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ABSTRACT  

An experimental study was recently conducted to address the applicability of concrete shear walls entirely 

reinforced with glass-fiber-reinforced polymer (GFRP) bars and subjected to quasi-static reversed cyclic lateral 

loading in attaining reasonable strength and drift requirements specified in different codes. The reported test results 

clearly show that properly designed and detailed GFRP-reinforced concrete (RC) walls could reach their flexural 

capacities with no strength degradation. The results also demonstrate that the tested walls were able to achieve 

recoverable and self-centering behavior up to allowable drift limits before experiencing moderate damage and attain 

a maximum drift comparable to steel-RC walls. The promising results provide impetus for constructing shear walls 

with GFRP bars and constitute a step toward using GFRP bars in lateral-resisting systems. Since enhancing concrete 

confinement at the boundary might be a solution in attempting to increase the deformation capacity of GFRP-RC 

shear walls without significant loss of strength, a series of shear walls were constructed with different reinforcement 

confinement configurations at the boundary zone. This paper compares the first tested shear wall to a previously 

reported shear wall (Mohamed et al 2014a). The results show a significant increase in lateral drift and strength of 

almost 79% and 27%, respectively, by doubling the confinement reinforcement ratio of the boundary. The seismic 

behavior of the wall was obviously improved, and the deformability level was significantly enhanced. 
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1. INTRODUCTION 

Parking garages are one type of multistory building undergoing steel corrosion due to harsh climate conditions. 

Fiber-reinforced-polymer (FRP) bars have been innovatively used as reinforcement in many structural elements 

because of their corrosion resistance. As a new application for FRP reinforcement, full-scale shear walls reinforced 

with FRP bars under cyclic loading were recently tested as a primary lateral-resisting system typically used for 

parking garages. The results show that the FRP reinforced-concrete (RC) walls exhibited appropriate cyclic 

performance and possessed good deformation capacity in comparison to a steel-RC shear wall (Mohamed et al. 

2014a). Mohamed et al. (2014a) carried out an experimental investigation of the applicability of reinforcing shear 

walls with GFRP bars in which the main parameters were steel versus GFRP reinforcing and different aspect ratios 

for GFRP-reinforced walls. The test matrix involved testing of four full-scale shear walls 3500 mm in height: one 

reinforced with steel bars and three with GFRP. Boundary-element reinforcement and diagonal bars were provided 

to eliminate sliding shear and ensure flexural domination. The test results show that all of the tested walls achieved 
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their predicted ultimate strength through flexural response, as evidenced by the typical amount of horizontal 

cracking. The observed failure mode was concrete crushing at one end associated with buckling of longitudinal bars 

for the steel reinforced wall and fracture of the longitudinal bars for the GFRP reinforced walls. The measured cyclic 

response of the GFRP-reinforced walls showed insignificant strength degradation and reasonable stability of 

stiffness. They achieved a higher drift ratio of 3.1% as compared to the steel wall’s 2.6%. Due to FRP-bar 

brittleness, the GFRP RC-walls achieved a lower level of deformability than the steel-reinforced wall based on 

virtual yield-point analysis (Mohamed et al. 2014b). 

 

In order to enhance the deformability behavior of GFRP walls, a series of five full-scale shear walls were 

constructed with different confinement configurations at the boundary zone with the aim of developing higher 

concrete strains at ultimate load and delaying the elastic–plastic transition point so as to possibly enhance the 

deformability performance of such walls. This paper investigates the cyclic response of the first wall tested and 

compares it to one of the walls tested by Mohamed et al. (2014a). 

2. EXPERIMENTAL PROGRAM 

The experimental program comprised the testing to failure of reinforced-concrete shear walls with a higher 

confinement configuration than that for the wall pre-tested by Mohamed et al. (2014a). They were designed with an 

adequate amount of distributed and concentrated reinforcement to ensure flexural domination and eliminate sliding 

and shear failures. The walls are classified as medium-rise walls according to CSA and ACI codes. The sections that 

follow describe specimen design and details, materials, instrumentation, and test setup. 

2.1 Specimen Design and Details 

The specimens represent a model of a single shear wall complying with the special seismic requirements specified in 

CSA A23.3 (2014) and ACI 318 (2008) for the seismic-force resisting systems (SFRSs), as a case for new 

unexamined SFRS (RdRo = 1). One GFRP-reinforced specimen (G15-II) was constructed and tested. The wall was 

analytically compared to the wall pre-tested by Mohamed et al. 2014a, referred to as G15-I. The minimum thickness 

and reinforcement details were according to CSA S806 (2012) and ACI 440.1R (2006). The wall specimens were 

3500 mm high (hw), 200 mm thick (bw), and 1500 mm long (lw), resulting in a shear-wall aspect ratio (hw/lw) of 2.3. 

Figure 1 shows the concrete dimensions and reinforcement details of the shear-wall specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Concrete dimensions and reinforcement details 
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The reinforcement details of the GFRP reinforcement specimens (G15-I and G15-II) complied with CSA S806 

(2012) minimum reinforcement requirements, resulting in two layers of vertical reinforcement comprised of #3 (10 

mm diameter, Af = 71.3 mm2) GFRP bars spaced at 120 mm. Eight #3 GFRP bars were used as vertical 

reinforcement for each boundary element on both side ends of G15-I, while 13 #3 GFRP bars were used in the 

boundary of G15-II. The boundaries were tied with GFRP #3 rectangular spiral stirrups (140 × 140 mm for G15-I 

and 140 × 260 mm for G15-II) spaced at 80 mm, which is approximately the maximum spacing permitted in 

CSA S806 (2012) (75 mm). The web horizontal reinforcement consisted of two layers of #4 (13 mm diameter, Af = 

126.7 mm2) GFRP bars spaced at 80 mm. Table 1 lists the reinforcement ratios for the tested walls. The ultimate 

lateral load (Vf) was predicted based on plane sectional analysis. Table 1 lists the predicted values. 

Table 1: Reinforcement details and calculated capacities of the walls 

Wall f’
c (MPa) 

Reinforcement Ratio 
Pu (kN) Vr (kN) Vf  (kN) Pu/Vf 

ρv ρh ρl ρt 

G15-I 39.9 0.58 1.58 1.43 
0.89 

586 884 563 1.04 

G15-II 33.0 0.54 1.58 0.67 745 879 725 1.03 

f’
c = concrete compressive strength Vf  = predicted load   

ρv = web vertical-bar reinforcement ratio ρh = web horizontal-bar reinforcement ratio 

ρl = boundary longitudinal-bar reinforcement ratio ρt = boundary tie reinforcement ratio 

Pu = experimental ultimate lateral load Vr = factored shear strength 

 

 

Sufficient shear reinforcement was provided to resist the shear force associated with the development of the 

probable moment resistance of the tested walls. The factored shear strength (Vr) of a reinforced-concrete cross 

section is the sum of the shear resistance provided by the concrete and shear reinforcement. Using the described 

detailed reinforcement, the factored shear strength of the walls was calculated based on the sectional analysis 

equations in CSA S806 (sections 8.4.4.5 to 8.4.4.11), resulting in a Vf /Vr of not more than 0.75, as listed in Table 1. 

2.2 Material Properties 

All specimens were constructed with normal-weight, ready-mixed concrete having a nominal compressive strength 

(fc′) of 40 MPa. Table 1 gives the actual concrete compressive strength based on the average values from tests 

performed on at least five 100  200 mm cylinders for each concrete batch on one day before testing. The GFRP 

reinforcing bars were two diameters of high-modulus (HM) sand-coated bars (CSA S807 2010): #3 for vertical bars 

(ffu = 1412 MPa, Ef = 66.9 GPa, εfu = 2.11%, Af = 71.3 mm2) and spiral ties (for straight portions: ffu = 962 MPa, 

Ef = 52 GPa, εfu = 1.85%, Af = 71.3 mm2; for bent portions: ffu = 500 MPa) and #4 for horizontal bars 

(ffu = 1392 MPa, Ef = 69.6 GPa, εfu = 2%, Af = 126.7 mm2). The longitudinal tensile properties of the FRP bars were 

determined by testing five specimens according to ASTM D7205 (2011) for straight bars and test method B.5 in 

ACI 440.3R (2004) for bent bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Instrumentation                                                            Figure 3: Test setup 
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2.3 Test Setup and Procedure 

A series of linear variable differential transducers (LVDTs) and strain gauges were used to measure critical response 

quantities. That notwithstanding, only the instruments used in this study will be shown (Figure 2). Lateral 

displacement was measured at the top of the wall height; two LVDTs were used to measure horizontal sliding 

between the wall and base slab as well as between the base slab and rigid floor (unlikely to occur). An automatic 

data-acquisition system monitored by a computer was used to record the LVDT and load-cell readings. During 

loading, crack formation was marked and recorded. 

 

Figure 3 shows the test setup. The wall specimens were tested in an upright position. A specially fabricated steel 

load-transfer assembly was used to transfer both axial and lateral loads to the wall specimen. An axial load of 

approximately 0.07bw.lw.fc’ was applied at the top of the wall by two hydraulic jacks mounted to the load-transfer 

assembly. The axial stress was maintained constant throughout the duration of each test. Cyclic lateral displacements 

were applied to the walls with a 1000 kN MTS actuator mounted horizontally to a reaction wall. Out-of-plane 

bracing was provided to prevent out-of-plane displacement, simultaneously providing no resistance to in-plane 

displacement. As the loading history was not a test variable, a typical procedure of applying quasi-static reversed 

cyclic loading until failure was used (Figure 4). The walls were cycled twice at each displacement level with 

increments of 2 mm up to 10 mm, followed by increments of 5 mm up to 50 mm, and then increments of 10 mm to 

failure. Hinged connections at the tips of both the horizontal actuator and vertical hydraulic jacks prevented any 

substantial restraint of rotation of the top of the wall, thus ensuring cantilever behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Applied displacement history 

3. EXPERIMENTAL RESULTS 

3.1 General Behavior 

In general, each wall exhibited a reasonably symmetric lateral load–top displacement relationship for loading in the 

+ve and -ve directions until boundary concrete crushing occurred at one end. The behavior of both walls was 

dominated by a flexural response, as evidenced by the typical amount of horizontal cracking shown in Figure 5. No 

sign of premature shear, sliding shear (no sliding displacement was measured), or anchorage failure was observed. 

Under increased displacement, horizontal cracks continued to form up to a height of approximately 2/3 hw in G15-I 

and more than 3/4 hw in G15-II. The horizontal cracks extended in a downward trend inside the web forming 

diagonal cracks. As loading continued, vertical splitting cracks typically appeared in the walls at the boundary under 

compression. With increased displacement, spalling of the concrete cover became more significant at the 

compression end of the walls (Figure 6). Thereafter, wall stiffness decreased as a result of crack spreading, but the 

lateral load kept increasing. 

 

G15-I continued to carry load in each cycle with no degradation until concrete crushing and fracture of the 

longitudinal GFRP bars, followed by rupture of the GFRP ties (Figure 7). G15-II, however, experienced no failure 

as the hysteretic response demonstrated a horizontal plateau at a drift level of 4.89 % until reaching the maximum 

displacement capacity of the actuator. Subsequently, the test was stopped before the failure of the wall specimen. 

Table 2 summarizes the failure progression of the tested specimens. 
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Figure 5: Crack pattern 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            Figure 6: Splitting and spalling of concrete cover 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Failure of G15-I 

 

 

 

 

 

 

 

G15-II G15-I 

b - Spalling a - Splitting 

b 

Concrete crushing Fracture of long. bars Rupture of GFRP tie 

 

a c 



STR-830-6 

Table 2: Failure progression 

       Stage First Crack 
Flex–Shear 

Crack 
Vertical Spalling 

Concrete 

Crushing 
Maximum Load 

G15-I 

P (kN) 162 193 437 586 586 

Δ (mm) 7.6 12.9 68 108 108 

Drift (%) 0.22 0.37 1.9 3.1 3.1 

G15-II 

P (kN) 147 219 440 - 745 

Δ (mm) 5.7 15.0 70 - 194.6 

Drift (%) 0.16 0.43 2.0 - 5.6 

 

 

Overall, both walls achieved their flexural strength, as shown in Table 1. The following sections provide information 

on the lateral load–top displacement relationship, extent of damage, and the energy dissipation for each wall. 

3.2 Hysteretic Response 

Both walls showed a pinched behavior of hysteresis loops with no strength degradation, as shown in Figure 8. The 

unloading/reloading curves seemed to demonstrate linearity depending on GFRP elastic behavior. The reloading 

branches followed a similar loading path but at a lower loading stiffness, resulting in lower peak strength. The shape 

of the unloading path seems to be dependent on the strain at the onset of unloading. The lateral load–top 

displacement curves indicate that the first cycle of a new displacement level followed the loading path of the second 

cycle at the previous displacement level. This suggests that additional cycles at a specific displacement level would 

produce negligible damage in comparison to that experienced in the first unloading/reloading cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Hysteretic response 
 

The hysteretic response observed for G15-II exhibits more pinching loading/unloading loops than that for G15-I but 

with a similar initial stiffness, as shown in Figure 8. An initial linear branch corresponding to the uncracked 

condition of the wall is evident. At a lateral drift of 0.22%, a crack initiated, reducing stiffness with initial crack 

widths of 0.125 and 0.137 mm for G15-I and G15-II, respectively. As the lateral load increased, the walls exhibited 

a softened response, with the propagation of cracks that closed and realigned after each cycle. The same pattern 

continued with increased deformations up to lateral drifts of 1.43 % to 1.6%, at which point all crack propagation 

stabilized. Vertical cover splitting in the boundary gradually initiated at the most heavily compressed fibers 

(Figure 6-a) at approximately 2% of lateral drift. At a lateral drift of 2.6%, spalling of the concrete cover took place 

at the boundary element (Figure 6-b). With increasing lateral load, concrete crushing (Figure 7-a) associated with 

the rupture of the GFRP ties (Figure 7-b) was clearly evident, causing wall failure and a drop in strength, followed 

by the sequential rupture of the GFRP bars in the boundary under compression (Figure 7-c). In subsequent cycles of 

G15-II, the hysteretic response demonstrated a horizontal plateau at a drift level of 4.89 % with a constant load level 

until reaching a drift level of 5.6%. At that point, the maximum displacement capacity of the MTS actuator was 
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reached before the wall specimen failed, so the test was stopped. The ultimate lateral loads attained were 586 and 

745 kN, corresponding to lateral drifts of 3.1 % and 5.6% for G15-I and G15-II, respectively. 

3.3 Envelope Curve 

Figure 9 shows the envelope curves for both walls. It is clear that both walls behaved similarly. It is interesting to 

note that the concrete cover of both walls split—considered moderate damage—at similar loads and drift levels (see 

Table 2). The drift values fell within the range of 1.5 % to 2% (reached with moderate damage to both walls), which 

is the recommended allowable design drift in many codes (CSA A23.3 2014 and Duffey et al. 1994). After that 

point, both walls kept increasing almost linearly until G15-I failed at a load of 586 kN, corresponding to 3.1% drift. 

G15-II, however, reached a higher load, corresponding to a higher drift level, which can be attributed to the 

confinement effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Envelope curve 
 

Generally, both walls evidenced minimal crack width and ability to recover and realign cracking up to a lateral drift 

of 2%, which is considered an advantage in using GFRP bars and provides proof of sufficient bond between the 

concrete and GFRP bars (Mohamed et al. 2014a). For many years, engineers believed that hysteretic pinching was 

an undesirable characteristic that would lead to larger structural displacements during inelastic response. Recent 

research (Huang and Foutch 2009, Sharbatdar and Saatcioglu 2009), however, has indicated that hysteretic pinching 

without strength degradation does not produce undesirable responses and can result in less structural deformation 

than elastic–perfectly plastic behavior. Therefore, the behavior of GFRP-reinforced shear walls can be accepted in 

resisting lateral forces. Moreover, increasing the confinement level of the wall’s boundary elements (G15-I) resulted 

in a higher lateral drift with the presence of a horizontal plateau. 

3.4 Secant Stiffness 

Realistic modeling of RC buildings with shear walls typically dictates the use of relatively simple elements for all 

members, preferably using one element for each structural member. In this typical situation, it is essential to use 

realistic values for the stiffness of the wall elements, which are known to be significantly lower than that 

corresponding to gross-section properties, even at the serviceability limit state (Aktan et al. 1985). 

 

The stiffness properties of the walls tested were assessed with their secant stiffness, defined as the ratio of peak load 

of each cycle to the corresponding displacement. As a result, the stiffness degradation during cycling at a constant 

displacement can also be assessed. Figure 10 shows the Ki/K0 of the secant stiffness at various levels of lateral drift 

to the initial stiffness of wall specimens. As expected, considerable reduction in stiffness took place in the specimens 

as higher levels of deformation were imposed. The decreased stiffness resulted in apparent strength degradation, that 

is, the same displacement amplitude was reached at a higher force. Both walls had almost identical stiffness ratios at 
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the different drift levels. It is clear that the confinement did not enhance the stiffness ratio. Moreover, the achieved 

stiffness ratios at the moderate-damage level (corresponding to 2% of lateral drift) were similar in both walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Ratio of secant to initial stiffness 

4. DEFORMATION CAPACITY 

Ductility is a measure of the ability of the wall to deform beyond yielding of the flexural reinforcement. As FRP 

bars do not yield (they are elastic), Jaeger et al. (1995) proposed the new term “deformability” to describe a 

comparison method based on deformability and strength considerations instead of ductility. Since concrete members 

reinforced with FRP bars are highly deformable, structures should be designed based on a curvature factor, as 

curvature is the double integration of deflection. The curvature factor is the ratio of curvature at the ultimate state to 

the curvature at a concrete strain of 0.001. Moreover, Jaeger et al. (1995) suggested considering the strength factor, 

which is defined as the ratio of ultimate moment to moment at a concrete strain of 0.001. To take these two 

capacities into account, Jaeger et al. (1995) defined an overall deformability factor (J) calculated as the product of 

the curvature factor and strength factor expressed as follows: 

[1]     

c

u

c

u

M

M
J




  

where M and Φ are moment and curvature at service or ultimate load, denoted by the subscripts c or u, respectively. 

The Canadian Highway Bridge Design Code (CHBDC) includes an overall performance factor for FRP-RC beams 

and slabs (CSA S6S1-10) that combines the strength and deformability given by Eq. 1 with the service condition 

taken as the point at which the maximum concrete compressive strain reaches 0.001. 

 

The 0.001 concrete compression-strain limit was chosen to represent linear stress–strain behavior in compression 

and defined the serviceability limit state. The concrete compression strain of G15-II reached more than 0.015 at the 

maximum load. Mohamed et al. (2014a) reported a concrete compression strain of 0.007 at ultimate load; the 

concrete compression-strain limit of 0.001 is very conservative compared to the actual test values. Therefore, the 

deformability factor (J) was recalculated for moment and curvature values corresponding to a concrete compressive 

strain equal to 0.0035. Table 3 provides the calculated values of the deformability factor (J) for G15-II versus G15-I 

reported by Mohamed et al. (2015). 

Table 1: Deformability factor 

Wall J0.001 J0.035 

G15-I 22.0 2.10 

G15-II 86.6 8.62 
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The deformability factor (J) was calculated and resulted in unreliably high values (referred as J0.001 in Table 3). As 

the moment and curvature were determined at a concrete compressive strain of 0.001 (the recommended value for 

FRP-RC beams and slabs according to the CHBDC), high values of J0.001 were reached due to well-confined 

concrete, which allowed the concrete compressive strain to reach more than 0.007 at ultimate load (Mohamed et al. 

2014a). Therefore, the deformability factor J was recalculated for moment and curvature values corresponding to a 

concrete compressive strain of 0.0035 (J0.0035). Table 3 lists the original J0.001 and modified J0.0035 deformability 

factor resulting in a large difference between the two procedures due to the difference in the values of moments and 

curvatures corresponding to concrete compressive strains of 0.001 and 0.0035. The calculated J0.0035, however, 

provided more reliable values. 

5. CONCLUSIONS 

The main aspects that were investigated by means of these tests concern the effects of the reinforcement content and 

configuration in the boundary element on the deformation behavior of the tested walls. G15-II, which had double 

overlapped ties in the boundary element evidenced significant enhancement in deformation capacity compared to 

G15-I with one tie. The maximum drift ratio and maximum lateral load of G15-II were 79% and 27% higher than 

those of G15-I, respectively. The predicted flexural strength was in close agreement with the measured load-carrying 

capacities. In general, the hysteresis response, stiffness degradation, and energy dissipation of both walls were very 

similar, which shows that GFRP-reinforced shear walls can demonstrate a predictable linear behavior up to failure. 
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