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Ocular Pathology Relevant to Glaucoma in a Gja1Jrt/�

Mouse Model of Human Oculodentodigital Dysplasia

Edmund Tsui,1 Kathleen A. Hill,2 Alex M. Laliberte,2 Daniel Paluzzi,2 Ilia Kisilevsky,2

Qing Shao,1,3 J. Godfrey Heathcote,4 Dale W. Laird,1,3 Gerald M. Kidder,1,5 and
Cindy M. L. Hutnik6

PURPOSE. Oculodentodigital dysplasia (ODDD) is a human dis-
order caused by mutations in the gap junction alpha 1 (GJA1)
gene encoding the connexin43 (Cx43) gap junction protein.
Causal links between GJA1 mutations and glaucoma are not
understood. The purpose in this study was to examine the
ocular phenotype for Gja1Jrt/� mice harboring a Cx43 G60S
mutation.

METHODS. In young Gja1Jrt/� mice, Cx43 abundance was as-
sessed with a Western blot, and Cx43 localization was visual-
ized using immunohistochemistry and confocal microscopy.
Intraocular pressure (IOP) was measured by rebound tonome-
try, and eye anatomy was imaged using ocular coherence
tomography (OCT). Hematoxylin and eosin (H&E)–stained eye
sections were examined for ocular histopathology related to
the development of glaucoma.

RESULTS. Decreased Cx43 protein levels were evident in whole
eyes from Gja1Jrt/� mice compared with those of wild-type
mice at postnatal day 1 (P � 0.005). Cx43 immunofluores-
cence in ciliary bodies of Gja1Jrt/� mice was diffuse and
intracellular, unlike the gap junction plaques prevalent in wild-
type mice. IOP in Gja1Jrt/� mice changed during postnatal
development, with significantly lower IOP at 21 weeks of age
in comparison to the IOP of wild-type eyes. Microphthalmia,
enophthalmia, anterior angle closure, and reduced pupil diam-
eter were observed in Gja1Jrt/� mice at all ages examined.
Ocular histology showed prominent separations between the
pigmented and nonpigmented ciliary epithelium of Gja1Jrt/�

mice, split irides, and alterations in the number and distribu-
tion of nuclei in the retina.

CONCLUSIONS. Detailed phenotyping of Gja1Jrt/� eyes offers a
framework for elucidating human ODDD ocular disease mech-
anisms and evaluating new treatments designed to protect
ocular synaptic network integrity. (Invest Ophthalmol Vis Sci.
2011;52:3539–3547) DOI:10.1167/iovs.10-6399

Oculodentodigital dysplasia (ODDD) is a rare, primarily
autosomal dominant human disorder caused by any one

of the 63 known mutations in the gap junction alpha 1 (GJA1)
gene encoding the gap junction protein connexin43 (Cx43).1–2

It is characterized by syndactyly, loss of tooth enamel, and a
wide range of ocular abnormalities.3 The ocular abnormalities
reported for ODDD patients include microphthalmia, en-
ophthalmia, microcorneas, malformations of the iris, ele-
vated intraocular pressure (IOP), and glaucoma.3–5 Disease
mechanisms leading to ODDD-related glaucoma are poorly
understood, given the restrictions of purely associative data
in human populations.

Cx43 forms an integral part of gap junctional intercellular
communication through the formation of permeable channels
between neighboring cells. Gap junctions are central to many
important physiological processes in living organisms since
they mediate cell-to-cell communication via small molecule and
ion transfer.6 Cx43 is one of �20 gap junction proteins that
oligomerize to form hexameric connexons (gap junction he-
michannels).7 Cx43 is the most widely expressed connexin,
and Cx43 gap junctions are a major component of several
structures in the eye, where they serve essential roles in cell
homeostasis and nutrient transport.7,8 Within the eye, Cx43 is
found in the corneal epithelium, ciliary body, lens, iris, and
retina.7 Cx43 forms a large proportion of the gap junctions
between the pigmented and nonpigmented epithelial cells in
the ciliary body.7 These junctions are thought to be associated
with the production of aqueous humor in the ciliary processes
of the eye, which is relevant to maintenance of normal intra-
ocular pressure and nourishment of the postnatal lens.9

A mutant mouse model (Gja1Jrt/�) harboring a glycine-to-
serine substitution at position 60 (G60S) in Cx43 was created
through an N-ethyl-N-nitrosourea (ENU) mutagenesis screen
and found to display a phenotype similar to human ODDD.10

There is reduced survivorship in Gja1Jrt/� mice, with both
prenatal and neonatal death.10 Gja1Jrt/� mice exhibit the char-
acteristic ODDD abnormalities of syndactyly and loss of tooth
enamel. In addition, Gja1Jrt/� mice display multiple craniofa-
cial abnormalities including long narrow nose, depressed nasal
bridge, and microcephaly.10 ODDD-like ocular abnormalities in
Gja1Jrt/� mice include microphthalmia, enophthalmia, corneal
opacification, cataracts, abnormal pupil shape, aberrant pupil-
lary light reflex, and iris malformations.10 Of the 20 connexins
found in mice, Cx43 is the most ubiquitously expressed,11

consistent with the wide array of tissues affected in the ODDD
mutant mouse.

From the Departments of 1Physiology and Pharmacology, 2Biol-
ogy, and 3Anatomy and Cell Biology, The University of Western On-
tario, London, Ontario, Canada; the 4Department of Pathology, Faculty
of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; the
5Division of Genetics and Development, Children’s Health Research
Institute, London, Ontario, Canada; and the 6Department of Ophthal-
mology, Ivey Eye Institute, St. Joseph’s Hospital, Lawson Health Re-
search Institute, The University of Western Ontario, London, Ontario,
Canada.

Supported by Canadian Institutes of Health Research Grant MOP
74637 (GMK, DWL); an infrastructure funding Grant RTI-1 from the
Natural Sciences and Engineering Research Council (KAH); and the
Department of Ophthalmology Pilot Fund at the University of Western
Ontario for operation funding.

Submitted for publication August 12, 2010; revised October 19
and November 26, 2010; accepted December 6, 2010.

Disclosure: E. Tsui, None; K.A. Hill, None; A.M. Laliberte,
None, D. Paluzzi, None; I. Kisilevsky, None; Q. Shao, None; J.G.
Heathcote, None; D.W. Laird, None; G.M. Kidder, None; C.M.L.
Hutnik, None

Corresponding author: Kathleen A. Hill, Department of Biology,
The University of Western Ontario, London, Ontario, N6A 5B7, Can-
ada; khill22@uwo.ca.

Glaucoma

Investigative Ophthalmology & Visual Science, May 2011, Vol. 52, No. 6
Copyright 2011 The Association for Research in Vision and Ophthalmology, Inc. 3539

Downloaded From: http://iovs.arvojournals.org/ on 10/02/2017



The ocular phenotype of Gja1Jrt/� mice mimics aberrant
features in the human ODDD eye, presenting an opportunity to
study Cx43 relevance to eye structure and pathology, in par-
ticular with relevance to development of glaucoma. Our cen-
tral hypothesis is that mutant Cx43 leads to loss of gap junc-
tions, specifically in the ciliary body and iris where structural
and functional integrity is lost, resulting in aberrations in aque-
ous fluid production and elevated intraocular pressure. Herein,
Cx43 levels in the whole eye and in situ localization within the
ciliary body were compared in Gja1Jrt/� and wild-type litter-
mates. Optical coherence tomography (OCT) was used to
monitor, in vivo, the early development of ODDD ocular dis-
eases. Tonometry was used to measure intraocular pressure
(IOP). Finally, postmortem, ocular histology was assessed for
the underlying mechanisms in the development of glaucoma.

MATERIALS AND METHODS

Mice

Gja1Jrt/� mice were supplied by the Centre for Modeling Human
Disease, University of Toronto, on a mixed C57BL/6J and C3H/HeJ
background10 and were backcrossed to the C57BL/6 inbred strain for
four generations. All mouse protocols were approved by The Animal
Use Subcommittee of the University Council on Animal Care of the
University of Western Ontario and adhered to the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research. The mice were
fed a standard diet in pellets or meal (Teklad Global 2018; Harlan PMI
Foods, Mississauga, ON, Canada) and water ad libitum. The meal form
of the diet was used for the mutant mice, given the enamel hypoplasia
phenotype.12 Room temperature was 21 � 1°C, with a relative humid-
ity of 44% to 66%, and a 12-hour light/12-hour dark cycle. Body mass
was recorded for all the mice at 1, 3, 5, 10, and 21 weeks of age. For
in vivo measurements of IOP and OCT imaging of whole eye structure,
the mice were anesthetized with a combination injection of ketamine
(1.25 mg/10 g body weight) and xylazine (0.025 mg/10 g body
weight). Body temperature was maintained throughout anesthesia
with a circulating-water heating pad and an overhead heat lamp.

Western Blot Analysis of Ocular Cx43
Protein Levels

To determine the levels of Cx43 protein in the mouse eye, lysates were
extracted from whole eyes of postnatal day 1 Gja1Jrt/� (n � 8) and

wild-type (n � 9) mice by using a Triton-based extraction buffer
containing 1% Triton-X 100, 10 mM Tris, 150 mM NaCl, 1 mM EDTA,
1 mM EGTA, 0.5% NP-40, 100 mM sodium fluoride, 100 mM sodium
orthovanadate, and a protease inhibitor tablet (one tablet per 10 mL
buffer; Roche, Laval, QC, Canada) at pH 7.4. Protein concentrations
were measured using a BCA protein-determination kit (Thermo Scien-
tific, Rockland, IL). Lysate samples (30 �g) were boiled for 5 minutes,
subjected to 10% SDS-PAGE, and transferred to a nitrocellulose mem-
brane. The membranes were blocked with 5% nonfat dry milk (Santa
Cruz Biotechnology, Santa Cruz, CA) and 0.05% Tween 20 in PBS for 30
minutes at room temperature. Affinity-purified rabbit anti-Cx43 poly-
clonal (cat no. C6219; Sigma-Aldrich, St. Louis, MO) primary antibodies
were incubated overnight at 4°C. The epitope used in the production
of this antibody was a peptide corresponding to a C-terminal segment
(amino acid residues 363-382) of the cytoplasmic domain of human/rat
Cx43 with an additional N-terminal lysine. Anti-glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) antibodies (1:20,000; Chemicon/Milli-
pore, Temecula, CA) were used in parallel, to assess gel loading. After
washes with PBS-Tween 20, AlexaFluor 680 secondary antibodies (1:
5000; A21076; Invitrogen, Burlington, ON, Canada) and IRDye 800
(1:5000; Rockland, Gilbertsville, PA) were used. Membranes were
visualized with an infrared imaging system (Odyssey; LiCor, Lincoln,
NE). Densitometry analysis of unsaturated images was performed with
commercial software (Quantity ONE; Bio-Rad, Mississauga, ON, Can-
ada) and protein levels were normalized to GAPDH.

Ocular Histology and Cx43 Localization

The enucleated eyes were fixed in a solution of 3.7% paraformaldehyde in
phosphate-buffered saline (PBS) overnight at 4°C. The eyes were dehy-
drated, paraffin-embedded, and sectioned at 5 �m for hematoxylin and
eosin (H&E) staining and Cx43 immunofluorescence assays. For H&E-
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FIGURE 1. The Gja1Jrt/� mice had significantly lower body mass
(mean � SEM) compared with that of their wild-type (WT) littermates
at 1 (n � 5 for both genotypes), 3 (n � 8 WT and 7 Gja1Jrt/�), 5 (n �
8 for both genotypes), 10 (n � 3 WT and 4 G60S), and 21 weeks of age
(n � 3 WT and 4 Gja1Jrt/�). Significant differences were found for age
P � 0.01, genotype P � 0.01 (ANOVA).
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FIGURE 2. Gja1Jrt/� mice had significantly lower levels of Cx43
protein. (A) Western blot and (B) densitometry analyses (mean �
SEM) revealed decreased total Cx43 protein levels (includes non-
phosphorylated P0, and phosphorylated Cx43 P1 and P2 species).
Cx43 protein levels were assessed from whole eyes taken from P1
Gja1Jrt/� mice (n � 8) and wild-type (WT) littermates (n � 9; P �
0.005, Student’s t-test P � 0.005). Densitometry was performed,
and total protein levels were normalized to GAPDH.
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stained whole eye sections, cell density in the ganglion cell layer was
determined for two 100-�m regions of the central retina and four regions
of the peripheral retina. In these regions, the number of nuclei in the inner
plexiform layer and the nuclear density of the ganglion cell layer were
recorded. For Cx43 immunofluorescence (examined at 1, 3, and 5 weeks
of age), slides were deparaffinized, treated with 2% bovine serum albumin
(BSA), and treated with PBS for 1 hour at room temperature. The sections
were incubated with polyclonal rabbit anti-Cx43 (as mentioned above;
1:200; Sigma Aldrich) for 1 hour at room temperature, followed by
incubation with Alexa488 goat anti-rabbit antibody (1:300; Invitrogen) for
1 hour at room temperature. Tissue sections were then incubated with
Hoechst 33342 stain (1:1000, Invitrogen) for 10 minutes at room temper-
ature. Light and fluorescence microscopy images were captured (Veritas;
Molecular Devices, Sunnyvale, CA) with magnifications from �20 to
�600. Confocal microscopy was performed (LSM 5 Duo Vario; Carl Zeiss
Meditec, Dublin, CA, with Zen software; Heidelberg Engineering, Heidel-
berg, Germany), and images were acquired at magnification �630, with
zoom of 1.2. For blue (Hoechst 33342) fluorescence (diode 405-50), the
settings were 1 AU, 362 master gain, 0.01 digital offset, and 3% laser
intensity. Green (Alexa488) fluorescence (Argon 2 with laser lines 458,
477, 488, and 514) settings were 1 AU, 545 master gain, 0.01 digital offset,

and 7% laser intensity. The z-stacks were reconstructed and analyzed using
the software to construct the 2D line profiles for Hoechst and/or Alexa488
fluorescence intensity.

IOP Measurements

IOP measurements were made in all the mice between 9 AM and 12 PM.
Six successive IOP measurements were made in both eyes of each mouse
(right and then left eye) with a rebound tonometer (Tonolab; TioLat,
Helsinki, Finland), between 3 and 8 minutes after anesthesia. The highest
and lowest IOPs for each eye were excluded, and the average of the
remaining four measures was used as the IOP measure for each eye. IOP
measurements were made for 3-, 5-, 10-, and 21-week-old Gja1Jrt/� and
wild-type mice (minimum of n � 3 mice).

OCT Measurements

OCT was performed (Visante; Carl Zeiss Canada, Ltd., Toronto, ON,
Canada), to image the anterior segment and retina of both eyes from 3-, 5-,
and 10-week-old Gja1Jrt/� and wild-type mice (minimum of n � 3 mice).
Diophenyl-T (Alcon, Mississauga, ON, Canada) was applied topically to
achieve mydriasis. The high-resolution scan was centered at the vertex of

FIGURE 3. The ciliary bodies in the
Gja1Jrt/� mice exhibited histopathol-
ogy and altered Cx43 localization.
H&E-stained cross sections of eyes
from 5-week-old (A) WT mice and
(B) Gja1Jrt/� littermates show prom-
inent and numerous separations be-
tween the pigmented and nonpig-
mented epithelium of the ciliary
epithelium, leaving clear vacuoles. (C)
Cx43 immunofluorescence (green)
was punctate, consistent with gap
junction plaques and cell membrane
localization in WT mice, compared
with (D) diffuse and intracellular lo-
calization in the Gja1Jrt/� littermates
at 3 and 5 weeks of age. Confocal
imaging was performed with cryo-
preserved samples and thus was dif-
ferent from that of the H&E-stained
sections. Nuclei are Hoechst stained
(blue). See the Materials and Meth-
ods section for image settings. (C)
Autofluorescence of peripheral
erythrocytes was observed; (D) no
peripheral erythrocytes were pres-
ent. (C, D, red line) Position of the
line graph data depicted in images
(E) and (F). Line graphs show the
results of semiquantitative analysis of
fluorescence intensity across the cil-
iary process in (E) WT mice, com-
pared with (F) Gja1Jrt/� littermates.
The green and white spectra repre-
sent AlexaFluor and Hoechst stain in-
tensity, respectively. Representative
images of a 5-week-old mouse are
shown. Magnification: (A, B) �600;
(C, D) �630.
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the mouse eye before image capture. Post-acquisition image analysis used
a digital caliper tool in the system software to obtain the following
measurements (in millimeters): anterior chamber width, anterior chamber
depth, pupil diameter, central corneal thickness, and total neuronal retinal
thickness. Anterior chamber angle was measured from the OCT images
(ImageJ software; developed by Wayne Rasband, National Institutes of
Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.html).
The ratio of pupil diameter to anterior chamber width was also deter-
mined, to assess iris deformation standardized for eye size, given the
significantly smaller eye size in Gja1Jrt/� compared with wild-type mice.
Data analysis was performed independently by two scorers, each blinded
to the sample identifiers. After OCT, the mice were euthanatized with an
intraperitoneal injection of pentobarbital sodium (1.2 mg/10 g body
weight), and both eyes were enucleated for postmortem analyses.

Statistical Analysis

Statistical analyses were performed with ANOVA and two-tailed Stu-
dent’s t-tests (Excel 2007 Microsoft, Redmond, WA, and SPSS, Chicago,
IL). Significance was set at P � 0.05.

RESULTS

Lower Survivorship and Body Mass in
Gja1Jrt/� Mice

Mortality in the Gja1Jrt/� mice was highest between 6 and
30 days of age (19% mortality for the male mice). The
Gja1Jrt/� mice compared with the wild-type littermates had
significantly lower body mass at each age examined (Fig. 1;
two-factor ANOVA P � 0.001). Average body mass was 60%
to 39% lower than that of the wild-type mice from 1 to 21
weeks of age, respectively.

Lower Cx43 Protein Levels in Eyes of
Gja1Jrt/� Mice

Western blot analysis (Fig. 2A) revealed that Cx43 protein
(including both phosphorylated and nonphosphorylated spe-
cies) was present in whole eye lysates taken from the 1-day-old
wild-type and mutant mice, but Cx43 levels were found to be
significantly lower in the mutant mice (Fig. 2B). In particular,
the levels of the slower migrating phosphorylated Cx43 spe-
cies (P1 and P2) were greatly reduced in the mutant mice
compared with that in the wild-type littermates.

Altered Ciliary Body Structure with Aberrant
Cx43 Localization

In contrast to normal ciliary body structure (Fig. 3A; 5 weeks),
prominent and numerous separations between pigmented epithe-
lium and nonpigmented epithelium were observed in ciliary pro-
cesses of each of the Gja1Jrt/� mouse eyes at 3, 5, 10, and 21
weeks of age (Fig. 3B; 5 weeks). Qualitative analysis of Cx43
immunofluorescence in eyes from the 1-, 3-, and 5-week-old wild-
type mice showed intense punctate staining consistent with the
presence of Cx43 in gap junctions at cell-to-cell interfaces in the
ciliary processes (Fig. 3C; 5 weeks). In contrast, immunofluores-
cence for Cx43 in the 1-, 3-, and 5-week-old Gja1Jrt/� mice
showed reduced punctate fluorescence with diffuse intracellular
fluorescence (Fig. 3D; 5 weeks). These observations are consis-
tent with an intracellular localization of Cx43 protein and de-
creased gap junction plaques in the ciliary processes. Quantitative
evaluation of Cx43 localization in ciliary processes in the wild-
type and Gja1Jrt/� mice was performed with confocal micros-
copy (Figs. 3E, 3F), and these analyses revealed significant differ-
ences in the 2D spectra for Cx43 immunofluorescence intensity
and location. Compared with the ciliary processes in the wild-
type mice (Fig. 3E), Cx43 immunofluorescence in the Gja1Jrt/�

mice had significantly lower peak intensity and broader peak

areas, consistent with diffuse intracellular localization (Fig.
3F). Fluorescence peak intensity was less than 50 in the
Gja1Jrt/� mouse eyes but greater than 50 for the punctate
gap junction plaques in the wild-type mouse eyes.

Gja1Jrt/� Mice Have a Different IOP Profile with
Age Compared to Wild-Type Mice

The profile of IOP with age differed significantly between the
Gja1Jrt/� and wild-type littermates (P � 0.01 for genotype and
P � 0.001 for age and age and genotype interaction; ANOVA).
IOP in the Gja1Jrt/� mice was not elevated above the values
observed in the wild-type littermates. IOP in the wild-type mice
was relatively constant at 3 and 5 weeks of age and rose approx-
imately 5.2 and 3.6 mm Hg by 10 and 21 weeks of age, respec-
tively (P � 0.001; Fig. 4). IOP in the 3- and 10-week-old Gja1Jrt/�

mice was similar to that of the wild-type littermates. IOP in the
Gja1Jrt/� mice was significantly lower than that in the wild-type
littermates at 5 weeks of age (P � 0.001). At 21 weeks of age, IOP
in the Gja1Jrt/� mice was 8.25 mm Hg below the average IOP of
the wild-type eyes (P � 0.001). IOP in both eyes was similar in all
study groups.

In Vivo Imaging Detects Structural Abnormalities
in Gja1Jrt/� Mouse Eyes

At all ages, the eyes of the Gja1Jrt/� mice showed microph-
thalmia and enophthalmia on OCT images (Figs. 5B, 5D, 5F).
OCT images clearly revealed elongated and split irides in the
5- and 10-week-old Gja1Jrt/� mice (Figs. 5D, 5F). Quantita-
tive analysis of OCT images revealed that the ratio of pupil
diameter to anterior chamber width was significantly lower
in the Gja1Jrt/� mouse eyes (two-factor ANOVA; P � 0.001;
Fig. 6A). The anterior chamber angle was smaller in the
Gja1Jrt/� mice compared with that in the wild-type mice at
all ages (two-factor ANOVA; P � 0.001; Fig. 6B). The cornea
and retina were thinner in the Gja1Jrt/� mice compared
with that in the wild-type mice, but overall eye size was
smaller in the Gja1Jrt/� mice. The cornea and retina of the
Gja1Jrt/� mice show parallel growth with age compared
with that of the wild-type mice, with no evidence of corneal
or retinal degeneration in the OCT images (Figs. 6C, 6D).
Aberrant features were evident in both eyes of the same
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FIGURE 4. Gja1Jrt/� and wild-type (WT) mice have different profiles
of IOP with age. IOP measurements (mean � SEM for four replicates
per eye) were made in Gja1Jrt/� and WT mice at 3, 5, 10, and 21 weeks
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mice had significantly lower IOP compared with age-matched WT
littermates (P � 0.001; ANOVA).
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mouse, consistent with bilateral symmetry. The structural
abnormalities observed with in vivo OCT imaging were
comparable to the histologic evaluations made in H&E-
stained whole eye cross sections postmortem.

Iris, Lens, and Retinal Abnormalities Are Evident
in Histology Postmortem

The Gja1Jrt/� mice had irides split into two layers that were
evident as early as 1 week of age (Fig. 7B). The posterior

pigmented epithelium of the iris was adjacent to the anterior
surface of the lens. Also, nuclear displacement from adjacent
nuclear layers into the inner plexiform layer was prominent in
the Gja1Jrt/� mouse retinas at 5 weeks of age. The Gja1Jrt/�

mice had a significant reduction in the number of nuclei in the
ganglion cell layer at 5 and 10 weeks of age (P � 0.0001; Fig.
7D). Ganglion nuclear counts in the peripheral and central
retina of the Gja1Jrt/� mice were 65% and 72% that of the
wild-type mice. Ganglion cell loss and nuclear displacement
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A B
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E F

WT 3 Week Gja1Jrt/+  3 Week

WT 5 Week Gja1Jrt/+  5 Week
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IRIS

FIGURE 5. In vivo OCT of the ante-
rior eye segment of the Gja1Jrt/�

mice reveals microphthalmia, enoph-
thalmia, and split irises. Whole-eye
anatomy was imaged for the wild-
type (WT) compared with the
Gja1Jrt/� mice at (A, B) 3, (C, D) 5,
and (E, F) 10 weeks of age.
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were not evident in the eyes of the 21-week-old Gja1Jrt/� mice.
All eyes of the 21-week-old Gja1Jrt/� mice showed a range of
gross structural abnormalities (Fig. 8), including lens degrada-
tion (observed in one eye of a single mouse), optic nerve
atrophy, and retinal disorganization and dysplasia. Solute pre-
cipitation was visible in the anterior and posterior chambers
(Fig. 8).

DISCUSSION

Gja1Jrt/� mice show iris adjacent to the lens consistent with
a pupillary block mechanism of glaucoma. The IOP profile
with age in the Gja1Jrt/� mice differs from that observed in
the wild-type mice, and the data support the hypothesis that
this GJA1 mutation has an effect on IOP. However, IOP in
the Gja1Jrt/� mice was not elevated above values observed
in the wild-type littermates. In fact, at 21 weeks of age,
decreased IOP in the Gja1Jrt/� eyes was observed and can
be attributed to the severely impaired aqueous fluid produc-
tion consistent with the observed solute (protein) precipi-
tation in intraocular spaces (Fig. 8). Consistent with these

observations, impaired aqueous fluid production was re-
ported for a Cx43 conditional knockout mouse model.9 The
precipitated protein is consistent with backflow from the
episcleral venous plexus and the canal of Schlemm as a
result of the low IOP.9,14 It is clear that the changes ob-
served in the retina were not dependent on an elevated and
sustained IOP. It is not clear how the fluctuations in IOP
would contribute to the diversity of aberrations observed in
the retina. The strongest correlate to later retinal aberrations
is altered ciliary body and iris structure. The IOP profile may
be consistent with observations and interest in humans that
IOP fluctuation is an independent risk factor in glau-
coma.15,16 The results could also suggest that non-IOP de-
pendent factors weigh in more significantly in this model
and may be worthy of pursuit for further investigation.

In addition to the functional relevance of Cx43 in ante-
rior structure integrity, Cx43 is present in the lens9 and
retina8 and contributes to the differentiation of retinal pig-
ment epithelial cells.17 Lens histology appeared normal,
with the exception of degradation evident in one eye from
a single 21-week-old Gja1Jrt/� mouse. The retinas of young
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FIGURE 6. In vivo OCT revealed anterior segment and retinal structural abnormalities in Gja1Jrt/� mice. (A) Ratio of the distance between the
iris leaflets and the anterior chamber width was smaller in the Gja1Jrt/� mice than in the wild-type (WT) mice (P � 0.001). (B) Anterior chamber
angle was smaller in the Gja1Jrt/� mice than in the WT mice (P � 0.001). The Gja1Jrt/� mice compared with the WT mice had thinner (C) corneas
and (D) retinas, but both tissues showed proportionate growth and no evidence of degeneration. (All measures are shown as the mean � SEM for
a minimum of three mice in each cohort). No significant differences were found between left and right eyes, which is consistent with bilateral
symmetry of these ocular features (data not shown).
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Gja1Jrt/� mice show diverse retinal changes, including a
lower number of ganglion cell and nuclear displacements
into the inner plexiform layer. These retinal histopatholo-
gies have been noted in other mouse models of retinal
degeneration.18 There is some suggestion of shrinkage or
loss of the prelaminar nerve substance at 10 weeks of age
with early evidence of cupping of the optic disc, a clinical
feature of human glaucoma,19,20 evident in eyes of 21-week-
old Gja1Jrt/� mice. The nature of this type of retinal degen-
eration is consistent with acute angle-closure glaucoma;
however, the origin and progression of retinal disease in this
mutant mouse is hypothesized to be the result of a complex
interaction of compromised gap junction integrity in ante-
rior structures (iris and ciliary epithelia) and the retina,
including the retinal pigmented epithelium. Cases of ODDD
in humans display various forms of glaucoma, including
open- and closed-angle glaucoma with various IOP profiles
and iris atrophy.2,4 –5,21 The presence of retinal dysplasia in
one 21-week-old Gja1Jrt/� mouse indicates an element of
abnormal formation as well as retinal degeneration.

The G60S amino acid substitution is at an evolutionarily
conserved and hence functionally relevant amino acid in the
first extracellular domain of Cx43.10 The G60S mutant shows a
strong dominant-negative effect on endogenous wild-type

Cx43.10,22,23 The decreased number of gap junction plaques
seen in the Gja1Jrt/� ciliary processes has also been docu-
mented in other tissues of this mutant mouse such as the tooth
enamel organ,12 ovaries,24 myometrium,25 cardiomyocytes,10

heart ventricles,26 and mammary gland,27 all of which have
been associated with impairments in the respective tissues.
Also, Gja1Jrt/� mouse cell culture studies have shown fewer
Cx43 gap junctions and increased intracellular localization of
Cx43 for neonatal cardiomyocytes26 and granulosa cells.24 Sim-
ilarly, certain human Cx43 mutations have shown intracellular
localization in cell culture assays.22

Gja1Jrt/� mice have an eye phenotype similar to mice with
a conditional deletion in Cx43. Partial inactivation of Cx43 in
the pigmented epithelium of the mouse ciliary processes by
cre-loxP technology resulted in prominent vacuoles in the
ciliary processes9 and reduced IOP in 5-week-old mice.28 Cx43
gap junctions between the pigmented and the nonpigmented
epithelium of the ciliary processes do not form properly and
production of aqueous humor is reduced.28,29 This lack of
Cx43 assembly into gap junctions is due to a trafficking defect
that further results in aberrant or insufficient Cx43 phosphor-
ylation.24 Thus, the G60S Cx43 mutant acts dominantly on its
co-expressed wild-type counterpart, consistent with that found
in granulosa cells harvested from Gja1Jrt/� mice.24 Consis-

FIGURE 7. Gja1Jrt/� eyes harbor
multiple ocular histopathologies. Iris,
retina, and optic nerve head histol-
ogy was compared in 5-week-old
wild-type (WT) and Gja1Jrt/� mice
(200� magnification; 5-�m sections
from formalin-fixed, paraffin-embed-
ded whole eyes). (A) WT mice had
normal iris histology. (B) The iris was
split, leaving the posterior pig-
mented epithelium on the surface of
the lens in Gja1Jrt/� mice. Compared
with (C) WT mice, (D) Gja1Jrt/�

mice had nuclei in the inner plexi-
form layer (arrow) and a lower den-
sity of ganglion cell layer nuclei. His-
topathologies were evident at the
earliest age examined (3 weeks). The
optic nerve was examined in C-cut
whole-eye sections for (E) normal
histology in wild-type mice and (F)
evidence of optic nerve histopathol-
ogy in eyes from Gja1Jrt/� mice.
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tently, in the heart, the G60S mutant protein is retained in the
Golgi apparatus and appears to impair normal trafficking and
function of co-expressed wild-type Cx43.26

In addition to Gja1Jrt/� mice, insertion of a conditional
human Cx43G138R mutation30,31 produced mutant mice with
an ODDD-like ocular phenotype. The eye phenotype of a third
ODDD-linked Cx43I130T conditional mutant mouse has not
been examined in detail. Similar to the other ODDD-linked
mutant mice, Cx43I130T mice harbor less phosphorylated Cx43
and exhibit impaired Cx43 trafficking to the cell surface.32

Further comparisons of the ocular phenotypes of mutant mice
that mimic human ODDD will prove helpful in elucidating
underlying disease mechanisms and dissecting the functionally
relevant domains of Cx43 in the healthy eye.

CONCLUSIONS

Cx43 gap junctions are critical to the functional and structural
integrity of epithelial tissues of the eye. A loss-of-function
mutant of Cx43 is associated with altered cellular localization
of Cx43 resulting in structural changes to ciliary body, iris, and
retina evident in young mice. Structural deformations in the
ciliary body and iris are hypothesized to alter trabecular mesh-
work integrity, closing trabecular beams and impeding aque-

ous fluid flow as a mechanism for a transitory increase in
intraocular pressure in developing eyes of young mice. How-
ever, in adulthood, the underproduction of aqueous fluid by
the ciliary body of Gja1Jrt/� mice results in significantly lower
IOP. Retinal degeneration (loss and displacement of neurons)
and optic nerve degradation may reflect both degeneration as
a result of the transient increase in IOP and aberrant histogen-
esis. Our results demonstrate the value of in vivo and postmor-
tem ocular phenotyping of young Gja1Jrt/� mice as a model to
study synaptic pathophysiology. Our work represents the first
characterization of the ocular features of a stable mutant model
of ODDD, as well as the causative factors in ODDD-related
retinal disease.
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FIGURE 8. Structural abnormalities in eyes of 21-week-old G60S mice. The eyes of the Gja1Jrt/� mice were severely deformed. Deviance from (A)
wild-type (WT) eye normal histology was evident in moderate (B, C) to severe (D) disease phenotypes in Gja1Jrt/� mice at 21 weeks of age.
Structural abnormalities include evidence of early optic nerve head cupping (insets), retinal disorganization and dysplasia (D, inset), and lens
atrophy. Solute precipitation in anterior and posterior chambers was evident in all Gja1Jrt/� eyes. H&E-stained, paraffin-embedded sections;
magnification: (A–D) �20; (insets) �100.
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