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ORDER OF EVENTS
1. Within minutes, muscular paralysis 

(chill coma) occurs due to direct 
effects of cold

2. During the first hour Na+ is lost from 
the tissues, resulting in a hemolymph 
[Na+] spike

3. Water and Na+ continuously migrate 
from the hemolymph to the gut

Graphical Abstract (for review)



HIGHLIGHTS 

 

 Insects lose water and ion balance rapidly during chilling 

 Patterns of hemolymph [Na
+
] in early coma differ from those in late chill coma 

 A rise in hemolymph Na
+
 in the first hour of chilling may result from tissue leak 

 Hemolymph [K
+
] increased during chilling but did not account for paralysis 

 Chill-tolerant crickets did not defend homeostasis better during 12 h of chilling 

Highlights (for review)
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ABSTRACT 12 

  13 

Insects lose ion and water balance during chilling, but the mechanisms underlying this 14 

phenomenon are based on patterns of ion and water balance observed in later stages of cold 15 

exposure (12 or more hours). Here we quantified the distribution of ions and water in the 16 

hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12 h of cold exposure 17 

to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant 18 

insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, 19 

hemolymph [Na
+
] and Na

+
 content in the first few hours of chilling actually increased. Patterns 20 

of Na
+
 balance suggest that Na

+
 migrates from the tissues to the gut lumen via the hemolymph. 21 

Imbalance of [K
+
] progressed gradually over 12 h and could not explain chill coma onset (a 22 

finding consistent with recent studies), nor did it predict survival or injury following 48 h of 23 

chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than G. 24 

pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na
+
], or 25 

[K
+
] balance during the first 12 h of chilling. Gryllus veletis better maintained balance of Na

+
 26 

content and may therefore have greater tissue resistance to ion leak during cold exposure (which 27 

could partially explain faster chill coma recovery for that species). 28 

 29 

Key Words: insect, chill tolerance, homeostasis, Gryllus, ion balance  30 
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1. INTRODUCTION 31 

 32 

Because insects are ectotherms, many of their physiological processes are directly 33 

influenced by ambient temperature. The mechanisms that underlie thermal physiology will 34 

therefore determine how climate change impacts insect performance and, consequently, 35 

ecosystem function (Sinclair et al., 2003; Chown and Terblanche, 2006; Somero, 2010; Williams 36 

et al., 2015). Insect performance is bounded at low temperatures by the critical thermal minimum 37 

(CTmin), below which insects enter a reversible paralysis called chill coma. Insects lose ion and 38 

water homeostasis when in chill coma and regain homeostasis during recovery (Koštál et al., 39 

2004; MacMillan et al., 2012). The ability to survive and maintain homeostasis in the cold is 40 

variable and plastic; cold-acclimated or -adapted insect populations sustain water and ion balance 41 

at lower temperatures than their warm-acclimated or -adapted counterparts (Gibert and Huey, 42 

2001; Ayrinhac et al., 2004; Koštál et al., 2004; Koštál et al., 2006; Andersen et al., 2014; Coello 43 

Alvarado et al., 2015; MacMillan et al., 2015a).  44 

 45 

In several insects (including crickets, locusts, and cockroaches), hemolymph Na
+
 and water 46 

migrate out of the hemolymph during chilling, while hemolymph [K
+
] increases (Koštál et al., 47 

2006; MacMillan and Sinclair, 2011; Andersen et al., 2013; Findsen et al., 2014; Coello 48 

Alvarado et al., 2015). The migration of Na
+
 is likely a result of active ion transport failure and, 49 

as water balance is often tightly linked to Na
+
 gradients, so too is hemolymph water lost. The 50 

decreased hemolymph volume is thought to increase hemolymph [K
+
] (MacMillan and Sinclair, 51 

2011). In Gryllus pennsylvanicus Burmeister, the largest decrease in hemolymph [Na
+
] and 52 

increase in hemolymph [K
+
] occurs within the first 12 h of cold exposure (MacMillan and 53 

Sinclair, 2011). Chill coma onset occurs rapidly (within minutes of cold exposure) and appears to 54 

be mechanistically unrelated to processes underlying loss of water and ion homeostasis (Findsen 55 

et al., 2014; MacMillan et al., 2014b; Andersen et al., 2015). In particular, previous authors have 56 

not observed a loss of homeostasis associated with chill coma paralysis within the first few 57 

minutes of cold exposure (Findsen et al., 2014; MacMillan et al., 2014b; Andersen et al., 2015). 58 

However, loss of homeostasis during chilling is readily apparent at longer timescales (hours to 59 

days) in the context of studies of chill coma recovery time (CCRT) and chilling injury (e.g. 60 

Koštál et al., 2006; MacMillan and Sinclair, 2011; Findsen et al., 2013). Thus we do not know 61 
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how quickly Na
+
 or K

+
 balance is lost during cold exposure, or whether the patterns of 62 

homeostasis in the initial cold exposure reflect those observed at longer timescales. Similarly, 63 

little is known about how ion and water imbalance during chilling relates to or predicts survival 64 

and chilling injury (MacMillan et al., 2014b). 65 

 66 

Insects vary in their ability to maintain ion and water balance in the cold (Koštál et al., 2004; 67 

Koštál et al., 2007; MacMillan et al., 2014a; Coello Alvarado et al., 2015; MacMillan et al., 68 

2015a). Our understanding about the mechanisms underlying this variation is incomplete (Gibert 69 

and Huey, 2001; Ransberry et al., 2011), but recent studies have revealed a potential role for Na
+
 70 

balance. Cold-acclimated Drosophila melanogaster Meigen maintain low hemolymph [Na
+
] (and 71 

consequently low [K
+
]) in both warm and cold conditions, and may also exhibit lower Na

+
-72 

transport capacity (MacMillan et al., 2014a; MacMillan et al., 2015a). Gryllus veletis (Alexander 73 

and Bigelow) nymphs maintain Na
+
 balance at 0°C, while G. pennsylvanicus adults (which are 74 

less chill tolerant) lose Na
+
 balance at 0°C unless they have undergone prior cold acclimation 75 

(Coello Alvarado et al., 2015).  76 

 77 

Understanding why insects lose water and ion homeostasis during chilling requires an 78 

understanding of the short-term movements of water and ions during cold exposure. Here we 79 

explore the patterns of water and ion balance during the first 12 h of cold exposure with the aim 80 

of testing and generating mechanistic hypotheses for why homeostasis is lost in the cold, and 81 

why chill-tolerant insects are better at maintaining homeostasis at low temperatures. We used 82 

two species of field cricket: Gryllus pennsylvanicus (which was used to develop the initial model 83 

of loss of ion and water homeostasis in the cold), and G. veletis, the nymphs of which are more 84 

chill-tolerant and maintain ion and water balance at lower temperatures (Coello Alvarado et al., 85 

2015).  86 

 87 

 88 

2. MATERIALS AND METHODS 89 

 90 

Gryllus pennsylvanicus and G. veletis colonies originated from individuals collected from 91 

the University of Toronto at Mississauga campus, Ontario (2004) and the University of 92 
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Lethbridge, Alberta (2010), respectively.  We reared crickets under constant summer-like 93 

conditions (25°C, 14 L:10 D photoperiod, 70% RH) at the University of Western Ontario 94 

Biotron Research Center, as described previously (MacMillan and Sinclair, 2011; Coello 95 

Alvarado et al., 2015). Crickets were housed in transparent plastic containers with stacked 96 

cardboard egg cartons for shelter and provided with tap water and ad libitum commercial rabbit 97 

food (Little Friends Original Rabbit Food, Martin Mills, Elmira, ON, Canada). We collected 98 

eggs in containers of moist vermiculite and sterile sand; Gryllus veletis eggs hatched after two 99 

weeks, and we placed G. pennsylvanicus eggs at 4°C to accommodate an obligate three month 100 

diapause (Rakshpal, 1962) before returning them to 25°C to hatch. For all experiments we used 101 

adult virgin female G. pennsylvanicus and G. veletis (approximately 1 and 5 weeks post final 102 

molt, respectively). The difference in age reflected a longer development time for G. veletis. For 103 

one week prior to experiments, crickets were held individually in 177 mL transparent cups (Polar 104 

Plastics, Summit Food Distributors, London, ON, Canada) with mesh fabric lids and containing 105 

egg carton shelters, rabbit food, and water. This isolation prevented cannibalism and any 106 

associated changes in gut contents.  107 

 108 

2.1 Measurements of chill tolerance 109 

We assessed low temperature performance of G. pennsylvanicus and G. veletis adult females 110 

by measuring the CTmin, CCRT, and survival following cold exposure. Measurement of the 111 

CTmin (N = 20 per species) was as described by (MacMillan and Sinclair, 2011). Briefly, we 112 

cooled crickets from room temperature at 0.25°C min
-1

 until the CTmin was reached. We defined 113 

the CTmin as the temperature at which physical stimulus with a metal probe elicited no muscular 114 

response. We defined CCRT as the time required for the righting response (a coordinated 115 

movement) after 48 h of cold exposure. To measure CCRT and survival of cold exposure, we 116 

placed crickets (N = 24 per species) in 15 mL Falcon tubes immersed in an ice-water slurry at 117 

0°C (a temperature that induced chill coma in both G. pennsylvanicus and G. veletis in 118 

preliminary experiments). This time period should not induce substantial mortality; G. veletis 119 

survive at least five days at 0°C, while G. pennsylvanicus suffer approximately 20% mortality 120 

after 108 h at 0°C (Coello Alvarado et al., 2015). After 48 h, we moved the crickets to room 121 

temperature, placed them on their dorsum in a 6-well plate, and video recorded their recovery for 122 

up to 9 h (Hazell et al., 2008). We extracted twitch and righting response times from the video. 123 
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Crickets that did not exhibit signs of recovery within 9 h were not included in CCRT analyses. 124 

All crickets were then returned to 25°C in individual cups and provided with food, water, and 125 

shelter. After 24 h at 25°C, we assessed survival and injury (the latter defined as uncoordinated 126 

locomotion or inability to jump when stimulated with a probe) (MacMillan and Sinclair, 2011).   127 

 128 

2.2 Cold exposure and dissection 129 

We held crickets at 25°C (control, 0 h) or exposed them to 0°C for a duration of 0.5, 1, 3, 6, 130 

or 12 h (N = 14-19 individuals per species per treatment). Size-matching of crickets ensured that 131 

mean wet mass did not differ among treatments within each species (F5,83 = 0.30, P > 0.9 and 132 

F5,89 = 0.32, P > 0.9 for G. pennsylvanicus and G. veletis, respectively).  We placed cold-133 

exposed crickets individually into loosely-capped 50 mL plastic tubes suspended in a bath of 134 

50% methanol in water, pre-cooled to 0°C (Lauda Proline RP 3530, Würzburg, Germany). We 135 

added a thermocouple in contact with one of the crickets to monitor its body temperature during 136 

cold exposure.  137 

 138 

Immediately after removal from 0°C we dissected crickets on a Petri dish surrounded by ice 139 

within a large Styrofoam box. We punctured the pronotum with an insect pin and collected 140 

hemolymph (5-30 μl) with a micropipette, then opened the body cavity by a mid-dorsal incision 141 

and collected as much hemolymph from the body as possible by applying gentle pressure to the 142 

abdomen. We approximated hemolymph volume gravimetrically by weighing extracted 143 

hemolymph and assuming a density equal to water. This method of hemolymph extraction and 144 

approximation correlates linearly with inulin dilution estimates for hemolymph volume in G. 145 

pennsylvanicus (MacMillan et al., 2012). We pinned open the body cavity and removed the gut 146 

(from anterior foregut to rectum) into a pre-weighed microcentrifuge tube. We then severed the 147 

hind legs and used forceps to extract femur muscles into pre-weighed 0.2 mL microcentrifuge 148 

tubes.  149 

 150 

To identify potential reservoirs of Na
+
 (as we observed increased hemolymph Na

+
 content 151 

during chilling), we measured Na
+
 in the fat body, head, Malpighian tubules, and ovaries from an 152 

additional six control G. pennsylvanicus females. We calculated tissue water contents  calculated 153 
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from the difference between the tissue fresh (wet) mass and mass after drying at 70°C for 24 h 154 

(muscle, Malpighian tubules, and fat body) or 48 h (gut, head, and ovaries). 155 

 156 

2.3 Ion quantification 157 

We assessed ion homeostasis over 12 h of cold exposure by quantifying the concentration 158 

and content of Na
+
 and K

+
 in the hemolymph and tissues. Ion contents indicate bulk movement 159 

of Na
+
 or K

+
 between body compartments (which in turn affects bulk movement of water), while 160 

ion concentrations are important for neuromuscular function and as directional predictors of ion 161 

leak. We quantified ions as described by MacMillan and Sinclair (2011). Briefly, we digested 162 

hemolymph and dried tissues in nitric acid (70%) at room temperature for 24 h (hemolymph, 163 

muscle, fat body, and Malpighian tubules), 48 h (gut), or 72 h (head, ovaries).  We quantified 164 

[Na
+
] and [K

+
] in the dissolved, diluted hemolymph and tissue samples using an atomic 165 

absorption spectrometer (iCE 3300, Thermo Scientific, Waltham, MA, USA). From the 166 

measured absorbance, we calculated sample ion concentrations by comparison with standard 167 

curves generated from Na
+
 and K

+
 reference solutions. The water contents of each tissue 168 

(assumed to be intracellular water) or hemolymph (assumed to represent extracellular water) 169 

allowed us to calculate the ion concentration in the tissue or hemolymph. To determine sample 170 

ion content, we corrected ion concentrations for the volume or mass of hemolymph or tissue in 171 

the sample.  172 

 173 

2.4 Data analysis 174 

We expected that G. veletis would exhibit a lower CTmin and CCRT, and greater survival 175 

following cold exposure than G. pennsylvanicus (Coello Alvarado et al., 2015), therefore we 176 

made interspecies comparisons of the CTmin, CCRT, and survival following cold exposure using 177 

one-sided Welch’s t-tests. We compared initial and endpoint ion and water measurements as well 178 

as trajectories of ion and water balance during cold exposure among species, but we did not 179 

make point-by-point comparisons. To compare control ion or water measurements among 180 

species, we used two-sided Student’s t-tests (if variance was equal) or Welch’s t-tests (if 181 

variance was unequal). We quantified the relationship between cold exposure time and water or 182 

ion balance using generalized least squares models and linear regression. We compared discrete 183 

cold exposure time points via one-way ANOVA and Tukey’s HSD. We log-transformed cold 184 
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exposure times prior to analysis in cases when this transformation improved normality, and used 185 

exponential weighting for generalized nonlinear least squares models if variance was unequal 186 

across cold exposure times (Gałecki and Burzykowski, 2013). Tissue water and ion contents 187 

were positively correlated with tissue dry mass (P < 0.05, see Table S1) with the exception of 188 

muscle water (P > 0.1), therefore we corrected ion contents for tissue dry mass before 189 

quantifying the effect of cold exposure on water or ion content (i.e. cold exposure effects were 190 

modeled with the residuals of water or ion content regressed against tissue dry mass) (MacMillan 191 

and Sinclair, 2011). Similarly, because hemolymph volume was positively related to cricket wet 192 

mass (F1,85 = 61.89, P < 0.001 and F1,93 = 31.05, P < 0.001 for G. pennsylvanicus and G. veletis, 193 

respectively), we corrected hemolymph volume for cricket wet mass prior to quantifying the 194 

effect of cold exposure on hemolymph volume. 195 

We calculated muscle Na
+
 and K

+
 equilibrium potentials at 23°C (control crickets) and at 196 

0°C (cold-exposed crickets) as described by MacMillan and Sinclair (2011) using the Nernst 197 

equation (Nernst, 1888): 198 

   
  

  
    

   

   
     (1), 199 

where R is the universal gas constant, T is the absolute temperature, z is the ionic charge 200 

(e.g. z for Na
+
 or K

+
 = 1), F is Faraday’s constant, [o] is the ion concentration outside of the 201 

muscle (i.e. the hemolymph), and [i] is the ion concentration inside the muscle, i.e. our estimate 202 

from the tissue.  203 

Descriptive values reported in the text, tables, and figures are given as mean ± s.e.m. 204 

Detailed statistics for regression models are included in supplementary material (Table S2). All 205 

statistical analyses were performed in R (v3.1.2, R Development Core Team, 2014). 206 

 207 

3. RESULTS 208 

 209 

Gryllus veletis was more chill tolerant than G. pennsylvanicus. The CTmin of G. veletis (0.7 ± 210 

0.2°C) was lower than that of G. pennsylvanicus (2.2 ± 0.13°C) (t36.2 = 7.38, P < 0.001). 211 

Following exposure to 0°C for 48 h, G. veletis recovered 20-times faster than G. pennsylvanicus 212 

on average (t8.02 = 4.75, P < 0.001). Sixteen of the 25 G. pennsylvanicus never regained righting 213 

ability within 9 hours of measuring CCRT (Fig. 1A), and of those half never recovered. Twenty-214 
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four hours after this cold exposure, 84% of Gryllus pennsylvanicus crickets were dead or injured, 215 

while only 20% of G. veletis crickets were injured and none were dead (Fig. 1B). 216 

 217 

3.1 Water balance 218 

Under control conditions, hemolymph volume relative to gut water content was lower in G. 219 

veletis than in G. pennsylvanicus (t31 = 2.49, P = 0.019). The gut of G. veletis accounted for a 220 

slightly greater proportion of body fresh mass (11.5 ± 0.9%) compared to G. pennsylvanicus (8.2 221 

± 0.5%) (t32 = 3.10, P = 0.004). The volume of hemolymph relative to cricket fresh mass did not 222 

differ between species (t32 = 1.59, P > 0.1).  223 

 224 

Gut water content increased over 12 h of cold exposure for both G. pennsylvanicus and G. 225 

veletis (P = 0.032 and P = 0.004, respectively) (supplementary material, Fig. S1A). Hemolymph 226 

volume decreased by 25% in G. veletis during 12 h of cold exposure (P = 0.001), whereas the 227 

hemolymph of G. pennsylvanicus first increased in volume before decreasing slightly, and this 228 

decrease was non-significant overall (P = 0.091); supplementary material, Fig. S1B. The water 229 

contents of the hemolymph relative to the gut decreased linearly by 23% for G. pennsylvanicus 230 

and 38% for G. veletis (P = 0.009 and P = 0.023, respectively) (Fig. 2A). Muscle water content 231 

was unchanged over 12 h of cold exposure for G. pennsylvanicus and G. veletis (P > 0.3 and P > 232 

0.2). 233 

 234 

3.2 Ion balance 235 

The Na
+
 gradient between the hemolymph and the gut did not differ between species under 236 

control conditions (t33 = 0.927, P = 0.361), however both species exhibited linear decreases in 237 

the hemolymph-to-gut [Na
+
] ratio during 12 h of cold exposure (P < 0.001 and P = 0.002 for G. 238 

pennsylvanicus and G. veletis, respectively) (Fig. 2B). Gut Na
+
 content increased by 239 

approximately 21% during cold exposure for G. veletis, while G. pennsylvanicus showed only a 240 

similar trend with an approximate increase of 29% (P = 0.032 and P = 0.073, respectively) (Fig. 241 

3). Gut K
+
 content did not change over cold exposure time in G. pennsylvanicus or G. veletis (P 242 

> 0.8) despite a decrease in gut [K
+
] (P = 0.036 and P = 0.005, respectively). 243 

 244 
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In the hemolymph of G. pennsylvanicus, [Na
+
] initially increased (from 110 mM to 130 mM 245 

within 0.5 h of cold exposure) before returning to control values by 6 h (F5, 78 = 4.34, P < 0.002) 246 

(Fig. 4A). A rise and fall of hemolymph [Na
+
] also occurred in cold-exposed G. veletis but with a 247 

much smaller overall change (from 106 mM to 119 mM) (F5,88 = 2.35, P = 0.048), such that 248 

differences among time points were not identified using Tukey’s HSD. General patterns of 249 

hemolymph [Na
+
] during cold exposure in G. pennsylvanicus were mirrored by the hemolymph 250 

Na
+
 content (F5,77 = 2.42, P = 0.043), however a similar trend observed for Na

+
 content in the 251 

hemolymph of G. veletis was non-significant (F5,88 = 2.25, P = 0.056) (Fig. 4C).  252 

 253 

We observed an influx of Na
+
 to the hemolymph in the first hour of exposure to 0°C, so  we 254 

quantified [Na
+
] and Na

+
 content in the ovaries, fat body, head, and Malpighian tubules of G. 255 

pennsylvanicus under control conditions to identify potential reservoirs of Na
+
. The [Na

+
] in both 256 

the fat body and ovaries exceeded that of the hemolymph, while [Na
+
] in the head and 257 

Malpighian tubules were lower than the hemolymph (Table 1). The ovaries—which accounted 258 

for 32 ± 1.7 % of the adult female body mass—held the largest reservoir of total Na
+
. For both 259 

species, cold exposure caused linear increases in both hemolymph [K
+
] (P < 0.001) and K

+
 260 

content (P = 0.037 and P < 0.001 for G. veletis and G. pennsylvanicus, respectively) (Fig. 261 

5A,C). 262 

 263 

Gryllus pennsylvanicus had higher muscle [K
+
] compared to G. veletis under control 264 

conditions (t23.3 = 2.36, P = 0.027). We observed a slight increase in muscle [K
+
] for G. veletis (P 265 

= 0.049) over 12 h, however cold exposure had no effect on muscle [K
+
] in G. pennsylvanicus (P 266 

> 0.4). Muscle K
+
 content was not affected by cold exposure in G. pennsylvanicus (P > 0.3) or 267 

G. veletis (P = 0.080) (Fig. 5B,D). Muscle [Na
+
] in G. pennsylvanicus was lower than in G. 268 

veletis under control conditions (t30.5 = 2.04, P = 0.025). During 12 h of cold exposure, muscle 269 

[Na
+
] decreased for both G. pennsylvanicus and G. veletis (P < 0.001) and this decrease reflected 270 

a loss of muscle Na
+
 content (P < 0.002 and P = 0.007, respectively) (Fig. 4B,D). Gryllus veletis 271 

appeared to lose muscle Na
+
 more slowly than G. pennsylvanicus. 272 

 273 

Control G. pennsylvanicus exhibited higher muscle Na
+
 equilibrium potential (by c. 5.5 mV; 274 

t33 = 1.92, P = 0.032) and lower muscle K
+
 equilibrium potential (by c. 11.5 mV; t23 = 2.38, P = 275 
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0.013) compared to G. veletis (Fig. 6). We did not observe significant changes in muscle Na
+
 276 

potential during 12 h of cold exposure for G. pennsylvanicus or G. veletis (F5,80 = 1.20, P > 0.3 277 

and F5,85 = 0.79, P > 0.5, respectively). Muscle K
+
 equilibrium potential depolarized from -75.4 278 

mV (G. pennsylvanicus) and -63.9 mV (G. veletis) to approximately -40 mV in both species after 279 

12 h at 0 °C.  280 

 281 

4. DISCUSSION 282 

 283 

The mechanisms underlying loss of ion and water balance at low temperatures and the 284 

means by which chill-tolerant insects avoid this loss are not fully understood. By observing the 285 

ion and water balance in crickets during the first 12 h of cold exposure we have shown that shifts 286 

in hemolymph Na
+
 balance observed at later stages (days) of cold exposure do not reflect 287 

changes in these early stages. We also found that loss of Na
+
 balance during chill coma may be 288 

driven by a loss of Na
+
 from the tissues. While neither species could defend water, [Na

+
], or [K

+
] 289 

balance during cold exposure, shifts in ion contents across the hemolymph and muscle were 290 

slower and/or less extensive in the more chill-tolerant cricket (G. veletis) compared to the less 291 

chill-tolerant cricket (G. pennsylvanicus). Our findings support the hypothesis that chill tolerance 292 

(as assessed by the CTmin, CCRT, and survival of cold exposure) may be associated with a 293 

greater resistance of the tissues to ion leak in the cold (MacMillan et al., 2015a). 294 

  295 

MacMillan and Sinclair (2011) report that hemolymph [Na
+
] of G. pennsylvanicus adults 296 

drops substantially by 12 h of cold exposure and decreases gradually thereafter over 120 h 297 

(MacMillan and Sinclair, 2011). However within the first 12 h of cold exposure, we instead 298 

observed a rapid increase in hemolymph [Na
+
], peaking at 1 h of exposure to 0°C and then 299 

returning to control values by 6 h such that there was no net change in [Na
+
] by 12 h. Some of 300 

this discrepancy could be explained by differences in hemolymph [Na
+
] of control crickets (a 301 

mean of 110 mM [Na
+
] was measured in the present study compared to an approximate 185 mM 302 

measured by MacMillan and Sinclair (2011)). Typical orthopteran hemolymph [Na
+
] is closer to 303 

91 mM (Piek and Njio, 1979). Food and rearing conditions were identical between the present 304 

study and a previous study by MacMillan and Sinclair (2011), however we isolated crickets for 305 

one week prior to experiments to prevent cannibalism and any consequent effects on gut ion 306 
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content. We also controlled for potential inconsistencies in mating status by ensuring that all 307 

females were virgin; gravid females used in the previous study likely exhibit some differences in 308 

ovary and/or fat body mass, and this could affect total available tissue Na
+
. Finally, CO2 used for 309 

cricket anesthesia in the previous study could affect hemolymph Na
+
 balance (Stewart, 1978; 310 

Nilson et al., 2006; Matthews and White, 2011). A higher hemolymph [Na
+
], as measured by 311 

MacMillan and Sinclair (2011) would present a steeper gradient of Na
+
 between the hemolymph 312 

and gut, favoring greater migration of Na
+
 towards the gut (and perhaps this accounted for the 313 

rapid drop in hemolymph [Na
+
] in the first 12 h).  314 

 315 

In the present study, the peak of hemolymph [Na
+
] in the first hour of cold exposure 316 

reflected a peak in hemolymph Na
+
 content and also coincided with increases in gut Na

+
 content 317 

(at least statistically for G. veletis). However by 12 h in the cold we had observed no net change 318 

in hemolymph Na
+
 content in either species. A net increase in gut Na

+
 content without a net 319 

decrease in hemolymph Na
+
 content was also observed by Coello Alvarado et al. (2015), and 320 

suggests that Na
+
 may have entered the hemolymph from surrounding tissues before migrating to 321 

the gut where it remained. This hypothesis is supported by the loss of muscle Na
+
 content 322 

observed during cold exposure, which agrees with previous observations for G. pennsylvanicus 323 

at 12 h in chill coma (MacMillan and Sinclair, 2011). Tissues other than the muscle could also 324 

lose Na
+
 during cold exposure; the ovaries are a large potential reservoir for Na

+
 (and have a 325 

higher [Na
+
] than the hemolymph). However we did not quantify changes in ovarian Na

+
 balance 326 

during cold exposure. Quantifying changes in Na
+
 balance of non-muscle tissues (e.g. fat body, 327 

gonads, ganglia) during chill coma would confirm whether a loss of homeostasis in the tissues 328 

manifests as imbalance in hemolymph Na
+
 content. Male crickets lack ovaries, so it is unclear 329 

whether they will exhibit a similar increase in hemolymph Na
+
 content during early chill coma, 330 

or if the testes act as a potential source of this Na
+
. 331 

 332 

Cold exposure caused a gradual redistribution of water between the hemolymph and gut, as 333 

observed during longer-term cold exposure (MacMillan and Sinclair, 2011; Coello Alvarado et 334 

al., 2015). However, gut water content in G. pennsylvanicus increased despite no measurable 335 

decrease in hemolymph volume. This phenomenon was also observed in G. veletis nymphs over 336 

longer cold exposures, and it is possible that dehydration of tissues accounted for the gain of gut 337 
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water (Coello Alvarado et al., 2015). Cold-acclimated Pyrrhocoris apterus L. bugs lose water 338 

from the fat body during chill coma (Koštál et al., 2004), and while we did not observe changes 339 

in muscle water content in crickets during chill coma, water could have been lost from the fat 340 

body or other tissues and followed Na
+ 

to the gut.   341 

 342 

Cold exposure caused hemolymph [K
+
] to increase steadily over 12 h in for both species, 343 

reflecting trends observed at longer durations of chilling (MacMillan and Sinclair, 2011; Coello 344 

Alvarado et al., 2015). Increased hemolymph [K
+
] in the cold is thought to result from loss of 345 

hemolymph volume, rather than changes in hemolymph K
+
 content (MacMillan and Sinclair, 346 

2011). Our observations of the initial stages of cold exposure support a gradual loss of 347 

hemolymph volume concurrent with a gradual increase in hemolymph [K
+
], and without changes 348 

in gut K
+
 content (similar trends were observed in crickets after a 120 h cold exposure) 349 

(MacMillan and Sinclair, 2011; Coello Alvarado et al., 2015). However, we also observed an 350 

increase in hemolymph K
+
 content during cold exposure. This K

+
 was unlikely to be sourced 351 

from the muscle; unlike our observation of decreased muscle Na
+
 content, muscle K

+
 content did 352 

not change during cold exposure (similar to the findings of MacMillan and Sinclair (2011)). 353 

Potassium could enter the hemolymph from other tissues; P. apterus bugs lose K
+
 from the fat 354 

body when exposed to -5°C (Koštál et al., 2004). Alternatively, the gut contents could act as a 355 

source of K
+
 as the gut lumen [K

+
] is roughly 17-fold higher than the hemolymph and presents a 356 

steep gradient for K
+
 favoring migration to the hemolymph. Leak of K

+
 across the gut may be 357 

enhanced during cold exposure due to changes in the permeability of gut epithelium (Motais and 358 

Isaia, 1972; Dokladny et al., 2006; Ionenko et al., 2010). Although we did not observe a change 359 

in gut K
+
 content during early chill coma, small amounts of K

+
 lost from the gut could have large 360 

impacts on hemolymph K
+
 content, accounting for the apparent discrepancy in [K

+
] shifts we 361 

observed in the hemolymph and gut.  362 

 363 

Increased hemolymph [K
+
] during cold exposure (which disrupts muscle K

+
 equilibrium 364 

potential) was initially proposed by MacMillan and Sinclair (2011) to explain chill coma 365 

paralysis via loss of muscle resting potential. However recent studies of Locusta migratoria L. 366 

have shown that chill coma paralysis precedes hemolymph [K
+
] imbalance and that low 367 

temperatures play a direct role in neuromuscular silencing (Koštál et al., 2006; Findsen et al., 368 
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2014; MacMillan et al., 2014b; Andersen et al., 2015). It is therefore now generally accepted that 369 

chill coma onset and loss of homeostasis during cold exposure are mechanistically unrelated. As 370 

predicted, we observed that loss of muscle EK
+
 due to hemolymph [K

+
] imbalance could not 371 

account for a total loss of muscle resting potential. The hypothesized muscle potential threshold 372 

for chill coma is between -37 and -45 mV in D. melanogaster and Apis mellifera L. (Hosler et 373 

al., 2000), which is supported by Andersen et al. (2015) in locusts. Although chill coma onset is 374 

rapid, muscle potential based on [K
+
] balance in crickets did not reach -45 mV prior to 7 h in the 375 

cold. 376 

 377 

4.1 Do more chill-tolerant crickets maintain homeostasis better in the cold?  378 

Gryllus veletis had better low temperature performance (faster CCRT, less injury, and 379 

increased survival) than G. pennsylvanicus, agreeing with Coello Alvarado et al. (2015) who 380 

compared chill tolerance of G. pennsylvanicus adults with G. veletis nymphs. However unlike G. 381 

veletis nymphs, G. veletis adults were not much better than G. pennsylvanicus at maintaining 382 

water balance and, in most cases, [Na
+
] and [K

+
] balance during 12 h of cold exposure were 383 

similar between the two species. It is not known whether sex or a 6-week age gap in G. 384 

pennsylvanicus adults accounted for differences in homeostasis observed by Coello Alvarado et 385 

al. (2015) and the present study. Gryllus veletis did, however, exhibit better maintenance of 386 

hemolymph Na
+
 and K

+
 content and to some degree muscle Na

+
 content.  387 

 388 

Under control conditions and during cold exposure, G. veletis contained less water in the 389 

hemolymph relative to the gut compared to G. pennsylvanicus. This difference was not due to a 390 

higher relative gut water content in G. veletis. Nevertheless, G. veletis did not avoid a loss of 391 

water balance over 12 h of cold exposure; the rate of water redistribution from hemolymph to gut 392 

was roughly parallel for the two species. This suggests that regulation of ion homeostasis may be 393 

more important than water balance for surviving cold exposure. 394 

 395 

Hemolymph [Na
+
] was similar for both crickets under control conditions but changed less in 396 

G. veletis during 12 h of cold exposure due to lesser influx of Na
+
 to the hemolymph. Coello 397 

Alvarado et al. (2015) also observed that G. veletis nymphs, and to some degree cold-acclimated 398 

G. pennsylvanicus adults, avoid this Na
+
 influx up to 120 h in the cold. Chill-tolerant insect 399 
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tissues may therefore be more resistant to Na
+
 leak in the cold; in support of this hypothesis, G. 400 

veletis lost muscle Na
+
 content somewhat more slowly than G. pennsylvanicus. This prevention 401 

of ion leak could be achieved via enhanced paracellular junctions or otherwise modified 402 

epithelial ultrastructure. Additionally (but not necessarily alternatively), G. veletis could combat 403 

Na
+
 leak via enhanced Na

+
 pump activity in the cold (Galarza-Muñoz et al., 2011). However, 404 

chill tolerance in Drosophila is correlated with a decrease in whole-body Na
+
-K

+
 ATPase 405 

activity (MacMillan et al., 2014a). As Na
+
-K

+
 ATPase maintains higher hemolymph [Na

+
] 406 

relative to the gut, lower Na
+
-K

+
 ATPase activity suggests that chill-tolerant insects may reduce 407 

Na
+
 gradients across the gut. Cold tolerance in D. melanogaster is correlated with a reduction in 408 

the [Na
+
] gradient across the gut, and it is thought that this reduced gradient minimizes the 409 

driving force for bulk movement of Na
+
 and water from the hemolymph to the gut during cold 410 

exposure (MacMillan et al., 2014a; MacMillan et al., 2015a). This hypothesis was not well-411 

supported by our observations, as the mean hemolymph-to-gut [Na
+
] ratio in G. veletis was not 412 

significantly lower than for G. pennsylvanicus under control conditions (nor did it appear lower 413 

throughout cold exposure). Neither species exhibited a net loss of hemolymph Na
+
 content by 12 414 

h of cold exposure, yet both species suffered a loss of hemolymph volume and a rise in 415 

hemolymph [K
+
]. 416 

 417 

Increased hemolymph [K
+
] during cold exposure may lead to chilling injury via signalling 418 

disruption and cell death (Rojas and Leopold, 1996; Koštál et al., 2006; MacMillan et al., 419 

2015b), however the accumulation of chilling injuries in adult Gryllus crickets was not predicted 420 

by the ability to defend hemolymph [K
+
] in the first 12 h of cold exposure. It is therefore unclear 421 

whether ion imbalance in the first 12 h of chill coma has any great effect on the development of 422 

chilling injuries. Gryllus veletis did exhibit lesser increases in hemolymph K
+
 content compared 423 

to G. pennsylvanicus, so perhaps the gut epithelium of G. veletis is more resistant to changes in 424 

ion permeability at low temperatures. This hypothesis could be tested by manipulating the [K
+
] 425 

gradient between the hemolymph and gut prior to cold exposure by artificial diets, as was 426 

attempted in a previous study with L. migratoria (Andersen et al., 2013). Preventing leak of K
+
 427 

into the hemolymph could also explain faster CCRT in G. veletis, as recovery requires 428 

reestablishment of water balance in addition to the reversal of any bulk movement of ions that 429 

occurred during cold exposure (MacMillan et al., 2012).  430 
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 431 

Under control conditions, G. veletis exhibited a lower muscle Na
+
 potential and higher 432 

muscle K
+
 equilibrium potential compared to G. pennsylvanicus. Without direct measurements 433 

of muscle resting potential it is unclear whether these differences in Na
+
 and K

+
 potentials help 434 

G. veletis delay muscle depolarization in early chill coma or play some role in a more rapid 435 

CCRT compared to G. pennsylvanicus (MacMillan et al., 2014b; Coello Alvarado et al., 2015). 436 

Nevertheless, both species entered chill coma well before muscle K
+
 equilibrium potentials had 437 

reached the theoretical threshold for chill coma at 7 h of cold exposure.  438 

 439 

4.2 Conclusions 440 

After characterizing patterns of ion and water balance in the first 12 h of cold exposure, we 441 

can propose some refinements to the current model of homeostasis in the cold.  During cold 442 

exposure, Na
+
 appears to be lost from tissues and enters the hemolymph before ultimately 443 

migrating to the gut along with water (the water could originate from the tissues and/or from the 444 

hemolymph itself). Loss of hemolymph volume in addition to potential leak of K
+
 from the gut 445 

to the hemolymph leads to an increase in hemolymph [K
+
]. This K

+
 imbalance does not cause 446 

chill coma paralysis, but may negatively affect CCRT.  447 

 448 

Chill tolerance based on avoidance of chilling injury was not associated with the ability to 449 

defend the balance of water and ion concentrations, however chill-tolerant crickets (G. veletis) 450 

better defended the balance of Na
+
 and K

+
 contents compared to less chill-tolerant crickets (G. 451 

pennsylvanicus). We therefore hypothesize that in addition to the gut epithelium, other tissues 452 

(e.g. muscle or ovaries) of chill-tolerant insects have lower permeability to ions in the cold, such 453 

that Na
+
 does not leak from tissues to the hemolymph and K

+
 does not leak across the gut 454 

epithelium to the hemolymph. Thus, an important future direction is to quantify the effects of 455 

cold on tissue permeability and transport function, with special consideration of ultrastructure 456 

and ion pump activities (e.g. Na
+
-K

+
-ATPase and proton pump) in the hindgut and Malpighian 457 

tubules, as these tissues are responsible for the bulk of ion and water transport. 458 

 459 

460 
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Figure legends 570 

 571 

Fig. 1. Recovery time (A) and cumulative injury and mortality (B) of G. veletis and G. 572 

pennsylvanicus after 24 h of recovery following 48 h in chill coma at 0°C. A. N = 9 and 24 573 

crickets for G. pennsylvanicus and G. veletis, respectively. B.  N = 25 crickets per species.  574 

 575 

Fig. 2. Ratio of hemolymph-to-gut water volume (A) and [Na
+
] (B) in G. pennsylvanicus and 576 

G. veletis crickets exposed to 0°C for up to 12 h. Dashed lines indicate a significant linear 577 

relationship between water volume or [Na
+
] ratio and cold exposure time. N = 11 to 18 crickets 578 

per species per time point; see Table S2 for statistics. 579 

 580 

Fig. 3.  Content of gut Na
+
 (A) and K

+
 (B) in G. pennsylvanicus and G. veletis exposed to 581 

0°C for up to 12 h. Ion contents are represented as the residuals of a regression of μmoles Na
+
 582 

or K
+
 against gut dry mass and are expressed as mean mM ± s.e.m. The dashed line indicates a 583 

significant relationship between gut ion content and cold exposure time in G. veletis. N = 13 to 584 

18 per species per time point; see Table S2 for statistics. 585 

 586 

Fig. 4. Balance of Na
+
 in the hemolymph (A, C) and muscle (B, D) of G. pennsylvanicus and 587 

G. veletis crickets exposed to 0°C for up to 12 h. [Na
+
] (A, B) is expressed in mM, while Na

+
 588 

content is expressed as total μmoles (C, D). Effects of cold on muscle Na
+
 (B, D) were modeled 589 

using the residuals of a regression of total μmoles Na
+
 against muscle dry mass. Dashed lines 590 

indicate significant relationships between muscle Na
+
 and 0°C exposure time. Solid lines are 591 

used to illustrate trends in hemolymph Na
+
 during cold exposure. Different letters indicate 592 

differences in mean hemolymph Na
+
 of G. pennsylvanicus according to Tukey’s HSD. Tukey’s 593 

HSD failed to detect differences among mean for G. veletis. Asterisks denote significant 594 

differences in Na
+
 between species at time = 0 h according to a t-test. N = 11 to 18 crickets per 595 

species per time point; see Table S2 for statistics. 596 

 597 

Fig. 5. Balance of K
+
 in the hemolymph (A, C) and muscle (B, D) of G. pennsylvanicus and 598 

G. veletis crickets exposed to 0°C for up to 12 h. Potassium concentration (A, B) is expressed 599 

in mM, while K
+
 content is expressed as total μmoles (C, D). Effects of cold on muscle K

+
 (B, 600 
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D) were modeled and as the residuals of a regression of total μmoles K
+
 against muscle dry 601 

mass. Dashed lines indicate significant linear relationships between muscle or hemolymph K
+
 602 

and cold exposure time. Asterisks denote significant differences in K
+
 between species at time = 603 

0 h according to a t-test (see Table S2 for statistics). N = 13 to 18 crickets per species per time 604 

point. 605 

 606 

Fig. 6.  Na
+
 (A) and K

+
 (B) potentials (mV) across the muscle cell membrane in G. 607 

pennsylvanicus and G. veletis exposed to 0°C for up to 12 h. Solid lines are used to illustrate 608 

trends in muscle Na
+
 potential, but muscle Na

+
 potentials did not differ between cold exposure 609 

times for either species according to ANOVA. Dashed lines indicate significant relationships 610 

between muscle K
+
 potential and cold exposure time. Asterisks denote significantly different 611 

potentials between G. pennsylvanicus and G. veletis at exposure time = 0 according to a t-test.  N 612 

= 12 to 18 per species per time point. 613 

 614 

 615 

 616 
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Table 1. Content and concentration of Na
+
 in the fat body, ovaries, head, Malpighian tubules, 618 

and hemolymph of adult G. pennsylvanicus crickets in control conditions. N = 17 (hemolymph)  619 

or 6 (all other tissues). 620 

Tissue [Na
+
] (mM) Total Na

+
 content (μmoles) 

Malpighian tubules 65 ± 4.2 0.3 ± 0.03 

Head 70 ± 3.8 2.2 ± 0.14 

Hemolymph 110 ± 6.6 5.5 ± 0.57 

Fat body 123 ± 5.3 0.5 ± 0.05 

Ovaries 135 ± 6.0 11.5 ± 0.86 

 621 

 622 

 623 
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