Western University Scholarship@Western

FIMS Presentations

Information & Media Studies (FIMS) Faculty

2017

Deception Detection & Rumor Debunking

Victoria L. Rubin Western University, vrubin@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/fimspres

Part of the <u>Library and Information Science Commons</u>

Citation of this paper:

Rubin, Victoria L., "Deception Detection & Rumor Debunking" (2017). FIMS Presentations. 45. https://ir.lib.uwo.ca/fimspres/45

Deception Detection & Rumor Debunking

VICTORIA RUBIN

ASSOCIATE PROFESSOR,
Faculty of Information & Media Studies (FIMS)
DIRECTOR,
Language & Information Technology Research Lab (LiT.RL)

Goals of the Talk

I'll divide my 10-minute talk into 2 parts:

(1) Deception Detection and (2) Rumor Debunking, as the title suggests, and I will argue for **the need of hybrid methods** (in a combination of the two).

My main goal here is to point researchers interested in social media research towards these 2 exciting fields.

I predict that such technologies (with more R&D, as they mature) will **become** indispensable in our attention-economy.

Content producers are rushed to be first in the news stream, and social media consumers simply don't have time or energy to verify content that is pushed at them.

Part 1.

Deception

Photo by Nicole Mason, unsplash.com

knowingly and intentionally transmitted to foster a false belief or conclusion

Buller & Burgoon (1996) in *Communication Theory* Zhou et al. (2004) in *Group Decision and Negotiation*

an intentional control of information in a technologically mediated environment

Hancock (2012) in Oxford Handbook of Internet Psychology

Detection

Human Ability To Detect Deception

55–58% success rate

Frank et al. 2004;

Kraut, 1980; Vrij, 2000

54% mean accuracy

DePaulo et al., 1997

Social Psychology & Communications Studies

Detection

Recently proven possible

at ~74% accuracy with Natural Language Processing

Zhou et al., 2004

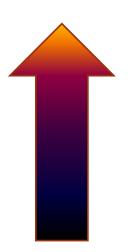
at ~70% with Machine Learning
Mihalcea & Strapparava, 2009

PATTERNS IN PREDICTORS EXIST, BUT NO CLEAR CONSENSUS. VARIATIONS BY CONTEXTS.

Verbal Cues for Automated Deception Detection

Deceivers:

self-references detailed answers



indirect statements negative emotions

Larker & Zakolyukina (2010) featured in *The Economist*

Hancock et al. (2008) in *Discourse Processes*

sense-based word

Granhag et al. (2004) in Legal & Criminological Psych.

Are there cues of deception in social media?

Photo by Eric Pickersgill, www.removed.social/, The NY Review of Books

'Butler Lies' in Texting

manage or avoid social interactions



Part 2.

Rumors

Unverified assertions... spread over time from node to node in a network.

Vosoughi (2015), MIT PhD Thesis

Harmful. Why?

Undesirable responses:

defamation, protests, destruction of properties, spread of fear or hate, euphoria, or stock market fluctuations.

Matthews (2013), Time

Photo by Ben White, unsplash.com

Figure 3. Verification Feature for Rumor Debunking on Twitter (Liu et al., 2015).

The six proposed categories of verification features largely based on insights from journalists.

CATEGORY	FEATURE NAME
SOURCE CREDIBILITY	Is trusted/satirical news account
	Has trusted/satirical news url
	Profile has url from top domains
	Client application name
SOURCE IDENTITY	Profile has person name
	Profile has location
	Profile includes profession information
SOURCE DIVERSITY	Has multiple news/non-news urls after dedup
	Deduped tweets' text is dissimilar
SOURCE LOCATION & WITNESS	If tweet location matches event location
	If profile location matches event location
	Has witness phrases, i.e., "I see" and "I hear"
Msg. Belief	Is support, negation, question or neutrality
EVENT PROPAGATION	Event Topic
	Retweet, mention, hashtag h-index
	Max reply/retweet graph4 size/depth
	(Liu et al, 2015, Reuters)

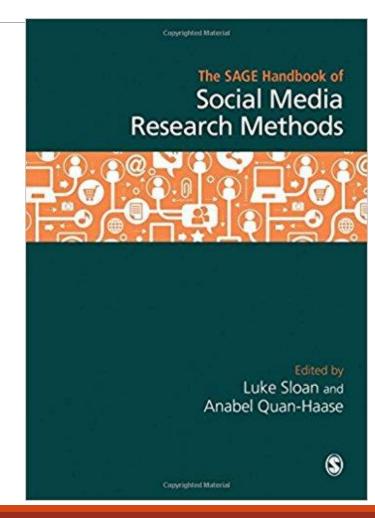
Final Thoughts...

✓ Hybrid approaches are needed

✓ More R&D needed based on social media data.

✓ Detailed R&D overview (Chapter 21).

✓ Come to my talk on the News Verification Suite
@ CAIS Wed May 31 @ 2.



Thank you! Questions? Ideas?

Contact – vrubin@uwo.ca

http://victoriarubin.fims.uwo.ca/

References upon request and in the book chapter.

FIMS
Faculty of Information & Media Studies

Social Sciences and Humanities Research Council of Canada

Conseil de recherches en sciences humaines du Canada

