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Abstract  

All climate change scenarios predict an increase in both global temperature means and the 

magnitude of seasonal and diel temperature variations. The nonlinear relationship between 

temperature and biological processes means that fluctuating temperatures lead to 

physiological, life history and ecological consequences for ectothermic insects that diverge 

from those predicted from constant temperatures. Fluctuating temperatures that remain within 

permissive temperature ranges generally improve performance. By contrast, those which 

extend to stressful temperatures may have either positive impacts, allowing repair of damage 

accrued during exposure to thermal extremes, or negative impacts from cumulative damage 

during successive exposures. We discuss the mechanisms underlying these differing impacts. 

Fluctuating temperatures could be used to enhance or weaken insects in applied rearing 

programs, and any prediction of insect performance in the field – including models of climate 

change or population performance – must account for the effect of fluctuating temperatures.  

 

Keywords: Temperature variations, Jensen’s inequality, life-history traits, thermal tolerance, 

climate change 
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1.  Introduction  

Insects drive terrestrial ecosystems, and – as small ectotherms – their biology is closely linked 

to environmental temperature. Temperature therefore determines insect survival, population 

dynamics, and distribution (1, 23, 24), and thus their responses to climate change (4, 22, 38). 

Temperature in the field fluctuates, and the impact of these variations has been recognized in 

areas as diverse as forensic entomology (18, 53), thermal tolerance physiology (9, 80, 96), 

biocontrol (13, 28), insect-mediated pollination (98, 124), disease vector biology (73, 87) and 

simulated climate warming studies (4, 10, 56, 116, 126).  

Researchers in the early 1900s reported that insects grow faster under fluctuating 

temperatures (FTs) compared to constant temperatures (CTs), (34, 100), and early reviews 

(25, 93) acknowledged that FTs reflected natural conditions better than CTs. In the context of 

development, these early reviews already pointed out that the “non-linear temperature-

velocity relationship” means that FT treatments should be “the norm” while CTs were 

essentially conducting insect development studies under “abnormal” conditions (25, 93). In 

the 1970s, it became apparent that FTs improved thermal tolerance of insects over those 

exposed to CTs (17, 82), and that fitness could be greater in FTs (6). Research on FTs 

resurged in the early 2000s, particularly in the context of insect cold tolerance (75, 83, 96). 

Presently, FTs are under extensive investigation in the context of climate change and the 

extrapolation of laboratory studies to the field, with the goal of incorporating thermal 

variability and extreme events in ecological and physiological studies (4, 109, 116).  

Here, we synthesize the disparate work on the impact of FTs on insects, emphasizing the need 

for particular care when interpreting results derived from static designs. We give an overview 

of the methods and approaches that have been used to explore the differences between insect 
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responses to FTs and CTs, and focus on general principles and responses, rather than specific 

organisms.  

2. The biological impacts of temperature 

Thermal variability in the environment  

 

The environmental temperature in terrestrial habitats fluctuates on multiple time scales (36, 

80). The amplitude of daily thermal fluctuations varies by season and habitat (92), and can be 

over 30°C (102). At high latitudes and altitudes, these fluctuations may cross a species’ 

freezing threshold at any time of year (80, 112). Likewise, temperatures fluctuate above 

thresholds for heat shock year-round in hot climates (47). Weather patterns that occur over 

multiday periods can modulate the amplitude of diel temperature cycles within a season (80). 

The occurrence and amplitude of daily FTs can also be modulated by habitat (45), and 

microhabitat (119). For example, the insulating effect of snow cover or thermal inertia from 

soil, trees or litter (36); but these microclimate temperatures are generally not well-captured 

by global-scale weather datasets. Thus, individual insects may experience FTs on a scale that 

fits within the developmental period and lifespan of even short-lived species. As a 

consequence, they must constantly adjust their physiology to changing thermal conditions. 

Temperature effects in biology 

 

In ectothermic animals like insects, thermal performance curves (TPCs) are nonlinear and 

asymmetric (1) (Figure 1). Temperature shifts will thus result in uneven effects depending on 

whether the temperature varies above or below the optimal temperature (99). Even at 

permissive temperatures, an animal can pass physiological thresholds during a thermal cycle, 

reaching critical temperatures such as the critical thermal minimum (CTmin) or maximum 
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(CTmax). At extreme temperatures, the temperature-process relationship can change abruptly; 

for example, proteins are denatured by heat, and water freezes at low temperatures (24, 74). 

The asymmetry of TPCs places the maximum rates of TPCs close to the upper thermal limits 

(1, 81, 99); thus, small increases in temperature may push insects over the CTmax (Figure 1). 

At low temperatures, the changes in rates are slower, and therefore there is less chance of 

hitting abrupt limits. In the concave (accelerating) part of the TPC, the total ‘output’ of a rate 

process in FT-exposed insects will exceed that predicted for CT-exposed insects with an 

equivalent mean (45, 57, 81). This disproportionate effect is exacerbated by FTs with greater 

amplitude (Figure 1). The opposite will be observed in the convex (decelerating) part of TPC. 

This phenomenon, known as Jensen’s inequality (57), explains many of the discrepancies 

between FT and CT experiments. The physiological response to FTs, such as metabolic rate 

changes, are asymmetrical (119), with limited effects of decreasing temperatures and larger 

effects of increasing temperatures (57, 81) (Figure 2). The discrepancies between FT and CT 

experiments will also depend on the degree of thermal sensitivity of the process, with smaller 

effects of FTs when thermal sensitivity is lower (i.e. lower degree of curvature), and the 

amplitude of the thermal cycle: larger amplitudes will have a greater impact (Figure 2) (45, 

99). Although this means that development should be faster under FTs than CTs, the energetic 

costs incurred by a fasting ectotherm will be greater in the warming part of a daily cycle than 

the energetic savings resulting from the cooling part, especially in thermally-sensitive species 

(Figure 2) (119); thus, fluctuating environments are more energy-demanding than static 

environments.   

3. Design and interpretation of experiments incorporating FTs 

The term “fluctuating temperatures” covers a range of timescales and temperature transitions. 

Insects can respond to these fluctuations in ways stretching from hardening responses (on the 



7 

 

scale of minutes) to evolutionary responses over geological time. Here, we focus on FTs that 

recur more than once within a single developmental stage, although FT experiments may 

apply those fluctuations throughout development. The FT literature contains almost as many 

exposure regimes as it does experiments, from the simple use of two alternating temperatures 

to more sophisticated simulations of the daily temperature patterns. A glimpse of the diversity 

of these approaches is summarized in Figure 3 and in Supplemental Table 1 (follow the 

Supplemental Material link from the Annual Reviews home page at 

http://www.annualreviews.org).  

The temperatures included in an FT experiment will be dictated by the purpose of the study 

and by the tolerances of the insect. An initial decision is whether the fluctuations should be 

within the permissive range – appropriate if the goal is to understand diel thermal cycles (62, 

87) – or include extreme temperatures – appropriate if the goal is to understand the 

consequences of crossing physiological thresholds (80, 83). Although it may be sufficient to 

have simple step-function transfers from one temperature to another, ramped temperature 

changes, or even curvilinear temperature regimes, will better reflect the natural environment 

(Figure 3). These temperature regimes will differ in the amount of time spent outside the 

permissive temperature range. 

 

Many FT experiments use a CT equivalent to the mean of the FT as a control. However, 

controls must account for the amount of time spent at high or low temperatures, taking into 

account the non-linear effects of FTs on physiological rates. Sinclair & Marshall (80) 

suggested a ‘matched cold’ design (also adaptable to heat experiments) which includes a 

control for the effect of a single exposure equivalent to one cycle of the regime, and a control 

which exposes the insect to the low temperature for an amount of time that is equivalent to the 

total cumulative amount of time exposed to cold. This design limits the choice of 
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temperatures to those that the insect can survive for a long period. Because FT experiments 

are often conducted over multiple cycles, experimental animals are aging: an insect that is 

exposed to ten daily cycles is not only responding to the repeated cycles, but is also ten days 

older than an animal exposed on the first day. Simple preliminary experiments should be 

carried out to rule out any putative ageing effect. Finally, variables other than temperature 

fluctuate in the wild, and these may provide important cues for physiological responses. For 

example, photoperiod and humidity cycles may be as important as temperature (8, 64). 

Fortunately, these cues are often synchronized with temperature cycles, so laboratory 

procedures can fairly easily reproduce this synchronicity.  

4. Effects of FTs on life-history traits and fitness 

Development   

 

Fluctuating temperatures that extend to deleterious high or low temperatures can allow 

development outside the temperatures where it would normally occur (37, 46, 76, 90). 

However, FTs using deleterious temperatures generally delay development compared to 

development at optimal CTs (46, 63). These delays are likely a consequence of direct cold or 

heat injuries and of the costs of subsequent physiological and biochemical repair (23, 43). By 

contrast, FTs that remain within the permissive thermal range can result in diverse responses, 

including accelerated development (2, 13, 44, 65, 66), slower development (25, 42, 66), or no 

change in developmental rate (65). One explanation of this variation in responses is that the 

effect of FTs on the development may depend on the thermal mean that is used and its 

proximity to developmental thresholds (65). Accelerated development appears to be the norm 

if the lower temperature of the FT is not injurious, but falls below a species’ thermal threshold 

for development (93). Finally, the effect of FTs on development time also depends on the 
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amplitude of the variation (14, 42, 46, 66), likely because of Jensen’s inequality. For example, 

Aedes aegypti mosquitoes reached pupation four days faster when reared under large 

(18.6°C), rather than small (7.6°C), daily FTs (14). 

Morphology 

 

The body size, shape, and symmetry of imagoes integrate the stresses experienced during 

development, and can thus provide a measure of developmental stability. Perhaps the most 

subtle morphological impact of developmental stress is fluctuating asymmetry (FA) (7). Early 

studies comparing FA of CT- vs. FT-reared Drosophila were contradictory: FTs led to both 

reduced (5) and increased (11) asymmetry. Temperature cycles that included a cold stress 

during development reduced FA in the noctuid moth Helicoverpa punctigera, although the 

experimental design did not allow for the effects of FTs and low temperatures per se to be 

teased apart (54). FTs that approach thermal limits can also result in increased variability of 

morphological traits (89). Thus, FTs that encompass deleterious temperatures appear to 

increase phenotypic variation and developmental instability.  

The temperature-size rule predicts that development at higher temperatures should result in 

small-sized insects (3). If, like other rate processes, the temperature-final size relationship is 

curvilinear, Jensen’s inequality would predict a disproportionate influence of high 

temperatures under FTs (81, 99). Indeed, FTs with large thermal amplitudes reduced the pupal 

size of Manduca sexta (65), and thorax size, wing size, and body weight (35, 42, 89, 90) of 

drosophilids. Reduced size is likely mediated by an energy use-structural allocation tradeoff 

(more energy is diverted to metabolism and maintenance at higher temperatures), and earlier 

maturity possibly because elevated temperatures affect the differentiation rate of the cells 
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more than their growth rate (114). However, the effects of FTs on cell differentiation is 

scarce, but see (71).  

Lifespan  

 

Fluctuating temperatures have been reported to increase (33, 42), decrease (13, 16), or have 

no effect (66) on lifespan. These discrepancies likely arise from the diversity of species and 

approaches, and a systematic comparative approach (e.g. (84)) could yield a more meaningful 

signal. If injury is incurred during the high or low temperature portions of FTs, a 

straightforward tradeoff between damage repair and somatic maintenance could reduce 

longevity. However, Alphitobius diaperinus exposed to 5°C alternating with 20°C showed a 

large overshoot in oxygen consumption associated with increased reactive oxygen species 

(ROS) production during the warm period (72), which is consistent with the theoretical role of 

ROS production as an underlying mechanism of ageing (104). From this, we predict that FTs 

that do not lead to lifespan reduction would not increase ROS production. Because metabolic 

rate (and presumably ageing) fluctuates in a curvilinear fashion throughout the FT (10), FTs 

may decouple physiological age from chronological age, yielding a complexity of results 

consistent with the observed discrepancies in FT effects on longevity.  

Fecundity  

 

Reproductive output is a central component of fitness, and can thus be used as part of a 

measure of the fitness consequences of FTs (79, 95). FTs increased reproductive output in 

some studies (95), but this effect appears to be dose-dependent. For example, FTs within the 

optimal thermal zone lead to a positive relationship between amplitude of FTs and egg 

production in Ceratitis capitata (107), whereas FTs that encompass stressful temperatures 

reduce fecundity (16, 79). Increasing number of cold exposures (0°C) decreased reproductive 
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output of female D. melanogaster (79), as did a single, 1-3 day exposure to a sub-optimal 

temperature (39). Similarly, fewer eggs were produced by Zeiraphera canadensis moths in a 

10-25°C FT regime compared to controls at 20°C (25°C being supra-optimal for this species) 

(16).  

Stressful temperatures impair oocyte development (48), and decrease mating success (27), 

sperm production, and sperm viability (97), so the mechanisms underlying a decrease in 

reproductive output after a stressful temperatures are easy to envisage. However, it is unclear 

whether these different processes have differing thresholds or responses to FTs, and this 

should be a topic for future research. The mechanisms underlying increased reproductive 

investment under FTs (107) may be as simple as an effect of Jensen’s inequality on 

reproductive physiology, or may involve more complex signaling pathways; these have not 

been investigated. Similarly, the duration of the FT effect has not been well-characterized: it 

is as yet unclear whether FTs lead to a lifetime change in reproductive investment, or a 

transient change which can be modified with repair and recovery.  

5.  Effects of FTs on thermal tolerance 

Effects of FTs during acclimation 

 

Most laboratory acclimation experiments on insects use CTs, even though the studied 

organism would typically experience thermally-variable environments. Egg-to-adult 

development under fluctuating acclimation regimes (FARs) increased D. melanogaster cold 

tolerance (85), and also the heat tolerance of drosophilids (9, 101) and lycaenid butterflies 

(44), compared to development under constant acclimation regimes (CARs). Acclimation of 

adult stages under FTs also improves thermal tolerance of D. melanogaster (62) and the 
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tephritid Dacus tryoni (82). The response to FARs is dependent on the mean (44) and on the 

amplitude (107) in a species- and stress-specific manner: small FT amplitudes increased cold 

tolerance of Ceratitis capitata, but heat tolerance was highest under high amplitude FTs 

(107). Antarctic springtails (Cryptopygus antarcticus) had greater cold tolerance and plasticity 

in thermally-variable compared to buffered microcosms, which suggests that FTs may also 

drive thermal tolerance in the field (50). By contrast, acclimation of fall field crickets, Gryllus 

pennsylvanicus, was unaffected by the amplitude or predictability of FARs (84), suggesting 

that FARs are not uniformly effective at increasing thermal tolerance.  

Fluctuating temperatures can mitigate prolonged low temperature stress 

 

Many insects are killed by chilling at temperatures not associated with ice formation (24, 74), 

and these injuries can be reduced or avoided if the cold period is interrupted with brief 

exposures to warmer temperatures. For example, pharate adults of the flesh fly Sarcophaga 

crassipalpis were killed by 20 days at 0°C, but survival increased to 53% when the cold 

exposure was interrupted by a single 6 h pulse at 15°C on day ten. This was among the first 

reports of a “recharge” process under FTs (19). The beneficial effect of interrupting prolonged 

cold exposure with warm periods has since been reported in Hemiptera (68), Orthoptera (58), 

Diptera (19, 75, 79), Coleoptera (96), Hymenoptera (28, 32, 124), Lepidoptera (8, 64, 113) 

and Collembola (83), suggesting that the response is highly conserved across taxa. Warm 

periods as short as five minutes can improve cold survival (124), and increased duration of the 

warm phase usually results in improved survival (58, 83, 124), to a point where any effect of 

chilling becomes negligible (30). The effect of warm interruption is temperature-dependent, 

although the warmest temperatures do not necessarily yield the best survival gains (83). 

Increased frequency of warming pulses also promotes longer survival (32, 58, 83, 124).  
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Reduced cold mortality under FTs is probably not due to a reduction of cumulative chill 

injury, as the effects persist even when comparing strictly equivalent cold doses (8, 30, 70, 

96). Alternatively, it seems likely that chilling injury is repaired during the warming intervals 

(32, 68, 96) (see section 6). Interestingly, the benefits of FTs appear to apply only to freeze-

avoiding and chill-susceptible species: repeated freeze-thaw is damaging to freeze tolerant 

species (80). In addition, long warming interruptions can lead to deacclimation and loss of 

cold tolerance (103, 113). For example, overwintering emerald ash borer (Agrilus 

planipennis) prepupae irreversibly lost their cold tolerance after exposure to +10°C for more 

than a week, reducing survival of subsequent cold exposures (103). 

Fluctuating temperatures during heat stress 

 

Insects generally have a well-developed heat shock response (43) and this is clearly relevant 

to FTs that extend above the optimum range. Although upper thermal limits are in dangerous 

proximity to optima because of Jensen’s inequality (81), there is capacity for this threshold to 

shift with return to permissive temperatures, as well as for repair to occur. As with low 

temperatures, FTs allow development and survival under conditions that include high 

temperatures that might otherwise be lethal (37, 46, 76, 108). For example, D. melanogaster 

cannot develop at 33°C, but can develop and survive if the temperature fluctuates from 33 to 

13°C (42). Thus, FTs can increase thermal range when recovery is possible.  

Prior exposure to high temperatures also improves survival of insects on hot days in the field 

(21, 86) which implies that insects may be able to survive in the field at higher temperatures 

than predicted from laboratory experiments conducted under CTs. Because of the 

asymmetrical shape of TPC (1) (Figure 1), there is also more chance of hitting abrupt limits 

and irreversible thresholds at high temperatures. Thus, heat damages may not be as easily 
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repaired as cold damages. Until recently, much less was known about the impacts of repeated 

heat stress and FTs that span high temperatures compared to repeated cold stress and cold 

FTs. However, recent data support the notion that extreme heat events, even of short duration 

or when occurring only once, are highly detrimental for species’ performance and survival, 

and that averaging daily temperature will not capture these effects (4, 56, 88, 116, 126).  

6. Mechanisms underlying the response to fluctuating temperatures 

Physiological correlates of FARs 

 

Fluctuating acclimation regimes generally promote cold tolerance compared to cold CARs 

(see section 5), possibly because the warm intervals allow physiological changes that are not 

otherwise possible. Membrane lipid composition shifts after the first temperature cycle 

between 5 and 20°C in Orchesella cincta springtails (115), but these changes were not 

consistent with homeoviscous adaptation (51). In most cases, chaperone proteins appear to be 

upregulated more under FARs than CARs, potentially allowing increased protection of 

proteins against thermal shock (2, 118). However, lycaenid butterflies exposed to multi-step 

FT regimes (daily means of 17.7 or 23.7°C) showed the opposite response: a decrease in 

HSP70 expression in insects exposed to FTs (44). These discrepancies may reflect variations 

in the degree to which the thermal conditions are physiologically stressful, and may also arise 

from a focus on basal heat shock protein (Hsp) expression, which may be a poor reflection of 

the real (stress-induced) capacity for protection from thermal stress (43). 

  

Cold tolerance of insects is usually associated with the accumulation of polyols and sugars 

(74), so it may be expected that the improvement in cold tolerance under FARs would be 

accompanied by increased concentrations of these cryoprotectants. This has been observed in 
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Hemiptera (67) and Orthoptera (118). Collembola submitted to FARs (8 to 32°C) were more 

heat-tolerant than control counterparts (at 20°C), and had also dissimilar metabolomic profiles 

(117). Similarly, Dendroides canadensis beetles accumulate antifreeze proteins under short-

day thermoperiods in the absence of any light-dark cycle (55). This may reflect a role of 

FARs in stimulating acclimation responses for organisms that do not receive reliable 

photoperiodic cues because they are under bark (in this case) or in the soil. Finally, increased 

thermal variance during FAR treatment reduced maximum metabolic rate in Tenebrio molitor 

(10), suggesting that FARs may drive metabolic depression, as reported in overwintering 

lepidopteran larvae (119). Even if various physiological correlates of FARs have been 

described, the molecular mechanisms underlying the responses to FARs have not yet been 

investigated.  

Physiological responses to FTs: repair and protection during the warm phase? 

 

Fluctuating temperatures could improve cold survival by allowing physiological preparation 

for subsequent cold exposures in a similar manner to the rapid cold hardening (RCH) 

response (105). However, increased survival of prolonged cold is most likely improved by 

FTs because damages accrued during the cold phase of the temperature cycles are then 

repaired during warming episodes (31, 32, 68, 83, 96). Chilling in insects is accompanied by a 

loss of ion homeostasis (69, 78). When rewarmed, insects must therefore re-establish ion 

balance – which is energetically expensive (78) – and repair damages caused by osmotic and 

ionic stress. Under FTs, chill-susceptible Pyrrhocoris apterus and A. diaperinus re-established 

ion balance during each warm spell, which likely increased the duration of survival over 

counterparts exposed to constant cold (68).  
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Protein unfolding or misfolding is another stress associated with thermal extremes, and one 

that is managed in cells by the upregulation of Hsps, particularly those in the 70 kDa family 

(43). The hsp70 gene and/or its protein concentration were upregulated under FTs compare to 

CTs in Coleoptera (122), Hymenoptera (31) and Lepidoptera (8). However, although hsp70 

mRNA abundance increased 1000-fold during warming phases in P. apterus, no significant 

change was found at the protein level (110), presumably because the 2 h warming intervals 

were too short for translation to occur. Other Hsp families are also upregulated in response to 

FTs (125) and might thus also contribute to FT response. Whether Hsp expression during the 

FTs is a reaction to stress or an adaptive protective effect is not yet clear, but experiments 

using RNA interference or transgenic overexpression could help determine the role of Hsp in 

phenotypes associated with FTs. Hsps would also be expected to play an important role in 

repair of (and protection against) damage in FTs that span high temperatures but, to our 

knowledge, this has not yet been examined. 

 

Compatible solutes, such as sugars, polyols or free amino acids (FAA), have a range of 

protective properties, such as detoxification or stabilization of proteins and membranes (121). 

These molecules might therefore play a role in repair of damages (or protection from future 

damages) during FTs. Increased glucose concentration is a common feature of insects exposed 

to repeated cold (106), and polyols (especially glycerol) accumulate in response to FTs in 

Diptera and Coleoptera (70, 91). Although the cryoprotectant role of polyols and sugars is 

well-established (24, 74), the role of amino acids is less well-understood. Most FAAs are 

accumulated by Aphidius colemani in response to cold CTs (29), while the FAA pool 

decreased during the warm periods of FTs in A. diaperinus (70) and A. colemani (29), 

suggesting that warming intervals reactivate the utilization of amino acids for protein 

synthesis and energetic purpose. Energy metabolism is an alternative role for many 
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putatively-cryoprotective solutes. Although ATP supply does not always decline in the cold 

(26, 77), any depletion can certainly be regenerated during the warm spells in FTs (40) but see 

(26), and may be required for energy-demanding repair and recovery processes. Several 

studies have reported increased metabolic rates during the warm period of FTs (8, 72, 123), 

and proteins related to energy metabolism are upregulated during the warming periods in A. 

colemani (31). Such increased metabolism might be associated with generation of free 

radicals (ROS) and oxidative stress. However, cold-induced oxidative stress (measured as the 

ratio of reduced to oxidized glutathione) actually decreased during the warm phase of FTs in 

A. diaperinus (72), likely because of increased function of antioxidant enzymes at warmer 

temperatures. Together, these data suggest an active regulation of ion homeostasis, chaperone 

machinery, energy metabolism and respiration during FTs, particularly during warm periods. 

7. Applications and implications of FTs 

Exploiting the protective effects of FTs 

 

Because FTs that re-warm insects for brief periods during cold exposure mitigate many of the 

negative impacts of low temperatures, they have obvious applications in the context of cold 

storage of beneficial insects (28). For example, storage at constant 2°C for 20 days reduced 

survival to less than 40% in several aphidine parasitoids, while storage at FTs (2°C 

interrupted by spells at 20°C) allows maintenance of a high survival (equal to untreated 

control), thus improving stockpiling and mass-rearing efficiency (28). Storage under FTs also 

holds applications for mass-rearing of insects for pollination (98, 124) and potential 

applications for sterile insect technique (21). FTs could also be exploited to deacclimate 

insects (103), and thus to reduce cold tolerance of pests as part of a thermal quarantine 
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procedure. Similarly, the negative impacts of repeated cold or heat stress (80) could be 

leveraged to control stored product pests (59), but this has not been well-explored.   

Implications of FTs for prediction and management  

 

It is clear that the survival, development, and performance of insects under FTs are poorly 

predicted by CTs. Nevertheless, many approaches for predicting the performance and survival 

of insects are dependent on data gathered using CTs, or expect simple linear relationships 

between biological rate processes and temperature. For example, degree-day models underpin 

estimates of development time used to forecast population dynamics in agriculture (120). 

However, such models could be flawed, as they do not account for Jensen’s inequality, and 

therefore underestimate the contribution of temperatures above the mean on development and 

fecundity. This implication of FTs for degree-day models has been well recognized in 

forensic entomology (18, 53). Just as FTs affect development, they also affect overwinter 

survival and thus predictability of agricultural pests outbreak (111). In addition, because FTs 

lead to changes in thermal tolerance over time (62, 118), predictions of winter mortality 

derived from static estimates from CTs may be flawed. Régnière & Bentz (94) developed a 

model for mountain pine beetle mortality that recognized the dynamic nature of thermal 

tolerance, and such an approach could likely be utilized to reflect the cumulative impact of 

FTs on survival and performance. Fluctuating temperatures modify life-history traits, 

population dynamics, and immunocompetence of disease-vector insects (73, 87) and large 

FTs (18°C swings around 20°C) accelerate virus transmission by mosquitoes (15). Thus, it is 

clear that the performance effects of FTs on insects can have a broad societal significance. 
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8. Fluctuating temperatures and insect responses to climate change 

Ongoing global climate change is predicted to lead to increases in mean temperature, 

increased variance around that mean, and an increased incidence of transient extreme 

temperatures (41, 49, 116). The distribution and phenology of insects have been responding 

apace to this changing climate (20, 22). However, the role of thermal variability has not been 

regularly included in experimental studies and predictive models (52, 109), despite the 

relevance of variability to model outputs (60, 88, 119). The asymmetric nature of TPCs means 

that increased temperature places ectotherms closer to their upper thermal limits (38, 61), and 

an increase in variability exacerbates this risk (88) such that the impacts of climate change are 

best described by the interaction between mean temperature and variability (109, 116). We 

have shown that, for insects, this mean × variance interaction is even more complex. 

Fluctuating temperatures alter fitness components including fecundity, longevity, and body 

size, while affecting thermal plasticity, stress survival, recovery and response to transient 

extremes. Importantly, these traits vary with FTs in a curvilinear, or even threshold fashion 

that is not accounted for by bioclimatic envelope models, and is captured poorly in the current 

generation of mechanistic models (12, 116). Thus, models of insect responses to climate 

change that are parameterized from datasets gathered under CTs (or that assume no change in 

the variance of thermal regimes) may contain systematic errors when compared to the real 

world (52). Although there is much to learn about how insects respond to FTs, we suggest that 

initial models that incorporate thermal variance (109, 116) could provide some guidance for 

the exploration of insect responses to FTs in a context directly usable to drive policy and 

management. 
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9. Conclusions  

Insect responses to FTs contrast with responses to CTs at multiple levels of organization, from 

physiology and stress tolerance to life-history traits and fitness. This divergence has important 

implications not only for the design and interpretation of thermal biology studies, but also for 

predicting responses to climate change. We conclude that CTs are an unrealistic approach for 

studying thermal response of insects that typically occur in thermally variable environments. 

As a result, FTs should be incorporated into predictive models of growth, performance, 

survival and climate change responses, and play a central role in the design of all laboratory 

studies in insect thermal biology.  
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Figure captions 

 

Figure 1: Relationship between performance and temperature of an insect. (a) Thermal 

performance curve, showing accelerating temperature-performance relationship below an 

optimal temperature (Topt) and decelerating relationship above the Topt. Horizontal lines 

indicate the spans of three symmetrical fluctuating temperature regimes (between time 0 and 

time 1) with the same mean (indicated by grey dotted line). Note that the regime depicted in 

blue (bottom) spans temperatures above the Topt. (b) Change in performance trait shown in (a) 

over the course of a single cycle (from time 0 at the minimum of the cycle, to time 1 at the top 

of the cycle, and back to the minimum of the cycle at time 0’) of the three temperature 

regimes shown in (a), with the means displayed as dotted lines (grey = constant temperature). 

Note that average performance (dotted lines with the corresponding colors) declines if the 

temperature spans temperatures above the Topt (blue). 

Figure 2: The effect of Jensen’s inequality, thermal sensitivity, and cycle amplitude on the 

relationship between temperature and metabolic rate under fluctuating temperatures. (a) 

Representative curvilinear relationships between metabolic rate and temperature for species 

with high (brown) and low (blue) thermal sensitivity. Dotted lines indicate a standard shift in 

temperature above and below a mean (grey), arrows indicate the magnitude of the shift in 

metabolic rate. (b) Energy decreases (savings) or increases (costs) in response to a standard 

shift in temperature up or down from a mean (grey) for the curves in (a). (c) Hypothetical 

daily temperature cycle (black) or constant temperature (grey). (d) Instantaneous metabolic 

rate of thermally-sensitive (brown) and thermally-insensitive phenotypes from (a) under the 

temperature regimes shown in (c). Dotted lines indicate mean rate across the day, compared to 

the constant temperature (grey). (e) Hypothetical thermal cycles of large (pink) and small 
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(green) amplitude, or constant temperature (grey). (f) Instantaneous metabolic rates of a single 

phenotype under the temperature regimes shown in (e), compared to the constant temperature 

(grey). Note that although metabolic rate is used for this example, any curvilinear process will 

follow a similar pattern if temperature fluctuations are within the accelerating portion of the 

curve shown in Figure 1; see (99, 119).  

Figure 3: The diversity of FT treatments. (a) Two temperatures alternating around a constant 

mean (continuous green line). These protocols use rapid step transitions. (b) Interruption of a 

prolonged cold stress (blue part) by repeated bouts at optimal temperature (green part). (c) 

Repeated exposures to damaging temperatures simulating the effect of heat (red part) and cold 

(blue part) waves. In (b) and (c), the dotted green line represents the optimal temperature. (d) 

Multiple step-transitions regime around a mean (green line) used to simulate complex diel 

cycles or nature-mimicking thermoperiods. (e) Fluctuating temperatures with controlled 

gradual transitions (ramp) around a mean (green line). (f) Sine-like wave thermal cycles 

(night-days) – can be symmetric or asymmetric around a mean (green line). (g) Stochastic 

sinusoidal or diel thermal variations. (h) Field temperature variations. For all these treatments 

(a to g), different amplitudes (dotted black lines), durations and frequencies of temperatures 

breaks can be applied. 
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Optional element: Acronyms and Definitions 

1. Fluctuating temperatures (FTs) [page 4]: a generic term that refers to any 

discontinuous thermal regime that occurs on a short-term (intra-generational) 

2. Thermal performance curves (TPCs) [page 5]: the (usually asymmetric) relationship 

between temperature and performance of an ectotherm  

3. Critical temperatures CTmin or CTmax [page 5]: low and high temperatures at which 

motor function stops and coordination is lost 

4. Fluctuating asymmetry (FA) [page 9]: a pattern of deviation from bilateral 

morphological symmetry 

5. Thermal acclimation [page 11]: physiological plasticity that enhances thermal 

tolerance following pre-exposure to mild and sub-lethal temperatures 

6. Fluctuating acclimation regime (FAR) [page 11]: a thermal acclimation treatment that 

uses fluctuating pre-exposures for conditioning individuals 

7. Constant acclimation regime (CAR) [page 11]: a thermal acclimation treatment that 

uses constant pre-exposures for conditioning individuals 

8. Heat shock response [page 13]: the physiological and molecular responses to a brief 

exposure to high temperatures; usually includes the synthesis of heat shock proteins  

9. Rapid cold hardening (RCH) [page 15]: a type of acclimation response where brief 

(minutes to hours) exposure to nonlethal low temperatures enhances subsequent cold 

tolerance  
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Optional element: Annotated References  

9. Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ Jr. 

2011. The mean and variance of environmental temperature interact to determine 

physiological tolerance and fitness. Physiol. Biochem. Zool. 84:543-52 

Demonstrates, using acclimation protocol, that the mean and magnitude of FTs are equally 

important 

14. Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. 2013. 

Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti 

life-history traits. PLoS One8(3):e58824 

Demonstrates the discrepancy of results in CTs vs. FTs experiments, highlighting that CTs 

under- or over-estimate values for life-history traits 

 

44. Fischer K, Kölzow N, Höltje H, Karl I. 2011. Assay conditions in laboratory 

experiments: is the use of constant rather than fluctuating temperatures justified when 

investigating temperature-induced plasticity? Oecologia 166:23-33 

Eight out of the nine traits examined were affected by thermal regimes. Overall FTs are more 

beneficial compared to CTs. 

45. Foray V, Desouhant E, Gibert P. 2014. The impact of thermal fluctuations on 

reaction norms in specialist and generalist parasitic wasps. Funct. Ecol. 28:411-23 

Rearing experiments show how Jensen’s inequality mediates the effect of FTs on reaction 

norms 
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65. Kingsolver JG, Ragland GJ, Diamond SE. 2009. Evolution in a constant 

environment: thermal fluctuations and thermal sensitivity of laboratory and field 

populations of Manduca sexta. Evolution 63:537-41 

Selection experiments show that both mean and extreme temperatures may constitute strong 

selective forces on reaction norms 

83. Nedved O, Lavy D, Verhoef HA. 1998. Modelling the time–temperature 

relationship in cold injury and effect of high-temperature interruptions on survival in a 

chill-sensitive collembolan. Funct. Ecol. 12:816-24 

A detailed study showing that repeated warming spells increase cold survival, including a 

modelling approach for cold survival and recovery 

88. Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, et al. 2013. 

Temperature variation makes ectotherms more sensitive to climate change. Glob. 

Change Biol. 19:2373-80 

Suggest that FTs alter the sensitivity to climate warming by reducing ‘thermal safety margins’ 

93. Ratte HT. 1985. Temperature and insect development. In Environmental 

physiology and biochemistry of insects, ed. KH Hoffmann, pp. 33-66. Berlin: Springer-

Verlag 

An early synthesis on the role of CTs and FTs in insect development studies 

98. Rinehart JP, Yocum GD, West M, Kemp WP. 2011. A fluctuating thermal regime 

improves survival of cold-mediated delayed emergence in developing Megachile 

rotundata (Hymenoptera: Megachilidae). J. Econ. Entomol. 104:1162-66 

Documents that high temperature pulses promote bee’s tolerance to cold storage, and thus 

can be useful in applied entomology 
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116. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, et al. 2014. Increased 

temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. 

London Sci. Ser. B 281:In press 

Illustrates, using a modeling approach, how FTs have disproportionate effects on species 

performances (owing to Jensen’s inequality) 
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Figure 2 
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Figure 3 
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