
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2017

Generic Online Learning for Partial Visible &
Dynamic Environment with Delayed Feedback
Behrooz Shahriari
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the OS and Networks Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shahriari, Behrooz, "Generic Online Learning for Partial Visible & Dynamic Environment with Delayed Feedback" (2017). Master's
Projects. 547.
DOI: https://doi.org/10.31979/etd.2qsz-84cs
https://scholarworks.sjsu.edu/etd_projects/547

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/129533291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/547?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Generic Online Learning for Partial Visible &
Dynamic Environment with Delayed Feedback

Online Learning for 5G Network Load-Balancer

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the Degree

Master of Computer Science

By

Behrooz Shahriari

Spring 2017

© 2017

Behrooz Shahriari

ALL RIGHTS RESERVED

II

The Designated Committee Approves the Writing Project Titled

Generic Online Learning for Partial Visible & Dynamic Environment with

Delayed Feedback

By Behrooz Shahriari

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ

STATE UNIVERSITY

April 2017

Dr. Melody Moh Department of Computer Science

Dr. Teng Moh Department of Computer Science

Dr. Sami Khuri Department of Computer Science

III

Abstract
 Reinforcement learning (RL) has been applied to robotics and many other domains which a

system must learn in real-time and interact with a dynamic environment. In most studies the state-

action space that is the key part of RL is predefined. Integration of RL with deep learning method

has however taken a tremendous leap forward to solve novel challenging problems such as

mastering a board game of Go. The surrounding environment to the agent may not be fully visible,

the environment can change over time, and the feedbacks that agent receives for its actions can

have a fluctuating delay. In this paper, we propose a Generic Online Learning (GOL) system for

such environments. GOL is based on RL with a hierarchical structure to form abstract features in

time and adapt to the optimal solutions. The proposed method has been applied to load balancing

in 5G cloud random access networks. Simulation results show that GOL successfully achieves the

system objectives of reducing cache-misses and communication load, while incurring only limited

system overhead in terms of number of high-level patterns needed. We believe that the proposed

GOL architecture is significant for future online learning of dynamic, partially visible

environments, and would be very useful for many autonomous control systems.

IV

TABLE OF CONTENTS

1. Introduction 1

2. Related Works 2

2.1 Reinforcement Learning 2

2.1.1 Incremental Learning Method for RL 4

2.1.2 Fuzzy Inference Systems and RL 7

2.2 Deep Learning – Classification and RL 10

3. Reinforcement Learning Architect with Self-Organized State-Action Space 14

3.1 Environment 15

3.2 Channels 15

3.2.1 Input Channel (IC) 15

3.2.2 Output Channel (OC) 15

3.3 GOL Entities 15

3.3.1 Numerical Entity (NE) 16

3.3.2 Medium Entity (EM) 16

3.3.3 High Entity (HE) 16

3.4 GOL Structure 16

3.4.1 GOL First Layer 16

3.4.2 GOL Second Layer 17

3.4.3 GOL Third Layer 17

3.5 GN Network 21

3.5.1 EM Network 21

3.5.2 EH Network 22

3.6 GOL Learning Algorithm 25

V

3.6.1 Find the Best EH 25

3.6.2 Adaptation 27

4. Simulation of the 5G Mobile Network Load-Balancer with Dynamic Parameters as the

Environment 28

4.1 Events 28

4.2 User 29

4.3 Load Balancer (LB) 29

4.4 Virtual Machine (VM) 29

4.5 Cloud Storage (CS) 29

4.6 ICs and OCs for LB 30

4.7 Definition of Punishment, Reward, and System Objective 31

4.7.1 Punishment 31

4.7.2 Reward 32

5. Experiments and Results 33

5.1 Memorized-BestVM (MB) 34

5.2 Memorized-BestVM with Fixed ST (MB-F) 34

6. Conclusion and Future Work 40

7. References 41

VI

LIST OF FIGURES

Figure 1. Interaction of IS (agent) with environment with RL 3

Figure 2. Structure of fuzzy rule set for Q-Learning 9

Figure 3. Performance comparison of dynamic fuzzy Q-learning (DFQL) 10

Figure 4. First layer of GOL 18

Figure 5. EMs generated from ENs in the first layer 19

Figure 6. A group of selected EMs based on ENs in the first layer 19

Figure 7. Second layer of GOL 20

Figure 8. EM network structure and its sections for an IC or OC 23

Figure 9. EM network nodes description, including eNs and section nodes 23

Figure 10. EH network structure and its sections for selected ICs and OCs 24

Figure 11. Algorithm 1, finding of the best action based on ENs in first layer 25

Figure 12. Algorithm 2, the finding of the best matching higher entities 26

Figure 13. GOL adaptation algorithm based on feedbacks 27

Figure 14. The structure of LB and R number of VMs with CS for persistency of data 30

Figure 15. The internal structure of a VM and user-queues 31

Figure 16. Comparison for average of cache-miss 34

Figure 17. Comparison for total communication load between VMs and CS 35

Figure 18. Comparison for average of ST in three VMs in milliseconds 35

Figure 19. Total cache-miss in time for MB (epochs) 37

Figure 20. Total cache-miss for GOL in time (epochs) 38

Figure 21. Growth for number ENs over time (epochs) 38

Figure 22. Growth for number EMs over time (epochs) 39

Figure 23. Growth for number EHs over time (epochs) 39

VII

LIST OF TABLES

Table I. Environment Simulation Parameters 33

Table II. Results of Simulation of All Three Load Balancing Methods 36

VIII

ACRYNOMS AND ABBREVIATIONS

IS Intelligent Systems

RL Reinforcement Learning

MDP Markov Decision Process

SARSA State-Action Reward State-Action

TD Temporal Difference

FIS Fuzzy Inference System

DFQL Dynamic Fuzzy Q-Learning

DL Deep Learning

ALE Arcade Learning Environment

AGI Artificial General Intelligence

GA Genetic Algorithm

GOL Generic Online Learning

IC Input Channel

OC Output Channel

EN Numerical Entity

GN Generic Entity

EM Medium Entity

HE High Entity

HC High-level Channel

eN entity-Node

LB Load Balancer

VM Virtual Machine

CS Cloud Storage

ST Synchronization Time

MB Memorized-BestVM

MB-F Memorized-BestVM with Fixed ST

IX

Introduction
 Intelligent systems (IS) have the capability to observe their surrounding environment through

their sensory input channels and interact with the environment via their output channels, which

their actions directly or indirectly affect the environment. Also, a realistic environment is dynamic:

with time it changes itself, as well as the elements it depends on.

 The intelligent system is built to achieve a set of goals. IS in each time-frame requires to make

a decision based on the observed data of its surrounding environment. An IS system requires to

adapt in real-time based on the feedback it received. Feedback can be interpreted as some changes

in observed data from an environment based on actions of the system; however, the feedback of a

particular action may reach to the system with some delay, or the system may have no knowledge

of mapping between observed feedback and its previous actions.

 Reinforcement learning (RL), is one of the best learning methods for real-time decision making.

RL learns from interaction with the environment via recognition and action to achieve a goal. On

each interaction step, the agent (system) based on the state of the environment chooses an action

that alters the state of the environment, and a reward or punishment is then provided to the agent

as the desirability of the chosen action. In other words, the agent chooses an action based on policy,

and the policy is learned through trial-and-error interactions of the agent with its environment. RL

algorithms are very useful for solving a wide variety of problems especially when the model is not

known in advance.

 In RL the state can be a discrete function or continuous function. For environments with

continuous state space, the Fuzzy RL has shown superiority as fuzzy inference emulates the human

way of thinking and learning [18]. In RL a more intelligent agent, a human, defines the state space

based on the available sensory input data. However, to address this problem, we build a state-

action space based on a set of observed patterns of sensory input data and system output

interactions (actions) with the environment without any previously given knowledge to the system.

 In this work we propose a self-organizing hierarchical state-action space based on the input and

output data of system which system use to interact with a dynamic environment where it is partially

visible to the system. Then the system receives a set of feedbacks from environments which based

on them it adjusts its internal structure. However, the feedbacks can be interpreted as another form

1

of input data, but in here we consider feedback as reinforcement data for simplicity, a distinguished

form of data different than input and output data.

Related Works
 All expert systems use a variation of learning methods depending on the problem they are

solving. The common notion in all learning methods is to find a set of patterns which describes the

problem space through them. For instance, in classifying images, the learning model learns the

feature-patterns in input images for each category, or even for object recognition the system

extracts and learns a set of feature-patterns for each trained object. In here we just focus on learning

methods that adapt or modify themselves based on train data or some feedback, such as

classification and RL. However, as in clustering the system forms set of clusters based on input

data, but the method does not learn to adapt based on any feedback.

Reinforcement Learning

 Standard RL theories are based on the concept of Markov decision process (MDP). A MDP is

denoted as a tuple 〈𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃〉, where S is the state space, A is the action space, R is the reward

function (feedback), and P is the state transition probability, Fig. 1.

 The goal of RL is to learn the optimal policy 𝜋𝜋∗, so that the expected sum of discounted reward

of each state will be maximized

𝐽𝐽𝜋𝜋∗ = max
𝜋𝜋

𝐽𝐽𝜋𝜋 = max
𝜋𝜋

𝐸𝐸𝜋𝜋[∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞
𝑡𝑡=0] (1)

2

Fig. 1. Interaction of IS (agent) with environment with RL.

where 𝛾𝛾ϵ[0,1) is the discount factor which if set to zero, it makes the agent “opportunistic” about

current reward while agent with 𝛾𝛾 equal to 1 strives for a long-term high reward. 𝑟𝑟𝑡𝑡 is the reward

at time-step 𝑡𝑡, 𝐸𝐸𝜋𝜋[.] stands for the expectation with respect to the policy 𝜋𝜋 and the state transition

probabilities, and 𝐽𝐽𝜋𝜋 is the expected total reward. A value function 𝑄𝑄(𝑠𝑠,𝑎𝑎) represents the estimate

of expected return attainable from executing action 𝑎𝑎 in state 𝑠𝑠. Its computation repeatedly sweeps

through the state-action space of MDP. The value function of each state-action pair is updated

according to

𝑄𝑄(𝑠𝑠,𝑎𝑎) ← ∑ 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) �𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)�𝑠𝑠′ (2)

until the largest change ∆ in the value of any state-action pair is smaller than a preset constant

threshold, where 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the probability of state transition from 𝑠𝑠 to 𝑠𝑠′ after executing action

𝑎𝑎 and 𝑟𝑟(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the corresponding reward. After the algorithm converges, the optimal policy is

followed by simply taking the greedy action in each state 𝑠𝑠 as

𝑎𝑎∗ = 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎

𝑄𝑄∗(𝑠𝑠, 𝑎𝑎), (∀𝑠𝑠 ∈ 𝑆𝑆) (3)

 As for model-free cases where the agent has no prior knowledge of the environment, Q-learning

(an RL algorithm) can achieve optimal policies from delayed rewards. At a certain time step 𝑡𝑡, the

agent observes the state 𝑠𝑠𝑡𝑡, and then chooses an action 𝑎𝑎𝑡𝑡. After executing action 𝑎𝑎𝑡𝑡, the agent

receives a reward 𝑟𝑟𝑡𝑡+1 and gets into the next state 𝑠𝑠𝑡𝑡+1. Then the agent will choose the next action

𝑎𝑎𝑡𝑡+1 according to the best-known knowledge and learned policy. Let 𝛼𝛼𝑡𝑡 be the learning rate where

𝛼𝛼𝑡𝑡 equal to zero makes the agent incapable of learning anything while 𝛼𝛼𝑡𝑡 equal to one makes it

3

consider only the most recent information. The one-step updating rule of Q-learning can be

described as,

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡 �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎′)� (4)

 Q-learning algorithm chooses the best action based on the state-action pair with highest Q value;

however, in SARSA (State-Action Reward State-Action) [1] actions are chosen by 𝜀𝜀-greedy policy

and updating algorithm is described as follows,

𝑄𝑄𝑡𝑡+1�𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡� = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡 �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑄𝑄′𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)� (5)
where in (5) 𝑄𝑄′ is the Q value selected with 𝜀𝜀-greedy policy at 𝑡𝑡 + 1 for (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). In 𝜀𝜀-greedy policy

the action is chosen based on highest Q value with probability of 1-𝜀𝜀 otherwise is chosen randomly,

where 𝜀𝜀 < 0.1. 𝜀𝜀-greedy policy allows the agent to explore the state-action space more and it

avoids fast convergence to local optimal solution.

Incremental Learning Method for RL

 Traditional RL techniques such as Q-learning and temporal difference (TD) algorithm [32] have

focused on stationary tasks with fixed environment. To deal with the changing environment, an

agent has to learn non-stationary knowledge incrementally and adapt to the new environment

gradually. In [19], they propose an incremental learning method for RL in a dynamic environment.

Their approach is designed to guide the previous optimal policy to a new one adapting to the new

environment when the environment changes. First, a RL agent (e.g., Q-learning) computes the

value functions and optimal policy in the original environment. When the environment changes, it

generates a RL detector-agent to detect the changed part of environment (as called drift

environment). Then it primarily updates the value functions for the drift environment and its

neighboring environment using dynamic programming, which is called prioritized sweeping of

drift environment. Finally, the agent starts a new RL process with the partly updated value

functions to a new optimal policy adapting to the new environment, aiming at fusing new

information (drift environment) into the existing knowledge system (previous optimal policy) in

an incremental way.

 RL learns knowledge from delayed rewards when interacting with the external environment.

We assume that the environment changes when any changes of reward functions are detected.

4

When the environment changes, the objective for incremental learning in dynamic environments

is to guide the original optimal policy 𝜋𝜋∗ to a new one 𝜋𝜋𝑛𝑛∗ that adapts to the new environment by

fusing new information into the existing knowledge system incrementally.

Environment Drift

 Environment drift refers to a change of the environment model over time. It implies that the

corresponding reward 𝑟𝑟 of a certain state-action pair (𝑠𝑠,𝑎𝑎) has changed over time. The drift

environment is defined as the set of all state-action pairs whose rewards in the new environment

differ from those in the original one.

Assume that 𝐸𝐸(𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃) is the original environment model obtained by the RL agent and

𝐸𝐸𝑛𝑛(𝑆𝑆𝑛𝑛,𝐴𝐴𝑛𝑛,𝑅𝑅𝑛𝑛,𝑃𝑃𝑛𝑛) is the new environment model that will be obtained. Given a state-action

pair(𝑠𝑠,𝑎𝑎), 𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴, 𝑠𝑠 ∈ 𝑆𝑆𝑛𝑛,𝑎𝑎 ∈ 𝐴𝐴𝑛𝑛, if 𝑟𝑟(𝑠𝑠, 𝑎𝑎) ≠ 𝑟𝑟𝑛𝑛(𝑠𝑠,𝑎𝑎), 𝑟𝑟 ∈ 𝑅𝑅, 𝑟𝑟𝑛𝑛 ∈ 𝑅𝑅𝑛𝑛, which means that

when taking action 𝑎𝑎 in state 𝑠𝑠, the one-step reward 𝑟𝑟𝑛𝑛(𝑠𝑠,𝑎𝑎) obtained in the new environment is

different from the reward 𝑟𝑟(𝑠𝑠,𝑎𝑎) obtained in the original environment, then the system gets the

message that this given state-action pair (𝑠𝑠, 𝑎𝑎) has drifted. The set of all state-action pairs which

have drifted is called “drift environment”, which can be formulated as

𝐸𝐸𝑑𝑑(𝑆𝑆𝑑𝑑,𝐴𝐴𝑑𝑑 ,𝑅𝑅𝑑𝑑,𝑃𝑃𝑑𝑑)|𝑟𝑟𝑛𝑛(𝑠𝑠𝑑𝑑,𝑎𝑎𝑑𝑑) ≠ 𝑟𝑟(𝑠𝑠𝑑𝑑,𝑎𝑎𝑑𝑑), where 𝑠𝑠𝑑𝑑 ∈ 𝑆𝑆,𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴, 𝑠𝑠𝑑𝑑 ∈ 𝑆𝑆𝑛𝑛 and 𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴𝑛𝑛.

Drift Detection

 The first step for this algorithm is to detect any changes in the environment of reward for a pair

of state-action. System needs to observe the rewards both in the original and the new environment

to get the changed part. Since the original environment model 𝐸𝐸 has been obtained by the RL

agent, the only remaining thing is to observe rewards in the new environment. Due to having no

prior knowledge about the new environment, the algorithm generates a detector-agent to explore

it by executing a virtual RL process. The RL detector-agent observes the rewards by fully exploring

the new environment with equal probability all the time.

 Let us assume the total number of all state-action pairs in the original environment is 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, and

the number of the traversed state-action pairs (also contained in the original environment) explored

by the detector-agent is 𝑁𝑁𝑒𝑒. When 𝑁𝑁𝑒𝑒
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

≥ 𝜌𝜌, where 𝜌𝜌 is a preset threshold close to but less than 1,

the detector-agent ends the detection process for exploring the new environment. Finally, it

5

compares the rewards of state-action space in the new environment with those in the original

environment, and obtains the changed part, i.e., drift environment.

 Since the drift environment is the source of environmental changes, we can update the state-

action space corresponding to drift environment by dynamic programming with top priority, using

the value functions from the original environment and the rewards from the new environment.

Then the value functions of the neighboring state-action space will also change under the influence

of drift environment.

Integrated Incremental Learning Algorithm

 First, in the original environment, the RL agent obtains the optimal policy 𝜋𝜋∗, value functions

𝑄𝑄(𝑠𝑠,𝑎𝑎) (∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴) and the environment model 𝐸𝐸(𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃) through a standard Q-learning

process.

 Second, after any environment drift is detected, the new environment differs from the original

environment in the form of rewards changing. The different part where the rewards have changed

is denoted as drift environment 𝐸𝐸𝑑𝑑(𝑆𝑆𝑑𝑑,𝐴𝐴𝑑𝑑 ,𝑅𝑅𝑑𝑑 ,𝑃𝑃𝑑𝑑), which generates new data in the new

environment.

 Third, compared with the original environment, the value functions of the drift part in the new

environment tend to have the largest changes since drift environment is the source of new data.

Then, the value functions of the neighboring environment will have relatively smaller changes on

the influence of drift environment. Therefore, it gives priority to the 𝑚𝑚-degree neighboring

environment of drift environment 𝐸𝐸𝑑𝑑𝑛𝑛𝑠𝑠 (𝑆𝑆𝑑𝑑𝑛𝑛,𝐴𝐴𝑑𝑑𝑛𝑛,𝑅𝑅𝑑𝑑𝑛𝑛,𝑃𝑃𝑑𝑑𝑛𝑛) to sweep the value functions using

dynamic programming.

 Finally, it initializes the value functions of the new environment with the combination of the

value functions of 𝑄𝑄𝑑𝑑𝑛𝑛 and 𝑄𝑄. The part of 𝐸𝐸𝑑𝑑𝑛𝑛𝑠𝑠 with prioritized sweeping stands for the new

information. The part of the original environment 𝐸𝐸 stands for existing knowledge to accelerate

the learning process in the new environment. Based on this mechanism of fusing new information

into the existing knowledge system, the agent restarts a standard Q-learning process and computes

the new optimal policy 𝜋𝜋𝑛𝑛∗ in an incremental way.

 Ultimately, they have tested their algorithm on a changing maze. In general, their algorithm is

proposed for optimizing the transporting goods inside Amazon warehouses.

6

Fuzzy Inference Systems and RL

 For realistic agents, such as robots, drones, etc., which deal with continuous state-action space,

the original Q-learning or other RL methods cannot be applied. In [18], [20], and [21], fuzzy RL

has been applied to various problems with continuous state-action space, as fuzzy inference system

(FIS) has proven to be extremely effective on problems for domains with continuous space such

as control systems.

Q-Learning and FIS

 In Fuzzy Inference System (FIS), we generate several if-then rules based on fuzzy membership

functions. In FIS, we have several parameters that need to be tuned,

1) Number of fuzzy membership function per dimension of problem space and their

parameters.

2) Number of fuzzy rules and each rule, the process of how to combine the right membership

functions to generate the best rules.

 Supervised learning method has been used to tune these two major parameters in FIS. However,

for problems in control domain, we need to tune the system in real-time. To optimize the structure

of fuzzy rules, we use the RL. As it is described in [21], FIS learning includes two phases, structural

and parametric learning. Generally, the first phase consists in tuning the number of rules, i.e., the

number of fuzzy labels per variable, while the second phase can be used to tune both the position

of input and output fuzzy sets. They have developed a Q-learning method for FIS that finds and

tunes the fuzzy rules and its parameters in real-time based on the feedback the system receives

from the environment. They have tested their algorithm on various simulation and compared them

with traditional FIS methods. Their algorithm out-performed others.

FIS and RL

 In the previous section, we reviewed how online learning methods such as Q-Learning has

improved real-time adaptation of fuzzy inference systems by finding the optimized parameters. As

RL methods are applicable on problems with quantified state-action space then we can use FIS

quality of mapping from continuous input space to continuous output space in RL for environments

with continuous state-action space. For example in [18] we have a robot whose goal is to maintain

7

a specific distance to a wall and follow the walls of a room. To train a robot like that we need a

neural network as depicted in Fig. 2. The first layer is the sensory-input layer, second layer is the

fuzzification of input data (mapping of input to their relative membership functions) which each

membership function is Gaussian function 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑝𝑝 �− �𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�
2
𝜎𝜎𝑖𝑖𝑖𝑖2� � , 𝑖𝑖 = 1,2, … , 𝑟𝑟; 𝑗𝑗 =

1,2, … ,𝑛𝑛, where 𝑟𝑟 is the number of input variables and for each we have created 𝑛𝑛 membership

functions. The inference system is based on Takagi-Sugeno method. In layer 3 the network

combine the input from second layer (firing strength of each rule) as follow, Φj(𝑥𝑥𝑖𝑖, 𝑥𝑥2, … , 𝑥𝑥𝑟𝑟) =

𝑒𝑒𝑥𝑥𝑝𝑝 �−∑ �𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�
2
𝜎𝜎𝑖𝑖𝑖𝑖2�𝑟𝑟

𝑖𝑖=1 � , 𝑗𝑗 = 1,2, … ,𝑛𝑛. Normalization of neurons activity happens in layer 4

as follow, 𝛼𝛼𝑖𝑖 = Φi
∑ Φj
𝑛𝑛
𝑗𝑗=1

, 𝑖𝑖 = 1,2, … , 𝑛𝑛. Finally defuzzifications happens in layer 5 using the center-

of-gravity method, the output variable as a weighted summation of incoming signals is given by

𝑦𝑦 = ∑ 𝛼𝛼𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑦𝑦 is the value of an output variable and 𝑜𝑜𝑖𝑖 is the consequent of the 𝑗𝑗th rule.

In their approach each rule 𝑅𝑅𝑖𝑖 has 𝑚𝑚 possible discrete actions 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑠𝑠} and it

memorizes the parameter vector 𝑄𝑄 associated with each of these actions. These 𝑄𝑄-values are then

used to select actions so as to maximize the discounted sum of the rewards obtained while

achieving the task. They build the FIS with competing actions for each rule 𝑅𝑅𝑖𝑖 as follows,

𝑰𝑰𝑰𝑰 𝑋𝑋 𝑖𝑖𝑠𝑠 𝑆𝑆𝑖𝑖 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑎𝑎1 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎1) 𝑶𝑶𝑶𝑶 𝑎𝑎2 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎2) 𝑶𝑶𝑶𝑶…𝑶𝑶𝑶𝑶 𝑎𝑎𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑞𝑞(𝑆𝑆𝑖𝑖,𝑎𝑎𝑠𝑠). The

continuous actions performed by the learner for a particular state is a weighted sum of the actions

elected in the fired rules that describe the state, whose weights are normalized firing strengths

vector of the rules, 𝛼𝛼. Subsequently we updated the Q-values of the elected actions according to

their contributions.

Their proposed fuzzy Q-learning has three main features,

1. It is a fuzzy system with ellipsoidal regions of rules that are generated automatically.

2. Continuous actions can be generated. The continuous action is an average of the actions of

every fuzzy rule weighted by the firing strengths of fuzzy rules and the Q-values of the

actions are updated according to the contributions of fuzzy rules.

3. Prior knowledge can be embedded into the fuzzy rules, which can reduce the training time

significantly.

8

 In generation of continuous actions they use similar exploration-exploitation strategy for

selecting the best action similar SARSA algorithm among all fuzzy rules. The system updates the

Q-values similar to original Q-learning algorithm. However, in here they also update the fuzzy

rules parameters dynamically. For example if for a new input data point the firing strength of some

membership functions are less than a specific threshold then the system generates a new

membership function with center fixed to value of data input and width set the maximum distance

of this input data to its closest membership functions. Also, based on other criteria and the error of

the system the center of fuzzy membership functions and their width will be updated accordingly.

Fig. 2. Structure of fuzzy rule set for Q-Learning.

 They tested their learning algorithm on a robot that must follow a wall in a room by keeping a

constant distant to the wall. Then later after training the robot on a specific room they placed it in

a new room with different interior design to observe the effect of prior learning on learning speed

for the new environment which proved that their system adapt faster with prior knowledge in a

new environment. In Fig. 3, we have the performance for an agent with a prior knowledge.

9

Fig. 3. Performance comparison of dynamic fuzzy Q-learning (DFQL) with training directly and
retraining in a new environment. (a) Number of failures versus number of episodes. (b) Reward

values versus number of episodes. (c) Number of rules generated versus number of episodes.

Deep Learning – Classification and RL

 Deep learning (DL), inspired by the mechanism of human vision, recently attracted more and

more attention due to its good performance in many fields such as speech recognition, computer

vision, and natural language processing [2]–[4]. The intention of DL is to discover more abstract

representations in higher levels [5]. It involves a class of models to hierarchically learn high-level

features of input data with a deep hierarchical architecture. DL has the general formulation as

follow,

10

𝑓𝑓(𝒙𝒙) ≈ 𝑎𝑎1 �𝑎𝑎2�… �𝑎𝑎𝑛𝑛(𝒙𝒙)�… �� (6)
where 𝒙𝒙 is the input, 𝑎𝑎𝑖𝑖(𝑖𝑖 = 1, … ,𝑛𝑛) is the operation on the 𝑖𝑖th layer, and 𝑓𝑓(𝒙𝒙) is the new

representation of 𝒙𝒙. The input of a higher layer is the output of its previous layer in the DL models.

In this way, it can progressively lead to more abstract and complex features at deeper layers. More

abstract features are generally invariant to most local changes of the input. Commonly used DL

models include deep belief networks [6], deep Boltzmann machines [7], stacked auto-encoders

(SAE) [8], and convolutional neural networks. Recent study also shows that deep models can give

better approximations to nonlinear functions than shallow models [9], [10].

 As DL has a hierarchical structure, thus it can be applied to any classical learning algorithm

such as classification [22]-[25]. Also, most importantly recently DL has been applied to RL [26]-

[27] on the transformation of state-action space as well as utilization of deep network to find the

best action policy in a very dynamic environment such as games [28] where the agent played a

game to master it after abundant iterations.

Playing Atari with Deep Reinforcement Learning

 Learning to control agents directly from high-dimensional sensory inputs like vision and speech

is one of the long-standing challenges of reinforcement learning (RL). Most successful RL

applications that operate on these domains have relied on hand-crafted features combined with

linear value functions or policy representations. Clearly, the performance of such systems heavily

relies on the quality of the feature representation.

 Recent advances in deep learning have made it possible to extract high-level features from raw

sensory data, leading to breakthroughs in computer vision and speech recognition. These methods

utilize a range of neural network architectures, including convolutional networks, multilayer

perceptrons, restricted Boltzmann machines and recurrent neural networks, and have exploited

both supervised and unsupervised learning. It seems natural to ask whether similar techniques

could also be beneficial for RL with sensory data.

 However reinforcement learning presents several challenges from a deep learning perspective.

Firstly, most successful deep learning applications to date have required large amounts of hand

labelled training data. RL algorithms, on the other hand, must be able to learn from a scalar reward

signal that is frequently sparse, noisy and delayed. The delay between actions and resulting

11

rewards, which can be thousands of time-steps long, seems particularly daunting when compared

to the direct association between inputs and targets found in supervised learning. Another issue is

that most deep learning algorithms assume the data samples to be independent, while in

reinforcement learning one typically encounters sequences of highly correlated states.

Furthermore, in RL the data distribution changes as the algorithm learns new behaviors, which can

be problematic for deep learning methods that assume a fixed underlying distribution.

 They have demonstrated in [28] that a convolutional neural network can overcome these

challenges to learn successful control policies from raw video data in complex RL environments.

The network is trained with a variant of the Q-learning algorithm, with stochastic gradient descent

to update the weights. To alleviate the problems of correlated data and non-stationary distributions,

they use an experience replay mechanism which randomly samples previous transitions, and

thereby smooth the training distribution over many past behaviors. They apply our approach to a

range of Atari 2600 games implemented in The Arcade Learning Environment (ALE). Atari 2600

is a challenging RL testbed that presents agents with a high dimensional visual input (210 × 160

RGB video at 60Hz) and a diverse and interesting set of tasks that were designed to be difficult for

humans players. Their goal is to create a single neural network agent that is able to successfully

learn to play as many of the games as possible. The network was not provided with any game-

specific information or hand-designed visual features, and was not privy to the internal state of the

emulator; it learned from nothing but the video input, the reward and terminal signals, and the set

of possible actions—just as a human player would. Furthermore the network architecture and all

hyper-parameters used for training were kept constant across the games. So far the network has

outperformed all previous RL algorithms on six of the seven games they have attempted and

surpassed an expert human player on three of them.

 Recent breakthroughs in computer vision and speech recognition have relied on efficiently

training deep neural networks on very large training sets. The most successful approaches are

trained directly from the raw inputs, using lightweight updates based on stochastic gradient

descent. By feeding sufficient data into deep neural networks, it is often possible to learn better

representations than handcrafted features [33]. These successes motivate our approach to

reinforcement learning. Our goal is to connect a reinforcement learning algorithm to a deep neural

network which operates directly on RGB images and efficiently process training data by using

stochastic gradient updates.

12

 Tesauro’s TD-Gammon architecture provides a starting point for such an approach. This

architecture updates the parameters of a network that estimates the value function, directly from

on-policy samples of experience, 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑎𝑎+1, drawn from the algorithm’s interactions with

the environment (or by self-play, in the case of backgammon). Since this approach was able to

outperform the best human backgammon players 20 years ago, it is natural to wonder whether two

decades of hardware improvements, coupled with modern deep neural network architectures and

scalable RL algorithms might produce significant progress.

 In contrast to TD-Gammon and similar online approaches, they utilize a technique known as

experience replay [34] where they store the agent’s experiences at each time-step, 𝑒𝑒𝑡𝑡 =

(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in a data-set 𝐷𝐷 = 𝑒𝑒1, … , 𝑒𝑒𝑁𝑁, pooled over many episodes into a replay memory.

During the inner loop of the algorithm, they applied Q-learning updates, or minibatch updates, to

samples of experience, 𝑒𝑒 ~ 𝐷𝐷, drawn at random from the pool of stored samples. After performing

experience replay, the agent selects and executes an action according to an 𝜀𝜀-greedy policy. Since

using histories of arbitrary length as inputs to a neural network can be difficult, our Q-function

instead works on fixed length representation of histories produced by a function 𝜙𝜙.

 Second, learning directly from consecutive samples is inefficient, due to the strong correlations

between the samples; randomizing the samples breaks these correlations and therefore reduces the

variance of the updates. Third, when learning on-policy the current parameters determine the next

data sample that the parameters are trained on. For example, if the maximizing action is to move

left then the training samples will be dominated by samples from the left-hand side; if the

maximizing action then switches to the right then the training distribution will also switch. It is

easy to see how unwanted feedback loops may arise and the parameters could get stuck in a poor

local minimum, or even diverge catastrophically. By using experience replay the behavior

distribution is averaged over many of its previous states, smoothing out learning and avoiding

oscillations or divergence in the parameters. Note that when learning by experience replay, it is

necessary to learn off-policy (because our current parameters are different to those used to generate

the sample), which motivates the choice of Q-learning.

 In practice, the algorithm only stores the last 𝑁𝑁 experience tuples in the replay memory, and

samples uniformly at random from 𝐷𝐷 when performing updates. This approach is in some respects

limited since the memory buffer does not differentiate important transitions and always overwrites

13

with recent transitions due to the finite memory size 𝑁𝑁. Similarly, the uniform sampling gives

equal importance to all transitions in the replay memory. A more sophisticated sampling strategy

might emphasize transitions from which we can learn the most, similar to prioritized sweeping.

 In summary, they have evaluated their algorithm on seven Atari game and they use GPU to

accelerate the computation and learning process. The system was able to learn the best policy after

100 epochs and each epoch is around 30 minutes of game play. Their work is a proof that with

help of deep learning and RL methods we can tackle problems that previously deemed impossible

to solve.

 In [27], we have asynchronous method for deep RL to expedite the learning process. The goal

of their research is to have several actors (agents) to explore the environment under various

parameters and learn their own policies during an epoch and then by the end of the epoch they

merge their learned parameters. They have extended their algorithm from 1-step Q-learning and

SARSA method of n-step learning which they store feedbacks of n previous steps and adjust the

network based on gradient descent to find the optimized policy faster in less training epochs.

 Finally, as the first successful Artificial General Intelligence (AGI) [35], we have a deep and

super deep neural network that is formed from several layers with several nodes per layer. Each

node is a deep network on its own. The purpose of this super network is to learn various problems

on various domains with evolutionary methods such as Genetic Algorithm (GA) to find the best

learning path for each domain in the network. The network has shown great elasticity on learning

continuously on new domains with previous knowledge learned on different domains.

Reinforcement Learning Architect with
Self-Organized State-Action Space

GOL (Generic Online Learning), our proposed IS, must be able to adapt to any environment

dynamic or static, as well as not having any previous knowledge of environment of action policy.

GOL forms its abstract definition of state-action space with three hierarchical deep layered

network consist of entities. In this research, we claim only three layer is sufficient for the purpose

of online-learning. Each entity at each layer is the abstract definition of its lower layer entities.

14

Environment

 As the environment is dynamic, the GOL (agent) perceives it via a set of sensory input channels.

Also, the perception of the agent from the environment can be partial, some of the input data can

be missing or corrupted. The input data enters the system as a stream in real-time.

Channels

Channels are the critical part of GOL structure, as it forms its perception of its surrounding

environment based on the input data it receives and makes interaction with the environment via

output channels.

Input Channel (IC)

 Input channel is the source of input data stream to GOL which it perceives its environment

through ICs. As an example, if the agent is a robot then visual and auditory data can be defined as

ICs.

Output Channel (OC)

 Output channel is the mediator between agent and environment for interaction. For our robot

example above, its arms, fingers, and legs can be defined as OCs.

 ICs input data format is a stream of numerical data, and OCs output is format is the same as ICs

which OCs’ output will be translated into an actual action based on the type of channel and the

agent we are building.

GOL Entities

There are two types of entity.

1. Numerical Entity (EN).

2. Generic Entity (GN).

 As the structure of GOL has three layers, the ENs form the first layer, and GN forms the other

two. As entities in the second and third layer are similar in nature, we distinguish them into two

15

groups for clarity. We define GN of the second layer as Medium-Entity (EM) and for the third

layer as High-Entity (EH).

Numerical Entity (NE)

 NE is the representation of numerical value with some loss in the granularity of value, which

EN can be a fuzzy number [11]-[12]. In this research, for simplicity instead of using fuzzy numbers

to reduce the number of ENs, we do the conversion with an acceptable loss in the granularity of

number up to two decimal to an EN. To clarify, numbers such as 102, 110, and 100 are mapped to

one EN.

Medium Entity (EM)

 EM represents a pattern of observed ENs for each channel over time. As in each layer, we store

a limited number of entities then each EM is formed from the history of ENs.

 Each EN has one-to-many connections to several EMs as those EM are built based on ENs in

the first layer

High Entity (HE)

 HE represents a high-level abstract pattern of observed EMs for a set of ICs and OCs over time.

Each EH is formed from an EMs’ history of some chosen channels. EH is the high-level description

of observed input and output data over time. As granularity of EH is lower than EMs, then we

expect to have less number of EHs compare to EMs.

 Each EM has one-to-many connections to several EHs as those EH are built based on EMs in

the second layer.

GOL Structure

 GOL has a hierarchical structure with three layers made of two different types of entities.

GOL First Layer

 First layer, where the input data and previous output data (actions made by the system) are

entering the system as a stream. As the data are numerical data, then the system converts each

input data to an EN.

16

GOL includes its previous executed actions (output data) because it finds the EH of the observed

environment and its interaction with the environment to adapt to the best policy in time. Thus, EH

describes the environment and GOL’s actions in time for an adaptation of GOL.

 First layer stores EN of IC and OC data stream for the past 𝑚𝑚1 observation, where we consider

10 ≤ 𝑚𝑚1 ≤ 50 and in this research, we set 𝑚𝑚1 to 50. So, when there is 𝑚𝑚1 ENs in memory of each

channel in the first-layer and new data is observed then GOL forget the oldest data. As Fig. 4

depicts the first layer, where each node represents an EN. In Fig. 4 new data stream enters the

system from right side, so the old data are pushed to left side.

GOL Second Layer

 Second layer, consists of EMs of each channel as a stream. As later we will describe the GOL

learning algorithm, GOL finds the best four EMs set (4EM) matching the current data of each

channel in the first layer, in the current time frame.

 In Fig. 5 and Fig. 6 we will have at most four EMs per each channel in the first layer which

they are input data to the second layer, Fig. 7.

 In Fig. 7, for the second layer like the first layer, it stores the last 𝑚𝑚2 observed data stream,

which for second layer we set 𝑚𝑚2 to 20. However, as it is evident from Fig. 7 the granularity of

time for second layer is lower than first layer, as each 4EM set describe the pattern of data in first

layer for a specific time-frame then history of these 4EMs that shapes second layer is representative

in a different time frame, or more precisely a longer time-frame.

 Also, according to Fig. 7, GOL perceives both sets of ICs and OCs as a high-level channel (HC)

in the second layer. As in this layer input or output data has lost their meaning and they are both

considered as input data.

GOL Third Layer

 Third layer, is the highest layer in GOL where EHs are stored there, and this layer has no other

functionality.

17

Fig. 4. First layer of GOL with limited memory for the data stream of OC and IC in the format
of ENs.

18

Fig. 5. EMs generated from ENs in the first layer or have high similarity with ENs in the first
layer.

Fig. 6. A group of selected EMs based on ENs in the first layer as input data for the second
layer.

19

Fig. 7. Second layer of GOL.

20

GN Network

 As it is described, EHs and EMs are formed in the first and the second layer based on their

lower layer entities. Both EH and EM have the same general structure; however, we represent

them separately for clarity.

EM Network

 EM network, represents a pattern of ENs over time for an IC or OC. EM network is structured

in three sections,

1. Past.

2. Present.

3. Future.

 Fig. 8 depicts EM network structure in detail. Fig. 9, describes the purpose of each node in EM

network. Each main node in EM network represents an entity in the lower layer. EM network is

separated into three sections because the present section is used to match each EM with the current

data in a channel of the first layer, the past section is used to validate the best matching EMs based

on their present network entities, and the future section is used to predict the coming pattern or

select best possible action.

 According to Fig. 8, each entity-node (eN) in entity’s network that represents an entity in a

lower layer has an immediate connection to the eN in front of it in the next time step. Also, each

eN has random connections with its neighbor nodes in the next time step in the network. For

simplicity in this research, the connections between nodes have no extra data such as weight. Also,

the structure of network will remain constant during learning. The eNs in the different section are

connected to each other. Each section does not detach eN’s connections in network structure, the

main purpose of head-nodes and section-nodes, Fig. 9, are to organize the network and make

evaluation and prediction computationally more convenient.

21

EH Network

 EH network, represents HC. Thus it includes all EMs of selected ICs and OCs. In Fig. 10, we

have EH network structure, as we notice its structure is similar to EM’s network except the fact

that each section has two head-nodes. One head-node for ICs’ entities and another one for OC’s

entities; however, the connections between eNs of each part (IC and OC) exist as this entity

describes the pattern for all input data and output data in a time-frame.

 In EM and EH networks’ structure, the number of layers in present section is higher than the

other two sections. As in this research, the ratio is as follows, 3:6:1 (past : present : future), with

majority given to present section.

22

Fig. 8. EM network structure and its sections for an IC or OC.

Fig. 9. EM network nodes description, including eNs and section nodes.

23

Fig. 10. EH network structure and its sections for selected ICs and OCs.

24

GOL Learning Algorithm

 As GOL is an RL system, then it adapts based on received feedbacks for the actions it has

executed. So, first GOL needs to find the best action based on the data it receives then adapts based

on the observed feedbacks.

Find the Best EH

 First GOL must find the best EH, which describes the recently observed data and self-taken

actions, to select the best action. However, the system needs to have at least one EH to start making

decisions; we call the system with no EH a crude system.

Fig. 11. Algorithm 1, finding of the best action based on ENs in first layer.

Input: ENs of the first layer.

1. A set of sensory input data from each channel arrives; however, some sensory
data may be missing or corrupted.

2. GOL finds ENs of each input data and output data, of its previous actions, for
each channel.

3. GOL adds the current ENs to the memory of first entities layer of each channel,
first-layer (FML).

4. Get the list of all EMs (cEM) that current ENs defines them.
5. For every EM in cEM match their network with entities in FML for their

respective channel. Referring to Algorithm 2.
6. Pick the best 4 possible matches based on 𝜀𝜀-greedy policy for each channel

(4EM) in cEM after the comparison.
7. Add 4EM of each channel to second layer (SML).
8. Find all the best matching EHs (cEH) based on the entities in second layer.

Referring to Algorithm 2.
9. Pick the best EH (bEH) in cEH with 𝜀𝜀-greedy policy as the best solutions or the

observed patterns.
10. Make an action based on bEH.

a. Pick all last EMs which they are OUT EMs in bEH.
b. Now for each out-channel based on 𝜀𝜀-greedy policy pick the best action.

Output: The best action for each OC.

* Value of 𝜺𝜺 is set to 0.15 for all algorithms in this research.

25

 When GOL is crude, it means the first layer or/and second layer do not have enough data to

form any EMs and consequently an EH. During crude state, the system makes random actions

based on the nature of its OC.

Fig. 12. Algorithm 2, the finding of the best matching higher entities based on the lower layers.

 When the first EH is formed, then it is refined to make decisions and adapt. In a period of

crudeness, the first layer forms new EMs based on ENs, if no matching exists for the observed

ENs. However, even during refined state and even existence of an EM with a good match with

ENs in the first layer, the system forms a new EM with a small probability of 0.005. Also, the

system has the same behavior in forming EH is the second layer but the probability of forming a

new EH is 0.0005.

 In Fig. 11, we have the algorithm of finding the best action based on the current ENs in the first

layer. In Fig. 12 we have, algorithm 2, the algorithm to find the best EH based on entities in the

lower layer.

Input: Entities of first or second layer.

1. IF system is crude THEN build an entity. Even IF system is refined THEN
with small probability make a new entity.

2. Start from PRESENT section of the entity’s network and level by level
match the nodes’ entities with entities in FML/SML level by level. Number
of matches give us the activation of PRESENT section.

3. Validate the entity based on its PAST section, then calculate the final
activation value of each entity as

𝑎𝑎=PRESENT activation

𝑎𝑎′=PAST activation

IF 𝑎𝑎′ < 𝑎𝑎 THEN sign=-1

ELSE sign=1

𝑎𝑎𝑒𝑒 = entity activation.

𝑎𝑎𝑒𝑒 = 𝑎𝑎 × 0.7 + 𝑎𝑎′ × 𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 × 0.3

4. Select the 4 of the best matching entities based on 𝜀𝜀-greedy policy.
Output: A list of matching entities, EMs or EHs, depending on the given layer.

26

 GOL stores the last 10 EHs and their ENs that resulted in action, which they were the result of

algorithm 1. Afterward, it uses them in adaptation step, Fig. 13.

Adaptation

 After finding the best action for each OC, the system interacts with the environment.

Simultaneously, the system is receiving feedbacks from the environment; however, the system

does not know which executed action should receive a particular feedback as feedbacks are

arriving with various delays.

Fig. 13. GOL adaptation algorithm based on feedbacks.

 Feedback can be another form of input data, but in here we consider them as a reinforcement

data, not an input data, which some feedbacks are not given to system directly and are observable

through input channels, they are indirect feedbacks which we ignore them in this research.

Input: Stream of feedbacks.

 GOL collects reinforcement feedbacks it receives from environment between
arrival of new data from channels.

 GOL store EHs from algorithm 1 in a limited-sized list of LEH.
1. For each feedback (fb) in list of collected feedback.

a. fb affects all entities in LEH (with size of 𝐿𝐿 = 10) with effect-ratio (𝒆𝒆𝒆𝒆) 𝑒𝑒𝑟𝑟𝑘𝑘
where 𝑘𝑘 is the index of entity in LEH. In other words, 𝑘𝑘 is the ranked
position of action-entity (EH), which 𝑘𝑘 equal 0 is the most recent action
taken.

b. 𝑒𝑒𝑟𝑟𝑘𝑘 can follow one of the following equations,
1) Linear (𝑒𝑒𝑟𝑟𝑘𝑘 = 1 − 𝑘𝑘/𝐿𝐿)
2) Exponential (𝑒𝑒𝑟𝑟𝑘𝑘 = 𝑒𝑒−𝑘𝑘2)

Where 𝑒𝑒𝑟𝑟𝑘𝑘 ≤ 1 for all 𝑘𝑘 ≥ 0, and in here we select linear equation for

simplicity. Each out-channel and each portion of that channel can have a

distinguish adaptation policy.

c. Adaptation follows SARSA algorithm, which at the time of adaptation
system finds the best action based on current data and uses (5) with 𝛼𝛼 equal
to 0.15 and 𝛾𝛾 equal to 0.85.

27

 In Fig. 13, we have the adaptation algorithm based on the feedbacks and SARSA adaptation

algorithm. After applying the current feedback for adaptation of GOL structure, the system keeps

the current feedbacks with a probability of 0.2 to use them in the next adaptation iteration.

Simulation of the 5G Mobile Network
Load-Balancer with Dynamic Parameters

as the Environment
 Provisioning of a high data rate wireless connectivity in rural and remote areas has became a

stringent challenge for perspective 5G wireless networks. Unlike the previous generation, 5G

mobile network is service driven rather than technology driven [13]. The concept of the

“broadband access everywhere” is a pillar of 5G service requirements, and the target performance

of 50 Mbps everywhere is considered regarding the experienced user throughput [14].

 In this section, we apply GOL to event load balancer for the 5G mobile network; however,

GOL, in general, can be applied to any cloud load balancer. There have been various approaches

to network load-balancing issue [29]-[31]. For example in [30], with the help of knowledge of

social network and inner-network formed by mobile users in the same local network they have

proposed an optimal solution to effectively cache the most demanding data in the edge network

and user devices. However, in this research, we are focusing on intelligently balance the load of

allocation between various available cells in the network in real-time.

Events

 Any mobile user constantly generates new events, such as.

A. Attach request: and event to register user device (UE) with a tower.

B. Tracking update: an event to notify the tower and cell about geo-location movement and

movement between cells that cover different frequencies.

C. Service request: an event from UE to the tower that contains a request message for some

data.

28

D. Paging request: an event from tower to Internet to fetch the requested data. In this research

we do not consider this event as it is not generated by mobile user.

E. Handover request: an event that handover a UE to another tower.

F. Detach request: an event for termination of the connection with a tower.

User

 In our simulation, each user has a unique ID called userID. Also, we have four types of users,

premium-mobile, premium-stationary, basic-mobile, and basic-stationary. The number of

premium users is smaller than the number of normal users.

Load Balancer (LB)

 LB is responsible for assigning each arrival event per user to a virtual machine (VM) to store

the event data. The size of event data is 2Kbytes. LB keeps track of assigned VM per user based

on userID, frequency per user-type, frequency per event-type, and frequency per pair of (user-

type, event-type). Fig. 14 depicts the LB and VMs.

Virtual Machine (VM)

 In our simulation, we have R VMs, as we set R to three. Each VM cache-size (Cache-Size) can

store only 700 user’s data, Fig. 15. Each user type has its separate data cache-queue; the size of

each queue can change in time as new users are arriving. Also, when there are 700 users stored in

the VM and a new one arrives then VM removes the oldest one from one of the queues randomly.

As new user data arrives, the old ones are pushed down the queue.

Cloud Storage (CS)

 Cloud storage, according to Fig. 14, is used for data persistency in VMs, as old data in each

user-queue may get deleted then each VM periodically synchronize each user data with CS based

on user-data synchronization-time (ST) to have the most recent data in the cloud. In each VM as

new users are arriving the old user-data are push down to the bottom of the queue. Thus VM

reduces their ST for faster synchronization as the chance of deletion increases for the user-data

near the bottom of each user-queue.

29

ICs and OCs for LB

 LB uses GOL to find the best possible VM for each event. Thus, first we need to define the ICs

and OCs for our load-balancing problem, and there are as follow,

𝐼𝐼𝐶𝐶0 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜 𝑡𝑡ℎ𝑖𝑖𝑠𝑠 𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒
𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜 𝑡𝑡ℎ𝑖𝑖𝑠𝑠 𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒

𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞𝑟𝑟𝑒𝑒𝑛𝑛𝑐𝑐𝑦𝑦 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑛𝑛𝑎𝑎 �𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 , 𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒�
𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒
𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒

 (6)

𝐼𝐼𝐶𝐶𝑖𝑖 = �
𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖

𝑎𝑎𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑆𝑆𝑆𝑆 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖
 1 ≤ 𝑖𝑖 ≤ 𝑅𝑅 (7)

𝑂𝑂𝐶𝐶𝑖𝑖 = �
𝑆𝑆𝑆𝑆 𝑓𝑓𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑞𝑞𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖𝑛𝑛 𝑉𝑉𝑀𝑀𝑖𝑖
𝑜𝑜𝑎𝑎𝑣𝑣𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓 𝑉𝑉𝑀𝑀𝑖𝑖 (𝑄𝑄 𝑜𝑜𝑎𝑎𝑣𝑣𝑟𝑟𝑒𝑒)

 1 ≤ 𝑗𝑗 ≤ 𝑅𝑅 (8)

 However, in our simulation, we randomly set values of some input data in ICs except 𝐼𝐼𝐶𝐶0 to -1

to make the environment partially invisible to the LB.

Fig. 14. The structure of LB and R number of VMs with CS for persistency of data.

30

Fig. 15. The internal structure of a VM and user-queues.

Definition of Punishment, Reward, and System Objective
The LB has two objectives:
1. The first objective is to have minimum total cache-miss for all VMs, as LB tries to assign

each user-data to a right VM with less probability of deletion of that user-data in time. As
deletion of a user-data happens when they are pushed down in a cache-queue by insertion of
new users into cache-queue of the VM.

2. The second objective is to have the minimum communication load between CS and VMs.
When a cache-miss happens, the assigned VM checks the CS to download the latest stored
data for the assigned user from CS. Also, a VM synchronize (upload data to CS) each user-
data based on user’s ST.

 For GOL to minimize the cache-miss and communication load between VMs and CS, we need

to define punishment and reward for each case, and they are as follow,

Punishment
I. Cache-miss punishment affects the value of selected VM (8). For each action entity (EM)

we calculate the cache-miss punishment as follow,

31

𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (100 − 10 × 𝑟𝑟𝑡𝑡) (9)
where 𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 is the cache-miss punishment of action taken for 𝑖𝑖th VM in (7) (𝑗𝑗th VM in
(8)), 𝑟𝑟𝑡𝑡 is the user-type and for 𝑟𝑟𝑡𝑡 = 1 which means top priority user (premium-mobile)
receives the maximum punishment for a cache-miss, and 𝑒𝑒𝑟𝑟𝑘𝑘 is described in Fig. 13.

II. Cloud-load punishment,

Upload
 When cloud-load is type of upload to CS, then it influences ST of user-data with the
following punishment,

𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (5 × 𝑑𝑑𝑠𝑠) (10)
where 𝑝𝑝𝑓𝑓𝑠𝑠𝑖𝑖 is the upload punishment due to synchronization of user-data with CS, and 𝑑𝑑𝑠𝑠
is the upload data in bytes which is 2KB.

Download
 When the type of cloud-load is download from CS, then we have a cache-miss and
punishment is defined as,

𝑝𝑝𝑓𝑓𝑑𝑑𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × 𝑑𝑑𝑠𝑠 (11)
where 𝑝𝑝𝑓𝑓𝑑𝑑𝑖𝑖 is the download punishment and 𝑑𝑑𝑠𝑠 is the download size in bytes which if CS
has the data of user then 𝑑𝑑𝑠𝑠 is 2KB, otherwise it is the load of network communication
with the CS.

III. VM miss-match, happens when LB assigns a new incoming event of allocated user to a
different VM. Thus the system has an inner VM load. The punishment for inner-load is
defined as follow,

𝑝𝑝𝑙𝑙𝑜𝑜𝑖𝑖 = −𝑒𝑒𝑟𝑟𝑘𝑘 × (0.1𝑑𝑑𝑠𝑠) (12)
where 𝑝𝑝𝑙𝑙𝑜𝑜𝑖𝑖 is inner-VMs communication load due to miss-match.
Reward

System receives rewards for each event that it processes and they are as follow,
I. VM value reward is as follow,

𝑟𝑟 = 200 − 3 × (𝑛𝑛𝑓𝑓𝑜𝑜 − 𝑛𝑛𝑆𝑆𝑆𝑆) (13)
𝑟𝑟𝑜𝑜𝑖𝑖 = 𝑒𝑒𝑟𝑟𝑖𝑖 × �𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 + 𝑟𝑟

2
� (14)

where 𝑟𝑟𝑜𝑜𝑖𝑖 is the reward for VM value of executed action 𝑛𝑛𝑓𝑓𝑜𝑜 is number of feedbacks that
GOL has received between processing two events, as feedbacks are delayed then the system
can receive more than one feedback between arrival two user-events, 𝑛𝑛𝑆𝑆𝑆𝑆 is the number of
upload punishments that effected ST of user-data, and 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 is a random value between 0 to
𝑟𝑟/2.

II. VM ST reward for each user-type is defined as follow,

𝑟𝑟′ = 𝑐𝑐𝑚𝑚 − 10 × 𝑛𝑛𝑆𝑆𝑆𝑆 (15)

32

𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑟𝑟𝑖𝑖 × �𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2′ + 𝑟𝑟′

2
� (16)

where 𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖 is the reward of synchronization time of users in all queues to increase
synchronization time to reduce uploads to CS, and 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2′ is similar to 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2 in (14). In (15),
𝑐𝑐𝑚𝑚 is equal to 1000 and the intuition for selection of its value is that we estimated that 𝑛𝑛𝑆𝑆𝑆𝑆
could have a maximum value of 100, which during our experiment we observe that value
of 𝑛𝑛𝑆𝑆𝑆𝑆 fluctuates between 3 to 5.

 As the system receives feedbacks between processing each two events, it stores them then after

processing all feedbacks with a probability of 0.2 it keeps all currently observed feedbacks for

processing in the iteration due to nature of feedbacks that are delayed feedbacks.

Experiments and Results
 In our simulation, we have the following parameters, in table I, for our environment.

TABLE I. ENVIRONMENT SIMULATION PARAMETERS

Parameter Description

𝑁𝑁𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠 Number of mobile user in environment is set to 3000.

𝑈𝑈𝑠𝑠𝑒𝑒𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 Number of user-types is set 4 with 1 as premium user.

𝐸𝐸𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒 Number of event-types is set to 5.

𝑅𝑅 Number of VMs is set to 3.

Cache-Size
Maximum number of users that each VM can cache their data is

set to 700 users.

𝑁𝑁𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 Number of events is set to 50,000 events for entire simulation.

33

 We evaluate performance of GOL for load balancing with following methods,

Memorized-BestVM (MB)

 Memorized-BestVM (MB), for each new user to the system LB selects the best VMs based on

the cache-queue size depending on the user-type and select its ST randomly from range of [300-

15000] milliseconds (ms) and memorized where the data of this user is stored. Afterward, for all

events related to stored users, it sends them to the same VM but each time chooses their ST

randomly. Thus, in this case, we never have miss-matches in VMs, but we have cache-misses.

Memorized-BestVM with Fixed ST (MB-F)

 MB-F is like MB but the ST always is set to 1000ms (1 second).

 In our simulation, each epoch (time-frame) of simulation contains processing of 20 user-

events. Table II depicts the result of our simulation for all three methods.

 In Fig. 16, we have the comparison of our three load-balancing methods for average of cache-

miss for three VMs during the entire simulation.

Fig. 16. Comparison for average of cache-miss.

2.23 2.2

0.84

0

0.5

1

1.5

2

2.5

MB MB-F GOL

Average of cache-miss – 3 VMs

34

Fig. 17. Comparison for total communication load between VMs and CS.

Fig. 18. Comparison for average of ST in three VMs in milliseconds.

26.610157 26.333613
10.770172

242.579298

319.332352

184.08076

0

50

100

150

200

250

300

350

MB MB-F GOL

M
ill

io
ns

Total Downloaded Data to CS in Bytes – 3 VMs Total Uploaded Data from CS in Bytes – 3 VMs

5244

976.1

18502.6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

MB MB-F GOL

Average of ST (ms) – 3 VMs

35

 In Fig. 17, we have the comparison of our three load-balancing methods for total

communication load between VMs and CS. In Fig. 18, we have the comparison of our three load-

balancing methods for average of ST for three VMs during the entire simulation.

TABLE II. RESULTS OF SIMULATION OF ALL THREE LOAD BALANCING METHODS

A
verage of

cache-m
iss – 3

V
M

s

Total D
ow

nloaded
D

ata to C
S in

B
ytes – 3 V

M
s

Total U
ploaded

D
ata from

 C
S in

B
ytes – 3 V

M
s

A
verage of ST

(m
s) – 3 V

M
s

MB 2.23 26610157 242579298 5244

MB-F 2.2 26333613 319332352 976.1

GOL 0.84 10770172 184080760 18502.6

 As we can notice from Table II, GOL has better performance, which confirms that the static

structure of GOL with three layers has the capability to adapt to our environments without having

previous knowledge and pre-defined state-action space. Figure 19 and 20 depict the growth of

cache-miss for MB and GOL as the best two solutions for the load-balancing problem.

 As we notice in Fig. 19 and 20, the growth rate of cache-miss with GOL is tremendously lower

compare to MB. In Fig. 21-23 we have the increase in number of entities over time, which by the

end of simulation we have a total of 51 EHs, 1747 EMs, and 8750012 ENs. As an EH is an abstract

description of the observed input and output data over time, thus the number of EH represents the

total number of patterns to describe the whole environment and system’s interaction with that

environment. As we may have over 8 million ENs, which some of them may have low usage

frequency and can be removed but the total number of EHs is less than 100. Number of EHs proves

that system has a good performance on finding the high-level pattern that describes a dynamic and

36

chaotic environment due to various randomness in the environment, also in feedback policies (14)

and (16).

Fig. 19. Total cache-miss in time for MB (epochs).

0

1000

2000

3000

4000

5000

6000

7000

8000

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

80
1

88
1

96
1

10
41

11
21

12
01

12
81

13
61

14
41

15
21

16
01

16
81

17
61

18
41

19
21

20
01

20
81

21
61

22
41

23
21

24
01

VM1 VM2 VM3

37

Fig. 20. Total cache-miss for GOL in time (epochs).

Fig. 21. Growth for number ENs over time (epochs).

0

500

1000

1500

2000

2500

3000

3500

1 84 16
7

25
0

33
3

41
6

49
9

58
2

66
5

74
8

83
1

91
4

99
7

10
80

11
63

12
46

13
29

14
12

14
95

15
78

16
61

17
44

18
27

19
10

19
93

20
76

21
59

22
42

23
25

VM1 VM2 VM3

0
1
2
3
4
5
6
7
8
9

10

1 84 16
7

25
0

33
3

41
6

49
9

58
2

66
5

74
8

83
1

91
4

99
7

10
80

11
63

12
46

13
29

14
12

14
95

15
78

16
61

17
44

18
27

19
10

19
93

20
76

21
59

22
42

23
25

M
ill

io
ns

EN

38

Fig. 22. Growth for number EMs over time (epochs).

Fig. 23. Growth for number EHs over time (epochs).

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 87 17
3

25
9

34
5

43
1

51
7

60
3

68
9

77
5

86
1

94
7

10
33

11
19

12
05

12
91

13
77

14
63

15
49

16
35

17
21

18
07

18
93

19
79

20
65

21
51

22
37

23
23

EM

0

10

20

30

40

50

60

1 87 17
3

25
9

34
5

43
1

51
7

60
3

68
9

77
5

86
1

94
7

10
33

11
19

12
05

12
91

13
77

14
63

15
49

16
35

17
21

18
07

18
93

19
79

20
65

21
51

22
37

23
23

EH

39

Conclusion and Future Work
 We have proposed an intelligent system based on RL algorithm with simple three deep-layered

structure for a dynamic and partially visible environment where feedbacks are delayed. Then we

tested our proposed method for load balancing in the 5G mobile network. In [15]–[17] RL has

been used to solve various problems related to mobile networking and messaging. Our result for

load balancing demonstrates that our proposed method has the capability to adapt to some optimal

solutions over time just by forming high-level and abstract features from observed data in time.

 However, there are several improvements that can be applied,

1. The growth rate of ENs is extremely high which can be reduced by using fuzzy numbers

in the first layer to find the best matching EN for numerical input/output data.

2. Using Fuzzy Inference System (FIS), similar to fuzzy RL to determine the final action

based on all final OUT EMs in the selected EH.

3. In here for simplicity the connections between nodes in entities network is random, and

they are static; however, the connection between nodes can adapt in time to form a better

structure.

4. Also, the connections between nodes in entities structure have no meaning which by adding

some data such as weight we can give modify the activation procedure of each entity and

finding the best possible actions.

5. In here to find the best matching entity based on data in lower layer we consider similarity

layer by layer in entity network; however, a sub-graph of the network may not have any

similarity with the current data. We can add a new sub-graph for that portion with a

probability to avoid creating a new entity.

 In this research, EH is built from all output channels and input channels; however, an EH may

only be built from some selected ICs and OCs. In this way, different EHs belong to various

contexts. The advantage of having context allows the system to have the fourth layer that connects

similar EHs from different contexts based on their activation patterns and network structure, which

ultimately these connections between different contexts can lead to new and different actions in

time.

40

References
[1] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction”, MIT Press, 1998.
[2] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”,

Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.
[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, in Proc. Adv. Neural Inf. Process. Syst. 25, Red Hook, NY,
USA, pp. 1097–1105, 2012.

[4] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features for scene
labeling”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[5] Y. Bengio and O. Delalleau, “On the expressive power of deep architectures”, in Algorithmic
Learning Theory. Berlin, Germany: Springer, pp. 18–36, 2011.

[6] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets”, Neural
Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[7] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines”, in Proc. Int. Conf. AI
Statist., Clearwater, FL, USA, pp. 448–455, 2009.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layerwise training of deep
networks”, in Proc. Adv. Neural Inf. Process. Syst. 19. Cambridge, MA, USA, pp. 153–160,
2007.

[9] I. Sutskever and G. E. Hinton, “Deep, narrow sigmoid belief networks are universal
approximators”, Neural Comput., vol. 20, no. 11, pp. 2629–2636, Nov. 2008.

[10] N. Le Roux and Y. Bengio, “Deep belief networks are compact universal approximators”,
Neural Comput., vol. 22, no. 8, pp. 2192–2207, Aug. 2010.

[11] Peter Sussner; Estevão Esmi; Laécio C. Barros, “Controlling the width of the sum of
interactive fuzzy numbers with applications to fuzzy initial value problems”, IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1453–1460, 2016.

[12] Piotr Prokopowicz, “Analysis of the changes in processes using the Kosinski's Fuzzy
Numbers”, Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 121–128, 2016.

[13] Jongtae Song; Taewhan Yoo; Pyung Jung Song, “Mobility level management for 5G
network”, International Conference on Information and Communication Technology
Convergence (ICTC), pp. 940–943, 2016.

[14] Alexander Karlsson; Osama Al-Saadeh; Anton Gusarov; Renuka Venkata Ramani Challa;
Sibel Tombaz; Ki Won Sung, “Energy-efficient 5G deployment in rural areas”, IEEE 12th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 1–7, 2016.

[15] Pablo Muñoz; Raquel Barco; José María Ruiz-Avilés; Isabel de la Bandera; Alejandro
Aguilar, “Fuzzy Rule-Based Reinforcement Learning for Load Balancing Techniques in
Enterprise LTE Femtocells”, IEEE Transactions on Vehicular Technology, pp. 1962–1973,
vol. 62, 2013.

41

[16] Behrooz Shahriari; Melody Moh, “Intelligent mobile messaging for urban networks:
Adaptive intelligent mobile messaging based on reinforcement learning”, The 12th IEEE
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp.1–8, 2016.

[17] Jin Wu; Jing Liu; Zhangpeng Huang; Shuqiang Zheng, “Dynamic Fuzzy Q-Learning for
Handover Parameters Optimization in 5G multi-tier networks”, International Conference on
Wireless Communications & Signal Processing (WCSP)
, pp. 1–5, 2015

[18] Meng Joo Er; Chang Deng,
“Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), pp. 1478–1489, vol. 34,
2004.

[19] Zhi Wang; Chunlin Chen; Han-Xiong Li; Daoyi Dong; Tzyh-Jong Tarn,
“A novel incremental learning scheme for reinforcement learning in dynamic environments”,
12th World Congress on Intelligent Control and Automation (WCICA), pp. 2426–2431, 2016.

[20] Chia-Feng Juang; Chia-Hung Hsu, “Reinforcement Ant Optimized Fuzzy Controller for
Mobile-Robot Wall-Following Control”, IEEE Transactions on Industrial Electronics, pp.
3931–3940, vol. 56, 2009.

[21] L. Jouffe, “Fuzzy Inference System Learning by Reinforcement Methods”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), pp. 338–
355, vol. 28, 1998.

[22] Dawei Wang; Wei Ding,
“A Hierarchical Pattern Learning Framework for Forecasting Extreme Weather Events”, IEEE
International Conference on Data Mining, pp. 1021–1026, 2015.

[23] Yicong Zhou; Yantao Wei, “Learning Hierarchical Spectral–Spatial Features for
Hyperspectral Image Classification”, IEEE Transactions on Cybernetics, pp. 1667–1678, vol.
46, 2016.

[24] Khanittha Phurattanaprapin; Punyaphol Horata,
“Extended hierarchical extreme learning machine with multilayer perceptron”, 13th
International Joint Conference on Computer Science and Software, pp. 1–5, 2016.

[25] Yanyun Qu; Li Lin; Fumin Shen; Chang Lu; Yang Wu; Yuan Xie; Dacheng Tao, “Joint
Hierarchical Category Structure Learning and Large-Scale Image Classification”, IEEE
Transactions on Image Processing, 2016.

[26] Wenzhi Zhao; Shihong Du, “Spectral–Spatial Feature Extraction for Hyperspectral Image
Classification: A Dimension Reduction and Deep Learning Approach”, IEEE Transactions on
Geoscience and Remote Sensing, pp. 4544–4554, vol. 54, 2016.

[27] Volodymyr Mnih; Adrià Puigdomènech Badia; Mehdi Mirza; Alex Graves; Tim Harley;
, “Asynchronous Methods for Deep Reinforcement Learning”, Google Deep Mind, 2016.

[28] Volodymyr Mnih; Koray Kavukcuoglu; David Silver; Alex Graves; Ioannis
Antonoglou; Daan Wierstra; Martin Riedmiller, “Playing Atari with Deep Reinforcement
Learning”, Deep Mind, 2013.

42

[29] Ekram Hossain; Mehdi Rasti; Hina Tabassum; Amr Abdelnasser, “Evolution Toward 5G
Multi-Tier Cellular Wireless Networks: An Interference Management Perspective”, IEEE
Wireless Communications, pp. 118–127, vol. 21, 2014.

[30] Ejder Bastug; Mehdi Bennis; Mérouane Debbah, “Living on The Edge: The Role of
Proactive Caching in 5G Wireless Networks”, IEEE Communications Magazine, pp. 82–89,
vol. 52, 2014.

[31] Hisham Elshaer; Federico Boccardi; Mischa Dohler; Ralf Irmer, “Load & Backhaul Aware
Decoupled Downlink/Uplink Access in 5G Systems”, IEEE International Conference on
Communications (ICC), pp. 5380–5385, 2015.

[32] R. Sutton, “Learning to predict by the methods of temporal difference,” Machine Learning,
vol.3, pp.9-44, 1988.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. “Imagenet classification with deep
convolutional neural networks”, In Advances in Neural Information Processing Systems 25,
pp. 1106–1114, 2012.

[34] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report,
DTIC Document, 1993.

[35] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A.
Rusu, Alexander Pritzel, Daan Wierstra, “PathNet: Evolution Channels Gradient Descent in
Super Neural Networks”, Jan. 2017.

43

	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2017

	Generic Online Learning for Partial Visible & Dynamic Environment with Delayed Feedback
	Behrooz Shahriari
	Recommended Citation

	Introduction
	Related Works
	Reinforcement Learning
	Incremental Learning Method for RL
	Environment Drift
	Drift Detection
	Integrated Incremental Learning Algorithm

	Fuzzy Inference Systems and RL
	Q-Learning and FIS
	FIS and RL

	Deep Learning – Classification and RL
	Playing Atari with Deep Reinforcement Learning

	Reinforcement Learning Architect with Self-Organized State-Action Space
	Environment
	Channels
	Input Channel (IC)
	Output Channel (OC)

	GOL Entities
	Numerical Entity (NE)
	Medium Entity (EM)
	High Entity (HE)

	GOL Structure
	GOL First Layer
	GOL Second Layer
	GOL Third Layer

	GN Network
	EM Network
	EH Network

	GOL Learning Algorithm
	Find the Best EH
	Adaptation

	Simulation of the 5G Mobile Network Load-Balancer with Dynamic Parameters as the Environment
	Events
	User
	Load Balancer (LB)
	Virtual Machine (VM)
	Cloud Storage (CS)
	ICs and OCs for LB
	Definition of Punishment, Reward, and System Objective
	Punishment
	Upload
	Download

	Reward

	Experiments and Results
	Memorized-BestVM (MB)
	Memorized-BestVM with Fixed ST (MB-F)

	Conclusion and Future Work
	References

