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Abstract
In recent years, there has been significant progress in Computer Vision based plant pheno-

typing (quantitative analysis of biological properties of plants) technologies. Traditional meth-
ods of plant phenotyping are destructive, manual and error prone. Due to non-invasiveness
and non-contact properties as well as increased accuracy, imaging techniques are becoming
state-of-the-art in plant phenotyping. Among several parameters of plant phenotyping, growth
analysis is very important for biological inference. Automating the growth analysis can result
in accelerating the throughput in crop production. This thesis contributes to the automation of
plant growth analysis.

First, we present a novel system for automated and non-invasive/non-contact plant growth
measurement. We exploit the recent advancements of sophisticated robotic technologies and
near infrared laser scanners to build a 3D imaging system and use state-of-the-art Computer
Vision algorithms to fully automate growth measurement. We have set up a gantry robot system
having 7 degrees of freedom hanging from the roof of a growth chamber. The payload is a
range scanner, which can measure dense depth maps (raw 3D coordinate points in mm) on
the surface of an object (the plant). The scanner can be moved around the plant to scan from
different viewpoints by programming the robot with a specific trajectory. The sequence of
overlapping images can be aligned to obtain a full 3D structure of the plant in raw point cloud
format, which can be triangulated to obtain a smooth surface (triangular mesh), enclosing the
original plant. We show the capability of the system to capture the well known diurnal pattern
of plant growth computed from the surface area and volume of the plant meshes for a number
of plant species.

Second, we propose a technique to detect branch junctions in plant point cloud data. We
demonstrate that using these junctions as feature points, the correspondence estimation can be
formulated as a subgraph matching problem, and better matching results than state-of-the-art
can be achieved. Also, this idea removes the requirement of a priori knowledge about rotational
angles between adjacent scanning viewpoints imposed by the original registration algorithm for
complex plant data. Before, this angle information had to be approximately known.

Third, we present an algorithm to classify partially occluded leaves by their contours. In
general, partial contour matching is a NP-hard problem. We propose a suboptimal matching
solution and show that our method outperforms state-of-the-art on 3 public leaf datasets. We
anticipate using this algorithm to track growing segmented leaves in our plant range data, even
when a leaf becomes partially occluded by other plant matter over time.

Finally, we perform some experiments to demonstrate the capability and limitations of the
system and highlight the future research directions for Computer Vision based plant phenotyp-
ing.

Keywords: Robotic Imaging, 3D Plant Growth, Multiview Reconstruction, Diurnal Plant
Growth, phenotyping, Junction Point Detection, Correspondence Estimation, Leaf Classifica-
tion, Partial Occlusion, Subgraph Matching, Beta Spline, Energy Optimization
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6.4.3 Curve matching by Fréchet Distance . . . . . . . . . . . . . . . . . . . 71

vi



6.4.4 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 GNCCP optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6.1 Swedish dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.2 Flavia dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.3 Leafsnap dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion and Future Work 84
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

Curriculum Vitae 98

vii



List of Figures

2.1 The experimental setup used for scanning the Arabidopsis plants. . . . . . . . . 9

3.1 Pairwise registration results for two scans of the Stanford Bunny. Top row:
original two views, Bottom row: results obtained using Rusu et al. (FPFH)
[118], Fitzgibbon (LMICP) [52], Jian and Vemuri (GMMReg) [69] and Myro-
nenko and Song (CPD) [101]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Pairwise registration results two scans of the real Arabidopsis plant data. Top
row: the original two views. Bottom row: results obtained using Rusu et al.
[118], Fitzgibbon [52] and Myronenko and Song [101]. . . . . . . . . . . . . . 20

3.3 12 scans of the Arabidopsis plant, prior to registration, but with rotation and
and translation pre-applied. Different colours indicate different scans. . . . . . 22

3.4 12 scans captured in 30◦ increments about the plant and then merged into a
single point cloud using MNN. Shown from two viewpoints, front facing on
the left and from above on the right. Different colours indicate different scans. . 23

3.5 MNN versus sequential pairwise registration. . . . . . . . . . . . . . . . . . . 24
3.6 20 synthetic scans of vascular data merged into a single point cloud using

MNN, as seen from two viewpoints, front and back. . . . . . . . . . . . . . . . 25
3.7 MNN versus sequential pairwise registration on vascular data, registering the

first scan to each of the subsequent scans. . . . . . . . . . . . . . . . . . . . . 25

4.1 Schematic diagram of the gantry robot system . . . . . . . . . . . . . . . . . . 28
4.2 Robot arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Robot room where the experiment was performed . . . . . . . . . . . . . . . . 30
4.4 Different scanning positions of the robot arm around the plant . . . . . . . . . . 31
4.5 scan head distance from the plant . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Demonstration of feature clustering. Red dots represent junction feature points

[29]. Density clustering algorithm [45] detects clusters at true junctions (de-
noted by blue circle) and treats false feature points as outliers. . . . . . . . . . 34

4.7 High level view of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Computing the bounding box to determine the center of the plant . . . . . . . . 36
4.9 Scanner Field of View (FOV) to enclose the whole plant. When the plant is

big, one scan can’t capture the whole plant and multiple scans are required . . . 36
4.10 System GUI or user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11 Reconstructed Arabidopsis plant point cloud (different colors indicate different

scans). Note that there was no plant jittering in our setup as the wind could
be fully controlled, unlike for the setup used in Brophy’s work (described in
Chapter 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



4.12 Reconstructed Barley plant point cloud (different colors indicate different scans) 39
4.13 Triangulated Arabidopsis plant data . . . . . . . . . . . . . . . . . . . . . . . 40
4.14 Triangulated Barley plant data . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.15 Diurnal growth pattern of mesh surface area and volume for the Arabidopsis

plant. The red dots represent night time scans, the blue dots represent day time
scans and the four green dots represent missing scan data. A spline is fitted
to both surface and volume scan data (shown in different colours). The y-axis
in the left and right hand side represents the range of surface area and volume
data respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.16 Diurnal growth pattern of mesh surface area and volume for the barley plant.
The red dots represent night time scans while the blue dots represent day time
scan data. A spline is fitted to both surface and volume scan data (shown in
different colours). The y-axis in the left and right hand side represents the
range of surface area and volume data respectively. . . . . . . . . . . . . . . . 43

4.17 (a) and (c): the surface growth rate lines and (c) and (d): the volume growth
rate lines for the Arabidopsis and barley plants. . . . . . . . . . . . . . . . . . 44

4.18 Reconstruction of a conifer plant (different colors indicate different scans). . . . 45
4.19 Growth data for the conifer plant. The conifer as scanned at 14:00 in the after-

noon (light) and at 2:00 in the night (dark). . . . . . . . . . . . . . . . . . . . . 45
4.20 Volume growth rate for the conifer plant . . . . . . . . . . . . . . . . . . . . . 46
4.21 Two adjacent views of a bean plant . . . . . . . . . . . . . . . . . . . . . . . . 46
4.22 Reconstruction result of bean plant (different colours indicate different scans) . 47

5.1 Planar vector orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Rotate about V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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Chapter 1

Introduction

With increasing world population, the production of crops for food and energy is more impor-
tant than ever. There is a great need for automation in analyzing the output of agricultural/crop
monitoring systems. Quantitative growth analysis is a very fundamental task in Plant Sciences.
Such an analysis might allow a feedback loop, where plant growth might control the plant’s
treatment (for example, watering and fertilizing and maybe as well, for indoor controlled en-
vironments, the temperature and lighting). Accurate measurement and analysis of a plant’s
growth is a challenging task and is extremely important for real life applications. The naive
method used by biologists (by means of measuring weight, area or volume) is invasive and
destructive, thus hinders the measurement of this data over time. Manual measurements can
be time consuming and erroneous. In recent years, autonomous and accurate real time plant
phenotyping has been a quintessential part of modern crop monitoring and agricultural tech-
nologies. Non-invasive/non-contact analysis of plants is highly desirable in Plant Sciences
research because traditional techniques usually require the destruction of the plant, thus hin-
dering the analysis of the plant’s growth over its life-cycle. Machine vision systems can allow
us to monitor, analyze and produce high throughput in an autonomous manner without any
manual intervention.

1.1 Role of Computer Vision in Plant phenotyping

Among several parameters of plant phenotyping, growth analysis is very important for biologi-
cal inference. Functional analysis of growth curves can reveal many underlying functionalities
of the plant [38]. A plant’s growth pattern can reveal different biological properties in different
environmental conditions. For example, a leaf’s elevation angle is impacted by the amount of
sunlight [42]. In direct sunlight, leaves exhibit more elongation than when the plant is shaded.
Similar kinds of behaviour are exhibited for rosette size, stem height, surface area and volume.
Imaging techniques are very effective in terms of non-invasive/non-contact and accurate analy-
sis. While 2D imaging techniques have been used extensively in the literature, they have some
inherent limitations. The advantage of 3D over 2D are numerous. For example, consider the
area of a leaf. If the leaf is curved, the 3D area will be significantly different from the area
computed from its 2D image. Another restriction of 2D is that it is often difficult to measure
3D quantities such as the surface area or the volume of a plant without doing error prone and
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potentially complex calculations, such as a stereo disparity calculation from stereo images to
get 3D depth information that is a necessary precursor to these calculations. Recently, 3D laser
scanners are being used in many applications for studying plant phenotyping.

This thesis contributes to the recent advancements of Computer Vision based plant pheno-
typing technologies. Broadly, we focus on two problems in this thesis:

1. automated 3D growth analysis of living plants and

2. matching partially occluded leaves with databases of leaves.

Growth analysis of plants is a well studied problem in plant biology. A plant’s growth can
be measured in different ways. For example, stem height, plant width, leaf area, etc. can be
used as growth metrics of a plant. However, none of these parameters can solely be relied on
for the growth analysis of any plant. For example, stem diameter is shown to be a good growth
metric [55, 128, 56] for certain plants. On the other hand, plant height and stem diameter is
shown to have a good correlation in growth analysis for certain plants [139]. There can be
many other metrics for growth analysis of different plants. If certain species of plants exhibit
growth by their stem diameter, any attempt to quantify growth by their heights will not yield
desired results. Similarly, if the plant grows by its width (for example, during the vegetative
stage Arabidopsis thaliana mostly grows leaves, the stem starts shooting up after few weeks),
stem height will not be an appropriate parameter for the growth analysis. However, even if
different plants grow in different ways, surface area and/or volume of the plant will change
accordingly, and that is why these parameters can be considered more reliable to quantify the
plant growth in general. We can use Archimedes’ principle to measure the volume of a plant.
Dipping a plant into the water and measuring the change of water level has been a standard
technique for volume measurement for a long time. But there are some inherent problems with
this approach. First, the technique is destructive. One cannot study the growth analysis of
a plant during its lifetime. Second, the process is prone to error. When the plant is dipped
into the water, there will always remain some water bubbles which will affect the true volume
of the plant from the change in water level. Also, there can be manual errors in the precise
measurement of the water’s level (the water’s surface is a bit concave).

One motivation of our work is to address this problem and propose a solution to automate
plant growth analysis in a non-invasive/non-contact and yet accurate manner. Recent progress
in imaging techniques greatly aid us in the analysis of an object from various image modalities.
With the advent of laser scanning technologies, we can measure dense depth (range) maps of an
object’s surface in point cloud format. Using multi-view geometry, we can accurately build a
3D point cloud model of an object without touching or damaging it. We exploit state-of-the-art
algorithms to process this data to solve plant phenotyping problems.

1.2 Thesis Contributions

This thesis focuses on 4 related problems in Computer Vision based 3D plant growth measure-
ment. We briefly discuss the contributions in the following subsections.
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1.2.1 Machine Vision System
We propose a Machine Vision system that is capable of analysing plant growth throughout its
life cycle in a fully automated manner. We used a robotic arm to build a gantry robot system
having 7 degrees of freedom. The robot arm is highly flexible and can be moved anywhere
around the plant. A laser scanner is attached as the robot arm’s payload. The laser scanner
can measure accurate dense depth maps of the plant’s surface in point cloud format. The
robot arm and gantry system is placed inside a controllable growth chamber, in which the
temperature, humidity, lighting, wind, etc. can be controlled as needed. The idea is to scan a
plant from multiple viewpoints at many times throughput a day. The viewpoints are chosen so
that adjacent scans overlap. This process is continued throughout the life cycle of the plant (or
until a desired time period has been reached). For every set of overlapping scans at a specific
time, we reconstruct the 3D model of the plant from the point cloud data by registering the
data sets into a single 3D triangulated polygonal mesh. The volume and surface of this mesh
closely approximates surface and volume of the original plant. We show that the volume and
area of a plant’s meshes over time is often a good growth metric. Our growth results exhibit
the well known diurnal growth pattern of the plants. We have automated the whole system in
such a way, in theory, that a naive user can start the growth measurement system by a single
mouse click and obtain fully processed growth results at the end of the life cycle of the plant. In
practice, there can be problems preventing this, including, but not limited to, power, computer
and networking problems.

1.2.2 Multiview Alignment
As a part of the automation process, we need to reconstruct multiple views of a plant in an
accurate manner. This is a very crucial step of the growth analysis process. We have shown a
quantitative comparison of state-of-the-art registration algorithms and demonstrated their lim-
itations on aligning multiple scans of plant data. We extended the state-of-the-art registration
algorithm for aligning large data sets from sequential scans. Quantitative analysis show that
our alignment outperforms existing methods.

However, there are still some limitations of the proposed method to align multiple views.
In order to obtain good results, different scans need to be roughly aligned. If there is a large
difference in the estimated and actual rotation angle between adjacent scans, the alignment
results rapidly deteriorate. One of our contributions in this thesis is to accurately estimate this
rotation angle by a robust registration algorithm using junction points in the plant data. This,
the need for prior knowledge of rotations between scans is eliminated.

1.2.3 Rough Initial Alignment
One idea to perform the rough alignment of the scans is to find some common points in two
scans, and estimate the transformation parameters between these points. In the Computer Vi-
sion literature, these points are often called “feature points” or points of interest. Usually
feature points are selected as “meaningful” locations in the image/point cloud. For exam-
ple, corner points, edgels, intersection points, points of sharp discontinuity in local structure,
etc. can be treated as meaningful locations in the image/point cloud. In general, the feature



4 Chapter 1. Introduction

points are implemented using the idea of “descriptors”. For every point in the image, a local
neighbourhood is selected, and the local geometry is encoded as a multi-dimensional vector or
histogram. This is called a “descriptor”. In other words, a descriptor contains the local seman-
tics of an image/point cloud. After computing the descriptor for every point in both images,
these are matched according to their numerical values. A threshold is typically used to control
the number of matches. However, this idea does not work well on plant data because of the
complex morphology of the plant structures. Also, it is very hard to find features which are
repeatable from different viewpoints.

We present a new approach of selecting feature points in plant point cloud data. Instead
of using traditional descriptors for features, we propose the idea of using branch junctions as
feature points. Junctions are the points where two or more branches meet. These junctions are
strong feature points in plant data, and are repeatable from different viewpoints, because the
junctions do not alter even if there are deformations in the data.

However, due to occlusion and clutter, detection of junction points can be erroneous in
presence of leaves. There can be many false positives, and even the number of outliers can be
significantly larger than the number of true junction points. We propose a simple but effective
solution to this problem by using a density based clustering technique to filter out the false
positives.

After the detection of feature points, we need to match the features between the image
pairs. This is known as the correspondence estimation problem. Matching of feature points is
a fundamental problem in stereo and motion analysis. Usually, features are matched by their
descriptor values and spatial information. For each descriptor in one image, a local neigh-
bourhood around the same position in the other image is selected, and the compatibility of
the descriptors are matched for correspondence estimation. However, if the image pairs are
not roughly aligned, the local neighbourhood search based feature matching fails to work.
Sometimes spatial information of the features are also used to handle these cases. Despite
much research over the last several decades, correspondence estimation is still an active area
of research, and the state-of-the-art algorithms often fail when the assumptions are not valid,
especially in real life domains. For plant data, the problem is even more challenging. In our
case, the junction features are raw coordinates of the points without any colour information.

We exploit the advantages of graph based structures and formulate the problem as a sub-
graph matching optimization technique by considering junctions as graph nodes and their
geodesic distances as edges. Also, the graph structure automatically makes the solution ro-
tation invariant. By assigning a cost function between two vertices, we demonstrate that the
optimal matching of graph nodes produce better results than existing methods.

1.2.4 Partially Occluded Leaf Classification
We address the problem of classifying partially occluded leaves by their contours as our fi-
nal contribution. This problem arose from the work of MSc student Pu (Paulina) Yang [156].
She manually segmented and tracked individual leaves in her plant range data. Often these
leaves became occluded by other plant matter and tracking had to stop. [In the end, full
non-occluded leaves at later times were backwards tracked to avoid the occlusion problem
completely.] Matching occluded leaves to full leaves is an NP-Hard problem and, as of yet,
does not have a good approximate solution. This problem motivates our interest in 2D partial
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contour matching. 3D partial contour matching is left to future work.
Recognition of plant leaves has been an active area of research in recent years. Plant

species identification from leaf images is now possible from mobile phones (Leafsnap app
[77]). Leaves play a vital role in plant phenotyping and species identification. Crop monitor-
ing systems can analyze the condition of a plant by the leaf texture [154]. Also, tracking and
pruning of leaves is an essential part of these systems [5]. However, tracking of leaves over
time can be challenging when the plant grows and leaves occlude each other.

We assume that the contour information and occlusion boundary of an occluded leaf are
available. The problem is to find the plant species of the occluded leaf from a database of
full leaf contours. Basically this is the partial contour matching problem, which is known to
be NP-Hard [135]. Large intra class variations of plant leaves make the problem even more
challenging. Recognition of occluded leaves has not been studied before. To the best of our
knowledge, we are the first to report occluded leaf recognition where the occlusion can be as
high as 50%. We demonstrate that the proposed method on partially occluded leaf classification
outperforms state-of-the-art algorithms on 3 publicly available leaf databases.

1.3 Relevant Publications
1. A. Chaudhury and J.L. Barron, “Partially Occluded Leaf Recognition via Subgraph

Matching and Energy Optimization” (in review)

2. A. Chaudhury, C. Ward, A. Talasaz, A.G. Ivanov, M. Brophy, B. Grodzinski, R.V. Patel,
N.P.A. Hüner and J.L. Barron, “Machine Vision System for 3D plant phenotyping” (in
review).

3. A. Chaudhury, M. Brophy, and J.L. Barron, “Junction Based Correspondence Estimation
of Plant Point Cloud Data using Subgraph Matching”, IEEE Geoscience and Remote
Sensing Letters, Vol. 13, No. 8, pp. 1119-1123, August 2016.

4. A. Chaudhury, C. Ward, A. Talasaz, A.G. Ivanov, N.P.A. Hüner, B. Grodzinski, R.V.
Patel, and J.L. Barron, “Computer Vision Based Autonomous Robotic System for 3D
Plant Growth Measurement”, In Proceedings of the 12th Conference on Computer and
Robot Vision (CRV) 2015.

5. M. Brophy, A. Chaudhury, S. Beauchemin, and J.L. Barron, “A method for global non-
rigid registration of multiple thin structures”, In Proceedings of the 12th Conference on
Computer and Robot Vision (CRV) 2015.

1.4 Thesis Outline
The rest of the thesis can be summarized as follows:

• Chapter 2 reviews the background of different techniques that are used in rest of the
chapters. More specifically, the literature survey is focused on the following areas: imag-
ing techniques in plant phenotyping, point cloud registration algorithms, correspondence
estimation techniques and contour based shape matching algorithms.
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• Chapter 3 explains Gaussian Mixture Models, describes a quantitative comparison of
state-of-the-art point cloud registration algorithms. Finally the multi-view alignment
algorithm is discussed.

This work resulted in a publication at the Computer and Robot Vision (CRV) conference
in 2015 [18].

• Chapter 4 outlines the whole system to automate plant growth analysis. Details of the
system components (gantry robot, laser scanner, Biochamber, etc.) and their integration
is explained in detail. We briefly discuss the multi-view alignment of plant point cloud
data, followed by triangulation, mesh area and volume computation. Finally the growth
curves are analyzed.

This work was published the Computer and Robot Vision (CRV) conference also in 2015
[31] and subsequently expanded and submitted to a journal [30].

• Chapter 5 presents our idea of using junctions as feature points in plant point cloud data
and solves the correspondence problem by formulating a subgraph matching algorithm.
We also show that the idea can be extended to match occluded leafy plants by using a
simple but effective density based clustering technique.

This work was published in IEEE Geoscience and Remote Sensing Letters (GRSL) [29].

• Chapter 6 describes the algorithm for classification of partially occluded leaves. We
show that it is possible to match a leaf contour having at most 50% occlusion in its
contour.

This work is under review of a journal [28].

• Chapter 7 summarizes the whole thesis and possible future research directions are
pointed out.



Chapter 2

Literature Survey

This thesis is composed of different types of problems and techniques related to Computer
Vision based plant growth analysis. We discuss the related literature in various sections below.

2.1 Computer Vision Approaches for Plant phenotyping

In last decade there has been tremendous progress in automated plant phenotyping and plant
imaging technologies [133]. Accurate phenotyping of plants is crucial in analyzing different
properties of plants in different environmental conditions. Traditionally,y biologists have used
naı̈ve (manual) methods for plant phenotyping. This led to low throughput and sometimes ques-
tionable accuracy. Accuracy and throughput are major factors in mass scale analysis. To build
a real time plant phenotyping system with high accuracy, the system needs to be fully auto-
mated. A truly automated system should allow a naı̈ve user to operate the phenotyping process
and obtain the growth analysis results as a ready-made end product. As many of the current
phenotyping technologies focus on software development for processing the data [63, 75], au-
tomated collection of data is also becoming state-of-the-art [121, 136] over tedious manual
techniques [111] . However, most of the automated systems have their limitations. Either they
are dependent on particular types of plant(s), or on their size and geometrical structures. In
an attempt to generalize the phenotyping process, Computer Vision based system design is be-
coming very useful in studying plant growth, and a body of work has been reported in that area
[82, 54, 51].

Among several components of phenotyping, growth analysis is extremely important [53].
A plant’s growth is highly affected by the environmental conditions. Accurate measurement
of a plant’s growth can reveal much information which can be useful for accelerating crop
production. In recent years, different aspects of plant phenotyping and growth measurement
have appeared in the literature.

Detection and tracking of plant organs (e.g. flowers, buds, stems, leaves, fruit) have gained
the interest of many researchers. A Machine Vision system for fruit harvesting was proposed
by Jimenez et al. [70]. They used an infrared laser scanner to collect data and used computer
vision algorithms to detect fruit on a plant using their colour and morphological properties.
This type of automated system is in great demand for fruit harvesting and agricultural engi-
neering. Automated classification of plant organs can be useful for tracking a specific area of
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the plant over time. Chattopadhyay et al. [2] presented a 3D reconstruction of apple trees. They
used a semi-circle fitting technique to model the main trunk and primary branches. This can
be helpful in automating the pruning process as a part of intelligent agricultural robotic appli-
cation. Paulus et al. [109, 110] showed a feature based histogram analysis method to classify
different organs in wheat, grapevine and barley plants. A segmentation algorithm to monitor
grapevine growth was shown in [74]. A similar type of work on plant organ segmentation by
unsupervised clustering was proposed in [145]. Paproki et al. [108] showed a 3D approach to
measure plant growth in the vegetative stage. They generated 3D point cloud from 2D images.
A multi-camera set-up is used and a plant’s 3D model is reconstructed via projection matrices
in [59]. They demonstrated automatic segmentation of leaves and stems to compute geometric
properties such as area, length, etc. and validated the result by comparing with ground truth
data destructively by hand. Dellen et al. [38] demonstrated a system to analyze leaf growth of
tobacco plants by tracking the leaves over time.

Other recent work focused on detecting specific patterns in a plant’s leaves to determine the
particular condition of the plant. Analysis is performed by tracking leaves and detecting colour
properties of the leaves. However, segmentation of plant leaves in different imaging conditions
is a challenging task [122]. Kelly et al. [73] showed an active contour based model to detect
lesions in Zea mays. This crop is widely used and detecting the lesions can be helpful to detect
disease in the early growth stage. Xu et al. [154] presented an approach to detect nitrogen and
potassium deficient tomatoes from the colour images of the leaves. Recent work on tracking
leaves of rosette plants can be found in the work of Aksoy et al. [3]. This work can be useful
for measuring growth rate of a particular leaf.

Building a 3D model of a plant from multi-views is a challenging task. The complex
geometry of plants make the problem of 3D surface reconstruction difficult. Pound et al. [113,
112] proposed a level set based approach to reconstruct the 3D model of a plant from multiple
views. Their reported results are promising in that they show that their 3D model closely
resembles the original plant structure. A feature matching based approach is used to build the
3D model of a plant [119] using a structure from motion algorithm. However, the method
is highly dependent on local features. The idea does not work for the cases where the plant
surface is featureless. Note that range data does not require texture or features on the plant.
Santos et al. [120] applied Structure from Motion (SfM) to build 3D model of the plant and
accurately computed plant height and leaf length. Simek et al. [127] presented a method
to estimate the thin branch structures of a plant from monocular images. They modelled the
spatial smoothness of the branches by Gaussian Process (GP), that allows attachment of the
branches.

Rhythmic patterns of a plant’s growth are well studied in the biological literature [55, 128,
56]. A system capable of detecting diurnal growth patterns can be reliably used to monitor
the growth pattern of different species in different conditions. Imaging based techniques are
becoming more popular in such analysis [132]. A vision based system to study the circadian
rhythm of plants was presented in [104]. The automated system captures the diurnal growth
pattern using 2D imaging techniques. A laser scanning based 3D approach was reported in
[42] which shows the diurnal pattern of leaf angle in different lighting conditions. Tracking
and growth analysis of a seedling by imaging technique was studied in [13]. Barron and Liptay
[9, 10] and Liptay et al. [86] used a front and side view of a young corn seedling imaged by a
near-infrared camera to obtain 3D growth for up to 3 days. The growth was shown to be well
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correlated by root temperature (Pearson coefficient 0.94 [9]).
Godin and Ferraro [58] presented a structural analysis of tree structures which can be useful

in plant growth analysis. Augustin et al. [7] modelled a mature Arabidopsis plant for phenotype
analysis. They demonstrated extraction of accurate geometric structures of the plant from 2D
images which can be useful for phenotyping studies of different parts of the plant. Tracking the
event of budding and bifurcation in a plant’s life cycle can be very useful for growth analysis.
Li et al. [83] performed a 4D analysis to robustly segment plant parts to localize buddings and
bifurcations accurately, using a backward-forward analysis.

2.2 MSc Theses from Barron’s Lab
This thesis partly used some of the results found in 3 previous MSc theses on Computer Vision
based plant growth analysis by Chen Zhao [163], Pu (Paulina) Yang [156] and Zereen Akter
[4]. Mark Brophy (PhD 2015) is described elsewhere.

Zhao [163] presented a proof of concept technique that the 3D area and 3D volume could
be used as measures of Arabidopsis plant growth. Six ping-pong ball mounted on sticks were
placed about a growing plant. Figure 2.1 shows the scanning setup used. The plant was on a

Figure 2.1: The experimental setup used for scanning the Arabidopsis plants.

circular table and the range sensor was fixed on a tripod to give a good view. Twelve scans of
the plant at 30◦ rotation increments were recovered and the scans were merged using the Geo-
magic Studio 12 software. Geomagic Studio required the ping-pong balls to do the registration.
Since each scan view of the plant only has semi-sphere data (the visible half of the ping pong
balls), each scan was manually manipulated, with the semi-spheres being cut (edited) from the
scans and synthetic 3D spheres inserted in their stead at these locations. This manual interven-
tion was tedious, time consuming and error prone. The scanner used has a laser beam at 660
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nm in the visible spectrum and was intended to work under normal lighting conditions. One
problem was that the scanner worked poorly in well lit environments and, as a result, most of
the scanning was done in the night time. The effect of a 660 nm scam beam on the plant’s
growth is unknown (undocumented) but 660 nm is a wavelength known to be involved in plant
growth. Using a 660 nm laser beam did make the measurement system a bit invasive. Zhao
also performed manual segmentation of plant leaves and tracked then over time, plotting time
versus leaf size as an indication of leaf growth. Occlusion problems were avoided by manually
choosing leaves that were never occluded by other plant matter. The volumes of stems were
also measured with some success. Generally, Arabidopsis stems were too thin to obtain highly
accurate measurements. Lastly, plant canopy areas were measured with the Arabidopsis in
its vegetative state. There was significant occlusion in the canopy leaves, which was ignored.
Zhao show that range data could be used to recover quantitative plant growth data but no long
growth sequences were produced (the longest was for 9 days).

Yang [156] focused on solutions for the problems encountered in Zhao’s thesis [163]. For
example, there were problems with manually editing the leaves in the polygonal mesh, es-
pecially when the leaves were near soil (remember the range data does not have any texture
information). Yang drew a red line using Geomagic Studio to outline the contour of a leaf (and,
hence its region) and then just eliminated everything outside the leaf’s region. To handle the
problem of the laser scanner being sensitive to highly lit scenes, Yang only measured growth
from 8pm to 8am. Yang conducted her experiments in the Biotron [156]. The growth chamber
used had uncontrollable wind (the only way to turn off the wind was to completely power-down
the growth chamber). The plant still jittered a bit even though the plant and scanner setup was
enclosed in plastic sheet structure. Yang acquired the Arabidopsis plant dataset used by Bro-
phy et al. [18] to illustrate their registration algorithm. In that work, Brophy et al. showed the
resilience of the registration algorithm to smaller jittering datasets. There were a lot of uncon-
trollable physical problems associated with using the Biotron, including loss of temperature
control during 2 summer thunderstorms. The plans died in the resulting 50◦C temperatures.
The plant also often grew out of the field of view of the scanner, resulting in incomplete data.
Sometimes, there were networking and computer problems as well. The full automation of
plant growth in this thesis is meant to resolve all these and other problems.

Nevertheless, in spite of all her problems, Yang was able to acquire longer range datasets
over the life cycle an Arabidopsis plant. She still had to contend with ping-pong ball placement
and the laser beam wavelength being in the visible spectrum. The use of a near-infrared laser
beam was proposed. At that time, such a scanner was not yet on the market.

Akter’s thesis [4] is an important contribution on the rectification of the ping-pong ball
placement experienced by the two previous theses [163, 156]. The main contribution of her
thesis is to remove the problems caused by having to manually replace semi-sphere data with
full sphere data. Her solution was to generate synthetic full sphere data and automatically
detect semi-sphere data via a least squares fitting algorithm in each range image and replaces
this data with the full sphere data. Thus, the balls only had to be manually placed once at the
start of an experiment. This process was very useful in automating and speeding up the 3D
measurement process.

It was eventually decided to give up on the Geomagic Studio software (the placement of
ping-pong balls was problematic) and write the registration code from scratch in MatLab (with
no requirement for ball placement at all). A near-infrared ShapeGrabber scanner also became
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available at that time and was used for this thesis’ results. It allow scanning in the day and
night.

2.3 Multi-View Alignment
Registration is a fundamental task in 3D reconstruction, where the aim is to find a coordinate
transformation to align source and target views (referred to as pairwise registration). The basic
Iterative Closest Point (ICP) [14] algorithm finds a rigid transformation that registers two views
using local optimization. However, ICP is prone to getting trapped to local minima if the initial
guess is not good. Several variants and applications of the classical ICP are reported in the
literature ([142, 161, 94, 114, 116, 68, 17]).

Turk and Levoy [142] exploited ICP algorithm to align surface meshes from multiple scans.
First they align the adjacent meshes by considering the topology of the object. Then all the sur-
faces are aligned together by computing local weighted average of the individual surfaces. Ma-
suda and Yokoya [94] presented a registration algorithm by combining ICP and Least Median
of Squares (LMS) estimator to determine the rigid motion parameters from two range images.
The method is shown to be robust on noise and occlusion. Pulli [114] to some extent handled
the problem of getting stuck to local minima of ICP algorithm. The method first aligns pairwise
scans and then uses this as a constraint to globally register the whole data set. In other words,
the multi-view registration algorithm “diffuses” the pairwise registration errors. Rusinkiewicz
et al. [116] proposed an advancement of ICP algorithm by uniformly sampling the surface nor-
mals. However, the algorithm needs a good initial guess to find a reasonable solution. Huber
and Hebert [68] presented a registration algorithm to align multiple rigid datasets without any
need of manual intervention. The method is based on two phases: local and global. The local
match performs pairwise matching and forms a graph by considering local consistencies of the
views. Then the global phase filters out bad matches by enforcing global consistency criteria,
and transforms the two views in a common coordinate system. Bouaziz et al. [17] improved the
traditional ICP algorithm by considering large number of outliers. They introduced a sparsity
regularization term in the ICP energy function to handle the outliers.

Fitzgibbon [52] modified ICP by deriving an error function between the model and target
data which is minimized by the Levenberg-Marquardt algorithm (LMICP). The energy is for-
mulated in terms of the L2 distance of the closest point in the data to each point in the model,
but he instead computed distances to each point in a discrete volume, thus allowing to compute
the spatial derivatives needed for energy minimization. This approach makes the registration
process more general than ICP. The method requires rigid data points and works well on the
standard Stanford Bunny dataset (which satisfies this constraint).

Thin Plate Spline (TPS) [34] is one of the most successful and widely used algorithm for
point set registration. This is is an advancement of the cubic B-spline with a regularization
factor, controlled by regularization parameter λ. The physical analogy is like bending a thin
sheet of metal to fit a surface consisting of the points. The regularization controls the amount of
bending of the sheet. However, this involves a proper choice of λ. Ignoring the regularization
factor (λ = 0), TPS results in exact interpolation.

Statistical approach to point set registration is shown to be successful to some extent. Tsin
and Kanade [141] introduced a Kernel correlation (KC) method to measure the affinity of
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the point sets. The point set registration problem is defined as maximum kernel correlation
configuration of the the two point sets. The kernel function is usually chosen as symmetric and
non-negative. The technique is shown to be less sensitive to noise.

In recent years, The Point Cloud Library (PCL) [84] has introduced some libraries for
point cloud alignment and is based on Rusu et. al.’s method [118, 117] for Fast Point Feature
Histogram (FPFH). Each point in a dataset is assigned multiple informative labels as features
and these are then used to establish correspondence, thus resulting in a good initial alignment
for registration. The geometrical information (16 dimensional) for the neighbourhood of each
point is extracted and stored in histograms. The method has also been shown to be robust to
pose invariance. Unfortunately, this method still does not overcome the difficulties associated
with iterative algorithms like ICP.

Gaussian Mixture Model (GMM) based registration has been extremely successful in wide
class of problems and is a state-of-the-art technique for point set registration. Chui and Ran-
garajan [33] formulated the point matching problem as maximum likelihood estimation of
mixture models. The Expectation Maximization (EM) algorithm is used to solve the Maxi-
mum a-priori Estimation (MAP) problem. Zhang et al. [160] introduced a variational method
to register non-rigid image pairs. The dissimilarity measure of two images is modelled as
Gaussian Mixture distributions. In a similar approach, Somayajula et al. [131] also exploited
Gaussian Mixture Model based approach to register point sets.

Jian et al. [69] and Myronenko et al. (CPD) [101]’s GMM based registration algorithms
have been the most successful in recent years. The basic idea of these algorithms is to represent
the two point sets as Gaussian Mixtures, and minimize the distance between them. Usually TPS
is used to model the transformation. CPD extends the idea by representing the two point sets
as GMM centroids, and are forced to move “coherently” as a group. This helps to preserve
the topological structure of the point sets. Recently Ma et al. [91] extended the GMM based
approach by incorporating shape context [12] prior. Instead of assigning uniform membership
probabilities to the GMM components, they used the prior probability to achieve better results.

2.4 Correspondence Estimation
Although Pairwise Registration and Correspondence Estimation basically refer to the same
task of finding matching points in two point sets, correspondence estimation is often used as a
part of the registration process. A typical work-flow of point set registration involves feature
point detection, correspondence estimation, followed by outlier rejection from the estimated
correspondences, and finally transformation estimation of the whole point set. Pairwise regis-
tration involves transformation of all the points in one set to the other (either locally, or globally,
or both), and in many cases good initial guess is very important to get good results.

Registration algorithms can be broadly classified into two groups. The first type is a global
registration method like CPD [101] or GMM [69]. The second type is based on the computation
of local feature descriptors and matching ([90, 72, 96]). Global registration methods often
fail because of local deformation between two views. On the other hand, the basic idea of
feature point extraction is to find changes in local structure (intensity or local geometry). We
consider only raw plant point cloud data, without any intensity or colour information. Applying
a standard 3D key-point detector algorithm relies on local descriptors ([134, 96]) for feature
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extraction and matching is performed based on descriptor similarity. This idea works well for
indoor/outdoor scene point cloud with color information and models with well defined surface
and curvature. However, applying this idea to plant like structures, which contain many similar
geometrical features, usually results in ambiguous matches in a correspondence calculation.
Matching correspondences in forest scenes are studied in some recent articles ([64], [16]).
However, the problem of finding efficient correspondences still remain unsolved.

Bucksch et al. [20] addressed this problem and proposed a localized registration algorithm.
The method is highly dependent on the skeletonization, which might not work in the presence
of noise and plant leaves. Also, their method is based on the assumption that an initial guess
is available. They assume rough manual alignment of the junction feature points in two trees.
For large rotation angle differences, the algorithm may fail to register two views correctly.
Recently Zhou et al.[169] presented an approach extending [20]. However, their method is
still dependent on skeletonization, which still involves manual intervention and doesn’t handle
occlusion and local deformation. Also, the idea of cylinder fitting does not work for thin stems.

2.5 Contour based Shape Matching
Shape matching is a long standing problem in Computer Vision and Pattern Recognition.
Shapes can appear in different ways, such as discrete point clouds, triangular surfaces, sil-
houettes. Recognition of an object by its contour has been shown to be very feasible on large
varieties of shapes [80]. Since the contour of an object is not affected by colour, illumination
and other textural properties, contour based representation can be very effective. The recogni-
tion problem can be solved by either correspondence matching between two point sets, or as
a part matching problem by “learning” object parts from database and then recognizing a ob-
ject from the learned categories. In the former case, a typical approach is to find good feature
points (or descriptors encoding the local and global geometrical structures of the shape) on the
contour and then to match the feature points between two images to find the correspondence
([23], [149]). The quality of a match is typically determined by the “score” of the matching.
Another common approach to find the point correspondence by formulating the point matching
as an assignment problem and optimizing it. Shape Context (SC) [12] is a well known example
of such a technique, which builds a log polar histogram for each contour point and finds the
best match by formulating the matching as a bipartite graph matching problem and minimiz-
ing the cost function. The method is state of the art and works well on large varieties of data
sets. Scott et al. [123] presented a contour matching technique that improved on the typical
assignment methodology by considering the ordering of the discrete contour points. Ling et al.
[85] extended the idea of shape context by replacing the Euclidean distance by a inner distance
measure, called Inner Distance Shape Context (IDSC). They reported much higher recognition
rates than SC by using a Dynamic Programming approach. Later the idea of shape context was
used in various applications. Ma et al. [92] proposed a technique to match partially occluded
object contours. They used a shape context based descriptor and formulated partial graph
matching as a weighted graph matching problem. Also, there has been attempts to handle local
deformation in the shape contour. Xu et al. [153] defined a deformable potential at each point
on the contour, which can handle deformations. Kontschieder et al. [76] formulated a k-nearest
neighbour graph as shape representation and performed an unsupervised clustering method to
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retrieve the closest match of a query shape. Hu et al. [66] proposed a shape descriptor based
on angular pattern of contour points. The descriptor is invariant to scale and rotation due to the
relative orientation of the contour points. Shen et al. [125] combined the contour and skeleton
of the shape using the correspondences between them. A Bag of Features idea is exploited to
form the feature vector, and shapes are classified by a linear Support Vector Machine (SVM)
classifier.

Another approach for shape recognition involves part learning. The idea is to build a “dic-
tionary” of object parts and then find the best match from the learned object parts. Opelt et al.
[107] encoded contour fragments into a weak classifier and formulated a “boundary fragment
model” to classify an object. They perform boosting, which learns from a number of weak
classifiers and “boosts” these classifiers to form a strong classifier. One advantage of the al-
gorithm is that, it needs a limited number of training samples. A similar approach was used
by Shotton et al. [126]. They built a “codebook” of local fragments of contours and learned
via a boosting algorithm. Ferrari et al. [49] demonstrated a rule based approach to recognize
objects by their parts. Different parts of an object contour are connected to form a contour
segment network and matching is performed by finding efficient paths through the network.
Bai et al. [8] presented a descriptor learning approach by exploiting “bag-of-words” idea. A
spatial pyramid based approach is adopted to learn local and global features at different levels.
Recently, Bicego et al. [15] formulated the contour matching as biological sequence matching
problem and demonstrated better results than the state-of-the-art on 5 shape databases.

Apart from matching contours, either via pairwise point matching or part learning, other
approaches have been shown to be successful to some extent. In many cases, an object can
be efficiently represented by its meaningful parts. Although its hard to define “meaningful”
quantitatively, convexity and curvature information can be useful since these are strong cues
for human vision. Discrete Contour Evolution (DCE) [79] is a popular technique to decompose
an object into meaningful parts based on the convexity of the shape contour. Yang et al. [155]
extended the idea of DCE and performed a dynamic programming based matching to recognize
shapes, which is invariant to scale, rotation and deformation. Another way to recognize mean-
ingful features is to find the points where the curvature undergoes change in sign. Mokhtarian
et al.’s [98] Curvature Scale Space (CSS) feature matching technique has been quite successful
for closed contour matching [1]. They detect feature points at different scales based on cur-
vature sign change and match those features to find the shape similarity. Wang et al. [150]
used this idea by representing the shape contour as B-spline curve. The idea of CSS was later
extended for open curves [167]. Topological skeleton (medial axis) based approaches (shock
graph [124]) are dependent on the skeleton of a curve being well represented by its skeleton.
This works well for shapes with large variations. However, sometimes small local changes in
the shape cause large change in the skeleton. For leaf shape recognition, with large local shape
variations, this type of idea would not work.

Curve moments are shown to be effective for many cases of contour matching [164]. Repre-
senting the contour by a B-spline and matching the spline curves by curve moments is reported
to work well for occlusion handling and missing data ([35], [67]). However, the method can’t
be applied to real time applications because the matching needs to be performed for all pos-
sible combinations of discrete curve sections in the database. Also, curve moments are very
unstable, as small changes in shape can affect significant changes in the curve moment.
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2.5.1 Contour Based Leaf Matching
Automatic identification of plant species is an active area of research these days. There are
many ways to identify a plant, for example, by the flowers, fruit, leaves, or other organs of the
plant. Although there has been some work on flower classification [105] and large scale plant
identification from learned categories [46], classifying leaves in order to determine the species
is the most common approach. There is a large body of literature ([97, 103, 65, 77, 24, 146, 27,
26, 100, 25, 87, 148, 162, 147, 71, 166]) over the last two decades on leaf recognition for plant
species identification. Leaf classification was first reported by Mokhtarian et al. [97]. They
studied recognition of leaf species having self intersections by Curvature Scale Space (CSS)
matching. However, they focused on the particular case of self intersecting leaf images and
did not report recognition for normal leaves. Nam et al. [103] performed a nearest neighbour
based feature point matching technique to recognize leaves. Recently, Multiscale Distance
Matrix (MDM) [65] has been a popular leaf recognition technique. The method is simple and
fast. Basically, pairwise distances among all discrete contour points are represented in matrix
form and the coarse to fine level details of the shape is encoded by a compact representation of
the distance matrix. This matrix is used to perform recognition by reducing the dimensionality,
similar to a principal component analysis. The method achieves good performance on two leaf
databases. However, they did not study occlusion.

In recent years, one of the most successful and practical leaf recognition system is Leafsnap
[77]. The mobile app system scans a leaf image (which needs to be on a uniform background),
segments the image, extracts contour and matches with thousands of leaves in the database. The
underlying method computes the Histogram of Curvature over Scale (HoCS) and matches via a
nearest neighbour technique. They did not consider occlusion. Curvature Scale Space [24] and
convexity based methods [146] are also known to have some success in leaf recognition. Cerutti
et al.’s [27] method focuses on the segmentation of a leaf from its complex background and
ultimately performs matching based on a CSS formulation. However, the method is dependent
on sharp features (like leaf teeth and tip) on the leaf contour. Identification of compound leaves
is more challenging than classifying individual normal leaves [26].

Some techniques exploit salient points on the leaf contour ([100], [25], [166], [71]), and
matching is performed based on those features. Nevertheless, this idea fails when the leaf does
not have enough distinguishable features. Hierarchical representation of the shape contour
is an efficient way to capture the geometry at different scales, which can be exploited using
a Shape Tree (ST) [48]. Another hierarchical approach for partitioning the contour into dif-
ferent lengths was presented by Wang et al. [148]. They captured the geometrical structure
via the distribution of points around a straight line and then built a shape signature based on
Fourier transform coefficients. The method achieves good performance on a public database
of Swedish leaves including leaves that are collected from 100 tree species. Some recent work
([87], [147]) developed leaf recognition systems for mobile applications. Recently Zhao et al.
[162] demonstrated a computationally fast technique for leaf recognition. However, it needs
prior training for the classifier. Furthermore, occlusion is not handled by their method.



Chapter 3

Multi-View Alignment

This chapter presents a quantitative comparison of existing pairwise registration algorithms
and extends the state-of-the-art algorithm to align multiple scans of plant data. The alignment
algorithm is from PhD thesis of Mark Brophy [19]. Our contribution is mainly the quantitative
comparison of the state-of-the-art algorithms on plant data. This work resulted in the following
conference publication:

• M. Brophy, A. Chaudhury, S. Beauchemin, and J.L. Barron, “A method for global non-
rigid registration of multiple thin structures”, In Proceedings of the 12th Conference on
Computer and Robot Vision (CRV) 2015.

3.1 Introduction
Building a 3D model is extremely useful for many practical applications where inferring mea-
surements about the shape or size of an object is a requirement. In biological science, building
3D models help in analysis of different properties of the object. For example, building a 3D
model of a plant can be useful in in plant phenotyping ([110, 145, 119, 113, 120, 111]), or
building accurate 3D model of molecular structures (e.g. protein, bacteria) can revolutionize
the analysis in molecular biology [115].

With the rapid acceleration of hardware capability in terms of CPU power, storage and 3D
scanners, we can now capture huge amounts of data and the fidelity of the resultant models is
constrained by the quality of merging/reconstruction algorithms. Due to recent advancements
of robotic technologies and low cost laser scanners, building real time automated systems is
becoming possible for plant science and agricultural applications, where a major task is to build
a 3D model of the plant to analyse different biological properties (like growth, etc.). However,
the complex recursive structure of a plant makes the problem of aligning multiple views ex-
tremely hard, unlike building a 3D model of a rigid object. Also in medical robotics, automatic
analysis of medical images is a crucial step. A common application is to build a 3D model
of thin artery data from multiple tomographic or CT images. This involves pairwise registra-
tion and alignment of different scans. However, registration of vascular data is a challenging
problem and despite several years of research ([129], [39]), it still remains an open problem
in medical imaging community. We address the problem of aligning multiple views of thin
recursive structures like plant or artery data.

16
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3.2 Gaussian Mixture Model based registration
Registration of 3D point cloud data has been studied extensively in the literature. We refer
to Chapter 2 for the literature background. Recently, Gaussian Mixture Models (GMM) have
been very successful for the registration of non-rigid point sets.

Let us consider that the model point set is denoted by M = (x1, x2, ..., xM)T , and the ob-
served data points are represented by S = (y1, y2, ..., yN)T . The model points undergo a non-
rigid transformation T , and our goal is to estimate T so that the two point sets become aligned.
The GMM probability density function can be written as,

p(yn) =

M+1∑
i=1

P(zn = i)p(yn|zn = i), (3.1)

where zn are latent variables that assign an observed data point yn to a GMM centroid. Usually
all the GMM components are modelled as having equal covariances σ2, and the outlier distri-
bution is considered as uniform 1/a. The unknown parameterω ∈ [0, 1] is the percentage of the
outliers. The membership probabilities πmn are assumed to be equal for all GMM components.
Denoting the set of unknown parameters θ = {T , σ2, ω}, the mixture model can be written as,

p(yn|θ) = ω
1
a

+ (1 − ω)
M∑

i=1

πmn

(2πσ2)D/2 exp[−
||yn − T (xm)||2

2σ2 ]. (3.2)

The goal is to find the transformation T . Sometimes a prior is used to estimate the trans-
formation parameters. A common form of prior [158] is,

P(T ) ∝ exp[−
λ

2
φ(T )],

where φ(T ) is the smoothness factor, and λ is a positive real number. The parameters θ are
estimated using the Bayes’ rule. The optimal parameters can be obtained as,

θ∗ = arg max
θ

P(θ|S) = arg max
θ

P(S|θ)P(T ),

which is equivalent to minimizing the negative log-likelihood:

L(θ|S) = −

N∑
n=1

lnP(yn|θ) − lnP(T ). (3.3)

Jian and Vemuri [69] followed this approach and represented the point set by Gaussian mix-
tures. They proposed an approach to minimize the discrepancy between two Gaussian mixtures
by minimizing the L2 distance between two mixtures. However, they can’t handle large data
sets. Their experimental results are for the downsampled Bunny dataset. The algorithm does
not work for our plant dataset (over 2 million points). In fact, for complex plant structures, it is
impossible to retain the geometry of the model by downsampling the over 2 million points (to
about 5000 points, which the algorithm can process).1 The plant under consideration has lot of
branches and has a canopy of leaves at its base, which makes the geometry more complicated.

1Correspondence between the authors and ourselves revealed that this downsampling could not be avoided.
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The Stanford Bunny can be approximated by a few hundred points, but for plant structures
using such a small number of points is not possible. Hence, we could not apply this algorithm
in our plant data.

The Coherent Point Drift (CPD) registration method was proposed by Myronenko et al.
[102, 101]. Their method is based on GMM, where the centroids are moved together. Given
two point clouds, M = (x1, x2, ..., xM)T and S = (y1, y2, ..., yN)T , in general for a point x, the
GMM probability density function will be p(x) =

∑M+1
i=1 P(i)p(x|i), where:

p(x|i) =
1

(2πσ2)D/2 exp[−
||x − yi||

2

2σ2 ]. (3.4)

They minimize the following negative log-likelihood function to obtain the optimal alignment:

E(θ, σ2) = −

N∑
j=1

log
M+1∑
i=1

P(i)p(x j|i). (3.5)

There are many ways to estimate the parameters, such as, gradient descent, Expectation
Maximization (EM) algorithm, and variational inference. EM is a standard and widely used
technique to optimize the cost function. Basically the E-step (or the Expectation) computes
the posterior probability, and the M-step (or the Maximization) computes the new parameter
values from the likelihood function. The aim is to find the parameters θ and σ2.

Let’s denote the initial and updated probability distributions as Pold and Pnew respectively.
The E-step basically computes the “old” parameter values, and then computes the posterior
probability distributions Pold(i|x j). In the M-step, the new parameter values are computed by
minimizing the log-likelihood function:

E = −

N∑
j=1

M+1∑
i=1

Pold(i|x j)log(Pnew(i)pnew(x j|i)), (3.6)

which can be rewritten as,

E(θ, σ2) =
1

2σ2

N∑
j=1

M+1∑
i=1

Pold(i|x j)||x j − T (yi, θ)||2 +
NpD

2
logσ2, (3.7)

where

Np =

N∑
j=0

M∑
i=0

Pold(i|x j) ≤ N. (3.8)

Now the current parameter values θold is used to find the posterior probabilities:

Pold(i|x j) =
exp(− 1

2σold2 ||x j − T (yi, θ
old)||2)∑M

k=1 exp(− 1
2σold2 ||x j − T (yk, θ

old)||2) + (2πσ2)D/2 ω
1−ω

M
N

(3.9)
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3.2.1 Quantitative Comparison of State-Of-The-Art
We present a comparative framework to perform a quantitative comparison in registering two
point clouds. First, we show our experimental results on the Bunny data (downsampled to 376
points). Then we show our results on real Arabidopsis plant data. The results are shown in
Figure 3.1 for the Stanford Bunny dataset and Figure 3.2 for the real Arabidopsis plant.

Figure 3.1: Pairwise registration results for two scans of the Stanford Bunny. Top row: original
two views, Bottom row: results obtained using Rusu et al. (FPFH) [118], Fitzgibbon (LMICP)
[52], Jian and Vemuri (GMMReg) [69] and Myronenko and Song (CPD) [101].

To perform quantitative analysis of results we manually chose a small number of 3D points
in the 2 scans that we believe are correct correspondences. For the Bunny and Arabidopsis
plant data, we acquired 18 and 44 correspondences respectively. Using that ground truth, we
computed the average error rate as the L2 distances (in mm) between source and target points,
where the correspondence was manually measured for the different algorithms. These are listed
in Table 3.1.

Algorithms
Datasets FPFH LMICP GMMReg CPD
Bunny 0.149 0.046 0.012 0.014
Arabidopsis Plant 9.661 4.114 N/A 2.312

Table 3.1: Quantitative results for different algorithms and datasets.

We can observe that for Bunny datasets, almost all the algorithms work well. However,
for real Arabidopsis data, the error measures are considerably higher. We note that while
collecting the ground truth correspondence points, there may have been some errors. Although
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Figure 3.2: Pairwise registration results two scans of the real Arabidopsis plant data. Top row:
the original two views. Bottom row: results obtained using Rusu et al. [118], Fitzgibbon [52]
and Myronenko and Song [101].

it is difficult to capture the exact error, we expect the error to be in the range 2-5 mm for each
point. As we can see, CPD works best among all other methods in processing plant data.

We have concluded from our experimental work, that Myronenko et. al.’s Coherent Point
Drift (CPD) [102, 101] method works best for aligning two point clouds of the plant data.
However, Myronenko et. al. didn’t consider aligning more than two views.

Applying CPD for alignment of 12 views yielded poor results. One of the reasons was
because of the inter-scan movements between different parts of the plant range images (the
plant is not rigid). Also, our plant data (Arabidopsis plant) is extremely sparse in the flowering
stage (with long stems, a few leaves and flowers), so it is necessary to use a large area of
support to construct the GMMs to smooth the solution space, and as a result, the registrations
are not sufficiently good to pass a visual inspection.

3.3 Proposed Method
This section comprises of a multiview alignment method from the PhD thesis of Mark Brophy
[19]. We discuss the algorithm briefly.

The proposed algorithm is based on CPD which can align many views with minimal error.
More specifically, it is a drift-free algorithm for merging non-rigid scans, where drift is the
build-up of alignment error caused by sequential pairwise registration. Sequential pairwise
registration entails the alignment of each scan to its neighbor, followed by the alignment of
another neigboring scan to the resultant scan, and so on. The error between any two scans
accumulates the error from the previously merged scans used in the current merging. Our
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data (of the Arabidopsis plant) consists of 12 views of the plant, uniformly sampled at 30◦

increments, thus allowing a complete 3D reconstruction of the plant. We roughly align adjacent
point clouds from adjacent range scans by performing sequential pairwise registration and then
use our global method to create the final point cloud.

Inspired by Toldo et. al.’s work [140] in rigid registration, we solve this problem by con-
structing an “average” scan to which we register. For a scan X, we find the set of points that are
Mutual Nearest Neighbors (MNN) for each point in the scan from every other scan. That is, we
compute the MNNs for each point in X for each scan individually, and we then combine them
into a single scan that is composed of the calculated centroids from each point. We describe
this in Section 3.3.

We first approximately align the scans sequentially, and then we use a global method to
refine our result. The global method involves registering each scan Xi to an “average” shape,
which we construct using the centroids of the mutual nearest neighbors (MNN) of each point.
For Xi, we use scans X j where j , i to obtain the average shape Ycent from the centroids,
and Xi is then registered to this average shape. This is repeated for every scan until the result
converges.

We modify Equation (3.4) to perform global registration

p(x|i) =
1

(2πσ2)D/2 exp[−
||x − ŷi||

2

2σ2 ]. (3.10)

where ŷi ∈ Ycent are the points in the target scan Ycent, which is constructed from all scans other
than itself.

For a pair of scans X and Y , we say that a point xi ∈ X and y j ∈ Y are MNN if xi = xin and
y jn = y j, where

xin = min(|xp − y j|),∀xp ∈ X, (3.11)

and

y jn = min(|yq − xi|),∀yq ∈ Y. (3.12)

For each point x j in scan Xi, we find the set of points {xk|xk ∈ Xl ∧ MNN(xk, x j)}, where
l , i, i.e. all scans other than Xi. For each of these sets of points xk, we find the centroid

xcent =

n∑
i

xk

n
. (3.13)

We register Xcent, the set of centroids calculated for each x j, to scan Xi.
Although CPD alone is effective in registering pairs with a fair amount of overlap, when

registering multiple scans, especially scans that have not been pre-aligned, our method achieves
a much better fit both visually and quantitatively than CPD by itself, utilizing sequential pair-
wise registration. Our method is a two step process, beginning with aligning the scans approx-
imately. We then register a single scan to “average” shape, constructed from all other scans,
and update the set to include the newly registered result and performing the same process with
all other sets of scans. In this way, we avoid accumulation of merging error.
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Figure 3.3: 12 scans of the Arabidopsis plant, prior to registration, but with rotation and and
translation pre-applied. Different colours indicate different scans.

3.3.1 Approximate Alignment
We capture a set of scans around the plant at 30◦ increments. After acquiring them, we first
solve for the rigid transformation T0 = (R0,~t0) (where R is a rotation angle and ~t is a translation
vector) between the the first scan (X0) and the second scan (X1) using the rigid version of CPD.
After we solve for ~t0, for each scan Xi, we apply the transformation i times as follows:

X̂i = RiXi + ~ti, (3.14)

where Ri =
∏i

k=0 R0 and ~ti =
∑i

0 ~t0. Our new set of transformed scans X̂ should now be roughly
aligned. We use this method to obtain a rigid registration. The initial registration is important
when the pair of scans to be registered has minimal overlap.

The approximately aligned scans can be seen in Figure 3.3.

3.3.2 Global Non-Rigid Registration via MNN
Once the initial registration is complete, we use CPD in conjunction with MNN to recover
the non-rigid deformation field that the plant undergoes between the capture of each scan. At
this point, the scans should be approximately aligned to one another. We now construct the
centroid/average scan and then register to it.

Global Registration

We use Algorithm 1 to merge all scans, where MNN(·) computes the mutual nearest neighbor
for each point in scans Xi and X j and the centroids function likewise takes the centroids com-
puted for each point in each scan and combines them into one average scan using Equation
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(3.13). For each point in scan Xi, we find the single nearest neighbor from all other scans and
use the set of distances to compute the L2-norm.

Algorithm 1 MNN Registration
Require: X = [X1, · · · , Xn], where each Xi is a range scan that has been approximately ad-

justed. A predefined tolerance tolmax.
tol =

∑N
i=1 error L2(Xi)/N

while tol < tolmax do
for i = 1 to N do

for j = 1 to N do
if j , i then

Xicent = MNN( X j, Xi )
end if

end for
Xcent = centroids( X1cent , · · · , XNcent )
Xi =register cpd( Xcent, Xi)

end for
end while

Figure 3.4: 12 scans captured in 30◦ increments about the plant and then merged into a single
point cloud using MNN. Shown from two viewpoints, front facing on the left and from above
on the right. Different colours indicate different scans.
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3.4 Results
We show the performance of MNN versus sequential pairwise registration for plant and vascu-
lar data in the following 2 subsections.

3.4.1 Plant Data
Figure 3.4 shows all 12 scans, merged into a single point cloud after subsampling each scan.
Each color in the point cloud represent a different scan. Despite the noisiness of the range scans
from jitter, our method successfully performed the 12 view registration, resulting in a single
point cloud that accurately captures the shape of the Arabidopsis plant. By ensuring that the
scans are all approximately registered before proceeding (for both methods), we minimize the
likelihood that erroneous parts of the point cloud datasets will bias the motion of a scan that is
being registered. Figure 3.5 displays the resultant error between the first scan in the set and all
subsequent scans. First, we see that the error is lower for scans that have more overlap (the first
scan shares a fair deal of overlap with the last, for example) for both sequential pairwise and
our proposed methods. We see that our method always outperforms its pairwise counterpart.
Sequential registration still rendered a useful result, though as the number of scans grows, the
drift would theoretically increase.

Figure 3.5: MNN versus sequential pairwise registration.

3.4.2 Synthetic Vascular Data
We further demonstrate the efficacy of our method on synthetic vascular data. We take a 3D
point cloud of synthetic veins, as generated by VascuSynth [144] and apply a non-rigid defor-
mation to the point cloud to create a total of 20 scans. This was performed using the defor-
mation method provided with the CPD software, which essentially constructs a matrix from
random data and uses that to construct a displacement field to apply. We use the parameters
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Figure 3.6: 20 synthetic scans of vascular data merged into a single point cloud using MNN,
as seen from two viewpoints, front and back.

sampling = 0.1, power = 3 and λ = 4. Initially, σ = 5 and we increase its value by 0.5 for
each successive deformation. This gives us a new set of point clouds, as seen in Figure 3.6.
The magnitude of this transformation is substantially larger than those created by the wind in
the Arabodopsis set. We utilized more scans than we did with the Arabidopsis in hopes of
verifying our hypothesis that pairwise registration gets progressively worse as we add more
scans, though the effect of drift is partially obscured by the fact that the deformation increases
between the first and each successive scan.

Figure 3.7: MNN versus sequential pairwise registration on vascular data, registering the first
scan to each of the subsequent scans.

The L2 error of the merged scans using sequential pairwise was higher than MNN and the
resultant shape no longer looked like the initial one when we used the default CPD parameters
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(λ = 1, β = 1), where λ controls the “stiffness” and β controls the point “spread”. In order to
maintain the shape of the veins, we couldn’t use a value of λ < 70. The quantitative results for
the pairwise sequential method in Figure 3.7 were calculated using λ = 90, which still ends up
rendering a badly warped result. In addition, as we increased the value of λ, the drift increased
quickly.

By contrast, MNN performs very well on this data, as seen in Figure 3.6. Quantitatively, we
have shown that it easily outperforms sequential pairwise registration, that our method limits
drift.



Chapter 4

Machine Vision System for 3D Plant
Growth Analysis

Machine vision for plant phenotyping is an emerging research area for producing high through-
puts in agriculture and crop science applications. Since 2D based approaches have their inher-
ent limitations, 3D plant analysis is becoming state of the art for current phenotyping tech-
nologies. We present an automated system for analyzing plant growth in indoor conditions. A
gantry robot system is used to perform scanning tasks in an automated manner throughout the
lifetime of the plant. A 3D laser scanner mounted as the robot’s payload captures the surface
point cloud data of the plant from multiple views. The plant is monitored from the vegetative
to reproductive stages in light/dark cycles inside a controllable growth chamber. An efficient
3D reconstruction algorithm is used, by which multiple scans are aligned together to obtain a
3D mesh of the plant, followed by surface area and volume computations. The whole system,
including the programmable growth chamber, robot, scanner, data transfer and analysis is fully
automated in such a way that a naive user can start the system with a mouse click and get back
the growth analysis results at the end of the lifetime of the plant. As evidence of its function-
ality, we show quantitative results of the rhythmic growth patterns of the monocot Arabidopsis
thaliana(L.), and the dicot barley (Hordeum vulgare L.) plants under their diurnal light/dark
cycles. This evidence supports our claim that we can obtain biologically relevant data from the
proposed system. As far as we know, we are the first to capture the full 3D structure of a plant
as a single closed 3D triangular mesh using a (near-infrared) laser scanner.

The work in this chapter was initially published in a conference and and subsequently
expanded in a submitted journal version as follows:

• A. Chaudhury, C. Ward, A. Talasaz, A.G. Ivanov, N.P.A. Hüner, B. Grodzinski, R.V.
Patel, and J.L. Barron, “Computer Vision Based Autonomous Robotic System for 3D
Plant Growth Measurement”, In Proceedings of the 12th Conference on Computer and
Robot Vision (CRV) 2015.

• A. Chaudhury, C. Ward, A. Talasaz, A.G. Ivanov, M. Brophy, B. Grodzinski, R.V. Patel,
N.P.A. Hüner and J.L. Barron, “Machine Vision System for 3D plant phenotyping” (in
review).
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4.1 Introduction

With the advancement of robotic technologies, automation tasks have become easier. Apart
from automating the phenotyping process, the data collection can also be automated efficiently
in real time. However, there are a number of challenges involved in accomplishing this, such as
communication among the hardware devices, reliable data transfer and analysis, fault tolerance,
etc. We have developed a 3D plant phenotyping vision system which is capable of monitoring
and analyzing a plant’s growth over its entire life-cycle. Our system has several parts. First,
a gantry robot system is used for the automation of data collection process. The robot is
programmable and can be moved around the plant by specifying a particular trajectory. A 3D
laser scanner is the robot arm’s payload. The scanner can record 3D point cloud data from a
number of viewpoints about the plant. The robot moves from one viewpoint to another, and
communicates with the scanner to take a scan of the plant under observation. In the current
setup, the plant is scanned six times a day from 12 viewpoints at 30◦ increments about 360◦

(we obtain six 3D triangular meshes a day). The 12 viewpoints result in overlapping range data
between adjacent views, allowing the merging of all the views into a single 3D triangular mesh
representing the whole plant. Note that our laser scanner uses a near infrared beam (about
825nm) and can scan the plant in the light and in the dark equally well.

Figure 4.1: Schematic diagram of the gantry robot system

We report growth results and analysis for 3 weeks of the life-cycle of wild type Arabidopsis
thaliana(L.) and barley plants. Without proper environmental conditions (e.g. light, tempera-
ture, wind, humidity, etc.), the plants would not have thrived in an indoor environment. The
reason for using the Arabidopsis plant is that, this plant has used extensively as a model plant
in biology and was the first plant whose genome was completely sequenced [138].

Reconstructing a plant’s 3D model from multiple views is extremely challenging [19, 18,
20, 169]. Unlike using a rigid model like the Stanford bunny, reconstructing a highly non-rigid
thin plant is difficult. We use a new multi-view alignment (registration) algorithm on individual
3D point clouds obtained by our scanning to obtain a 3D triangular mesh of the growing plant.
Given this mesh, we can compute the 3D surface area and volume of the plant. We propose
that area and volume make good plant growth metrics.
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In the next section we explain the system components in detail, followed by their inte-
gration into a complete system and finally the operation of that system. Subsequently the
multi-view reconstruction algorithm is discussed and we show experimental results and derive
some conclusions based on those results.

There is a large body of work on imaging based plant phenotyping. We refer to Chapter 2
for the related work. Most of these methods have several limitations. None of these systems are
designed to monitor a plant’s growth for its whole lifetime in an automated manner using 3D
imaging technique. To the best of our knowledge, we are the first to report a fully automated
system which operates in near real time1 over the lifetime of a plant using laser scanning
technology. We present a novel approach to study plant growth in truly automated manner
using 3D imaging technique. The system is described in next section.

4.2 System Description

The proposed system has several parts which are integrated to make a fully autonomous system.
Each component is explained separately below.

4.2.1 Gantry Robot

A schematic diagram of the robotic system (manufactured by Schunk Inc., Germany) is shown
in Figure 4.1 comprising an adjustable pedestal and a 2-axis overhead gantry carrying a 7-
DOF robotic arm. The plant is placed on the pedestal which can be moved up and down to
accommodative different applications and plant sizes.

The 7-DOF robotic arm in Figure 4.2 provides a high level of flexibility for controlling
the position and orientation of the 3D scan head, while the 2-axis gantry provides an extended
workspace. The specification details of the robot is shown in Table 4.1.

Table 4.1: Robot Specifications
Degrees of freedom 7
Dimensions x 3m

y 2m
z 1.8m

Accuracy 0.1µm
Repeatability 0.1µm
Speed 1m/s
Payload 10 kg

1Once the range scanning is complete, we start processing the data immediately. Due to the complexity of the
reconstruction algorithm, it takes about 2 − 3 hours to align each set of 12 views of a plant (more fully grown
plants take 7−8 hours). Using a cluster of computers provided by SharcNet, at the end of the lifetime of the plant,
the user has all the processed results within at most four hours. SharcNet is a supercomputing facility available
to researchers at the University of Western Ontario having many clusters where jobs can be run in parallel, see
https://www.sharcnet.ca/
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Figure 4.2: Robot arm

We have programmed the robot to move in a circular trajectory around the plant to take
scans. Initially the robot stays in its home position with the arm resting vertically downwards
(Figure 4.3). After the initiation of the commands, it moves from home position to the desired
location by alternating macro and micro joint movements.

Figure 4.3: Robot room where the experiment was performed
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Top Scanning

Side Scanning

Figure 4.4: Different scanning positions of the robot arm around the plant

Two different positions of the robot arm are shown in Figure 4.4. The upper picture shows
the position of the arm for scanning the plant from the top when the plant is in the vegetative
stage. The lower picture shows the position of the arm used for side scanning. We maintain
a horizontal distance of 0.56m from the center of the pedestal to the vertical axis of the robot
arm, and 0.26m from the pedestal plane to the scanner (Figure 4.5). These distances were set
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empirically to obtain good scan data.

Figure 4.5: scan head distance from the plant

4.2.2 Scanner

We use a SG1002 ShapeGrabber range scanner, which is the payload of the robot arm. This
scanner can measure dense depth maps of the visible surface of an object in point cloud for-
mat. The scanner uses near-infrared light at 825nm (versus visible red light at 660nm for most
scanners) which has minimal effects on plant growth. Different parameters of the scanner (e.g.
Field of View, laser power, etc.) are set empirically. We have performed the whole experiment
with laser power 1.0mW (means the laser has a beam radius of 1.0mm). The scanner software
Communicates over a UDP (User Datagram Protocol) link with the robot control software.
Each time, after the robot stops at a scanning position, it communicates with the scanner to
take a scan and then moves to the next position.

4.2.3 Growth Chamber

We have designed the whole robotic set-up inside a growth chamber (manufactured by BioCham-
bers Inc., Canada). The chamber is fully programmable allowing control of the temperature,
the humidity, the fan speed and light intensity. Also, it can be monitored remotely using an IP
camera. The chamber is 5.2m2 and equipped with a combination of 1220mm T5HO fluorescent
lamps and halogen lamps The whole chamber is a dedicated embedded system, and can be
controlled from the robot control software,

4.3 Alignment of multi-view scans
Multi-view alignment is a major task in building a 3D model of an object. Pairwise registration
is a crucial part in performing multi-data alignment and this has been studied extensively in the
computer vision literature [33, 141, 160, 131]. However, registration of thin non-rigid plant
structure is very challenging and little studied. Although Iterative Closest Point (ICP) [14] and
its variants [142, 68, 17] have been successful in some cases, registering highly non-rigid thin
plant structures is still problematic.
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We use the alignment algorithm discussed in Chapter 3. However, the basic assumption
of the alignment algorithm is that, in order to obtain reasonable result, the scans should be
approximately aligned to each other. In other words, the initial guess of the transformation
parameters should be good. Although the multiple view registration algorithm works well in
aligning different scan data, registering two views with huge rotation angle difference can pose
difficulties. Unfortunately after decades of research on point cloud registration, state of the
art algorithms fail when the views are not roughly aligned. The problem is more challenging
for the cases of complex plant structures due to occlusion and local deformation between two
views [20, 169, 29]. One approach to estimate the rough alignment of two views is to find
corresponding feature points. However, because of the complex structure of the plants, finding
repeatable features is extremely hard [38] and typical feature point matching algorithms fail.

Junctions are strong features for plant-like structures. We adopt the idea of using junction
point of branches as feature points and then match these features [29] (we refer to Chapter
5 for the details). However, the idea in [29] for detecting junction points does not consider
occlusion in leaves. This results in false feature point detection, which may not be repeatable
in two views. We adopt the algorithm using a simple but effective density clustering technique
as discussed below.

4.3.1 Feature Clustering

The basic idea of junction detection algorithm [29] is to first extract local neighbourhood
around every point using kd-tree and perform a statistical dip test (refer to Chapter 5 for de-
tails) to determine the non-linearity in the data. Then the branches are approximated by fitting
straight lines to the point cloud. Finally the straight line equations are solved to find out the
junction point. This approach results in detection of multiple feature points around the junction,
because all the points around a small neighbourhood at the junction are potential candidates of
true junction points, from which the best candidate is picked up by non-maximal suppression
of the dip value. But this idea results in detecting false feature points as junctions in occluded
areas, especially in leaves. We handle the problem by applying density based clustering to
extract the true junctions and filter out rest of the feature points.

The idea of density based clustering is to find out the group of points which are denser
than the remaining points. As true junction features tend to appear in higher density than false
junctions, we intend to cluster the detected feature points to find out the cluster of points that are
formed at true junction points. We use a density based clustering algorithm proposed by Ester
et al. [45]. The algorithm does not need the number of clusters in advance (unlike k-means)
and can perform clustering in presence of large number of outliers. Finally, we compute the
centroid of each cluster to find the true junctions and match these features using the subgraph
matching technique as in [29]. Figure 4.6 illustrates this idea. It shows a single view of a plant
having occlusions. Red dots represents feature points detected by junction detection algorithm
[29]. The clustering algorithm detects clusters around true junction points (denoted by blue
circles) and discards rest of the points as outliers.
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Figure 4.6: Demonstration of feature clustering. Red dots represent junction feature points
[29]. Density clustering algorithm [45] detects clusters at true junctions (denoted by blue
circle) and treats false feature points as outliers.

4.4 System Integration
We integrate the chamber, robot and scanner. The system components and their connections
are shown in Figure 4.7. The robot and scanner are operated from different computers which
communicate over a dedicated UDP link. The chamber is accessed remotely over the internet.

Communication between the chamber and robot operation needs to be done frequently.
While scanning a plant, we need to shut down or significantly decrease the fan speed inside the
chamber (at present we just shut it down completely), otherwise the scan data will be erroneous
as the plant will be jittering (this makes the multiple view reconstruction problem extremely
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Figure 4.7: High level view of the system

dificult). Also, experimenting in different lighting conditions (short day versus long day) needs
communication between the chamber and the scanning schedule of the robot. Before starting
the experiment, chamber parameters are set according to the need of the application. During
the experiment before a set of scans, the robot communicates with the chamber, turns off the
fan (and light if needed), and restores the default chamber settings when the scan is completed.
This process is repeated at each scan.

As the size or dimension of the plant is not known in advance, determining the scanning
boundaries to enclose the whole plant needs to be done dynamically during each scan. More-
over, as the plant grows, it might lean towards a particular direction, which needs the scanner
position to be adjusted accordingly. We perform a simple bounding box calculation before
performing each scan (Figure 4.8). Before doing the actual scanning, a pre-scan procedure is
performed from 2 directions (front and side as shown in the figure). From these scans, the
centre of the bounding box of the plant is approximated and used to update the centre of rota-
tion for the circular scanning trajectory. Once the plant centre has been determined, the system
causes the gantry and robotic arm to translate and rotate the scan head to specified discrete
positions around the plant.

At each scanning position, the system waits 10 seconds to allow the plant and the scanner
to settle before initiating a scan. Once a scan has finished, the resulting scan data are analyzed
to ensure that the plant has been fully captured (i.e. there is no clipping). Sometimes the
scanner FOV is not wide enough to capture the full width of the plant due to a limited travel
of the scanner’s linear stage (0.2m). In that case, we perform more than one scan of the view
by sliding the scanner in a sideways direction. From empirical observations, for plants like
Arabidopsis, no more than 3 partial scans are needed to enclose a single view as illustrated in
Figure 4.9. Usually, if the plant is not too wide, a single view from P is sufficient. Otherwise,
we perform side scans at positions P1, P2 and P3.
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Figure 4.8: Computing the bounding box to determine the center of the plant

Figure 4.9: Scanner Field of View (FOV) to enclose the whole plant. When the plant is big,
one scan can’t capture the whole plant and multiple scans are required

We operate the whole system from a single script. The user controls everything from the
GUI (Figure 4.10). Once the system is started, it continues working until the experiment is
terminated.

4.5 Experimental Results
First we have performed a 21 day experiment with a wild type Arabidopsis plant (after which
the plant was almost dead and was falling down) with a 12/12 hours light/dark cycle at the
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Figure 4.10: System GUI or user interface

temperature of 25◦C and a light intensity of 250µmol photons m−2s−1. We also performed an-
other 15 day experiment with barley under the same conditions. Although the algorithms used
in the different stages are not new, the main challenge was to make the whole system work
continuously for the life-cycle of the plant. We encountered several problems while integrat-
ing the system parts (robot, chamber, scanner, etc). As the robot and the chamber needed to
communicate frequently (every 4 hours as we are performing 6 scans per day, throughout the
life of the plant), there were issues of lost communication and hardware faults (e.g. problems
in electronic chips at robot joints, etc).

4.5.1 Merging of Multi-View Plant Point Cloud
Using the reconstruction algorithm discussed above, we performed alignment of the multi-view
point cloud data of the growing plant over time. We used Sharcnet2 computing machines for
simultaneous processing of large amount of data while the scan data was collected throughout
the life of the plant. The merged point cloud data for fully grown Arabidopsis plant (day 20th)
and the barley plant (day 15th) are shown in Figures 4.11 and 4.12 respectively. Each colour
represents different scans.

4.5.2 Polygonal Mesh Formation
Once we have the aligned point cloud from the multi-view data, it needs to be triangulated in
order to compute the mesh surface area and volume. Accurate triangulation of point cloud data
is a challenging problem. An efficient triangulation should represent all the details of the shape
of the object. Triangulation of plant structures is more challenging due to the thin branches. Al-
though Delaunay triangulation is typically used for modeling a surface, the algorithm does not
produce good result for plant structures. We used the α-shape algorithm [44] for triangulation.
The algorithm works well when its parameters are properly tuned.

α-Shape Triangulation

Let P = {p1, · · · , pn} ⊂ R
d be a set of points, which are called sites. A Voronoi diagram is a

decomposition of Rd into convex polyhedra. Each region or Voronoi cellV(pi) for pi is defined
to be the set of points x that are closer to pi than to any other site. Mathematically,

2https://www.sharcnet.ca/
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Figure 4.11: Reconstructed Arabidopsis plant point cloud (different colors indicate different
scans). Note that there was no plant jittering in our setup as the wind could be fully controlled,
unlike for the setup used in Brophy’s work (described in Chapter 3).

V(pi) = {x ∈ Rd | ||pi − x|| ≤ ||p j − x|| ∀ j , i},

where ||.|| denotes the Euclidean distance. The Delaunay triangulation of P is defined as the
dual of the Voronoi diagram.

The α complex of P is defined as the Delaunay triangulation of P having an empty circum-
scribing sphere with squared radius equal to or smaller than α. The α shape is the domain
covered by alpha complex. If α = 0, the α-shape is the point set P, and for 0 ≤ α ≤ ∞, the
boundary ∂Pα of the α-shape is a subset of the Delaunay triangulation of P. The main idea
of the algorithm is that the space generated by any point pairs can be touched by an empty
disc of radius α. The value of α controls the level of detail in triangulation. The algorithm is
simple and effective. We have empirically chosen α = 0.6 for the plants. Also note that we
have already performed “smoothing” of the point cloud while applying Gaussians, so we do
not need further surface smoothing (such as Poisson smoothing). Example results are shown
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Figure 4.12: Reconstructed Barley plant point cloud (different colors indicate different scans)

in Figures 4.13 and 4.14. The rectangular cutouts show some smaller portions of the plants
at higher resolution. The surface area is simply the summation of area of each triangle in the
mesh and volume can be computed using the technique described by Zhang et al. [159]. The
“loop” structure is due to the angle by which the barley plant is viewed, some of parts of the
plant occludes other parts.

4.5.3 Biological Relevance
The fact that plants grow mostly at night is well known [106]. It is observed that the changes
in stem diameter depends on the lighting conditions [55, 128, 56]. While the diurnal nature
can involve changes in stem length, width, diameter, leaf surface area, we have observed the
diurnal pattern in both volume and surface area of the plant. The mesh surface area and volume
are plotted against time in the same graph for Arabidopsis plant in Figure 4.15. A similar plot
for barley plant is shown in Figure 4.16. In the graphs, red dots represent night time scans and
blue dots represent day time scans. As we have 6 scans per day, there are 3 blue dots followed
by 3 red dots in the graph. For the Arabidopsis experiment we had 4 scans missing due to
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Figure 4.13: Triangulated Arabidopsis plant data

networking problems. These missing data are generated by taking the average of previous and
next scan data. These are shown as green dots in Figures 4.15 and 4.16.

It can be noticed from the growth curves that the plants exhibited more growth in the night
time than in the day time, which supports the biological relevance of diurnal growth pattern of
plants. Finally, note that the changes of volume are greater than the changes of surface area in
the later period of the growth cycle (this is logical as volume grows faster that area).

The initial short stage of plant growth looks linear, the long intermediate stage of plant
growth looks exponential while the short end stage of plant growth looks stationary (or con-
stant). Often, biologists compute the growth rate as the logarithm of mesh surface area values
and then fit a straight line to this data, yielding the maximum exponential growth rate. Figures
4.17a and 4.17b show the surface area and volume growth rates for the Arabidopsis plant while
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Figure 4.14: Triangulated Barley plant data

Figures 4.17c and 4.17d show the surface area and volume growth rates for the barley plant.
The growth rates (slopes of the growth rate lines) are printed as text items in the upper left
corner of each graph and show that the surface area and volume growth rates for the two plants
are roughly the same. However, as the growth rate of Barley plant exhibits a highly non-linear
pattern, fitting a straight line to compute the actual growth rate may not be appropriate. We
believe instead that a polynomial curve fitting scheme might be a better, with local growth rates
being the slopes of the tangents on this curve.
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Figure 4.15: Diurnal growth pattern of mesh surface area and volume for the Arabidopsis
plant. The red dots represent night time scans, the blue dots represent day time scans and the
four green dots represent missing scan data. A spline is fitted to both surface and volume scan
data (shown in different colours). The y-axis in the left and right hand side represents the range
of surface area and volume data respectively.

4.6 Limitations
In this section we present some experimental results to demonstrate the limitations of the pro-
posed system and the room for future research directions. We have presented the results of
growth analysis of a monocot Arabidopsis and a dicot Barley plant. The experimental results
are shown to be accurate enough to capture the well known diurnal growth pattern of the plants.
However, the proposed system and the algorithms have certain limitations in analyzing more
complex plants. We have experimented with a conifer and a bean plant. Due to the fine needle
structures, an accurate reconstruction of conifer plant is very challenging. And the bean plant
has many leaves that occlude each other, which make the pairwise registration extremely dif-
ficult. We show the results in next subsections and discuss about possible ways to solve the
problems.
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Figure 4.16: Diurnal growth pattern of mesh surface area and volume for the barley plant. The
red dots represent night time scans while the blue dots represent day time scan data. A spline
is fitted to both surface and volume scan data (shown in different colours). The y-axis in the
left and right hand side represents the range of surface area and volume data respectively.

4.6.1 Conifer Experiment

Although growth analysis of plants, like the Arabidopsis plant (which is a model plant in bi-
ology), has extensively been studied, the growth of conifer plants (Pinophyta) have not been
explored much. Usually the conifer plants have lifetime over 50 years, and it is practically
impossible to experiment for the lifetime of the plant. We have performed a one month exper-
iment with a conifer plant for a short-term study of its growth pattern.

Accurate reconstruction of the conifer is challenging due to the fine structures of its needles.
For example, Figure 4.18 shows the reconstruction of 12 view of a conifer tree with a single
cut-out shows one part of its surface at higher resolution. We can see that the range data
does not capture the needle structure adequately. Ideally, each needle of the conifer should be
clearly and completely visible in the reconstructed point cloud but this is not the case. The
initial growth pattern of conifer plant is shown in Figure 4.19. The growth rate calculated
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Figure 4.17: (a) and (c): the surface growth rate lines and (c) and (d): the volume growth rate
lines for the Arabidopsis and barley plants.

from this pattern is a flat horizontal line (Figure 4.20) with a slope of 0.0 (effectively, plant
growth cannot be captured at the sampling rate of twice a day we are currently using). Lower
sampling rates, for example, once per week might capture a growth pattern but certainly not
any nightly diurnal growth patterns. One of the reasons to measure this plant’s growth was
to see if we could observe a diurnal growth pattern (it is currently unknown if one exists).
Obviously, this is not possible with our current set-up. It is unknown if the needles shrink and
expand from night to day (and if they do, can we capture this information?). Perhaps, some
simple opening/closing morphological operations to close gaps in the range data for the needles
would be helpful here.
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Figure 4.18: Reconstruction of a conifer plant (different colors indicate different scans).
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Figure 4.19: Growth data for the conifer plant. The conifer as scanned at 14:00 in the afternoon
(light) and at 2:00 in the night (dark).
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Figure 4.20: Volume growth rate for the conifer plant

Figure 4.21: Two adjacent views of a bean plant

4.6.2 Bean plant experiment

Next, we have performed an experiment with a bean plant (Phaseolus vulgaris). The plant
has many leaves which occlude each other. We have taken 12 scans around the plant in 30◦

intervals. Two adjacent views are shown in Figure 4.21. The reconstruction result is shown in



4.6. Limitations 47

Figure 4.22: Reconstruction result of bean plant (different colours indicate different scans)

Figure 4.22.
Clearly, the reconstruction result is extremely poor. We believe that too much occlusion

is the reason of poor performance. As can be seen from Figure 4.21, there is very little little
overlap of common structure between two views. This makes the pairwise registration to be
extremely difficult. If the pairwise registration fails to perform well, the alignment result will
also be poor as the alignment exploits the pairwise registration results. This is an extremely
challenging problem where the state-of-the-art algorithms fail. An idea to solve the problem
might be to incorporate prior information of the structures in the pairwise registration. We
have not investigated these issues, and we leave as future research. However, taking more
scans (instead of 12) might also be a good idea to obtain good registration results.



Chapter 5

Junction Based Correspondence

Correspondence Estimation refers to the matching of interest points in stereo pairs. Although
Gaussian Mixture Model (GMM) based point cloud based registration algorithms work well on
wide class of problems, the rough initial alignment is extremely crucial to get reasonably good
results. We show that if the scans are not approximately aligned, beyond a certain threshold
the registration results drastically deteriorate. The motivation of this chapter is to address the
problem of automatic correspondence estimation of the plant point cloud data, that can be used
a preprocessor of GMM based registration without any knowledge of rough initial alignment.
We show how to replace the initial alignment assumption of the transformation parameters in
a fully automatic way (refer to section 4.3).

This work in this chapter resulted in a journal paper as follows:

• A. Chaudhury, M. Brophy, and J.L. Barron, “Junction Based Correspondence Estimation
of Plant Point Cloud Data using Subgraph Matching”, IEEE Geoscience and Remote
Sensing Letters, Vol. 13, No. 8, pp. 1119-1123, August 2016.

5.1 Introduction
Processing botanic tree point cloud data is of interest in many application areas. Apart from
being an integral part of studying plant growth in biological applications, vegetation analy-
sis is an active research area in in remote sensing and terrestrial applications [78]. With the
advancements of remote sensing technologies and near-infrared laser scanners, 3D automatic
non-invasive analysis of growing plants is becoming possible. Recently, a new body of litera-
ture has appeared on point cloud imaging based plant analysis for terrestrial applications ([20],
[21], [169]).

Many of these applications require the construction of a 3D model from multiple scans and
much work has already been done on this area. However, modelling the 3D structure of rigid
objects is less demanding than complex plant structures. Problems like non-rigidity, complex
morphology and thin stem structures, etc. make the problem much more complicated. Point
to point matching (Pairwise registration) is a basic task in aligning two datasets and building
the 3D model. Very often in the computer vision literature, feature points are used to match
two images. These points are usually points where there is a sharp discontinuity in some local

48
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feature. However, in the case of a 3D plant point cloud, this kind of generalized feature can
result in ambiguities because of the complex morphology of the plant. One motivation of the
proposed work is to address this problem. We argue that junction points can be more effective
than traditional features for registering plant like structures (thin self repetitive structures hav-
ing branches). We show the efficacy of our method by matching corresponding junction points
by a sub-graph matching optimization technique.

This work is an improvement of the work proposed by Bucksch et al. [20]. We present
three major contributions:

• First, we consider the case of pairwise registration when the initial alignment is not
known in advance between two views of the plant.

• Second, we propose an efficient junction detection algorithm for matching of feature
points.

• Third, we formulate the correspondence estimation as a sub-graph matching optimiza-
tion technique and demonstrate better results than the state of the art.

Temporarily, we transform the 3D problem into 2D by performing the appropriate 3D co-
ordinate transformations to the neighbourhood of each 3D point. Our proposed method is two
step. First, a statistical dip test of multi-modality is performed to detect non-linearity of the
local structure. Then each branch is approximated by sequential RANSAC line fitting and
an Euclidean clustering technique. The straight line parameters of each branch are extracted
using Total Least Squares (TLS) estimation. Finally, the straight line equations are solved to
determine if they intersect in the local neighbourhood. Such junction points are good can-
didates for subsequent correspondence algorithms. Using these detected junction points, we
formulate a correspondence algorithm as a sub-graph matching problem and show that without
using traditional descriptor similarity based matching, good correspondences can be obtained
by simply considering geodesic distances among graph nodes. Experiments on synthetic and
real (Arabidopsis plant) data show that the proposed method outperforms state of the art.

In the next section we describe the rotations and translations needed to convert the 3D
problem into an equivalent 2D problem. Then we discuss the dip test for multi-modality. After
demonstrating RANSAC fitting and TLS approximations, we demonstrate sub-graph matching
for correspondence estimation. Finally experimental results and analyses for synthetic and real
datasets are shown.

5.2 Coordinate Transformation
We use a kd-tree algorithm to compute the nearest neighbour points within a certain radius (set
at 2.0mm). Given such points in a local neighbourhood about some 3D point, we transform the
data so that the surface normal of the plane fitting the data is a line-of-sight vector (0,0,1).

More specifically, we compute the center of mass (xcm, ycm, zcm) of the neighbourhood 3D
points. To reformulate as a 2D problem, we perform the following steps: translate the origin
to the center of mass by −(xcm, ycm, zcm), rotate about the x-axis onto the x − z plane by some
Euler angle α, rotate about the y-axis onto the longitudinal axis (0,0,1) by some Euler angle β
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and finally transform the origin back to the previous location by (xcm, ycm, zcm). The detailed
calculations are shown below.

5.2.1 Coordinate Transformation: 3D to 2D
We show the detailed calculations of converting a 3D problem into 2D. We use the kd-tree
algorithm to compute nearest neighbour points within a certain radius. First, a plane of the
form ax + by + cz + d = 0 is fitted to the neighbourhood data and the parameters are obtained.
Consider 3 points on a planar surface: P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3). Compute the
vectors ~V1 and ~V2 (see Figure 5.1) as:

~V1 =

x2 − x1

y2 − y1

z2 − z1

, ~V2 =

x3 − x1

y3 − y1

z3 − z1



Figure 5.1: Planar vector orientations

Then ~V1× ~V2 is the normal to the surface ax + by + cz + 1 = 0. That is, ~V1× ~V2 and (a, b, c)T

are in the same direction.
We aim to nullify the effect of z-coordinates, which require following steps. First we trans-

late the origin to the center of mass (CM) (−xm,−ym,−zm) so that the origin coincides with the
CM. We use homogeneous coordinate (4D) to have all transformations specified matrix mul-
tiplications. In 3D heterogeneous coordinates, translation is specified as vector addition but
in 4D homogeneous coordinates it is specified by matrix multiplication, as are all other oper-
ations, allowing matrix concatenation of all matrices into one matrix. The 4D homogeneous
transformation matrix has the following form:

T (Tx,Ty,Tz) =


1 0 0 Tx

1 0 0 Ty

1 0 0 Tz

0 0 0 1

 (5.1)
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Thus T (−xm,−ym,−zm) does the translation to the center of mass (the new origin). Next
we project the rotation axis onto the z-axis. This requires two steps: rotate by some unknown
α angle about x-axis so that the vector û is in the xz-plane, and then rotate by some unknown
β angle about the y-axis to bring vector û onto the z-axis. We show how to calculate α and β
in next 2 subsections. Finally we re-translate back the origin to the previous location by the
inverse translation T (xm, ym, zm).

Let’s consider rotation about the z-axis. In that case, ~V is the rotation axis with endpoints
(x1, y1, z1) and (x2, y2, z2). We rotate about ~V (see Figure 5.2), given by:

~V =

x2 − x1

y2 − y1

z2 − z1

 =

x
y
z



Figure 5.2: Rotate about V

In this case, û =
~V
||~V ||2

= (a, b, c) is the unit vector in ~V’s direction. The direction cosines of
~V are given by:

a =
x

||~V ||2
, b =

y

||~V ||2
and c =

z

||~V ||2
.

We use the following convention: û is the normal vector, and ~u is the unnormalized vector
(of the projection of û onto y − z plane.

Rotate û into the xz-plane

Let α is the rotation angle between the projection of ~u in the yz-plane and the positive z-axis and
~u′ is the projection of û in the yz-plane (Figure 5.3). That is, û = (a, b, c)T =⇒ ~u′ = (0, b, c)T .
Then the angle α can be obtained simply from the equation,

~u′ · k̂ = ||~u′||2||k̂||2 cosα.
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Figure 5.3: Rotate û about xz-plane. Left: Project û onto the y − z plane as û′. Right: û′ is
rotated by α about the x axis onto the k̂ axis.

Let k̂ = (0, 0, 1) is the unit vector in the z-direction, i.e. ||k̂||2 = 1. Then

||~u′||2 =
√
~u′ · ~u′ =

√
(0, b, c) · (0, b, c) =

√
b2 + c2

=⇒ ~u′ · k̂ = (0, b, c) · (0, 0, 1) = c.

Thus,

c =
√

b2 + c2 · 1 · cosα =⇒ cosα =
c

√
b2 + c2

.

The vector product can also be used to compute sinα. Note that ~u′×k̂ is a vector in x’s direction,
i.e., î. Then

~u′ × k̂ = î||~u′||2 ||k̂||2 sinα = î
√

b2 + c2 sinα.

and

~u′ × k̂ =

∣∣∣∣∣∣∣∣
î ĵ k̂
0 b c
0 1 1

∣∣∣∣∣∣∣∣ = bî.

Then bî = bî
√

b2 + c2 sinα, or sinα = b
√

b2+c2
.

Given sinα and cosα, we can specify the 4D homogeneous rotation matrix for rotation
about the x-axis as:

RX(α) =


1 0 0 0
0 c

√
b2+c2

−b
√

b2+c2
0

0 b
√

b2+c2
c

√
b2+c2

0
0 0 0 1

 (5.2)

This matrix rotates û onto the xz-plane.
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Figure 5.4: Aligning û along z-axis. Left: û is rotated by α about the x axis onto the x− z plane
as ûxz. Right: ûxz is rotated by β about the y-axis onto the k̂ axis as ûz.

Align ûxz along z-axis

As shown in Figure 5.4, we need to compute sin β and cos β in this case.
Using the dot product we can write:

ûxz · k̂ =

=1︷︸︸︷
||ûxz||2

=1︷︸︸︷
||k̂||2 cos β

= (a, 0,
√

b2 + c2) · (0, 0, 1)T =
√

b2 + c2

=⇒ cos β =
√

b2 + c2.

Also, using the vector product, k̂ × ûxz is a vector in the direction of the y-axis, thus resulting:

ûxz × k̂ = ĵ
=1︷︸︸︷
||ûxz||2

=1︷︸︸︷
||k̂||2 sin β

and ∣∣∣∣∣∣∣∣∣
î ĵ k̂
a 0

√
b2 + c2

0 0 1

∣∣∣∣∣∣∣∣∣ = −a ĵ.

Thus, −a ĵ = ĵ sin β, or sin β = −a. Then the 4D homogeneous rotation matrix about the y-axis
can be specified as:

RY(β) =


√

b2 + c2 0 −a 0
0 1 0 0
a 0

√
b2 + c2 0

0 0 0 1

 (5.3)

which aligns ûxz with z-axis. Thus we apply the transformations:

Ry(β)Rx(α)T (−xm,−ym,−zm) (5.4)
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to all 3D points. If we wish to undo this transformation we could use:

T (xm, ym, zm)RT
x (α)RT

y (β), (5.5)

where RT
x (α) ≡ R−1

y (α) and RT
y (β) ≡ R−1

y (β) because rotation matrices are unitary and orthogo-
nal.

Next, a plane of the form ax + by + cz + d = 0 is fit to the neighbourhood data using
Crammer’s rule. The parameters ~n = (a, b, c) are the plane’s surface normal. We checked the
residual of this fit for many randomly chosen 3D neighbourhoods and the residual is always
very small, conforming our local planarity assumption.

Since these transformations results in vertical surface normals we need only be concerned
with the structure in the x − y plane, i.e. the problem is now 2D.

5.3 DIP Test for Multi-Modality
Detection of multi-modality in numeric data is a well known problem in statistics. A proba-
bility density function having more than one mode is denoted as a multi-modal distribution.
Hartigan et al. [62] proposed a dip test for unimodality by maximizing the difference between
the empirical distribution function and the unimodal distribution function. In the case of a
unimodal distribution, the value for the dip should asymptotically approach 0, while for the
multi-modal case it should yield a positive floating point number. Inspired by the work of Zhao
et al. [165], we use the dip test for detecting non-linearity in the data. Points having non-linear
local neighbourhood are potential candidates for a junction point. The idea is to perform the
dip test for a local neighbourhood of a point. If its a stem or a leaf, the data should be uniform
and the distribution should only be unimodal. For a junction point likely due to a bifurcation,
it should exhibit multi-modality. We use the dip value as a measure of multi-modality.

We perform this dip test along the x and y directions (note that as we have reduced the
dimensionality from 3D to 2D the z-coordinates can be ignored) and obtain the maximum
dip value. The neighbourhood is determined to be multi-modal if the dip value is over some
threshold. However, the threshold value of dip is highly dependent on the data and should be
tuned carefully. In our case, we empirically set it to 0.04 to obtain useful results.

We use the dip measurement for initial filtering of non-junction neighbourhood data. Note
that nonlinearity and high dip values in local neighbourhood do not guarantee that those points
are junction points. For some leaf and stem data, we notice that sometimes the data shows high
dip values. Instead of relying blindly on dip test results, we do further processing, described in
the next section.

5.4 RANdom SAmple Consensus (RANSAC) fitting and To-
tal Least Squares (TLS) approximation

We consider at most three branches at an intersection point. Three branches may intersect at a
single point (the red dot in Figure 5.6c) or at two different points (the red dots in Figure 5.6d).
We also assume that the main stem will be thicker than the branches. We extract this thick stem
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Figure 5.5: Distribution of data: column 1 are the neighbourhood point clouds under consid-
eration, column 2 are the histograms of the x coordinates distribution and column 3 are the
histograms of the y coordinate distribution for a single stem (first row), a leaf (second row) and
a stem with 2 branches (last row). The later is potentially a junction point.

using RANSAC straight line fitting using a high distance threshold for inliers (empirically
chosen as 0.8mm for our case). Sequential RANSAC is used to fit a straight line for every
branch (set to 0.5mm for non-stem branches). However, there may be other points due to
additional branches, a leaf or a noise event (or some combination of the three). After removing
the RANSAC fitted main stem, we perform Euclidean clustering on the rest of the data and
choose the biggest connected component(s) to extract the sub-branches. Two set of points,
Xi =

{
pi ∈ P

}
and X j =

{
pj ∈ P

}
form two different clusters, if the following condition holds:

min||pi − pj||2 ≥ τ, where τ is the distance threshold (set to 1.0). The branches may be straight
or curved, but by using RANSAC we can estimate the principal direction of the branch[143].
A criterion is imposed to estimate a broken branch shape (due to occlusion): we merge two
branches if they are spatially close to each other and have the roughly same direction.

After estimating the points for each branch, we use TLS to approximate the straight line
represented by a set of points in a branch and extract the parameters by minimizing E =∑n

i=1(axi + byi + c)2 and check if the intersection point is contained in the local neighbourhood
or not. Note that the obtained intersection point is 2D, so we can apply the inverse coordinate
transformation determined earlier to compute the actual 3D point. Finally we perform non-
maximal suppression based on highest dip value to reduce the number of points. The distance
threshold for non-maximal suppression is chosen as 4mm (the same threshold is used also in
[96]). The procedure is described in Algorithm 2.
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Algorithm 2 Junction Point Detection
Require: Neighbourhood point set P = {x1, x2, · · · , xn}

1: Translate P to the center of mass
2: Rotate about x-axis
3: Rotate about y-axis
4: Re-translate P back to the previous origin
5: Compute dip along x and y axes: dipx, dipy

6: if max(dipx, dipy)> τ then
7: Fit RANSAC to P & store the point set intoM1. Remove the points from P, resulting

in P1 = P −M1

8: if |P1| > nt {sufficient number of points} then
9: Extract the two largest Euclidean clusters O1, O2 of P1 {Locate sub-branch(s)}

10: if |O1|, |O2| > nk {sufficient number of points} then
11: Fit RANSAC to O1 (and O2) & store the point set inM2 (andM3)
12: Apply TLS toM1,M2 (andM3) and obtain the straight line parameters
13: Solve the straight line equations using the computed parameters forM1,M2 (and

M1,M3). Store the computed point(s) in J1 (and J2)
14: Check if the corresponding 3D coordinates of J1 (and J2) are contained in P. If J1

and J2 are close enough, merge them into J = (J1 + J2)/2
15: return J (or J1, J2) {One or two junction points}
16: end if
17: end if
18: else
19: return NULL {No junction point}
20: end if
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5.5 Correspondence Matching

The detected junction points from the last phase are potential candidates for correspondences
and can be used as features points for matching. For raw 3D point cloud data, local surface
normals, neighbourhood information, etc. are typically used for encoding the local structure
and points are matched based on the descriptor similarities. We observed empirically that this
idea fails for plant data because the thin structures do not allow for good local surface normal
calculations and because of deformations, the local structure can change abruptly in adjacent
images. This problem was also addressed by Duchenne et al. [43] where triplets of feature
points were used to compute mutual angles. However, they assume that the coordinate axes
are known in advance. Also, smart selection of triangles is an important factor in computing
good correspondences. There are many other properties that can be considered for mutual
matching, but we show that simple geodesic distance can be used efficiently in finding correct
correspondence, emphasizing the simplicity and effectiveness of the proposed algorithm.

5.5.1 Graph Formation

First, we triangulate the data using Delaunay triangulation in 3D (note that we converted the
problem temporarily to 2D just for detection of junction points). Using the vertex information
from triangulation, we construct a graph connecting all the points. To handle the cases of miss-
ing or occluded data, we connect the points to the nearest triangle vertex so that all the points
are included in a single graph. Then, for each junction point, we apply Dijkstra’s shortest path
algorithm to compute the geodesic distance to all other junction points. The same procedure is
followed for the second point cloud as well. Then we exploit pairwise distances to be the crite-
ria for matching. This kind of local descriptor-less approach was also proposed by Leordeanu
et al. [81]. However, they assumed some prior knowledge of the object categories. In our case
we do not have any prior knowledge or make any assumptions about the data.

5.5.2 Sub-graph Matching Formulation

Given all the pairwise distances of all junction points, we formulate our correspondence match-
ing problem as a sub-graph matching problem. Consider two graphs G1 = (V1, E1) and
G2 = (V2, E2). Each junction point is considered to be a node of the graph. Each node stores
the geodesic distances to all other nodes. In the end this yields a set of edges. Compatibility of
two nodes in G1 and G2 are defined as a closest distance match. For example, let’s suppose two
graphs G1 and G2 have n1 and n2 nodes. Each node V1i in G1 stores all distances to all other
nodes. We denote this is as the set of attributes of node V1i: Dv1i

= {dv1i v1 j
},∀ j ∈ n1. Similarly

in G2, the set of attributes of node V2i is defined as Dv2i
= {dv2i v2k

},∀k ∈ n2. The compatibility
of two nodes, V1i and V2i , are formulated as sum of the squares of the difference of nearest
distances, multiplied by the number of matches. Suppose G1 and G2 contain 5 and 7 nodes
respectively. Let the attributes of a node V1i contains the following distances: {d1, d2, d3, d4}

(ignoring self distance). Similarly, V2i contains the distances {d′1, d
′
2, d

′
3, d

′
4, d

′
5, d

′
6}. We use a

threshold ε (= 0.2) for the match of two distances. Suppose there are 3 distance matches given
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by: d1 ∼ d′4, d3 ∼ d′2, d4 ∼ d′1. Then the affinity of the two vertices is computed as:

Av1i v2i
= 3 ∗ [(d1 − d′4)2 + (d3 − d′2)2 + (d4 − d′1)2] (5.6)

The logic for using this kind of distance matching is that any outlier is likely to be eliminated by
a lower number of matches. On the other hand, compatible points will only have the maximum
number of distance matches.

5.5.3 Matching of Nodes
Using the compatibility of two vertices, we obtain the initial node correspondence by using the
Hungarian algorithm. The outliers are likely to get rejected by unmatched distance attributes.
However, there still may be non-optimal matches of the vertices. We follow the approach of
attribute graph matching proposed by Cour et al. [36]. Given two graphs, G1 = (V1, E1, A1) and
G2 = (V2, E2, A2), where each edge e = ViV j ∈ E has an attribute Ai j. The objective is to findN
pairs of correspondences (Vi,V j) where Vi ∈ V1 and V j ∈ V2. The affinity Ai j (Equation (5.6))
defines the quality of the match between nodes Vi and V ′i . Denoting the similarity function of
pairwise affinity as f (·, ·), the matching score can be computed as:

λ(N) =
∑

ii′, j j′∈N

f (Ai j,A
′
i′ j′) (5.7)

Representing N as a binary vector x so that x(ii′) = 1 if ii′ ∈ N , the above equation can be
written as:

max λ(x) = xT Wx, (5.8)

where Wii′, j j′ = f (Ai j,A
′
i′ j′). The optimal solution of the above equation is given by:

x∗ = argmax(xT Wx). (5.9)

The permutation matrix provides the correspondence among the vertices (or the junction points
in our case). Finally the outliers (or wrong matches) are pruned out using RANSAC.

5.6 Experimental Results
First, we tested our method on synthetic dataset. We have used Vascusynth [144] to generate
artificial artery data, used their ground truth for junction points and have obtained 100% correct
matches.

Second, we show the result of junction point detection (red dots) on a variety of Arabidop-
sis datasets in Figure 5.6. The dataset is extremely challenging due to occlusion, missing data
and deformations. Results show the robustness of the algorithm in detecting junction points
correctly. We have validated our junction detection algorithm by showing efficient correspon-
dence matching based on these feature points. Figure 5.7 shows two examples from the dataset.
The left image shows matching on dataset having local deformations and missing data, whereas
the right image shows the matching when the dataset is rotated 180◦ relative to each other. The
few bad matches (red lines) are eliminated by RANSAC in both cases.
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Figure 5.6: Examples of detected junction points (red dots) on the real Arabidopsis plant data

Figure 5.7: Two examples of correspondence matching (green lines are good, red lines are bad
matches which are eliminated by RANSAC)

We compare our results with 3 state of the art algorithms: CPD [101], GMM [69] and
SISI [37]. CPD and GMM are well established methods for global registration, and SISI is a
state of the art algorithm for feature based correspondence matching, which has been shown
to perform better than SIFT [90] and the spin image descriptor [72]. We observe that both
CPD and GMM perform poorly in the cases of occlusion, deformation and missing data. We
infer that since these algorithms are based on global optimization, they often can not handle
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ambiguities in local structure, whereas our algorithm performs well for these cases (the left
image in Figure 5.7 is an example of such a case). It is also observed that for large rotation
angles between the two images, the performance of CPD and GMM fails drastically. Figure
5.8 shows a few point to point correspondences obtained from the registration results for CPD
and GMM for the rotated data in the right image in Figure 5.7. For GMM based algorithms
we have experimented with different parameter settings and reported results for the best case.
More specifically, we have used the default values of [69] in their publicly available code. For
CPD [101], we have set the regularization weight λ = 3 and the width of Gaussian kernel
(smoothness) β = 2. We have tried other different values of λ but but only recovered poorly
warped registrations.

Figure 5.8: The point to point correspondence results obtained from (a) CPD and (b) GMM for
large rotation angle. Good matches are shown in green lines and bad matches are in red lines.

CPD and GMM fail to perform well because the algorithms get stuck in local minima for
large rotation angles. However, using our graph based matching method, the rotation angle
does not affect performance. We present a quantitative comparison of CPD, GMM and our
method for varying rotation angle in Figure 5.9. We perform similar analysis on increasing
rotation angle as in [168].

We have also performed experiments using the SISI descriptor matching [37]. The algo-
rithm failed to find meaningful correspondences between two views. We believe that the reason
for this is the algorithm’s dependence on local descriptors based on surface normals tend to be
unreliable for our plant data. The precision-recall curves in Figure 5.10 show the superior
performance of our method over CPD, GMM and SISI.
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Figure 5.9: Effect of rotation angle: The rotation angle (in degrees) is plotted against (normal-
ized) accuracy.
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Figure 5.10: Precision-Recall curve comparing CPD, GMM, SISI and our method.



Chapter 6

Partially Occluded Leaf Matching

Recognition and analysis of leaves is an important parameter for growth analysis of plants.
Leaves can appear in different shapes, sizes and varieties. When a plant is growing, leaves of-
ten occlude each other. This can make the growth analysis to be extremely complicated. While
performing the range sensing a plant over time to measure its growth (as discussed in Chapter
4), we can store the depth and grayvalue images of specified plant leaves, and exploiting the
depth and intensity discontinuities, individual leaves can be segmented from the matter around
them. Now if we intend to track individual leaves over time, as done in the MSc theses of Zhao
[163] and Yang [156], as the leaves grow they can potentially become occluded by other plant
matter. The work described in this chapter will be very useful for this task. Another motivation
is to address the problem of classifying the species of a plant from an occluded leaf. We have
tested the algorithm on 3 public leaf databases, and achieved better results than the state-of-
the-art.

This work in this chapter is under review of a journal as follows:

• A. Chaudhury and J.L. Barron, “Partially Occluded Leaf Recognition via Subgraph
Matching and Energy Optimization” (in review)

6.1 Introduction

In last decade, there has been a body of work on plant species identification from leaf images
(we refer to Chapter 2 for related work). This chapter presents an approach to classify partially
occluded plant leaves from databases of full plant leaves. Although contour based 2D shape
matching has been studied extensively in the last couple of decades, matching occluded leaves
with full leaf databases is an open and little worked on problem. Classifying occluded plant
leaves is even more challenging than full leaf matching because of large variations and com-
plexity of leaf structures. In general, matching an occluded contour with all the full contours
in a database is an NP-hard problem [135], so our algorithm is necessarily suboptimal.

The amount of occlusion is defined as the percentage of the contour that is missing (say,
occluded by other leaves or objects). We assume that the leaves are segmented and the contour

62
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of the occluded leaves are known.1 Currently, only one occlusion event per occluded leaf can
be handled. The task is to find partial contours in full leaf contours that match the occluded
contour. Although existing methods work well on standard shape databases, they have limited
success in handling occlusions. When the occlusion level is high, most of the methods fail
to produce good recognition rates. Other papers sometimes say they are robust to occlusion
but offer no evidence ([41, 47, 137, 32]) or offer evidence for small occlusions only (about
10%) ([40, 88]). These later papers do not explicitly model occlusion but treat occlusion as
measurement error. To the best of our knowledge, we are the first to present a method to
recognize plant leaves when the tested occlusion level is as high as 50%. Note that it is not the
percentage of the occluded leaf that is available for matching that matters but the amount of
“structure” (local variations) the occluded leaf has for matching purposes. Therefore various
leaves could support more or less occlusion matching than we achieved for our leaves.

6.2 Algorithm Overview
First, we represent the 2D contour points as a β-Spline curve. We extract interest points on
the curves via the Discrete Contour Evolution (DCE) algorithm. To find the best match of an
occluded curve with segments of the full leaf curves in the database, we formulate our solution
as a subgraph matching algorithm, using the feature points as graph nodes. This algorithm
produces one or more open curves for each closed leaf contour considered. These open curves
are matchable, to some degree, with the occluded curve. We then compute the affine parameters
for each open curve and the occluded curve. After performing the inverse affine transform on
the occluded curve, which allows the occluded curve and any subgraph curve to be “overlaid”,
we then compare the shapes using the Fréchet distance metric. We keep the best η matched
curves. Since the Fréchet distance metric is cheap to compute but not perfectly correlated with
the “goodness” of the match, we formulate an energy functional that is well correlated with the
“goodness” of the match, but is considerably more expensive to compute. The functional uses
local and global curvature, angular information and local geometric features. We minimize this
energy functional using the well known convex-concave relaxation technique. The curve of the
best η curves retained having the minimum energy is considered to be the best overall match
with the occluded leaf. Experiments on three publicly available leaf image database shows that
our method is both effective and efficient, outperforming other current state-of-the-art methods.
Our algorithm can match leaves that are 50% occluded on their contour and still can identify
best full leaf match from the databases.

6.3 Our Approach
Splines are powerful tools for representing a curve mathematically. Among the different types
of spline curves, B-spline based contour representations has been successfully used for 2D
shape matching ([50], [150], [152]). Due to its smoothness and continuity properties, B-splines
are extremely useful in approximating the boundary of an object. B-spline curves are piece-
wise polynomial functions where local curve approximation is performed using control points.

1Full leaf contours are closed boundaries while occluded leavers are open boundaries.
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Local control is extremely useful for modelling a contour to a desired level of detail. Another
interesting property of B-spline is that it is affine invariant. This property is very useful when
matching two curves which are related to each other by an affine transformation.

In general, a (p + 1)-th order (i.e. p-th degree) B-spline is Cp continuous. A B-spline curve
P(u) defined by (n + 1) control points P0, P1, · · · , Pn is defined as:

P(u) =

dnu+2e∑
i=bnu−2c

B(nu − i)Pi, (6.1)

where B(nu − i) is the blending function of the spline (a bell shaped curve is non-zero when
the inequality −2 < nu − i < 2 holds) and u ∈ [0, 1]. In case of a cubic B-spline, at most four
nearest control points are used to compute the blending function for a spline point (if u = i/n
then only 3 control points are needed).

For any set of 2D control points Pi = (xi, yi), we can always obtain the spline point
(x(u), y(u)) for any u. Thus the number of spline points can be greater than, equal to or less
than the number of control points. Any curve thus can be represented as the polyline joining
continuous set of spline points.

6.3.1 β-Spline Based Representation

Due to computational efficiency, cubic B-splines are usually used to model a contour [22]. Cu-
bic B splines are good for approximating the curve whose shape is controlled by the control
points. However, to interpret the control points one need to solve linear systems of points,
which can be computationally expensive and complex. β-splines ([60, 61]) provide an inter-
mediate representation between approximation and interpolation by providing a tension pa-
rameter, τ. τ = 0 yields a B spline while τ > 0 (say τ ≈ 10) provides a spline that almost
perfectly interpolates the control points. [A second skew parameter, s, causes discontinuities
in the spline curve and is usually ignored, i.e. we keep s = 1.] As for B splines, β-splines are
1st and 2nd order continuous and require at most 4 control points to produce a spline point value
P(u).

Other approaches to produce smooth contour curves include Thin Plate Splines (TPS) [34]
or Relevance Vector Machine (RVM) regression techniques [57]. These techniques probably
could be used in place of β splines with good results being obtained. We chose β-splines for
simplicity and efficacy reasons.

Having (n + 1) control points P0, P1, · · · , Pn where the original contour points are used as
the control points, a β-spline can be computed as:

P(u) =

dnu+2e∑
i=bnu−2c

β(nu − i)Pi, (6.2)

where u ∈ [0, 1]. Note that the minimum and maximum values of i ensure that the inequality
−2 < nu− i < 2 is satisfied and β(nu− i) values are (mostly) non-zero. [All other i values yield
nu − i values outside this range and so β is always 0. Note that a few β values could be zero
because of the floor and ceiling functions used in the calculation of i but no non-zero β values
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are ever missed.] The blending function β(·) is given by ([11, 22]),

β(τ) =



2
δ
(2 + τ)3, −2 ≤ τ ≤ −1

1
δ
((t + 4s + 4s2) − 6(1 − s2)τ − 3τ2(2 + t + 2s)
−2τ3(1 + t + s + s2)), −1 ≤ τ ≤ 0

1
δ
((t + 4s + 4s2) − 6τ(s − s3) − 3τ2(t + 2s2+

2s3) + 2τ3(t + s + s2 + s3)), 0 ≤ τ ≤ 1

2
δ
s3(2 − τ)3, 1 ≤ τ ≤ 2,

(6.3)

where τ = nu − i, t is the tension parameter and s is the skew parameter. δ is given by:

δ = t + 2s3 + 4s2 + 4s + 2.

For our purpose, skew is not a useful parameter and we use s = 1. Like cubic B-spline, the
blending function is still symmetrical with respect to τ, which implies β(−τ) = β(τ). Also, the
blending function has the following property:

β(τ − 2) + β(τ − 1) + β(τ) + β(τ + 1) = 1. (6.4)

A β-spline is second order continuous everywhere. For tension t = 0 and skew s = 1, the
β-spline reduces to cubic B-spline. Positive values of tension (t > 0) increase the amplitude
of the two middle segments of the third-order curve with respect to the first and last segments,
whereas increasing the skew (s > 1) increases the amplitude of the two segments on the right
with respect to the two segments to the left side of the curve and so may produce discontinuities
and other unwanted artifacts.

6.4 Approximate Curve Section From Full Leaf
Once we have the β-spline representation of the leaf contour, we perform curve matching as
discussed below. For the occluded test leaf, we need to determine the closest match of the
curve section to the full leaves in the database. Matching two curves is a well known problem
and has been well studied in Computer Vision for shape matching, handwriting recognition,
etc. However, the solution is highly dependent on the application. For matching of curves
representing leaf contours, the problem is even harder due to several factors. There are too
many intra-class variations for many leaf species. Moreover, the boundary of the leaf contour
with the background or other leaves might not be smooth due to segmentation errors. In our
case, the curve matching problem is complicated because we have to determine which part of
the full curve matches the occluded curve. One idea could be to use a brute force approach
to consider every possible combinations of discrete points in the full curve and find the match
with the occluded curve. This is a NP-hard problem [135] that can’t be solved realistically for
any reasonable number of contour points. We handle the problem in the following way.
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Figure 6.1: (Left) original unsmoothed leaf contour and (right) smoothed leaf contour.

First, we smooth the contour using the Savitzky-Golay filter. The idea of this filter is to
perform convolution of the data points with a low degree polynomial by least squares. More
specifically, we used the smooth() function in the Matlab curve fitting toolbox. The purpose of
smoothing is to get rid of local noise and segmentation error at the boundary of the leaf. Figure
6.1 shows an example of original leaf contour (left image) and smoothed leaf contour (right
image). A part of leaf contour is zoomed in to show the effect of this smoothing. However,
a small neighbourhood should be chosen to perform the smoothing operation, otherwise the
smoothing may suppress useful local geometrical structure of the leaf. With the smoothed
curve sections, we next perform feature detection and then match the features of the two curves.

Although global shape descriptors have been shown to have some success in shape match-
ing, the idea mostly works for shapes with large variations. Leaves not having unique dis-
tinguishing properties cannot be matched with traditional shape descriptors. Convexity is an
important cue in human vision, and shapes can be decomposed into meaningful parts using
convexity information. We use the Discrete Contour Evolution (DCE) [79] to find interest
points in the 2D contour of the leaf. The idea of DCE is to simplify the contour by hierar-
chically decomposing the boundary by representing the shape with a polygon. The vertices of
the polygon represent convex parts of the shape. Figure 6.2 shows examples of DCE features.
The first leaf contour consists of lot of variations, whereas the second leaf contour lacks any
meaningful features in the contour. One advantage of using DCE feature points is that, the
number of features is invariant with respect to scale. Thus, two similar leaves of different sizes
should have similar feature point pattern in their contours.

With the DCE feature points in the occluded and full contour, we next need to determine
what is the best match between two set of feature points. We formulate the problem as a
subgraph matching optimization problem.

6.4.1 Subgraph Matching

Finding the correspondence between two set of points is a fundamental problem in Computer
Vision. Treating the feature points as graph nodes, the problem can be formulated as a subgraph
isomorphism problem. Two graphs G1 = (E1,V1) and G2 = (E2,V2) are isomorphic, denoted
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Figure 6.2: Feature points obtained from Discrete Contour Evolution (DCE) method [79]. The
contour is decomposed into meaningful parts based on the convexity and the feature points
represent the joint of these parts (or the vertices of the polygon represent the shape).

by G1 � G2, if there is a bijection ϕ : V1 → V2 such that for every pair of vertices vi, v j ∈ V1,
edge (vi, v j) ∈ E1 if and only if (ϕ(vi), ϕ(v j)) ∈ E2. Although there are many exact isometric
matching algorithms, our case is more complicated for several reasons. First, we need to deal
with missing nodes. Graph nodes can be missing due to the inconsistency of the detected
feature points for two similar leaves, which are slightly different in local geometry. Second,
we have to consider the cases where where G1 � G2 or G2 � G1 because the number of feature
points in the occluded curve can be less than the number of feature points of the full curve, and
vice versa.

Figure 6.3 shows a few examples for matching an occluded curve section with some full
curves in the database. In each of the four examples, the left curves are occluded curves and
the right curves are the full curves. First, we extract the feature points on the contour via DCE
as discussed previously. Then we build a connected graph with all the feature points as nodes
and the geodesic distance as edges. In Figures 6.3a, 6.3b and 6.3c, the full curves are from
same species, whereas in Figure 6.3d the full curve is from a different species. In each case,
we want to find a match with an open curve section (or an occluded leaf). In the first three
cases we have shown how the ambiguities in graph match can occur within a single species.
Figure 6.3a shows a good match. Although it is not “exact”, the overall topologies are similar
in the occluded curve and the section of the full curve under consideration. Matches are shown
in green lines. Now consider Figures 6.3b and 6.3c. Although these curves are also from the
same species as in Figure 6.3a, there are matching ambiguities in the graph nodes. Matches
with no ambiguities are shown as solid green lines while ambiguous matches are shown as
dotted green lines. This is because one node in the occluded curve can match multiple nodes
in the full curve and vice versa. Finally in Figure 6.3d, the occluded curve section is matched
with a full curve from a different species. The vertices in the occluded curve still find matches
with the vertices in the full curve, and there are some ambiguities in the matches. From all
the examples in Figure 6.3, we infer that there is a need to quantify the quality of match by a
“score”. Also, we need to handle the cases of ambiguities of unmatched vertices.

We adopt the idea of graph matching from Mcauley et al. [95]. For two graphs G1 and G2,
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Figure 6.3: Four examples of graph matching. An occluded curve section is matched with 4
full curves in the database (the left curve is the occluded curve and the right curve is the full
curve). In examples (a), (b) and (c), an occluded curve section is matched with full curves from
the same species. In example (d), the same occluded curve is matched with a different species.
Good matches are shown as solid green lines while ambiguous matches are shown as dotted
green lines.

we assume that outliers can be present in either of the graphs. We wish to find a function f̂ :
G1 → G2 such that the distances between the points in G1 and G2 are minimized. Along with
the penalty term for unmapped points between the two graphs due to occlusion and missing
data, the graph matching problem can be formulated as the following objective function:

f̂ = arg min
f :G1→G2

∑
(i, j)∈G1

|d(gi, g j) − d( f (gi), f (g j))|+

λ (|G1| − | f (G1)|)︸            ︷︷            ︸
number of unmapped points

,
(6.5)

where d is the geodesic distance between the nodes and λ is the maximum number of outliers
that are likely to be present. The above equation returns the arguments that minimize the ex-
pression: optimal cost and the matching vertices (see algorithm 3). We use the graph topology
as proposed by Mcauley et al. [95] and use two nodes g1 and g2 as reference nodes. We or-
der the vertices in counter clockwise direction and choose the first and last nodes as reference
nodes. First we find the optimal mapping of two point sets using Algorithm 3. Then we repeat
the process by selecting every pair of nodes as root node and find the optimal cost, which gives
the optimal correspondence. After finding the best matched feature points between the two
graphs, we retrieve the corresponding curve section from the full curve.

So far, we have extracted possible curve sections from all the full curves in the database.
Because we perform the matching for all curves independently, it is unlikely to miss a poten-
tial match in the process. However, we still need to find the best match within hundreds or
thousands of curves (depending on the size of the database). The idea is to use a two-stage
technique to reduce the search space. Fist, we want to filter out the curves which are too differ-
ent from each other in terms of global structure. This filtering is performed by first recovering
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Algorithm 3 Subgraph matching algorithm
1: best ← φ , bestcost ← ∞
2: for each possible mapping f (g1), f (g2) ∈ G2 ×G2 do
3: for r ∈ {1,−1} do
4: cost ← ||g1 − g2| − | f (g1) − f (g2)||
5: for for each node gi ∈ G1\{g1, g2} do
6: Find expected position p of f (gi)
7: Find p’s nearest neighbour np

8: cost = cost + ||g1 − gi| − | f (g1) − np|| + ||g2 − gi| − | f (g2) − np||

9: if cost > bestcost then
10: break
11: end if
12: end for
13: if cost < bestcost then
14: best ← f
15: bestcost ← cost
16: end if
17: end for
18: end for
19: return best, bestcost

the global affine transform parameters between any two curves. Then the Fréchet distance met-
ric is used to measure the closeness between any two curves and only the best η matches are
retained. In a last step, we perform energy optimization to find the overall best answer from
these closely related curve matches (because, infrequently, the Fréchet error can sometimes
incorrectly indicate a good match when the global structures are similar but the local structures
are different). We discuss these steps in detail in next subsections.

6.4.2 Inverse Affine Transform

For the same leaf type, the occluded curve and the extracted curve sections from the full curves
are assumed to be related by some global affine transformation. This allows us to recover the
global translation and scale parameters (the rotation is already given by the graph matching
calculation and we haven’t encountered shear in any experimentation on our datasets). Usually
the registration papers refer to the point set registration as warping, where the deformation
parameters needed to warp one point set into another, are computed. However, we do not do
this but rather use the affine parameters to “overlay” one curve on another and then perform a
shape similarity calculation. Figure 6.4 illustrates this point.

Figure 6.4 show two examples curve matches to emphasize that we do not to do pairwise
matching. The first row of Figure 6.4 shows two point sets from two different curves. The
model set is represented in blue and the data set is represented in red. Some corresponding
points are shown via black arrows in Figures 6.4a and 6.4b. Note that, since we have modelled
the contour with a β-spline, we can re-generate exactly same number of equally spaced points
for both spline curves.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: (a) and (b) the correspondence of some points on 2 curves, (c) and (d) the regis-
tration (warping) of the 2 curves and (e) and (f) the 2 curves overlaid via the computed affine
parameters (rotation, translation and scale).

If we perform pairwise registration (warping), the algorithm will find corresponding points
between two curves, and then the warped data set will “approach” the model set shape. This
transformation is specified using local and global parameters. An efficient pairwise registration
algorithm will consider local deformations and will transform each point in the data set to the
nearest point in the model set. This results in something like that shown in Figures 6.4c and
6.4d. The local structures are treated as deformations and finally the registration aligns or
warps the two point sets to coincide.

We do not model these deformations in our solution because the goal is to find the differ-
ence between two curves, and not to find the correspondences between two point sets. Undoing
the affine transform between the two curves does not affect the local structure, it brings the two
curves into an “overlaid” state. Note that, as we have matched feature points via graph match-
ing and then extracted the curve section from that calculation, this is automatically rotation
invariant. Undoing the affine transform is a simple but effective way to handle translation and
scaling as well in the global sense. We compute the affine transform for two curves using the
MatLab function fitgeotrans. We show examples of undoing an affine transformation in the
third row of the figure, i.e. in Figures 6.4e and 6.4f. In these figures, the two curves still have
very different structures.

For points pi = (pi1, . . . , pin)T and their corresponding affine transformed points qi =

(qi1, . . . , qin)T (i = 1, ...,m), the goal is to find the matrix A and the translation vector t such that

pi ≈ Aqi + t. (6.6)

A incorporates rotation and scaling. To find A and t, the following objective function must be
minimized:
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S (A, t) =

m∑
i=1

||pi − Aqi − t||22 . (6.7)

6.4.3 Curve matching by Fréchet Distance

After undoing the affine transform, we measure the similarity between the two curves. A naive
way is simply to sum up the squared difference of all the points from start to the end of the
curves. However, that does not give a good result. Typically, the Hausdorff distance is used
to find similarity between two point sets. By definition, two sets are close in the Hausdorff
sense if every point of either set is close to some point of the other set. However, this idea is
not effective for finding the similarity between two curves because it considers only the set of
points, not their order on the curve. We use the Fréchet distance [6] for measuring the similarity
between two curves. Informally, it can be defined as the following example2: Let us suppose
that a man is walking a dog. Assume that the man is walking along one curve and the dog is
along the other curve. Both of them are allowed to control their speed, but can’t go backwards.
The Fréchet distance between the two curves is the minimum length of the necessary leash to
connect the man and the dog from the beginning till the end of the two curves.

Mathematically, the continuous Fréchet distance between two curves, P and Q, is defined
as:

F(P,Q) = inf
α,β

max
t∈[0,1]

||P(α(t)) − Q(β(t))||,

where P,Q : [0, 1] → R2 are parameterizations of the two curves and α, β : [0, 1] → [0, 1]. In
the discrete case, the algorithm can be implemented using dynamic programming [99]. If the
curves, P and Q, have sizes m and n respectively, then the discrete version of F(P,Q) can be
computed by following dynamic programming recurrences:

d0,0 := ||p0 − q0||2

d0, j := max{d0, j−1, ||p0 − q j||}, for j=1:n

di,0 := max{di−1,0, ||pi − q0||}, for i=1:m

di, j := max min{di, j−1, di−1, j, di−1, j−1}, for i=1:m, j=1:n

Using the Fréchet distance metric, we see that similar curves tend to have smaller distance
values. This approach helps to drastically reduce the search space. However, the approach
focuses mostly on the global shape of the leaf and can’t handle the cases where the leaves have
similar global shape, but have different local structures. We retain the top η matches from the
curve matching algorithm as discussed above and process these further as discussed in the next
section.

2https://en.wikipedia.org/wiki/Fréchet distance
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6.4.4 Objective Function
Now the recognition problem of searching the full database of leaves reduces to finding the
best match of an occluded curve with η curves (which are parts of full curves) in the database.
However, these η curves are very close to the test curve, especially in terms of global struc-
ture. To find the best match among these curves, we need to incorporate both local and global
information to uniquely identify a curve. The tunable parameter η has value 5 in our work.
This is based on empirical observation and is used to reduce the search space because energy
optimization is computationally expensive. Because the problem of partial contour matching is
NP-hard, performing energy optimization on the best η Fréchet matches is a reasonable subop-
timal solution. Otherwise, a trivial solution of the partial shape matching problem would be to
consider all possible combinations of contour points and find the best match, i.e. a brute force
approach, which has exponential complexity. However, one can keep more than η = 5 matches
in the energy optimization phase. This was not needed for our experimentation with the 3 leaf
datasets. For other applications, η might indeed need to be changed.

Local curvature can be useful to encode the local geometric structure of a leaf. If the leaf
does not have much variation (can be thought of as a “smooth boundary”), local curvature
will have almost the same value at all points on the contour, except the tip. Leaves having
variations at the boundary will have different curvature values at different points. To encode
the global structure of the leaf, global curvature can be an useful characteristic. However, even
if two leaves have similar local and global structures, one idea is to investigate how they differ
in terms of how the boundary points are distributed relatively to each other. Another idea for
encoding local and global geometrical structure of the contour, is to consider the orientation of
other contour points with respect to a particular point. Relative angles of other points with a
particular point can be used as this metric.

We formulate an objective function that involves several geometric features, such as cur-
vature, local and global geometrical structures, etc. and minimize it to find the best match
between two curves. We formulate the energy functional as:

Etotal = λ1ElocalCurvature + λ2EglobalCurvature+

λ3EangularDistribution + λ4EstringCut,
(6.8)

where λ1, λ2, λ3 and λ4 are weight factors for each term, currently set to 0.25. Basically,
we compute four adjacency matrices for the four terms in the function. For every point on
the contour, we compute these factors for every other point and encode these in an adjacency
matrix [157]. We explain each term below:

1. Local Curvature: Curvature is an important property for matching shapes. Geometri-
cally, if ϕ is the angle between the tangent line and the x-axis, then the curvature of a
curve y = f (x) is defined as:

ElocalCurvature =

∣∣∣∣∣dϕds

∣∣∣∣∣ =
y′′

[1 + (y′)2]3/2 . (6.9)

We choose a small number of points (20 points) to define the local neighbourhood around
a point of interest and perform the same for all points on the contour to get local curvature
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at those points. This information helps to capture the local geometric structure at the leaf
contour.

2. Global Curvature: This is similar to local curvature, but a bigger neighbourhood is used
to capture the global shape. Also, a bigger neighbourhood is used to smooth the curve
while computing the global curvature, which helps to capture the global geometrical
structure of the curve. We use 1/3 of the contour length to compute global curvature.
This captures the overall leaf shape in a global sense. Note that, we are not dealing with
a closed curve and we use reflector at the end points.

3. Angular Features: As discrete points are uniformly distributed along the contour (be-
cause spline points are uniformly distributed in the interval u ∈ [0, 1]), their relative
orientations differ when the shape changes. We considered incorporating relative an-
gular orientation of the points in our objective function. However, instead of simply
computing the angles, we use the Shape Context descriptors [12]. The idea is to consider
a set of vectors originating from a point to all other points on the boundary and then
compute the distribution of all the points over relative positions. For every point pi, a
histogram hi is created in log-polar space, which uses the relative coordinates of all the
points with respect to that point. Mathematically it is defined as [12]:

hi(k) = #{q , pi : (q − pi) ∈ bin(k)},

where k is the index of the angle-distance bins. The advantage of using log-polar space is
that, the descriptor is more sensitive to the nearby points than to points which are further
away. This helps to exploit the local geometric structure.

If pi and q j are two points on two curves that are to be matched, then the cost of matching
of the curves, computed with the χ2 statistic, is given as:

EangularDistribution =
1
2

K∑
k=1

[hi(k) − h j(k)]2

hi(k) + h j(k)
.

4. StringCut Features: In addition to computing the angular distribution of points in the
contour, another way to compute local geometric structure is to find the distribution of
points in a small neighbourhood around a straight line. Inspired by the work of Wang et
al. [148], we introduce “StringCut” features which contributes to the fourth term of our
objective function. Figure 6.5 shows a few samples of the local neighbourhood around a
point. By drawing a straight line (or “string”) through the end points (which “cuts” the
set of points), there can be three possible set of points: the points on two sides of the
straight line (can be at left and right side, or top and bottom side), and the points lying
on the line. This idea allows to extract the local geometry of the neighbourhood.

Let a neighbourhood be defined by the points {pi, pi+1, · · · , p j} which starts from pi and
ends at p j and the straight line which passes through the points is denoted by ξi j. The
point sets above, below and on the line are denoted as S a, S b and S o. For example, in the
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Figure 6.5: The idea of “StringCut”. Some samples of neighbourhood around a point is shown.
A straight line is drawn between the first and the last point of the neighbourhood and the
distribution of the points around the straight line are used as StringCut features.

first example of Figure 6.5:

S a = {pi+1, pi+2, pi+3, pi+5,

pi+6, pi+7, pi+8, pi+10, pi+11, pi+12, pi+13},

S b = {φ}

and
S o = {pi, pi+4, pi+9, p j}.

Let h(pk, ξi j) be the perpendicular distance of the point pk to the straight line ξi j. The
distance l from a point (x0, y0) to a straight line ax + by + c = 0 is simply given by,

l =
|ax0 + by0 + c|
√

a2 + b2
.

Let d(pi, p j) be the Euclidean distance between points pi and p j. Let Li j be the geodesic
length of the curve segment. Then we define fbelow, fupper, fonTheLine and fbending as the
features for the points which are above the straight line, below the straight line, on the
straight line, and the bending of the line respectively. Mathematically:

fbelow = max
(

1
Na

∑
pk∈S a

h(pk, ξi j),
1

Nb

∑
pk∈S b

h(pk, ξi j)
)
, (6.10)

fupper = min
(

1
Na

∑
pk∈S a

h(pk, ξi j),
1

Nb

∑
pk∈S b

h(pk, ξi j)
)
, (6.11)

fbending =
Li j

d(pi, p j)
(6.12)

and
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fonTheLine = {S o}, (6.13)

where Na and Nb are the number of points in S a and S b respectively. Note that, the the
points can also lie to the left and right side of the line, depending on the orientation. We
combine all the StringCut features as:

ES tringCut = fbelow + fupper + fonTheLine + fbending. (6.14)

After computing all the terms in the objective function in Equation (6.8), we have to
optimize it, which is discussed in next section.

(a) F=80,E=912 (b) F=90,E=963

(c) F=100,E=6322 (d) F=91,E=7255

(e) F=453,E=14432 (f) F=523,E=16227

Figure 6.6: Fréchet errors, F, and energy optimization values, E, for a number of curve sets.
Curves (a) and (b) have both low F and E values, curves (c) and (d) have low F and high E
values (showing the two are not always i well correlated) and curves (e) and (f) have both high
F and E values.

It is instructive to consider the relationship between Fréchet matching error and the energy
optimization values. Again, this demonstrates the need to use both. We use the Fréchet distance
metric to cheaply compute the similarity of the two curves. The larger the curve differences,
generally the greater the Fréchet errors. On the other hand, similar curves tend to have lower
Fréchet errors. Consider Figure 6.6. Different curves are shown in the blue and red colours,
and are overlaid (as determined from the inverse affine transform being applied to the results
of the subgraph matching). The top row shows examples of curves which are similar in terms
of global structure and local structures. In this case, low Fréchet errors, F, are well correlated
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with low optimization energy, E. The bottom row shows examples where the curves are very
different. Now the F and E values are again well correlated but now are much larger, indicating
poor matches. The middle row shows some (rare) cases, where the Fréchet errors are low
but the energy values are high. Fréchet thresholding in this case would fail to remove these
bad matches that the expensive energy optimization calculation would. The Fréchet error, by
itself, would correctly accept/reject the matches in the top and bottom rows. Thus, the Fréchet
errors and energy optimization play a complementary role of reduced computational costs with
reasonable accuracy versus high accuracy at considerably increased computational costs.

6.5 GNCCP optimization
The energy functional defined in Equation (6.8) can be optimized in different ways. Because
of the need for computational efficiency, we adopted a recently proposed efficient Graduated
Non-Convex and Concavity Procedure (GNCCP) [89] approach. GNCCP basically solves the
combinatorial optimization problem using permutation matrices. In our case, we have formu-
lated the energy functional as a weighted combination of adjacency matrices. In another words,
the problem is formulated as an assignment problem, where we explore all possible combina-
tions of discrete points on the curve to find the best match (note that we are dealing with open
curves at this stage). The adjacency matrix automatically handles the ordering of points (we
chose the counter-clockwise direction). Also, all the curve sections have the same number of
points, which is obtained by representing the original points by a β-spline and re-sampling the
spline by controlling the increment parameter ∆u, to obtain any specified number of equally
spaced spline points.

The energy functional in our case is a combination of adjacency matrices, whose optimiza-
tion gives the one-to-one correspondence of the points. Given two graphs, G1 = (E1,V1) and
G2 = (E2,V2), where E and V are the set of edges and vertices respectively, a one-to-one map-
ping function f : V1 → V2 specifies the correspondence between the two graphs. A typical
approach to finding this solution is to formulate an energy functional, f , and minimize it. In
general, this is an NP-hard combinatorial optimization problem [89].

Let the two graphs have M and N vertices respectively. We want to find the optimal match-
ing of vertices between the two graphs. Let ci j denotes the cost of matching i-th vertex of G1

with j-th vertex of G2, and xi j ∈ {0, 1} denotes the assignment. Then, the optimization problem
can be written as:

min
X∈P

F(X) = arg min
x

M∑
i=1

N∑
j=1

ci jxi j

= arg min
X

XT C,
(6.15)

such that the following condition is satisfied:

X ∈ P,P :=
{
X|xi j = {0, 1},

N∑
j=1

xi j = 1,
M∑

i=1

xi j ≤ 1,∀i, j
}
,M ≤ N

(6.16)
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where P is the set of (M × N) permutation matrices.
Following the approach by Maciel et al. [93], the domain of the problem is relaxed from P

to its convex hull, which is the set of doubly stochastic matrices Ω as follows:

Ω :=
{
X|xi j ≥ 0,

N∑
j=1

xi j = 1,
M∑

i=1

xi j ≤ 1,∀i, j
}
. (6.17)

Then the GNCCP algorithm approximately solves the above problem as,

Fζ(X) =


(1 − ζ)F(X) + ζtr(XT X) i f 1 ≥ ζ ≥ 0

(1 + ζ)F(X) + ζtr(XT X) i f 0 ≥ ζ ≥ −1,
(6.18)

where X ∈ Ω and and tr(·) denotes the trace of a matrix. As the algorithm converges, the
variable ζ decreases from 1 to -1. The steps are shown in Algorithm 4.

Algorithm 4 GNCCP algorithm
1: ζ ← 1, X← X0

2: while ζ > −1 ∧ X < P do
3: while X has not converged do
4: Y = arg minY tr(∇Fζ(X)T Y), Y ∈ Ω

5: α = arg minα Fζ(X + α(Y − X)), 0 ≤ α ≤ 1
6: X← X + α(Y − X)
7: end while
8: ζ ← ζ − dζ
9: end while

10: return X

From the energy optimization performed as discussed above, we rank the η best Fréchet
curves according to their energy values and choose as the best match the curve having the
minimum energy.

6.6 Experimental Results
We validate the proposed method by applying it to 3 publicly available leaf datasets: the
Swedish dataset [130], the Flavia dataset [151] and the Leafsnap dataset [77]. As pointed
out by Hu et al. [65], the Smithsonian leaf dataset [85] contains too few samples per species,
which makes it unsuitable for extensive experimentation. To make fair comparisons with the
other algorithms, we compare our method with state of the art algorithms for which code is
publicly available, or whose implementation is straightforward (the paper contains enough de-
tails to implement the idea). We compare with our algorithm with the Shape Context (SC) 3

[12] and the Inner Distance (IDSC) 4 [85] methods. Implementations of both algorithms are

3https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
4http://www.dabi.temple.edu/˜hbling/code_data.htm
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publicly available. IDSC actually uses SC but improves it by using Dynamic Programming
(DP). Also we have implemented Multiscale Distance Matrix (MDM) [65].

(a) 18% (b) 21%

(c) 29% (d) 36%

(e) 50% (f) 49%

Figure 6.7: Some typical occluded leaves with varying contour occlusion levels (specified
below each image as a percentage). The part of each leaf enclosed by a red contour is cut away.
The partial leaf contour remaining (not including the contour the cut away leaf part makes with
the leaf) is the open occluded curve.

For occlusion, we randomly apply 20% to 50% occlusion to the test leaf. By this we mean
the percentage of the overall contour that is occluded. We do not consider how much leaf area
is occluded. The astute reader will realize that a leaf can have a low amount of leaf contour
occlusion and, at the same time, a high amount of leaf area occlusion. For example, a leaf can
have 10% contour occlusion but with most of its interior area (say 90%) cut away.

We also assume that the occlusion boundary is known. That is, we have an open curve as
input. Occlusion boundary detection is a different problem, and that is not the focus of the
paper. Figure 6.7 shows some examples of occluded leaves. The top row shows lower level
occlusion, the middle row shows medium level of occlusion, and the last row shows examples
when the leaves are highly occluded (up to 50%). Note that the occlusion level is considered
at the contour, occlusion in the interior of the leaves are not taken into consideration. A leaf
can be 90% occluded in terms of its area, and the occlusion at the contour can be 10%! Our
algorithm may be able to handle these cases since we classify the leaves by their contours.

Sometimes, it is difficult to distinguish the leaf species if the amount of occlusion is high.
For example, consider Figure 6.8, which shows 4 leaf sets with leaves from different species.
Even for small occlusion levels, discriminating among the leaf species is difficult. At 50%
occlusion it would be impossible. In our work, we consider any of close leaf species as the
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(a) (b)

(c) (d)

Figure 6.8: Leaves with similar contours for different species: leaves from (a) Sycamore Maple
(acer pseudoplatanus) and Red Maple (acer rubrum), (b) Sweet Birch (betula lenta), Whitebark
Himalayan Birch (betula jacquemontii) and Paper Mulberry (broussonetxtia papyrifera), (c)
Southern Catalpa (catalpa bignonioide) and Northern Catalpa (catalpa speciosa) and (d) Yel-
low Birch (betula alleghaniensis), Downy Serviceberry (amelanchier arborea) and European
Hornbeam (carpinus betulus). Note that we only classify these leaves based on their contour
shapes and not on their texture, even though some of the species are clearly distinguishable by
their texture.

correct answer to the classifier. Classifying these types of occlusion cases is out of the scope of
this paper (the same issue arises for full leaf matching and was handled in the same way [85]).
We present and discuss different datasets and corresponding recognition results below.

6.6.1 Swedish dataset

The dataset contains 1125 leaves from 15 species with 75 images per species. Following the
protocol of previous work ([85], [48], [65], [148], [162]), we chose 25 images as database
images and the rest as the testing images for each species. Also, we have removed the stems
from the leaves [65]. As stated previously, we have applied random occlusion to the contour,
ranging from 20% to 50%. We present the results of 0% occlusion (full leaf), 25% occlusion,
50% occlusion and the average performance of the algorithm for random occlusion levels from
20% to 50% as precision-recall curves in Figure 6.9. Figure 6.9a shows the performance when
there is no occlusion. The performance of our algorithm is the same as state of the art. However,
as the occlusion level is increased, our algorithm starts outperforming state of the art. As shown
in Figure 6.9d, the average performance of our algorithm is significantly better than the state
of the art for higher amounts of occlusion.

6.6.2 Flavia dataset

The dataset contains 32 classes with different numbers of samples per species. We have se-
lected 50 images from each species (because that is the minimum number of samples per
species). 25 of these are used as database images and 25 are used as the testing images. We
performed similar analysis as previously discussed for the Swedish dataset, and the results are
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shown in Figure 6.10. Like the results on the Swedish dataset, we outperform state of the art.

6.6.3 Leafsnap dataset
This dataset contains 184 species, having thousands of leaves in total. However, most of the
species have a limited number of samples, which are not suitable for testing. Moreover, due
to segmentation errors, many samples are not clean. Also, we exclude compound leaves data.
Keeping all this in mind, we have selected a subset of 25 species from the dataset. In each
species, 20 images are used as database images and the rest (depending on the number of
available “clean” images) are used as the testing images. Results, shown in Figure 6.11, are
better than state of the art as in Swedish and Flavia dataset results.

6.6.4 Discussion
In all experiments using all the different datasets, we outperform the state-of-the-art. The
average recognition rate for all the datasets is about 70.2%. However, from the experimental
results, it can be observed that our method performs the best for all occluded cases. When there
is no occlusion, IDSC [85] performs slightly better than our method while our performance is
quite close to SC [12]. In general, SC and IDSC perform similarly, while both outperform
MDM [65]. Although both SC and IDSC are widely used successfully on a large variety of
shapes, their performance drops for occluded leaves because both of the methods perform point
to point matching, and there is no way of determining which part of a full curve best matches
the occluded leaf. A brute force approach would be to perform point-to-point matching for all
possible discrete combinations of the full curves in the database and find the best match, which
is an NP-hard problem. One of the major contributions of our work is determining the section
of the full curve that closely resembles the occluded curve section.

A drawback of the proposed method is that it is somewhat slow. The optimization takes the
majority of the time. As stated in Zhao et al. [162], the searching step is the main bottleneck
in leaf recognition using a large dataset. We use n = 1000 points for the curves and the
GNCCP algorithm is O(n3). Even using MatLab’s parfor to spawn separate computations for
each of the 5 curves does not speed things up enough. Reducing the number of contour points
negatively affects the recognition accuracy.

Lastly, note that our method is general enough for use in many different applications of
partial shape matching.
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Figure 6.9: Precision-Recall curves for the Swedish dataset with (a) no occlusion, (b) 25%
occlusion, (c) 50% occlusion and (d) average performance for random occlusion levels from
20% to 50% respectively.
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Figure 6.10: Precision-Recall curves for the Flavia dataset with (a) no occlusion, (b) 25%
occlusion, (c) 50% occlusion and (d) average performance for random occlusion levels from
20% to 50% respectively.
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Figure 6.11: Precision-Recall curves for the Leafsnap dataset with (a) no occlusion, (b) 25%
occlusion, (c) 50% occlusion and (d) average performance for random occlusion levels from
20% to 50% respectively.



Chapter 7

Conclusion and Future Work

7.1 Conclusion
In this thesis we have focused on different problems related to automated plant growth analysis.
We have shown that 3D surface area and volume can be reliably used in some cases as growth
metric for plants. This type of system can be used for comparing growth patterns of different
types, varieties and species in different environmental conditions in an autonomous way. Using
the junctions as feature points, the 3D reconstruction of the plant is possible without any prior
knowledge of the scans. The robot can also be used to perform tracking of different plant
organs over time. The partial contour matching algorithm can be extended to estimate the full
structure of an occluded leaf, which can be helpful in tracking leaves over time. We believe
that the proposed system is general enough to perform various biological relevant experiments
in a non-invasive/non-contact and automatic manner.

7.2 Future Work
From the system point of view, one limitation of the system is that, it can process one plant
at a time, but this can be extended for future scanning. To increase plant throughput, we
can scan multiple plants at a time. Zhao [163] and Yang [156] processed 4 plants at a time,
but performed manual cutting (editing) of the range data to separate the data for each plant.
One idea can be to change the robot trajectory to scan each plant separately, but some plant
overlap may be impossible to avoid. So future work could be changing the sensor trajectory
and/or performing automatic editing. Leafy plants will also be problematic for our system as
the volume measured for the plant and its actual volume can now be quite different. Another
question is whether the mesh enclosing a plant (which may not necessarily be a good estimate
of the plant’s volume) can be used as a measure of the plant’s growth. One idea to handle
occlusion can be to exploit the 7 degrees of freedom of our highly flexible robot arm and move
it to the occluded areas dynamically to perform scanning more efficiently. Such areas might be
found quickly by processing the grayvalue images found by the scanning. Such scanning would
have to be performed locally (and not on Sharcnet) to allow dynamic real time re-adjustment
of the scanner’s trajectory.

From an algorithmic point of view, 3D reconstruction of highly occluded plants will be

84
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challenging problem (as discussed in Chapter 4 for the bean plant). Although increasing the
number of scans might solve the problem, this would also increase the computational time.
The minimum number of scans required to accurately reconstruct the structure of a plant might
be a good study which can be used to optimize the computational cost of multiview alignment
(trade-off between accuracy and computation cost). Zhao [163] made a start of that kind of
work; she had a lot of difficulty in obtaining accurate volumes for plants that she sacrificed.
As well, there were difficulties in scanning plastic aquarium plants as the laser beam tends
to penetrate the plastic, meaning actual plants could not be replaced by aquarium plants in
experiments to precisely determine the minimum number of scans required (may vary for plant
types).

The recognition rate and computation time required for partial leaf recognition need to be
improved. Also, we haven’t studied compound leaves and species which are very close to each
other. We have demonstrated partial contour matching in 2D, which needs to be extended for
3D. Another interesting approach might be to use deep learning to solve the partial contour
matching problem.
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[5] G. Alenyà, B. Dellen, and C. Torras. 3d modelling of leaves from color and tof data for
robotized plant measuring. In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2011.

[6] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications, 5:75–91, 1995.

[7] M. Augustin, Y. Haxhimusa, W. Busch, and W. G. Kropatsch. A framework for the
extraction of quantitative traits from 2D images of mature arabidopsis thaliana. Machine
Vision and Applications, 2015.

[8] X. Bai, C. Rao, and X. Wang. Shape vocabulary: A robust and efficient shape represen-
tation for shape matching. IEEE Transactions on Image Processing, 23(9), 2014.

[9] J.L. Barron and A. Liptay. Optic flow to measure minute increments in plant growth.
BioImaging (BI1994), 2(1):57–61, 1994.

[10] J.L. Barron and A. Liptay. Measuring 3d plant growth using optical flow. BioImaging
(BI1997), 5(2):pp82–86, 1997.

[11] B. A. Barsky and J. C. Beatty. Local control of bias and tension in beta-splines. ACM
Transactions on Graphics, 2(2):109–134, 1983.

86



BIBLIOGRAPHY 87

[12] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition us-
ing shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(4):509–522, 2002.

[13] L. Benoit, D. Rousseau, E. Belin, D. Demilly, and F. Chapeau-Blondeau. Simulation of
image acquisition in machine vision dedicated to seedling elongation to validate image
processing root segmentation algorithms. Computers and Electronics in Agriculture,
104, 2014.

[14] P. J. Besl and N. D. McKay. A method for registration of 3d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(2), 1992.

[15] M. Bicego and P. Lovato. A bioinformatics approach to 2d shape classification. Com-
puter Vision and Image Understanding, 145:59–69, 2016.

[16] A. Bienert and H.G. Maas. Methods for the automatic geometric registration of terres-
trial laser scanner point clouds in forest stands. Inter. Archives Photogramm., Remote
Sens. Spatial Inf. Sci., 38(3/W8), 2009.

[17] S. Bouaziz, A. Tagliasacchi, and M. Pauly. Sparce iterative closest point. Computer
Graphics Forum (Symposium on Geometry Processing), 32(5):1–11, 2013.

[18] M. Brophy, A. Chaudhury, S. S. Beauchemin, and J. L. Barron. A method for global
nonrigid registration of multiple thin structures. In Proceedings of the 12th Conference
on Computer and Robot Vision (CRV), pages 214–221, 2015.

[19] Mark Brophy. Surface Reconstruction from Noisy and Sparse Data. PhD thesis, Dept.
of Computer Science, University of Western Ontario, December 2015.

[20] A. Bucksch and K. Khoshelham. Localized registration of point clouds of botanic trees.
IEEE Geoscience and Remote Sensing Letters, 10(3), 2013.

[21] A. Bucksch, R.C. Lindenbergh, M. Zulkarnain A. Rahman, and M. Menenti. Breast
height diameter estimation from high-density airborne LiDAR data. IEEE Geoscience
and Remote Sensing Letters, 11(6), 2014.

[22] P. Burger and D. Gillies. Interactive Computer Graphics. Addison-Wesley Publishing
Company, 1989.

[23] Y. Cao, Z. Zhang, I. Czogiel, I. Dryden, and S. Wang. 2D nonrigid partial shape match-
ing using MCMC and contour subdivision. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[24] G. Cerutti, L. Tougne, D. Coquin, and A. Vacavant. Curvature-scale-based contour un-
derstanding for leaf margin shape recognition and species identification. In Proceedings
of the International Conference on Computer Vision Theory and Applications (VISAPP),
2013.



88 BIBLIOGRAPHY

[25] G. Cerutti, L. Tougne, D. Coquin, and A. Vacavant. Leaf margins as sequences: A struc-
tural approach to leaf identification. Pattern Recognition Letters, 49:177–184, 2014.

[26] G. Cerutti, L. Tougne, J. Mille, A. Vacavant, and D. Coquin. A model-based approach
for compound leaves understanding and identification. In IEEE International Confer-
ence on Image Processing (ICIP), 2013.

[27] G. Cerutti, L. Tougne, J. Mille, A. Vacavant, and D. Coquin. Understanding leaves
in natural images - A model-based approach for tree species identification. Computer
Vision and Image Understanding, 117(10):1482–1501, 2013.

[28] A. Chaudhury and J. L. Barron. Partially occluded leaf recognition via subgraph match-
ing and energy optimization. (in review), 2017.

[29] A. Chaudhury, M. Brophy, and J. L. Barron. Junction based correspondence estima-
tion of plant point cloud data using subgraph matching. IEEE Geoscience and Remote
Sensing Letters, 13(8):1119–1123, 2016.

[30] A. Chaudhury, C. Ward, A. Talasaz, A. G. Ivanov, M. Brophy, N.P.A. Hüner B. Grodzin-
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