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Abstract

Walleye is a very common recreational fish in Canada with a strong cannibalism tendency,
such that walleyes with larger sizes will consume their smaller counterparts when food sources
are limited or a surplus of adults is present. Cannibalism may be a factor promoting population
oscillation. As fish reach a certain age or biological stage (i.e. biological maturity), the number
of fish achieving that stage is known as fish recruitment. The objective of this thesis is to
model the walleye population with its recruitment and cannibalism e↵ect. A matrix population
model has been introduced to characterize the walleye population into three di↵erent groups:
newborns, juveniles, and adults. A delay di↵erential equation (DDE) model has also been
introduced to characterize walleyes into two groups including juveniles and adults. Local and
global stabilities of equilibria have been discussed in both models. Furthermore, numerical
simulations are present to visualize the e↵ects of both models.

Keywords: Walleye, Cannibalism, Population Dynamic, Matrix Population, Delay Di↵er-
ential Equations, Local Asymptotical Stability, Global Asymptotical Stability, Basic Repro-
duction Rate
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Chapter 1

Introduction

Walleye is a common fish species found in many waters in Canada and the northern United
States. In Canada, it occurs in most parts of Ontario, Manitoba, Saskatchewan, and Alberta.
Walleye is one of the most important species to the recreational fisheries in North America[17].
Based on the data from a survey of recreational angling back in 2005, walleye was the primary
species caught in Canada [11]. Similarly, in the USA, a national survey was conducted, indi-
cating that 3.8 million anglers spent an average of 13.6 days angling for walleye in 2001 [28].
According to the survey conducted by Fisheries and Oceans Canada in 2010, walleye was the
top species harvested by anglers in Ontario, Manitoba, Saskatchewan and Alberta, standing for
23% of the total fish harvested by anglers in the country [12].

1.1 The Life Cycle and Food Sources of Walleye

Growth rates in walleye are highly influenced by a lot of factors including temperature, oxygen
level, pH level of the habitat, pollution, food quality, etc [14]. If the water temperature is satis-
factory, spawning occurs usually before the end of June; however, spawning is not guaranteed
with a low water temperature [27].

After being spawned, eggs only need 4 to 10 days to hatch with di↵erent water temperatures
[27]. After 40 to 60 days, juvenile walleyes become piscivorous but not yet sexually mature.
In fact, walleyes are heterosexual, and male walleyes reach their maturity earlier than females
[4].

The age when walleye reaches sexual maturity depends on both the temperature and the
habitat fertility [14]. However, in general, juveniles are considered to be immature at 1-3 years
of age [17, 4].

Food sources of walleye shift ontogenetically with its di↵erent life stages [14]; however,
adult walleyes are fully piscivorous [14]. Larval walleyes are usually fed by plankton[16].

1



Chapter 1. Introduction 2

When larval walleyes grow, the food source moves rapidly from plankton to invertebrates and
zooplankton [16, 4, 14]. As walleye fry grows, they start to eat smaller fish as the primary food
source [4].

1.2 Cannibalism

Being piscivorous, walleyes do eat their own species, which is called cannibalism. Frankly,
cannibalism is significant enough to a↵ect the population dynamics of walleye. This phe-
nomenon is very noticeable in a lot of lakes [3, 20]. There has been a controversy about the
cause of cannibalism. In Polis’s paper [25], cannibalism is evaluated by the level of stressful
condition including the crowdedness and starvation. Population loss due to cannibalism can
be surprisingly high among walleye. In fact, in the Eastern Bering Sea, almost 3/5 of the an-
nual mortality of the total walleye pollock population is caused by cannibalism [9]. Therefore,
cannibalism plays a very critical role in population dynamics of walleye. In fact, walleye can
survive even when the food sources for the adults are limited, which is called the life boat e↵ect
[29].

1.3 Mathematical Models in Population Dynamics

Mathematical models have been well developed to study the population dynamics since the
end of eighteen century when Malthus published the book An Essay on the Principle of Pop-
ulation. Now, population dynamic is an important branch in Applied Mathematics to study
the trend of both human and animal population. Usually, a population can be studied using 4
di↵erent models including discreet matrix model, ordinary di↵erential equation (ODE) model,
delay di↵erential equation (DDE) model, and partial di↵erential equation (PDE) model. Ma-
trix population models have been used widely to study the population by generations or age
structure which involve the so-called Leslie matrix [19] introduced by Patrick Leslie back in
1945. For an age-structured population, another very common way to study is using PDE such
as McKendrick-von Foerster equation [23]. In fact, McKendrick-von Foerster equation is the
first model introducing age structure in population dynamics [2]. The model considers the pop-
ulation as a function of age and time. There are also a lot of papers studying the behaviour of
predator and prey population interactions. For this type of population dynamics, ODE models
are usually used. The simplest model was introduced by Alfred Lotka in 1909 [21]. In Lotka-
Volterra equations, prey has a logistic growth with no natural death term, and predator has the
growth rate only from hunting preys. It is a very simplified model, yet predicts the periodic
oscillations of populations. In recent years, DDE’s have been studied intensively because of



Chapter 1. Introduction 3

the nature of delay in birth and reproduction [18, 10, 5, 13, 2]. The most famous example is
Nicholson’s blowflies equation [5].

Cannibalism is a very common phenomenon for walleyes [3, 20]. Some mathematical
models have also been proposed to study the e↵ect of cannibalism in the population dynamics.
Cannibalism can be considered as a predator-prey model where both predator and prey are in
the same population group. The first model was proposed in 1954 by Ricker [26]. In that paper,
cannibalism is considered as density-dependent. The population cycle and chaos are shown in
the paper. However, the stability of a positive equilibrium in Ricker model is independent of
cannibalism (only dependent on birth rate) [26]. Some discreet models (e.g. [8, 6]) have also
been established to study such e↵ect. In the paper by Costantino [6], a nonlinear di↵erence
equation model was proposed to study the population dynamics of the flour beetle. The total
population is divided into three stages including larvae, pupae, and adults. In the paper, canni-
balism plays the role of stabilizing and controlling the population. In fact, without cannibalism,
the population is unbounded. That paper showed that there exist periodic solutions and chaos.

Partial di↵erential equation models have been used most frequently to study the structured
population models [24, 15]. In Diekmann’s model [24], cannibalism is a regulator of density.
The cannibalism e↵ect is added into the death terms of the PDE models. Both papers observed
the periodic solutions. Also, ordinary di↵erential equations can also be used to study the
structured population; however, it is not common to do so.

There are still a few papers using ODE models. In the paper by Magnusson [22], the pop-
ulation of walleyes was characterized into three life stages (adult predators, juvenile predators,
and prey). In his model, the population is not bounded. With a su�ciently large natural birth
rate, the system may be divergent. The paper shows that cannibalism has a destabilizing e↵ect
on positive equilibrium. Periodic solutions may exist with some high level of cannibalism.

1.4 Prospective and Organization of the Project

Since walleye is very important in both recreational and economical fisheries, knowing the
cannibalistic mechanism in the walleye population is critical. With the knowledge of such
mechanism, possible predictions can be made for the future fish population, and government
agencies can make better decisions on fish harvesting and fishing regulations. Decisions on fish
conservation are also possible to be made with this study. Some data shows that the population
of walleye in Lake Erie has a cycle [1]. With this data, we are trying to model the walleye
population with possible periodic solutions with cannibalism. We want to see how cannibalism
may a↵ect the population dynamics.

In Chapter 2, we propose a di↵erence equation model to investigate the population cycle
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due to the cannibalism e↵ect. The model is motivated by the LPA model [7] because of the
similarities of cannibalism mechanism between flour beetles and walleyes. In the model, the
population is divided into 3 stages including newborns, juveniles, and adults. We will verify
the well-posedness of the model, including the boundedness and positivity of solutions. We
will also explore the equilibria and their local stabilities using eigenvalues, and global stability.
Then, we will use numerical methods to simulate the model with some parameters to see if the
system has a periodic solution and how cannibalism a↵ects the equilibria and their stabilities.
In this chapter, the biological implication is that we found that the cannibalism is an a↵ect
causing population cycles. Although cannibalism lowers the population level, fish cannibalism
also has a stabilizing e↵ect.

In Chapter 3, a delay di↵erential equation model is introduced to study the population
dynamics of walleyes. Motivated by the Nicolson’s blowflies equation [5], we divide the pop-
ulation into two stages of life cycle, juvenile and adults. For the birth function, we will use
Ricker’s function [26]. Similar to Chapter 2, we will verify the boundedness and positivity of
solutions, and calculate the equilibria. We will also check the stability of each equilibrium.
Then we will use software (DDE23 from Matlab) to visualize the population dynamics with
di↵erent parameters. By some numerical simulations, we investigate whether or not there ex-
ists a periodic solution. In this chapter, we discovered that cannibalism has a life boat e↵ect
which means fish can still survive when the reproduction rate is at a low level. We also found
that cannibalism has a stabilizing e↵ect similar to Chapter 2.
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Chapter 2

Matrix Population Model of Walleye with
Cannibalism E↵ect

2.1 Introduction

Walleyes have four life stages including egg, newborn, juvenile, and adult. After they are born,
it only takes 4 to 10 days for walleye eggs to hatch [13]. As newborns, they are fed primarily
on plankton and zooplankton. Soon after, they shift their food sources from plankton to inver-
tebrates and some small fish [8]. However, their food can vary by conditions of their habitat.
In Lake Erie, the primary food of young walleye is phytoplankton instead of zooplankton [2].
Both juvenile and adult walleye are piscivorous, and they consume not only other fish but also
walleye smaller than their own sizes. Therefore, cannibalism is a critical part of the feeding
behaviour of walleye and it plays an important role in population dynamics.

Some data shows that the population of recruitments have a periodic fluctuation around
3 years [12]. It is very critical to investigate the cause of such fluctuation phenomena as it
contributes to the government policy of fish conservation and harvesting. Most observed re-
cruitments seem to exhibit an irregular cycle sinusoid pattern, and the mechanism of such
fluctuations are unknown. It is believed that such pattern likely reflects the influence of envi-
ronmental factors such as temperature, water quality, etc. It is also conjectured that cannibalism
may also be partially responsible for such fluctuations.

2.2 Model Formulation

Di↵erence equations have been intensively used in the field of population dynamics and math-
ematical biology since the pioneering paper of Leslie [11] 70 years ago. These matrix models

8
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can be generally written as the following form

X(t + 1) = P (X (t)) · X (2.1)

where P is a n ⇥ n square projection matrix governing the population at time t + 1 from the
population in the previous time t. Leslie particularly studied this matrix based on age structure.
Then, P(X) can be considered as the combination of two parts:

P(X) = F(X) + T (X)

F(X) =

0
BBBBBBBBBBBBBBBBBBB@

f1(X) f2(X) f3(X) · · · fn(X)
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1
CCCCCCCCCCCCCCCCCCCA

, T (~x) =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 · · · 0 0
⌧1(X) 0 · · · 0 0

0 ⌧2(X) · · · 0 0
...

...
. . .

...
...

0 0 · · · ⌧n�1(X) 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

where F(X) is the fertility matrix, and T (X) is the survival matrix. Here, fi(X) and ⌧i(X) are
corresponding to the birth function and death function of generation i.

In this section, a system of di↵erence equations is proposed to study the e↵ect of canni-
balism on the population dynamics of walleye. Our model is motivated by the LPA model
formulated by Costantino et al. [3, 4] for studying the population of flour beetles. In the LPA
model, flour beetles have 4 life stages including egg, larvae, pupa, and adult. Both larval and
adult beetles are cannibalistic, yet they tend to consume eggs. Additionally, during the stage of
the pupa, pupa does not consume anything, and it can be consumed by adults. Similar to flour
beetles, walleyes have the comparable population structure and cannibalism e↵ect. However,
walleye do not have the pupa stage. In fact, the juvenile walleye do consume both eggs and
newborns. Hence, some modifications have to be done to model the walleye cannibalism from
our motivation.

In this step, we need to characterize the fish population in terms of the life stages. In
our case, we can consider four stages of the fish population (Eggs, Newborns, Juveniles, and
Adults). The stage of the egg is only 2 weeks [13], and it is relatively short compared to other
stages. Hence, in this model, we will combine both egg and newborn stages into one stage, and
we still call it newborn stage. Newborns are the fish with age less or equal to 1 year, and they
do not have the ability to cannibalize the other fish. Juveniles are the fish older than 1 year old
and not older than 2 years. For juveniles, they are not biologically mature to lay eggs; however,
because most fish is size(age)-dependent cannibalistic, they do have the ability to eat eggs and
newborns. The last life stage is adults. In this stage, they are both biologically mature enough



Chapter 2. Matrix PopulationModel ofWalleye with Cannibalism Effect 10

to lay eggs and able to eat eggs, newborns and juveniles.

Let N(t), J(t), and A(t) be the populations of newborns, juveniles, and adults respectively
at time t. Based on the above characteristics at stages, we can have the following system of
nonlinear di↵erence equations.

8>>>>>>><
>>>>>>>:

N(t + 1) = bA(t)e�ce j·J(t)�cea·A(t)

J(t + 1) = (1 � µn)N(t)e�cn j·J(t)�cna·A(t)

A(t + 1) = (1 � µ j)J(t)e�c ja·A(t) + (1 � µa) · A(t)

(2.2)

For the exponential term, such as J(t+1) = N(t) · exp(�cn j · J(t)), if J(t) is 0, there would be no
cannibalism occurred, and J(t + 1) would just be N(t). In fact, the reason we use exponential
form is from the Poisson process including encounters of individuals [6]. The positive param-
eter b (b > 0) is the natural birth rate for the fish. ce j, cea, cn j, cna, and c ja are the cannibalism
coe�cients, meaning that they are the cannibalistic encounter rates for eggs and juveniles, eggs
and adults, newborns and juveniles, newborns and adults, and juveniles and adults. Finally, µa

denotes the death rate for the adult population satisfying 0 < µa < 1.

This system can also be written in the matrix form X(t + 1) = L(N(t), J(t), A(t))X(t).

X(t) =

0
BBBBBBBBBBB@

N(t)
J(t)
A(t)

1
CCCCCCCCCCCA

L(N(t), J(t), A(t)) =

0
BBBBBBBBBBB@

0 0 be�ce j·J(t)�cea·A(t)

(1 � µn)e�cn j·J(t)�cna·A(t) 0 0
0 (1 � µ j)e�c ja·A(t) (1 � µa)

1
CCCCCCCCCCCA

There are assumptions made in this model. The time intervals of newborns and juveniles
are identical, and deaths due to cannibalism occur before being adults. The reason we adapt
this assumption is that in most government research papers, they consider juveniles as walleye
younger than 3 years old [9]. In our case, new borns are the fish of 1 year old, and juveniles
are the fish of 2 years old.

2.3 Well-posedness

In order to check if the model is well-posed, the first thing we need to investigate is the non-
negativity. In population dynamics, only a non-negative population has a biological meaning.
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For the system (2.2), because b > 0 and 1�µa > 0, the entries of the Leslie matrix L are always
non-negative. This implies that

0
BBBBBBBBBBB@

N(0)
J(0)
A(0)

1
CCCCCCCCCCCA
�

0
BBBBBBBBBBB@

0
0
0

1
CCCCCCCCCCCA
=)

0
BBBBBBBBBBB@

N(t)
J(t)
A(t)

1
CCCCCCCCCCCA
�

0
BBBBBBBBBBB@

0
0
0

1
CCCCCCCCCCCA

for t = 1, 2, 3, ...We thus conclude that the system is non-negative invariant. Further more, we
want to investigate whether the solutions of the system are bounded.
From (2.2), we have

0  N(t + 1) = bA(t)e�ce j·J(t)�cea·A(t)  b · A(t)e�cea·A(t)  b
ceae
.

We can also obtain the boundness of J(t) shown as following:

J(t + 1) = (1 � µn)N(t)e�cn j·J(t)�cna·A(t)  (1 � µn)N(t)  (1 � µn)
b

ceae
t = 1, 2, 3, ...

Finally, for A(t), we have

A(t + 1) = (1 � µ j)J(t)e�c ja·A(t) + (1 � µa) · A(t)  (1 � µn)(1 � µ j)
b

ceae
+ (1 � µa) · A(t)

= ↵ + �A(t)

where ↵ = (1 � µn)(1 � µ j) b
ceae , and � = (1 � µa).

By the above inequality, we further obtain

A(t)  ↵ + � (↵ + �A (t � 1))

= ↵ + �↵ + �2 (↵ + �A(t � 2)))

= ↵(1 + � + �2 + ... + �t)A(0)

= ↵
1 � �t+1

1 � � A(0)

 ↵

1 � �A(0)

=
1
µa

(1 � µn)(1 � µ j)
b

ceae
A(0).
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Thus, we can conclude that all N(t), J(t), and A(t) are bounded.
On the other hand, from (2.2), the following inequalities hold:

0  N(t + 1)  bA(t)

0  J(t + 1)  (1 � µn)N(t)

0  A(t + 1)  (1 � µ j)J(t) + (1 � µa)A(t)

This means that the model is bounded by the following linear system

8>>>>>>><
>>>>>>>:

x(t + 1) = bz(t)

y(t + 1) = (1 � µn)x(t)

z(t + 1) = (1 � µ j)y(t) + (1 � µa)z(t)

(2.3)

with initial conditions x(0) = N(0) � 0,y(0) = J(0) � 0, and z(0) = A(0) � 0. We can rewrite
the linear system (2.3) in the matrix form:

0
BBBBBBBBBBB@

x(t + 1)
y(t + 1)
z(t + 1)

1
CCCCCCCCCCCA
=

0
BBBBBBBBBBB@

0 0 b
1 � µn 0 0

0 1 � µ j 1 � µa

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

x(t)
y(t)
z(t)

1
CCCCCCCCCCCA

which is equivalent to

X(t + 1) = L(0, 0, 0)X(t)

2.3.1 Basic Reproduction Number

There are several ways to obtain the basic reproduction number. Here, we will go by the
spectral radius of the next generation operator.
Let

A = F + T, where F =

0
BBBBBBBBBBB@

0 0 b
0 0 0
0 0 0

1
CCCCCCCCCCCA
, and T =

0
BBBBBBBBBBB@

0 0 0
1 � µn 0 0

0 1 � µ j 1 � µa

1
CCCCCCCCCCCA
.

Then, by Leenheer’s formula [10], the basic reproduction number is given by

R0 = ⇢
⇣
F (I � T )�1

⌘
,



Chapter 2. Matrix PopulationModel ofWalleye with Cannibalism Effect 13

where ⇢(M) represents the dominant eigenvalue of the matrix M. Then, we can calculate R0 by
plugging in F and T to obtain

R0 =⇢

0
BBBBBBBBBBBB@

0
BBBBBBBBBBB@

0 0 b
0 0 0
0 0 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBBB@

1 0 0
1 � µn 1 0

(1�µn)(1�µ j)
µa

1�µ j

µa

1
µa

1
CCCCCCCCCCCCA

1
CCCCCCCCCCCCA

= ⇢

0
BBBBBBBBBBBB@

b(1�µn)(1�µ j)
µa

b(1�µ j)
µa

b
µa

0 0 0
0 0 0

1
CCCCCCCCCCCCA

=
b (1 � µn)

⇣
1 � µ j

⌘

µa
.

By the definition of the basic reproduction rate and its biological meaning[10], we expect that
the population will go extinct if the basic reproduction rate is less than 1:

0
BBBBBBBBBBB@

x(t)
y(t)
z(t)

1
CCCCCCCCCCCA
!

0
BBBBBBBBBBB@

0
0
0

1
CCCCCCCCCCCA

as t ! 1 if R0 =
b(1 � µn)(1 � µ j)

µa
< 1. (2.4)

Actually, this can be verified as below. First, note that

X(t + 1) = L(Z(t))X(t)

 L(0, 0, 0)X(t)

 L2(0, 0, 0)X(t � 1)

 ...
 Lt+1(0, 0, 0)X(0).

(2.5)

Let r be the strictly dominant eigenvalue of L(0, 0, 0). Then, by Theorem 1.1.2 and Theorem
1.1.3 in Cushing’s book [6], we have the following:

8>>><
>>>:

(i) r < 1, R0 < 1

(ii) If r < 1, Lt(0, 0, 0)X(0)! 0 as t ! 1

Biologically, in the di↵erence equation model, if the basic reproduction number is less
than 1, the population will go extinction eventually. Additionally, we can consider this basic
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reproduction number as the net reproduction number per unit time per capita.

2.4 Equilibria

In this section, we consider the equilibriums of the system. An equilibrium is a time-independent
solution for the systems of di↵erence equations X(t + 1) = F(X(t)). And the equilibrium is de-
fined by

X = F(X) (i.e. xi = fi(x1, ..., xn) i = 1, 2, ...)

For the system (2.2), we can find the equilibrium by solving the following equations:

N = bAe�ce j·J(t)�cea·A, (2.6)

J = (1 � µn)Ne�cn j·J�cna·A, (2.7)

A = (1 � µ j)Je�c ja·A + (1 � µa) · A. (2.8)

The first thing we notice is that there exist a trivial equilibrium X0 = (0, 0, 0). At the triv-
ial equilibrium, because the population in each stage is zero, we can also call this extinction
equilibrium.

Besides the trivial equilibrium, we are able to investigate if a positive equilibrium exists by
solving the system (2.6)-(2.8) for non-zero values of the variables. From (2.8) and (2.7), we
get the following

J =
µaA

1 � µ j
ec jaA, N =

µa

(1 � µn)(1 � µ j)
Aec jaA+cnaA+cn j J. (2.9)

Substituting (2.9) back in (2.6) yields

µa

(1 � µn)(1 � µ j)
Aec jaA+cnaA+cn j J = bAe�ce j·J�cea·A. (2.10)

Since we look for positive solutions, cancelling A in (2.10) and rearranging the equation lead
to

exp(c jaA + cnaA + cea · A + cn jJ + ce j · J) =
b(1 � µn)(1 � µ j)

µa
= R0. (2.11)

Now, we can take logarithm of both sides to obtain the following equation

c jaA + cnaA + cea · A + cn jJ + ce j · J = ln R0. (2.12)
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We now further substitute (2.9) into the equation (2.12) to get

(c ja + cna + cea)A + (cn j + ce j)
µaA

1 � µ j
ec jaA = ln R0. (2.13)

Let g(A) denote the left hand side, as a function of A. Then, it is easy to see that g(A) is
monotonically increasing for A > 0 satisfying g(0) = 0 and g(1) = 1. Hence, equation (2.13)
has a positive solution for A if and only if R0 > 1.

To illustrate (2.13), a plot (Figure 2.1) has been generated with some random parameters.

Figure 2.1: R0 � A relationship

When R0 > 1, let A⇤ be the unique positive solution of (2.13).

J⇤ =
µaA⇤

1 � µ j
ec jaA⇤ ,

N⇤ =
µa

(1 � µn)(1 � µ j)
A⇤ec jaA⇤+cnaA⇤+cn j

µaA⇤
1�µ j

ec jaA⇤
,

then (N⇤, J⇤, A⇤) is the unique positive equilibrium of the system (2.2).
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2.5 Stability Analysis

2.5.1 Stability of Trivial Equilibrium

To check the local stability of the trivial equilibrium X0, we have to check the eigenvalues of
the Jacobian of the system (2.2) at X0. Calculating the Jacobian gives

M(N, J, A) =

0
BBBBBBBBBBB@

0 �ce jbA(t)e�ce j J(t)�ceaA(t) (b � ceabA(t))e�ce j J(t)�ceaA(t)

(1 � µn)e�cn j J(t)�cnaA(t) �cn j(1 � µn)N(t)e�cn j J(t)�cnaA(t) �cna(1 � µn)N(t)e�cn j J(t)�cnaA(t)

0 (1 � µ j)e�c jaA(t) (1 � µ j)J(t)e�c jaA(t) + (1 � µa)

1
CCCCCCCCCCCA
.

(2.14)
Evaluating (2.14) at E0 yields

M(0, 0, 0) =

0
BBBBBBBBBBB@

0 0 b
1 � µn 0 0

0 1 � µ j 1 � µa

1
CCCCCCCCCCCA
.

which is precisely the matrix L(0, 0, 0) in section 2.3. In order to check the stability, we need
to find the eigenvalues of the matrix above. If all the eigenvalues have the norm less than 1, we
can conclude that the equilibrium is stable. The eigenvalues are the cubic roots of the following
equation.

det

0
BBBBBBBBBBB@

�� 0 b
1 � µn �� 0

0 1 � µ j 1 � µa � �

1
CCCCCCCCCCCA
= ��

⇣
� �(1 � µa � �)

⌘
+ b(1 � µn)(1 � µ j) (2.15)

= ��3 + (1 � µa)�2 + b(1 � µn)(1 � µ j) (2.16)

= �3 � (1 � µa)�2 � b(1 � µn)(1 � µ j) = 0 (2.17)

Then, we can use the Jury criterion [1] for cubic equations to get the following necessary and
su�cient conditions for the roots to satisfy |�| < 1:

8>>>>>>>>>><
>>>>>>>>>>:

1 � (1 � µa) � b(1 � µn)(1 � µ j) > 0

1 + (1 � µa) + b(1 � µn)(1 � µ j) > 0

3 � (1 � µa) + 3b(1 � µn)(1 � µ j) > 0

1 � (1 � µa)b(1 � µn)(1 � µ j) � �
b(1 � µn)(1 � µ j)

�2 > 0

(2.18)

(2.19)

(2.20)

(2.21)

Rearranging (2.18), we get µa > b(1�µn)(1�µ j) () R0 < 1. Hence, (2.18) holds i↵ R0 < 1.
Because both 1� µa and b(1� µn(1� µ j)) are non-negative, (2.19) and (2.20) are naturally true
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if R0 < 1.
For (2.21), if R0 < 1, then � , b(1 � µn)(1 � µ j) < µa < 1. Hence,

1 � (1 � µa) b(1 � µn)(1 � µ j)|               {z               }
�

�� b(1 � µn)(1 � µ j)|               {z               }
�

�2
= 1 + (µa � 1)� � �2

> 1 + (� � 1)� � �2

= 1 � �
> 0 (� < 1)

We conclude that as long as (2.18) holds (i.e. R0 < 1), then (2.19)-(2.21) hold as well, and have
all the roots satisfying the condition |�| < 1.

Now, we can conclude that the absolute value of the dominant eigenvalue is less than 1 if
R0 < 1, and greater than 1 is R0 > 1, confirming the result in [7] for our system (2.2)

Note that we have actually shown in section 2.3 that if R0 < 1, then L⇤(0, 0, 0)X(0) ! 0 as
t ! 1. By (2.5), and the local stability of E0 proved above, we have established the globally
stability of E0 under R0 < 1. Note that when R0 > 1, E0 loses its stability and becomes unstable

We can also interpret the result biologically. Note that R0 =
(1�µn)(1�µ j)

µa
b < 1 is equivalent to

(1 � µn)(1 � µ j)b < µa which indicates that gaining is less than losing, implying that the birth
rate multiplied by the survival rate from newborns to juveniles and from juveniles to adults
is smaller than the death rate for adults. Thus, not surprisingly, the whole population will
eventually die out.

2.5.2 Stability of Positive Equilibrium

In addition to the extinction equilibrium, we know that when R0 > 1, there exists a unique pos-
itive equilibrium X⇤ = (N⇤, J⇤, A⇤). Similar to Cushing’s LPA model, the exchange of stability
occurs [5]. To check the stability of X⇤, we consider the Jacobian matrix (2.14) evaluated at X⇤.
By plugging equation (2.9) into (2.14), we can get the following simplified Jacobian matrix at
the positive equilibrium X⇤ = (N⇤, J⇤, A⇤). Since we are considering the positive equilibrium
X⇤, we know that R0 > 1 and A > 0. Note that this simplified Jacobian matrix does not apply
to the zero equilibrium because A = 0 when R0 < 1.

M(X⇤) = M(N⇤, J⇤, A⇤) =

0
BBBBBBBBBBBBBBBB@

0 �cejN⇤ �ceaN⇤ + N⇤
A⇤

J⇤
N⇤ �cnjJ⇤ �cnaJ⇤

0 µaA⇤
J⇤ �cjaµaA⇤ � µa + 1

1
CCCCCCCCCCCCCCCCA
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and the characteristic equation of M(X⇤) is

p(�, A) =�3

+
(cnjµaAecjaA � cjaµaAµ j + cjaµaA � µaµ j + µa + µ j � 1)

1 � µ j
�2

+
µaA(AecjaAcjacnjµa + ecjaAcnjµa + ecjaAcej � ecjaAcnj � cnaµ j + cna)

1 � µ j
�

+
µa(A2ecjaAcejcjaµa + µaAecjaAcej � AecjaAcej � Aceaµ j + Acea + µ j � 1)

1 � µ j

= 0,

(2.22)

where A = A⇤.

It is obvious that solving this characteristic equation is extremely complicated. Instead of
solving this equation, we can solve the equation when A = 0 (i.e. trivial equilibrium), and
see if � would change with respect to A. Then, the problem will be solving the characteristic
equation (2.22)

First of all, we need to solve �3 � (1 � µa)�2 � b(1 � µn)(1 � µ j) = 0. In this case, we have
one real dominant eigenvalue �0 and a complex conjugate pair of eigenvalues �±.

�± = ↵ ± �i,

↵ =
1
3

sa � 1
2
� � 1

18
s2

a

�
,

� =

p
3

2
1
�

⇣
�2 � 1

9
s2

a

⌘
> 0,

where
� :=

⇣1
2

bsnl +
1
27

s3
a +

� 1
27

bsnls3
a +

1
4

b2s2
nl
� 1

2
⌘ 1

3
> 0,

snl = (�1 + µn)(�1 + µ j) = (1 � µn)(1 � µ j) > 0,

sa = 1 � µa > 0.

Similar to the results from Cushing’s paper [5], the pair of complex conjugate eigenvalues must
satisfy the followings

|�±| < 1, when µa < 1.

|�±| = (bsnl)2/3 = (b(1 � µn)(1 � µ j))2/3 = R2/3
0 , when µa = 1. (2.23)

Note when R0 = 1, the positive equilibrium collapses to the extinction equilibrium. Natu-
rally, the Jacobian becomes the Leslie matrix L(0, 0, 0). From 2.3.1, we know the dominant
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eigenvalue of L(0, 0, 0) is � = R0 = 1.

Denote A⇤ and the principal eigenvalue for R0 > 1 by AR0 and �R0 respectively. Now, we
can take the implicit di↵erentiation of the function p(�R0 , AR0) = 0 with respect to R0, and we
can obtain the following

@

@�
p(�R0 , AR0)

d�R0

dR0
+
@

@A
p(�R0 , AR0)

dAR0

dR0
= 0

and
d�R0

dR0
= �

@
@A p(�R0 , AR0)
@
@� p(�R0 , AR0)

dAR0

dR0
. (2.24)

We know that dAR0
dR0

is positive at R0 = 1, and in order to ensure that d�R0
dR0

is negative, we need

to check if
@
@A p(�R0 ,AR0 )
@
@� p(�R0 ,AR0 )

is positive. This requires both @
@A p(�R0 , AR0) and @

@� p(�R0 , AR0) having the
same sign. Calculating these two partial derivatives at A = 0 and � = 1, we obtain

@p
@�
= 3 � 2

�µaµ j + µa + µ j � 1
�1 + µ j

= 2 µa + 1 > 0,
(2.25)

@p
@A
= �cnjµa � µaµ j + µa

�1 + µ j
�
µa

⇣
�cnaµ j + cnjµa + cej + cna � cnj

⌘

�1 + µ j
�
µa

⇣
�ceaµ j + cejµa + cea � cej

⌘

�1 + µ j

=
((cea + cna + 1)µ j + (�cej � cnj)µa � cea � cna � 1)µa

�1 + µ j

=
µa

1 � µ j

⇣
� (cea + cna + 1)µ j � (�cej � cnj)µa + cea + cna + 1

⌘

=
µa

1 � µ j

⇣
(cea + cna + 1)(1 � µ j) � (�cej � cnj)µa

⌘

=
µa

1 � µ j

⇣
(cea + cna + 1)(1 � µ j) + (cej + cnj)µa

⌘

> 0.
(2.26)

Thus, by (2.24), (2.25), and (2.26), we have

d�R0

dR0

����
R0=1
< 0.

Because �R0 = 1 when R0 = 1, we obtain that �R0 < 1 for R0 > 1 if R0 is su�ciently close to 1
(A = 0).
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If µa < 1, the two complex eigenvalues are close to the complex eigenvalues �± which
are less than 1 if n is close to 1. In this case, all the three eigenvalues of J have magnitudes
smaller than 1 if n > 1 is su�ciently close to 1. Because all the eigenvalues are smaller than
1, the positive equilibrium is locally asymptotically stable. This can also be explained by the
bifurcation diagram below:

Figure 2.2: Exchange of Stability

Note that for the red branch, the dominant eigenvalue is governed by � = R0 from 2.3.1.
However, for the blue branch, the dominant eigenvalue is governed by the characteristic poly-
nomial (2.22). When R0 = 1, two branches collapse, and the corresponding dominant eigen-
values collapse as well.

When R0 < 1, the extinction equilibrium is globally stable. When R0 = 1, the blue branch
crosses R0-axis, and it collapses to the red branch. From 2.3.1, we know the dominant eigen-
value �R0 = 1 when R0 = 1. Because d�R0

dR0

����
R0=1
< 0 along the blue branch, we conclude that

when R0 is su�ciently close to 1, the dominant eigenvalue �R0 < 1. Hence, the blue branch is
stable when R0 is su�ciently close to 1.

If µa = 1, biologically speaking, adults will die after one year. However, in reality, our
system would have biological meanings only if 0 < µa < 1 .
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Theorem 2.5.1 The following hold for the model (2.2)-(2.4)
(a) If

⇣
N(0), J(0), A(0)

⌘
is non-negative,

⇣
N(t), J(t), A(t)

⌘
will remain bounded in the non-

negative cone.
(b) If R0 < 1, then the extinction equilibrium (origin) is locally asymptotically stable and glob-
ally attracting in the nonnegative cone.
(c) If R0 > 1, there exists a unique non-negative positive equilibrium, and the model is uni-
formly persistent.
(d) The positive equilibrium is locally asymptotically stable for R0 > 1 su�ciently close to 1.

2.6 Numerical Simulation

In this section, we will keep b as a variable and see how the stability changes with respect to
b. For each case of di↵erent birth rate b, we run the simulation with both low cannibalism rate
and high cannibalism rate to compare the results as well. The following parameters are used
for the simulation.

Table 2.1: Low Cannibalism
Coe�cients Table

Coe�cients Value
Ce j 0.015
Cea 0.014
Cn j 0.013
Cna 0.012
C ja 0.011
µn 0.9
µ j 0.7
µa 0.3

Table 2.2: High Cannibalism
Coe�cients Table

Coe�cients Value
Ce j 0.045
Cea 0.044
Cn j 0.043
Cna 0.042
C ja 0.041
µn 0.9
µ j 0.7
µa 0.3



Chapter 2. Matrix PopulationModel ofWalleye with Cannibalism Effect 22

2.6.1 Bifurcation Diagram

Figure 2.3: Bifurcation with respect to b, µa = 0.3

From the Figure 2.3, we observe that the extinction equilibrium is stable for a very small
interval when R0 is small. Then, there exists a stable positive equilibrium. After that, there will
be a small chaos and a 3-cycle periodic solution following. When the R0 keeps getting larger,
a 3n-cycle periodic solution will occur. We are going to show some examples to illustrate
this phenomenon more. One thing worth mentioning is that when R0 is around 70, there is an
overlapping occur in the bifurcation diagram. We can see that it is a 4-cycle solution which is
not 3n-cycle. The reason for that is there are actually 2 pairs of overlapping which make the
6-cycle 4-cycle. However, whether it is continuous between the chaos and the 3-cycle periodic
solution is unclear. Then we run another simulation with a small range of net reproduction rate.

Figure 2.4: Bifurcation with respect to b, µa = 0.3, zoomed in
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In the zoomed-in diagram, Figure 2.4 shows that the extinction equilibrium is stable when
R0 < 1. Also, it is continuous between the chaos and the 3-cycle periodic solution.

2.6.2 Case 1: R0 = 0.8

For case 1, we check the case when b = 8 with both low and high cannibalism rates. When
b = 8, we can calculate R0 = 0.8. From the bifurcation diagram, we should get a diagram that
the total population is going extinct.

Figure 2.5: R0 = 0.8, b = 8, low cannibalism

In Figure 2.5, it is shown that the population of all 3 stages is declining to zero although
there is an oscillation happening in the beginning. It is natural to think about R0 as the net
reproductive rate. If the net reproductive rate is below 1, for discreet models, it shows that
the next generation will have less population in general than the previous generation. In this
scenario, the walleye will go extinct. Next, we want to check if a high level of cannibalism will
have any e↵ect on the population dynamics.
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Figure 2.6: R0 = 0.8, b = 8, high cannibalism

In Figure 2.6, there is not a noticeable di↵erence from Figure 2.5. However, if we look
closely, especially for juveniles we found that the population is convergent to 0 with the faster
rate. Hence, we are questioning whether cannibalism is stabilizing the system or speeding up
the convergence of the population.

2.6.3 Case 2: R0 = 12

For case 2, we check the case when b = 120 with both low and high cannibalism rates. When
b = 120, we can calculate R0 = 12. From the bifurcation diagram, we should get a diagram
that the total population has a stable positive equilibrium.
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Figure 2.7: R0 = 12, b = 120, low cannibalism

In Figure 2.7, R0 = 12, and a positive equilibrium exists, which matches the result from the
bifurcation diagram. For the first 40 years, we can clearly see there is an oscillation cased by the
negative eigenvalues with the magnitude less than 1. However, since the dominant eigenvalue
has the magnitude less than 1, and all three stages are reaching their own equilibrium. Again,
we are going to increase the cannibalism rate to see what cannibalism does to the population
dynamics.
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Figure 2.8: R0 = 12, b = 120, high cannibalism

In the Figure 2.8, R0 = 12. Comparing Figure 2.7 and Figure 2.8, we notice that there is not
a big di↵erence in the general trend of the convergence of population. However, we do notice
a decreasing amplitude of the oscillation. For Newborns, the peak value of the population with
low cannibalism is around 1800, and around 580 with high cannibalism. Also, we notice a
decreasing value of the equilibria for both adult and juvenile population.

2.6.4 Case 3: R0 = 20

For case 3, we increased the natural birth rate b to 200 (i.e. R0 = 20). From the bifurcation
diagram Figure 2.4, we know that the the scenario falls into the chaos part of the diagram.
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Figure 2.9: R0 = 20, b = 200, low cannibalism

In Figure 2.9, R0 = 20, It corresponds to the chaos part from the 2.3. We observe the
existence of periodic solutions; however, the frequency of this period is unknown. The solution
is eventually oscillating within their own upper and lowers bounds.

Next, we are increasing the cannibalism rates.
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Figure 2.10: R0 = 20, b = 200, high cannibalism

With a higher level of cannibalism rates, the oscillation of the system decreases. Although
the high cannibalism rates do not change the stability of the positive equilibrium, it still stabi-
lizes the solution to the system by decreasing the amplitude of the oscillation. Similar to 2.8,
2.10 is oscillating within a lower range of population levels. In order to check if a higher level
of cannibalism does stabilize the system, we need to increase the level of cannibalism.
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Figure 2.11: R0 = 20, b = 200, ce j = cea = cn j = cna = c ja = 0.9

With an even higher level of cannibalism, we notice that the positive equilibrium becomes
stable. Now, we can conclude that a higher level of cannibalism can actually stabilize the
system by decreasing the amplitude of oscillations and possibly stabilizing the positive equi-
librium.

2.6.5 Case 4: R0 = 30

For case 4, we increased the natural birth rate b to 200 (i.e. R0 = 20). From the bifurcation
diagram Figure 2.4, we know that the scenario falls into the chaos part of the diagram.
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Figure 2.12: R0 = 20, b = 200, low cannibalism

Figure 2.13: R0 = 20, b = 200, high cannibalism
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In Figure 2.12, R0 = 30. It corresponds to that a 3-cycle periodic solution exists. Because of
this cannibalism e↵ect, it is very noticeable that when the adult population reaches its peak, egg
and juvenile population reaches their troughs at the same time. In Figure 2.13, with a higher
level of cannibalism, we notice no change in the pattern of the population cycles. However, the
cannibalism lowers the population level.

2.6.6 Case 5: R0 = 90

Figure 2.14: R0 = 20, b = 200, low cannibalism
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Figure 2.15: R0 = 20, b = 200, high cannibalism

Similar to Figure 2.12, Figure 2.14 has the same pattern but with a 6-cycle period. It also
has the character that when the adult population reaches its peak, the other two streams are
reaching their troughs. One thing worth mentioning is that newborns sometimes reaches zero.
However, it is because the population fluctuates too much and the unit is 104. The newborn
population is not actually zero, and it is just comparably small. In Figure 2.15, with a higher
level of cannibalism, the population level is decreased, and it still has a 6-cycle period.
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2.6.7 Case 6: R0 = 170

Figure 2.16: R0 = 20, b = 200, low cannibalism

In the Figure 2.16, R0 = 170 and reaches the chaos part of the bifurcation. The solutions
are still bounded by the non-negative cone obtained from Section 2.3. However, we can not
observe a noticeable periodic solution.
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Figure 2.17: R0 = 20, b = 200, high cannibalism

Same as other diagrams with higher level of cannibalism, bigger cannibalism rates do not
change the stability of the positive equilibrium, but it does lower the level of the population.

2.6.8 Further Study: 4-stage Model

In most dynamical systems, period doubling is usually observed. In the model we studied, the
period 1 divides into period 3 at first. Then, the period doubles after. This phenomenon can
be understood in a biological way. A relatively low adult population will cause a low birth
in the year, and it will take 3 years to a↵ect the adult population again because the model is
constructed as 3 age stages. However, mathematically, the reason why the period 1 divides into
period 3 is still unknown. In this case, another 4 stage model has been constructed to test if my
hypothesis is correct. Another life stage between juvenile and adult has been added into the
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system, and we call it I(t) as the intermediate stage. The system is the following

8>>>>>>>>>>><
>>>>>>>>>>>:

N(t + 1) = bA(t)e�ce j·J(t)�cei·I(t)�cea·A(t)

J(t + 1) = (1 � µn)N(t)e�cn j·J(t)�cni·I(t)�cna·A(t)

I(t + 1) = (1 � µ j)J(t)e�c ji·J(t)�c ja·A(t)

A(t + 1) = (1 � µi)I(t)e�cia·A(t) + (1 � µa) · A(t)

(2.27)

The way we model this system is similar to the system previously studied. N the only di↵erence
is that intermediate stage can consume eggs, newborns, and juveniles. The analytical solution
and analysis are very similar too. Instead of solving the cubic characteristic polynomials, a
quartic characteristic polynomial has to be solved in order to test the local stability of the
equilibria. A bifurcation diagram for this system is generated with some sample parameters.

Figure 2.18: R0 = 170, b = 1700, µn = 0.9, µ j = 0.7, µa = 0.3

As we can see, the period 1 turns into period 4; then, the period doubling occurs. Now, we
can conclude that the hypothesis of having period-n is related to how many age groups there
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are in the model.

2.7 Conclusion

In Chapter 2, we studied the walleye population by constructing a matrix population model.
The population is divided into three stages which are newborns, juveniles, and adults. We
assumed that newborns and adults have the same length of the life stage. We defined the
basic reproduction rate R0. When R0 < 1, we found that the extinction equilibrium is globally
asymptotically stable. When R0 > 1, there exists a unique positive equilibrium. When R0 is
close enough to 1, the positive equilibrium is locally asymptotically stable. The global stability
of the positive equilibrium is still unknown. We numerically simulated the results with two
sets of cannibalism rates corresponding to a low and a high level of cannibalism. We found
bifurcation exists. With di↵erent birth rates, there exists stable equilibrium, periodic solution,
and chaos. We also found that with a higher level of cannibalism, the system has a lower
level of population. Cannibalism can also stabilize the system by decreasing the amplitude of
oscillation and even stabilizing the positive equilibrium.
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Chapter 3

Delay Di↵erential Equation Model of
Walleye Population with Cannibalism
E↵ect

3.1 Introduction

In the past few decades, there has been a lot of research conducted in regards to the population
dynamics of size-dependent cannibalism [9]. In fact, cannibalism plays a critical role in pop-
ulation dynamics in ecosystems such as fish and insects. Policy makers are able to make the
better decision to fish harvesting, pest control and other fields based on the study. As a result,
it is very important to understand the dynamics of the cannibalism.

One of the oldest model to study this phenomenon is the Ricker model [15] published
back in 1954. As a discrete population model, the Ricker model considers the characters such
as victim mortality and size-dependent cannibalism, and it allows stable fixed points, cycles,
and chaos. Besides the discrete models, some partial di↵erential equation models have also
been studied [8, 13, 7] by adding some cannibalism terms in the death functions and initial
conditions to McKendrick-von Foerster equation. Some ordinary di↵erential equation models
have also been introduced to explain the phenomenon of the population cycle because of the
cannibalism [12].

Cannibalism is related to age structure with individuals of elder ages eating younger indi-
viduals. On the other hand, delay di↵erential equations are natural means to describe popula-
tion growth of structured populations. In this chapter, we propose and analyze a delay di↵er-
ential equation model that characterizes the cannibalism in fish population growth. We hope
this model can show some light on the e↵ect of cannibalism on fish population, particularly on

39
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how the cannibalism e↵ect interplays with other model parameters including maturation delay
to a↵ect the population dynamics.

3.2 Model Formulation

Motivated by Lotka-Volterra equations [11] and Nicholson’s blowflies equation [3, 4, 5], a
system of delay di↵erential equations is proposed to study the cannibalism e↵ect of the fish
population. From Lotka-Volterra equations, we learned that each equation has its own growth
terms and death terms. In the proposed model, we are dividing the fish population into juveniles
J(t) which are not biologically mature and adults A(t) which are mature enough to lay eggs.
Here, for simplicity, we combine all individuals before maturation into a single class named
juveniles. The recruitment of juveniles comes from births by adults, and juveniles take ⌧ years
to be adults. This consideration leads to

8>>><
>>>:

dJ(t)
dt = b (A(t)) � �

d1 + c1A(t)
�
J(t) � b (A(t � ⌧)) e�

R t
t�⌧ d1+c1A(s)ds

dA(t)
dt = b (A(t � ⌧)) e�

R t
t�⌧ d1+c1A(s)ds � �

d2 � c2J(t)
�
A(t).

(3.1)

For the net growth rate of juveniles J0(t), there is a birth term b(A(t)) with respect to the adult
population A(t), a death term �d1J(t), and a cannibalism term �c1A(t)J(t) similar to the com-
petition term in Lotka-Volterra equations. The cannibalism here can be considered as the extra
death of juveniles. Lastly, there is a term �b (A(t � ⌧)) e�

R t
t�⌧ d1+c1A(s)ds accounting for the rate of

maturity of juveniles to adults.

The growth term of A(t) depends on the newborns ⌧ years ago, which is b(A(t�⌧)). Because
of the death terms from juvenile stage, we have a survival proportion to newborns, denoted as
e�

R t
t�⌧ d1+c1A(s)ds. Besides the growth term, there is also a death term d2A(t), and a cannibalism

term c2A(t)J(t). This positive term should not be explained as new production of the fish.
Instead, it reflects the fact that the cannibalism reduces the death rate of adult fish.

For the birth function, we use b(A) = rAe�qA from the Ricker model [15], which has been
widely adopted in fish population models. With this choice for b(A), (3.1) becomes

8>>><
>>>:

dJ(t)
dt = rA(t)e�qA(t) � d1J(t) � c1A(t)J(t) � rA(t � ⌧)e�qA(t�⌧)e�

R t
t�⌧ d1+c1A(s)ds

dA(t)
dt = rA(t � ⌧)e�qA(t�⌧)e�

R t
t�⌧ d1+c1A(s)ds � d2A(t) + c2A(t)J(t).

(3.2)

We notice that the delay ⌧ is in the integration part of A0. To make the model simpler to
analyze, let P(t) = e�

R t
t�⌧ d1+c1A(s)ds be a helper function which stands for the possibility rate for

survival. We can derive dP(t)
dt = �C1P(t) (A(t) � A(t � ⌧)) by fundamental theorem of calculus.
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Hence, we can simplify the system of equation (3.2) by adding a new helper variable P(t).

8>>>>>>><
>>>>>>>:

dJ(t)
dt = rA(t)e�qA(t) � d1J(t) � c1A(t)J(t) � rA(t � ⌧)e�qA(t�⌧)P(t)

dA(t)
dt = rA(t � ⌧)e�qA(t�⌧)P(t) � d2A(t) + c2A(t)J(t)

dP(t)
dt = �c1P(t) (A(t) � A(t � ⌧)) .

(3.3)

Systems (3.2) and (3.3) are equivalent because P(t) is simply just a helper function to reduce
the exponential term in the system (3.2).

Coe�cients Table
Coe�cients Value
r natural birth rate
q birth capacity ratio
d1 natural death rate of juveniles
d2 natural death rate of adults
c1 cannibalism rate
c2 cannibalism growth rate
⌧ recruitment delay

One thing needs to be noted is that c1 is always larger than c2. We can consider c1 as the rate of
how much juveniles are consumed by adults as prey and c2 as the reduction of adult population
death contributed by such cannibalism consumption. Hence, the rate of reduction should be
smaller than the rate of consumption.

3.3 Well-posedness

In this section, the positivity and the boundedness of solutions are investigated to ensure the
model is well-posed. For delay di↵erential equations, the initial functions for the unknowns
have to be given in the delay interval [⌧, 0] to ensure the solution exists.

Let X = C
⇣
[�⌧, 0];R2

⌘
be the Banach space of continuous function from [�⌧, 0] to R

equipped with supreme norm. By the fundamental theory of FDEs[6], for any given (J(✓), A(✓)) 2
X, there exists a unique solution (J(t), A(t)) to the system (3.2). Biologically speaking, we need
all the initial functions to be non-negative.

J(✓) � 0, A(✓) � 0, for ✓ 2 [�⌧, 0].

Additionally, for J, there is also a compatibility issue. We can use the theorem from Smith
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[16]. By integrating the equation for of J in (3.2), we can obtain

J(t) =
Z t

t�⌧
b (A(⇠)) exp

 
�

Z t

⇠

d1 + c1A(s)ds
!

d⇠. (3.4)

At t = 0, the above equation gives a constraint for the initial condition on J:

J(0) =
Z 0

�⌧
b (A(⇠)) exp

 
�

Z 0

⇠

d1 + c1A(s)ds
!

d⇠. (3.5)

The compatibility condition also has its biological interpretation. The total juvenile population
at t = 0 is the newborns during the time interval [�⌧, 0] who have survived this period. It is
also explained in the article of Kuang [10].

3.3.1 Positivity

For biological models, only positive solutions are feasible. With the initial functions satisfying
(3.4) and (3.5), we can establish the following theorem for positivity.

Theorem 3.3.1 (Positivity) Let A(✓), J(✓) � 0 on �⌧  ✓ < 0, A(0) > 0, and assume that J(0)
satisfies (3.5). Then, the solution of (3.2) remains positive.

Proof Since we assume A(✓), J(✓) � 0 on �⌧  ✓ < 0, A(0) > 0, from the equation of A(t) in
(3.2), we obtain

dA(t)
dt
= rA(t � ⌧)e�qA(t�⌧)P(t) � d2A(t) + c2A(t)J(t) � �d2A(t), t 2 [0, ⌧]

We can obtain the following by comparison argument

A(t) � A(0)e�d2 , t 2 [0, ⌧]

We can conclude that A(t) > 0 if A(0) > 0 for t 2 [0, ⌧]. Repeating the argument, we can obtain
the positivity in the following interval [⌧, 2⌧], [2⌧, 3⌧],..., and hence for t � 0

The positivity of J(t) can be explained as the combination of (3.4) and the positivity of A(t).

3.3.2 Boundedness

It is also very critical that the population of a biological model has a upper bound, which means
the population can not grow infinitely. Hence, the boundedness of the system has to be proved
in order to establish the well-posedness.
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Theorem 3.3.2 (Boundedness) Let A(✓), J(✓) � 0 on �⌧  ✓ < 0, A(0) > 0, and assume that
J(0) satisfies (3.5). Then, the solution of (3.2) is bounded

Proof Again, we can consider system (3.2) just for simplicity. For boundedness of the solution,
we can define

G(t) = J(t) + A(t).

By substituting system (3.2) into G(t), we can obtain the following

d
dt

[G(t)] = rA(t)e�qA(t) � d1J(t) � c1A(t)J(t) � d2A(t) + c2A(t)J(t)

= rA(t)e�qA(t) � d1J(t) � d2A(t) � (c1 � c2)A(t)J(t)

 r
qe
� d1J(t) � d2A(t)

 r
qe
�min{d1, d2}(J(t) + A(t))

 r
qe
�min{d1, d2}G(t).

Therefore, we can obtain that

lim
t!1 sup (G(t))  r

qe min{d1, d2} .

This implies that G(t) is bounded, and so are J(t) and A(t). This completes the proof of this
theorem.

3.4 Equilibria

The existence of equilibria is discussed in this section. In delay di↵erential equations, similar
to ordinary di↵erential equations, an equilibrium is a time-independent solution. For system
(3.3), we can obtain the equilibrium by solving the following the system of equation:

rAe�qA � d1J � c1AJ � rAe�qAP = 0, (3.6)

rAe�qAP � d2A + c2AJ = 0, (3.7)

�c1P (A � A) = 0. (3.8)

It is clear that an extinction equilibrium E0 exits, and E0 = (0, 0, P⇤) where P⇤ is a constant in
(0,1). (3.8) is naturally true since the equation is always 0 for any given constant A = A⇤. By
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the definition of P(t), we obtain
P⇤ = e�(d1+c1A⇤)⌧. (3.9)

Hence, the extinction equilibrium

E0 = (0, 0, e�d1⌧). (3.10)

To obtain a positive equilibrium E⇤, we need to solve the system of equations (3.6-3.8) for
non-zero solutions. Adding (3.6) and (3.7), we obtain the following

(d1 + c1A⇤ � c2A⇤)J⇤ = rA⇤e�qA⇤ � d2A⇤. (3.11)

From (3.7), we obtain another equation of J⇤,

c2A⇤J⇤ = d2A⇤ � rA⇤e�qA⇤P⇤. (3.12)

Combining (3.11) and (3.12), we can get an equation involving A⇤ only:

rA⇤e�qA⇤ � d2A⇤

d1 + c1A⇤ � c2A⇤
=

d2A⇤ � rA⇤e�qA⇤P⇤

c2A⇤
,

=) c2A⇤

d1 + c1A⇤ � c2A⇤
= �d2A⇤ � rA⇤e�qA⇤P⇤

d2A⇤ � rA⇤e�qA⇤ ,

=) c2A⇤

d1 + (c1 � c2)A⇤
= �d2 � re�qA⇤P⇤

d2 � re�qA⇤

= �d2 � re�d1⌧e�(q+c1⌧)A⇤

d2 � re�qA⇤ ,

(3.13)

Let
g(A) =

c2A
d1 + (c1 � c2)A

,

f (A) = �d2 � re�d1⌧e�(q+c1⌧)A

d2 � re�qA .

We can begin the analysis by sketching the graphs of g(A) and f (A)
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Figure 3.1: Sketch of g(A) and f (A)

We are only interested in the first quadrant. For g(A), it is simply a monotonically increasing
function with respect to A > 0 since

g0(A) =
c2d1

(d1 + (c1 � c2)A)2 � 0. (3.14)

We can see that g(0) = 0 and limA!1 g(A) = c2
c1�c2

> 0. We also notice that for f (A) has a
vertical asymptote caused by the denominator d2 � re�qA, where Av =

ln(r/d2)
q for the vertical

asymptote. On the right hand side of the asymptote, d2 > re�qA, then d2 > re�d1⌧e�(q+c1⌧)A⇤ as
well. Hence, g(A) < 0 on the right hand side of Av =

ln(r/d2)
q .

Now, we only have to consider the left hand side of this asymptote. First, we want to check
if g(A) is monotonically increasing on the left of the asymptote. We need to calculate the
derivate of f (A).

f 0(A) =
r
⇣
qd2e�qA + rc1⌧e�(c1A+d1)⌧�2qA � d2 (c1⌧ + q) e�(c1A+d1)⌧�qA

⌘

(d2 � re�qA)2 (3.15)

From (3.15), we know that both r and (d2 � re�qA)2 are non-negative. We only need to
investigate the positivity of the following term

!(A) = qd2e�qA + r⌧c1e�(c1A+d1)⌧�2qA � d2 (c1⌧ + q) e�(c1A+d1)⌧�qA.
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On the left of the asymptote (i.e.d2 < re�qA), we derive e�qA > d2
r . And hence,

!(A) � qd2
d2

r
+ r⌧c1e�(c1A+d1)⌧�qA d2

r
� d2 (c1⌧ + q) e�(c1A+d1)⌧�qA

= qd2e�qA + d2⌧c1e�(c1A+d1)⌧�qA � d2 (c1⌧ + q) e�(c1A+d1)⌧�qA

= qd2e�qA � d2qe�(c1A+d1)⌧�qA

= qd2e�qA
⇣
1 � e�(c1A+d1)⌧

⌘
> 0.

Now, we can conclude that f (A) is monotonically increasing on the left hand side of the asymp-
tote. However, there is still a scenario that there is no positive equilibrium illustrated in the
following diagram.

Figure 3.2: Non-Existence of a Positive Equilibrium

Hence, in order to guarantee a positive equilibrium, we need to have the following two
conditions satisfied.

Firstly, the vertical asymptote of f (A) has to be on the right half plane (i.e. Av =
ln(r/d2)

q > 0),
which is equivalent to r > d2.

Additionally, we need the intersection of f (A) and y-axis to be negative (i.e. f (0) < 0).
Hence, we obtain f (0) = �d2�re�d1⌧

d2�r < 0. With the first condition which is necessary, we
conclude that the second condition is re�d1⌧ > d2. Note that re�d1⌧ > d2 implies r > d, we have
proved the following theorem about the existence of a positive equilibrium

Theorem 3.4.1 (Existence of the Positive Equilibrium) System (3.3) has a unique positive
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equilibrium E⇤ if re�d1⌧ > d2.

We point out that by the biological meaning of the reproduction number (or ratio), denoted
by R0, we can easily derive that R0 =

re�d1⌧

d2
. Clearly, the condition in the above theorem is

equivalent to R0 > 1.

3.5 Stability Analysis

In this section, we discuss some simple criteria to determine the stability of an equilibrium
of a di↵erential equation with a single delay. Now, consider the following delay di↵erential
equation:

x0(t) = f (x(t), x(t � ⌧)) . (3.16)

Assume that there is an equilibrium point xe of (3.16), i.e. f (xe, xe) = 0. To check the stability
of xe, let y = x � xe. By this definition, we can derive

y0(t) = x0(t) = f (x(t), x(t � ⌧))
= f (xe + y(t), xe + y(t � ⌧)) .

(3.17)

Obviously y = 0 is the trivial equilibrium of (3.17); moreover, the stability of the equilibrium
xe for (3.16) is equivalent to the stability of the y = 0 for (3.17). Rewriting (3.17) using Taylor’s
expansion, we can obtain the following series

y0(t) = f 0x(t)(xe, xe)y(t) + f 0x(t�⌧)(xe, xe)y(t � ⌧) + O(y2(t)) + O(y2(t � ⌧)), (3.18)

where O is higher terms.
Using the technique of linearization, we can drop the higher terms. To obtain the the

following linearized equation of (3.17) at y = 0, which is also the linearization of (3.16) at
x = xe:

y0(t) = f 0x(t)(xe, xe)y(t) + f 0x(t�⌧)(xe, xe)y(t � ⌧). (3.19)

Let a = f 0x(t)(xe, xe) and b = f 0x(t�⌧)(xe, xe), and assume y(t) has the solution with the form of
y(t) = ↵e�t, where ↵ , 0, � 2 C. Hence, (3.19) becomes

y0(t) = f 0x(t)(xe, xe)y(t) + f 0x(t�⌧)(xe, xe)y(t � ⌧)
=) y0(t) = ay(t) + by(t � ⌧)
=) ↵�e�t = a↵e�t + b↵e�(t�⌧)

=) 0 = ↵(� � a � be��⌧),

(3.20)
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which leads to ↵(� � a � be��⌧) = 0, the characteristic equation.

Similarly, for a linear system of delay di↵erential equations

X0(t) = AX(t) + BX(t � ⌧),

where A and B are n ⇥ n matrices, the characteristic equation is

det
⇣
�I � A � Be��⌧

⌘
= 0. (3.21)

The trivial equilibrium X = 0 if all roots of (3.21) have negative real parts (see, e.g. [6]).

3.5.1 Stability of Extinction Equilibrium E0

To check the local stability of the extinction equilibrium, we can use the method of lineariza-
tion. The linearized system at the point (J⇤, A⇤, P⇤) of system (3.3) is given by

8>>>>>>><
>>>>>>>:

J0(t) = b0(A⇤)A(t) � d1J(t) � c1J⇤A(t) � c1A⇤J(t) � b0(A⇤)P⇤A(t � ⌧) � b(A⇤)P(t)

A0(t) = b0(A⇤)P⇤A(t � ⌧) + b(A⇤)P(t) � d2A(t) + c2J⇤A(t) + c2A⇤J(t)

P0(t) = �c1P⇤(A(t) � A(t � ⌧)) ,
(3.22)

or
0
BBBBBBBBBBB@

J0(t)
A0(t)
P0(t)

1
CCCCCCCCCCCA
=

0
BBBBBBBBBBB@

�d1 � c1A⇤ b0(A⇤) � c1J⇤ �b(A⇤)
c2A⇤ �d2 + c2J⇤ b(A⇤)

0 �c1P⇤ 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

J(t)
A(t)
P(t)

1
CCCCCCCCCCCA

+

0
BBBBBBBBBBB@

0 �b0(A⇤)P⇤ 0
0 b0(A⇤)P⇤ 0
0 c1P⇤ 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

J(t � ⌧)
A(t � ⌧)
P(t � ⌧)

1
CCCCCCCCCCCA
.

(3.23)

In order to check the stability of the extinction equilibrium, we can substitute (J⇤, A⇤, P⇤) =
(0, 0, e�d1⌧) into (3.23) to obtain

0
BBBBBBBBBBB@

J0(t)
A0(t)
P0(t)

1
CCCCCCCCCCCA
=

0
BBBBBBBBBBB@

�d1 r 0
0 �d2 0
0 �c1e�d1⌧ 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

J(t)
A(t)
P(t)

1
CCCCCCCCCCCA
+

0
BBBBBBBBBBB@

0 �re�d1⌧ 0
0 re�d1⌧ 0
0 c1e�d1⌧ 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

J(t � ⌧)
A(t � ⌧)
P(t � ⌧)

1
CCCCCCCCCCCA
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Note that both J0(t) and A0(t) equations are decoupled from P(t) and P(t � ⌧), the linearization
at E0 can be reduced to the following system of two equations only:

0
BBBBB@
J0(t)
A0(t)

1
CCCCCA =

0
BBBBB@
�d1 r

0 �d2

1
CCCCCA

0
BBBBB@
J(t)
A(t)

1
CCCCCA +

0
BBBBB@
0 �re�d1⌧

0 re�d1⌧

1
CCCCCA

0
BBBBB@
J(t � ⌧)
A(t � ⌧)

1
CCCCCA . (3.24)

Based on (3.21), the characteristic equation for system (3.24) is the following

0 = det
0
BBBBB@

0
BBBBB@
� 0
0 �

1
CCCCCA �

0
BBBBB@
�d1 r

0 �d2

1
CCCCCA �

0
BBBBB@
0 �re�(d1+�)⌧

0 re�(d1+�)⌧

1
CCCCCA

1
CCCCCA

=

�������
� + d1 �r + re�(d1+�)⌧

0 � + d2 � re�(d1+�)⌧

�������

= (� + d1)
⇣
� + d2 � re�(�+d1)⌧

⌘
.

(3.25)

We know that E0 is locally asymptotically stable if both all roots of (3.25) have negative
real parts. Note that the factor (� + d1) gives a root � = �d1, which is always negative. Then,
the stability of E0 is determined by the distribution of the roots of the equation

� + d2 � re�(�+d1)⌧ = 0. (3.26)

There have been a lot of articles discussing how to analyze the root distribution of the equation
(3.26) (see, e.g. [3, 6, 17]). Similar to the approach in Zhu and Zou [17], when ⌧ = 0, the
equation (3.26) becomes

� + d2 � r = 0. (3.27)

In this case, R0 =
re�d1⌧

d2
< 1 reduces to r

d2
< 1. Clearly, if r

d2
< 1, d2 � r > 0, and (3.27)

has a negative root which makes the system stable. Because the root of (3.26) depends on ⌧
continuously, as delay ⌧ increases, the root of (3.26) can only enter the right-half of complex
plane by crossing the imaginary axis. Let � = iw with w > 0 be a purely imaginary root of
(3.26), then,

iw + d2 = re�d1⌧e�iw⌧. (3.28)

Taking moduli in both sides of the above equation gives

w2 + d2
2 =

⇣
re�d1⌧

⌘2
. (3.29)

If R0 =
re�d1⌧

d2
< 1, (3.29) has no non-negative real root. Therefore, there is no root of the form

� = iw with w > 0 for (3.26), implying that the root of (3.26) can never cross the imaginary
axis. Hence all roots of (3.26) have negative real parts when R0 < 1. On the other hand, (3.26)
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has a real positive root if R0 > 1. Now, we can conclude that for system (3.3), extinction
equilibrium E0 is locally asymptotically stable if re�⌧d1 < d2, or equivalently R0 < 1. On the
other hand, when re�⌧d1 > d2, it is obvious that (3.27) has a real positive root. Hence, when
R0 > 1, E0 becomes unstable.

Theorem 3.5.1 (Stability of E0) For system (3.3), the extinction equilibrium E0 is locally asymp-
totically stable if re�⌧d1 < d2 (i.e. R0 < 1), and it becomes unstable when R0 > 1.

We remark that if re�⌧d1 < d2 is replaced by a stronger condition r < d2, we can actually
obtain the global asymptotical stability of E0.

Theorem 3.5.2 (Global Stability of E0) For system (3.3), the extinction equilibrium E0 is glob-
ally asymptotically stable if r < d2.

Proof let V = J + A. Noted that V(x) > 0 if and only if x , 0, and V(x) = 0 if and only if
x = 0. Then,

V 0 = rA(t)e�qA(t) � d1J(t) � d2A(t) � (c1 � c2)A(t)J(t)

 rA(t)e�qA(t) � d2A(t)

 rA(t) � d2A(t)

= (r � d2)A(t).

If r < d2, V 0 < 0 because of the positivity of A(t) from Theorem (3.3.1)-(3.3.2). By LaSalle’s
invariance principle and the above inequality, we can conclude that the extinction equilibrium
E0 is globally asymptotically stable.

Interestingly, when there is no cannibalism present (i.e. c1 = c2 = 0), the extinction
equilibrium is globally asymptotically stable when R0 < 1, as stated in the following theorem.

Theorem 3.5.3 (Global Stability of E0 without Cannibalism) Assume that c1 = c2 = 0, if
R0 < 1, then the extinction equilibrium E0 is globally asymptotically stable for system (3.3).

Proof The system without cannibalism is show as the following.

8>>><
>>>:

dJ̄(t)
dt = rĀ(t)e�qĀ(t) � d1 J̄(t) � rĀ(t � ⌧)e�qĀ(t�⌧)e�d1⌧

dĀ(t)
dt = rĀ(t � ⌧)e�qĀ(t�⌧)e�d1⌧ � d2Ā(t)

(3.30)

For system (3.30), we can also conclude the positivity and boundedness of J̄(t) and Ā(t)similar
to (3.2).
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Since we know that both J̄(t) and Ā(t) are positively bounded. We can let V̄ = Ā(t) +R t
t�⌧ rĀ(t)e�qĀ(t)e�d1⌧dt. Noted that V̄(x) > 0 if and only if x , 0, and V̄(x) = 0 if and only if

x = 0. Then,

V̄ 0 = rĀ(t � ⌧)e�qĀ(t�⌧)e�d1⌧ � d2Ā(t) + rĀ(t)e�qĀ(t)e�d1⌧ � rĀ(t � ⌧)e�qĀ(t�⌧)e�d1⌧

= rĀ(t)e�qĀ(t)e�d1⌧ � d2Ā(t)

 rĀ(t)e�d1⌧ � d2Ā(t)

= (re�d1⌧ � d2)Ā(t).

Now, we can conclude that limt!1 ¯A(t) = 0 if re�d1⌧ < d2. By the definition of J̄(t) of (3.30),
we can conclude that limt!1 ¯J(t) = 0. Hence, we can conclude that without cannibalism,
extinction equilibrium E0 is globally asymptotically stable when R0 < 1

It also reflects the definition of the basic reproduction number R0. If R0 is less than 1,
the extinction equilibrium is locally asymptotically stable. Further more, when r < d2, the
extinction equilibrium is globally asymptotically stable. If R0 is greater than 1, the extinction
equilibrium is unstable, and there occurs a positive equilibrium E⇤. Because the solution to
system (3.3) is bounded and positive, if R0 > 1, the solution will possibly be attracted to the
positive equilibrium E⇤.

3.5.2 Stability of Positive Equilibrium E⇤

When R0 > 1, the extinction equilibrium E0 becomes unstable, and by Theorem 3.4.1., we
know that there exists a unique positive equilibrium E⇤. Because we cannot explicitly solve the
system of equation (3.11)-(3.12), we denote the positive equilibrium by

E⇤ = (
rA⇤e�qA⇤ � d2A⇤

(d1 + c1A⇤ � c2A⇤
, A⇤, e�(d1+c1A⇤)⌧). (3.31)
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We substitute the positive equilibrium E⇤ into the linearized system (3.22). By (3.21), we
obtain the characteristic equation using Maple

(Ac1 + d1) �3 +
⇣
(qA � 1) (Ac1 + d1) re(�Ac1���d1)⌧�qA � Ac1re�qA + (Ac1 + d1)2 + (Ac1 + d1) d2

⌘
�2

+
h

(�Ac1 + (qA � 1) ((c1 � c2) A + d1)) (Ac1 + d1) re(�Ac1���d1)⌧�qA + A (Ac1 + d1) rc1e(�Ac1�d1)⌧�qA+

A
⇣
A2qc1c2 +

⇣
qc2d1 � c1

2
⌘

A � d1 (c1 + c2)
⌘

re�qA + (Ac1 + d1)2 d2

i
�

� Ac1 ((c1 � c2) A + d1) (Ac1 + d1) re(�Ac1���d1)⌧�qA + Ac1 ((c1 � c2) A + d1) (Ac1 + d1) re(�Ac1�d1)⌧�qA

= 0,
(3.32)

where A is equivalent at A⇤. The stability of E⇤ is determined by the distribution of roots of
(3.32). Unfortunately, it is very di�cult to solve this characteristic equation because it is a
transcendental equation of degree three. Even the discussion of the distribution of its roots
becomes extremely di�cult with six variables. Then, we try to explore if linearization at E⇤

for the original system (3.2) would be easier since the characteristic equation is only of degree
two.

Let

8>>><
>>>:

J(t) = J⇤ + u(t)

A(t) = A⇤ + v(t)

The linearized system at point (J⇤, A⇤) of system (3.2) is given by

8>>>>>>>>>>><
>>>>>>>>>>>:

u0(t) = b0(A⇤)v(t) � d1u(t) � c1J⇤v(t) � c1A⇤u(t)

�b0(A⇤)e�(d1+c1A⇤)⌧v(t � ⌧) + c1b(A⇤)e�(d1+c1A⇤)⌧
R t

t�⌧ v(s)ds

v0(t) = b0(A⇤)e�(d1+c1A⇤)⌧v(t � ⌧) � c1b(A⇤)e�(d1+c1A⇤)⌧
R t

t�⌧ v(s)ds

�d2v(t) + c2J⇤v(t) + c2A⇤u(t).

(3.33)

In the linearized system, there is a integration
R t

t�⌧ v(s)ds. Assuming the solution of v(t) is
v0e�t,

R t
t�⌧ v(s)ds = 1

� (v(t) � v(t � ⌧)). Then, (3.33) can be rewritten as

8>>>>>>>>>>><
>>>>>>>>>>>:

u0(t) = b0(A⇤)v(t) � d1u(t) � c1J⇤v(t) � c1A⇤u(t)

�b0(A⇤)e�(d1+c1A⇤)⌧v(t � ⌧) + c1b(A⇤)e�(d1+c1A⇤)⌧ 1
�

⇣
v(t) � v(t � ⌧)

⌘

v0(t) = b0(A⇤)e�(d1+c1A⇤)⌧v(t � ⌧) � c1b(A⇤)e�(d1+c1A⇤)⌧ 1
�

⇣
v(t) � v(t � ⌧)

⌘

�d2v(t) + c2J⇤v(t) + c2A⇤u(t),

(3.34)
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or

0
BBBBB@
u0(t)
v0(t)

1
CCCCCA =

0
BBBBB@
�d1 � c1A⇤ b0(A⇤) � c1J⇤ + 1

�c1b(A⇤)e�(d1+c1A⇤)⌧

c2A⇤ �d2 + c2J⇤ � 1
�c1b(A⇤)e�(d1+c1A⇤)⌧

1
CCCCCA

0
BBBBB@
u(t)
v(t)

1
CCCCCA

+

0
BBBBB@
0 �b0(A⇤)e�(d1+c1A⇤)⌧ � 1

�c1b(A⇤)e�(d1+c1A⇤)⌧

0 b0(A⇤)e�(d1+c1A⇤)⌧ + 1
�c1b(A⇤)e�(d1+c1A⇤)⌧

1
CCCCCA

0
BBBBB@
u(t � ⌧)
v(t � ⌧)

1
CCCCCA .

(3.35)

By (3.21), we obtain the characteristic equation

1
�


(Ac1 + d1) �3 +

⇣
(qA � 1) (Ac1 + d1) re(�Ac1���d1)⌧�qA � Ac1re�qA + (Ac1 + d1)2 + (Ac1 + d1) d2

⌘
�2

+
h

(�Ac1 + (qA � 1) ((c1 � c2) A + d1)) (Ac1 + d1) re(�Ac1���d1)⌧�qA + A (Ac1 + d1) rc1e(�Ac1�d1)⌧�qA+

A
⇣
A2qc1c2 +

⇣
qc2d1 � c1

2
⌘

A � d1 (c1 + c2)
⌘

re�qA + (Ac1 + d1)2 d2

i
�

� Ac1 ((c1 � c2) A + d1) (Ac1 + d1) re(�Ac1���d1)⌧�qA + Ac1 ((c1 � c2) A + d1) (Ac1 + d1) re(�Ac1�d1)⌧�qA
�

= 0,
(3.36)

where A is equivalent at A⇤. We notice that the only di↵erence between (3.36) and (3.32) is
that there is a 1

� term. For (3.32), there is a trivial eigenvalue � = 0, and for (3.36), � = 0 is not
an eigenvalue. It reflects that the eigenvalue � = 0 is corresponding to P(t). Solving (3.36) is
still very di�cult.

Although the analytical discussion of the stability of positive equilibrium is challenging,
we can still explore the stability using numerical simulations, which will be introduced in the
next section.

3.6 Numerical Simulation

In this section, we are going to simulate the solution of system (3.3) using DDE23 of MAT-
LAB. In particular, we are changing the natural birth rate r and the cannibalism rate c1. For
cannibalism growth rate, we set c2 to be proportional to c1. As mentioned in the first section,
c2 is always less than c1. For simplicity, we set c2 = 0.8c1 First, we give some values to the
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coe�cients and the initial solution

Coe�cients Table
Coe�cients Value
q 0.01
d1 0.4
d2 0.3
c2 0.8c1

⌧ 2

And the initial solution is given as

A(�) = Ai = 5, P(�) = e(�5c1�d1)2, for � 2 [�2, 0]

By definition of P(t) = e�
R t

t�⌧ d1+c1A(s)ds. Since we set A(�) = Ai = 5, P(�) = e(�5c1�d1)2. Also, in
each case, we need to calculate corresponding J(�) to fit the compatibility criterion (3.5). We
are going to change the natural birth rate r in each case with and without cannibalism, and to
see the e↵ect of cannibalism on population dynamics.

3.6.1 Case 1: r < d2

Here, we get the initial solution using (3.5)

J(�) = 1.102767026, A(�) = 5, P(�) = .1652988882, for � 2 [�⌧, 0]
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Figure 3.3: r = 0.25, c1 = 0.1, c1 = 0.08

In the first case, we set the natural birth rate r = 0.25 < d2. By Theorem 3.5.1, the extinc-
tion equilibrium E0 is globally asymptotically stable, which matches the numerical simulation.
Biologically speaking, when the maximum natural birth rate is at a low level compared to the
death rate, the fish population will decline, and soon go extinct. The solution of system (3.3)
tends to the extinction equilibrium.

3.6.2 Case 2: d2 < r < d2ed1⌧ with Cannibalism

In case 2, we are trying to investigate whether extinction equilibrium is stable globally stable if
d2 < r < d2ed1⌧ with cannibalism. We set the birth rate r = 0.65 and c1 = 0.15 , and the initial
functions can be obtained as:

J(�) = 2.418735524, A(�) = 5, P(�) = .1002588437, for � 2 [�⌧, 0]
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Figure 3.4: r = 0.65, c1 = 0.15, c1 = 0.12

From Figure 3.4, we conclude that the extinction equilibrium does not have global stability
when d2 < r < d2ed1⌧ with cannibalism, which can be explained by Theorem 3.5.2 and Theorem
3.5.3. The solutions tend to the positive equilibrium when there is a cannibalism. Now, we are
wondering whether the solutions will have the same trend when there is no cannibalism present.

3.6.3 Case 3: d2 < r < d2ed1⌧ without Cannibalism

In case 3, we only modify the cannibalism coe�cients c1 and c2 from case 2. Here, c1 = c2 = 0.

J(�) = 4.255992752, A(�) = 5, P(�) = .4493289641, for � 2 [�⌧, 0]



Chapter 3. DelayDifferential EquationModel ofWalleye Population withCannibalism Effect 57

Figure 3.5: r = 0.65, c1 = 0, c1 = 0

Here, without cannibalism, we note that the populations go extinct. From Theorem 3.5.3,
the extinction equilibrium is globally asymptotically stable if r < d2ed1⌧ with no cannibalism.
Compared to case 2, we see that cannibalism destabilize the extinction equilibrium. With
cannibalism, we need a stronger condition (i.e. r < d2) to obtain the global stability of the
extinction equilibrium.

Biologically speaking, when the birth rate is in a low stage (i.e. r < d2ed1⌧), the population
will decline because of the net reproduction number R0 is less than 1. The fish population will
not survive with out some decrease in the adult population. When there is cannibalism, adult
death rate decreases. Hence, the population still might survive.

3.6.4 Case 4: r > d2ed1⌧, Stable Positive Equilibrium

In case 4, we show that when the natural birth rate r is not too large, the positive equilibrium
E⇤ is stable.

J(�) = 31.36046672, A(�) = 5, P(�) = .4065696597, for � 2 [�⌧, 0]
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Figure 3.6: r = 5, c1 = 0.01, c1 = 0.008

From Figure 3.6, we see that the adult population is increasing until it hits to its equilibrium.
For juveniles, the population increases first. However, with the increasing adult population, the
juvenile population then decline because of the cannibalism. Then, both juvenile and adult
population will tend to their equilibria.

3.6.5 Case 5: r > d2ed1⌧, Periodic Solutions

In case 5, we investigate if periodic solutions exist when the natural birth rate r is relatively
large. In this case, we set the natural birth rate r = 200 with a small cannibalism.

J(�) = 1308.968025, A(�) = 5, P(�) = .4488798597, for � 2 [�⌧, 0]
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Figure 3.7: r = 200, c1 = 0.0001, c1 = 0.00008

In Figure 3.7, we notice that there exist periodic solutions when r is relatively large. The
population of juveniles cycles around 0-1400. Then, we increase the cannibalism coe�cients.

Figure 3.8: r = 200, c1 = 0.0003, c1 = 0.00024
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In Figure 3.8, with a slightly stronger cannibalism e↵ect, the solutions cycle within a
smaller range. For juveniles, the population cycles within 100-800. Here, we conclude that
the cannibalism has a stabilizing e↵ect in population dynamics by lowering the equilibrium or
oscillation. Next, we increase the cannibalism e↵ect.

Figure 3.9: r = 200, c1 = 0.01, c1 = 0.008

Here in Figure 3.9, there is a stronger cannibalism e↵ect than in Figure 3.8. Not surpris-
ingly, we obtain a stable positive equilibrium. Based on Figures 3.7-3.9, we conclude that,
with an increasing cannibalism e↵ect, the periodic solutions will have a smaller oscillations,
and eventually the positive equilibrium will become stable.

To sum up, we noticed a stabilizing e↵ect of cannibalism. When the birth rate is in the
range of [d2, d2ed1⌧], cannibalism can make a life boat e↵ect that makes the extinction equi-
librium unstable. When r > d2ed1⌧, cannibalism has a stabilizing e↵ect including making the
oscillations smaller and positive equilibrium stable.

Biologically speaking, the most interesting phenomenon is the life boat e↵ect of cannibal-
ism. When the birth rate r is slightly bigger than d2 while smaller than d2ed1⌧, adults fish can
survive by consuming a small amount of juveniles. Without cannibalism, the whole population
will decline, and eventually go extinct. However, with the presence of cannibalism, fish can
still survive when the birth rate r is slightly higher than adult death rate d2.
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3.7 Conclusion

Cannibalism is a very common phenomenon in ecology. How cannibalism plays the role in
population dynamics is still debating. In this section, we proposed a delay-di↵erential equa-
tion model to study the e↵ect of cannibalism in population dynamics. In the model, the pop-
ulation is divided into two stages, juveniles, and adults. Juveniles are not biologically mature
and can be consumed by adults. Adults are biologically mature and can consume juveniles.
Cannibalism increases the juvenile death rate and decreases the adult death rate. In terms of
delay, it takes juveniles ⌧ years to move into the adult stage. By the analysis of eigenvalues and
constructing Lyapunov function, we have proved that the extinction equilibrium E0 is globally
asymptotically stable if the net reproduction rate r < d2, and locally asymptotically stable if
R0 < 1. The stability of the positive equilibrium E⇤ is very di�cult to prove analytically.

By numerical simulation, we ran 5 cases of simulations with di↵erent natural birth rate
r with and without the presence of cannibalism. Firstly, we found that cannibalism has a
destabilizing e↵ect on extinction equilibrium when d2 < r < d2ed1⌧. When r > d2ed1⌧, we found
that the cannibalism is a stabilizing factor in population dynamics of walleye. Depending on
how strong the cannibalism e↵ect is, cannibalism stabilizes the population by either making
the positive equilibrium stable or reducing the amplitude of the periodic solutions. In fact, this
stabilizing e↵ect has been studied in some previous works [2, 14, 1]. The analytical analysis
of positive equilibrium is yet to be explored. However, using the numerical visualization, we
are able to conclude that cannibalism does have a stabilizing e↵ect on population dynamics.
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Chapter 4

Summary and Future Work

In this thesis, we have studied how to model the population dynamics of walleye incorporated
with the cannibalism e↵ect. We have concluded in both two models that cannibalism frankly
stabilizes the population fluctuations. In Chapter 1, we discussed the life cycle and the food
sources of walleye to better understand how to accurately model the population. Additionally,
some previous mathematical models have been included.

In Chapter 2, we created a discreet matrix population model with cannibalism terms moti-
vated by LPA model [2]. To study population dynamics, it is very natural to use the discreet
model because population data is usually collected on an annual basis. Also, a lot of short-
term factors can be ignored such as temperature fluctuations and mating seasons. In our matrix
model, we divide the population into three age groups, making the assumption that the new-
borns and juveniles have the same life span. Also, the model includes the cannibalism terms
as size-dependent cannibalism. Because the size of fish is dependent on the age of the fish, we
also consider size-dependent cannibalism as age-dependent. The positivity and boundedness
of the matrix model were proven first. Then, we defined the basic reproduction rate R0, and
found two equilibria which are an extinction equilibrium and a unique positive equilibrium.
We found that when R0 < 1, the extinction equilibrium is globally asymptotically stable. When
R0 > 1, there exists a positive equilibrium E⇤. The stability of the positive equilibrium is un-
known. However, if R0 > 1 is su�ciently close to 1 and µa < 1, the positive equilibrium is
locally asymptotically stable. We also ran some numerical simulations to check the results.
We found that bifurcation occurs when R0 increases. There might also exist a periodic solution
and then chaos. In terms of cannibalism, we found that cannibalism stabilizes the population
dynamics.

In Chapter 3, we created a delay di↵erential equation (DDE) model with cannibalism. Mo-
tived by Nicholson’s blowflies equation [1, 3], we divided the walleye population into two
groups, juveniles, and adults. By adding a compatibility condition to the initial functions, we
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proved the positivity and the boundedness of the system. We also define the net reproduction
rate R0 for the system. We found that when R0 < 1, the extinction equilibrium is locally asymp-
totically stable. Without cannibalism, the extinction equilibrium is indeed globally asymptoti-
cally stable if R0 < 1. Adding the cannibalism term a↵ects the global stability of E0, requiring
R0 < e�d1⌧. In another word, cannibalism might destabilize the extinction equilibrium when
e�d1⌧ < R0 < 1. This could be the life boat e↵ect of the fish population. When R0 > 1, there
exists a positive equilibrium E⇤. The stability of the positive equilibrium is unknown since it
is very challenging to find the eigenvalues of the characteristic equation. We did some numer-
ical simulations with di↵erent natural birth rates and cannibalism rates. We found that when r
increases, the net reproduction rate R0 also increases. The extinction equilibrium will be stable
when R0 is small. When R0 increases, the extinction equilibrium will lose its stability, and
positive equilibrium will be stable. As r increases, there will be a periodic solution in present.
For each natural birth rate, we increase the cannibalism rate. We found that the cannibalism is
stabilizing the population cycles. In fact, the bigger the cannibalism rate is, the more stable the
system will be. The result matches the result from Chapter 2.

In this thesis, there are still facing some challenging problems remaining open and worth
studying in the future. In Chapter 2, the global stability of the positive equilibrium is still not
known. From numerical simulations, we are guessing that there must be an interval of R0 so
that the positive equilibrium is globally asymptotically stable. In Chapter 3, the stability of the
positive equilibrium is not known neither, which requires further studies.



Bibliography

[1] K. Cooke, P. V. D. Driessche, and X. Zou, Interaction of Maturation Delay and Nonlinear
Birth in Population and Epidemic Models, Journal of Mathematical Biology, 39 (1999),
pp. 332–352.

[2] J. Cushing, The LPA Model, Fields Instutute Communications, 43 (2004).

[3] I. Gyori and S. I. Trofimchuk, On the existence of rapidly oscillatory solutions in the
Nicholson blow ies equation, Nonlinear Analysic, 48 (2002), pp. 1033–1042.

66



Curriculum Vitae

Name: Quan Zhou

Post-Secondary Honours Bachelor of Mathematics
Education and Applied Mathematics/Economics Option - Pure Mathematics Minor
Degrees: University of Waterloo, 2011-2015

Master of Science
Applied Mathematics
The University of Western Ontario, 2015-2017

Honours and Western Graduate Research Scholarship
Awards: 2015-2017

Rene Descartes Scholarship
2011-2013

University of Waterloo President’s Scholarship of Distinction
2011-2012

Related Work Graduate Teaching Assistant
Experience: The University of Western Ontario

2015-2017

Graduate Research Assistant
The University of Western Ontario
2015-2017

67


	Modelling Walleye Population and Its Cannibalism Effect
	Recommended Citation

	westernthesis

