
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2017

Generic Online Learning for Partial Visible &
Dynamic Environment with Delayed Feedback
Behrooz Shahriari
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the OS and Networks Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shahriari, Behrooz, "Generic Online Learning for Partial Visible & Dynamic Environment with Delayed Feedback" (2017). Master's
Projects. 547.
DOI: https://doi.org/10.31979/etd.2qsz-84cs
https://scholarworks.sjsu.edu/etd_projects/547

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/129533291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/547?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Generic Online Learning for Partial Visible & 
Dynamic Environment with Delayed Feedback 

Online Learning for 5G Network Load-Balancer 

 

 

 

 

A Writing Project 

Presented to 

The Faculty of the Department of Computer Science 

San Jose State University 

 

 

 

 

In Partial Fulfillment of the Requirements for the Degree 

Master of Computer Science 

 

 

 

 

By 

Behrooz Shahriari 

Spring 2017 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Behrooz Shahriari 

ALL RIGHTS RESERVED 

II 
 



The Designated Committee Approves the Writing Project Titled 

Generic Online Learning for Partial Visible & Dynamic Environment with 

Delayed Feedback 

By Behrooz Shahriari 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ 

STATE UNIVERSITY 

April 2017 

 

Dr. Melody Moh Department of Computer Science 

Dr. Teng Moh Department of Computer Science 

Dr. Sami Khuri Department of Computer Science 

 

 

 

  

III 
 



Abstract 
 Reinforcement learning (RL) has been applied to robotics and many other domains which a 

system must learn in real-time and interact with a dynamic environment. In most studies the state-

action space that is the key part of RL is predefined. Integration of RL with deep learning method 

has however taken a tremendous leap forward to solve novel challenging problems such as 

mastering a board game of Go. The surrounding environment to the agent may not be fully visible, 

the environment can change over time, and the feedbacks that agent receives for its actions can 

have a fluctuating delay. In this paper, we propose a Generic Online Learning (GOL) system for 

such environments. GOL is based on RL with a hierarchical structure to form abstract features in 

time and adapt to the optimal solutions. The proposed method has been applied to load balancing 

in 5G cloud random access networks. Simulation results show that GOL successfully achieves the 

system objectives of reducing cache-misses and communication load, while incurring only limited 

system overhead in terms of number of high-level patterns needed. We believe that the proposed 

GOL architecture is significant for future online learning of dynamic, partially visible 

environments, and would be very useful for many autonomous control systems. 
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Introduction 
 Intelligent systems (IS) have the capability to observe their surrounding environment through 

their sensory input channels and interact with the environment via their output channels, which 

their actions directly or indirectly affect the environment. Also, a realistic environment is dynamic: 

with time it changes itself, as well as the elements it depends on. 

 The intelligent system is built to achieve a set of goals. IS in each time-frame requires to make 

a decision based on the observed data of its surrounding environment. An IS system requires to 

adapt in real-time based on the feedback it received. Feedback can be interpreted as some changes 

in observed data from an environment based on actions of the system; however, the feedback of a 

particular action may reach to the system with some delay, or the system may have no knowledge 

of mapping between observed feedback and its previous actions. 

 Reinforcement learning (RL), is one of the best learning methods for real-time decision making. 

RL learns from interaction with the environment via recognition and action to achieve a goal. On 

each interaction step, the agent (system) based on the state of the environment chooses an action 

that alters the state of the environment, and a reward or punishment is then provided to the agent 

as the desirability of the chosen action. In other words, the agent chooses an action based on policy, 

and the policy is learned through trial-and-error interactions of the agent with its environment. RL 

algorithms are very useful for solving a wide variety of problems especially when the model is not 

known in advance. 

 In RL the state can be a discrete function or continuous function. For environments with 

continuous state space, the Fuzzy RL has shown superiority as fuzzy inference emulates the human 

way of thinking and learning [18]. In RL a more intelligent agent, a human, defines the state space 

based on the available sensory input data. However, to address this problem, we build a state-

action space based on a set of observed patterns of sensory input data and system output 

interactions (actions) with the environment without any previously given knowledge to the system. 

 In this work we propose a self-organizing hierarchical state-action space based on the input and 

output data of system which system use to interact with a dynamic environment where it is partially 

visible to the system. Then the system receives a set of feedbacks from environments which based 

on them it adjusts its internal structure. However, the feedbacks can be interpreted as another form 
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of input data, but in here we consider feedback as reinforcement data for simplicity, a distinguished 

form of data different than input and output data. 

 

Related Works 
 All expert systems use a variation of learning methods depending on the problem they are 

solving. The common notion in all learning methods is to find a set of patterns which describes the 

problem space through them. For instance, in classifying images, the learning model learns the 

feature-patterns in input images for each category, or even for object recognition the system 

extracts and learns a set of feature-patterns for each trained object. In here we just focus on learning 

methods that adapt or modify themselves based on train data or some feedback, such as 

classification and RL. However, as in clustering the system forms set of clusters based on input 

data, but the method does not learn to adapt based on any feedback. 

Reinforcement Learning 

 Standard RL theories are based on the concept of Markov decision process (MDP). A MDP is 

denoted as a tuple 〈𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃〉, where S is the state space, A is the action space, R is the reward 

function (feedback), and P is the state transition probability, Fig. 1. 

 The goal of RL is to learn the optimal policy 𝜋𝜋∗, so that the expected sum of discounted reward 

of each state will be maximized 

𝐽𝐽𝜋𝜋∗ = max
𝜋𝜋

𝐽𝐽𝜋𝜋 = max
𝜋𝜋

𝐸𝐸𝜋𝜋[∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞
𝑡𝑡=0 ]                               (1) 
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Fig. 1. Interaction of IS (agent) with environment with RL. 

where 𝛾𝛾ϵ[0,1) is the discount factor which if set to zero, it makes the agent “opportunistic” about 

current reward while agent with 𝛾𝛾 equal to 1 strives for a long-term high reward. 𝑟𝑟𝑡𝑡 is the reward 

at time-step 𝑡𝑡, 𝐸𝐸𝜋𝜋[. ] stands for the expectation with respect to the policy 𝜋𝜋 and the state transition 

probabilities, and 𝐽𝐽𝜋𝜋 is the expected total reward. A value function 𝑄𝑄(𝑠𝑠,𝑎𝑎) represents the estimate 

of expected return attainable from executing action 𝑎𝑎 in state 𝑠𝑠. Its computation repeatedly sweeps 

through the state-action space of MDP. The value function of each state-action pair is updated 

according to 

𝑄𝑄(𝑠𝑠,𝑎𝑎) ← ∑ 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) �𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)�𝑠𝑠′     (2) 

until the largest change ∆ in the value of any state-action pair is smaller than a preset constant 

threshold, where 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the probability of state transition from 𝑠𝑠 to 𝑠𝑠′ after executing action 

𝑎𝑎 and 𝑟𝑟(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the corresponding reward. After the algorithm converges, the optimal policy is 

followed by simply taking the greedy action in each state 𝑠𝑠 as 

𝑎𝑎∗ = 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎

𝑄𝑄∗(𝑠𝑠, 𝑎𝑎),   (∀𝑠𝑠 ∈ 𝑆𝑆)                          (3) 

 As for model-free cases where the agent has no prior knowledge of the environment, Q-learning 

(an RL algorithm) can achieve optimal policies from delayed rewards. At a certain time step 𝑡𝑡, the 

agent observes the state 𝑠𝑠𝑡𝑡, and then chooses an action 𝑎𝑎𝑡𝑡. After executing action 𝑎𝑎𝑡𝑡, the agent 

receives a reward 𝑟𝑟𝑡𝑡+1 and gets into the next state 𝑠𝑠𝑡𝑡+1. Then the agent will choose the next action 

𝑎𝑎𝑡𝑡+1 according to the best-known knowledge and learned policy. Let 𝛼𝛼𝑡𝑡 be the learning rate where 

𝛼𝛼𝑡𝑡 equal to zero makes the agent incapable of learning anything while 𝛼𝛼𝑡𝑡 equal to one makes it 
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consider only the most recent information. The one-step updating rule of Q-learning can be 

described as, 

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡 �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎′)�      (4) 

 Q-learning algorithm chooses the best action based on the state-action pair with highest Q value; 

however, in SARSA (State-Action Reward State-Action) [1] actions are chosen by 𝜀𝜀-greedy policy 

and updating algorithm is described as follows, 

𝑄𝑄𝑡𝑡+1�𝑠𝑠𝑡𝑡 ,  𝑎𝑎𝑡𝑡� = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡 �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑄𝑄′𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)�    (5) 
where in (5) 𝑄𝑄′ is the Q value selected with 𝜀𝜀-greedy policy at 𝑡𝑡 + 1 for (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). In 𝜀𝜀-greedy policy 

the action is chosen based on highest Q value with probability of 1-𝜀𝜀 otherwise is chosen randomly, 

where 𝜀𝜀 < 0.1. 𝜀𝜀-greedy policy allows the agent to explore the state-action space more and it 

avoids fast convergence to local optimal solution. 

Incremental Learning Method for RL 

 Traditional RL techniques such as Q-learning and temporal difference (TD) algorithm [32] have 

focused on stationary tasks with fixed environment. To deal with the changing environment, an 

agent has to learn non-stationary knowledge incrementally and adapt to the new environment 

gradually. In [19], they propose an incremental learning method for RL in a dynamic environment. 

Their approach is designed to guide the previous optimal policy to a new one adapting to the new 

environment when the environment changes. First, a RL agent (e.g., Q-learning) computes the 

value functions and optimal policy in the original environment. When the environment changes, it 

generates a RL detector-agent to detect the changed part of environment (as called drift 

environment). Then it primarily updates the value functions for the drift environment and its 

neighboring environment using dynamic programming, which is called prioritized sweeping of 

drift environment. Finally, the agent starts a new RL process with the partly updated value 

functions to a new optimal policy adapting to the new environment, aiming at fusing new 

information (drift environment) into the existing knowledge system (previous optimal policy) in 

an incremental way.  

 RL learns knowledge from delayed rewards when interacting with the external environment. 

We assume that the environment changes when any changes of reward functions are detected. 
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When the environment changes, the objective for incremental learning in dynamic environments 

is to guide the original optimal policy 𝜋𝜋∗ to a new one 𝜋𝜋𝑛𝑛∗  that adapts to the new environment by 

fusing new information into the existing knowledge system incrementally. 

Environment Drift 

 Environment drift refers to a change of the environment model over time. It implies that the 

corresponding reward 𝑟𝑟 of a certain state-action pair (𝑠𝑠,𝑎𝑎) has changed over time. The drift 

environment is defined as the set of all state-action pairs whose rewards in the new environment 

differ from those in the original one. 

Assume that 𝐸𝐸(𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃) is the original environment model obtained by the RL agent and 

𝐸𝐸𝑛𝑛(𝑆𝑆𝑛𝑛,𝐴𝐴𝑛𝑛,𝑅𝑅𝑛𝑛,𝑃𝑃𝑛𝑛) is the new environment model that will be obtained. Given a state-action 

pair(𝑠𝑠,𝑎𝑎), 𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴, 𝑠𝑠 ∈ 𝑆𝑆𝑛𝑛,𝑎𝑎 ∈ 𝐴𝐴𝑛𝑛, if 𝑟𝑟(𝑠𝑠, 𝑎𝑎) ≠ 𝑟𝑟𝑛𝑛(𝑠𝑠,𝑎𝑎), 𝑟𝑟 ∈ 𝑅𝑅, 𝑟𝑟𝑛𝑛 ∈ 𝑅𝑅𝑛𝑛, which means that 

when taking action 𝑎𝑎 in state 𝑠𝑠, the one-step reward 𝑟𝑟𝑛𝑛(𝑠𝑠,𝑎𝑎) obtained in the new environment is 

different from the reward 𝑟𝑟(𝑠𝑠,𝑎𝑎) obtained in the original environment, then the system gets the 

message that this given state-action pair (𝑠𝑠, 𝑎𝑎) has drifted. The set of all state-action pairs which 

have drifted is called “drift environment”, which can be formulated as 

𝐸𝐸𝑑𝑑(𝑆𝑆𝑑𝑑,𝐴𝐴𝑑𝑑 ,𝑅𝑅𝑑𝑑,𝑃𝑃𝑑𝑑)|𝑟𝑟𝑛𝑛(𝑠𝑠𝑑𝑑,𝑎𝑎𝑑𝑑) ≠ 𝑟𝑟(𝑠𝑠𝑑𝑑,𝑎𝑎𝑑𝑑), where 𝑠𝑠𝑑𝑑 ∈ 𝑆𝑆,𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴, 𝑠𝑠𝑑𝑑 ∈ 𝑆𝑆𝑛𝑛 and 𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴𝑛𝑛. 

Drift Detection 

 The first step for this algorithm is to detect any changes in the environment of reward for a pair 

of state-action. System needs to observe the rewards both in the original and the new environment 

to get the changed part. Since the original environment model 𝐸𝐸 has been obtained by the RL 

agent, the only remaining thing is to observe rewards in the new environment. Due to having no 

prior knowledge about the new environment, the algorithm generates a detector-agent to explore 

it by executing a virtual RL process. The RL detector-agent observes the rewards by fully exploring 

the new environment with equal probability all the time. 

 Let us assume the total number of all state-action pairs in the original environment is 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, and 

the number of the traversed state-action pairs (also contained in the original environment) explored 

by the detector-agent is 𝑁𝑁𝑒𝑒. When 𝑁𝑁𝑒𝑒
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

≥ 𝜌𝜌, where 𝜌𝜌 is a preset threshold close to but less than 1, 

the detector-agent ends the detection process for exploring the new environment. Finally, it 
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compares the rewards of state-action space in the new environment with those in the original 

environment, and obtains the changed part, i.e., drift environment. 

 Since the drift environment is the source of environmental changes, we can update the state-

action space corresponding to drift environment by dynamic programming with top priority, using 

the value functions from the original environment and the rewards from the new environment. 

Then the value functions of the neighboring state-action space will also change under the influence 

of drift environment. 

Integrated Incremental Learning Algorithm 

 First, in the original environment, the RL agent obtains the optimal policy 𝜋𝜋∗, value functions 

𝑄𝑄(𝑠𝑠,𝑎𝑎) (∀𝑠𝑠 ∈  𝑆𝑆,𝑎𝑎 ∈  𝐴𝐴) and the environment model 𝐸𝐸(𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃) through a standard Q-learning 

process. 

 Second, after any environment drift is detected, the new environment differs from the original 

environment in the form of rewards changing. The different part where the rewards have changed 

is denoted as drift environment 𝐸𝐸𝑑𝑑(𝑆𝑆𝑑𝑑,𝐴𝐴𝑑𝑑 ,𝑅𝑅𝑑𝑑 ,𝑃𝑃𝑑𝑑), which generates new data in the new 

environment. 

 Third, compared with the original environment, the value functions of the drift part in the new 

environment tend to have the largest changes since drift environment is the source of new data. 

Then, the value functions of the neighboring environment will have relatively smaller changes on 

the influence of drift environment. Therefore, it gives priority to the 𝑚𝑚-degree neighboring 

environment of drift environment 𝐸𝐸𝑑𝑑𝑛𝑛𝑠𝑠 (𝑆𝑆𝑑𝑑𝑛𝑛,𝐴𝐴𝑑𝑑𝑛𝑛,𝑅𝑅𝑑𝑑𝑛𝑛,𝑃𝑃𝑑𝑑𝑛𝑛) to sweep the value functions using 

dynamic programming. 

 Finally, it initializes the value functions of the new environment with the combination of the 

value functions of 𝑄𝑄𝑑𝑑𝑛𝑛 and 𝑄𝑄. The part of 𝐸𝐸𝑑𝑑𝑛𝑛𝑠𝑠  with prioritized sweeping stands for the new 

information. The part of the original environment 𝐸𝐸 stands for existing knowledge to accelerate 

the learning process in the new environment. Based on this mechanism of fusing new information 

into the existing knowledge system, the agent restarts a standard Q-learning process and computes 

the new optimal policy 𝜋𝜋𝑛𝑛∗  in an incremental way. 

 Ultimately, they have tested their algorithm on a changing maze. In general, their algorithm is 

proposed for optimizing the transporting goods inside Amazon warehouses. 
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Fuzzy Inference Systems and RL 

 For realistic agents, such as robots, drones, etc., which deal with continuous state-action space, 

the original Q-learning or other RL methods cannot be applied. In [18], [20], and [21], fuzzy RL 

has been applied to various problems with continuous state-action space, as fuzzy inference system 

(FIS) has proven to be extremely effective on problems for domains with continuous space such 

as control systems. 

Q-Learning and FIS 

 In Fuzzy Inference System (FIS), we generate several if-then rules based on fuzzy membership 

functions. In FIS, we have several parameters that need to be tuned, 

1) Number of fuzzy membership function per dimension of problem space and their 

parameters. 

2) Number of fuzzy rules and each rule, the process of how to combine the right membership 

functions to generate the best rules.  

 Supervised learning method has been used to tune these two major parameters in FIS. However, 

for problems in control domain, we need to tune the system in real-time. To optimize the structure 

of fuzzy rules, we use the RL. As it is described in [21], FIS learning includes two phases, structural 

and parametric learning. Generally, the first phase consists in tuning the number of rules, i.e., the 

number of fuzzy labels per variable, while the second phase can be used to tune both the position 

of input and output fuzzy sets. They have developed a Q-learning method for FIS that finds and 

tunes the fuzzy rules and its parameters in real-time based on the feedback the system receives 

from the environment. They have tested their algorithm on various simulation and compared them 

with traditional FIS methods. Their algorithm out-performed others. 

FIS and RL 

 In the previous section, we reviewed how online learning methods such as Q-Learning has 

improved real-time adaptation of fuzzy inference systems by finding the optimized parameters. As 

RL methods are applicable on problems with quantified state-action space then we can use FIS 

quality of mapping from continuous input space to continuous output space in RL for environments 

with continuous state-action space. For example in [18] we have a robot whose goal is to maintain 
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a specific distance to a wall and follow the walls of a room. To train a robot like that we need a 

neural network as depicted in Fig. 2. The first layer is the sensory-input layer, second layer is the 

fuzzification of input data (mapping of input to their relative membership functions) which each 

membership function is Gaussian function 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑝𝑝 �− �𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�
2
𝜎𝜎𝑖𝑖𝑖𝑖2� � , 𝑖𝑖 = 1,2, … , 𝑟𝑟; 𝑗𝑗 =

1,2, … ,𝑛𝑛, where 𝑟𝑟 is the number of input variables and for each we have created 𝑛𝑛 membership 

functions. The inference system is based on Takagi-Sugeno method. In layer 3 the network 

combine the input from second layer (firing strength of each rule) as follow, Φj(𝑥𝑥𝑖𝑖, 𝑥𝑥2, … , 𝑥𝑥𝑟𝑟) =

𝑒𝑒𝑥𝑥𝑝𝑝 �−∑ �𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�
2
𝜎𝜎𝑖𝑖𝑖𝑖2�𝑟𝑟

𝑖𝑖=1 � , 𝑗𝑗 = 1,2, … ,𝑛𝑛. Normalization of neurons activity happens in layer 4 

as follow, 𝛼𝛼𝑖𝑖 = Φi
∑ Φj
𝑛𝑛
𝑗𝑗=1

, 𝑖𝑖 = 1,2, … , 𝑛𝑛. Finally defuzzifications happens in layer 5 using the center-

of-gravity method, the output variable as a weighted summation of incoming signals is given by 

𝑦𝑦 = ∑ 𝛼𝛼𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑦𝑦 is the value of an output variable and 𝑜𝑜𝑖𝑖 is the consequent of the 𝑗𝑗th rule. 

In their approach each rule 𝑅𝑅𝑖𝑖 has 𝑚𝑚 possible discrete actions 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑠𝑠} and it 

memorizes the parameter vector 𝑄𝑄 associated with each of these actions. These 𝑄𝑄-values are then 

used to select actions so as to maximize the discounted sum of the rewards obtained while 

achieving the task. They build the FIS with competing actions for each rule 𝑅𝑅𝑖𝑖 as follows, 

𝑰𝑰𝑰𝑰 𝑋𝑋 𝑖𝑖𝑠𝑠 𝑆𝑆𝑖𝑖 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑎𝑎1 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎1) 𝑶𝑶𝑶𝑶 𝑎𝑎2 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎2) 𝑶𝑶𝑶𝑶…𝑶𝑶𝑶𝑶 𝑎𝑎𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎𝑠𝑠). The 

continuous actions performed by the learner for a particular state is a weighted sum of the actions 

elected in the fired rules that describe the state, whose weights are normalized firing strengths 

vector of the rules, 𝛼𝛼. Subsequently we updated the Q-values of the elected actions according to 

their contributions. 

Their proposed fuzzy Q-learning has three main features, 

1. It is a fuzzy system with ellipsoidal regions of rules that are generated automatically. 

2. Continuous actions can be generated. The continuous action is an average of the actions of 

every fuzzy rule weighted by the firing strengths of fuzzy rules and the Q-values of the 

actions are updated according to the contributions of fuzzy rules. 

3. Prior knowledge can be embedded into the fuzzy rules, which can reduce the training time 

significantly. 
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 In generation of continuous actions they use similar exploration-exploitation strategy for 

selecting the best action similar SARSA algorithm among all fuzzy rules. The system updates the 

Q-values similar to original Q-learning algorithm. However, in here they also update the fuzzy 

rules parameters dynamically. For example if for a new input data point the firing strength of some 

membership functions are less than a specific threshold then the system generates a new 

membership function with center fixed to value of data input and width set the maximum distance 

of this input data to its closest membership functions. Also, based on other criteria and the error of 

the system the center of fuzzy membership functions and their width will be updated accordingly. 

 

  

Fig. 2. Structure of fuzzy rule set for Q-Learning. 

 They tested their learning algorithm on a robot that must follow a wall in a room by keeping a 

constant distant to the wall. Then later after training the robot on a specific room they placed it in 

a new room with different interior design to observe the effect of prior learning on learning speed 

for the new environment which proved that their system adapt faster with prior knowledge in a 

new environment. In Fig. 3, we have the performance for an agent with a prior knowledge. 
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Fig. 3. Performance comparison of dynamic fuzzy Q-learning (DFQL) with training directly and 
retraining in a new environment. (a) Number of failures versus number of episodes. (b) Reward 

values versus number of episodes. (c) Number of rules generated versus number of episodes. 

 

Deep Learning – Classification and RL 

 Deep learning (DL), inspired by the mechanism of human vision, recently attracted more and 

more attention due to its good performance in many fields such as speech recognition, computer 

vision, and natural language processing [2]–[4]. The intention of DL is to discover more abstract 

representations in higher levels [5]. It involves a class of models to hierarchically learn high-level 

features of input data with a deep hierarchical architecture. DL has the general formulation as 

follow, 
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𝑓𝑓(𝒙𝒙) ≈ 𝑎𝑎1 �𝑎𝑎2�… �𝑎𝑎𝑛𝑛(𝒙𝒙)�… ��                           (6) 
where 𝒙𝒙 is the input, 𝑎𝑎𝑖𝑖(𝑖𝑖 = 1, … ,𝑛𝑛) is the operation on the 𝑖𝑖th layer, and 𝑓𝑓(𝒙𝒙) is the new 

representation of 𝒙𝒙. The input of a higher layer is the output of its previous layer in the DL models. 

In this way, it can progressively lead to more abstract and complex features at deeper layers. More 

abstract features are generally invariant to most local changes of the input. Commonly used DL 

models include deep belief networks [6], deep Boltzmann machines [7], stacked auto-encoders 

(SAE) [8], and convolutional neural networks. Recent study also shows that deep models can give 

better approximations to nonlinear functions than shallow models [9], [10]. 

 As DL has a hierarchical structure, thus it can be applied to any classical learning algorithm 

such as classification [22]-[25]. Also, most importantly recently DL has been applied to RL [26]-

[27] on the transformation of state-action space as well as utilization of deep network to find the 

best action policy in a very dynamic environment such as games [28] where the agent played a 

game to master it after abundant iterations. 

Playing Atari with Deep Reinforcement Learning 

 Learning to control agents directly from high-dimensional sensory inputs like vision and speech 

is one of the long-standing challenges of reinforcement learning (RL). Most successful RL 

applications that operate on these domains have relied on hand-crafted features combined with 

linear value functions or policy representations. Clearly, the performance of such systems heavily 

relies on the quality of the feature representation. 

 Recent advances in deep learning have made it possible to extract high-level features from raw 

sensory data, leading to breakthroughs in computer vision and speech recognition. These methods 

utilize a range of neural network architectures, including convolutional networks, multilayer 

perceptrons, restricted Boltzmann machines and recurrent neural networks, and have exploited 

both supervised and unsupervised learning. It seems natural to ask whether similar techniques 

could also be beneficial for RL with sensory data. 

 However reinforcement learning presents several challenges from a deep learning perspective. 

Firstly, most successful deep learning applications to date have required large amounts of hand 

labelled training data. RL algorithms, on the other hand, must be able to learn from a scalar reward 

signal that is frequently sparse, noisy and delayed. The delay between actions and resulting 
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rewards, which can be thousands of time-steps long, seems particularly daunting when compared 

to the direct association between inputs and targets found in supervised learning. Another issue is 

that most deep learning algorithms assume the data samples to be independent, while in 

reinforcement learning one typically encounters sequences of highly correlated states. 

Furthermore, in RL the data distribution changes as the algorithm learns new behaviors, which can 

be problematic for deep learning methods that assume a fixed underlying distribution. 

 They have demonstrated in [28] that a convolutional neural network can overcome these 

challenges to learn successful control policies from raw video data in complex RL environments. 

The network is trained with a variant of the Q-learning algorithm, with stochastic gradient descent 

to update the weights. To alleviate the problems of correlated data and non-stationary distributions, 

they use an experience replay mechanism which randomly samples previous transitions, and 

thereby smooth the training distribution over many past behaviors. They apply our approach to a 

range of Atari 2600 games implemented in The Arcade Learning Environment (ALE). Atari 2600 

is a challenging RL testbed that presents agents with a high dimensional visual input (210 × 160 

RGB video at 60Hz) and a diverse and interesting set of tasks that were designed to be difficult for 

humans players. Their goal is to create a single neural network agent that is able to successfully 

learn to play as many of the games as possible. The network was not provided with any game-

specific information or hand-designed visual features, and was not privy to the internal state of the 

emulator; it learned from nothing but the video input, the reward and terminal signals, and the set 

of possible actions—just as a human player would. Furthermore the network architecture and all 

hyper-parameters used for training were kept constant across the games. So far the network has 

outperformed all previous RL algorithms on six of the seven games they have attempted and 

surpassed an expert human player on three of them. 

 Recent breakthroughs in computer vision and speech recognition have relied on efficiently 

training deep neural networks on very large training sets. The most successful approaches are 

trained directly from the raw inputs, using lightweight updates based on stochastic gradient 

descent. By feeding sufficient data into deep neural networks, it is often possible to learn better 

representations than handcrafted features [33]. These successes motivate our approach to 

reinforcement learning. Our goal is to connect a reinforcement learning algorithm to a deep neural 

network which operates directly on RGB images and efficiently process training data by using 

stochastic gradient updates. 
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 Tesauro’s TD-Gammon architecture provides a starting point for such an approach. This 

architecture updates the parameters of a network that estimates the value function, directly from 

on-policy samples of experience, 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑎𝑎+1, drawn from the algorithm’s interactions with 

the environment (or by self-play, in the case of backgammon). Since this approach was able to 

outperform the best human backgammon players 20 years ago, it is natural to wonder whether two 

decades of hardware improvements, coupled with modern deep neural network architectures and 

scalable RL algorithms might produce significant progress. 

 In contrast to TD-Gammon and similar online approaches, they utilize a technique known as 

experience replay [34] where they store the agent’s experiences at each time-step, 𝑒𝑒𝑡𝑡 =

(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in a data-set 𝐷𝐷 = 𝑒𝑒1, … , 𝑒𝑒𝑁𝑁, pooled over many episodes into a replay memory. 

During the inner loop of the algorithm, they applied Q-learning updates, or minibatch updates, to 

samples of experience, 𝑒𝑒 ~ 𝐷𝐷, drawn at random from the pool of stored samples. After performing 

experience replay, the agent selects and executes an action according to an 𝜀𝜀-greedy policy. Since 

using histories of arbitrary length as inputs to a neural network can be difficult, our Q-function 

instead works on fixed length representation of histories produced by a function 𝜙𝜙.  

 Second, learning directly from consecutive samples is inefficient, due to the strong correlations 

between the samples; randomizing the samples breaks these correlations and therefore reduces the 

variance of the updates. Third, when learning on-policy the current parameters determine the next 

data sample that the parameters are trained on. For example, if the maximizing action is to move 

left then the training samples will be dominated by samples from the left-hand side; if the 

maximizing action then switches to the right then the training distribution will also switch. It is 

easy to see how unwanted feedback loops may arise and the parameters could get stuck in a poor 

local minimum, or even diverge catastrophically. By using experience replay the behavior 

distribution is averaged over many of its previous states, smoothing out learning and avoiding 

oscillations or divergence in the parameters. Note that when learning by experience replay, it is 

necessary to learn off-policy (because our current parameters are different to those used to generate 

the sample), which motivates the choice of Q-learning. 

 In practice, the algorithm only stores the last 𝑁𝑁 experience tuples in the replay memory, and 

samples uniformly at random from 𝐷𝐷 when performing updates. This approach is in some respects 

limited since the memory buffer does not differentiate important transitions and always overwrites 
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with recent transitions due to the finite memory size 𝑁𝑁. Similarly, the uniform sampling gives 

equal importance to all transitions in the replay memory. A more sophisticated sampling strategy 

might emphasize transitions from which we can learn the most, similar to prioritized sweeping. 

 In summary, they have evaluated their algorithm on seven Atari game and they use GPU to 

accelerate the computation and learning process. The system was able to learn the best policy after 

100 epochs and each epoch is around 30 minutes of game play. Their work is a proof that with 

help of deep learning and RL methods we can tackle problems that previously deemed impossible 

to solve. 

 In [27], we have asynchronous method for deep RL to expedite the learning process. The goal 

of their research is to have several actors (agents) to explore the environment under various 

parameters and learn their own policies during an epoch and then by the end of the epoch they 

merge their learned parameters. They have extended their algorithm from 1-step Q-learning and 

SARSA method of n-step learning which they store feedbacks of n previous steps and adjust the 

network based on gradient descent to find the optimized policy faster in less training epochs. 

 Finally, as the first successful Artificial General Intelligence (AGI) [35], we have a deep and 

super deep neural network that is formed from several layers with several nodes per layer. Each 

node is a deep network on its own. The purpose of this super network is to learn various problems 

on various domains with evolutionary methods such as Genetic Algorithm (GA) to find the best 

learning path for each domain in the network. The network has shown great elasticity on learning 

continuously on new domains with previous knowledge learned on different domains. 

 

Reinforcement Learning Architect with 
Self-Organized State-Action Space 

GOL (Generic Online Learning), our proposed IS, must be able to adapt to any environment 

dynamic or static, as well as not having any previous knowledge of environment of action policy. 

GOL forms its abstract definition of state-action space with three hierarchical deep layered 

network consist of entities. In this research, we claim only three layer is sufficient for the purpose 

of online-learning. Each entity at each layer is the abstract definition of its lower layer entities. 
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Environment 

 As the environment is dynamic, the GOL (agent) perceives it via a set of sensory input channels. 

Also, the perception of the agent from the environment can be partial, some of the input data can 

be missing or corrupted. The input data enters the system as a stream in real-time. 

Channels 

Channels are the critical part of GOL structure, as it forms its perception of its surrounding 

environment based on the input data it receives and makes interaction with the environment via 

output channels. 

Input Channel (IC) 

 Input channel is the source of input data stream to GOL which it perceives its environment 

through ICs. As an example, if the agent is a robot then visual and auditory data can be defined as 

ICs. 

Output Channel (OC) 

 Output channel is the mediator between agent and environment for interaction. For our robot 

example above, its arms, fingers, and legs can be defined as OCs. 

 ICs input data format is a stream of numerical data, and OCs output is format is the same as ICs 

which OCs’ output will be translated into an actual action based on the type of channel and the 

agent we are building. 

GOL Entities 

There are two types of entity. 

1. Numerical Entity (EN). 

2. Generic Entity (GN). 

 As the structure of GOL has three layers, the ENs form the first layer, and GN forms the other 

two. As entities in the second and third layer are similar in nature, we distinguish them into two 
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groups for clarity. We define GN of the second layer as Medium-Entity (EM) and for the third 

layer as High-Entity (EH). 

Numerical Entity (NE) 

 NE is the representation of numerical value with some loss in the granularity of value, which 

EN can be a fuzzy number [11]-[12]. In this research, for simplicity instead of using fuzzy numbers 

to reduce the number of ENs, we do the conversion with an acceptable loss in the granularity of 

number up to two decimal to an EN. To clarify, numbers such as 102, 110, and 100 are mapped to 

one EN. 

Medium Entity (EM) 

 EM represents a pattern of observed ENs for each channel over time. As in each layer, we store 

a limited number of entities then each EM is formed from the history of ENs. 

 Each EN has one-to-many connections to several EMs as those EM are built based on ENs in 

the first layer 

High Entity (HE) 

 HE represents a high-level abstract pattern of observed EMs for a set of ICs and OCs over time. 

Each EH is formed from an EMs’ history of some chosen channels. EH is the high-level description 

of observed input and output data over time. As granularity of EH is lower than EMs, then we 

expect to have less number of EHs compare to EMs. 

 Each EM has one-to-many connections to several EHs as those EH are built based on EMs in 

the second layer. 

GOL Structure 

 GOL has a hierarchical structure with three layers made of two different types of entities. 

GOL First Layer 

 First layer, where the input data and previous output data (actions made by the system) are 

entering the system as a stream. As the data are numerical data, then the system converts each 

input data to an EN. 
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GOL includes its previous executed actions (output data) because it finds the EH of the observed 

environment and its interaction with the environment to adapt to the best policy in time. Thus, EH 

describes the environment and GOL’s actions in time for an adaptation of GOL.  

 First layer stores EN of IC and OC data stream for the past 𝑚𝑚1 observation, where we consider 

10 ≤ 𝑚𝑚1 ≤ 50 and in this research, we set 𝑚𝑚1 to 50. So, when there is 𝑚𝑚1 ENs in memory of each 

channel in the first-layer and new data is observed then GOL forget the oldest data. As Fig. 4 

depicts the first layer, where each node represents an EN. In Fig. 4 new data stream enters the 

system from right side, so the old data are pushed to left side. 

GOL Second Layer 

 Second layer, consists of EMs of each channel as a stream. As later we will describe the GOL 

learning algorithm, GOL finds the best four EMs set (4EM) matching the current data of each 

channel in the first layer, in the current time frame. 

 In Fig. 5 and Fig. 6 we will have at most four EMs per each channel in the first layer which 

they are input data to the second layer, Fig. 7. 

 In Fig. 7, for the second layer like the first layer, it stores the last 𝑚𝑚2 observed data stream, 

which for second layer we set 𝑚𝑚2 to 20. However, as it is evident from Fig. 7 the granularity of 

time for second layer is lower than first layer, as each 4EM set describe the pattern of data in first 

layer for a specific time-frame then history of these 4EMs that shapes second layer is representative 

in a different time frame, or more precisely a longer time-frame. 

 Also, according to Fig. 7, GOL perceives both sets of ICs and OCs as a high-level channel (HC) 

in the second layer. As in this layer input or output data has lost their meaning and they are both 

considered as input data. 

GOL Third Layer 

 Third layer, is the highest layer in GOL where EHs are stored there, and this layer has no other 

functionality. 

17 
 



 

Fig. 4. First layer of GOL with limited memory for the data stream of OC and IC in the format 
of ENs. 
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Fig. 5. EMs generated from ENs in the first layer or have high similarity with ENs in the first 
layer.  

 

 

 

Fig. 6. A group of selected EMs based on ENs in the first layer as input data for the second 
layer.  
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Fig. 7. Second layer of GOL.  
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GN Network 

 As it is described, EHs and EMs are formed in the first and the second layer based on their 

lower layer entities. Both EH and EM have the same general structure; however, we represent 

them separately for clarity. 

EM Network 

 EM network, represents a pattern of ENs over time for an IC or OC. EM network is structured 

in three sections, 

1. Past. 

2. Present. 

3. Future. 

 Fig. 8 depicts EM network structure in detail. Fig. 9, describes the purpose of each node in EM 

network. Each main node in EM network represents an entity in the lower layer. EM network is 

separated into three sections because the present section is used to match each EM with the current 

data in a channel of the first layer, the past section is used to validate the best matching EMs based 

on their present network entities, and the future section is used to predict the coming pattern or 

select best possible action. 

 According to Fig. 8, each entity-node (eN) in entity’s network that represents an entity in a 

lower layer has an immediate connection to the eN in front of it in the next time step. Also, each 

eN has random connections with its neighbor nodes in the next time step in the network. For 

simplicity in this research, the connections between nodes have no extra data such as weight. Also, 

the structure of network will remain constant during learning. The eNs in the different section are 

connected to each other. Each section does not detach eN’s connections in network structure, the 

main purpose of head-nodes and section-nodes, Fig. 9, are to organize the network and make 

evaluation and prediction computationally more convenient. 
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EH Network 

 EH network, represents HC. Thus it includes all EMs of selected ICs and OCs. In Fig. 10, we 

have EH network structure, as we notice its structure is similar to EM’s network except the fact 

that each section has two head-nodes. One head-node for ICs’ entities and another one for OC’s 

entities; however, the connections between eNs of each part (IC and OC) exist as this entity 

describes the pattern for all input data and output data in a time-frame. 

 In EM and EH networks’ structure, the number of layers in present section is higher than the 

other two sections. As in this research, the ratio is as follows, 3:6:1 (past : present : future), with 

majority given to present section. 
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Fig. 8. EM network structure and its sections for an IC or OC. 

 

 

Fig. 9. EM network nodes description, including eNs and section nodes.  
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Fig. 10. EH network structure and its sections for selected ICs and OCs. 
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GOL Learning Algorithm 

 As GOL is an RL system, then it adapts based on received feedbacks for the actions it has 

executed. So, first GOL needs to find the best action based on the data it receives then adapts based 

on the observed feedbacks. 

Find the Best EH 

 First GOL must find the best EH, which describes the recently observed data and self-taken 

actions, to select the best action. However, the system needs to have at least one EH to start making 

decisions; we call the system with no EH a crude system. 

 

 

Fig. 11. Algorithm 1, finding of the best action based on ENs in first layer. 

Input: ENs of the first layer. 

1. A set of sensory input data from each channel arrives; however, some sensory 
data may be missing or corrupted. 

2. GOL finds ENs of each input data and output data, of its previous actions, for 
each channel. 

3. GOL adds the current ENs to the memory of first entities layer of each channel, 
first-layer (FML). 

4. Get the list of all EMs (cEM) that current ENs defines them. 
5. For every EM in cEM match their network with entities in FML for their 

respective channel. Referring to Algorithm 2. 
6. Pick the best 4 possible matches based on 𝜀𝜀-greedy policy for each channel 

(4EM) in cEM after the comparison. 
7. Add 4EM of each channel to second layer (SML). 
8. Find all the best matching EHs (cEH) based on the entities in second layer. 

Referring to Algorithm 2. 
9. Pick the best EH (bEH) in cEH with 𝜀𝜀-greedy policy as the best solutions or the 

observed patterns. 
10. Make an action based on bEH. 

a. Pick all last EMs which they are OUT EMs in bEH. 
b. Now for each out-channel based on 𝜀𝜀-greedy policy pick the best action. 

Output: The best action for each OC. 

* Value of 𝜺𝜺 is set to 0.15 for all algorithms in this research. 
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 When GOL is crude, it means the first layer or/and second layer do not have enough data to 

form any EMs and consequently an EH. During crude state, the system makes random actions 

based on the nature of its OC.  

  

Fig. 12. Algorithm 2, the finding of the best matching higher entities based on the lower layers. 

 When the first EH is formed, then it is refined to make decisions and adapt. In a period of 

crudeness, the first layer forms new EMs based on ENs, if no matching exists for the observed 

ENs. However, even during refined state and even existence of an EM with a good match with 

ENs in the first layer, the system forms a new EM with a small probability of 0.005. Also, the 

system has the same behavior in forming EH is the second layer but the probability of forming a 

new EH is 0.0005. 

 In Fig. 11, we have the algorithm of finding the best action based on the current ENs in the first 

layer. In Fig. 12 we have, algorithm 2, the algorithm to find the best EH based on entities in the 

lower layer. 

Input: Entities of first or second layer. 

1. IF system is crude THEN build an entity. Even IF system is refined THEN 
with small probability make a new entity. 

2. Start from PRESENT section of the entity’s network and level by level 
match the nodes’ entities with entities in FML/SML level by level. Number 
of matches give us the activation of PRESENT section. 

3. Validate the entity based on its PAST section, then calculate the final 
activation value of each entity as 

𝑎𝑎=PRESENT activation 

𝑎𝑎′=PAST activation 

IF 𝑎𝑎′ < 𝑎𝑎 THEN sign=-1 

ELSE sign=1 

𝑎𝑎𝑒𝑒 = entity activation. 

𝑎𝑎𝑒𝑒 = 𝑎𝑎 × 0.7 + 𝑎𝑎′ × 𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 × 0.3  

4. Select the 4 of the best matching entities based on 𝜀𝜀-greedy policy. 
Output: A list of matching entities, EMs or EHs, depending on the given layer. 
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 GOL stores the last 10 EHs and their ENs that resulted in action, which they were the result of 

algorithm 1. Afterward, it uses them in adaptation step, Fig. 13. 

Adaptation 

 After finding the best action for each OC, the system interacts with the environment. 

Simultaneously, the system is receiving feedbacks from the environment; however, the system 

does not know which executed action should receive a particular feedback as feedbacks are 

arriving with various delays. 

 

Fig. 13. GOL adaptation algorithm based on feedbacks.  

 Feedback can be another form of input data, but in here we consider them as a reinforcement 

data, not an input data, which some feedbacks are not given to system directly and are observable 

through input channels, they are indirect feedbacks which we ignore them in this research. 

Input: Stream of feedbacks. 

 GOL collects reinforcement feedbacks it receives from environment between 
arrival of new data from channels. 

 GOL store EHs from algorithm 1 in a limited-sized list of LEH. 
1. For each feedback (fb) in list of collected feedback. 

a. fb affects all entities in LEH (with size of 𝐿𝐿 = 10) with effect-ratio (𝒆𝒆𝒆𝒆) 𝑒𝑒𝑟𝑟𝑘𝑘 
where 𝑘𝑘 is the index of entity in LEH. In other words, 𝑘𝑘 is the ranked 
position of action-entity (EH), which 𝑘𝑘 equal 0 is the most recent action 
taken. 

b. 𝑒𝑒𝑟𝑟𝑘𝑘 can follow one of the following equations, 
1) Linear (𝑒𝑒𝑟𝑟𝑘𝑘 = 1 − 𝑘𝑘/𝐿𝐿) 
2) Exponential (𝑒𝑒𝑟𝑟𝑘𝑘 = 𝑒𝑒−𝑘𝑘2) 

Where 𝑒𝑒𝑟𝑟𝑘𝑘 ≤ 1 for all 𝑘𝑘 ≥ 0, and in here we select linear equation for 

simplicity. Each out-channel and each portion of that channel can have a 

distinguish adaptation policy. 

c. Adaptation follows SARSA algorithm, which at the time of adaptation 
system finds the best action based on current data and uses (5) with 𝛼𝛼 equal 
to 0.15 and 𝛾𝛾 equal to 0.85. 
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 In Fig. 13, we have the adaptation algorithm based on the feedbacks and SARSA adaptation 

algorithm. After applying the current feedback for adaptation of GOL structure, the system keeps 

the current feedbacks with a probability of 0.2 to use them in the next adaptation iteration. 

 

Simulation of the 5G Mobile Network 
Load-Balancer with Dynamic Parameters 

as the Environment 
 Provisioning of a high data rate wireless connectivity in rural and remote areas has became a 

stringent challenge for perspective 5G wireless networks. Unlike the previous generation, 5G 

mobile network is service driven rather than technology driven [13]. The concept of the 

“broadband access everywhere” is a pillar of 5G service requirements, and the target performance 

of 50 Mbps everywhere is considered regarding the experienced user throughput [14]. 

 In this section, we apply GOL to event load balancer for the 5G mobile network; however, 

GOL, in general, can be applied to any cloud load balancer. There have been various approaches 

to network load-balancing issue [29]-[31]. For example in [30], with the help of knowledge of 

social network and inner-network formed by mobile users in the same local network they have 

proposed an optimal solution to effectively cache the most demanding data in the edge network 

and user devices. However, in this research, we are focusing on intelligently balance the load of 

allocation between various available cells in the network in real-time. 

Events 

 Any mobile user constantly generates new events, such as.   

A. Attach request: and event to register user device (UE) with a tower. 

B. Tracking update: an event to notify the tower and cell about geo-location movement and 

movement between cells that cover different frequencies. 

C. Service request: an event from UE to the tower that contains a request message for some 

data. 
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D. Paging request: an event from tower to Internet to fetch the requested data. In this research 

we do not consider this event as it is not generated by mobile user. 

E. Handover request: an event that handover a UE to another tower. 

F. Detach request: an event for termination of the connection with a tower. 

User 

 In our simulation, each user has a unique ID called userID. Also, we have four types of users, 

premium-mobile, premium-stationary, basic-mobile, and basic-stationary. The number of 

premium users is smaller than the number of normal users. 

Load Balancer (LB) 

 LB is responsible for assigning each arrival event per user to a virtual machine (VM) to store 

the event data. The size of event data is 2Kbytes. LB keeps track of assigned VM per user based 

on userID, frequency per user-type, frequency per event-type, and frequency per pair of (user-

type, event-type). Fig. 14 depicts the LB and VMs. 

Virtual Machine (VM) 

 In our simulation, we have R VMs, as we set R to three. Each VM cache-size (Cache-Size) can 

store only 700 user’s data, Fig. 15. Each user type has its separate data cache-queue; the size of 

each queue can change in time as new users are arriving. Also, when there are 700 users stored in 

the VM and a new one arrives then VM removes the oldest one from one of the queues randomly. 

As new user data arrives, the old ones are pushed down the queue. 

Cloud Storage (CS) 

 Cloud storage, according to Fig. 14, is used for data persistency in VMs, as old data in each 

user-queue may get deleted then each VM periodically synchronize each user data with CS based 

on user-data synchronization-time (ST) to have the most recent data in the cloud. In each VM as 

new users are arriving the old user-data are push down to the bottom of the queue. Thus VM 

reduces their ST for faster synchronization as the chance of deletion increases for the user-data 

near the bottom of each user-queue. 
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ICs and OCs for LB 

 LB uses GOL to find the best possible VM for each event. Thus, first we need to define the ICs 

and OCs for our load-balancing problem, and there are as follow, 

𝐼𝐼𝐶𝐶0 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜 𝑡𝑡ℎ𝑖𝑖𝑠𝑠 𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒
𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜 𝑡𝑡ℎ𝑖𝑖𝑠𝑠 𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒

𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞𝑟𝑟𝑒𝑒𝑛𝑛𝑐𝑐𝑦𝑦 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑎𝑎 �𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 , 𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒�
𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒
𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒

   (6) 

𝐼𝐼𝐶𝐶𝑖𝑖 = �
𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒  𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖

𝑎𝑎𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑆𝑆𝑆𝑆 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖
 1 ≤ 𝑖𝑖 ≤ 𝑅𝑅        (7) 

𝑂𝑂𝐶𝐶𝑖𝑖 = �
𝑆𝑆𝑆𝑆 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖
𝑜𝑜𝑎𝑎𝑣𝑣𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓 𝑉𝑉𝑀𝑀𝑖𝑖  (𝑄𝑄 𝑜𝑜𝑎𝑎𝑣𝑣𝑟𝑟𝑒𝑒)

   1 ≤ 𝑗𝑗 ≤ 𝑅𝑅                (8) 

 However, in our simulation, we randomly set values of some input data in ICs except 𝐼𝐼𝐶𝐶0 to -1 

to make the environment partially invisible to the LB. 

 

Fig. 14. The structure of LB and R number of VMs with CS for persistency of data. 
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Fig. 15. The internal structure of a VM and user-queues.  

 

Definition of Punishment, Reward, and System Objective 
The LB has two objectives: 
1. The first objective is to have minimum total cache-miss for all VMs, as LB tries to assign 

each user-data to a right VM with less probability of deletion of that user-data in time. As 
deletion of a user-data happens when they are pushed down in a cache-queue by insertion of 
new users into cache-queue of the VM.  

2. The second objective is to have the minimum communication load between CS and VMs. 
When a cache-miss happens, the assigned VM checks the CS to download the latest stored 
data for the assigned user from CS. Also, a VM synchronize (upload data to CS) each user-
data based on user’s ST. 

 For GOL to minimize the cache-miss and communication load between VMs and CS, we need 

to define punishment and reward for each case, and they are as follow, 

Punishment 
I. Cache-miss punishment affects the value of selected VM (8). For each action entity (EM) 

we calculate the cache-miss punishment as follow, 
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𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (100 − 10 × 𝑟𝑟𝑡𝑡)                (9) 
where 𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖  is the cache-miss punishment of action taken for 𝑖𝑖th VM in (7) (𝑗𝑗th VM in 
(8)), 𝑟𝑟𝑡𝑡 is the user-type and for 𝑟𝑟𝑡𝑡 = 1 which means top priority user (premium-mobile) 
receives the maximum punishment for a cache-miss, and 𝑒𝑒𝑟𝑟𝑘𝑘 is described in Fig. 13. 

II. Cloud-load punishment,  

Upload 
 When cloud-load is type of upload to CS, then it influences ST of user-data with the 
following punishment, 

𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (5 × 𝑑𝑑𝑠𝑠)                         (10) 
where 𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖  is the upload punishment due to synchronization of user-data with CS, and 𝑑𝑑𝑠𝑠 
is the upload data in bytes which is 2KB. 

Download 
 When the type of cloud-load is download from CS, then we have a cache-miss and 
punishment is defined as, 

𝑝𝑝𝑓𝑓𝑑𝑑𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × 𝑑𝑑𝑠𝑠                   (11) 
where 𝑝𝑝𝑓𝑓𝑑𝑑𝑖𝑖  is the download punishment and 𝑑𝑑𝑠𝑠 is the download size in bytes which if CS 
has the data of user then 𝑑𝑑𝑠𝑠 is 2KB, otherwise it is the load of network communication 
with the CS. 

III. VM miss-match, happens when LB assigns a new incoming event of allocated user to a 
different VM. Thus the system has an inner VM load. The punishment for inner-load is 
defined as follow, 

𝑝𝑝𝑙𝑙𝑜𝑜𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (0.1𝑑𝑑𝑠𝑠)         (12) 
where 𝑝𝑝𝑙𝑙𝑜𝑜𝑖𝑖  is inner-VMs communication load due to miss-match.  
Reward 

System receives rewards for each event that it processes and they are as follow, 
I. VM value reward is as follow, 

𝑟𝑟 = 200 − 3 × (𝑛𝑛𝑓𝑓𝑜𝑜 − 𝑛𝑛𝑆𝑆𝑆𝑆)                          (13) 
𝑟𝑟𝑜𝑜𝑖𝑖 = 𝑒𝑒𝑟𝑟𝑖𝑖 × �𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 + 𝑟𝑟

2
�                       (14) 

where 𝑟𝑟𝑜𝑜𝑖𝑖 is the reward for VM value of executed action 𝑛𝑛𝑓𝑓𝑜𝑜 is number of feedbacks that 
GOL has received between processing two events, as feedbacks are delayed then the system 
can receive more than one feedback between arrival two user-events, 𝑛𝑛𝑆𝑆𝑆𝑆 is the number of 
upload punishments that effected ST of user-data, and 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 is a random value between 0 to 
𝑟𝑟/2. 

II. VM ST reward for each user-type is defined as follow, 

𝑟𝑟′ = 𝑐𝑐𝑚𝑚 − 10 × 𝑛𝑛𝑆𝑆𝑆𝑆                               (15) 
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𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑟𝑟𝑖𝑖 × �𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2′ + 𝑟𝑟′

2
�                                 (16) 

where 𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖  is the reward of synchronization time of users in all queues to increase 
synchronization time to reduce uploads to CS, and 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2′  is similar to 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 in (14). In (15), 
𝑐𝑐𝑚𝑚 is equal to 1000 and the intuition for selection of its value is that we estimated that 𝑛𝑛𝑆𝑆𝑆𝑆 
could have a maximum value of 100, which during our experiment we observe that value 
of 𝑛𝑛𝑆𝑆𝑆𝑆 fluctuates between 3 to 5. 

 As the system receives feedbacks between processing each two events, it stores them then after 

processing all feedbacks with a probability of 0.2 it keeps all currently observed feedbacks for 

processing in the iteration due to nature of feedbacks that are delayed feedbacks. 

 

Experiments and Results 
 In our simulation, we have the following parameters, in table I, for our environment. 

TABLE I.  ENVIRONMENT SIMULATION PARAMETERS  

Parameter Description 

𝑁𝑁𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠 Number of mobile user in environment is set to 3000. 

𝑈𝑈𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 Number of user-types is set 4 with 1 as premium user. 

𝐸𝐸𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 Number of event-types is set to 5. 

𝑅𝑅 Number of VMs is set to 3. 

Cache-Size 
Maximum number of users that each VM can cache their data is 

set to 700 users. 

𝑁𝑁𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 Number of events is set to 50,000 events for entire simulation. 
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 We evaluate performance of GOL for load balancing with following methods, 

Memorized-BestVM (MB) 

 Memorized-BestVM (MB), for each new user to the system LB selects the best VMs based on 

the cache-queue size depending on the user-type and select its ST randomly from range of [300-

15000] milliseconds (ms) and memorized where the data of this user is stored. Afterward, for all 

events related to stored users, it sends them to the same VM but each time chooses their ST 

randomly. Thus, in this case, we never have miss-matches in VMs, but we have cache-misses. 

Memorized-BestVM with Fixed ST (MB-F) 

 MB-F is like MB but the ST always is set to 1000ms (1 second). 

 In our simulation, each epoch (time-frame) of simulation contains processing of 20 user-

events. Table II depicts the result of our simulation for all three methods. 

 In Fig. 16, we have the comparison of our three load-balancing methods for average of cache-

miss for three VMs during the entire simulation. 

 

 

Fig. 16. Comparison for average of cache-miss. 
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Fig. 17. Comparison for total communication load between VMs and CS.  

 

Fig. 18. Comparison for average of ST in three VMs in milliseconds.  
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 In Fig. 17, we have the comparison of our three load-balancing methods for total 

communication load between VMs and CS. In Fig. 18, we have the comparison of our three load-

balancing methods for average of ST for three VMs during the entire simulation. 

 

TABLE II.  RESULTS OF SIMULATION OF ALL THREE LOAD BALANCING METHODS  

 

A
verage of 

cache-m
iss – 3 
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Total D
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nloaded 
D
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ytes – 3 V

M
s 

Total U
ploaded 

D
ata from
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S in 

B
ytes – 3 V

M
s 

A
verage of ST 

(m
s) – 3 V

M
s 

MB 2.23 26610157 242579298 5244 

MB-F 2.2 26333613 319332352 976.1 

GOL 0.84 10770172 184080760 18502.6 

 

 As we can notice from Table II, GOL has better performance, which confirms that the static 

structure of GOL with three layers has the capability to adapt to our environments without having 

previous knowledge and pre-defined state-action space. Figure 19 and 20 depict the growth of 

cache-miss for MB and GOL as the best two solutions for the load-balancing problem. 

 As we notice in Fig. 19 and 20, the growth rate of cache-miss with GOL is tremendously lower 

compare to MB. In Fig. 21-23 we have the increase in number of entities over time, which by the 

end of simulation we have a total of 51 EHs, 1747 EMs, and 8750012 ENs. As an EH is an abstract 

description of the observed input and output data over time, thus the number of EH represents the 

total number of patterns to describe the whole environment and system’s interaction with that 

environment. As we may have over 8 million ENs, which some of them may have low usage 

frequency and can be removed but the total number of EHs is less than 100. Number of EHs proves 

that system has a good performance on finding the high-level pattern that describes a dynamic and 
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chaotic environment due to various randomness in the environment, also in feedback policies (14) 

and (16).  

 

 

Fig. 19. Total cache-miss in time for MB (epochs). 
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Fig. 20. Total cache-miss for GOL in time (epochs).  

 

 

Fig. 21. Growth for number ENs over time (epochs). 
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Fig. 22. Growth for number EMs over time (epochs). 

 

Fig. 23. Growth for number EHs over time (epochs).  
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Conclusion and Future Work 
 We have proposed an intelligent system based on RL algorithm with simple three deep-layered 

structure for a dynamic and partially visible environment where feedbacks are delayed. Then we 

tested our proposed method for load balancing in the 5G mobile network. In [15]–[17] RL has 

been used to solve various problems related to mobile networking and messaging. Our result for 

load balancing demonstrates that our proposed method has the capability to adapt to some optimal 

solutions over time just by forming high-level and abstract features from observed data in time. 

 However, there are several improvements that can be applied, 

1. The growth rate of ENs is extremely high which can be reduced by using fuzzy numbers 

in the first layer to find the best matching EN for numerical input/output data. 

2. Using Fuzzy Inference System (FIS), similar to fuzzy RL to determine the final action 

based on all final OUT EMs in the selected EH. 

3. In here for simplicity the connections between nodes in entities network is random, and 

they are static; however, the connection between nodes can adapt in time to form a better 

structure. 

4. Also, the connections between nodes in entities structure have no meaning which by adding 

some data such as weight we can give modify the activation procedure of each entity and 

finding the best possible actions. 

5. In here to find the best matching entity based on data in lower layer we consider similarity 

layer by layer in entity network; however, a sub-graph of the network may not have any 

similarity with the current data. We can add a new sub-graph for that portion with a 

probability to avoid creating a new entity. 

 In this research, EH is built from all output channels and input channels; however, an EH may 

only be built from some selected ICs and OCs. In this way, different EHs belong to various 

contexts. The advantage of having context allows the system to have the fourth layer that connects 

similar EHs from different contexts based on their activation patterns and network structure, which 

ultimately these connections between different contexts can lead to new and different actions in 

time. 
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