT (non-

treated) and WT treated with (6)-vesamicol (not shown).

Additionally, we analyzed the distribution of SVs in motor

terminals of VAChT KDHOM (non-treated) and found a altered

distribution of SVs located at different distances from presynaptic

active zone when compared with the WT treated with (6)-

vesamicol [Figure 4D – 50 nm: KDHOM = 1.0 SVs (mean),

Vesamicol = 2.0 SVs; 100 nm: KDHOM = 3.0 SVs, Vesamicol

= 5.0 SVs; 150 nm: KDHOM = 4.0 SVs, Vesamicol = 8.0 SVs;

200 nm: KDHOM = 5.0 SVs, Vesamicol = 12.0 SVs; 250 nm:

KDHOM = 6.0 SVs, Vesamicol = 14.0 SVs; 300 : KDHOM = 6.0

SVs, Vesamicol = 16.0 SVs; p,0.05, unpaired Student’s t-test; we

analyzed 15 nerve terminals profiles per genotype; n = 3 mice per

condition]. However, we observed that nerve terminals from

VAChT KDHOM exhibited SVs slightly smaller (224.061.0 nm)

than those from VAChT WT (226.061.0 nm) (p,0.05; Kolmo-

gorov-Smirnov test). We also observed that nerve terminals from

WT treated with (6)-vesamicol presented even smaller SVs

(20362.0 nm) compared to VAChT KDHOM and VAChT WT

mice (p,0.0001; Kolmogorov-Smirnov test. Figure 4E and 4F –

712 vesicles for WT and KDHOM and 724 vesicles for vesamicol

from 15 nerve terminal profiles for each experimental condition;

n = 3 mice per condition). Furthermore, NMJs from both VAChT

KDHOM non-treated and WT mice treated with (6)-vesamicol

showed a reduced number of SVs with spherical shape when

compared with VAChT WT (non-treated) (p,0.0001; Kolmo-

gorov-Smirnov test. Figure 4G and H –1104 vesicles for WT and

KDHOM and 1193 vesicles for vesamicol from 15 nerve terminal

profiles for each experimental condition; n = 3 mice per experi-

mental condition). These results suggest that the distribution and

morphology of SVs in motor terminals from diaphragm NMJ of

VAChT KDHOM mice may be related to level of VAChT

expression and ACh storage, respectively.

Discussion

In this study, we investigated the impact of reduced expression

of VAChT on the morphology of NMJs from the diaphragm

muscle of VAChT KDHOM adult mice. Using transmission

electron microscopy we found that the synaptic elements of NMJs

exhibited normal overall morphology concerning presynaptic

terminals size, total number of SVs per terminal and postsynaptic

membrane length, when compared with VAChT WT. Consider-

ing that ACh coordinates synaptic maturation [1,3,38,39], our

results suggest that reduced expression of VAChT ensures a

minimal level of ACh release which is sufficient to maintain the

development and normal formation of neuromuscular synapses in

VAChT KDHOM mice. Differently, VAChTdel/del or ChAT KO

mice exhibit abnormal development of NMJs, showing increase in

motoneurons and nerve terminals number, dilated motor end-

plates, profusion of ACh receptors in the proximity of nerve

terminals, multiple synaptic sites on individual myotubes; hyper-

innervation of individual synaptic sites and decreased number of

junctional folds in the postsynaptic membrane [1,2,3].

A new finding of this study relates to our results using

hypertonic sucrose to stimulate SV recycling from the RRP in

motor nerve terminals from diaphragm of mice with cholinergic

deficit. We found that VAChT KDHOM mice exhibit reduced

MEEP frequency and amplitude during hypertonic stimulation.

Furthermore, we observed a reduction in FM1-43fx staining in

these mice, compatible with the reduction in the total number of

SVs revealed by ultrastructural analysis when compared to WT.

Hypertonic extracellular solution increases MEPP frequency at the

vertebrate NMJ [23,24,25,26]. Although the mechanism for such

enhancement is unknown, there are evidences suggesting that this

stimulus does not require Ca2+ influx or release from internal

stores and consists of a calcium-independent neurotransmitter

release that mobilizes specifically the RRP [22,27]. Therefore, our

results suggest that, at least to hypertonic stimulation, the

reduction in the MEPPs frequency does not occur only by

competition between empty and filled vesicles [10], but also by

considerable defect of SVs recycling from RRP.

The NMJ of vertebrates has a total vesicle pool of about

500,000 vesicles [29], which are divided into three pools showing

distinct functional properties: the readily releasable pool (RRP),

the recycling pool (RP) and the resting pool (RtP), according to the

proposal for unifying terminology [40]. Aside from differences in

spatial location, no other ultrastructural features clearly distinguish

the SVs pools within a presynaptic terminal [29,40]. Thus, subtle

changes of SV distribution in motor terminals of VAChT KDHOM

would not be perceived during FM1-43 staining when considering

the existence of such a large total pool. However, our ultrastruc-

tural data show altered SV distribution near active zones in

hypertonically stimulated (Figure 1), electrically stimulated

(Figure 2) and non-stimulated nerve terminals (Figure 3), suggest-

ing a defect in vesicle mobilization in VAChT KDHOM mice

compared to WT. An elegant study performed in primary cultures

of neonatal rat hippocampal neurons [41] suggested that SVs

undergo alterations, or maturation processes that result in the

SVs located at different distances from the presynaptic active zones (n = 3 individual animals for condition. * p,0.05, ** p,0.01; *** p,0.0001). E–
Frequency histogram of SVs circumference measured from sections of NMJs from diaphragm of VAChT WT and VAChT KDHOM mice after electrical
stimulation and WT mice after treatment with (6)-vesamicol. F– Cumulative probability plot of the data in (E). (n = 3 individual animals per
experimental condition). G– Frequency histogram of SVs shape VAChT WT and VAChT KDHOM mice after electrical stimulation and WT mice after
treatment with (6)-vesamicol. H– Cumulative probability plot of the data in (G). (n = 3 individual animals per experimental condition).
doi:10.1371/journal.pone.0078342.g004
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reduction of their mobility and in their clustering into a preexisting

pool. Interestingly, our data shows that synaptic vesicle distribu-

tion near the active zone in vesamicol treated WT mice differs

from VAChT KDHOM (Figures 4D). Based on this and the afore

mentioned work in hippocampal neurons [41], we suggest that a

change in the number of copies of VAChT per synaptic vesicle in

VAChT KDHOM, may signal an immature state of cholinergic

SVs and make them less mobile early, resulting in reduction in the

clustering of SVs in individual pools and reduced interconversion

of vesicles between pools [29,40,42].

Another possibility to explain the change in the SVs distribution

in motor nerve terminals of VAChT KDHOM mice could lie in the

fact that changes in VAChT expression may impair the expression

of proteins that regulate vesicle mobility and thereby impair the

formation of vesicular pools or result in dispersion of vesicles.

Some studies have shown a correlated expression between proteins

involved with SVs mobility and vesicular neurotransmitter

transporter from the central nervous system, especially to

VGLUT-1, VGLUT-2 and VGAT [28,43], but not VAChT

[43]. However, it would be reasonable that presynaptic proteins

could regulate the mobility of SVs in motor terminals of VAChT

KDHOM, through the interaction with the VAChT. Future studies

could focus on the mechanisms of interaction between VAChT

and other presynaptic protein and the consequences of reduced

expression of this transporter for the formation of SVs pools.

Another important finding of this work relates to the observed

alteration in morphology of SVs from NMJ of VAChT KDHOM

mice. Considering that VAChT KDHOM animals have a reduction

in the number of copies of the transporter in the SVs membrane

and that they exhibit reduced quantal ACh content [10], we

hypothesized that the change in morphology of SVs is a

consequence of the reduced filling with ACh. To test this

hypothesis we compared circumference and shape of SVs from

NMJ of VAChT KDHOM mice and WT treated with vesamicol, a

VAChT blocker [35,36,37]. Ultrastructural analysis revealed that

the pharmacological inhibition of VAChT also changes the

morphology of SVs.

The relationship between SVs size and changes in quantal

acethylcholine content has been investigated specially at cholin-

ergic nerve terminal from the frog NMJ [8]. At the NMJ

cholinergic SV recycling continued to occur in nerve terminals

stimulated in the presence of vesamicol, showing that transport of

ACh into recycled vesicles is not a requisite for repeated SV cycle

[44]. Experiments using hypertonic gluconate and aspartate

solution to increase quantal size showed an increase in the size

of MEPPs that was not accompanied by changes in SV size [8]. In

addition, vesicle size was not substantially decreased when the

quantal content was reduced by treatment with hemicholinium

(inhibitor of choline uptake) or NH4
+ (which diminishes the proton

gradient for ACh uptake into the vesicles). However, treatment

with vesamicol induced a decrease in vesicle size [8], which agrees

with our findings from mice with reduced VAChT expression and

treated with vesamicol described in Figure 4. Interestingly,

previous work suggested that vesamicol may be altering vesicle

size by a mechanism other than inhibiting VAChT [8], but our

data showing changes in circumference and shape in VAChT

KDHOM and vesamicol treated nerve terminals indicate that this

might not be the case at least in the mice NMJ.

VAChT is a transmembrane protein that uses the electrochem-

ical gradient generated by a V-type proton ATPase to accumulate

ACh in SVs [4,7,45,46]. Therefore, a change in the VAChT

activity could impact on proton exchange, changing tonicity and

inducing morphological changes in SVs. Indeed, it has been

recently reported [47] that aldehyde fixation induces flattening of

SVs in hippocampal synapses of VGLUT12/2 mice due to an

alteration in the tonicity of excitatory SVs. We therefore suggest

that in cholinergic vesicles the normal expression and activity of

VAChT are also important for maintaining tonicity and

morphology of SVs in nerve terminals from diaphragm NMJ.

Even though our results suggest that ACh content interferes

with the morphology of SVs we cannot rule out the possibility that

the reduced VAChT protein levels or activity in our experimental

model may also affect vesicle shape. Removal of plasma

membrane components, such as cholesterol, does not alter the

SVs shape, although considerably alters circumference in frog

NMJ [48]. Furthermore, overexpression or reduced expression of

VGLUT in Drosophila NMJ induces an increase or decrease in the

diameter of SVs, respectively [30,31]. Additionally, morphological

aspect of SVs may also be defined after clathrin-mediated

endocytosis [49,50,51]. Considering that VAChT interacts with

clathrin adaptors [52,53,54], reduced expression of this transport-

er could compromise the number of sites necessary for proper

connection between them. Therefore, it is possible that changes in

shape of SVs from motor nerve terminals of VAChT KDHOM

mice may also be related to a defect in modeling during

endocytosis. One intriguing possibility is that these changes in

SVs circumference and shape that we detect in the absence of

VAChT may be the reason for the altered recycling of SVs in the

RRP that we observed in these mutant mice.

In conclusion, our data show that decreased VAChT expression

play a role in recycling and mobilization of specific pools of SV in

NMJ. We suggest that quantal ACh content and reduced VAChT

protein levels or activity are important to define the morphology

and distribution of SVs and the recycling of the RRP. Our results

also suggest that functional alterations caused by VAChT

deficiency [9,55,56] may involve multiple mechanisms, including

a decreased in neurotransmitter storage in addition to deficits in

the recycling and mobilization of the RRP. Future studies will be

needed to clarify the relation between expression of VAChT and

regulation of SVs mobility in neuromuscular synapses.
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