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ABSTRACT

KNIGHT’S TOURS AND ZETA FUNCTIONS

by Alfred Brown

Given an m× n chessboard, we get an associated graph by letting each square

represent a vertex and by joining two vertices if there is a valid move by a knight

between the corresponding squares. A knight’s tour is a sequence of moves in which

the knight lands on every square exactly once, i.e., a Hamiltonian path on the

associated graph. Knight’s tours have an interesting history. One interesting

mistake regarding Knight’s Tours was made by the famous mathematician Euler.

His mistake led to the further study of knight’s tours on 3× n chessboards. We will

explore and explain a method found by Donald Knuth for enumerating the number

k(n) of all closed knight’s tours on a 3× (2n+ 8) chessboard for an integer n ≥ 1.

Interestingly, there is a 21-term recurrence relation for k(n) discovered

independently by Knuth and Elkies. We conclude by noting that this relation comes

from studying generating functions which can be interpreted in the context of the

Ihara zeta function of a certain graph.
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CHAPTER 1

INTRODUCTION

A graph is a mathematical structure containing a vertex set, an edge set, and a

relation that associates every edge to two vertices. The study of graphs began with

the famous Swiss mathematician Euler, who needed an efficient method to resolve the

Königsberg bridges problem. The problem involves a city in Prussia. The city sits

on both sides of the Pregal River and included two small islands that were connected

to each other. The problem was to find a way to walk through the city that would

Figure 1.1: Königsberg

cross each of the bridges once and only once. Euler had proven that this problem had

no solution. The issue Euler faced was that of proving this assertion mathematically,

thus, the creation of graph theory. Euler regarded each one of the land masses

as a vertex and the bridges between landmasses represented the edges between the

associated vertices. He observed that whenever one enters a landmass by a bridge,
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one must leave that landmass using another previously untraveled bridge. Euler

figured that if every bridge has been traveled once, it follows that for each landmass,

the number of bridges connecting to that landmass must be even. In other words,

each vertex/landmass must have an even degree in which the degree of a vertex v

is the number of edges, or in this case bridges, that are incident with v. A path is

defined as a finite sequence of edges connecting a sequence of vertices such that all

edges and vertices are distinct from each other. A trail in a finite graph which visits

every edge exactly once is called an Eulerian paths. The existence of a connected

Eulerian path on a given graph is equivalent to the following condition: every vertex

in a connected graph has even degree. The necessity of this condition was proven by

Euler and sufficiency was established by Carl Hierholzer. One can also consider paths

which visit every vertex exactly once. Such paths are known as Hamiltonian paths.

Here we will look at Hamiltonian paths on graphs associated with chessboards.

Given any m×n chessboard, we can represent this chessboard as a graph with each

square of our chessboard corresponding with a vertex in our graph. Our edges are

drawn between a vertex that our knight starts at and the vertex our knight lands on

after a legal knight move. The knight, more than other chess pieces, is an interesting

study, not only because of the unique ‘L’ shaped move pattern that it must make

(two squares vertically and one square horizontally, or two squares horizontally and

one square vertically), but also in that it is the only piece in chess that can jump

over other pieces to make its movement. This makes it essential for closed positions
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in which the pawns are locked on a chess board.

A knight’s tour is a Hamiltonian path on the knight graph associated with

a chessboard. The earliest known reference of the knight’s tour dates back to 9th

century A.D. in the form of a poem written so that it could be read using knight’s

moves. Another mention of the knight’s tour is the use of the Turk machine. (See

[Sta02]) The Turk was alleged to be an elaborate chess playing machine that turned

out to be a hoax. The creators claimed that their machine would be able to perform

a strong game of chess and be able to complete a knight’s tour after placing a knight

anywhere on the board. It was later found out that it was in fact not a machine

and consisted of a man in the “machine” moving the pieces of the chessboard using

magnets. He also had a diagram of a knight’s tour in the compartment that he sat

in, thus being able to always complete a knight’s tour and impress the guests. The

knight’s tour was not extensively studied until Euler, and much work has gone into

the generation of these knight’s tours on not only an 8 × 8, but arbitrary m × n

boards as well. Being able to count the number of cycles was also of great interest.

A cycle is a closed walk that does not allow for repetitions of vertices or edges,

and a closed walk can be regarded as a sequence of adjacent vertices and corre-

sponding edges starting and ending at the same vertex. A closed knight’s tour is

a Hamiltonian cycle on the knight graph associated with a chessboard. Many of the

discoveries regarding knight’s tours have been made within the last 30 years due in

part to the age of computers. In fact, it was not until 1996 that the number of closed
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knight’s tours on an 8× 8 chessboard was finally calculated by Löbbing and Wegener

in [LW96] who purported that this number equaled 33, 439, 123, 484, 294. However,

even this number was found shortly thereafter to be incorrect, although the methods

of calculation were correct. Brendan McKay has proven in [McK97], using related

methods, that the number of closed Knight’s tours was actually 13, 267, 364, 410, 532.

This includes open and closed Knight’s tours. If we look at 1 × n and 2 × n chess-

boards, we can see that no tours can ever exist. In 1×n chessboard, a knight cannot

move from its original position due to the “L” shaped nature of the knight. With a

2× n chessboard a knight can move throughout the chessboard; however the knight

can only backtrack on these chessboards. The first chessboard that allows for full

movement of a knight resulting in a Knight’s tour is a 3×n chessboard. This was the

motivation for Euler when considering Knight’s on Hamiltonian paths and cycles on

3× n chessboards. Euler found all of the Hamiltonian paths of the 3×4 chessboard.

An example is shown below in Figure 1.2.

Figure 1.2: 3× 4 Knight Tour
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Euler also stated correctly that no such Hamiltonian paths or cycles exist on a

3 × 5 and a 3 × 6 chessboard. Euler, however, made false claims in 1759 about the

non-existence of Hamiltonian cycles for arbitrary 3× n chessboards. It was not until

1917 that we realized Euler had made a mistake, when a man by the name of the

Ernest Bergholt exhibited in [Ber18] that there existed Hamiltonian Knight’s paths

on the 3 × 10 chessboard. For an example of a closed Knight’s tour, see Figure 1.3

below. One can compare the closed 3× 10 closed Knight’s tour with the open 3× 10

Knight’s tour in Figure 1.4

Figure 1.3: A 3× 10 Closed Knight’s Tour

The order of a graph is the number of vertices in a graph. A bipartite graph is a

set of graph vertices decomposed into two disjoint sets such that no two graph vertices

within the same set are adjacent. In this paper, we only look at 3×n chessboards for

n even. The reason for this is that if n is odd, then our order would be 3n which would

also be odd. However, every Hamiltonian cycle in our chessboard graph must be even

since our chessboard graph is bipartite (since every Knight’s move would alternate

the color of the square the knight is in). Hence, our Hamiltonian cycle could not exist
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if n was odd.

Figure 1.4: A 3× 10 Knight’s Tour
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CHAPTER 2

KNUTH’S METHOD OF ENUMERATION

We are given a knight graph for a 3×n chessboard (in which n is even and greater

than 8) and we dissect this graph into states as in [Knu11], which are basically chunks

of our graph at any given time. These states can be separated into four classes, of

which only one we have interest in. Using this one particular class, we can organize

the associated states into a bipartite graph. This bipartite graph can then be used to

create a generating function (a rational function later interpreted in the context of a

zeta function) for counting the number of closed knight’s tours on a 3×n chessboard.

2.1 States and Mates

In this section, the vertices of a certain directed graph K represent states that

can arise when we take a 3 × n chessboard and cut it into two separate pieces. We

separate the chessboard into two pieces consisting of k columns on the left of the

chessboard and n− k columns on the right of the chessboard, for some k.

Let Sn be the knight graph of a 3×n chessboard and Ŝn be the extension obtained

by adding a new vertex∞ that is adjacent to all other vertices. Given a Hamiltonian

cycle T on Sn or Ŝn, let Tk be the edges of T that lie entirely in the first k columns of

the chessboard possibly extended by ∞. So in the case of Ŝn, this Tk would include

edges connecting vertices in the first k columns with ∞. In general, every vertex

of Ŝk will either be covered by exactly two edges in Tk or will be uncovered. If

the vertex is uncovered, there are two possibilities we wish to distinguish. Namely,
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an uncovered vertex could be absent from all of Tk’s edges (we call such a vertex

untouched) or it could attached to some other vertex by a single edge of Tk. In the

latter case, the vertex is said to be mated to a similarly defined attached vertex by

a maximum subpath of Tk whose endpoints are the two mates mentioned. Note that

a vertex that is uncovered must appear in the two rightmost columns or be ∞ itself.

4 1

5 2

6 3

∞

Figure 2.1: Two Rightmost Columns with Numbered Vertices

Each of these vertices with number x is assigned a mate number mate[x] by the

following rules:

mate[x] =



0 if the vertex is covered by Tk

x if the vertex is untouched by Tk

y if the vertex is uncovered and mated

to a vertex with number y by Tk

(2.1)

The state corresponding with Tk will be denoted by a seven digit code

mate[1]mate[2]mate[3]mate[4]mate[5]mate[6]mate[∞]
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For example, if we take the graph in Figure 2.2, we can see it starts with the state

code “6243∞15”.

Figure 2.2: Two Column Graph

Now, to go from Tk to Tk+1 we begin by increasing all of the vertex numbers by

3. Next, we append new untouched vertices with numbers 1,2,3, obtaining up to ten

potentially relevant vertices as shown below in Figure 2.3.

7 4 1

8 5 2

9 6 3

∞

Figure 2.3: Three Rightmost Columns with Numbered Vertices

Notice that we will only ever look at three columns at a time, because since we
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are dealing with Knight’s, the knight can only move vertically or horizontally two

spaces and thus needs enough vertices to make a valid knight move. Now, when we

incorporate the next column, we connect new edges to the vertices that were just

introduced in the third column by using valid knight moves as show below in Figure

2.4. As a result, the state code changes. We can use the mate rules to change the state

code. If we look at vertex one in Figure 2.4, we can see it is uncovered since it does

not contain two edges of Tk (thus not covered), and it is not untouched since it does

contain at least one edge of Tk (not untouched). Thus, vertex one gets assigned ∞

since vertex one is attached to ∞. Just like the first vertex, we will go through every

vertex in Figure 2.4 and go through the same process. We can see that vertex two

has exactly two edges attached with it and thus vertex two is covered and assigned 0.

Notice that vertex three is uncovered and attached to vertex six and thus assigned 6.

Vertex four is covered and assigned a 0, while vertex five is untouched (has no edges

attached to it) and assigned a 5. The last two vertices 6 and ∞ are both uncovered

and attached to vertices 3 and 1, respectively, and thus assigned 3 and 1. One can

now see that by adding a third column the state code changes from “6243∞15” to

“∞060531.”
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Figure 2.4: Graph with Third Column implemented

The next thing to do would be to take into account the edges in T that belong to

Tk+1 but not to Tk. We can take all the edges with the endpoints in column k+1 and

another endpoint in the column k or k − 1 or ∞. This new set of edges is encoded

with three italic digits. The list is as follows:

100 for edge 8 to 1 010 for edge 7 to 2 001 for edge 4 to 3

200 for edge 6 to 1 020 for edge 9 to 2 002 for edge 8 to 3

400 for edge ∞ to 1 040 for edge ∞ to 2 004 for edge ∞ to 3

The sum of the italicized digits above represents the edges that were added through

each transition. For example, the state transformation “6243∞15” → “∞060531” is

achieved by the transition code 131. This is the sum of the transitions (edges added)

of 100+010+020+001 = 131. We only need to keep track of the sum since the sum

uniquely decomposes. This is exactly why Knuth chooses 1,2, and 4.
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Instead of computing the mate values of each transition by hand, there is an easier

way to compute them. As a new edge is added from x to y, we just need to do the

following steps in order.

Let x′ = mate[x] and y′ = mate[y]

Now we let mate[x] = 0 and mate[y] = 0

Then we let mate[x′] = y′ and mate[y′] = x′

We will use a directed graph K to help us encapsulate all the information about

a 3×n Knight’s tour for an arbitrary even n ≥ 4. This graph K is defined by letting

the set of states be the vertices and joining two states s1 and s2 by a directed edge

from s1 to s2 if we can obtain s2 from s1 by a transition from some Tk to Tk+1.

We call the state “000000∞” the open source vertex of K, denoted by σo.

This is always the state from which starts a Hamiltonian cycle T or T̂ . We call the

state “0000000” the sink vertex, and we denote that as τ . This is the state that

represents a complete graph, that is a Hamiltonian cycle T or T̂ (thanks to the vertex

∞ which, by definition, forces there to be a Hamiltonian cycle from a Hamiltonian

path). We call the state “1230000” the closed source vertex, denoted by σc. This

state is adjacent to the sink vertex, but one step beyond a Hamiltonian cycle, as the

new column can’t connect with any of the vertices before it. We will show examples

later on in this paper that better explain these states.

We need to be very careful when counting paths. In fact, Euler’s 3×n chessboard
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has eight different shortest paths from σo to τ , not just three as exhibited by Euler.

Euler was counting all of the geometrically distinct tours. If we take the three that

were proposed by Euler, we can reflect the graphs both horizontally, vertically, or

rotate the graph. It is in this way that we get 8 distinct paths instead of 3.

In general, every state α corresponds to a flipped state α′ corresponding with a

reflection across the horizontal midline, creating horizontal symmetry if dealing with a

closed Knight’s tour. Likewise, every transition state t formed by transitional triplets

(the italicized triplets that add new edges) corresponds to a flipped transition t′.

For example if α = abcdefg and t = ABC, then α′ = a′b′c′d′e′f′g′ = cbafedg and

t′ = A′B′C′ = CBA . The vertices

0′ = 0, 1′ = 3, 2′ = 2, 3′ = 1, 4′ = 6, 5′ = 5, 6′ = 4,∞′ =∞

and the edge transition digits become,

0 ′ = 0, 1 ′ = 2, 2 ′ = 1, 3 ′ = 3, 4 ′ = 4, 5 ′ = 6, 6 ′ = 5

We will now show an example on a 3 × 4 chessboard. We start with the open

source which is “000000∞”. We then look at the first column T1.
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Figure 2.5: T1

As we can see, there is one edge from the vertex (1, 1) (first row, first column)

to ∞. The state code has now changed to “1∞30002” using the mate definitions in

Equation 2.1. We can now add the next column T2.

Figure 2.6: T2

Now with the second column added we add all the edges that connect from the

second column and up to two columns before it. Thus we only have to worry about
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the first column. In this case (1, 2) and (3, 2) have edges from their squares to the

(3, 1) and (1, 1) squares respectively as shown in Figure 2.6. These edges are added

using the code 201, effectively changing the state code to “6243∞15”. We now add

the third column T3.

Figure 2.7: T3

Each square in the third column has edges from it to the two columns before it.

Using the edge code 131 we achieve the graph as in Figure 2.7 above. The state code

is now changed to “∞060531”. Finally we add the final column T4, look at the two

columns that lie before T4 and use the edge generating code 363 to add edges to each

vertex in the column T4. The end result is that we get the complete Knight’s graph

of the 3 × 4 as seen Figure 2.8 below. The state code is thus changed to the final

complete state τ = “0000000”.
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Figure 2.8: T4

2.2 Classification of States

An involution is a function or transformation that is equal to its inverse, that is

a function or transformation that produces the identity when applied to itself. Ev-

ery state (vertex in K) corresponds to an involution in the symmetric group Sk with

k ≤ 7, in which two mated vertices correspond to a transposition and covered vertices

correspond to fixed points of the permutation. Thus the entirety of the state codes

of K are all obtainable by:

(a) starting with a sequence of seven digits 123456∞

(b) setting some subset of them to 0

(c) applying an involution permutation to the remaining non-zeros

We can use a generating function to count the number tk of involution permu-

tations in Sk. We have a recurrence relation tk = tk−1 + (k − 1)tk−2 with initial
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conditions t0 = t1 = 1 which means the generating function

F (x) =
∑
k≥0

tk
xk

k!

satisfies the differential equation F ′(x) = (x+1)F (x) with initial condition F (0) = 1.

The solution is F (x) = ex+x
2/2. These involution numbers tk also have another in-

teresting connection to chess. In particular, tn counts the numbers of ways to place

n rooks on an n × n chessboard in such a way that no two rooks attack each other

(the so-called ‘n rooks puzzle’) and such that the configuration of the rooks is sym-

metric under a diagonal reflection of the board. This follows since the non-attacking

condition will force exactly one rook in each column, so each such arrangement will

correspond with one of n! permutation matrices and the diagonally symmetric ones

will correspond with involutions. In [Hol74], D. F. Holt counted the number A(n) of

arrangements of mutually non-attacking rooks up to any symmetry of the chessboard

(i.e., up to the action of the dihedral group) with the formula

A(n) =
n! + f(n) + 2g(n) + 2tn

8

where

f(n) =


(n/2)!2n/2 if n is even

((n− 1)/2)!2(n−1)/2 if n is odd

(2.2)

and

g(n) =


(n− 2)(n− 6) · · · 6 · 2 if 4 divides n

(n− 3)(n− 7) · · · 6 · 2 if 4 divides n− 1

0 otherwise

(2.3)
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This formula was proved rigorously by using a technique commonly used in group

theory called the Pólya enumeration theorem. On a normal chessboard we have n = 8,

f(8) = 384, g(8) = 12, and t8 = 764. Thus the number of arrangements is equal to

A(8) = 5282. In Figure 2.9, we give an example of a diagonally symmetric 5 × 5

illustration of one non-attacking arrangement.

Figure 2.9: Rook Example Corresponding to the Involution (1, 2)(4, 5)

Using the generating function for the involution numbers allows us to calculate

that the total number of potential states is

7∑
k=0

(
7

k

)
tk = 1850

in which
(
7
k

)
counts the number of subsets of size k (to be either covered or mated

vertices) from the set of all vertices of size 7. However only 1406 of the states are

actually reachable from the source states of σo and σc by legal transitions of Knight’s
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moves. For example, using the legal edge transitions, that is the three digit number

we used to add edges to our new vertices, we can never reach the chessboard state

“1000000”. This is not the only state which does not lead to a potential state. For

example, the forms “***4***”, “*****6*”, and “***6*4*” have no successive moves

(where ‘*’ is considered any digit) as pointed out in [Knu11]. These states do not

belong in K because they do not lead to τ . We can also knock out states of the form

“1*3*5**” because in this state, any move made to a new state from “1*3*5**” will

not have a move that leads to τ . In other words, if we are looking at the 9 vertices of

any given state, the 1st, 3rd, and 5th vertices all have no edges attached. No matter

what vertex you come from you will never be able to attach to those vertices to get to

τ and thus they will remain vertices with no edges. Similar logic and reasoning can be

applied to the other “unusable states.” Finally, there are states which are reachable

like “1035400” which fail to satisfy a certain condition as outlined in [Knu11]. All

in all, this means that there are only 712 vertices in K. A computer program that

Knuth created tells us that all of these vertices (except σc) occur on some path of

length 16 or less from σo to τ . In fact, only two states have paths length of more than

of 14.

We call vertex (i, j) of the chessboard even when i+ j is even, and odd otherwise.

Note that if a knight is on an odd vertex, it can only move to an even vertex and vice

versa. A 3× n chessboard has the ceiling of 3n/2 even vertices and the floor of 3n/2

odd vertices. Thus when n is odd, the number of even vertices is one more than the
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number of odd vertices, so the endpoints of an open tour must be even. Likewise,

when n is even, the number of even vertices equals the number of odd vertices, so the

endpoints of an open tour must have opposite parity. Thus there are four different

possible open tours:

(1) Both endpoints appear in the same column; one of the endpoints being odd

and the other endpoint is even. Also, n is even.

(2) Both endpoints appear in the same column; both of them are even and n is

odd.

(3) The endpoints appear in different columns and the left endpoint is even. The

right endpoint is even if n is odd and odd if n is even.

(4) The endpoints appear in different columns, the left endpoint is odd, the right

endpoint is even and so is n.

We can divide the vertices of K into four classes: O for open, F for free, B for

bound, C for closed. Class O consists of all states whose code names end in symbol

∞; these states occurred before any endpoints of the tour have appeared. Class C

consists of all the states that end in 0. The states in class C are those of closed tours

(they also occur after both endpoints of an open tour have been seen). Between the

classes O and C we have two classes of states in which one endpoint has appeared but

not the other. Class F corresponds to type (3) above following an even left endpoint,

and class B corresponds to open tours of type (4) above following an odd left endpoint.
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The graph states of the classes O, B, and C are bipartite, so we can subdivide

them into partite classes: O0, O1, B0, B1, C0 and C1. An O0 or B0 always occur an

even number of moves or steps after σ0. In addition, a B0 or a C0 state always occurs

an even number of moves or steps before τ . The classes of O1, B1, and C1 are all

similar but with an odd number of steps. The class F has no parity restrictions, and

thus we do not need to include them with the partite classes. Below is a list of all

the allowable transitions.

O0 → O1 , O0 → B1 , O0 → F,O0 → C0, O0 → C1;

O1 → O0, O1 → B0, O1 → F,O1 → C0;

F → F, F → C0, F → C1;

B0 → B1, B0 → C1;

B1 → B0, B1 → C0;

C0 → C1, C1 → C0

It is worthy to note however that the transition O1 → C1 is illegal due to the fact that

O1 occurs an odd number of steps after τ . Therefore if O1 transitions to C1 it would

occur an even number of steps after τ . By definition however, C1 must occur an odd

number of steps after τ . It turns out, there is a total of (84, 75, 204, 110, 72, 91, 76) ver-

tices belong with the respective classes (O0, O1, F, B0, B1, C0, C1) as noted in [Knu11].
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2.3 Computing the Parity

There is a way to determine the class of any vertex directly from its state code.

First we will go over how we enumerate this, followed by how the values change with

knight moves. Given the values of mate[x] for 1 ≤ x ≤ 7 in which ‘7’ in this specific

case refers to ∞, we define the following quantities:

z0 = the number of non-zero x with mate[x] = 0 and x is even;

z1 = the number of non-zero x with mate[x] = 0 and x is odd;

f0 = the number of non-zero x with mate[x] = x and x is even;

f1 = the number of non-zero x with mate[x] = x and x is odd;

p00 = the number of x < y with mate[x] = y, x and y are both even;

p01 = the number of x < y with mate[x] = y, x + y odd;

p11 = the number of x < y with mate[x] = y, x and y both odd;

This information is then put into a table. These quantities can then be changed

based on a move made by a knight. We will organize these table changes based on

whether or not x and y are “touched” by the edges in Tk.

If x and y are previously untouched, then

f0 ← f0 − 1, f1 ← f1 − 1, p01 ← p01 − 1

If only one was untouched, one of four possible changes will occur

f0 ← f0 − 1, z1 ← z1 + 1, p00 ← p00 + 1, p01 ← p01 − 1

f0 ← f0 − 1, z1 ← z1 + 1, p01 ← p01 + 1, p11 ← p11 − 1
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f1 ← f1 − 1, z0 ← z0 + 1, p00 ← p00 − 1, p01 ← p01 + 1

f1 ← f1 − 1, z0 ← z0 + 1, p00 ← p01 − 1, p11 ← p11 + 1

If both were previously mated with other elements, we have either

z0 ← z0 + 1, z1 ← z1 + 1, p01 ← p01 − 1;

or

z0 ← z0 + 1, z1 ← z1 + 1, p00 ← p00 − 1, p01 ← p01 + 1, p11 ← p11 − 1.

In each case, the state code iterations leave the quantity

I = z0 − z1 + p00 − p11

invariant, which is very interesting. In these cases I represents the difference between

the number of odd and even vertices covered in the first k − 2 columns. When k

increases by 1, we promote vertices {1, . . . , 7} to {4, . . . 10}; this “promotion” causes

the even and odd vertices to switch roles.

z0 ↔ z1 p00 ↔ p11 I ← −I

We then attach {1, 2, 3}. This causes f0 ← f0 + 1, and f1 ← f1 + 2. As noted above,

I is invariant while making knight moves, and this holds true until we shorten the

table by removing the 0 mates of {7, 8, 9}. If the mate of ∞ is not 0, this shortening

causes z0 ← z0 − 1 and z1 ← z1 − 2, thus making I ← I + 1.

If ∞ was mated with ∞ (as in the O states) before and after this state transition

then I ← 1 − I, thus we have O0, which since this class occurs an even number of
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steps after σ0 has I = 1. Then for O0, we have I = 0. Similar logic can be used for

the class O1 and we find that I = 1.

If ∞ was mated with 0 before and after the state transition (as it is in the C

states), the shortening operation causes z0 ← z0 − 2 and z1 ← z1 − 1 thus making

I ← −1 − I. Using similar logic as above, we find that the subclass C0 corresponds

with I = −1 and the subclass C1 corresponds with I = 0.

Finally if ∞ was mated with any of the other vertices in {1, . . . , 6} before and

after the state transition (as it is in the F and B states), the process of demoting the

10 position to the 7 position has the overall effect of decreasing I by 1.

2.4 Enumeration

So far we have demonstrated a way to take the movement of knights on a chess-

board and we associate them with a state code. Using a series of transitional triplets,

we have a way of changing the state code for each new edge added to our graph. In

doing so, we have also eliminated all possible states that can’t be a part of a knight’s

tour. We then classified our states into 4 separate classes, most of which were then

themselves separated into 2 sets of partite classes. Finally, we have figured out how

to use the parity of our states to directly determine the class of our state codes. Now

we can start the good stuff.

We let N(α, β, n) be the number of paths of length n in our directed graph K

from state α to state β. Thus the number of knight’s tours on a 3× n chessboard is

then N(σ0, τ, n) for open tours and N(σc, τ, n − 1) for closed tours. The calculation
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of N(α, β, n) is not difficult to compute when n is not too large. First, we set up the

adjacency matrix A of K, in which the matrix has one column and one row for each

state of K.

The entry Aαβ in row α and column β is 1 if α→ β (i.e., there is a directed edge

from α to β) and 0 otherwise. Symbolically we write Aαβ = [α→ β]. Then

N(α, β, n) = (An)αβ

is the entry in row α and column β of the nth power of the matrix A. We can get

much more information by determining the generating function for N(α, β, n) instead

of evaluating it for a particular n:

G(α, β) = N(α, β, 0) +N(α, β, 1)z +N(α, β, 2)z2 + . . .

=
∞∑
n=0

N(α, β, n)zn

where N(α, β, 0) = 1 by convention. This generating function G(α, β) represents all

of N(α, β, n) at the same time. In addition, the formula N(α, β, n) = (An)αβ tells us

that the matrix of all these generating functions is

I + Az + A2z2 + . . . =
∞∑
n=0

Anzn = (I − Az)−1,

where I = A0 is the identity matrix of the same dimensions as A. An important

consequence of this is that everything that we want to know about enumerating these

paths comes from the inverse of the matrix I −Az. From the well-known formula for

the inverse of a matrix, the individual entries of this inverse are

±g(α, β, z)/ det(I − Az)
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in which g(α, β, z) is the determinant of the sub-matrix obtained by deleting column

α and row β. Since det(I − Az) and g(α, β, z) are polynomials in z, the generating

functions G(α, β) are rational, and the numbers N(α, β, n) obey a linear recurrence

relation with constant coefficients as explained in the next section. Since our matrix is

so big, that is a 712×712 matrix with 5506 nonzero entries, it is rather comforting to

know that we are really only interested in two of these generating functions, namely,

G(σ0, τ) and G(σc, τ).

We will create a toy example that will help illustrate the generating functions that

we are talking about above. Let us assume for the sake of simplicity that you have

a 3 × n chessboard, and states that are defined by legal chess moves. We can then

organize the states based on classes that the states live in. We are only interested in

the C0 and the C1 states since those are the classes in which σo, σc, and τ , live. We

now identify states up to dual, that is the states that are equivalent when reflected

about the horizontal midline. This takes the 712 states to 376 states up to dual. If two

states have the same set of successors, their generating functions are also identical.

The successive grouping of states up to dual with the same successors is what we call

superstates. These two reductions (duality and successors) give a reduced graph K̂

with 220 inequivalent superstate vertices. It turns out (see [Knu11]) that there are 25

C0 superstates and 27 C1 superstates. Something worthy of note is that all C class

superstates only have C class successors. This is a direct result from the allowable

transitions between classes, namely that C0 goes to C1 and vice versa, which gives us
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a natural bipartite graph. We are interested in the generating functions

G(α) = G(α, τ) = z
∑
α→β

G(β)

in which the sum extends over all successors β of α.

We model this with an explicit small example. We can then organize them in a

bipartite graph, labeling the states in C0 as αn and states in C1 as βn. To make things

more simple, we created a mock example with only 6 α vertices (C0 superstates) and

5 β vertices (C1 superstates). The directed bipartite graph for this example is shown

in Figure 2.10.

Figure 2.10: Bipartite Example

We can define G(α) formerly as

G(α) = [α = τ ] + z
∑
α→β

G(β)

We can then roughly create the generating polynomials of the vertices based on

the bipartite graph by expressing the generating function in terms of the generating
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functions of other vertices. You start with an α in this case, say α2. The successors

of α2 are β2 and β3. We then take the successors of β2 and β3 which are α3 , α4 and

α1 , α3 respectively.

G(α1) = z2(G(α5) +G(α3) +G(α4))

G(α2) = z2(2 ·G(α3) +G(α4) +G(α1))

G(α3) = z2(G(α1) +G(α5) +G(α2) +G(τ))

G(α4) = z2(2 ·G(α5) +G(α1) +G(α2) +G(τ))

G(α5) = z2(G(α3) +G(α1))

G(τ) = 1

We can calculate the generating polynomial precisely through some linear algebra.

First we will need to calculate the generalized adjacency matrix of our directed α-

graph obtained from our bipartite graph by joining αi to αj if αj is a successor of a

successor βk of αi.

Definition 2.4.1. Given a directed graph (possibly not simple), we define the gen-

eralized adjacency matrix as follows: if there are precisely n directed edges from

a vertex i to vertex j then we put n in row i, column j.

Upon calculation using the above equations for G(α) our generalized adjacency

matrix A appears below with columns and rows labeled from α1 to α5 with the

exception that τ is in the last row and column of the matrix:
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A =



0 0 1 1 1 0

1 0 2 1 0 0

1 1 0 0 1 1

1 1 0 0 2 1

1 0 1 0 0 0

0 0 0 0 0 0



Let

~G =



G(α1)

G(α2)

G(α3)

G(α4)

G(α5)

G(τ)



and ~C =



0

0

0

0

0

1


Then

~G = z2A~G+ ~C,

so

~G = (I − z2A)−1 ~C

Thus we know that the generating functions can be found by

G(αi) = the (i, τ) entry of (I − z2A)−1
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= ±g(αi)/P (z2)

in which g(αi) is the determinant of the sub-matrix with the αi row and the τ column

removed and P (z2) is the determinant of (I − z2A). In this case I is just the identity

matrix. By using Sage and the code created below we can compute ±g(αi) and P (z2) :

sage: A = matrix([

[0,0,1,1,1,0],[1,0,2,1,0,0],

[1,1,0,0,1,1],[1,1,0,0,2,1]

,[1,0,1,0,0,0],[0,0,0,0,0,0]

])

sage: C = matrix([[0,0,0,0,0,1]]).transpose()

sage: z = var(’z’)

sage: z^2*A

[ 0 0 z^2 z^2 z^2 0]

[ z^2 0 2*z^2 z^2 0 0]

[ z^2 z^2 0 0 z^2 z^2]

[ z^2 z^2 0 0 2*z^2 z^2]

[ z^2 0 z^2 0 0 0]

[ 0 0 0 0 0 0]

sage: I=matrix.identity(6)

sage: B=I-z^2*A
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sage: B

[ 1 0 -z^2 -z^2 -z^2 0]

[ -z^2 1 -2*z^2 -z^2 0 0]

[ -z^2 -z^2 1 0 -z^2 -z^2]

[ -z^2 -z^2 0 1 -2*z^2 -z^2]

[ -z^2 0 -z^2 0 1 0]

[ 0 0 0 0 0 1]

sage: B = B.transpose()

sage: g_1=B.matrix_from_rows_and_columns([1,2,3,4,5], [0,1,2,3,4])

sage: g_1

[ 0 1 -z^2 -z^2 0]

[ -z^2 -2*z^2 1 0 -z^2]

[ -z^2 -z^2 0 1 0]

[ -z^2 0 -z^2 -2*z^2 1]

[ 0 0 -z^2 -z^2 0]

sage: det(g_1)

-z^8 - z^6 - 2*z^4

sage: det(B)

-6*z^6 - 7*z^4 + 1

sage: f(z) = det(g_1)/det(B)

(z^8 + z^6 + 2*z^4)/(6*z^6 + 7*z^4 - 1)
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sage: f.taylor(z,0,25)

z |--> -66387*z^24 - 20935*z^22 - 7575*z^20 - 2227*z^18 - 891*z^16 -

223*z^14 - 111*z^12 - 19*z^10 - 15*z^8 - z^6 - 2*z^4

Thus we can calculate that

±g(α1) = z8 + z6 + 2z4

and,

P (z2) = 6z6 + 7z4 − 1

So the generating function for α1 is

± z
8 + z6 + 2z4

6z6 + 7z4 − 1
= 2z4 + z6 + 15z8 + 19z10 + 111z12 + 233z14 + 891z16 + · · ·

Now for any other generating function computation, we change the values for our g1

matrix. For example, if we compute for g2 we take the submatrix

g_2 = B.matrix\_from\_rows\_and\_columns([0,2,3,4,5],[0,1,2,3,4])

and complete the rest of the computations normally.

In the case of the actual graph K̂, Knuth [Knu11] finds that P (z) =

1− 6z − 64z2 + 200z3 + 1000z4 − 3016z5 − 3488z6 + 24256z7 − 23776z8 − 104168z9

+203408z10 + 184704z11 − 443392z12 − 14336z13 + 151296z14 − 145920z15

+263424z16 − 317440z17 − 36864z18 + 966656z19 − 573440z20 − 131072z21
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is a polynomial of degree 21. As we will see in the following section, this implies

that the number k(n) of knight’s tours on a 3 × n chessboard satisfies a 21-term

recurrence relation. To complete the enumeration of closed tours on 3×n chessboards,

Knuth computes the numerator g(α) corresponding with the generating function of

α = “6243510′′, the successor of the initial state σc. Knuth finds that G(α) =

16z10 + 80z12 − 544z14 + 8080z16 − · · ·
1− 6z2 − 64z4 + 200z6 + 1000z8 − · · ·

= 16z10 + 176z12 + 1536z14 + 25360z16 · · ·

This implies that there are no closed knight’s tours on a 3×n chessboard with n < 10

since all the coefficients of zn are zero for n < 10. Furthermore, we get 16 closed tours

up to symmetry on a 3× 10 chessboard, 176 closed tours up to symmetry on a 3× 12

chessboard, and so on. Knuth uses the same methods to enumerate open tours as

well.
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CHAPTER 3

RECURRENCE RELATIONS AND ZETA FUNCTIONS

In this chapter, we will explore how the rational generating functions G(α) of the

previous chapter give rise to recurrence relations and have a natural interpretation in

the context of the ‘zeta function’ of a certain directed graph.

3.1 Maclaurin Series of Rational Functions

A recurrence relation is an equation rn = f(rn−1, rn−2, . . . , rn−k) that recur-

sively defines a sequence rn as a function f(•) of the previous k terms with respect

to some initial conditions r0 = c0, r1 = c1, . . ., rk−1 = ck−1. We can can consider

the Fibonacci Sequence Fn as our primary example. The initial conditions are

F0 = 0, F1 = 1

and the recurrence relation is

Fn = Fn−1 + Fn−2.

So F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13 and so on. If we take the Taylor

series of the rational function

−x
x2 + x− 1

and expand it, we get

0 + 1 · x+ 1 · x2 + 2 · x3 + 3 · x4 + 5 · x5 + 8 · x6 + 13 · x7 + · · ·
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As you can see, the coefficients are the first 8 numbers of the Fibonacci sequence. Of

course, if one continues to expand the sequence further than 8 terms, the coefficients

will still follow the form of the Fibonacci numbers due to the recursive nature of the

rational function above. We can now write the function in more abstract terms

−x
x2 + x− 1

= a0 + a1x+ a2x
2 + . . .+ anx

n + · · · .

We are trying to show that an = an−1 + an−2 for n ≥ 2 and that a0 = 0 and a1 = 1.

We have

−x = (x2 + x− 1)(a0 + a1x+ a2x
2 + . . .+ anx

n)

= −a0 + (−a1 + a0)x+ (−a2 + a1 + a0)x
2 + . . .+ (−an + an−1 + an−2)x

n.

By comparing coefficients, we can see that 0 = −a0 and that −1 = −a1+a0 = −a1, so

our initial conditions a0 = 0 and a1 = 1 are satisfied. If we go even further we see that

0 = −an+an−1 +an−2 for n ≥ 2, thus following the desired pattern an = an−1 +an−2.

Interestingly enough, recurrence relations appear more than once in the study of

chess. We have talked about the recurrence relation found when studying Knight’s

tours. The other is found in the placement of rooks, which is the number of ar-

rangements of n non-attacking rooks symmetric to the diagonal which creates the

recurrence relation Qn = Qn−1 + (n− 1)Qn−2. If we place a rook on the board any-

where, we are left with n−1 rooks to be placed on an (n−1)× (n−1) board. We will

call this quantity Qn−1. For the second case, there is another rook that is symmetric

to the first rook along the same chosen diagonal. Removing the row and column of
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this rook leads to a symmetric arrangement of n − 2 rooks on a (n − 2) × (n − 2)

board. The number of these arrangements is called Qn−2, which can be placed on

the n− 1 square of the first column. We can immediately see the recurrence relation

since there are (n− 1)Qn−2 terms.

3.2 The Ihara Zeta Function

We will now define and explain the Ihara zeta function of a graph, a meromorphic

function which encodes information about certain so-called prime paths on that graph.

The Ihara zeta function is an analog for graphs of the famous Riemann zeta function

ζ(s), which for a complex variable s with real part greater than 1 is given by the

product formula

ζ(s) =
∏
p prime

(1− p−s)−1

in which the product ranges over all prime’s numbers p. Riemann showed that ζ(s)

can be extended as a meromorphic function to the whole complex plane with only one

pole at s = 1. He used methods of complex analysis like Cauchy’s residue theorem to

study the prime’s p. This section is largely motivated by Audrey Terras’ book Zeta

Functions of Graphs: A Stroll through the Garden [Ter10] and her work on the Ihara

zeta function. The Ihara zeta function, put simply, also counts primes (primes of a

graph).

To define the zeta function analog for a graph, we need some additional definition

and theorems from graph theory. We will assume that the graphs that we will deal

with are undirected and will not contain any vertices of degree zero. Additionally, we
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will allow our graphs to have loops or multiple edges between pairs of vertices and we

call graphs that do not have loops or multiple edges simple graphs. We will call any

graph that does not meet these conditions a “bad” graph. All the above are necessary

conditions for many of the main theorems regarding the Ihara zeta function. We call

a graph a regular graph when its vertices each have the same degree. A k-regular

graph is a graph in which each vertex has degree k.

Definition 3.2.1. Let V denote the vertex set of a graph G with n = |V |. The

adjacency matrix A of G is an n× n matrix with (i, j)th entry,

aij =


number of undirected edges connecting vertex i to vertex j, if i 6= j

2× number of loops at vertex i, if i = j

In order to formally define the Ihara zeta function, we need to define a prime in a

graph G with an edge set of m = |E| elements. We will orient the edges of our graph

(either arbitrarily or use some natural orientation) and label the edges as follows:

e1, . . . , em, em+1 = e−11 , . . . , e2m = e−1m

Here e−1j = ej+m denotes the edge ej with the opposite orientation. Consider a path

C viewed as a sequence C = (a1, . . . , as), in which each aj is an oriented edge of

G. Such a C is said to have a backtrack if aj+1 = a−1j for some j = 1, . . . , s − 1.

Likewise, C is said to have a tail if as = a−11 . The length of C = (a1, . . . , as) is s,

the number of edges in C. We say that v(C) is the length of the path C and similarly

v(P ) denotes the length of the prime path P. A closed path is when the starting

vertex is the same as our end vertex. If a closed path has no backtrack or tail, then
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we call the path a prime path. In other words, the path can only be traversed once.

We can call two closed paths equivalent if we can get one path from the other by

changing the starting vertex. We write [C] for the equivalence class of a closed path

C. We call the equivalence class of a prime path a prime. Given a prime path P ,

there are exactly v(P ) prime paths equivalent to P .

Figure 3.1: An Example of a Graph with a Choice of Oriented Edges

We will now give some example of primes using Figure 3.1. Our first primes are the

paths C = (e2, e3, e5), D = (e1, e2, e3, e4), E = (e4, e6, e7), F = (e4, e5, e2, e3, e6, e7).

These prime paths C,D,E, F have lengths 3, 4, 3, 7, respectively. The path E2 =

(e7, e4, e6, e7, e4, e6) is not a prime path since it traverses a previously known prime

path multiple times. However the path E2 can be decomposed into two instances

of the prime path E. Lets look at the path J = (e4, e5, e2, e3, e6, e7). This path J

is obviously prime since it is a closed path, has no backtrack and has no tail. In

addition, our path J can be decomposed into two smaller prime paths, that is prime

paths C and E. Let’s look at the path H = (e2, e3, e6, e7, e4, e5). The path H and our

preexisting path F are called equivalent prime paths. We can say that both of these
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prime paths are of the same equivalence class. Based on the definition of a prime

graph we know that on Figure 3.1 e13 = e−16 . That is, for every labeled orientation in

our example, there exists another label with an opposite orientation. Thus, the path

K = (e1, e2, e3, e
−1
4 ) is not a prime path due to the backtrack and the tail.

Definition 3.2.2. The Ihara zeta function for a finite connected graph G (without

degree-1 vertices) is defined to be the following function of the complex number u

with |u| sufficiently small:

ζG(u) = ζ(u,G) =
∏
[P ]

(1− uv(P ))−1

in which the product is over all primes [P ] in G [Ter10]. Here, we note that v(P )

denotes the length of the prime path P. Also take note that the prime [P−1] is just

the path [P ] traversed in the opposite direction.

It is worthy of note that this product converges absolutely in a circular disc

|u| ≤ RG. We call this RG, the radius of convergence.

Theorem 3.2.3. Let G be an undirected graph with a vertex set V = {v1, v2, . . . , vn}

and let the adjacency matrix A = (aij). Let Q be the diagonal matrix whose ith

diagonal entry is one less than the degree of the vertex vi. Then

ζG(u)−1 = (1− u2)m−n det(I − Au+Qu2)

in which m = |E|, n = |V | are the sizes of the edge and vertex set, respectively.

We will go over the directed version of this theorem shortly. Take note of what

the Ihara zeta function actually counts. If we take a look at the generating function
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that the Ihara zeta function produces, the coefficient of the term of power n is the

number of prime paths of length n up to equivalence. The enumeration of these

Knight’s tours comes directly from the coefficients of this generating polynomial.

The recurrence relation appears in these generating functions and is determined by

the denominator. Knuth’s polynomial is actually 1 over the zeta function of the

reduced adjacency matrix, that is, the determinant of the sub matrix with a row

and the τ column removed. In the Knuth case, the denominator of our generating

function for the Knuth example is 6z6 + 7z4− 1. As a result, the zeta function of the

Knuth example is
1

6z6 + 7z4 − 1
. Thus the determinant of the reduced sub matrix

(zeta function) is directly connected to the generating function of the bipartite graph.

We can demonstrate the Ihara Zeta function by looking at a couple of examples.

For our first example we will look at a simple 3×3 chessboard and create a graph that

expresses every possible knight move on said chessboard. The chessboard is shown in

Figure 3.2.

Figure 3.2: A 3x3 Complete Knight Graph
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We can then create the matrix A and the matrix Q (the adjacency matrix and

the diagonal matrix with the diagonals to be deg(vi - 1)). Finally we let Nm be the

number of closed paths of length m without backtracking or tails in the graph G.

Then

log ζG(x) =
∑
m≥1

Nm

m
um

which effectively determines the number of closed paths of a given length m. Once

both of the matrices are created we can then put them into Sage and compute the

Ihara Zeta function.

sage: x = var(’x’)

sage: A =matrix([

[1*x^2+1,0,0,0,0,-x,0,-x,0],[0,1*x^2+1,0,0,0,0,-x,0,-x],

[0,0,1*x^2+1,-x,0,0,0,-x,0],[0,0,-x,1*x^2+1,0,0,0,0,-x],

[0,0,0,0,-1*x^2+1,0,0,0,0],[-x,0,0,0,0,1*x^2+1,-x,0,0],

[0,-x,0,0,0,-x,1*x^2+1,0,0],[-x,0,-x,0,0,0,0,1*x^2+1,0],

[0,-x,0,-x,0,0,0,0,1*x^2+1]

])

sage: f=det(A)

sage: factor(f)

-(x^4 + 1)^2*(x^2 + 1)^2*(x + 1)^3*(x - 1)^3

sage: g=(x^4 + 1)^2*(x^2 + 1)^2*(x + 1)^2*(x - 1)^2

sage: g.expand()
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x^16 - 2*x^8 + 1

sage: f=ln(1/(x^16 - 2*x^8 + 1))

sage: (f).taylor(x,0,25)

2/3*x^24 + x^16 + 2*x^8

Since our graph has only 9 vertices, the biggest path it could have would be a path of

length 8. If we look at the coefficient of x8, it tells us that there are exactly 2 closed

paths of length 8. We can confirm this result by arbitrarily orienting the edges and

using the formula in [Hor07]. If we look at Definition 3.2.2, |u| “sufficiently small”

for a very large graph may be in fact incredibly small. In fact this definition can

be extended even further to its analytic continuation, as it is done in [Hor07]. Since

the reciprocal of this polynomial agrees with our original definition of the Ihara zeta

function within a small circle about zero in the complex plane and is analytic every-

where but at the isolated zeros of the polynomial, we take this analytic continuation

as our new definition of the Ihara zeta function of a graph.

One may wonder, is the only purpose of the zeta function to be a tool of combina-

toric significance? The short answer is no. Here we will go into another situation in

which the zeta function is used. First we will define what the prime number theorem

is. Let π(x) be the prime counting function that counts the number of primes less

than or equal to x.

lim
x→∞

π(x)
x

log(x)

= 1
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What this says is that π(x) is asymptotic to
x

log(x)
as x goes to ∞ and that the

quotient
π(x) log(x)

x
approaches 1 as x goes to ∞. The proof of this theorem was

considered a major achievement. It was proved by both Jacques Hadamard and

Charles Jean de la Vallée-Poussin in 1896 using ideas introduced by Bernhard Rie-

mann and the Riemann zeta function. The classic prime number theorem was the

main motivation behind the prime number theorem of graphs, which coincidentally

also has a connection with the zeta function. The prime number theorem of graphs

is defined as

π(m) ∼ 4G

mRm
G

as m→∞

in which π(m) = the number of primes of lengthP. and 4G = g.c.d. of the prime

path lengths. If we use the fact that the Ihara zeta function is meromorphic, one can

prove the prime number theorem of graphs.

Definition 3.2.4. Arbitrarily orient the edges e1, e2, . . . , e|E| of an undirected graph

G and let e|E|+i = e−1i for all i, 1 ≤ i ≤ |E|. The 2|E| × 2|E| matrix M given by

(M)ij =


1 if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise

is defined to be the directed edge matrix of G. A directed edge matrix of a graph G

is related to the Ihara Zeta function of G by the following theorem written by [Hor07].

Theorem 3.2.5. If M is a directed edge matrix of the graph G, then ζG(u)−1 =

det(I −Mu)
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We are going to compute the 3 × 3 example above using Theorem 3.2.5 to make

sure that both polynomials match. This is straightforward once we find M . All we

have to do is throw M into our formula and compute the polynomial using Sage.

sage: x = var(’x’)

sage: A = matrix([

[1,-x,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,-x,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,1,-x,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,1,-x,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,-x,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,1,-x,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,1,-x,0,0,0,0,0,0,0,0],[-x,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-x],[0,0,0,0,0,0,0,0,-x,1,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,-x,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,-x,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,-x,1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,-x,1,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,-x,1,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-x,1],

])

sage: det(A)

x^16 - 2*x^8 + 1

sage: f=ln(1/(x^16 - 2*x^8 + 1))

sage: (f).taylor(x,0,25)

2/3*x^24 + x^16 + 2*x^8

This is precisely what we achieved before. We will quickly demonstrate a 3 × 4

example just to see a more interesting example. We take the complete graph of a
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3× 4 graph as shown in Figure 3.4. Just like the 3× 3 example, we need to find the

Figure 3.3: 3×4 Open Knight’s Tours

adjacency matrix and the diagonal matrix with the diagonals to be deg(vi)−1. Once

that is done we can throw them into Sage and compute the Ihara Zeta function using

the following code:

sage: x=var(’x’)

sage: A = matrix([

[1*x^2+1,0,0,0,0,-x,0,-x,0,0,0,0],[0,1*x^2+1,0,0,0,0,-x,0,-x,0,0,0],

[0,0,1*x^2+1,-x,0,0,0,-x,0,0,0,0],[0,0,-x,2*x^2+1,0,0,0,0,-x,0,-x,0],

[0,0,0,0,1*x^2+1,0,0,0,0,-x,0,-x],[-x,0,0,0,0,2*x^2+1,-x,0,0,0,-x,0],

[0,-x,0,0,0,-x,2*x^2+1,0,0,0,0,-x],[-x,0,-x,0,0,0,0,1*x^2+1,0,0,0,0],

[0,-x,0,-x,0,0,0,0,2*x^2+1,-x,0,0],[0,0,0,0,-x,0,0,0,-x,1*x^2+1,0,0],

[0,0,0,-x,0,-x,0,0,0,0,1*x^2+1,0],[0,0,0,0,-x,0,-x,0,0,0,0,1*x^2+1]

])

sage: f

(16*x^24 + 24*x^22 + 25*x^20 + 8*x^18 - 4*x^16 - 18*x^14 -

22*x^12 - 22*x^10 - 11*x^8 - 2*x^6 + 3*x^4 + 2*x^2
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+ 1)*(x^2 - 1)^2

sage: g=ln(1/f)

sage: g

log(1/((16*x^24 + 24*x^22 + 25*x^20 + 8*x^18 - 4*x^16 -

18*x^14 - 22*x^12 - 22*x^10 - 11*x^8 - 2*x^6 + 3*x^4

+ 2*x^2 + 1)*(x^2 - 1)^2))

sage: (g).taylor(x,0,25)

461/6*x^24 + 88*x^22 + 73*x^20 + 16*x^18 + 10*x^16

+ 20*x^14 + 7*x^12 + 2*x^10 + 4*x^8 + 6*x^6

We can approach the meaning of the polynomial much like we did with the 3× 3 ex-

ample. Some interesting consequences that we found during our research include that

1/denominator of the Knuth generating function is equal to the Ihara zeta function.

This could be the subject of further studies. In addition, the recurrence relation in

both functions can be looked at further.



47

BIBLIOGRAPHY

[Ber18] Ernest Bergholt, Memoranda on the knight’s tour, British Chess Magazine
(1918), 74.

[Hol74] D. F. Holt, Rooks involate, The Mathematical Gazette 58 (1974), no. 404,
131–134.

[Hor07] Matthew D. Horton, Ihara zeta functions of digraphs, Linear Algebra and
its Applications 425 (2007), no. 1, 130–142.

[Knu11] Donald E. Knuth, Selected papers on fun and games, ch. 42. Long and
Skinny Knight’s Tours, The University of Chicago Press, 2011.
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