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Abstract 

The synthesis and characterization of a flexidentate pyridine-substituted formazanate ligand and 

its boron difluoride adducts, formed via two different coordination modes of the title ligand, are 

described. The first adduct adopted a structure that was typical of other boron difluoride adducts 

of triarylformazanate ligands and contained a free pyridine subsituent, while the second was 

formed via chelation of nitrogen atoms from the formazanate backbone and the pyridine 

substituent. Stepwise protonation of the pydridine-functionalized adduct, which is essentially 

non-emissive, resulted in a significant increase in the fluorescence quantum yield up to a 

maximum of 18%, prompting study of this adduct as a pH sensor. The coordination chemistry of 

each adduct was explored through reactions with nickel(II) bromide [NiBr2(CH3CN)2], triflate 

[Ni(OTf)2] and 1,1,1,4,4,4-hexafluoroacetylacetonate [Ni(hfac)2(H2O)2] salts. Coordination to 

nickel(II) ions altered the physical properties of the boron difluoride formazanate adducts, 

including red-shifted absorption maxima and less negative reduction potentials. Together, these 

studies have demonstrated that the physical and electronic properties of boron difluoride adducts 

of formazanate ligands can be readily modulated through protonation and coordination 

chemistry. 

Introduction 

Boron adducts of N-donor ligands are of significant interest as a result of their use in a variety of 

applications.
1-3

 Common examples, including BODIPYs,
2
 aza-BODIPYs

4
 and BOPHYs,

5
 have 

been used in photovoltaics
6,7

 and batteries,
8
 for cell imaging

9,10
 and photodynamic therapy,

1
 and 

as electrochemiluminescence (ECL) emitters.
11,12

 Sensing with boron adducts of N-donor ligands 

is another widely explored area,
13-17

 though their use in pH sensing remains relatively 



3 

 

understudied.
18

 Accurate pH measurements are essential in environmental studies and biological 

applications, especially considering maintaining a normal intracellular pH is necessary for the 

regulation of critical processes such as ion transport and apoptosis.
19,20

 BODIPYs and aza-

BODIPYs have been studied as pH sensors, some of which are operative over wide pH ranges.
21

 

Others dually sense the presence of ions or oxygen and pH,
22,23

 emit in the near-IR
24

 and/or have 

demonstrated cell permeability and low toxicity.
25

 

The redox-activity and emissive nature of many boron adducts of N-donor ligands also makes 

them attractive targets for incorporation into complexes with transition metals. Generally, the 

combination of an emissive boron adduct with a transition metal results in decreased or quenched 

emission. However, Wang and others have demonstrated that platinum complexes (e.g., 1) of 

boron-containing ligands have high phosphorescence quantum yields.
26-29

 The complexation of 

transition metals by these boron adducts also often results in an increase in the complexity of the 

oxidation and/or reduction processes, as is the case with Ru(bpy)2 complexes of BODIPYs (e.g., 

2) and other metal complexes.
30-32

 The Hicks group has studied palladium(II) complexes of 

‘Nindigo’ ligands, which also contains a BF2 adduct (e.g., 3). They demonstrate that the 

absorption properties and reduction potential of the BF2 adduct can be tuned via the coordinated 

metal.
33

 The Hong group has also taken advantage of the ECL of the BODIPY unit to devise 

BODIPY-zinc(II) complexes (e.g., 4) which act as sensors for phosphates. In the absence of 

phosphates, the BODIPY-zinc(II) complex is ECL active. However, when phosphates bind to the 

complex, ECL is quenched.
34

 

 

 

 



4 

 

 

One way to expand the range of properties associated with boron adducts of N-donor ligands is 

by the incorporation of additional heteroatoms into ligand backbones toward the realization of 

multiple coordination modes for a single ligand (i.e., flexidentate ligand behavior). For example, 

the Svobodová group has synthesized flexidentate cyclic enaminone ligands that form diphenyl 

boron adducts 5a and 5b. They observed irreversible conversion of 5a into 5b at elevated 

temperature. Similarly, the Aprahamian group has developed a flexidentate hydrazone ligand,
35

 

which formed BF2 adducts 6a and 6b under typical conditions for the installation of ‘BF2’ 

groups.
36

 The authors used 6b, which exhibits visible light cis-trans isomerization, for a variety 

of applications including the measurement of solution viscosity
15

 and detection of acids and 

bases.
13

 

Our group is interested in the chemistry of formazanate ligands and their boron adducts. We, and 

others, have previously shown that these compounds are fluorescent and have interesting 

electronic properties, which are tunable through substituent variation.
37-41

 Their utility as 
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fluorescence cell-imaging agents,
42,43

 ECL emitters,
44

 precursors to unusual BN heterocycles,
45,46

 

aggregation-induced emission (AIE) luminogens,
47

 and building blocks in polymeric materials 

has also been explored in detail.
48,49

 Herein, we demonstrate the synthesis of a pyridine-

substituted formazanate ligand, its BF2 adducts, and the modulation of adduct properties via 

protonation and coordination chemistry. 

 

 

 

Experimental section 

General considerations 

Reactions and manipulations were carried out under a nitrogen atmosphere using standard 

Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon Laboratories, 

dried using an Innovative Technologies Inc. solvent purification system, collected under vacuum 

and stored under a nitrogen atmosphere over 4 Å molecular sieves. Reagents were purchased 

from Sigma-Aldrich or Alfa Aesar and used as received. NMR spectra were recorded on 400 

MHz (
1
H: 399.8 MHz, 

11
B: 128.3 MHz, 

19
F: 376.1 MHz) or 600 MHz (

1
H: 599.5 MHz, 

13
C: 

150.8 MHz) Varian INOVA instruments. 
1
H NMR spectra were referenced to residual CHCl3 

(7.26 ppm) and 
13

C NMR spectra were referenced to CDCl3 (77.2 ppm). 
11

B spectra were 
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referenced to BF3•OEt2 at 0 ppm and 
19

F spectra were referenced to CFCl3 at 0 ppm. Mass 

spectrometry data were recorded in positive-ion mode using a high-resolution Finnigan MAT 

8400 spectrometer using electron impact ionization or a Micromass LCT electrospray time-of-

flight mass spectrometer. UV-vis absorption spectra were recorded using a Cary 5000 

instrument. Four separate concentrations were run for each sample and molar extinction 

coefficients were determined from the slope of a plot of absorbance against concentration. FT-IR 

spectra were recorded using an attenuated total reflectance (ATR) attachment using a Bruker 

Vector 33 FT-IR spectrometer. Emission spectra were obtained using a Photon Technology 

International QM-4 SE spectrofluorometer. Excitation wavelengths were chosen based on λmax 

from the respective UV-vis absorption spectrum in the same solvent. Fluorescence quantum 

yields were estimated relative to [Ru(bpy)3][PF6]2 and corrected for wavelength dependent 

detector sensitivity (Figure S1).
50,51

 

Electrochemical methods  

Cyclic voltammetry experiments were performed with a Bioanalytical Systems Inc. (BASi) 

Epsilon potentiostat and analyzed using BASi Epsilon software. Electrochemical cells consisted 

of a three-electrode setup including a glassy carbon working electrode, platinum wire counter 

electrode and silver wire pseudo reference electrode. Experiments were run at scan rates of 100 

mV s
−1

 in degassed CH2Cl2 solutions of the analyte (~1 mM) and supporting electrolyte (0.1 M 

[nBu4N][PF6]). Cyclic voltammograms were referenced against an internal standard (~1 mM 

ferrocene) and corrected for internal cell resistance using the BASi Epsilon software. 

X-ray crystallography details  

The samples were mounted on a MiTeGen polyimide micromount with a small amount of 

Paratone N oil. X-ray measurements were made on a Bruker Kappa Axis Apex2 diffractometer 
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(8a, 8a•H
+
) or Nonius KappaCCD Apex2 diffractometer (8b, 9a, 10a, 10b) at a temperature of 

110 K. Initial indexing indicated that the sample crystal for 10a was non-merohedrally twinned. 

The twin law of the first fraction was determined to be: 

−1.000    0.000  0.000 

  0.000  −1.000  0.001 

−0.496    0.090  1.000 

 

which represents a 180.0° rotation about [001]. The twin law of the second fraction was 

determined to be:  

                 0.940   0.164     0.000 

        −0.171   1.033   −0.002 

        −0.009   0.043     1.000 

 

which represents a 9.3° rotation about [001]. The twin law was included in the refinement as an 

adjustable parameter (vide infra). 

The data collection strategy included a number of ω and φ scans which collected data over a 

range of angles, 2θ. The frame integration was performed using SAINT.
52

 The resulting raw data 

was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data 

using SADABS (8a, 8a•H
+
, 8b, 9a, 10b)

53
 or TWINABS (10a).

54
 The structure was solved by 

using a dual space methodology using the SHELXT program.
55

 All non-hydrogen atoms were 

obtained from the initial solution. Hydrogen atoms were introduced at idealized positions and 

were allowed to refine isotropically (8a, 8b), allowed to ride on the parent atom (10a, 10b), or a 

combination of the two methods were used (8a•H
+
, 9a). The twin fractions of 10a refined to 

values of 0.3337 and 0.1632. The structural model was fit to the data using full matrix least-

squares based on F
2
. The difference map of 9a and 10a showed regions of electron density that 

could not be accurately modeled accurately. Thus the PLATON SQUEEZE calculated structure 
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factors including corrections for anomalous dispersion program
56

 were used and analysis was 

continued on this data. All structures were refined using the SHELXL-2014 program from the 

SHELXT suite of crystallographic software.
55

 See Table S1 and CCDC 1555851−1555856 for 

additional crystallographic data.  

 

Formazan 7 

In air, p-tolylhydrazine hydrochloride (1.31 g, 8.26 mmol) was dissolved in EtOH (10 mL) with 

NEt3 (1.52 g, 2.10 mL, 15.0 mmol) before 2-pyridine carboxaldehyde (0.90 g, 0.80 mL, 9.4 

mmol) was added and the solution stirred for 10 min. After this time, a light yellow precipitate 

had formed and CH2Cl2 (75 mL) and deionized H2O (75 mL) were added to form a biphasic 

reaction mixture. Na2CO3 (2.98 g, 28.1 mmol) and nBu4NBr (0.27 g, 0.84 mmol) were added, 

and the mixture was cooled with stirring for 30 min in an ice bath to 0 °C. In a separate flask, p-

toluidine (0.90 g, 8.4 mmol) and concentrated HCl (2.1 mL, 25 mmol) were mixed in deionized 

H2O (15 mL) and cooled in an ice bath. A cooled solution of sodium nitrite (0.66 g, 9.6 mmol) in 

deionized H2O (5 mL) was added slowly to the amine solution over a 5 min period. This mixture 

was then stirred at 0 °C for 30 min, after which time it was added dropwise to the biphasic 

reaction mixture described above over a 10 min period. The resulting solution was stirred for 18 

h, gradually turning dark red over this time. The dark red organic fraction was then washed with 

deionized H2O (3 × 50 mL), dried over MgSO4, gravity filtered and concentrated in vacuo. The 

resulting residue was purified by flash chromatography (7:2:1 hexanes:CH2Cl2:EtOAc, silica gel) 

to afford a dark red microcrystalline solid. Yield = 0.88 g, 32%. M.p 132135 
o
C. 

1
H NMR 

(400.1 MHz, CDCl3): δ 16.07 (s, 1H, NH), 9.08 (d, 
3
JHH = 6 Hz, 1H, aryl CH), 8.36 (d, 

3
JHH = 8 

Hz, 1H, aryl CH), 8.278.25 (m, 1H, aryl CH), 7.77 (d, 
3
JHH = 8 Hz, 4H, aryl CH), 7.567.54 

(m, 1H, aryl CH), 7.21 (d, 
3
JHH = 8 Hz, 4H, aryl CH), 2.33 (s, 6H, CH3). 

13
C{

1
H} NMR (150.7 
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MHz, CDCl3): δ 148.7, 144.7, 144.2, 142.4, 140.5, 133.0, 130.5, 122.8, 122.4, 120.4, 21.6. FT-

IR(ATR): 3032 (m), 2918 (m), 2857 (w), 1599 (m), 1582 (m), 1564 (m), 1511 (m), 1465 (s), 

1428 (m), 1349 (m), 1263 (s), 1235 (s), 1105 (s), 808 (s), 788 (m) cm
–1

. UV-Vis (CH2Cl2): λmax 

474 nm (ε = 19,100 M
1 

cm
1

). Mass Spec. (EI, +ve mode): exact mass calculated for 

[C20H19N5]
+
: 329.1640; exact mass found: 329.1639; difference: −0.3 ppm. 

Adducts 8a and 8b 

Formazan 7 (1.92 g, 5.83 mmol) was dissolved in dry toluene (200 mL). NEt3 (1.77 g, 2.44 mL, 

17.5 mmol) was then added slowly and the solution was stirred for 10 min before BF3•OEt2 (4.11 

g, 3.57 mL, 29.0 mmol) was added and the solution was heated with stirring at 80
 
ºC for 18 h. 

The solution gradually turned from dark red to dark purple during this time. After cooling to 22 

ºC, deionized H2O (10 mL) was added to quench any excess reactive boron-containing 

compounds. The purple toluene solution was then washed with deionized H2O (3  50 mL), 

dried over MgSO4, gravity filtered and concentrated in vacuo. The resulting residue was purified 

by flash chromatography (CH2Cl2, silica gel) to afford 8a (Rf: = 0.35) as a dark red 

microcrystalline solid and 8b (Rf: = 0.88) as an orange microcrystalline solid after removal of the 

solvent in vacuo. 

8a 

Yield = 0.69 g, 31%. M.p 162164 
o
C. 

1
H NMR (400.1 MHz, CDCl3): δ 8.778.76 (m, 1H, aryl 

CH), 8.158.14 (m, 1H, aryl CH), 7.837.80 (m, 5H, aryl CH), 7.357.33 (m, 1H, aryl CH), 7.26 

(d, 
3
JHH = 8 Hz, 4H, aryl CH), 2.41 (s, 6H, CH3). 

13
C{

1
H} NMR (150.7 MHz, CDCl3): δ 152.0, 

150.0, 141.7, 140.5, 136.8, 129.8, 129.7, 123.6, 121.0, 110.1, 21.4. 
11

B NMR (128.3 MHz, 

CDCl3): δ –0.6 (t, 
1
JBF = 28 Hz). 

19
F NMR (376.1 MHz, CDCl3): δ –144.8 (q, 

1
JFB = 28 Hz). FT-
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IR(ATR): 3014 (m), 2916 (m), 1604 (m), 1584 (m), 1379 (m), 1352 (m), 1316 (s), 1299 (s), 1178 

(m), 1109 (s), 1021 (s), 965 (s), 818 (s), 783 (m) cm
–1

. UV-Vis (CH2Cl2): λmax 507 nm (ε = 

26,200 M
1 

cm
1

). Mass Spec. (EI, +ve mode): exact mass calculated for [C20H18BF2N5]
+
: 

377.1623; exact mass found: 377.1633; difference: +2.6 ppm. Anal. Calcd. (%) for 

C20H18BF2N5: C, 63.68; H, 4.81; N, 18.57. Found: C, 63.57; H, 4.84; N, 18.20. 

8b 

Yield = 0.84 g, 38%. M.p 221223 
o
C. 

1
H NMR (400.1 MHz, CDCl3): δ 8.75−8.69 (m,

 
2H, aryl 

CH), 8.198.16 (m, 1H, aryl CH), 7.877.86 (m, 2H, aryl CH), 7.687.67 (m, 2H, aryl CH), 

7.61−7.59 (m, 1H, aryl CH), 7.31 (d, 
3
JHH = 8 Hz, 2H, aryl CH), 7.20 (d, 

3
JHH = 8 Hz, 2H, aryl 

CH), 2.44 (s, 3H, CH3), 2.37 (s, 3H, CH3). 
13

C{
1
H} NMR (150.7 MHz, CDCl3): δ 151.4, 143.3, 

141.7, 141.5, 141.3, 140.4, 139.4, 135.3, 129.8, 129.5, 123.3, 123.0, 121.8, 120.9, 21.6, 21.0.  

11
B NMR (128.3 MHz, CDCl3): δ 0.4 (t, 

1
JBF = 32 Hz). 

19
F NMR (376.1 MHz, CDCl3): δ –137.9 

(q, 
1
JFB = 32 Hz). FT-IR(ATR): 3008 (w), 2914 (w), 1619 (m), 1567 (m), 1476 (m), 1412 (m), 

1317 (m), 1277 (m), 1125 (m), 1080 (s), 1028 (s), 972 (m), 820 (m), 774 (s) cm
–1

. UV-Vis 

(CH2Cl2): λmax 331 nm (ε = 13,700 M
1 

cm
1

), 457 nm (ε = 26,600 M
1 

cm
1

). Mass Spec. (EI, 

+ve mode): exact mass calculated for [C20H18BF2N5]
+
: 377.1623; exact mass found: 377.1628; 

difference: +1.3 ppm. Anal. Calcd. (%) for C20H18BF2N5: C, 63.68; H, 4.81; N, 18.57. Found: C, 

63.36; H, 4.80; N, 18.20. 

8a•H
+ 

8a (0.050 g, 0.13 mmol) was dissolved in EtOH (10 mL) and p-TsOH (1.14 g, 5.99 mmol) in 

EtOH (10 mL) was added. The solution was stirred for 30 min and then concentrated in vacuo. 

The resulting residue was dissolved in CH2Cl2 (25 mL), washed with deionized H2O (25 mL), 
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dried over MgSO4, gravity filtered and concentrated in vacuo to yield a dark red microcrystalline 

solid. Yield = 0.060 g, 84%. M.p 121123 
o
C. 

1
H NMR (400.1 MHz, CDCl3): δ 9.47−9.46 (m,

 

1H, aryl CH), 8.45−8.41 (m, 2H, aryl CH), 7.99 (d, 
3
JHH = 8 Hz, 4H, aryl CH), 

 
7.88−7.85 (m, 

1H, aryl CH), 7.74 (d, 
3
JHH = 7 Hz, 2H, aryl CH), 7.18 (d, 

3
JHH = 8 Hz, 4H, aryl CH), 7.10 (d, 

3
JHH = 7 Hz, 2H, aryl CH), 2.38 (s, 6H, CH3), 2.33 (s, 3H, CH3). 

13
C{

1
H} NMR (150.7 MHz, 

CDCl3): δ 146.3, 145.8, 143.5, 143.1, 142.6, 141.6, 141.3, 140.4, 130.3, 128.9, 126.3, 125.6, 

123.7, 122.9, 21.6, 21.4.  
11

B NMR (128.3 MHz, CDCl3): δ −0.6 (t, 
1
JBF = 30 Hz). 

19
F NMR 

(376.1 MHz, CDCl3): δ –136.1 (q, 
1
JFB = 30 Hz). FT-IR(ATR): 3357 (br, m), 3102 (m), 2919 

(m), 2841 (m), 1599 (s), 1495 (m), 1375 (m), 1334 (s), 1223 (m), 1169 (s), 1116 (s), 1000 (m), 

967 (s), 811 (s) cm
–1

. UV-Vis (CH2Cl2): λmax 533 nm (ε = 23,000 M
1 

cm
1

). Mass Spec. (ESI, 

+ve mode): exact mass calculated for [C20H19BF2N5]
+
: 378.1701; exact mass found: 378.1708; 

difference: +1.8 ppm. 

9a
 

In a N2 filled glovebox, adduct 8a (0.050 g, 0.13 mmol) was dissolved in dry and degassed 

toluene (10 mL). [Ni(OTf)2] (0.024 g, 0.066 mmol) was suspended in dry and degassed toluene 

(5 mL) and added to the solution of 8a. This mixture was heated at 60 °C with stirring for 18 h 

before it was removed from the glovebox and opened to ambient atmosphere. The mixture was 

then concentrated in vacuo to yield a dark red solid. This product was recrystallized by slow 

diffusion of pentane into a concentrated CH2Cl2 solution to yield complex 9a as red crystals. 

Yield = 0.068 g, 89%. M.p 249251 
o
C. FT-IR(ATR): 3294 (br, s), 3035 (m), 2921 (m), 2857 

(m), 1605 (m), 1588 (m), 1355 (m), 1316 (s), 1296 (s), 1222 (m), 1178 (s), 1128 (m), 1023 (m), 
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970 (m), 819 (m) cm
–1

. UV-Vis (CH2Cl2): λmax 509 nm (ε = 32,300 M
1 

cm
1

). Anal. Calcd. (%) 

for C42H40B2F10N10O8S2Ni: C, 43.97; H, 3.51; N, 12.21. Found: C, 43.43; H, 3.77; N, 11.85. 

10a
 

Adduct 8a (0.050 g, 0.13 mmol) was dissolved in CH2Cl2 (25 mL) and [Ni(hfac)2(H2O)2] (0.124 

g, 0.130 mmol) was added. The mixture was stirred overnight before it was filtered and the 

filtrate concentrated in vacuo. The resulting red/purple solid was recrystallized by slow diffusion 

of pentane into a concentrated CH2Cl2 solution of the reaction product to yield complex 10a as 

red/purple crystals. Yield = 0.081 g, 72%. M.p 230232 
o
C. FT-IR(ATR): 3346 (br, s), 2984 (m), 

2871 (m), 1641 (m), 1478 (m), 1255 (m), 1200 (m), 1127 (s), 1055 (s), 894 (m), 818 (w), 790 (s), 

750 (s) cm
–1

. UV-Vis (CH2Cl2): λmax 535 nm (ε = 23,700 M
1 

cm
1

). Mass Spec. (EI, +ve mode): 

exact mass calculated for [C30H20BF14N5O4Ni]
+
: 849.0738; exact mass found: 849.0778; 

difference: +4.7 ppm. Anal. Calcd. (%) for C30H20BF14N5O4Ni: C, 42.39; H, 2.37; N, 8.24. 

Found: C, 42.50; H, 2.53; N, 7.94. 

10b
 

Adduct 8b (0.050 g, 0.13 mmol) was dissolved in CH2Cl2 (25 mL) and [Ni(hfac)2(H2O)2] (0.124 

g, 0.130 mmol) was added. The mixture was stirred overnight before it was filtered and the 

filtrate concentrated in vacuo. The resulting red solid was recrystallized by slow diffusion of 

pentane into a concentrated CH2Cl2 solution of the reaction product to yield complex 10b as 

red/orange crystals. Yield = 0.074 g, 66%. M.p 241243 
o
C. FT-IR(ATR): 3360 (br, s), 3141 

(w), 2925 (m), 2870 (m), 1640 (m), 1479 (s), 1415 (w), 1341 (m), 1258 (s), 1196 (s), 1133 (s), 

1032 (s), 790 (m), 779 (m), 672 (s) cm
–1

. UV-Vis (CH2Cl2): λmax 383 nm (ε = 21,400 M
1 

cm
1

), 
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526 nm (ε = 24,100 M
1 

cm
1

). Mass Spec. (EI, +ve mode): exact mass calculated for 

[C30H20BF14N5O4Ni]
+
: 849.0738; exact mass found: 849.0718; difference: −2.4 ppm. Anal. 

Calcd. (%) for C30H20BF14N5O4Ni: C, 42.39; H, 2.37; N, 8.24. Found: C, 42.36; H, 2.59; N, 7.85. 

Results and Discussion 

Formazan 7 was synthesized by adapting a published procedure (Scheme S1, Figure S2, S3).
57

 

The subsequent reaction with BF3•OEt2 and NEt3 (Scheme 1) afforded two products which could 

be separated by column chromatography (CH2Cl2, silica gel). Adduct 8a (Rf = 0.35, 31% yield) 

resembled other BF2 formazanate adducts with the aryl-substituted nitrogens coordinated to the 

‘BF2’ fragment.
37

 Adduct 8b (Rf = 0.88, 38% yield) contained a ‘BF2’ fragment chelated by one 

of the aryl-substituted nitrogen atoms of the formazanate backbone as well as the nitrogen of the 

pyridine substituent. Several coordination modes between boron and formazanate ligands have 

been reported,
45,46

 though the connectivity present in 8b has not been observed previously. When 

stirred in the presence of Lewis bases such as 4-dimethylaminopyridine, interconversion from 8a 

to 8b and vice versa was not observed. Adduct 8b contains a potentially photoactive azotoluene 

moiety. However, irradiation with 365‒370 nm or 525‒530 nm light and temperature variation 

did not result in observable E→Z isomerization. This behavior was in stark contrast to that 

observed for arylazoindazoles, derived from related formazans, which readily isomerize under 

similar conditions.
58

 

 

Scheme 1. Synthesis of BF2 adducts 8a and 8b. 
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The isolated adducts were characterized by 
1
H, 

11
B, 

13
C{

1
H} and 

19
F NMR, IR and UV-vis 

spectroscopy, elemental analysis and mass spectrometry. In both 8a and 8b, 1:2:1 triplets and 

1:1:1:1 quartets were observed in the respective 
11

B and 
19

F NMR spectra, confirming the 

presence of the BF2 moiety (Figure S4‒S7). However, the chemical shifts of the signals were 

quite different (
11

B: 8a, −0.6 ppm; 8b, 0.4 ppm. 
19

F: 8a, −144.8 ppm; 8b, −137.9 ppm). Both 

adducts were also characterized by single crystal X-ray crystallography (Figure 1). The bond 

lengths and angles observed in 8a are structurally similar to other BF2 adducts of 

triarylformazanate ligands,
37

 including delocalization of electron density over the entire N-N=C-

N=N backbone and a slight displacement (by 0.565 Å) of the boron atom from the N4 plane. In 

8b, the electron density in the π system of the chelate ring is also delocalized, with the N-N, C-C 

and C-N bond lengths between the expected single and double bond lengths for the respective 

atoms involved.
59

 Interestingly, electronic delocalization does not extend into the azotoluene 

portion of the molecule [C1-N4 1.408(2) Å, N4-N3 1.239(2) Å]. The boron atom is displaced in 

the solid-state structure of 8b from the N1, N2, N5, C16 plane by 0.394 Å. 

 
Figure 1. Solid-state structures of 8a and 8b. Anisotropic displacement ellipsoids are shown at 

50% probability and hydrogen atoms have been removed for clarity. 

 

Adducts 8a and 8b are strongly absorbing over much of the visible region in CH2Cl2 (Figure 2, 

Table 2). Adduct 8a has a wavelength of maximum absorption (λmax) of 507 nm, typical of BF2 
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adducts of triarylformazanate ligands.
37

 Adduct 8b exhibits two low-energy maxima at 404 and 

457 nm, which are of similar intensity relative to the maxima observed for 8a. The absorption 

spectra of 8a and 8b in toluene and THF are unchanged relative to those collected in CH2Cl2, 

indicating that the absorption maxima likely arise due to π→π* transitions rather than charge 

transfer. Both 8a and 8b are essentially non-emissive, with fluorescence quantum yields (ΦF) 

less than 1%. 

 
Figure 2. UV-vis absorption spectra of 8a and 8b in CH2Cl2. 

Table 2. Solution properties of 8a, 8b, 9a, 10a and 10b in CH2Cl2. 

 λmax
 
(nm) ε (M

−1
 cm

−1
) Ered1

 
(V)

a 
Ered2 (V)

a 
Ered3 (V)

a 

8a 517 26,200 −0.99 −2.00
b 

− 

8b 467, 331  26,600, 13,700 −1.53 −2.09
b 

− 

9a 509 32,300 −0.31 −0.99 −1.46 

10a 539 26,700 −0.64 −1.66
b 

− 

10b 527, 383 24,100, 21,400 −0.92 −1.18 − 
a
Cyclic voltammetry experiments were conducted in CH2Cl2 containing 1 mM analyte and 0.1 M 

[nBu4N][PF6] as supporting electrolyte at a scan rate of 100 mV s
−1

. All voltammograms were 

referenced internally against the ferrocene/ferrocenium redox couple. 
b
Irreversible peak, 

potential at maximum cathodic current reported. 

 

Adducts 8a and 8b are electrochemically active (Figure 3, Table 2). Both adducts exhibit a 

reversible one-electron reduction wave (8a: Ered1 = −0.99 V; 8b: Ered1 = −1.53 V) and a second 

irreversible reduction wave (8a: Epc = −2.00 V; 8b: Epc = −2.09 V). The separation of these 
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waves was much larger for 8a (ΔE = 1.01 V) than 8b (ΔE = 0.56 V). The electrochemical 

behavior of 8a is consistent with that of other triarylformazanate BF2 adducts,
37

 and the 

electrochemical behavior of 8b is comparable to related azo-benzene species.
60

 

 

 
Figure 3. Cyclic voltammograms of 8a and 8b recorded at a scan rate of 100 mV s

−1
 in 1 mM 

CH2Cl2 solutions containing 0.1 M [nBu4N][PF6] as supporting electrolyte. 

 

Protonation Chemistry 

We have long postulated that the emission intensity observed for BF2 adducts of 

triarylformazanate ligands is attenuated by non-radiative relaxation pathways associated with 

rotation and/or vibration of the 3-aryl substituents.
39

 We therefore chose to explore protonation 

chemistry using p-toluenesulfonic acid (p-TsOH) as a method for limiting vibration/rotation in 

8a. A change in the colour of solutions of 8a and shifts in the corresponding 
1
H NMR spectra 

were observed under acidic conditions. The fluorescence intensity also increased significantly 

upon acidification of solutions of 8a. The pH dependence of fluorescence was therefore studied, 

revealing a linear increase in fluorescence intensity with decreasing pH (Figure 4). 
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Figure 4. (a) Emission spectra of 8a at various pHs in 9:1 H2O:THF. (b) Change in ΦF of 8a as a 

function of pH. The black dashed line is a line of best fit. Error bars were obtained from 3 

independent measurements. 

 

At pH > 4, ΦF remained constant at ~1%. However, at lower pH, ΦF increased to a maximum 

value of 18%. This represents the highest reported ΦF to date for a BF2 adduct of a 

triarylformazanate ligand, and corroborates our previous hypothesis surrounding the role of the 

3- aryl substituent as a fluorescence attenuator. We also observed a slight red-shift in the 

wavelength of maximum emission (λem) as the fluorescence intensity increased, from 626 nm at 

pH 4 to 633 nm at pH 0. This is consistent with a change in the wavelength of maximum 

absorption upon decrease of pH in the absorption spectra from 507 nm (pH 4) to 540 nm (pH 0) 

(Figure S8). After isolation of the protonated adduct, the 1:1:1:1 quartet and 1:2:1 triplet in the 

19
F and 

11
B NMR spectra were retained, and 

1
H and 

13
C NMR shifts were similar (Figures S9, 
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S10), implying the connectivity within the structure of the resulting adduct (8a•H
+
) had not 

changed. Upon protonation of the pyridine moiety at low pH, inter- or intramolecular hydrogen-

bonding with nearby formazanate molecules, counter ions, and solvent molecules is likely. This 

potentially restricts vibration and rotation of the pyridine substituent, minimizing non-radiative 

relaxation pathways. The presence of hydrogen-bonding was confirmed in the solid state through 

single crystal X-ray crystallography (Figure 5). A hydrogen atom attached to the pyridyl nitrogen 

was observed. Many hydrogen bonds were also observed, including from the pyridine N-H to a 

p-toluenesulfonate counter ion [N5-O1: 2.815(10) Å]. All bond lengths and angles in the solid-

state structures of 8a and 8a•H
+
 are similar (Table 3). In the case of 8b, no change was observed 

in the 
1
H NMR and UV-vis absorption spectra, even upon exposure to concentrated HCl and p-

TsOH, indicating that protonation did not occur. 

 

 

Figure 5. Solid-state structure of 8a•H
+
. Anisotropic displacement ellipsoids are shown at 50% 

probability and hydrogen atoms aside from H5, as well as a co-crystallized p-TsOH and H2O 

molecules have been removed for clarity. The dashed line indicates a hydrogen bond. 

 

Nickel(II) Coordination Chemistry 

Both 8a and 8b have the potential to act as bidentate N-donor ligands. We therefore attempted to 

study their coordination chemistry as a method for modulating their physical and electronic 
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properties. This reactivity was probed using several nickel(II) sources, as we intended to probe 

the effect of metal coordination on ligand properties in the absence of metal-based redox 

reactivity. Initial attempts employed [NiBr2(CH3CN)2] as a nickel(II) source. The resulting UV-

vis absorption and NMR spectra collected for the reaction mixture were unchanged compared to 

that of adducts 8a and 8b, and the presence of two distinct solids upon removal of the solvent in 

each case indicated that NiBr2 had not bound the ligands employed. Next, [Ni(OTf)2] was 

employed. In this case, a reaction was observed between [Ni(OTf)2] and 8a, resulting in the 

formation of complex 9a. Single-crystal X-ray diffraction studies revealed a 2:1 ratio between 8a 

and nickel(II) (Figure 6), with two H2O molecules, oriented cis to one another, completing the 

octahedral coordination sphere of nickel(II). Attempts to alter the ratio of 8a to nickel(II) to 1:1 

or 3:1, as well as attempts to isolate a nickel(II) complex via reaction with [Ni(OTf)2] and 8b 

were unsuccessful. Finally, reactions with [Ni(hfac)2(H2O)2] (hfac = 1,1,1,6,6,6-

hexafluoroacetylacetonate), were attempted. BF2 adducts 8a and 8b coordinated to the Ni(hfac)2 

fragment and paramagnetic octahedral complexes 10a and 10b containing one BF2 adduct and 

two hfac ligands were isolated in both cases (Figure 6). The N3-N4 bond lengthened upon 

coordination to nickel(II) from 1.3135(17) Å in 8a to 1.326(3) in complex 9a, although there was 

no statistical difference between the N3-N4 bond lengths in 8a and 10a [1.328(10) Å]. Similarly, 

the N3-N4 bond lengthened from 1.239(2) Å in 8b to 1.336(6) Å in 10b (Table 3). The N-Ni-N 

angle is smaller in 10b [75.5(2)°] than in 9a [average of 77.90(8)°] and 10a [77.6(3)°], though all 

are less than the ideal 90° angle expected for octahedral nickel(II). The average N-Ni bond 

lengths for 9a [2.115(2) Å], 10a [2.103(8) Å], and 10b [2.124(5) Å] were not statistically 

different. The smaller angle and longer bonds observed in 10b may hint to why coordination is 
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less favorable with this ligand, and unsuccessful when [NiBr2(CH3CN)2] and [Ni(OTf)2] were 

employed as nickel(II) sources. 

 

Figure 6. Solid-state structures of 9a, 10a, and 10b. Anisotropic displacement ellipsoids are 

shown at 50% probability and hydrogen atoms as well as the triflate counterions (9a) and 

cocrystallized solvent (9a, 10a) have been removed for clarity. The second BF2 adduct of 9a and 

the hfac ligands of 10a and 10b have been made wireframe for clarity. 

 

Table 3. Selected bond lengths (Å) and angles (°) for 8a, 8a•H
+
, 8b, 9a, 10a, and 10b. 

 
8a 8a•H

+
 8b 

9a 
10a 10b 

 Ligand 1
 

Ligand 2
 

N1-N2 1.3160(17) 1.309(6) 1.337(2) 1.306(3) 1.304(3) 1.309(10) 1.269(7) 
N3-N4 1.3135(17) 1.307(6) 1.239(2) 1.325(3) 1.327(3) 1.328(10) 1.336(6) 
C1-N2 1.337(2) 1.326(7) 1.312(2) 1.345(3) 1.342(3) 1.330(11) 1.387(7) 
C1-N4 1.340(2) 1.346(7) 1.408(2) 1.340(3) 1.342(3) 1.344(11) 1.324(8) 
C1-C16 1.487(2) 1.473(8) 1.456(3) 1.473(3) 1.473(3) 1.481(13) 1.432(9) 
C16-N5 1.363(2) 1.352(7) 1.354(2) 1.348(3) 1.345(3) 1.331(12) 1.367(7) 
N4-Ni1 − − − 2.136(2) 2.176(2) 2.171(8) 2.157(5) 
N5-Ni1 − − − 2.070(2) 2.079(2) 2.035(8) − 
N1-Ni1 − − − − − − 2.091(5) 
N4-Ni1-N5 − − − 78.06(8) 77.74(8) 77.6(3) − 
N1-Ni1-N4 − − − − − − 75.5(2) 

 

 

All three nickel(II) complexes absorb strongly between 450 and 600 nm (Figure 7, Table 2). The 

molar absorptivity of 9a is significantly higher than that of 10a or 10b, due to the presence of 

two BF2 adducts in the complex. The λmax of 9a is essentially unchanged from that of the parent 

ligand 8a (509 and 517 nm, respectively). In contrast, the λmax values are shifted significantly in 

the complexes which are coordinated to Ni(hfac)2 (10a: Δλmax = –22 nm; 10b: Δλmax = 50 nm). 

In complex 10b, a second intense absorption at a wavelength of 389 nm was also observed. 

9a: [Ni(8a)2(OH2)2]2+ 10a: [Ni(8a)(hfac)2] 10b: [Ni(8b)(hfac)2]
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Despite the rigidification of the pyridine substituent by nickel(II) coordination, each of the 

nickel(II) complexes were non-emissive. 

 

 

 
Figure 7. UV-vis absorption spectra of 9a, 10a, and 10b in CH2Cl2. 

Nickel(II) complexes 9a, 10a and 10b are electrochemically active (Figure 8, Table 2). Complex 

9a was reversibly reduced by two electrons at −0.31 V, and reversibly reduced by one electron at 

−0.99 V and −1.46 V (Scheme 2). The two-electron reduction corresponds to each of the 

nickel(II)-bound BF2 adducts being converted to ligand-centered radical anions. This reduction 

takes place at a significantly lower potential than the free ligand (by ca. 0.68 V). The two 

additional one-electron reductions observed correspond to the stepwise reduction of the BF2 

ligands to their ligand-centered dianion forms. The ligand-centered reduction behavior is 

consistent with that of other BF2 formazanate adducts
37,41

 and the non-coincident reduction 

waves imply that the electron-rich nature of the formally trianionic complex resulting from the 

reduction at −0.99 V has a significant influence over the subsequent reduction step. Both events 

occur at less negative potentials than the corresponding events observed for 8a. These findings 

confirm that the electron-withdrawing nickel(II) makes the BF2 adduct more electron poor, and 

thus easier to reduce. 
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Scheme 2. Electrochemical reduction of nickel(II) complex 9a. The charge on ligand 8a has 

been specified for clarity. 

 

Similarly, two ligand-centered reductions were observed at potentials of −0.64 V and −1.58 V in 

the cyclic voltammogram collected for 10a. Again, both of these reduction processes occur more 

easily than those observed for 8a. However, 10a is not as easy to reduce as 9a (8a: Ered1 = −0.99 

V; 9a: Ered1 = −0.31 V; 10a: Ered1 = −0.64 V). Two reduction events were also present in the CV 

of 10b, albeit at much less negative potentials. 

Similar to the nickel(II) complexes of BF2 adduct 8a, each process was observed at less negative 

potentials (shifted by 0.61 and 0.91 V respectively) compared to the free ligand. As a result, the 

second reduction was reversible in metal complex 10b, whereas it was irreversible in 8b. 

Scanning to further negative potentials in 10a and 10b, an irreversible reduction is observed, 

which can be attributed to reduction of the hfac ligands (Figure S11).
61

 

 
 

Figure 8. Cyclic voltammograms of 9a, 10a and 10b recorded at a scan rate of 100 mV s
−1

 in 1 

mM CH2Cl2 solutions containing 0.1 M [nBu4N][PF6] as supporting electrolyte. 
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Conclusions 

In conclusion, we have synthesized a pyridine-substituted triarylformazanate ligand that can 

adopt two different coordination modes upon reaction with sources of ‘BF2’. The first adduct, 8a, 

coordinated to the BF2 through the aryl-substituted nitrogens of the formazanate backbone, and 

contained a pyridine substituent. The second adduct, 8b, coordinated through one of the 

formazanate nitrogens, as well as through the pyridine nitrogen, and beared an azotoluene 

substituent. The free pyridine moiety in 8a could be protonated, and upon protonation, the ΦF 

increased substantially to a maximum of 18%. The use of complex 8a as a fluorescent pH sensor 

was also demonstrated, with linear fluorescence responses observed below pH 4. Finally, both 

BF2 adducts were shown to act as redox-active ligands when coordinated to nickel(II) ions. In the 

case of Ni(hfac)2 complexes 10a and 10b, the absorption profiles were red-shifted significantly 

from adducts 8a and 8b and ligand-centered reduction events occurred at much less negative 

potentials. This work, for the first time, has demonstrated that the properties of BF2 formazanate 

adducts can be modulated using protonation or coordination chemistry, paving the way for the 

rational design of future generations of functional materials derived from adducts of formazanate 

ligands. 
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The synthesis and characterization of a flexidentate pyridine-substituted formazanate ligand and 

its boron difluoride adducts, formed via two different coordination modes of the title ligand, are 

described. Protonation of the pyridine substituent and coordination to nickel(II) ions altered the 

physical and electronic properties of the BF2 formazanate adducts, demonstrating that their 

properties can be readily modulated by exploiting the chemistry of the pyridine substituent. 
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