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Abstract 

Lignin, a major component of biomass, is an attractive alternative to hindered phenol-based 

antioxidants for polymers due to its renewable nature and naturally occurring hindered 

phenolic structure. In this study, for the first time, lignin de-polymerization was explored as a 

promising approach to improve the reactivity of the lignin-based antioxidants for polymers 

(polyethylene, PE and polypropylene, PP). A proprietary hydrolytic de-polymerization 

process was utilized to increase the antioxidant activity of two types of technical lignin: kraft 

lignin, KL (a by-product from the pulp and paper industry) and hydrolysis lignin, HL (a by-

product from the pre-treatment processes in cellulosic ethanol plants). The de-polymerized 

lignins had up to five times more antioxidant activity compared to the crude lignins, a result 

of their higher phenolic content, improved hydrophobicity, and lower molecular weight. The 

results also revealed that the addition of 2.5 wt% DKL or 5 wt% DHL attained the same level 

of antioxidant activity as the addition of 0.5 wt% commercial antioxidant. Owing to the 

lower price of DKL or DHL compared with that of the commercial antioxidant or the neat 

PE, the addition of the larger amount of DKL and DHL did not increase the cost of the PE 

blends. Instead, the material cost of a PE blend that contains a larger amount of DKL (2.5 

wt%) or DHL (5 wt%) is actually lower than that of a PE blend with a smaller amount of 

commercial antioxidant (0.5 wt%). 

Keywords 

Bio-based antioxidant; Kraft lignin; Hydrolysis lignin; De-polymerization; Polyethylene; 

Polypropylene. 
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Chapter 1  

1 Introduction  

1.1 Background 

The growing interest in researching lignin as a potential source for biofuels and bio-

chemicals is driven by multiple factors: 1) the abundance of lignin, 2) absence of 

competition between food and fuel, and 3) recent legislations and mandates promoting a 

green economy. Lignin, one of the primary constituents of plant cell walls, constitutes 

about 10-40 wt% of plant biomass [1,2]. The pulp and paper mills are the largest 

commercial source of lignin in the form of kraft lignin in “black liquor”. As of 2013, the 

global production of kraft lignin was approximately 50 million tons per annum, most of 

which is used as a low-value fuel, with less than 5% of it being utilized as chemicals or 

other products [3]. According to the estimate by Ragauskas et al., the second generation 

of biorefineries will produce additional 62 million tons of lignin annually, which is a 60% 

surplus after meeting the refineries’ internal energy requirement [4]. 

The depletion of fossil fuels and increasing concern about climate changes have 

motivated the governments to initiate mandates towards having a carbon neutral green 

economy.  The U.S. Department of Agriculture and U.S. Department of Energy have 

aimed to derive 20% of transportation fuels and 25% of U.S. chemical commodities from 

biomass by 2030 [5]. Similarly, in Europe, the Dutch Ministry of Economic Affairs have 

set ambitious goals to substitute 30% of transportation fuels by biofuel and 20-45% of 

fossil-based raw materials by biomass-based chemicals by 2040 [5]. As a result, there is 

an up-and-coming need to develop value-added bio-products from lignin.  

Lignin is the largest renewable resource for aromatic compounds [4]. It is an amorphous 

polymer of three main phenyl propanoid units, i.e., p-hydroxyphenyl (H), guaiacyl (G) 

and syringyl (S) units, derived from p-coumaryl, coniferyl and sinapyl alcohols [6,7]. The 

bonding pattern in lignin is dominated by ether linkages (45-50% -O-4 and 6-8% α-O-
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4); the rest being -5, -, 5-5 and such linkages [6,7]. Due to its high aliphatic hydroxyl, 

aromatic hydroxyl and carboxyl content, lignin has been researched as an alternative to 

commercial reactants in the production of polyurethane foam, phenolic adhesive, epoxy 

resins and adipic acid [8–11].  

Antioxidants being exploited are the additives for retarding oxidation or bio- or photo-

degradation of polymer blends. They are commonly synthetic compounds in hindered 

phenolic structure. Exploiting renewable antioxidant from natural sources have been 

extensively investigated. For instance, renewable and sustainable lignocellulosic 

materials, such as agricultural residues, forestry, and industrial wastes, represent an 

attractive source of antioxidants compounds owing to their content of lignin in 

polyphenolic structure. A number of studies have suggested that lignin could be a 

promising resource for bio-based antioxidants due to its structural similarity with the 

commercial hindered phenolic antioxidants widely used in polymer stabilization [12–15].  

Lignin as a bio-antioxidant has attracted lots of attention for providing resistance against 

thermo-oxidative degradation and photodegradation in polyolefins. Many past studies  

[16–27] researched on the addition of lignin in polyolefins, where the lignins used were 

mainly extracted from plants using organic solvents or steam explosion, or might have 

been modified using esterification or grafting techniques to improve their compatibility 

with the polymer matrix. Whereas, esterification decreases the phenolic content of lignin 

and grafting adds additional cost to the process. There is a scarcity of literature 

addressing the effect of adding technical lignin (i.e., kraft lignin from pulp and paper 

mills and hydrolysis lignin from biorefineries) in polyolefins. Moreover, since the phenyl 

propanoid units in lignin are connected by ether linkages, the breakdown of these ether 

linkages could increase the phenol content, thus potentially improving the antioxidant 

property. 

Past researches, comparing the antioxidant activity of lignin from various sources, 

indicated that the antioxidant activity of the lignin increased with decreasing molecular 

weight and increasing phenol content [28,29]. To the best of our knowledge, effects of 
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depolymerized technical lignin as a thermo-oxidative stabilizer in polyolefins, are yet to 

be explored. Hence, this thesis aims at researching the prospect of depolymerized lignin 

as an antioxidant in polyolefins.  

1.2 Thesis Objectives 

The overall objective of this thesis project is to research the prospect of depolymerized 

lignin as an antioxidant in polyolefins. Specifically, this thesis work aimed to:  

i. Investigate the effects of 5 wt% addition of commercial kraft lignin (KL) and 

hydrolytic lignin (HL) on thermo-oxidative stability of polyolefins 

(polypropylene and polyethylene); 

ii. Explore the effects of 5 wt% addition of hydrolytically de-polymerized lignins 

on thermo-oxidative stability of polyolefins (polypropylene and 

polyethylene); 

iii. Examine the impact of varying contents of de-polymerized kraft lignin (DKL) 

and de-polymerized hydrolysis lignin (DHL) in polyethylene on its thermo-

oxidative stability; 

1.3 Thesis Structure 

This thesis consists of five chapters organized in the following manner:  

Chapter 1 briefly describes the motivation behind academic and industrial interest in 

researching lignin as a potential source of bio-based chemical and the scientific 

background behind how lignin performs as an antioxidant. Finally, the research 

objectives and thesis structure are outlined. 

Chapter 2 provides a detailed literature review related to polymer degradation and lignin. 

In this chapter, the importance of antioxidant, the mechanism of polymer degradation and 

stabilization, how lignin fits into the growing market for the antioxidant and bioeconomy, 

and previous studies on lignin as a bio-based chemical, especially in polyolefins are 

discussed.  
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Chapter 3 compares the effects of hydrolytic depolymerization of both KL and HL on the 

thermo-oxidative performance of polyethylene and polypropylene with 5 wt% addition of 

KL, DKL, HL and DHL. The thermo-oxidative stabilization of the resulted polymer 

blends was evaluated in terms of oxidation induction Time, DSC activation energy and 

TGA thermal degradation behavior.  

Chapter 4 analyzes the effect of different level of DKL and DHL in Polyethylene to find 

what cost-effective optimum percent of DKL and DHL can give the same level of 

performance of 0.5 wt% of commercial antioxidant.  

Chapter 5 presents the overall conclusions of the thesis work and recommendations for 

future studies. 

1.4 References 

[1] P. Harmsen, W. Huijgen, L. López, R. Bakker, Literature Review of Physical and 

Chemical Pretreatment Processes for Lignocellulosic Biomass, Food Biobased Res. 

(2010) 1–49. http://www.ecn.nl/docs/library/report/2010/e10013.pdf. 
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a review q, Bioresour. Technol. 83 (2002) 1–11. doi:10.1016/S0960-8524(01)00212-7. 
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doi:10.1016/j.progpolymsci.2013.11.004. 

[4] A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, 
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Chapter 2  

2 Literature Review 

2.1 Polymers and polymer degradation 

Polymers are a broad class of materials that are composed of repeating units of smaller 

molecules called monomers. Polymers are useful in many applications because of their 

strength and durability. They can be natural in origin, such as cellulose and lignin, while 

other polymers (e.g. polyethylene and polypropylene) are termed synthetic polymers, and 

are synthesized with petroleum-based monomers [1,2].  

One of the challenges of working with polymers is their degradability when used in high-

temperature conditions or in outdoor applications, which can result in the breaking of 

polymer chains, the production of free radicals and the subsequent reduction in molecular 

weight, thereby deteriorating mechanical properties and rendering materials useless for 

their end use purposes. Therefore, almost all synthetic polymers require stabilization 

against adverse environmental effects. It is necessary to find methods to reduce or 

prevent damage induced by environmental components such as heat, light, and oxygen. 

The stabilization of polymers may be achieved in many ways, including addition of some 

additives such as hindered phenolic antioxidants, phosphite antioxidants, thiosynergists, 

hindered amine stabilizers, and UV light absorbers, etc. The additive used depends on the 

extent of the stabilization needed, and the adverse environmental conditions for the end 

use product of the polymer [1,3]. 

2.2 Stabilization of Polymers 

Polymer degradation is the change in molecular weight/chain length of a polymeric 

material leading to loss of desired properties in the end-use product.  The weak sites 

inherent in the polymer are affected by various thermal and chemical factors, such as, 

heat, light (UV), and mechanical stress, all of which initiate the degradation of a polymer, 

leading to eventual major mass loss through chain scission, crosslinking, and branching. 
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Thermal degradation is usually accelerated by the presence of oxygen. For example, in 

Polyethylene, thermo-oxidative degradation starts at 423K in air, whereas in the inert 

atmosphere it is delayed until the temperature reaches 565K [4]. Antioxidants have been 

exploited to retard thermo-oxidative degradation of many polymers. 

The mechanism of thermo-oxidative degradation involves a series of chain reactions. The 

first step in the degradation process is usually the loss of a hydrogen atom from the 

polymer chain.  The initiation can happen in two ways: either high energy input can 

abstract an H from the polymer chain (RH) and create alkyl radicals (R.) and hydrogen 

radicals (H.), or O2 can react with the molecule (RH) to create two free radicals (R. and 

.OOH). In propagation, the free radicals then can react with O2 and extract a hydrogen 

from another polymer molecule (RH), giving rise to peroxy radicals (ROO.), or more free 

alkyl radicals (R.). The peroxy radicals can extract another hydrogen atom from the 

polymer chain to form hydroperoxide species (ROOH) that could undergo homolytic 

cleavage to create secondary initiators RO. and OH., which continue to propagate the 

reaction to other chains. Some of the free radicals created could self-terminate 

themselves, and the whole process can be described below [5]:  

Initiation:  

RH- energy  R. + H.  

RH + O2  R. + .OOH 

Propagation: 

R. + O2   ROO. 

ROO. + RH  ROOH + R.  

RH + H.  H2 + R. 

Chain transfer or branching: 
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ROOH  RO. + OH. 

Self-termination: 

RO. + H.   ROH 

ROO. + H.  ROOH 

RO. + R.  ROR  

The amount of propagation eventually exhausts the amount of self-termination, leading to 

degradation of the polymer through chain scission or crosslinking [5]. For certain 

polymers, such as polypropylene (PP), the degradation happens through the beta scission 

of the polymer chain containing a free radical, whereas, for polyethylene (PE), the free 

radical often causes one chain to graft onto another chain, leading to crosslinking and 

thus furthering the degradation phenomenon [5,6]. 

Peterson, et al. proposed the following bimolecular decomposition mechanism for 

hydroperoxide decomposition: ROOH + RH  RO. + R. + HOH, and suggested that it is 

the rate limiting step of thermo-oxidative degradation. In thermal degradation under inert 

conditions, random scission is the rate-limiting step, and it has a higher activation energy. 

Whereas, due to the switch of the rate-limiting step from random scission to 

decomposition of hydroperoxide radical, the polymers degrade earlier under thermo-

oxidative conditions compared to inert environment [7]. 

The mechanism of UV degradation is quite similar to thermo-oxidative degradation. UV 

radiation causes photooxidative degradation, which results in breaking of the polymer 

chains, produces free radicals and reduces molecular weight, causing deterioration of 

mechanical properties and leading to useless materials [1,3,8]. Similar to the thermo-

oxidative degradation, photodegradation also goes through the steps of initiation, 

propagation, chain branching and termination [1,8].  
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Even though it accounts for only 4% of total radiation reaching the earth, the energy of 

the radiation of the UV spectrum is enough to break down the C-H and C-C bonds in 

polyolefins.  Although polyolefins do not have any functional groups that can absorb the 

UV rays, during the processing stage, the polyolefins become oxidized to create various 

compounds containing C=O groups, which can absorb the UV rays and create an 

unstable, excited state. The excited molecules can transfer their energy through a variety 

of mechanisms, including decomposition of hydroperoxides, formed in the early stages of 

oxidation, that are unstable and provide a source of free radicals for further initiation; 

chain scission; and crosslinking. Decomposition of hydroperoxides produces the 

carbonyl-containing structures-aldehydes, ketones, acids, etc.- similar to the compounds 

formed during thermos-oxidative degradation of polyolefins. With increasing 

degradation, the carbonyl content increases with the decrease in tensile strength and 

elongation. There are various factors that affect this photodegradation, including the UV 

energy, the temperature, the orientation and the thickness of the sample [8]. 

Polymer degradation reduces the product’s lifetime and deteriorates the characteristics 

necessary for the end-use purposes, such as tensile strength, aesthetic appeal, electrical 

conductivity and melt flow instability, and thus necessitates stabilization additives. There 

are many kinds of additives used in the polymer blend depending on the stage and extent 

of stabilization needed. Industrial antioxidants are the additives used during polymer 

processing to prevent oxidative degradation during the lifetime of the end-use product 

[3,8,9]. 

The primary antioxidants, such as hindered phenol compounds, are free radical 

scavengers designed to react with the initial free radicals that are formed by donating a 

hydrogen atom [10,11].. Hindered phenol are called hindered because the reactive 

hydroxyl group in the benzene ring is sterically shielded by hydrocarbon units connected 

to each neighboring atom.  The electron donating large groups weaken the OH bond by 

pushing it to donate the hydrogen atom. This hydrogen atom can then react with the free 

radicals in the polymer and scavenge the free radicals and stabilize the polymer.  The 
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antioxidant turns itself into a stable, inactive phenoxy radical that will prevent the 

initiation of new radicals in the polymer. Some of the popular commercially-used 

hindered phenolic antioxidants are BHT (2,6-di-tbutyl-4-methylphenol), Irganox 1076, 

and Irganox 1010 (Figure 2-1). BHT is the first generation antioxidant, and the latter ones 

are advanced versions of BHT that improve the secondary structure of the BHT molecule. 

Incorporation of the secondary structure into BHT’s 2,6-di-t-butyl phenol moiety helps to 

increase the molecular weight of the antioxidant. Lower molecular weight poses the 

problem of getting volatilized easily whereas too high of a molecular weight has the 

difficulty of diffusing in the polymer matrix. New generations of antioxidants aim at 

optimizing the molecular weight without sacrificing phenol concentration [12,13].  The 

secondary antioxidants, such as phosphite compounds, interrupt the degradation cycle by 

taking the oxygen from the hydroperoxides and transforming them into more stable 

alcohol (ROH) forms, and make the processes cost-effective by lowering the amount of 

primary antioxidants needed [9]. 

 

Figure 2-1. First generation, second generation, and third generation hindered phenolic 

antioxidants [12] 
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Photo stabilization of polymers may be achieved in many ways. The following stabilizing 

systems have been developed based on the action of a stabilizer: (1) light screeners, (2) 

UV absorbers, (3) excited-state quenchers, (4) peroxide decomposers, and (5) free radical 

scavengers. Usually, a combination of antioxidant and UV absorbers are used to extend 

the lifetime of the polymer [1]. 

Many natural compounds with polyphenolic structure (such as flavonoids, vitamin E) 

could also have antioxidant properties and have been studied as a stabilizer, especially in 

the food industry [14,15]. In this context, the hindered phenolic structure inherent in 

lignin, a major component of lignocellulosic biomass, have been studied in many 

literature studies as a free radical scavenging antioxidant for polymers [16–21].  

2.3 What is Lignin?  

Lignocellulosic biomass is composed of cellulose, hemicellulose, lignin and some minor 

components. The cellulose crystals are embedded in a matrix of hemicellulose and lignin 

[22]. Cellulose and Hemicellulose are polymers of sugar and can be converted to produce 

biofuels (e.g., bio-ethanol, bio-butanol, etc.) and platform chemicals such 5-hydromethyl 

furfural (5-HMF) [23].  

Lignin is the second most abundant natural polymer, just after cellulose. Depending on 

the type of the wood, the lignin content varies from 10-40 wt% (on dry basis) [24,25]. It 

is an amorphous polymer of phenylpropanoid monomer structures, and acts as a 

thermoplastic material. It affects the transportation of water and different nutrients in a 

plant and creates a binder between the plant cells to provide resistance to sunlight, frost, 

fungi and other such biological attacks [22,25]. 

The structure of lignin is extremely complex. It is a three-dimensional polymer with three 

major phenyl propane derived alcohols: p-coumaryl alcohol (4-hydroxyl phenyl, H), 

coniferyl alcohol (guaiacyl, G) and sinapyl alcohol (syringyl, S) as the primary building 

blocks [Figure 2-2].  The structure includes a variety of functional groups, namely 

hydroxyl, methoxyl, carbonyl and carboxyl moieties [22,25]. Hydroxyl groups and the 
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aromatic/phenolic rings are the characteristic functional groups in lignin, and determine 

its reactivity and constitute the reactive sites to be exploited in macromolecular chemistry 

[26]. 

 

Figure 2-2. 1) P-coumaryl-, 2) coniferyl- and 3) sinapyl alcohol [25] 

Woody plants can be divided into two categories: hardwood (angiosperm) and softwood 

(gymnosperm) [25]. It has been identified that more than 90% of the lignin contained in 

softwood is made up of coniferyl alcohol (G), with the remaining being mainly p-

coumaryl alcohol units. In contrast, hardwood lignin is formed of varying ratios of 

coniferyl (G) and sinapyl (S) alcohol types of units and grass lignin is made up of mostly 

p-coumaryl alcohol units (H) [22,25]. 

2.4  Lignin Sources 

The main source of technical lignin is the pulp and paper industry with a lignin 

production capacity of about 50 million tonnes (mainly kraft lignin) per year [27]. There 

are two main pulping processes: mechanical and chemical pulping. The mechanical 

process, mainly for the production of newsprint and paperboards, keeps both cellulose 

and lignin intact in the fibers, resulting in papers weaker in strength.  However, 

mechanical pulping results in larger pulp yields than chemical pulping. In chemical 

pulping, wood chips are treated with chemicals to remove lignin and hemicellulose, thus 

yielding purer and cleaner fibers. Delignification gives the pulp and papers greater 

flexibility and strength at the expense of fiber yield [28]. 
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Chemical pulping processes treat lignocellulosic material with chemicals so that the 

lignin can be dissolved and separated from the fibers. There are two major commercial 

routes for producing chemical pulps: kraft (sulfate) pulping and sulfite pulping. Kraft 

pulping involves treating the wood chips and sawdust with a sodium sulfide and sodium 

hydroxide solution. Most of the lignin and hemicellulose are dissolved and separated in 

the black liquor stream, which is routed to a chemical recovery plant [28]. Most of the 

waste liquor is burned in the recovery boiler to produce energy for the plant, while a not 

very significant amount of commodity chemicals (e.g., turpentine, tall oil, and resin) is 

extracted [28,29]. 

In North America 60-70% of Kraft pulping mills have a production bottleneck due to the 

thermal capacity of their recovery boilers. Thus, there is an opportunity to isolate lignin 

from the black liquor using acid precipitation and then use it as a valuable chemical 

resource, which would also diversify the product portfolios of the pulp and paper mills 

[28,29]. 

The second route of chemical pulping is sulfite pulping, where almost pure cellulose 

fibers are produced by using various salts of sulfurous acids to extract the lignin from 

wood chips. The major by-product from sulfite pulping is lignosulfonates. There are also 

some newer pulping methods in the market, including organosolv, alkaline and soda 

pulping processes. All of these processes produce lignin as a by-product [28]. 

Several processes exist for the recovery of lignin from black liquor, including Westvaco, 

LignoBoost, and LignoForce System. The uniqueness of LignoForce System, developed 

by FPInnovations, is that the black liquor is oxidized under controlled conditions before 

the acidification step of the conventional lignin recovery process takes place. This 

improves the filterability of lignin, along with reducing the TRS (totally reduced sulfur 

compounds) and/or SO2 emissions [29]. This thesis utilizes the KL supplied by 

FPInnovations.  
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Another prospective commercial source of lignin could be the many modern third 

generation biorefineries, producing cellulosic sugar-based ethanol/butanol or chemicals 

and a large amount of hydrolysis lignin (HL). FPInnovation has patented a biomass 

conversion process, producing sugars from the cellulose and hemicellulose components 

of a hardwood, while generating a significant amount of solid residue containing HL (56-

57 wt%), cellulose, and mono and oligosaccharides. HL can also be used for production 

of valuable products after proper modification [26].  

2.5 Summary of previous studies on lignin in 
polymer  

Traditionally, lignin is used as a low-cost fuel, and for production of leather tanning [26]. 

Nevertheless, a wide variety of bulk and fine chemicals, particularly aromatic 

compounds, and bio-based materials can be obtained from lignin [22,26,30,31]. Table 2-1 

summarizes the usages of lignins in polymer-lignin blends:  

 

Table 2-1. Applications of lignins in polymer-lignin blends 

Polymer matrix Main function of lignin References 

Protein-lignin blends Reduced water absorption and improved mechanical 
properties 

[22] 

Starch-lignin blends Reduced water absorption and improved mechanical 
properties 

[22] 

Polyhydroxyalkanoates Improved recyclability, Tg, melting point, and Young’s 
modulus 

[22] 

Polylactides and 
Polyglycolides 

Reduced flammability, improved thermal degradation, 
improved processing performance 

[22] 

Epoxy-lignin composites Substitution of bis phenol-A as the raw material in 
preparing epoxy based adhesives 

[22,30,31] 

Phenol-formaldehyde 
resin 

Substitute of phenol for preparing phenol-formaldehyde 
resin for adhesive and foam  

[22,30,31] 

Polyolefin-lignin blend UV and thermal stabilizer, plastisizers, filler, fire 
retardant    

[27,30] 

Vinyl polymer-lignin 
blend 

UV and thermal stabilizer [22] 

Lignin-polyester blend Improved mechanical properties and processability [22] 
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Lignin in polyurethanes Replacement for polyols. Increased crosslinking of the 
polyurethane networks, (b) increased Tg, (c) increased 
tensile strength, (d) increased curing rates and, (e) 
increased thermal stability 

[22,26,31] 

Synthetic rubber–lignin 
blends 

Filler  [22] 

Besides the bio-based materials presented above, Isikgor and Remzi Becer presented a 

collection of 200 lignocellulose derived value-added compounds and suggested that how 

the combination of new and current technologies can lead to the realization of commodity 

polymers from lignin [32]. A few examples of the compounds mentioned in this refernce 

incldue polyethylene terephthalate (PET), polystyrene, Kevlar, unsaturated polyesters, 

polyaniline, benzene, toluene, xylene, phenols, hydroxybenzoic acids as well as coniferyl, 

sinapyl, and p-coumaryl compounds [32]. Ragauskas et al. suggested the potential use of 

lignin-derived carbon fiber for light weight vehicles [33]. Radical scavenging activity of 

lignin and the addition of lignin in polyolefin blends are discussed in details in the 

following Section 2.6 and 2.7, respectively.  

2.6 Lignin as a radical scavenger   

As discussed in section 2.2, hindered phenols are primary antioxidants that function by 

scavenging the peroxy radicals created in the oxidation process. The growing interest in 

the substitution of synthetic antioxidants by natural ones has fostered research in 

exploiting forestry and agricultural residues as a stabilizer in food industry, cosmetics, 

pharmaceuticals and plastics [14,15,34–36]. Similar to the commercial hindered phenol-

based antioxidants, the hindered phenolic structure inherent in lignin enables it to work as 

a free radical scavenging antioxidant. As summarized below, several researchers have 

analyzed the antioxidant activity of lignin regarding its ability to scavenge free radicals. 

They have also related the antioxidant activity of the lignin samples to their structural 

features (molecular weight, polydispersity, functional groups) and purity (hemicelluloses 

and other components content), resulting from different processing parameters.  

Dizhbite et al. [37] reported the antioxidant activity of lignins extracted from coniferous 

and deciduous wood species using various processes and concluded that non-etherified 
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phenolic hydroxyl groups, aliphatic hydroxyl groups in the side chain, high molecular 

weight, enhanced heterogeneity, and polydispersity are the main factors decreasing the 

radical scavenging activity of the lignin. The radical scavenging ability of phenolic 

compounds depended not only on the capacity to form a phenoxyl radical but also on the 

stability of the phenoxyl radical. They postulated that phenolic structures with 

substituents that can stabilize the phenoxyl radicals have higher antioxidant activity than 

those that do not.  Methoxyl groups at the ortho position stabilized phenoxyl radicals by 

resonance as well as by hindering their propagation, thereby increasing the antioxidant 

activity. Also, the purity (presence of hemicellulose or other non-lignin compounds) and 

heterogeneity of lignin also diminished the antioxidant capacity since carbohydrates can 

generate hydrogen bonding with lignin phenolic groups, thereby interfering with the 

antioxidant properties of the lignin. 

Addler [18] also analyzed twenty-one organosolv ethanol lignin samples from hybrid 

poplar trees and concluded that lignins with more phenolic hydroxyl groups, fewer 

aliphatic hydroxyl groups, lower molecular weight, and narrow polydispersity showed 

high antioxidant activity. It was explained that the low molecular weight fraction of the 

lignin possessed more aromatic hydroxyl than the high molecular weight fraction and 

thus had higher antioxidant activity. 

García et al. [16] investigated effects of different fractionation processes on the 

antioxidant activity of Miscanthus sinensis. They established that the organosolv 

fractionation process of Miscanthus sinensis presented the highest radical scavenging 

activity, followed by autohydrolysis and alkaline samples. These results were in 

agreement with Dizhbite et al. [37], where alkaline processes produced lignins with 

higher hemicellulose contamination than organosolv treatments, generating hydrogen 

bonding between carbohydrates and lignin phenolic groups and resulting in lower 

antioxidant activity. The authors also inferred that lignin with a lower hydroxyl content 

would lead to higher compatibility with the thermoplastic matrix and thus act as a better 

thermal stabilizer for polymers in practice. 
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Further, García et al. [38,39] studied effects of processing parameters on the lignins’ 

antioxidant activity by analyzing the capacity of various lignins from apple tree pruning 

to reduce the ABTS radical. In these studies, it was concluded that the source and 

purification affect antioxidant activity and radical scavenging is directly related to total 

phenolic content. It was also shown that lignin, though at higher amounts, could attain the 

same level of antiradical activity as those of some powerful and well-known commercial 

antioxidants [38,39]. 

Kaur and Uppal [40] investigated the capacity of lignin derived from sugarcane bagasse 

in reduction of DPPH radicals. The lignin was found to exhibit greater antioxidant 

activity than its oxidized derivative. They attributed this finding to the higher content of 

phenolic hydroxyl groups in lignin than oxidized lignin. By comparing the antioxidant 

activity of the lignin with some commercial antioxidants, they found that the antioxidant 

activity of both lignin and oxidized lignin was higher than that of BHT (3,5-di-tert-butyl-

4-hydroxytoluene) whereas lower than that of BHA (3-tert-butyl-4- hydroxyanisole), and 

concluded that the sugarcane bagasse lignin has the potential to be used as an antioxidant 

for food oils and fats [40]. 

2.7 Blending lignin with polyolefins: performance 
and trends  

The addition of lignin in polyolefins, such as Low-Density Polyethylene (LDPE) and 

High-Density Polyethylene (HDPE), has attracted growing attention since as early as 

1978 [22]. The presence of lignin in the lignin-polyolefin blends could provide the 

polymer resistance against UV radiation and elevated temperatures. Levon et al. 

monitored the stabilization effects of three kinds of lignin: lignosulfonate, KL, and 

desulphonated lignin in LDPE and HDPE, and reported that among these three kinds of 

lignin, only lignosulfonate worked as a thermal stabilizer, but for LDPE, while the other 

two lignin did not perform well due to their poor compatibility with the polymer matrixes 

[41]. 
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Alexy et al. [21] blended lignin from prehydrolysis of beech wood, with PE and PP as a 

stabilizer at 10-30 wt% addition level. They measured the tensile strength of the 

composite samples after 113 h exposure in UV in a QUV tester, and 500h exposure in an 

oven at 130 C. With PE, lignin addition up to 10 wt% retained the mechanical properties 

during the UV exposure, while the tensile strength of the PE-lignin composites (after 20 

wt% lignin addition) increased after heat-exposure.  With PP, however, the additon of 

lignin did not affect the resistance of the composites to UV radiation, but deterioriated the 

mechanical properties of the composites after exposition to heat [21]. 

Pouteau et al. [19] utilized industrial KL from wood and lignin samples from various 

botanical sources in PP and reported that lignin with a low molecular weight and low 

phenolic content had better compatibility and antioxidant activity, which was however in 

contradiction to many literature as discussed previously on the radical scavenging activity 

of lignin. 

Pucciariello et al. [42] investigated blends of a straw-lignin with LDPE, LLDPE (Linear 

Low-Density Polyethylene), HDPE and PS (Polystyrene). Although the modulus of most 

lignin-polymer blends slightly increased, both the tensile stress and elongation reduced, 

which was likely due to the poor compatibility between lignin and the synthetic polymers 

leading to non-uniform distribution of the lignin particles in the matrix. This problem 

may be resolved by employing efficient mixing techniques and compatibilizing agents. 

On the other hand, this research demonstrated that lignin could be an effective 

antioxidant to increase the resistance of PS, LLDPE and LDPE to UV radiation, although 

adverse effects was observed when blending lignin with HDPE due to the poor 

compatibility of lignin in HDPE matrix. 

Gregorová et al. reported the antioxidant property of a sulfur free lignin from beech wood 

prehydrolysis, when blended with both neat and recycled PP [43]. Similarly, Canetti et al. 

confirmed the enhancement of the thermal stability of an isotactic PP by addition of 

lignin in particular under the oxidative condition [20]. 
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However, Piña et al. [44] investigated the antioxidant effect of kraft lignin in HDPE, 

compared against a commercial antioxidant. They concluded that although kraft lignin 

could act as an antioxidant, it had much less effectiveness than the commercial 

antioxidant mainly due to its larger molecular weight and poorer compatibility with the 

polymer. Chemical modification of lignin to either reduce its molecular weight or 

enhance its compatibility with other polymers is thus beneficial for improving the 

effectiveness of lignin as an antioxidant. For instance, Sailaja  [45] blended lignin grafted 

Poly (methyl methacrylate) (LPMMA) with LDPE in the presence of a small amount of 

compatibilizer. The grafting modification of lignin contributed to increasing the 

hydrophobicity and thermal stability of the lignin compared to the untreated lignin, 

resulting in improvement in mechanical and thermal stability of the LPMMA-LDPE 

composite compared to the untreated lignin-LDPE blend. Sailaja and Deepthi [46] 

blended esterified lignin with LDPE with the addition of maleic anhydride grafted LDPE 

as a compatibilizer. The results revealed that the esterification modification of lignin and 

the usage of the compatibilizer improved the dispersion of the lignin particles in the 

polymer matrix, resulting in better mechanical properties and thermo-oxidative stability 

of the blend. 

Ye et al. [47] investigated the thermo-oxidative performance of blends of esterified lignin 

with PP in terms of oxidation induction time and induction aging time. Despite the 

decrease in phenolic content due to the esterification of the lignin, it improved the 

compatibility of the lignin with the polymer and increased the thermos-oxidative stability 

of the composites. Dehne et al. [48] evaluated the effects of lignin types (kraft lignin, 

soda lignin, hydrolysis lignin and organosolv lignin) and esterification on the properties 

of the PE-lignin blends, and concluded that the type of lignin did not noticeably affect the 

mechanical properties blend, while esterification of the lignins greatly improved the 

mechanical strength of the blends. 

The antioxidant market is expected to grow with the expanding of the plastic industry 

owing to the growing demand to replace metal parts in the automotive and aerospace 
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industries with lightweight engineering plastics [49], and the growing demand for plastic 

in packaging, durable goods, automotive and other industrial applications [50]. 

Polyolefins (e.g., PE and PP) represent around 60% of the thermoplastics market, and the 

global demand for PE and PP reached 150 million tons in 2015. Asia is the largest 

consumer of polyolefins, seconded by North America and Europe (with around 34% of 

the market share) [50]. As a result, there would be a steep demand for antioxidants to 

ensure processing stability and protect the finished products. The segment revenue from 

antioxidants in European and North American markets was $1.02B in 2014, which is 

projected to be $1.62B in the next few years [49].  

As discussed above, lignins after modifications can be effective antioxidants to substitute 

the petroleum-based antioxidants in polyolefins (e.g., PE and PP). Compared with the 

commercial petroleum-based antioxidants, lignin-based antioxidants are not only 

renewable, but also inexpensive and widely available.  

As per a study by Oak Ridge National Laboratory, the available biomass resoruces in the 

forms of forest and agricultural residues will amount to 1.5 billion tons in 2030 in the 

United States alone [51].  As described previoulsy, about 50 million tons of lignin 

(mainly kraft lignin in “black liquor”) are genreated as a pulping side product in the pulp 

and paper mills alone [27], and it was estimated that additional 62 million tons of lignin 

would be produced from the second generation biorefineries [33]. The amount of lignin 

produced far exceeds the amount needed to fulfill the internal energy necessity of the 

pulp and paper mills and the biorefineries. Currently, only 2% of the technical lignin is 

being commercialized as a specialized chemical [27]. Considering the growing market for 

polyolefins and thus antioxidants, and the surplus amount of lignin being produced, lignin 

has a great potential of occupying a significant portion of the antioxidants market [30]. 

2.8 Lignin modification techniques  

As discussed in the previous section, chemical modification of lignin to either reduce its 

molecular weight or enhance its compatibility with other polymers is beneficial for 
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improving the effectiveness of lignin as an antioxidant. Typical lignin modification 

techniques involving functionalization of hydroxyl groups in lignin by esterification, 

etherification, phenolation, and urethanization [27].  

There are various approaches for lignin de-polymerization, including thermochemical 

depolymerization and conversion, catalytic depolymerization, and biological 

depolymerization.  Pandey and Kim [52] published a comprehensive review on different 

thermochemical methods for lignin de-polymerization and conversion, including three 

major thermochemical routes: pyrolysis, oxidation, and gasification. Pyrolysis refers to 

the process of heating an organic substance in the absence of air so that the molecular 

structure is broken down into smaller units, while the limited oxygen available for the 

reaction ensures that there is no further combustion to carbon dioxide. When pyrolysis is 

performed in the presence of hydrogen, the process is called hydrogenation or 

hydrogenolysis. In oxidative processes, oxidative cracking is done in order to cleave the 

lignin rings, aryl ether bonds, or other linkages within the lignin. Ragauskas et al. [33] 

published a review concerning oxidative processes for lignin de-polymerization, 

involving catalytic side-chain oxidation and fragmentation reactions. The main products 

from lignin oxidation include aromatic acids and aldehydes with smaller market volumes.  

Catalytic hydro-treatment has been considered as an important approach for lignin de-

polymerization (or call reductive de-polymerization). Suitable catalysts and solvents can 

speed up this process. Catalysts used in reducitve de-polymerization of lignin, such as Ni-

Mo or Co-Mo/Al2O3, promote high lignin conversion, and suppress char formation and 

condensation, while keeping the reaction severity under a permissible limit [53].  

Recently Mahmood et al. [26] reviewed different chemical strategies for lignin 

depolymerization, based on solvent and catalyst selection: 1) acid catalysis, 2) metallic 

catalysis, 3) base catalysis, 4) ionic liquid assisted, 4) sub or supercritical fluids assisted, 

5) oxidative route, and 6)  de-polymerization under low pressure.  A novel low-T/low-P 

lignin de-polymerization process was developed in our group in collaboration with 

FPInnovations, to convert kraft lignin (Mw ~ 10,000 g/mol) and hydrolysis lignin (Mw > 
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20,0000 g/mol) into de-polymerized lignin (DL) of a lower molecular weight (Mw ~ 

1,000-2,000 g/mol) at a high yield (>70-90 %). This lignin de-polymerization technology 

has been licensed to FPInnovations for commercialization, and a US patent for 

technology has been filed. The DLs and liquefied lignocellulosic biomass were used as 

bio-substitutes for phenols or polyols for the production of bio-based phenol 

formaldehyde (PF) and polyurethane (PU) resins/foams, or as a bisphenol-A replacement 

for the synthesis of lignin-based epoxy resins.  

As discussed previously, there had been researches on increasing the compatibility of 

lignin in the polymer matrix by esterifying or grafting of the lignin. However, to the best 

of our knowledge, there does not exist a published work by far utilizing the de-

polymerized lignin as an antioxidant in polyolefins. Hence, this thesis is dedicated to 

exploring this particular area of research.  

2.9 Knowledge gaps and research opportunities  

Lignin as a radical scavenger has attracted lots of attention for application in polyolefins 

as bio-antioxidant to provide resistance against thermo-oxidative degradation and 

photodegradation. It has been demonstrated in literature work that lignins can act as 

effective radical scavenger and can be added to polyolefins for improving their thermo-

oxidative resistance.  There had also work conducted on improving the compatibility of 

lignin in polymer matrix by modifying lignin using esterification or grafting techniques.  

Whereas, esterification decreases the phenolic content of lignin and grafting adds 

additional cost to the process. There is not much literature work by far addressing the 

effects of adding technical lignin (i.e., kraft lignin from pulp and paper mills and 

hydrolysis lignin from biorefineries) and their de-polymerized format in polyolefins on 

their antioxidant property. Effects of depolymerized technical lignin as a thermo-

oxidative stabilizer in polyolefins, are yet to be explored.  
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Chapter 3  

3 De-polymerization of crude lignins to improve the 
thermo-oxidative stability of polyolefins  

3.1 Introduction 

Lignin, one of the primary constituents of plant cell walls, is the largest renewable 

resource for aromatic compounds [1]. It is an amorphous polymer of three main phenyl 

propanoid units connected dominantly by ether linkages [2,3]. As of 2013, global 

production of lignin, mainly kraft lignin (KL) in black liquor – a waste stream from kraft 

pulping process, was approximately 50 million tonnes per annum, most of which is used 

as a low-cost fuel for pulping chemicals recovery and heat generation utilized within the 

pulp mills, with less than 5% of it being utilized as chemicals or other products [4]. On 

the other hand, hydrolysis of lignocellulosic biomass for cellulosic ethanol production 

also generate lignin, commonly denoted as hydrolysis lignin (HL), as a side-product, 

mainly utilized as a low-cost fuel for heat generation. With the advance in pulp and paper 

mills, and biorefineries for biomass derived fuels and chemicals, the production of lignin 

in downstream will further increase [1]. As a result, there is a growing need to develop 

value-added products from lignin, to diversify the product portfolios of the pulp and 

paper mills, cellulosic ethanol plants and biorefineries, which in return will also help 

make the processes more economically competitive. Due to its high aliphatic hydroxyl, 

aromatic hydroxyl and carboxyl content, lignin has been researched as an alternative to 

commercial reactants in the production of polyurethane foam, adhesive, epoxy resins and 

adipic acid [5–8]. A number of studies have suggested that lignin could be a promising 

resource for bio-based antioxidants due to its structural similarity with the traditionally 

used hindered phenolic antioxidants used in polymer stabilization [9–12].  

Industrial antioxidants are the additives used for polymer to prevent the thermo-oxidative 

degradation during processing and life time. Commercial stabilizing package includes a 

combination of hindered phenol based antioxidant and phosphorous based melt stabilizer. 

The hindered phenolic antioxidants are called “hindered” because the reactive hydroxyl 
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group is shielded by hydrocarbon units connected to each neighboring atom in the 

benzene ring. The bulky groups on ortho positions push the OH group to donate the H to 

trap the initial free radicals derived from the oxidation reactions. The antioxidant 

molecule resonance stabilizes itself into stable phenoxy radicals; thus preventing the 

initiation of new radicals [13,14]. Likewise, as shown in Scheme 3-1, the hindered 

phenolic structure inherent in lignin, enables it to work as a free radical scavenging 

antioxidant, which has been proved by the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) 

method [9–12]. 

 

 

Scheme 3-1. Trapping of peroxy radicals by lignin and eventual delocalized stabilization 

of the phenoxy radical created from the lignin 

The property and structure of lignin vary vastly depending on the source. Most of the 

previous works [15–22], concerning the effects of lignin on polymer stabilization, 

utilized high purity lignin extracted from the plants using organic solvents or steam 

explosion. There is a scarcity of literature addressing the effects of technical lignins, 

particularly at a low level. Moreover, normally technical lignin has a large molecular 

weight and hence low reactivity and compatibility with other polymers. Since the phenyl 
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propanoid units in lignin are connected by ether linkages, breakdown of these ether 

linkages could also increase the phenolic content, thus potentially improving the 

antioxidant property. De-polymerization also has the potential of reducing the 

hydrophilicity of crude lignins by decreasing the aliphatic hydroxyl content. Past 

researches, comparing the antioxidant activity of lignin from various sources, indicated 

that with decreasing molecular weight, increasing phenolic content, and decreasing 

aliphatic hydroxyl content the antioxidant activity of the lignin increased [23, 24]. Hence, 

there is potential for improving the antioxidant activity of lignin by de-polymerizing it. 

To verify the above hypothesis, this work investigated (i) antioxidant performance of two 

technical lignins, commercial kraft lignin (KL) and hydrolytic lignin (HL) as an additive 

in polyolefins and (ii) effects of de-polymerization of KL/HL on their performance as 

additives in polyolefins with respect to thermo-oxidative stability. 

3.2 Experimental  

3.2.1  Materials and compounding    

Kraft lignin (KL) and hydrolysis lignin (HL) were supplied by FPInnovations. The 

former is a product from their proprietary LignoForce process [25] in its pilot plant in 

Thunder Bay, Ontario, and the latter is a by-product of their proprietary hardwood 

fractionation process for bioproducts, called “TMP-bio process” [26]. The HL contained 

50-60 wt% lignin balanced by the residual cellulose and hemicellulose. The molecular 

weight of the KL is approx.10000 g/mol and the molecular weight of the HL was not 

measurable due to its insolubility in a suitable solvent. 

De-polymerization of the KL and HL was realized by a low-temperature/low-pressure 

process developed by the authors’ group (currently patent pending). Briefly, KL de-

polymerization was carried out in a Parr autoclave reactor (500 mL) at 250C, 1 h, with 

20 wt.% KL substrate concentration in poly-alcohol-water co-solvent in the presence of 

an alkaline catalyst (NaOH/KL mass ratio of 0.28), producing de-polymerized KL (DKL) 

at a yield of ~90 wt.%. De-polymerized hydrolysis lignin (DHL) was obtained by acid 
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catalyzed de-polymerization at 200C, 1 h with 20 wt.% HL substrate concentration in 

the same solvent in the presence of an acid catalyst (H2SO4/HL mass ratio of 2% w/w), 

leading to ~70 wt.% yield of DHL. 

Low density polyethylene (LDPE) with the density of 0.93 g/mL and melt flow index of 

2.5 g/min and isotactic polypropylene (PP) with the density of 0.90 g/mL and melt flow 

index of 1.2 g/min were supplied by Sigma Aldrich. PE and PP were extruded in neat 

form and with addition of 5 wt% of KL, HL, DKL and DHL, respectively, at 140C and 

190C using a HAAKE MiniLab II Micro Compounder. The screw speed was set at 100 

rpm and the residence time was 10 min. 

3.2.2  Characterization of lignin and de-polymerized lignin 

3.2.2.1 Gel permeation chromatography (GPC) 

Molecular weights and their distributions of the lignins were measured using Waters 

Breeze GPC-HPLC (1525 binary pump, UV detector set at 270 nm, Waters styragel HR1 

column at 40C). Tetrahydrofuran (THF) was used as the eluent at a flow rate of 1 

ml/min. Linear polystyrene standards were used for the molecular weight calibration 

curve. 

3.2.2.2 Fourier transform infrared spectroscopy (FT-IR) 

The lignins and their depolymerized counterparts were analyzed on Nicolet 6700 Fourier 

Transform Infrared Spectroscopy (FT-IR) with smart iTR/ATR accessory to verify the 

presence of functional groups such as hydroxyl groups in the structure. The FT-IR spectra 

were measured in the range of 500–4000 cm-1 in attenuated total reflectance (ATR) 

mode. 

3.2.2.3 Proton nuclear magnetic resonance (1H NMR) 
spectroscopy 

1H NMR spectroscopy was performed only for KL, DKL, and DHL because a suitable 

solvent for HL was not available (in other words, HL is not soluble in any common 
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solvent). In order to increase the solubility of KL, DKL and DHL in d-chloroform for the 

quantitative analysis of 1H NMR, the samples were acetylated first. The details of the 

acetylation process and 1H NMR process was described elsewhere [27].  

3.3  Characterization of antioxidant activity 

3.3.1 Differential scanning calorimetry (DSC) 

The oxidation induction time (OIT) is an accelerated thermoanalytical measurement often 

used in industries to predict the thermo-oxidative stability of polymers. The OIT tests 

were carried out according to ASTM D3895 using a differential scanning calorimeter 

(DSC1, Mettler Toledo) with a STARe software. A sample of 5-6 mg was placed in an 

open standard 40 μL aluminum pan and an empty pan was used as reference. First, the 

sample was heated from 50C to 220C at a heating rate of 10C/min under a nitrogen 

flow of 50 mL/min. After the temperature reached 220C, the sample was maintained at 

the temperature for 1 minute and then the purge nitrogen gas was switched to air with a 

flow rate of 50 ml/min. Air was selected since this environment would represent a similar 

situation during polymer processing and/or shelf life. The sample was held at 220C until 

the sample went through oxidative degradation, where an exotherm appeared in the DSC 

curve. The time interval between the switch of gas and the onset of the thermo-oxidation 

exotherm was reported as the OIT time. A typical DSC curve obtained from an OIT test 

for a PE-KL sample is illustrated in Scheme 3-2. 
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Scheme 3-2. Schematic illustration of a typical DSC curve of oxidation induction time 

measurement of polymer-lignin samples 

Activation energy for oxidative degradation was also measured using DSC by following 

the Flynn/Wall/Ozawa method described in ASTM E698-16. A sample of 5-6 mg was 

introduced in an open standard 40 μL aluminum pan and heated from 50 to 450C at 4 

different heating rates (7.5, 10, 12.5, and 15C/min) under an air flow of 50 mL/min. 

3.3.2 Thermo-gravimetric analysis (TGA) 

Thermal degradation behavior was examined on a thermogravimetric analyzer (Q500, TA 

Instrument) with a Universal TA analysis software. A sample of 5 mg was loaded in a 
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furnace constantly purged with air at flow rate of 20 mL/min. TGA traces were recorded 

from 50 to 800°C at a heating rate of 10°C/min. 

3.4 RESULTS AND DISCUSSION 

3.4.1  De-polymerization of lignins 

Table 3-1 summarizes results obtained from GPC measurements for the two de-

polymerized lignins, DKL and DHL. Weight-average molecular weight of KL was 

reduced from 10,000 g/mol to 1,164 g/mol after the de-polymerization. The HL with 

molecular weight being too large to be measurable was reduced to 1413 g/mol after de-

polymerization.  

Table 3-1. Molecular weight and polydispersity index (PDI) of DKL and DHL 

Type of lignin MW (g/mol) Mn (g/mol) PDI 

DKL 1,164 557 2.09 
DHL 1,413 651 2.17 

Figure 3-1 shows FTIR spectra of the 4 types of lignins to examine changes in hydroxyl 

groups, ether linkages and other functional groups within the lignin structure after de-

polymerization. The broad band between 3200 to 3550 cm−1 corresponds to the vibration 

of hydroxyl groups [28]. The adsorption at 1060–1160 cm-1 corresponds to the C-O in 

ethers and alcohols [28]. Comparing between the spectra of KL and DKL, the intensities 

of C-O remain the same, but that of OH became slightly stronger. However, in DHL, 

even though the intensities of C-O and OH are weaker, the intensities of aromatic 

adsorption in 1400-1700 cm-1 became stronger, likely due to the removal of sugars (or 

cellulose/hemicellulose derivatives) in HL during the de-polymerization operation.  
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Figure 3-1. FTIR spectra of 4 kinds of lignins 

1H NMR spectra of acetylated KL, DKL and DHL are illustrated in Figure 3-2.  
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Figure 3-2. 1H NMR spectra of the acetylated a) KL, b) DKL, and c) DHL 

In the 1H NMR spectra of the acetylated KL, DKL and DHL with dibromomethane as 

internal standard (Figure 3-2), the signals at 4.9 ppm, 2.2-2.6 ppm, and 1.8-2.2 ppm 

correspond to dibromomethane, phenolic and aliphatic acetates, respectively [29]. The 

phenolic acetate protons and aliphatic acetate protons in the 1H NMR spectra represent 

phenolic hydroxyls and aliphatic hydroxyls in their acetylated samples, respectively. The 

signal area corresponding to internal standard was initially calibrated and then integrated 

to 1.0, followed by the integration of the regions related to phenolic acetate peaks. The 

phenolic content was calculated as follows [29]:   

(c) 

(b) 
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 MP,OH =
2

3
×IP,AC×MDBM×180

WAC−(
2

3
×IP,AC+

2

3
×IA,AC)× MDBM×42

     (1) 

 

The aliphatic hydroxyl content was calculated as follows [29]:  

          MP,OH =
2

3
×IP,AC×MDBM×180

WAC−(
2

3
×IP,AC+

2

3
×IA,AC)× MDBM×42

     (2) 

where MP,OH are the moles of phenolic OH per lignin unit (with an average molecular 

weight of 180 g/mol); 2 and 3 are the number of protons of internal standard 

(dibromomethane) and acetyl groups, respectively; IP,AC is the integration of peaks of 

phenolic acetates; MDBM are the moles of internal standard = WDBM/173.83 (weight of 

internal standard in relation to its molecular weight); WAC is  the weight of the acetylated 

samples of the KL or DKL or DHL; 42 is the formula weight of acetyl group minus one = 

(43 - 1).  

With the above Eq. (1), the phenolic content of KL, DKL, and DHL was obtained to be 

0.24, 0.5 and 0.34 moles per lignin unit, respectively. And with the above Eq. (2), the 

aliphatic hydroxyl content of KL, DKL and DHL was obtained to be 0.814, 0.125, and 

0.084 moles per lignin unit, respectively. As revealed by the results of FTIR and GPC 

measurements, the de-polymerization process cleaved ether linkages of the lignin units to 

significantly reduce the molecular weights of the lignins, which resulted in a higher 

phenolic content and lower aliphatic hydroxyl content in the de-polymerized lignins, as 

evidenced by the above calculated values of moles of phenolics per lignin unit and moles 

of aliphatic hydroxyls per lignin unit based on the 1H NMR spectra of KL, DKL, and 

DHL. 
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3.4.2  Thermo-oxidative stability of PE and PP with addition of 
various lignins 

3.4.2.1 Oxidation induction time (OIT) 

 

 

Figure 3-3. DSC OIT curves obtained from a) PE-lignins and b) PP-lignins samples 

DSC curves obtained from OIT tests for PE-lignins and PP-lignins (containing 5 wt% of 

KL, HL, DKL and DHL, respectively). As illustrated in the previous Scheme 3-2 and 

Figure 3-3, thermo-oxidative degradation of a polymer can be divided into several stages. 

The onset of exotherm is the initiation point of oxidation. The first exotherm peak 
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denotes formation of free radicals (i.e., peroxy radicals). The later peaks indicate the 

degradation of the peroxy radicals and further oxidation or degradation stages [30]. If an 

antioxidant is incorporated in a polymer, it scavenges the free radicals generated in the 

oxidation process. Once all the antioxidants are consumed, the reaction proceeds at a 

much faster rate and presents a detectable exotherm in the DSC output. Thus, the 

oxidation induction time (OIT) can be prolonged by introducing an antioxidant in the 

polymer, and the value of OIT can be used as a measure of effectiveness of an 

antioxidant. 

In accordance to the method as described in Scheme 2 and the DSC results presented in 

Figure 3-3, OIT values of PE-lignins and PP-lignins were obtained and summarized in 

Table 3-2, in comparison with the values of neat PE and neat PP. The results as presented 

in Table 3-2 clearly show that DKL is the most effective lignin as an antioxidant, 

increasing the OIT from 2.0 min (neat PE) or 1.8 min (neat PP) to 56 min (PE-DKL) or 

33 min (PP-DKL), followed by DHL, KL and HL. It is noted that this order is in a good 

agreement to the order of phenolic content in lignins: DKL > DHL > KL > HL (as 

evidenced by the 1H NMR results discussed previously in section 3.4.1).  Thus, it may be 

concluded that the de-polymerization process could effectively improve the antioxidant 

activity of lignin by increasing its phenolic content. The de-polymerization process also 

improved the hydrophobicity of lignin molecules by decreasing the aliphatic hydroxyl 

content. As a result, the de-polymerized lignins had a better compatibility with the 

hydrophobic polymer matrix compared to the crude lignins.    

In addition, due to the difference in structure, the degradation phenomena of the polymers 

are different. Polyolefins have the weakest bond at their tertiary carbons. As every other 

carbon in PP is a tertiary carbon, it is more susceptible to oxidative degradation compared 

to PE [31], i.e., PP produces free radicals more quickly than PE, which is reflected in its 

early consumption of the antioxidants and shorter OIT. As to be discussed later in the 

section of TGA (Section 3.4.2.3.), this is also the reason why PP-lignins had earlier onset 

temperatures for mass loss upon heating than PE-lignins. 
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Table 3-2. Oxidation Induction Time (OIT) of PE-lignins and PP-lignins 

Sample OIT (min) 

Neat PE 2.0 
PE-KL 22 
PE-DKL 56 
PE-HL 6.1 
PE-DHL 35 

Neat PP 1.8 
PP-KL 14 
PP-DKL 33 
PP-HL 5.8 
PP-DHL 25 

3.4.2.2 Activation energy for oxidative degradation 

For studies of the kinetics of the thermo-oxidative degradation process of the PE and PP 

with/without lignin additives, DSC thermograms were collected in 50 mL/min air at 

various heating rates, 7.5C/min, 10C/min, 12.5C/min, and 15C/min. Figures 4 and 5 

illustrate the DSC curves of neat PE and PE-lignins, and PP and PP-lignins respectively, 

at various heating rates.  
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Figure 3-4. DSC curves of neat PE and PE-lignins in 50 mL/min air flow heated at 

various heating rates: (a) 7.5C/min, (b) 10C/min, (c) 12.5C/min, and (d) 15C/min 
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Figure 3-5. DSC curves of neat PP and PP-lignins in 50 mL/min air flow heated at 

various heating rates: (a) 7.5C/min, (b) 10C/min, (c) 12.5C/min, and (d) 15C/min 

PE-lignins exhibited multiple peaks and valleys on the DSC curves after the initial 

exotherm peak (Figure 3-4), whereas PP-lignins had only one large exotherm peak 

(Figure 3-5), which are in a good agreement to the reported results in the literature for 

neat PE and neat PP [30]. It is widely accepted that the degradation process in PP is 

governed by only chain scission, whereas PE undergoes branching and crosslinking along 
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with the chain scission. Hence, the multiple peaks observed in PE could be related to the 

crosslinking and branching reactions [30,32]. 

According to the Flynn/Wall/Ozawa method described in ASTM E698-16, the activation 

energy (E) for oxidative degradation of a polymer can be written as:   

 𝐸 = −2.19 𝑅 
dlog 𝛽

d 𝑇p
−1         (3) 

where R is the gas constant, β is the heating rate, and Tp is the temperature at the 

maximum of the first peak of exotherm. 

By plotting log β vs. 1/ Tp (as shown in Figure 3-6), the slope is used for calculating the 

activation energy. As mentioned above, the Flynn/Wall/Ozawa method calculates the 

activation energy employing the peak temperature of exotherm on the DSC heating 

curves. However, in order to effectively comprehend the activation energy of thermo-

oxidative degradation of a polymer before and after incorporating an antioxidant, in this 

work we employed temperature at the onset of exotherm (To) instead of the peak 

temperature for calculation of E in accordance to Eq. 3. As is known, the primary role of 

an antioxidant (lignins in this study) are scavenging peroxy radicals, thus delaying the 

propagation reactions. Hence, antioxidants are active only during the induction period, 

resulting in an increase in onset of the exotherm, and sometimes the peak temperature of 

the exotherm, while the latter peaks are not normally correlated with the activity of the 

antioxidant [33,34].  
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Figure 3-6. Sample curve of PE-DKL for measuring activation energy for the oxidation 

of degradation using flynn/wall/ozawa method 

Table 3-3 summarizes the activation energies of thermo-oxidative degradation of PE-

lignins and PP-lignins. As clearly shown in the Table 3-3, the addition of any of the four 

lignins to PE or PP increased the activation energy of the thermo-oxidative degradation 

process, e.g., the E of PE-DHL reached 125 kJ/mol compared with 34.2 kJ/mol for neat 

PE, which confirms the effectiveness of lignins as active antioxidants. Among all four 

lignins, DKL exhibited the highest activation energy while HL had the lowest activation 

energy, and the order of the activation energy is as follows: DKL > DHL > KL > HL. 

Such order is in a good agreement with those of their phenolic content and OIT as 

discussed previously. As well known, an antioxidant hinders the overall oxidative 

degradation by consuming free radicals and producing stabilized phenoxy radicals, which 

hence increases the energy barrier (i.e., activation energy) that the polymer has to 

overcome to initiate the oxidation.  
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Table 3-3. Activation energies of PE and PP with and without lignin 

Sample Activation energy (kJ/mol) 

PE 34.2 
PE-KL 95.8 
PE-DKL 142 
PE-HL 87.9 
PE-DHL 125 

PP 100.2 
PP-KL 112.5 
PP-DKL 217.2 
PP-HL 103.2 
PP-DHL 145.4 

 
3.4.2.3 Thermal degradation 

Table 3-4 summarizes temperature at the onset of thermal degradation, temperature at 

10% weight loss, and temperature at the maximum degradation rate, based on the TGA 

thermograms of PE, PP, KL, DKL, HL, DHL, PE-lignins, and PP-lignins (Figures 3-7, 3-

8, 3-9). With all samples except DKL prior to the onset degradation tempeature, there 

was a small increase (~1%) in the mass due to the formation of peroxy and 

hydroperoxide radicals although it is not visible in the TGA curves by naked eyes [32]. 

Later these free radicals initiated degradation of the PE or PP forming volatile products as 

indicated by the rapid mass loss step in the TGA curves. In PE and PE-lignins, there was 

another small mass loss near to completion, which signifies ignition of the char [30]. By 

contrast, the TGA curves of PP and PP-lignins exhibit one single degradation step as 

similarly reported in the literature data [30]. 

The TGA curves of the lignins and depolymerized lignins suggest that these lignins lose 

weight through multiple steps: the first step is likely related to release of volatiles and the 

second step degradation of lignins. The TGA curves of PE-lignins and PP-lignins clearly 

show that the addition of the lignins increased the onset degradation temperature and the 

maximum degradation temperature of PE and PP, suggesting that the lignins acted as free 

radical scavengers for PE and PP upon thermo-oxidative heating. 
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Table 3-4. Thermal degradation temperature of PE-lignins and PP-lignins 

Sample Temperature at the 
onset of degradation 

Temperature at 10% 
weight loss 

Temperature at the maximum 
degradation rate 

KL 175 265 560 

DKL 95 233 551 

HL 164 190 293 

DHL 47 300 556 

PE 266 340 349 

PE-KL 288 390 446 

PE-DKL 302 404 450 

PE-HL 190 343 405 

PE-DHL 270 393 446 

PP 250 318 380 

PP-KL 267 330 389 

PP-DKL 272 332 393 

PP-HL 218 316 376 

PP-DHL 260 333 399 
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Figure 3-7. Typical TGA curves of a) PE, b) PP, c) KL, d) DKL, e) HL, and f) DHL 
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Figure 3-8. Typical TGA curves of a) PE-KL, b) PE-DKL, c) PE-HL, and d) PE-DHL 
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Figure 3-9. Typical TGA curves of a) PP-KL, b) PP-DKL, c) PP-HL, and d) PP-DHL 
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linkages in KL were broken and unstable free radicals were formed during de-

polymerization at elevated temperatures. Moreover, DKL has a higher phenolic content 

than KL, which would contribute to increasing the thermal stability of the polyolefin too. 

Similarly, HL proved to be less effective for thermal stabilization of PE/PP than DHL. 

Since HL has a high percentage of cellulose and hemicellulose, it would decompose at a 
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poorer thermal stability than neat PE and PP. However, the addition of DHL enhanced 

the thermal stability of the polymers with increased degradation temperature of PE and 

PP, acting as a thermo-oxidative stabilizer. The superior performance of DHL than HL is 

likely owing to of the fact that most cellulose and hemicellulose in HL could be removed 

during the hydrolytic de-polymerization process.  

3.5 Conclusions 

(1) Kraft lignin (a waste product from the pulp and paper industry) and hydrolysis lignin 

(a by-product from the pre-treatment processes in cellulosic ethanol plants) were utilized 

as an antioxidant for polyethylene (PE) and polypropylene (PP).  

(2) KL and HL were modified by a de-polymerization process. The obtained de-

polymerized KL (DKL) and de-polymerized HL (DHL) have a much lower molecular 

weight (less than 1500 g/mol) but increased aromatic hydroxyl content. 

(3) The addition of all four lignins to PE and PP increased the oxidation induction time 

(OIT) activation energy for oxidative degradation, and thermal degradation temperature 

(except HL) of PE and PP. The antioxidant effects of the lignin follow the order of:  de-

polymerized KL (DKL) or de-polymerized HL (DHL), KL and HL, which was the same 

order as their phenolic content. 

(4) De-polymerization also improved the compatibility of the lignins with the non-polar 

polymer matrix by decreasing the aliphatic hydroxyl content and improving the 

hydrophobicity.  

(5) De-polymerization proved to be an effective strategy to improve the antioxidant 

activity of technical lignins.  
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Chapter 4  

4 Effects of de-polymerized lignin content on thermo-
oxidative stability of polyethylene 

4.1 Introduction 

Polymers are subjected to degradation in all stages of their lifecycle, starting from 

processing, shelf life to end use. There are three types of degradation: thermal, thermo-

oxidative, and photo-oxidative degradation, depending on the environment. In the case of 

thermal degradation, thermal scission in the weak sites of the polymer produces primary 

radicals. Later the polymer undergoes degradation through various pathways including 

radical transfer, random scission, chain scission, cross-linking and branching. In the case 

of thermo-oxidative degradation and photo-oxidative degradation, initiation is induced by 

temperature and UV radiation or chemical initiators like oxygen or peroxides to create 

free radicals, which later form peroxy radicals by reacting with oxygen. The degradation 

happens through the chain reactions of these initiators and propagators with oxygen, and 

the events similar to the thermal degradation occur in the later stages. Due to the nature 

of the reactions with oxygen, thermo-oxidative and photo-oxidative degradation are more 

severe and propagate much faster than the thermal degradation in an inert atmosphere. 

Commercially, hindered phenolic antioxidants are employed to retard the thermo-

oxidative degradation process [1–3]. Recently, initiatives have been taken to employ 

lignin, a biomass component, as a green alternative to traditional petroleum-based 

hindered phenolic antioxidants in polymer processing [4–9].  

Lignin is a natural phenolic polymer comprised of phenylpropane building blocks, as one 

of three major components of lignocellulosic biomass [10,11]. In wood, lignin contributes 

in the nutrient transportation and protection of the cells from adverse environmental 

conditions [12,13]. Currently, lignin is used mainly as a low-value fuel, but due to its 

aromatic structure, lignin has potential to be utilized as a chemical [14]. A number of 

studies have suggested that lignin could be employed as a stabilizer or antioxidant for 

plastics and rubbers [4,7,8,15,16].  
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The antioxidant behavior of lignin stems from its inherent hindered phenolic structure, 

which facilitates lignin to work as a free radical scavenger. As demonstrated by previous 

researchers [17,18], the scavenging activity of lignin depends on its origin, and the 

antioxidant activity of the lignin increases with decreasing molecular weight and 

increasing phenolic content [18,19].  Our recent study (as discussed in Chapter 3) showed 

that de-polymerization of crude lignins (kraft lignin and hydrolysis lignin) decreased the 

molecular weight and increased the phenolic content of the respective lignins and led to 

an increased thermo-oxidative stability of polypropylene (PP) and polyethylene (PE).  

According to Frost and Sullivan [20], the antioxidant market is rapidly increasing with a 

projected growth of $1.62B in the next few years. Simultaneously, the production of 

lignin is rapidly growing owing to the fact that most of the kraft pulping mills in North 

America has a bottle-neck in their recovery boilers and hence extracting kraft lignin out 

of the pulping process would lead to production capacity improvement in pulp and paper 

mills, and the development of bio-refineries technologies. As of 2013, the global 

production of kraft lignin was approximately 50 million tons per annum [14]. Ragauskas 

et al. estimated that the second generation of biorefineries are going to add additional 62 

million tons of lignin per year in the market [21].  Due to the growing markets for 

polyolefins and antioxidants, as well as the production of surplus amount of lignin, lignin 

has a great potential to become widespread in the antioxidant market.  In this study, we 

examine effects of addition amounts of de-polymerized kraft lignin (DKL) and de-

polymerized hydrolysis lignin (DHL) in PE on its thermo-oxidative stability, and find the 

appropriate content to achieve the performance comparable to that of a PE blend with 0.5 

wt% commercial antioxidant. 

4.2 Experimental 

4.2.1 Materials 

The materials used in preparing the binary blends were low-density polyethylene 

(LDPE), de-polymerized kraft lignin (DKL), de-polymerized hydrolysis Lignin (DHL), 

and Irganox 1010.  LDPE with the density of 0.925 g/mL and melt flow index of 2.5 
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g/min was supplied by Sigma-Aldrich. Kraft lignin (KL) and hydrolysis lignin (HL) were 

obtained from FPInnovation, which are products of their proprietary LignoForce process 

[22] in its pilot plant in Thunder Bay, Ontario and “TMP-bio process” [23], respectively. 

De-polymerization of the KL and HL were realized by a low-temperature/low-pressure 

process developed by the authors’ group (currently patent pending). Briefly, KL de-

polymerization was carried out in a Parr autoclave reactor (500 mL) at 250C, 1 h, with 

20 wt.% KL substrate concentration in poly-alcohol-water co-solvent in the presence of 

an alkaline catalyst (NaOH/KL mass ratio of 0.28), producing de-polymerized KL (DKL) 

at a yield of ~90 wt.%. De-polymerized hydrolysis lignin (DHL) was obtained by acid 

catalyzed de-polymerization at 200C, 1 h with 20 wt.% HL substrate concentration in 

the same solvent in the presence of an acid catalyst (H2SO4/HL mass ratio of 2% w/w), 

leading to ~70 wt.% yield of DHL. The DKL and DHL had a molecular weight of 1164 

g/mol and 1413 g/mol, respectively. The phenolic content of the DKL and DHL was 2.7 

mol phenol/kg and 1.9 mol phenol/kg, respectively. The aliphatic hydroxyl content of the 

DKL and DHL was 0.7 mol/kg and 0.46 mol/kg respectively. 

The commercial antioxidant (Irganox 1010) was supplied by Sigma-Aldrich. Irganox 

1010 is the trade name of Pentaerythritol tetrakis(3,5-di-tert-butyl-4-

hydroxyhydrocinnamate), which is a third-generation antioxidant with the phenolic 

content of 3.6 mol phenol/kg and volatility as measured in terms of 10% weight loss 

measured from thermogravimetric analysis at 287C [24]. 

Eight samples, whose compositions are summarized in Table 4-1, were prepared using a 

HAAKE MiniLab II Micro Compounder. The PE and antioxidants were compounded at 

140C for 10 min at 100 rpm.  

Table 4-1. Compositions of PE blends 

Sample 
name 

PE (wt%) Irganox 1010 
(wt%) 

DKL (wt%) DHL (wt%) 

PE 100 0 0 0 

PE-0.5irg 99.5 0.5 0 0 

PE-0.5DKL 99.5 0 0.5 0 
PE-2.5DKL 97.5 0 2.5 0 
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PE-5DKL 95 0 5 0 

PE-0.5DHL 99.5 0 0 0.5 
PE-2.5DHL 97.5 0 0 2.5 
PE-5DHL 95 0 0 5 

4.2.2 Scanning electron microscopy (SEM) 

The compounded samples were fractured in liquid Nitrogen and observed in a scanning 

electron microscope (LEO (Zeiss) 1540XB FIB/SEM) at 1 keV. Prior to imaging, the 

samples were coated with 10 nm osmium using Osmium Plasma Coater (Filgen 

OPC80T). 

4.2.3 Differential scanning calorimetry (DSC) 

The isothermal DSC (differential scanning calorimetry) method of measuring Oxidation 

Induction Time (OIT) was employed in accordance to the ASTM standard [ASTM D-

3895] for quality control of polyolefins containing primary (chain-breaking) antioxidants. 

A sample of 5-6 mg was heated in an open aluminum pan in a differential scanning 

calorimeter (DSC1, Mettler Toledo) with a STARe software, from 50C to 220C at a 

heating rate of 10C/min under a nitrogen flow of 50 mL/min. After the temperature 

reached 220C, the sample was maintained at the temperature for 1 minute and then the 

purge nitrogen gas was switched to air with a flow rate of 50 ml/min. The sample was 

heated in air at 220C until the time at which oxidation begins, and the heat flow was 

recorded. The time interval between the switch of gas and the onset of the thermo-

oxidation exotherm was reported as the OIT time. 

The activation energy for thermo-oxidative degradation was also measured using DSC by 

following the Flynn/Wall/Ozawa Method as described in ASTM E698-16. A sample of 5-

6 mg was heated from 50C to 450C at four different heating rates (7.5, 10, 12.5, and 

15C/min) under an air flow of 50 mL/min. 



65 

 

 

 

4.2.4 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was conducted in a Q-500, TA Instrument apparatus 

with a Universal TA analysis software. A sample with a mass of 5-6 mg was heated in an 

air atmosphere (20 mL/min) at a heating rate of 10C/min from 50C to 600C and the 

TGA traces were recorded. 

4.2.5 Mechanical Testing  

Tensile tests were performed on Type V specimens as per ASTM D638, on an ADMET 

Expert7600 computerized universal testing machine, at ambient conditions and at a 

crosshead speed of 5 mm/min. Some PE blends were selected for the tensile tests. In 

order to produce Type V specimens, the samples were compounded using the HAAKE 

MiniLab II Micro Compounder at 140C for 10 min at 100 rpm. The resulting molten 

polymer from the compounder was transferred to a preheated mini-injection molding 

machine (HAAKE MiniJet), which then injected the melt into a mold with a 240 bar 

injection pressure. Injection cylinder and mold temperatures were set at 140°C and 40°C, 

respectively. 

Long-term thermo-oxidative stability was evaluated in terms of change in tensile 

properties after 200 h exposure in the oven at 100C. Long-term UV stability was 

evaluated in terms of change in tensile properties after 200 h exposure in fluorescent UV 

light in an accelerated weathering tester (LUV-2) according to ASTM D4329−13 at 

100% humidity at 40 °C. 
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4.3 Results and Discussions 

4.3.1 Morphology 

 

                   

               

                  

Figure 4-1. SEM micrographs of a) PE, b) DKL, c) PE-0.5DKL blend, d) PE-5DKL 

blend, e) DHL, f) PE-0.5DHL blend and g) PE-5DHL blend 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 
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Figure 4-1 shows representative SEM micrographs of some typical samples.  The fracture 

surface of the neat PE did not show any particles (Figure 4-1a) as expected. When the 

DKL, whose original size is around 20 μm (Figure 4-1b), was added to PE at 0.5 wt% 

addition, no particles were visible (Figure 4-1c), but many particles of 1-2 μm were 

observed in the PE-DKL blend at the 5 wt% DKL addition (Figure 4-1d). This may 

suggest that the DKL in the PE at the 0.5 wt% addition is highly dispersed or soluble. 

However, with further addition, DKL reached its solubility limit in PE and precipitated 

out or was less dispersed, and thus the DKL particles were visible by SEM. When the 

DHL, whose original size is less than 1 μm (Figure 4.1e), was added to PE, no particles 

were visible in the PE-DHL blends at the 0.5 wt% (Figure 4-1f) and 5 wt% addition 

(Figure 4-1g). Hence, this result may suggest that DHL is soluble or has good dispersity 

in the PE up to the 5 wt% addition. The improved solubility or dispersity of DHL 

compared to DKL in PE might be owe to DHL’s less aliphatic hydroxyl content (0.46 

mol/kg), compared to DKL (0.7 mol/kg), which led to the increased compatibility of 

DHL with the non-polar PE matrix. 

4.3.2 Oxidation induction time (OIT) 

Figure 4-2 presents the OIT graphs of various PE blends and Figure 4-3 summarizes the 

OIT values dervied from Figure 4-2.  

 

Figure 4-2. DSC curves obtained from OIT tests for various PE blends 
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Figure 4-3. Oxidation induction time of PE with (a) DKL and (b) DHL 

The OIT measures thermo-oxidative stability of polymeric materials. PE blends 

containing lignin displayed a longer OIT compared to that of neat PE, indicating the 

enhanced stability to thermo-oxidative degradation rendered by the lignin molecules. 

Compared with that of neat PE (OIT ~ 2 min), OIT of PE-DKL increased to ∼25 min 

with the addition of only 0.5 wt% of DKL, and OIT of PE-DHL rose to 11.5 min with 
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PE blends can be explained by the aromatic hydroxyl groups (or phenolics) present in 

DKL (2.7 mol phenol/kg) and DHL (1.9 mol phenol/kg) which are effective for 

scavenging the radicals generated in the thermo-oxidative degradation process, similar to 

the effects of hindered phenolic antioxidants.  

As presented by Figure 4-3a, after the addition of 2.5 wt% of DKL, the increase in OIT is 

less pronounced than that from 0 to 0.5 wt% addition. On the other hand, as presented by 

Figure 4-3b, the OIT increases with the increase of DHL content in an almost linear 

manner. These different phenomena may be a result of difference in DKL’s and DHL’s 

solubility or dispersity in PE. As suggested previously from Figure 4-1, PE-DKL had the 

precipitation of DKL below the 5 wt% addition. Due to the precipitation, the interaction 

between DKL and PE was less effective, hence the OIT values level off after 2.5 wt% 

DKL addition. However, since the DHL has better solubility or dispersity in PE up to the 

5 wt% addition (Figure 4-1), the interaction between DHL and PE was more effective 

and the OIT values increased almost linearly with the DHL addition amount. 

As demonstrated in Figure 4.3, the addition of 2.5 wt% DKL and 5 wt% DHL can reach 

the same level of OIT achieved by the addition of 0.5 wt% Irganox 1010 (~35.9 mins). 

According to Pouteau et al., antioxidants with low molecular weight have the benefit of 

diffusing in the polymer matrix easily, which leads to better antioxidant activity [5]. 

However, the studies on commercial antioxidants by Vulic et al. [24] and Tocháček et al. 

[25] suggested that antioxidants with low molecular weight has a problem of quick 

volatilization. Tocháček et al. [25] demonstrated that stabilizer performance of 

antioxidants falls drastically when the molecular weight decreased below 300-400 g/mol. 

Multiple studies [24,25] attributed the stability rendered by Irganox 1010 to its higher 

molecular weight (compared to first generation antioxidants) without sacrificing the 

phenolic concentration. After the de-polymerization, DKL and DHL had the weight-

average molecular weight (Mw) of 1164 g/mol and 1413 g/mol, respectively, which are 

close to the molecular weight of Irganox 1010 (1178 g/mol). Hence, DKL and DHL are 

expected to provide similar level of antioxidant activity of Irganox 1010. However, as 



70 

 

 

 

demonstrated in Figure 4-3, it takes five times more DKL and 10 times more DHL to 

provide the same level of efficacy of Irganox 1010. This can be attributed to the lower 

phenolic content of DKL and DHL as compared to Irganox 1010.  According to the 

literature, the structure of Irganox 1010 is composed of multiple hindered phenols 

tethered together, which have improved the phenolic concentration without sacrificing 

the molecular weight [24].  The phenolic content of Irganox 1010 is 3.6 mol phenol/kg 

[24]; whereas even after de-polymerization, DKL had the phenolic content of 2.7 mol 

phenol/kg and DHL had the phenolic content of 1.9 mol phenol/kg. Moreover, even after 

de-polymerization, DKL and DHL had polar polyol components in their side chains 

whereas Irganox 1010 had nonpolar components in its secondary structure. Hence, the 

hydrophilicity of DKL and DHL also contributed to the reduced compatibility with 

hydrophobic PE, as compared to commercial antioxidant.   

4.3.3 Activation energy for oxidative degradation 

Figure 4-4 illustrates the DSC curves of neat PE, PE-DKL, PE-DHL, and PE-Irganox 

blends at various heating rates. PE-DKL and PE-DHL exhibited multiple peaks and 

valleys on the DSC curves after the initial exotherm peak. It is widely accepted PE 

undergoes branching and crosslinking along with the chain scission during the 

degradation phenomenon. Hence, the multiple peaks observed in PE could be related to 

the crosslinking and branching reactions [3,26]. 
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Figure 4-4. DSC curves of various PE blends at different heating rates: (a) 7.5C/min, (b) 

10C/min, (c) 12.5C/min, and (d) 15C/min. 
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According to the Flynn/Wall/Ozawa method described in ASTM E698-16, the activation 

energy (E) for oxidative degradation of a polymer can be written as:   

 𝐸 = −2.19 𝑅 
dlog 𝛽

d 𝑇p
−1         (1) 

where R is the gas constant, β is the heating rate, and Tp is the temperature at the 

maximum of the first peak of exotherm. 

Thus, by plotting log β vs. 1/ Tp, as shown previously (Figure 3-6), the slope 

(=E/(2.19R)) can be used for calculating the activation energy. As mentioned above, the 

Flynn/Wall/Ozawa method calculates the activation energy employing the peak 

temperature of exotherm on the DSC heating curves. However, in order to effectively 

comprehend the activation energy of thermo-oxidative degradation of a polymer before 

and after incorporating an antioxidant, we employed temperature at the onset of exotherm 

(To) instead of the peak temperature for calculation of E in accordance to Eq. 1. As is 

known, the primary role of an antioxidant (de-polymerized lignins in this study) is 

scavenging peroxy radicals, thus retarding the propagation reactions. Hence, antioxidants 

are active only during the induction period, resulting in an increase in onset of the 

exotherm, and sometimes the peak temperature of the exotherm, while the latter peaks are 

not normally correlated with the activity of the antioxidant [27,28].  

Figure 4-5 shows the activation energy of PE blends, which were calculated using the 

DSC thermograms obtained at different heating rates (Figure 4-4). An antioxidant hinders 

the overall oxidative degradation by consuming free radicals and producing stabilized 

phenoxy radicals, which hence increases the energy barrier (activation energy) that the 

PE has to overcome to initiate the oxidation reaction. 

Both Figures 4-5a and 4-5b indicate that the activation energy of the PE blends increased 

with increasing the de-polymerized lignin content. The relationship is similar to that of 

OIT vs. the depolymerized lignin content (Figure 4-3): the activation energy increased 

with the DKL content but leveled off at 2.5 wt% DKL addition (Figure 4-5a). On the 
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other hand, the activation energy increased with the increase of DHL content in an almost 

linear manner (Figure 4-5b). These different phenomena might be a result of difference in 

DKL’s and DHL’s solubility in PE, as similarly discussed previously for the relationship 

of OIT vs. the depolymerized lignin content (Figure 4-3). 

  

Figure 4-5. Activation Energy of PE blends with (a) DKL and (b) DHL 

4.3.4 Temperatures at mass loss 

Typical TGA and differential TGA (DTGA) curves of various PE blends are shown in 

Figure 4-6. Table 4-2 summarizes the temperature at the onset of mass loss, the 

temperature at 10% mass loss, and the temperature at the maximum mass loss rate, which 

were determined from the TGA and DTGA thermograms. 
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Figure 4-6. Typical TGA and DTGA curves of (a) PE, (b) PE-0.5irg, (c) PE-0.5DKL, (d) 

PE-2.5DKL, (e) PE-5DKL, (f) PE-0.5DHL, (g) PE-2.5DHL, and (h) PE-5DHL 
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Table 4-2. Temperatures at mass loss for PE blends 

Sample Temperature at the 
onset of mass loss (oC) 

Temperature at 
10% mass loss (oC) 

Temperature at the 
maximum mass loss rate (oC) 

PE 266 343 390  

PE-0.5irg 271 346 457   

PE-0.5DKL 268 349 430  

PE-2.5DKL 273 365 434  

PE-5DKL 302 404 450  

PE-0.5DHL 266 365 441 

PE-2.5DHL 270 365 445 

PE-5DHL 270 393 446 

The increase of DKL and DHL contents in the PE blends progressively shifted the TGA 

and DTGA curves toward higher temperature. Incorporation of DKL and DHL into PE 

increased the temperatures at onset, 10% and maximum mass loss by about 5-30°C, 

demonstrating that thermal-oxidative stability of PE was improved by the addition of the 

de-polymerized lignins. 

4.3.5 Mechanical properties  

Tensile tests were conducted for selected samples (PE, PE-2.5DKL and PE-0.5irg) before 

and after 200 h thermo-oxidative or UV exposure.  
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Figure 4-7. Mechanical properties of PE blends: (a) tensile strength, (b) Young’s 

modulus, and (c) strain at failure 
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Figure 4-7a shows tensile strength of PE blends. Although the standard deviation of the 

results was large, the results suggested that the addition of DKL did not affect the tensile 

strength of the PE before exposing to the weathering conditions. It should be noted that 

these results are better than what reported in literature. Many literature studies on a high 

level of addition of a crude (or unmodified) lignin in a polyolefin observed decrease in 

tensile strength due to the poor compatibility between polar lignin and the non-polar 

polymer matrix  [4,29,30]. In this work, the addition of 2.5 wt% DKL did not alter the 

tensile strength of PE may be owe to the improved compatibility between PE and DKL 

that has a low molecular weight and decreased aliphatic hydroxyl content. After 200h 

thermo-oxidative exposure, the tensile strength of all the samples including the PE and 

the two blends decreased. After UV exposure, however, PE-2.5DKL and PE-0.5irg 

blends had better tensile strength than neat PE. The PE-2.5DKL blend has better tensile 

strength than that of either the neat PE or the PE-0.5irg after 200h thermo-oxidative 

exposure. 

Figures 4-7 b and 4-7c shows Young’s modulus and strain at failure of the neat PE and 

the PE blends. Addition of Irganox or DKL did not change Young’s modulus and strain 

at failure of the PE significantly before or after the thermo-oxidative or UV exposure. 

The similar results of mechanical properties of all these samples (PE, PE-DKL and PE-

irg) after thermo-oxidative and UV exposure might be due to short time exposure (200h) 

to heat and UV. Given a longer time of exposure, some differences in the mechanical 

properties between these samples would be observed, which will be further investigated 

in future work.  

The benefits of adding DKL or DHL to PE are two folds: (1) economic benefit as DKL or 

DHL is less expensive than the commercial antioxidant and the neat PE (as demonstrated 

in Section 4.4), and (2) environmental benefit as it is expected that the PE-DKL or PE-

DHL bio-blend would be more biodegradable than neat PE [16,31,32]. 
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4.4 Analysis of Material Costs of PE Blends 

As discussed in the previous sections, PE blend with 2.5 wt% of DKL or 5 wt% of DHL 

addition could attain the same level of thermo-oxidative stability as the PE blend with 0.5 

wt% of Irganox 1010 does. The material costs of these PE blends are simply estimated 

here and summarized in Table 4-3, based on 1 ton of each blend and assuming the prices 

of the raw materials are: 1200 USD/t-PE, 1000 USD/t-DKL or DHL, and 4000 USD/t-

Irganox. The prices of PE and commercial antioxidant (Irganox 1010) were obtained 

from commercial products listed on www.alibaba.com in July, 2017, and the prices of 

DKL and DHL were estimated by our own research group based on a techno-economic 

study of our proprietary lignin de-polymerization process.  

Table 4-3. Material costs of 1 ton PE or PE blends  

Blend 
name 

Antioxidant Amount of 
antioxidant 
(t) 

Amount 
of PE (t) 

Cost of 
antioxidant 
(USD) 

Cost of PE 
(USD) 

Cost of PE 
blend (USD) 

PE  0 1 0 1,200 1,200 

PE-0.5irg Irganox 
1010 

0.005 0.995 20 1,194 1,214 

PE-2.5DKL DKL 0.025 0.975 25 1,170 1,195 
PE-5DHL DHL 0.05 0.95 50 1,140 1,190 

Table 4-3 demonstrates that the addition of the larger amount of DKL and DHL did not 

increase the cost of the PE blends. Instead, the material cost of the PE blend that contains 

a larger amount of DKL (2.5 wt%) or DHL (5 wt%) is actually lower than that of the PE 

blend with a smaller amount of the commercial antioxidant (0.5 wt%).  

4.5 Conclusions 

Effects of addition amounts of de-polymerized kraft lignin (DKL) and de-polymerized 

hydrolysis lignin (DHL) in PE on their thermo-oxidative stability were examined in this 

study, compared with a PE blend with 0.5 wt% commercial antioxidant (Irganox 1010). 

The OIT and activation energy for thermo-oxidative degradation of the PE blend 

increased with the increase of DKL or DHL content: the increase leveled off after the 

addition of 2.5 wt% of DKL, but increased in an almost linear manner for DHL up to 5 
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wt% addition. It is postulated that the difference in the way to increase between DKL and 

DHL were caused by that in the solubility of DKL and DHL in PE matrix, as suggested 

by the SEM micrographs. The results also revealed that the addition of 2.5 wt% DKL or 5 

wt% DHL attained the same level of antioxidant activity as the addition of 0.5 wt% 

Irganox 1010. The lower phenolic concentration, complex molecular feature, and higher 

hydrophilicity of the de-polymerized lignins might account for their lower antioxidant 

activity than the commercial antioxidant at a given content. However, owing to the lower 

price of DKL or DHL compared with that of the commercial antioxidant or the neat PE, 

the addition of the larger amount of DKL and DHL did not increase the cost of the PE 

blends. Instead, the material cost of a PE blend that contains a larger amount of DKL (2.5 

wt%) or DHL (5 wt%) is actually lower than that of a PE blend with a smaller amount of 

commercial antioxidant (0.5 wt%). 

Mechanical testing showed that DKL addition to PE did not alter the tensile properties of 

PE.  Mechanical properties of all samples (PE, PE-2.5 DKL and PE-0.5irg) after 200h 

thermo-oxidative and UV exposure are similar likely due to short exposure time to heat 

and UV. Mechanical properties of the PE blend after longer time exposure to heat and 

UV will be further investigated in future work.  
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Chapter 5  

5 Conclusions and Recommendations 

5.1 Conclusions    

Lignin, a major component of biomass, is an attractive alternative to hindered phenol-

based antioxidants for polymers due to its renewable nature and naturally occurring 

hindered phenolic structure. In this study, for the first time, lignin de-polymerization was 

explored as a promising approach to improve the reactivity of the lignin-based 

antioxidants for polymers (polyethylene, PE and polypropylene, PP).  

In the first part of the research, a proprietary hydrolytic de-polymerization process was 

utilized to increase the antioxidant activity of two types of technical lignin: kraft lignin, 

KL (a by-product from the pulp and paper industry) and hydrolysis lignin, HL (a by-

product from the pre-treatment processes in cellulosic ethanol plants). The addition of a 

lignin-based antioxidant: KL, de-polymerized KL (DKL), HL and de-polymerized HL 

(DHL) to PE or PP increased the oxidation induction time (OIT), activation energy for 

oxidative degradation, and thermal degradation temperature (except for HL). The 

antioxidant effects of the lignin-based antioxidants follow the order of:  de-polymerized 

KL (DKL) > de-polymerized HL (DHL) > KL > HL, which is in the same order as their 

phenolic content and in the reverse order of molecular weights. Thus, it was concluded 

that lignin de-polymerization effectively decreases the molecular weight, improves its 

compatibility to the polymer matrix and increases its phenolic content, which account for 

the improved antioxidant activity of the de-polymerized lignins.  

In the second part of the research, effects of addition amounts of DKL and DHL in PE on 

their thermo-oxidative stability were examined, compared with a PE blend with 0.5 wt% 

commercial antioxidant (Iraganox 1010). The OIT and activation energy for thermo-

oxidative degradation of the PE blend increased with the increase of DKL or DHL 

content. The increase leveled off at 2.5 wt% DKL addition but augmented in an almost 

linear manner for DHL addition up to 5 wt%. The results also revealed that the addition 
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of 2.5 wt% DKL or 5 wt% DHL attained the same level of antioxidant activity as the 

addition of 0.5 wt% Irganox 1010. The lower phenolic concentration, complex molecular 

feature, and higher hydrophilicity of the de-polymerized lignins might account for their 

lower antioxidant activity than the commercial antioxidant at a given content. However, 

owing to the lower price of DKL or DHL compared with that of the commercial 

antioxidant or the neat PE, the addition of the larger amount of DKL and DHL did not 

increase the cost of the PE blends. Instead, the material cost of a PE blend that contains a 

larger amount of DKL (2.5 wt%) or DHL (5 wt%) is actually lower than that of a PE 

blend with a smaller amount of commercial antioxidant (0.5 wt%). Mechanical testing 

showed that DKL addition to PE did not alter the tensile properties of PE.  Mechanical 

properties of all samples (PE, PE-2.5 DKL and PE-0.5irg) after 200h thermo-oxidative 

and UV exposure are similar likely due to short exposure time to heat and UV.  

To conclude, de-polymerization proved to be an effective and cost-effective strategy to 

improve the reactivity and compatibility of technical lignins with polyolefin matrix. The 

benefits of adding de-polymerized lignin in polyolefins have two-fold benefits. Along 

with the benefit of depolymerized lignin (DL) being an cost-effective alternative to 

commercial antioxidants, it also has the environmental benefit as it is expected that the 

polyolefins-DL bio-blends are more biodegradable than neat polymer [16,31,32]. 

5.2 Summary of the major contributions of this 
research  

1. In this research, for the first time, lignin de-polymerization was demonstrated as an 

effective method to improve the reactivity of the lignin-based antioxidants for polymers 

(polyethylene, PE and polypropylene, PP). The comparison between the de-polymerized 

lignin and the crude lignins showed that de-polymerization effectively improved the 

antioxidant activity of technical lignins and the compatibility of the lignin with polymer 

matrix owing to decreased molecular weight, increased phenolic content, and lower  

aliphatic hydroxyl content.  
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2. The research  on varying contents of the de-polymerized lignins on PE proved that 

addition of 2.5 wt% of de-polymerized kraft lignin (DKL) and 5 wt% of de-polymerized 

hydrolysis lignin (DHL) could render the same level of thermo-oxidative stability 

rendered by 0.5 wt% of a commercial antioxidant. Even though needed in higher amount, 

de-polymerized lignin can be an inexpensive green alternative to commercial 

antioxidants. 

5.3 Recommendations 

Mechanical properties of the PE blend after longer time exposure to heat and UV should 

be further investigated in future work. The long term heat stability and long term UV 

stability of DKL and DHL in polyolefins can be studied in terms of longer heat and UV 

exposure, and different weathering conditions.  

As final polymer blend can contain other additives to achieve the desired product 

characteristics, it should be worth investigating the synergistic effect of de-polymerized 

lignins and other additives.  

Also, the effects of different de-polymerization conditions on the antioxidant activity can 

be studied in order to evaluate whether an optimum exists in terms of increasing phenolic 

content and decreasing aliphatic content.  

A detailed cost analysis should be carried out to investigate the overall economic benefits 

of using de-polymerized lignin as a green alternative to commercial petroleum-based 

antioxidant for polymers. 
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