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ABSTRACT  

Liquid tanks in the form of truncated steel cones are commonly used for liquid storage in North America and in other 

locations. The main cause of failure, for conical steel tanks in particular, which was identified in most of the failure 

cases, is the buckling of the tank’s shell at locations of maximum compressive stress. Being constructed of steel, 

geometric imperfections in the conical tank walls will exist and their amplitude will be dependent on the quality 

controls applied by the builder. Such geometric imperfections play an important role in defining the buckling capacity 

of shell structures in general. Some studies found in the literature assessed the effect of geometric imperfections on 

the buckling capacity of steel tanks. However, most of these studies focused on hydrostatic pressure and not on 

hydrodynamic pressure that is induced on the tank walls when the tank base is subjected to either horizontal or vertical 

ground excitations. In this study, an expression for the critical imperfection wave length is obtained and the effect of 

the geometric imperfections’ amplitude on the buckling capacity of conical steel tanks is assessed numerically under 

hydrodynamic pressure due to horizontal and vertical ground excitations.  The study is conducted numerically through 

non-linear static pushover analysis using an in-house finite element model that accounts for the geometric and material 

nonlinear effects. 

 

Keywords: conical steel tanks, buckling, non-linear static, geometric imperfections, hydrodynamic pressure 

1. INTRODUCTION  

Conical-shaped steel liquid tanks are used for fluid storage in industrial facilities or for water supply. A typical conical 

tank consists of a steel vessel resting on a supporting structure. The conical vessel is constructed of prefabricated steel 

panels welded together circumferentially and longitudinally. In some cases, a conical tank vessel is elevated above 

the ground by a reinforced concrete shaft. Two common configurations for conical steel tanks exist: (1) A pure 

truncated cone as shown in Figure 1a, (2) A combined conical tank with a cylindrical cap as shown in Figure 1b.  

In spite of the fact that some failures of conical steel tanks occurred during the last decades, most of the previous 

studies and design specifications focused on cylindrical steel tanks. The most common failure mode for conical steel 

tanks is in the form of shell instability due to the relatively narrow wall thickness. The only seismic design guidelines 

for conical steel tanks found in some specifications (AWWA 2005, API 2005, and Eurocode 1998) are those based on 

using an equivalent cylinder approach despite the fact that the state of stresses under hydrostatic pressure for 

cylindrical tanks is not similar to that for conical tanks due to the inclination of the tank walls.  

To better understand the resulting stresses for conical tanks, the volume of the contained liquid is divided into vol. 1 

and vol. 2 as shown in Figure 2. The first, is transferred directly to the tank base, while the second, is resting on the 

tank’s inclined walls. Due to the inclination of the walls, compressive meridional stresses m are developed in addition 

to tensile hoop stresses h meridionally and circumferentially, respectively, through the tank shells. Compressive 

stresses m are maximum near the tank base due to the reduction in the tank radius in addition to the increase of the 

fluid volume resting on the tank walls, i.e., vol.2. These compressive stresses are very critical for steel tanks as they 

might lead to shell instability.  
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Figure 1:  (a) Pure conical tank, (b) Combined conical tank 

 

Motivated by the collapse of a conical steel water tower in Belgium, Vandepitte et al. (1982) tested a large number of 

small-scale conical tank models experimentally under hydrostatic pressure. The objective was to develop a set of 

design charts for different base restraining conditions and geometric imperfection levels. In 1990, a conical steel water 

tower collapsed in Fredericton, Canada when it was filled with water for the first time. The tank failed as the amplitude 

of the geometric imperfections was underestimated (Vandepitte 1999). For the design of conical steel tanks under 

hydrostatic pressure, El Damatty et al. (1999) and Sweedan and El Damatty (2009) provided a simplified design 

approach that takes into account geometric imperfections and the existence of an upper cylindrical cap. 

                      

Figure 2: Stresses induced due to inclination of the wall 

 

It is important to understand the seismic behaviour of liquid storage tanks as any failure to such structures might have 

serious consequences in addition to the structural damage. Many studies were carried out in order to understand the 

seismic behaviour of cylindrical steel tanks either assuming the tank walls to be rigid (Housner 1957 and Housner 

1963) or taking into consideration the effect of wall flexibility in the form of fluid-structure interaction (Veletsos 

1974; Haroun and Housner 1982). It was concluded that the flexibility of cylindrical tank walls amplifies the tank’s 

response and must be accounted for. 

 

The induced hydrodynamic pressure on a liquid storage tank’s walls due to a horizontal ground excitation is divided 

into two components known as the impulsive and sloshing components. The impulsive component corresponds to the 

smaller amount of liquid, which moves with the walls of the tank. As a result, it has a maximum value near the tank 

base. The long period sloshing component corresponds to the upper limit of the liquid undergoing sloshing. In general, 

the impulsive pressure is the most critical unless the liquid in the tank is extremely shallow. When a conical steel tank 

is subjected to earthquake excitation, hydrodynamic pressure is induced on the tank walls. In the case of horizontal 

excitation, the induced hydrodynamic pressure will amplify both m and h on one side of the tank and reduce them 

on the other side based on the direction of the ground excitation, while the induced hydrodynamic pressure due to the 

vertical excitation will amplify or reduce both m and h in an axisymmetric manner based on the direction of the 

ground excitation, i.e., either upwards or downwards. El Damatty et al. (1997 b, c) conducted the first study to assess 

the behaviour of conical tanks under seismic loading where a coupled shell element-boundary element formulation 

was developed to simulate the fluid-structure interaction for both horizontal and vertical excitations where a fluid 

added mass matrix that can be incorporated into a nonlinear dynamic analysis routine was derived. Jolie et al. (2013) 

(a) (b) 
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assessed using the equivalent cylinder approach found in the literature (AWWA 2005, API 2005, and Eurocode 1998) 

when analyzing conical tanks subjected to horizontal ground excitations. It was shown that the base shear is well-

predicted by the Eurocode, while it is over estimated by the AWWA and API. In contrast, the three design codes 

under-estimated the overturning moment due to ignoring the effect of the vertical component of the hydrodynamic 

forces caused by the horizontal excitation when assuming the tank walls to be vertical.  

 

Early studies of the seismic behaviour of cylindrical liquid tanks often ignored the effect of the vertical excitations as 

most of the structures are relatively stiff in the vertical direction. However, it has been observed that the maximum 

amplitude of the vertical excitation component can exceed the peak horizontal amplitude especially near the center of 

an earthquake. Vertical excitation is transmitted to a horizontal hydrodynamic loading acting on the tank walls. As a 

result, tensile hoop stresses are amplified and might lead to an inelastic buckling of the shell. Marchaj (1979) attributed 

the failure of metallic tanks during past earthquakes to the lack of consideration of the vertical excitation in their 

design. Veletsos and Kumar (1984) and Haroun and Tayel (1985) showed that the flexibility of cylindrical tank walls 

amplifies the tank’s response and must be accounted for in the case of vertical excitations as well. Jolie et al. (2014) 

assessed the importance of considering the vertical component of ground excitations when designing conical steel 

tanks. Their results showed that the vertical ground excitation has a considerable effect on the increase of the 

meridional wall stresses compared to those resulting from hydrostatic pressure, especially in high seismic hazard 

regions emphasizing the importance of vertical excitation consideration. 

 

The aim of this study is to determine the capacity of conical steel tanks under hydrodynamic pressure due to the 

horizontal and vertical components of a ground excitation. The conical tank’s capacity, which is expressed in terms 

of total base shear and total vertical force corresponding to horizontal and vertical excitations, respectively, is obtained 

using a finite element model through non-linear static pushover analysis. Regarding horizontal excitation, two base 

shear capacities corresponding to both the impulsive and the sloshing hydrodynamic pressures are obtained. Geometric 

imperfections are incorporated into the finite element model in order to study their effect on the capacity of the conical 

steel tanks. The base shear capacities for the different levels of the geometric imperfections are represented in charts 

for different tank geometries. 

2. HYDRODYNAMIC PRESSURE  

2.1 Horizontal Excitation 

Hydrodynamic pressure is induced on the tank walls and floor during seismic excitation acting on a conical tank. The 

total hydrodynamic pressure can be divided into two components: impulsive pressure PIH and sloshing pressure PSH. 

The sloshing component is a long period component relative to that for the impulsive one and, hence, the two 

components can be decoupled in the analysis. The impulsive component associated with the hydrodynamic pressure 

for a conical tank containing an ideal fluid is given by El Damatty et al (1997b) as in equation [1] below: 

 

[1]  PIH(r, θ, z, t)  =  ∑   ∑  Ain(t) In( αir) cos( αiz) cos(nθ)  
N1
i=1

N2
n=1  

 

where Ain (t) is an amplitude function of time,  In are the modified Bessel’s functions of the first kind, 

αi=(2i-1) π 2h⁄  , and t is the time. The term, cos( αiz), represents the distribution of the hydrodynamic pressure for 

mode i in the vertical Z direction, while the term, cos(nθ), represents the distribution of the hydrodynamic pressure 

for mode n in the circumferential direction where n is the wave number. Coordinates r, , and z in addition to the tank 

dimensions are shown in Figure 2. As a result of the decoupling between the liquid sloshing modes and the shell 

vibration modes, the sloshing component PS(r, θ, z, t) can be evaluated assuming that the tank walls are rigid. Based 

on this assumption, El Damatty et al. (2000) derived an expression for the fundamental sloshing component of the 

hydrodynamic pressure as follows: 

 

[2]  PSH(r,θ,z,t) = B(t) ρF J1(k1r)  cosh(k1z) cos(θ) 
 

where J1(k1r) is the Bessel’s function of the first kind of order one; B(t) is the arbitrary function of time, and  ρ
F

 is 

the fluid density. A procedure to evaluate the constant k1 was discussed in detail by El Damatty et al. (2000). For a 

conical tank subjected to a horizontal excitation, a resulting base shear Q and a corresponding overturning moment M 

will act on the tank walls just above the tank base. Based on the distributions of the different circumferential 



STR-908-4 

hydrodynamic pressure modes, the total base shear will result from the cos  pressure mode only as shown in Figure 

3a. 

2.2 Vertical Excitation 

On the other hand, when a conical tank is subjected to a vertical ground excitation, the tank is subjected to accelerations 

resulting in a hydrodynamic pressure acting on the tanks walls and base in addition to the existing hydrostatic pressure. 

The hydrodynamic pressure produced by the vertical excitation in a conical tank containing an ideal fluid is given by 

El Damatty et al. (1997b) as follows: 

 

[3]  PD(r,θ,z,t) = ∑  Aio(t) Io(αir) cos(αiz) + G̈v(t)(1 −
 z 

h
 )              

N1
i=1  

 

where Aio (t) are the amplitude functions of time, Io are the modified Bessel’s functions of the first kind, and   G̈v(t) 

is the vertical ground excitation. For a conical tank subjected to a vertical excitation, a resulting total normal force N 

will act just above the tank base. Due to the axisymmetric distribution of the resulting hydrodynamic pressure as 

shown in Figure 3b, neither a total base shear nor an overturning moment will result from the vertical excitation. 

                                         

Figure 3: (a) Horizontal excitation Cos pressure mode; (b) Vertical excitation Cos pressure mode 

3. FINITE ELEMENT MODEL 

In this study, three-dimensional numerical models are developed for conical steel tanks using the finite element 

method. The numerical model is based on a consistent 13 noded subparametric triangular shell element as shown in 

Figure 4a, which was developed by Koizey & Mirza (1997). This element has the advantages of being free of the 

spurious shear modes, i.e., locking phenomenon observed in isoparametric shell elements when used in modelling thin 

shell structures. El Damatty et al. (1997d) extended the formulation of this shell element to include both geometric 

and material non-linearities. Accordingly, this model can be used to predict both elastic and inelastic buckling. Due 

to the symmetry of the horizontal axis in both loading and geometry, only half of the cone is modelled and used in the 

analysis. A mesh sensitivity analysis was performed in order to determine the mesh size that can accurately capture 

the expected buckling. It is found that a mesh of 512 triangular elements as shown in Figure 4b is sufficient to 

accurately capture the buckling waves near the tank base. The length of the elements is not uniform as a finer mesh is 

used near the base of the tank due to the stress concentration at this location where buckling is expected to occur. The 

tanks are assumed to be hinged at the base along the circumference and to be free at the top. 

4. METHOD OF ANALYSIS 

In this study, a non-linear static analysis is used to obtain the load-carrying capacity of the conical tanks, which is 

conducted by increasing the load value incrementally until reaching failure in the form of buckling or yielding of the 

steel vessel. The load increase is achieved using an increasing load factor, which is multiplied by the applied 

hydrodynamic pressure load pattern. The non-linearity in the analysis comes from the inclusion of both geometric and 

material non-linearity in the finite element model previously discussed.  To include both the hydrostatic and the 

hydrodynamic pressure in the analysis, two load factors are used. The first is PHS, which corresponds to the hydrostatic 

pressure; while the second is PHD, which corresponds to the hydrodynamic pressure. The analysis starts with a value 

of the load factor PHD equaling zero and then the load factor PHS is increased incrementally until it reaches the actual 

value of the hydrostatic pressure acting on the tank. After this stage, the value of PHS is kept constant and the value of 

PHD begins at zero and increases until failure occurs. 

 

Cos pressure mode 
Cos pressure mode 

(a) (b) 
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The hydrodynamic pressure load pattern used follows the distributions described in Eqs. 1, 2, and 3 corresponding to 

the cases of impulsive capacity due to the horizontal excitation, the sloshing capacity due to the horizontal excitation, 

and the impulsive capacity due to the vertical excitation, respectively. A conical steel tank is considered to have  failed 

whenever one of the following two failure criteria is met: (1) Yielding failure when the tank shell yields before 

buckling instability takes place, or (2) Buckling failure when the tank shell suffers instability before yielding, i.e., 

elastic buckling. As a result, the base shear capacity of a conical steel tank in the current study represents the base 

shear value just before the yielding or buckling of the tank vessel. 

 

Figure 4: (a) Coordinates and degrees of freedom for consistent shell element; (b) Finite element mesh for half cone 

5. GEOMETRIC IMPERFECTIONS 

Conical steel tanks are normally constructed from curved panels welded together in both circumferential and 

longitudinal directions. As a result, geometric imperfections will exist and will play an important role in determining 

the capacity of conical steel tanks for liquids and might lead to failure if not estimated correctly as in the case of the 

collapsed conical steel water tower in Fredericton (Vandepitte 1999). A commonly used model for simulating the 

geometric imperfections W(s), as shown in Figure 5, is described as: 

 

[4]  W(s)=w0sin (
2πs

LI
) cos (nθ) 

 

where w0 is the imperfection amplitude, LI is the imperfection wavelength, s is a coordinate measured along the 

generator of the vessel, and n is an integer defining the circumferential wavelength of the  imperfection shape. 

According to Vandepitte et al. (1982), a conical tank with a ratio w0/LI less than 0.004 is considered to be a good 

cone while a conical tank with a ratio w0/LI ranging from 0.004 to 0.01 is considered to be a poor cone. The geometric 

imperfections are incorporated in the finite element model discussed in section 3 in the form of initial strains. 

 
Figure 5: Assumed imperfection shape along the generator of the tank walls 

 

(a) 

(b) 
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Under the effect of hydrostatic pressure only, Vandepitte et al. (1982) used experimental results to obtain an expression 

for the critical buckling wave length, LCR. Regarding the circumferential distribution of the imperfections along the 

surface of the vessel, El Damatty et al. (1997a) have shown that an axisymmetric distribution, i.e., n=0, leads to a 

minimum buckling capacity of pure conical tanks. This is due to the presence of hydrostatic pressure, which tends to 

force the structure to buckle in an axisymmetric mode; consequently an imperfection in the shape matching this mode 

is the most critical.  

 

In order to determine the critical imperfection shape, i.e., LI and n, leading to the minimum capacity of conical steel 

tanks, the same analogy identified in the latter studies is followed. As the hydrostatic pressure has an axisymmetric 

distribution, and the hydrodynamic pressure corresponding to the  horizontal excitations is in the form of the cos 

mode, a distribution of geometric imperfections corresponding to n=0 or n=1 will lead to the minimum buckling 

capacity of the conical steel tanks when subjected to both hydrodynamic and hydrostatic pressures. The same two-

phase loading procedure discussed in section 4 is repeated twice for a group of 60 conical steel tanks of practical 

dimensions; one with the inclusion of axisymmetric imperfections in the tanks and the other with an antisymmetric 

distribution ( i.e., n=1) with the same buckling wave length LI recommended by Vandepitte et al. (1982). It is found 

that a value of n=0 will always lead to a lower buckling capacity for the conical steel tanks. This means that the 

hydrostatic pressure loading governs the buckling capacity of the conical tanks due to the initiation of the buckling 

waves only during the hydrostatic pressure loading phase.  

 

It must be mentioned that the inclusion of the axisymmetric geometric imperfections in the non-linear static analyses 

results in an increase of the buckling capacity in some of the studied cases, especially with v=30, in comparison to 

that of perfect tanks. This is due to the fact that the hydrodynamic pressure in the form of the cos mode acts in the 

same direction as the hydrostatic pressure in one half of the tank and in the opposite direction in the other half, which 

might delay the failure due to the buckling. In order to make the geometric imperfections more critical and avoid 

increasing the buckling capacity of the tanks, a geometric imperfection pattern with n=0 is used but only on the side 

where the hydrodynamic pressure is acting in the same direction as the hydrostatic pressure, i.e., = 0 to 90. 

 

In order to determine the critical imperfection wave length LCR, several analyses are performed for each of the 60 

conical tanks with different imperfection wave lengths, and that which leads to a minimum buckling capacity is 

considered to be the critical imperfection wave length, LCR. A similar expression to that proposed by Vandepitte et al. 

(1982) is assumed. The effect of a variation in the tank height on the critical imperfection wave length is found to be 

insignificant as noted by Vandepitte et al. (1982). Using regression analysis as shown in Figure 6, the final expression 

is:  

 

[5]  Lcr=4.03√Rbtw cos θv⁄  

 

 

Figure 6: Relationship between critical imperfection wave length and the parameter √𝑅 𝑡 cos 𝜃𝑣⁄  

 

A similar procedure is followed in order to estimate the critical imperfection wave length in the case of combined 

hydrostatic and hydrodynamic pressures due to vertical excitation. It is found that the same critical imperfection wave-

length expression, i.e., Eq. 5, will lead to the minimum buckling capacity as the buckling waves initiate during the 
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initial hydrostatic pressure phase similar to that in the case of horizontal excitation. An axisymmetric geometric 

imperfections’ distribution over the tank walls will be the most critical as both the hydrostatic and the hydrodynamic 

pressures have axisymmetric distributions and consequently force the tank walls to buckle in an axisymmetric manner. 

6. CONICAL STEEL TANK CAPACITIES  

In this section, the effect of geometric imperfections on the capacity of the conical steel tanks when subjected to both 

hydrostatic and hydrodynamic pressure due to horizontal and vertical excitations is studied. After deriving an 

expression for the critical imperfection wave length LCR, an axisymmetric imperfection pattern based on Eq. 5 is applied 

to the tanks. Two levels of imperfections are studied: the first with w0 = 0.004Lcr to represent good tanks and the 

second with w0 = 0.01Lcr to represent poor tanks.  

 

A group of 75 tanks of practical dimensions was chosen for this study with Rb ranging from 4.0m to 6.0m, h ranging 

from 5.0 m to 9.0 m, and v = 30o, 45o, 60o with a steel yield stress of 300 MPa. The tanks were preliminary designed 

under hydrostatic pressure based on the simplified method proposed by Sweedan and El Damatty (2009) assuming 

the use of good tanks regarding the level of geometric imperfections. 

6.1 Horizontal Excitation 

Using the non-linear static analysis procedure described in section 4, the capacity of conical steel tanks corresponding 

to impulsive or sloshing hydrodynamic pressure due to horizontal excitations is obtained. The capacity of a conical 

steel tank can be represented by the base shear value just before the yielding or buckling of the tank walls. The base 

shear capacity for the impulsive component VI and the sloshing component VS are represented in the form of the unit-

less parameter VRb/Wh where W is the weight of the contained fluid. Figures 7a to 7c show how the impulsive base 

shear capacity represented by VIRb/Wh changes with the slenderness parameter h/Rb. Each subplot shows this 

variation for the two levels of geometric imperfections considered (i.e., both good and poor) corresponding to a 

specific value for the angle v. In order to estimate the reduction in the base shear capacity due to the inclusion of 

geometric imperfections, the capacity VIRb/Wh for perfect tanks is plotted on the same charts. Regarding the 

governing failure mode for perfect tanks, the general trend is that the probability for a yielding failure to occur is 

higher when the angle v is increased. In the case of imperfect conical steel tanks, the probability of inelastic buckling 

taking place increases with the higher geometric imperfections’ amplitude. 

 

In the case of v=30, it is observed that an imperfection with an amplitude of 0.004L or less has no remarkable effect 

on the normalized base shear capacity for the tanks with h/Rb being less than 1.1. In the case where an imperfection 

in amplitude equals 0.01L, the reduction in the normalized base shear capacity increases with a higher h/Rb. For v=45, 

it is found that an imperfection with an amplitude of 0.004L or less does not have a remarkable effect on the normalized 

base shear capacity for tanks with h/Rb less than 1.0 while for an imperfection amplitude of 0.01L, the reduction in 

the normalized base shear capacity is almost the same regardless of the value h/Rb. Finally, for v=60, the reduction 

in the normalized base shear capacity decreases for the higher h/Rb values, and this is valid for the two levels of 

imperfections studied. 

 

As discussed in section 2, another component of the hydrodynamic pressure that acts on the tank walls when subjected 

to a horizontal excitation is the convective pressure, which results from the sloshing on the water surface. Since the 

natural frequencies of the impulsive and sloshing vibration modes are well separated from one another, the analysis 

for each can be performed separately and then combined using the appropriate combination rule. A similar analysis 

procedure as that done for the impulsive component is repeated for the sloshing component. Since the impulse and 

connective hydrodynamic pressures act simultaneously, the effect of a geometric imperfection on the sloshing base 

shear capacity of the conical steel tanks is studied using the same imperfection pattern discussed earlier in the 

impulsive case. Figures 8a to 8c show how the sloshing base shear capacity represented by VSRb/Wh changes with 

the slenderness parameter h/Rb. Each subplot shows this variation for the two levels of geometric imperfections 

considered (i.e., good and poor) corresponding to a specific value for the angle v in addition to that in the case of 

perfect tanks. As for the governing failure mode of the group of conical steel tanks considered, the same observations 

as those made in the case of impulsive pressure are also valid in the case of sloshing pressure. 

 

In the case of v=30, an imperfection with an amplitude 0.004L or less has no effect on the tank’s normalized base 

shear capacity. On the other hand, in the case of where the imperfection amplitude equals 0.01L, the reduction in the 
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normalized base shear capacity increases with a higher h/Rb. When v=45, it is found that an imperfection with an 

amplitude 0.004L or less has no remarkable effect on the normalized base shear capacity for tanks with an h/Rb less 

than 1.8; while for an imperfection amplitude of 0.01L, the reduction in the normalized base shear capacity is higher 

for a larger h/Rb until it reaches a value of 2. Finally, for v=60 with an imperfection amplitude of 0.004L, the reduction 

in the normalized base shear capacity is higher with a larger h/Rb until a value of 2 is reached. A significant reduction 

in the normalized base shear capacity is observed in the case of a 0.01L imperfection amplitude.  

6.2 Vertical Excitation 

Using the non-linear static analysis procedure described in section 4, the capacity of the conical steel tanks 

corresponding to the impulsive hydrodynamic pressure due to vertical excitations is obtained. The capacity of a conical 

steel tank can be represented by the total vertical force value at failure. The total vertical force for the impulsive 

component NI is represented in the form of the unit-less parameter Nh/WcRb in charts, where Wc is the cylindrical part 

weight of the contained fluid. 

 

Figures 9a to 9c show how the total vertical force capacity represented by Nh/WcRb changes with the slenderness 

parameter h/Rb. Each subplot shows this variation for the two considered levels of geometric imperfections, i.e., good 

and poor, corresponding to a specific value for the angle v in addition to the case of perfect tanks. For the group of 

conical steel tanks considered, the tank shell was found to yield before instability took place regardless of the level of 

geometric imperfections similar to what was noted by El Damatty et al. (1997a) for the case of conical steel tanks 

under hydrostatic pressure, which has an axisymmetric distribution similar to the case of the hydrodynamic pressure 

due to vertical excitations. The reduction in the normalized total vertical force capacity Nh/WcRb is found to increase 

as the tank walls become more inclined. The average percentage of the reduction for good tanks is found to be 40%, 

53%, and 63% for v=30, 45, and 60, respectively. For poor tanks, the average percentage of the reduction is found to 

be 69%, 83%, and 95% for v=30, 45, and 60, respectively.  

7. CONCLUSIONS 

In this study, the effect of geometric imperfections on the capacity of conical steel tanks subjected to horizontal and 

vertical excitations is assessed. First, the critical geometric imperfection distribution in both the meridional and the 

circumferential directions that leads to the minimum tank capacity is determined. Finally, the tanks’ capacities 

corresponding to both the impulsive and the sloshing hydrodynamic pressure components are obtained using non-

linear static analysis where the geometric imperfections are incorporated within the nonlinear finite element model in 

the form of initial strains. For the critical imperfection, an axisymmetric distribution for the geometric imperfections 

is found to yield the lowest tank capacity corresponding to the impulsive hydrodynamic pressure due to both the 

horizontal and the vertical excitations. This is related to the presence of hydrostatic pressure, which tends to force the 

structure to buckle in an axisymmetric mode. Consequently, an imperfect shape matching this mode is the critical one.  

Regarding the reduction in the impulsive base shear capacity due to the inclusion of geometric imperfections, the 

following observations are made: (1) For tanks with v=30, it is observed that an imperfection with an amplitude of 

0.004L or less has no remarkable effect on the normalized impulsive base shear capacity for tanks with an h/Rb less 

than 1.1. In the case of an imperfection amplitude equal to 0.01L, the reduction in the normalized base shear capacity 

increases with a higher h/Rb; (2) For tanks with v=45, it is found that an imperfection amplitude of 0.004L or less has 

no remarkable effect on the normalized impulsive base shear capacity for tanks with an h/Rb less than 1.0; while for 

an imperfection amplitude of 0.01L, the reduction in the normalized base shear capacity is almost the same regardless 

of the value of h/Rb; (3) For tanks with v=60, the reduction in the normalized base shear capacity decreases for higher 

h/Rb values for both good and poor tanks. 

 

With regard to the reduction in the sloshing base shear capacity due to the inclusion of geometric imperfections, the 

following observations are made: (1) For tanks with v=30, an imperfection with an amplitude of 0.004L or less has 

no effect on the normalized base shear capacity. On the other hand, when the imperfection amplitude equals 0.01L, 

the reduction in the normalized base shear capacity increases with a higher h/Rb; (2) For tanks with v=45, it is found 

that an imperfection with an amplitude of 0.004L or less has no remarkable effect on the normalized base shear 

capacity for tanks with an h/Rb less than 1.8; while for an imperfection amplitude of 0.01L, the reduction in the 

normalized base shear capacity is higher for a larger h/Rb until a value of 2 is reached; (3) For tanks with v=60 with 

an imperfection amplitude of 0.004L, the reduction in the normalized base shear capacity is larger with a higher h/Rb 
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until a value of 2 is reached. A significant reduction in the normalized base shear capacity is observed in the case of 

0.01L imperfection amplitude.  

 

For impulsive pressure due to vertical excitations, the reduction in the normalized total vertical force capacity 

Nh/WcRb is found to increase as the tank walls become more inclined. The average percentage of the capacity 

reduction for good tanks is found to be 40%, 53%, and 63% for v=30, 45, and 60, respectively. For poor tanks, the 

average percentage of the reduction is found to be 69%, 83%, and 95% for v=30, 45, and 60, respectively. Finally, 

for the governing failure mode for perfect tanks subjected to hydrodynamic pressure due to horizontal excitation, the 

general trend is that the probability of yielding failure occurring is higher when the angle v is increased. In the case 

of imperfect conical steel tanks, the probability of inelastic buckling taking place increases with a higher geometric 

imperfection amplitude. On the other hand, the tank shell is found to yield before instability takes place regardless of 

the level of the geometric imperfections in the case of vertical excitations. 
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Figure 7: Effect of level of geometric imperfections on the normalized impulsive base shear capacity: (a) v=30, (b) v=45, and (c) v=60 

   

Figure 8: Effect of level of geometric imperfections on the normalized sloshing base shear capacity: (a) v=30, (b) v=45, and (c) v=60 

   

Figure 9: Effect of level of geometric imperfections on the normalized impulsive vertical force capacity: (a) v=30, (b) v=45, and (c) v=60 
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