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ABSTRACT

Black Box Analysis of Android Malware Detectors

by Guruswamy Nellaivadivelu

Code obfuscation can make it challenging to detect malware in Android devices.

Malware writers obfuscate the code of their programs by employing various techniques

that attempt to hide the true purpose of the program. Malware detectors can use

a number of features to classify a program as a malware. If the malware detector

uses a feature that is obfuscated, then the malware detector will likely fail to classify

the malware as malicious software. In this research, we obfuscate selected features of

known malware and determine whether the malware can still be detected by a given

detector. Using this approach, we show that we can effectively perform black box

analysis of various malware detectors.
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CHAPTER 1

Introduction

The volume of Android malware is increasing exponentially. Indeed, in the second

quarter of 2016, 3.5 million samples of Android malware were detected [1]. This rapid

increase in Android malware has placed the focus on Android security and made

it imperative to develop more efficient defensive tools for combating such malware.

One of the challenges faced in this area is the use of code obfuscation techniques.

Code obfuscation is a method of altering code to hide its actual purpose, without

significantly altering its performance. There are many ways of obfuscating source

code in an Android environment. Several software applications that are available

off the shelf can be used to achieve different levels of code obfuscation [2]. In order

to address the problem of strengthening malware detector’s strength, there are two

fundamental questions that need to be addressed, as highlighted by Christodorescu

et al. [3]. The first question is to gauge the resilience of a malware detector against

code obfuscation. This will also help us in understanding the strength of the malware

detetctor in detecting variants of known malware families. The other question is

the possibility of identifying the detection algorithm used by a malware detector.

By studying the behavior of malware detectors and how they respond to different

obfuscation techniques, a malware writer can uncover ways to beat the antivirus

program. Ultimately, we want to gauge how well a malware detector will perform

against obfuscated code.

Code obfuscation is the process by which source code is manipulated to hide its

true intentions. Code obfuscation is increasingly becoming a common tool to avoid

detection by traditional malware detectors. There are many different types of code

obfuscation. The most basic type of code obfuscation involves the encryption of all

the strings that are used in the code. This overrides the detection mechanism of
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most of the traditional malware detectors. Some advanced malware detectors account

for this encryption and are able to identify malware files. There are a host of other

obfuscation techniques that can be employed by malware writers. Some of these

include the obfuscation of function calls, permission hiding, and insertion of dead code.

The challenges associated with code obfuscation primarily deal with the problem

of maintaining the core functionality of the code, while making it difficult for malware

detectors to detect their true purpose. This challenge becomes easier for malware

writers when dealing with Android malware. The reason for this is associated with

the permission levels of applications running on Android platform. Unlike anti-

virus programs that run on computers, the Android system provides the same set

of permission levels to the anti-virus application and the application that is being

scanned. This is a major limitation for malware detector writers. With the advent of

sophisticated encryption techniques, it has become very difficult to different between

benign and malicious applications of obfuscation techniques. The primary objective of

this project is to make malware detectors more responsive to the code obfuscation

techniques employed by malware writers. By doing so, we can attempt to identify the

malware features that are used by a malware detector in its classification algorithm.

We can also try and modify an existing malware detector to see if we can overcome

the limitations. In order to achieve this, we propose a theoretical approach. In this

approach, we attempt to isolate the features that contribute to malware detection.

Once, we have this information, we can attempt to modify an existing malware detector

to overcome these limitations. The malware detector should employ ‘‘de-obfuscation’’

techniques before analyzing any malware. An intelligent malware detector should be

able to sense the type of encryption or obfuscation technique being employed and use

the corresponding ‘‘de-obfuscator’’ to nullify the effects of the obfuscator.The first

2



step in this implementation will be the identification of the factors in a malware that

are taken into consideration by a malware detector. To achieve this, we will begin

by encrypting various parameters of a malware and running it through a malware

detector [4]. By following this approach, we can identify the exact scenario when a

malware is no longer classified as a malware by our malware detector. Once we identify

the features that are required by a malware detector, we will use this information to

make the malware detectors process the obfuscated part of the code as well. This will

make our malware detector more robust and improve their performance.

In Chapter 2, we look at the previous work that is done with regards to malware

detection in Android. We explore the various detection mechanisms and approaches

that has been discussed so far. After looking at the background work, we delve into

code obfuscation in Chapter 3 and understand the basic terminologies associated with

code obfuscation. We also look at the impact of obfuscation in general, and then

more specifically, their impact on malware detectors. After understanding the basics

of code obfuscation and malware detectors, we move on to the current threats and

defenses in the Android operating system in Chapter 4. In Chapter 4, we glance at

the growing dominance of the Android operating system in the mobile phone space

and the importance of this particular operating system in our lives. The motivation

behind selecting the Android OS for this project is understandable from Chapter 4.

The obfuscators to be used in this project, and their functionalities are explained in

Chapter 5. Chapter 6 clearly lists the software requirements for this project and also

talks about the necessary technologies for setting up the experiment. The results

of the experiment are summarized in Chapter 7. The factors that contribute to the

conclusion being drawn from this experiment are detailed in Chapter 6. We finally

consolidate the results and discuss the future course of the project work in Chapter 8.
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CHAPTER 2

Previous Work

In this chapter, we present the results of a literature survey that was performed

to identify the current state of obfuscation mechanisms and their impact to the field

of code obfuscation. We find that code obfuscation has been an area of interest in

the field of cryptography and traditionally, obfuscation techniques have been used

to achieve reverse engineering protection. On the other hand, a lot of malware have

obfuscated code to avoid detection by anti-virus programs.

2.0.1 Code Obfuscation and Malware Detectors

The efficiency of malware detectors against code obfuscation has been a point of

discussion amongst malware researchers for a very long time. A lot of research has been

done on the robustness of malware detectors against high levels of obfuscation. The

issue of malware detector’s strengths against obfuscated malware had been discussed

as early as 1996, as can be seen in the quote by S. Gordon and R. Ford [4]:

‘‘The evaluation of anti-virus software is not adequately covered by any existing

criteria based on formal methods. The process, therefore, has been carried out by

various personnel using a variety of tools and methods.’’

2.0.2 Program Obfuscation

There has been a lot of theoretical research on the different aspects of obfuscation

and on ways to improve it. Most of this research has been successful in arriving at a

conclusion on the efficiency of the cryptographic problems of encryption, authentication

and protocol [5]. But the problem of program obfuscation has remained an area within

cryptography in which theoretical research has been inadequate. In their seminal paper

on program obfuscation, Barak et al. [5] propose to represent program obfuscation

as below: An obfuscator 𝑂 is said to be an efficient compiler if it takes as input a

program 𝑃 and produces a program 𝑂(𝑃 ) and satisfies the following two conditions:
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1. Functionality: 𝑂(𝑃 ) computes the same function as 𝑃

2. ‘Virtual Black Box’property: Anything that can be efficiently computed from

𝑂(𝑃 ) can also be computed by 𝑃 .

The paper by Christodorescu et al. [3] lists various ways to test and achieve

program obfuscation in general. A detailed analysis of the various obfuscation methods

is also discussed in the paper. One interesting angle explored by the paper deals

with assigning mathematical equations to measure the effectiveness of the individual

obfuscators. This lets us quantify the different obfuscators and rank them against each

other. One of the evasion methods employed in malware obfuscation is polymorphism.

It is a method by which a program evades various detection tools by mutating into

different forms. In the paper by Rastogi et al. [6], the authors develop and propose

a framework called ‘DroidChameleon’ that provides a way to transform Android

applications into different forms with minimal user involvement. As shown in Figure 1,

the authors apply various transformations on a malware sample dataset. The output

of all these transformations are processed by a malware detector (referred here as

Anti-malware). The input to the anti-malware is processed sequentially. After each

Figure 1: Evaluating anti-malware
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transformation, the anti-malware‘s output is evaluated and if the malware detection

fails, the next level of transformation is applied. This helps rank the various malware

detectors against each other for accurate analysis.

2.1 Obfuscation in Android Malware

A report by Google stated that a majority of malware detectors work as a binary

classifier [7]. They classify an application as a malware or a benign file. In order to

effectively eliminate malicious applications, it is important that malware detectors

do more than just identify malware. They should be able to isolate the core parts of

the application that perform the malicious acts and work at fixing the loopholes that

let the program act in a malicious way. More recent malware applications employ a

variety of tricks, in addition to traditional code obfuscation mechanisms. For instance,

a variant of Android malware, known as Android/BadAccent, is a known banking

Trojan, that steals credentials used in banking applications [8]. A variant of this

malware used a mechanism known as ‘Tapjacking’ to extract the credentials from the

users. In this form of attack, a screen is displayed to the user, while a second screen

is hidden behind the actual visible display [9]. When a user clicks a button on the

screen, assuming it to be the one that is displayed, the underlying screen gathers the

input and processes the command. This is a common method of gathering details

from unsuspecting users.

2.1.1 Statistical Anaylsis Techniques and Android Malware

One widely used approach for analyzing malware samples is the usage of statistical

methods. In such methods, the Android executable file (with the extension apk), is

decompiled to get the original source code. Due to the Android operating system

being written in Java, it is easy to reverse engineer an apk file to retrieve the source

code. This opens up many opportunities for performing statistical analysis on the

6



obtained raw data. This also lets a researcher perform various operations on the

source code, and then repackage it back into an apk. In the approach known as

AndroSimilar, Faruki et al. [10] propose a new algorithm known as AndroSimilar, that

takes into consideration various features that are known to be present in malware

alone. The AndroSimiar approach [10], as shown in Figure 2, decompiles an apk file

and repackages it after feature extraction. To extract the features, the algorithm

incorporates apps from the Google Playstore and other third party applications. These

features are normalized and fed into a signature generation engine, that provides a

unique signature for each malware. This is used as reference for detecting future

malware applications.

Figure 2: AndroSimilar

2.2 Conclusion

Malware in mobile devices is no longer a problem confined to labs and research

areas. The rapid increase in access to computers has helped malware writers create

specific, targeted programs that perform with high efficiency and exploit vulnerabilities

in different operating systems. The amount of research being done in malware analysis

and, more specifically, in Android malware, is in the right direction. In the fight

7



against sophisticated metamorphic malware, it is imperative that the malware detector

is better than the malware creator. In this paper, we have explored various work, that

dealt with the different aspects of malware obfuscation and ways to overcome the

shortcomings in today’s version of malware detectors. The future of malware looks

very bright and it is hoped that the malware detectors of the future will be up to the

task at hand.
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CHAPTER 3

Code Obfuscation

Code Obfuscation is a technique by which programmers have deliberately sought

to make the functionality of their code less obvious. This technique has been used

by programmers to achieve various additional objectives. Code obfuscation can

be used to achieve a myraid of objectives. These include prevention of reverse

engineering, protection of intellectual property, and reducing the size of an executable.

In some benign scenarios, an executable is obfuscated to protect the various licensing

mechanisms used in them. Obfuscators are also a good way to restrict unauthorized

access to files by people who might try to use dubious tools to incorporate malicious

code into files.

We will look at the history of code obfuscation to appreciate the relevance of

code obfuscation in today’s software development perspective. With growing interest

in various obfuscation techniques, and the ease of availability of obfuscators dedicated

to different operating systems, this would help us in understanding the rapid growth

in this area and appreciate the urgent need for various countermeasures against this

approach.

3.1 Growth of Obfuscation in Software Development

Code obfuscation has been historically associated with malware development,

than with benign software development. Some of the earliest examples of attempts

at obfuscation in malware can be found in the ‘‘Brain Virus’’ . In this variant of

the malware, the malicious program would display unaffected disk partitions to users

attempting to access partitions that the virus had corrupted. Although the code in

itself was not encrypted, the behavior of the virus shows attempts at hiding its true

usage.

In the same year, the Cascade virus was released to the world. This was an early
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variant of malware to use encryption to hide its true purpose. The earliest strains

of obfuscated malware used a simple encryption-decryption routine to perform the

decryption tasks. As the malware detectors of the time were not sophisticated enough

to detect the encrypted part of the code, this simple obfuscation technique enabled a

lot of malware programs to slip away undetected. This is a serious disadvantage in

the design and implementation of malware detectors. We would be exploring more

such flaws with the implementation of malware detectors in this project.

With the advent of advanced malware detectors and improvement in statistical

analysis techniques, the level of obfuscation in malware increased. Polymorphic

malware uses a very high level of encryption technique to obfuscate its contents. A

polymorphic malware changes the encryption in itself and provides very few traces

of a signature. If a malware is truly polymorphic, then there will be no consistency

between any two iterations of the same program and it would be virtually impossible

to detect them using traditional signature matching techniques.

3.2 Malware Detectors

Malware detectors came into existence with the advent of different malicious

programs. Before the rapid growth of the internet, malware detectors were only

capable of performing scans based on signatures of known virus programs. This static

analysis technique meant that new virus would be out in the wild for some time before

the malware definitions of the individual anti virus programs could be updated. With

the introduction of the world wide web, the antivirus industry expanded into dynamic

analysis and cloud based malware detectors. Firewalls, online scanning, and virtual

machines started being increasingly used to identify malware. One major shortfall of

anti virus programs is their inability to detect polymorphic virus. In general, many

antivirus programs employ signature detection for identifying malware. In addition to
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this most common approach, heuristics based detection and rootkit based detection

are also employed to detect virus programs. Along with these approaches, active

scanning approaches like on-access scanning is also used to detect programs that

might attempt unauthorized operations. We discuss these methods and detection

mechanisms in detail in this chapter.

3.2.1 Signature Based Detection

This is one of the most basic methods of malware detection that is still in use

today. When a new strain of malware is detected in the "wild", antivirus firms

analyze it and extract a "signature" from it. This signature extraction can either

be done manually or by using automated signature detection techniques [11]. Once

a signature is detected, it is updated into various malware definitions of antivirus

software. Although this method is effective against generic malware, it is highly

ineffective against oligomorphic, polymorphic and metamorphic malware. These

are variants of malware that encrypt itself with each iteration. In this project, we

attempt to identify the various factors that contribute to malware detection and their

importance in overcoming the signature detection method.

3.2.2 Heuristics Based Detection

In Heuristics based detection techniques, a single signature or pattern is used

to detect multiple malware belonging to the same family. Such techniques rely on

the fact that multiple malware are created from a single malware. Thus, successfully

creating a signature for a base family will result in the detection of all malware related

to that particular family.

3.2.3 Rootkit Detection

A rootkit is a type of software that attempts to gain administrator privileges

in a system without the knowledge of the user running it. In many cases, the
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rootkits contain software within them that becomes undetectable to antivirus programs.

Rootkits usually have full administrative access and also have the ability to hide

themselves from the list of running processes. Modern antivirus software scans for

rootkits in specific, to detect them. It is very difficult to remove a rootkit when

compared to other generic malware programs.

3.2.4 On-Access Scanning

In this method, the antivirus program looks out for any threats that might happen

on a real-time basis. The antivirus monitors the system in which it is installed and

looks for suspicious activity whenever the computer’s memory is loaded with fresh

data from the storage disks. This might happen when a USB drive is inserted, an

email attachment is opened or a even when an already existing file is opened by a

user or a program. This type of scanning is more effective as it does not rely solely on

malware definitions to detect viruses.
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CHAPTER 4

Threats and Defenses in the Android Operating System

Before we dwell deep into code obfuscation in Android, we look at the various

malware detectors for the Android operating system. We also look at the rapid

proliferation of the Android OS and the reason for selecting Android as the focus of

study in this experiment.

4.1 Android Malware Detectors

With the rise of the Android Operating systems, the amount of malware associated

with it has also risen significantly. From a market share of 2.8 % in 2009 [12] , Android

captured about 75% of the market in 2012 [12]. As shown in figure 3 , we can see that

the growth and adoption of Android has been very steep. This rapid proliferation of

Android resulted in an equally rapid rise of Android malware.

Figure 3: Market Share of mobile operating systems
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Figure 4: Top 20 permissions in Android in 2012

With the increase in the number of Android malware being released to the wild,

their level of sophistication also increased. Android malware detectors used the number

of permissions requested by an app to determine its legitimacy. In the schematic

represented in Figure 4, Zhou et al. [13] support the fact that both, benign and

malicious applications, have very similar permission requests. Due to this, using access

requests as a measure for classifying Android applications became ineffective. All

the malware programs plaguing the Android operating system can be classified into

four categories based on the basis of their primary activity [13]. Privilege Escalation,

Remote Control, Monetary Loss, and Information Collection are the various sub

categories under which any Android malware can be classified.

4.1.1 Privilege Escalation

In this type of attack, the malicious app that is installed on a device, attempts

to grant itself additional privileges than the one it requires. This is achieved by using

known exploits in the Android operating system.
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4.1.2 Remote Control

A very high percentage of malware attempts to use the compromised device as a

remote bot. In some malware families, the remote URL that is being used to control

the device is encrypted. Such encryption makes it very difficult to detect these types

of malware and this will be a primary area of focus in this thesis.

4.1.3 Monetary Loss

A very direct way of monetizing malware is to make unsuspecting users subscribe

to services that cost a lot of money. Such services are run by the malware perpetrators

and will enable them to charge the infected devices’ owners money for services that

they are not aware of. To achieve this, some malware use the remote control to push

down numbers of services to the devices and then enroll them.

4.1.4 Information Collection

Many malware programs attempt to collect the personal information of users.

Such personally identifiable information makes it easy for scamsters to dupe people

using various other schemes. Malware belonging to this family tries to steal personal

information of the compromised device’s owner, as well as the details of people in

their contact lists. This information is then sold through different means to interested

parties.

4.2 Android Malware Detection Limitations

One of the major limitation of malware detection in Android is the limited

processing power of the devices running Android. Due to processing and memory

constraints, generic malware detection has to be restricted to static analysis techniques.

In general, all the existing Android security solutions can be classified into Static

Analysis and Dynamic Analysis [14].
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4.2.1 Static Analysis

Static Analysis is a technique in which the an application is evaluated for its

trustworthiness by disassembling and checking its source code. The application is

not executed for this analysis. Once an application is marked for scanning, various

statistical analyzing approaches are used to classify the file. Some of the most

commonly used static detection methods are discussed in the next few subsections.

4.2.1.1 Signature Based Detection

Signature based detection is a type of static analysis technique. In this method,

a virus is examined by extracting its signature and then comparing it with signatures

from known malware. The limitation of this technique is that it is incapable of

detecting unknown malware types. The signatures of known malware are stored in

a signature database. In addition to this, the signature database also requires that

it is updated constantly. Without an up-to-date signature database, most of the

prevalent malware could slip through undetected. This is difficult in the case of

Android Malware detectors as the device possess limited memory and it would be

infeasible to store all virus definitions on the device. If the virus definitions were to

be moved to a remote server, it would use up considerable amount of data traffic for

performing the validation. These are some serious limitations that hinder traditional

signature matching techniques.

4.2.1.2 Permission Based Detection

This is a straightforward approach to detecting malware in Android systems. In

this method, the number of permissions an application requires is used to determine

its classification as a malicious or a benign file. Some research has been done in this

area wherein the Android Manifest file is analyzed for extracting information [15]

about the permissions requested by the application. This information is used to assign
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a score of relevancy to the permissions requested. This score is then compared against

a threshold for determining the malicious intent of an app. There are variations to

this technique and some methods yield better results than the others. This method is

a very quick way of determining the malicious nature of applications. But a serious

limitation of this method is that it does not analyze the source code or the working of

the app. Only the Manifest file is analyzed. A lot of malware apps use permissions

similar to the benign apps. Hence, permissions based detection should be used in

conjuction with a second confirmation method to validate an app.

4.2.2 Dynamic Analysis

In this method, the application is executed and it is analyzed during the runtime.

It becomes very easy to identify sections of code or execution blocks that were missed

during the static analysis of an application. Dynamic analysis methods are also

effective against obfuscation and encryption techniques.

4.2.2.1 Anomaly Based Detection

An application is executed and the system calls generated by it are recorded in a

log. This log is then sent for analysis to a remote server, where the various behavior

of malware are recorded. Using that as a basis, the log files are analyzed, and the

results are aggregated. This result, in collaboration with other techniques are used to

classify the file as malicious or not.

4.2.2.2 Emulation Technique

Yan et al. [16] propose a technique in which a virtual machine is used to analyze

an application. In common virtual machine based detection techniques, the anti-

malware program and the malware execute in the same environment. This makes

them detectable to each other. In the platform presented by Yan et al. [16], the

antimalware, DroidScope, stays out of the execution environment and monitors the
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execution as a whole. This enables it to detect the malware without being detected

by the malware.
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CHAPTER 5

Android Obfuscators

In this chapter, we use different obfuscators to modify parts of an android malware.

By systematically obfuscating different parts of the code, we can gain insight into

the parts which contribute most to the detection of malware. Once we have this

information, we can then determine efficient ways to make the malware detectors

more robust and be less resilient to code obfuscators.

5.1 Experiment

For this project, we use a tool called AAMO (Another Android Malware Obfus-

cator) [17]. This tool gives us various obfuscators for use with our experimentations.

The obfuscators can be used independently or in combination with other obfuscators

to increase their effectiveness. Using this tool, we decompile a android file, perform

obfuscation operations on them, and recompile the file again. In this experiment, we

use the source code provided by the developers of AAMO [17] and available at [18].

This tool forms the basis of the work presented in this thesis. The steps involved in

this are detailed below:

1. Obtain an APK file.

2. Decompile the APK file into Smali.

3. Get the list of obfuscators passed into the program.

4. Apply the obfuscators one after the other on the decompiled apk file.

5. Repackage the decompiled file into an APK.

6. Sign the APK file to maintain its integrity.
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Figure 5: Experiment flow

Performing the above steps ensures that the apk file is not corrupted and its

usage is not affected. We perform this to make it difficult for a malware detector to

detect the apk file as a malicious one. The entire flow of the experiment is depicted

in Figure 5.
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As shown in Figure 5, the final encryption would let the malicious file be signed

with a valid signature and thus eliminating any traces of the apk file having been

compromised.

5.1.1 Uses of the obfuscator

Using the obfuscator in this step has various advantages for our experiment. One

of the primary uses is to make the job of the malware detector more difficult. Since

most of the malware detectors do not take into account polymorphic and oligomorphic

malware, using obfuscators will let us know which parts of a malware factor into

the detection score computed by individual detectors. In this experiment, we use 14

obfuscators to test out the resilience of the malware detectors as listed in Table 1.

Table 1: Android Obfuscators

Count Obfuscator Name
1 Resigned
2 Alignment
3 Rebuild
4 Fields
5 Debug
6 Indirections
7 Renaming
8 Reordering
9 Goto
10 Arithmetic Branch
11 Nop
12 Lib
13 Manifest
14 Reflection

These obfuscators enable us to test the various aspects of a apk file and help us

determine the ones that are really useful to a malware detector. When a particular

obfuscator is run, it runs a function that is specific to that particular obfuscator and
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applies that function to all the parameters that match the criteria for that specific

obfuscator. Each of the obfuscator is discussed here in detail.

5.1.1.1 Resigned

This obfuscator decompiles an apk and just resigns the apk file after compilation.

Not much change is done to the application file in itself. The purpose of this obfuscator

is to attempt defeating malware detectors that try to use signatures of certain known

malware sources to classify a malicious file.

5.1.2 Alignment

This obfuscator makes use of the zipalign utility of android. Zipalign is a tool

that is used to provide optimization techniques to APK files. The tool causes all

uncompressed data within the APK to start with a particular alignment relative to the

file’s beginning. The Alignment obfuscator changes this alignment before recompiling

the apk file.

5.1.3 Rebuild

This obfuscator rebuilds the application file without performing any changes. The

unpacking and repackaging of the apk file affects the timestamp, signature of the apk

and other factors that help in identifying the origin of the file. Some smart malware

detectors are able to detect these changes and do not let the file pass through it.

5.1.4 Fields

This is a relatively simple obfuscator that just renames the fields that are used

in the application. This is done after the decompilation of the apk file. The smali is

analyzed for locating the fields that are used in the source code and these are renamed.

5.1.5 Debug

The debug obfuscator removes all information related to debug from the files.

This is performed not only on the smali file, but throughout the source code as well.
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Without the debug information, the APK file becomes slightly different from the

original file. Removal of the debug information also alters the size of the file and

makes it different.

5.1.6 Indirections

Call indirections is an advanced obfuscation method in which various function

calls are directed through different values. The obfuscator performs operations such

as changing the register count, changing a method call and also redirecting all calls to

the methods. This obfuscation completely changes the control flow of an application

and makes it difficult to detect using a comparison model in dynamic analysis as well.

5.1.7 Renaming

All the variables in the sourcecode are renamed to different values. This is exactly

like using substitutions to hide the original values. Renaming is also advantageous

when certain signature and pattern matches are based on the names of the variables

and functions.

5.1.8 Reordering

Using reordering will let us change the order of the code in the application. The

obfuscator changes the location of certain parts of the code and adjusts the calls to it

accordingly. This makes it possible to evade signature based detection methods if the

signature is based on the order of instructions or if it is based on the DEX opcodes.

5.1.9 Goto

In order to modify the control-flow structure of the application, forward and

backward jumps are inserted into the code. These unconditional jump statements will

be executed irrespective of how the program is run. This widely alters the flow and

will make it very difficult to detect using conventional methods.
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5.1.10 Arithmetic Branch

A constant value, known to the obfuscator, is used to achieve this obfuscation.

This constant value is not known to the compiler. Using this constant value, the

obfuscator is able to control the flow of execution of the program. The compiler

assumes that either of the branches could be possible as the value for deciding the flow

of control is not known. This is applied to methods with more than 2 parameters.

5.1.11 Nop

This is a classical and an easy way to obfuscate a program. In this, a "no-operation

instruction" (known as a "NOP") is inserted into the source code. The number of

such instructions inserted is randomized. These are inserted into methods to make

them bloated and delay the execution time.

5.1.12 Lib

MD5 hashing is used to rename the file and path names. A proxy method is

created and used to handle the decryption of the values, when it is required by the

system.

5.1.13 Manifest

The AndroidManifest.xml file is modified by this obfuscator. The manifest file

contains important information related to the application’s usage and permissions.

This obfuscator opens up the file and encrypts the values for the resources and also

replaces the characters in user defined identifiers.

5.1.14 Reflection

This obfuscator acts similar to the code reodering obfuscator. The reflection

obfuscator takes advantage of the Android dynamic code loading API. All the static

method calls are converted into reflection calls and the the reflect method is invoked

on a string that contains the target method’s name.
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CHAPTER 6

Experiment
6.1 Environment Setup

Due to the various different types of software used in the experiment, it is

important to have the correct version of each software installed. As shown in Figure 5,

each APK will have to be decompiled into its source code, before going through the

obfuscation process. To achieve this, we use a program called apktool[19]. A list of

various software and their versions are listed in Table 2.

Table 2: List of software required and their versions.

Number Software Version
1 Java 1.8.0_45
2 Python 2.7.11
3 Apktool 2.2.1

The given applications are interdependent on each other for this experiment. The

AAMO framework is written in Python and uses various Python libraries to execute.

The decompilation of the APK files is achieved using the Apktool. Apktool requires

a java virtual machine to execute. It is imperative that this version of Apktool be

maintained for repeating the experiments presented in this work as the source code of

AAMO has been modified to fit this version of the tool.

6.2 Dataset and Malware Detectors

In order to successfully evaluate and analyze the malware detectors various

experiments were performed using known Android malware. Once the android malware

were finalized, the obfuscators were chosen to increase the difficulty of malware

detection. A sampling was performed with a handful of malware. Using this sampling,

the obfuscators to be applied were selected and then applied to a wider dataset. The
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Figure 6: Sampling Results

results of this sampling are shown in Figure 6. In Figure 6, a sample file, ‘‘Angry Birds’’,

was used to test the effect of the various obfuscators. This file, a malicious version of

the popular game, is a Trojan variant that steals the contact information, and has

the ability to send text messages without the user’s permission. Before applying any

obfuscator, the file had a detection ratio of 0.819. When we apply the obfuscators,

the detection ratio drops steadily. In Figure 6, the x-axis represents the different

obfuscators that were used. We can see that the detection ratio almost remains

constant for all the obfuscators, except for the manifest and reorder obfuscators. The

functioning of these obfuscators are defined in chapter 5. This hints at the fact that

many malware detectors just perform an analysis on the AndroidManifest.xml file to

classify the file as a malware. Due to this, when the manifest obfuscator is applied,

the detection ratio drops. When we apply all the obfuscators on the file, the detection

ratio drops significantly. This is shown in the Figure 6’s ‘allObfuscation’ bar.

It can be seen from the results that only some obfuscators contribute effectively

to hindering the detection ratio of malware obfuscators.
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6.3 Dataset

The Contagio dataset was used to perform the various experiments in this

project [20]. All the samples used for experimentation are malicious files. The files

were classified as malicious by various means and the contagio data dump also certifies

the files as being malware.

6.3.1 Malware Files Selection

Known malicious files were used for performing the experiments in this project.

The reason for using malware for the experiments was to understand how each

obfuscator would help the malware in evading detection by malware detector. All the

test samples were caught by at least one of the malware detectors and many of the

samples were incorrectly classified as benign files, once the obfuscation was complete.

6.3.2 Other Datasets

Previously, experiments have been performed on malicious files belonging to other

datasets. Before we delve into the results of the experiment performed in this work,

we look at how obfuscators affect the detection ratio of various malware detectors.

6.4 Malware Detectors against Code Obfuscation

A single malware detector is unlikely to give us a substantial result. This is

because various malware detectors use different techniques for analyzing malware. If

a single malware detector were to be used as a benchmark, then we would either get

excellent detection scores or the malware detector would fail in a very poor way. To

overcome this shortcoming, a single obfuscated file is scanned by several malware

detectors simultaneously. Instead of manually uploading the files to different malware

detectors, we make use of VirusTotal [21] and other similar virus scanning providers.
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CHAPTER 7

Results of Experiments

The various obfuscators defined earlier were iteratively applied to malware

samples from the Contagio dataset. Based on the results obtained from VirusTotal,

the obfuscators were selected for further application.

7.1 Observations

The VirusTotal website uploads a malware file to its database and then performs

a scan using the various malware detectors associated with the website. Each uploaded

file is hashed and stored in the database to reduce duplicate efforts and minimize scan

times. Due to this behavior, each time a file is loaded into the website to be scanned,

the website will prompt if a similar file was scanned earlier. It was observed that as

the number of obfuscators employed increased, the similarity between the obfuscated

and un-obfuscated applications decreased. If more than 2 certain obfuscators were

applied, the VirusTotal website would not recognize the file as a previously recognized

file. This observation was consistent throughout the different experiments conducted.

7.2 Steps for Analyzing Malware Detectors

The experiment was performed with certain operations being repeated in an

iterative manner. The obfuscated malware files were prepared in advance. The steps

are as follows:

• Scan a malicious file using VirusTotal.

• Record the detection ratio.

• Apply obfuscator(s) on the selected malware file.

• Scan the obfuscated file using VirusTotal again.

• Record the new detection ratio.

Repeating the above steps helped us detect how robust and efficient malware

detectors are. Ideally, the malware detector should not be affected by the obfuscators.
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The detection ratio should not be very different irrespective of whether the malware

was obfsucated or not.

But the results indicated that almost all the malware files had a very high

probability of being classified as a benign file, if they had sufficient obfuscation

techniques applied to them.

7.2.1 Metrics used

We use the detection ratio provided by VirusTotal to determine the effectiveness

of the Malware Obfuscators. As expected, the malware detectors are not resilient

enough to detect variants of malware that have been slightly obfuscated.

7.3 Obfuscation of Malware Samples

The results for applying each obfuscator were collected and only the significant

results are shown here. In addition to gathering the results for an individual obfuscator,

we also get the results for the individual malware detectors. A comparison of their

behavior is also presented here.

7.3.1 Individual Obfuscators

Application of individual obfuscators did not alter the detection ratio by a huge

margin. A sample detection ratio for applying the "Renaming" obfuscator is shown

in Figure 7. As part of this experiment, 289 files were obfuscated and run through

the malware detectors. In Figure 7, the malware samples are represented on the

x-axis as alphabetic symbols. The mapping for the malware file to symbols is shown

in Appendix B. The graph shows that the average detection ratio for the renaming

obfuscator is 0.46. The average detection ratio is represented by a red line in the

graph. While there are some occasional spikes in the detection rate, that seems to be

the exception with a very few files being consistently classified as a malware.

The results for the obfuscator "Manifest" are shown in Figure 8.The detection
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Figure 7: Single Obfuscator Usage - Renaming. Average: 0.46

ratio for this obfuscator is also lesser than for a normal malware. But with applying

this obfuscator, the detection ratio is further reduced. The average detection ratio in

this case is 0.3867. This shows that the manifest obfuscator contributes more to the

detection rate. We repeat this experiment for different obfuscators to get record their

detection scores. These are included in appendix C.

7.3.1.1 Multiple Obfuscators

While individual obfuscators didn’t provide much insight into the malware

detection scores, it was observed that combining multiple obfsucators quickly decreased

the detection ratio.

In Figure 9, the obfuscators Renaming, Reordering, Goto, and Arithmetic Branch-

ing were applied to the files.

This certainly increased the obscurity of the malware files. The detection ratio

for the obfuscated files in Figure 9 is much lesser than in Figure 7. This could be

attributed to the fact that a combination of weak obfuscators is still a strong enough
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Figure 8: Single Obfuscator Usage - Manifest. Average: 0.3867

Figure 9: Detection Ratios with four obfuscators applied. Average:0.403457

challenge for malware detectors. We also note that, with a average of 0.4034, this is

only marginally better than the performance of a single manifest obfuscator as shown

in Figure 8. This further reiterates the significance of selecting the right obfuscator

rather than a combination of different obfuscators.

7.3.1.2 All Obfsucators

To make the results of the experiment certain, all the obfuscators in question

were applied to a set of files. Keeping up with the consistency observed so far, the
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Figure 10: Pre- and Post-Obfuscation Results. Average: 0.219044

detection ratio dropped by a huge margin. This can be observed in Figure 10. The

results show a average detection rate of 0.21. This is extremely low when compared

to the results obtained before any obfuscation was applied as seen in Figure 6.

This clearly shows that by increasing the number of obfuscators being applied to

a malware, we can bring down the detection ratio of that particular file to a very low

value.

7.3.1.3 Average Ratio and Summarization

To conclude the experiments, the average detection ratio was calculated for each

obfuscator and the combination of obfuscators. The results of this calculation are

shown in Figure 11.

We observe a decline in the detection ratio for the different obfuscators. The

average detection rate drops steeply when all obfuscators are combined. This is

consistent with the results obtained so far in the experiment. The presence of the

manifest obfuscator after the result of the combined four obfuscators in Figure 11

shows the importance of selecting the right obfuscator for defeating the malware

detectors.
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Figure 11: Average Detection Ratio for Different Obfuscators

7.3.2 Individual Malware Detectors

We now analyze behavior of the individual malware detectors and look at their

performance against code obfuscation. To achieve this, we perform the same experi-

ments as before and gather the detection statistics for each malware detector. This

analysis will let us understand the workings of a particular malware detector and help

us identify the best detector for Android. Once we have that information, we will

know the best way to defeat obfuscation in malicious programs.

The detection rates for the AVG Antivirus are shown in Figure 12. From the

figure, we can see that this Antivirus behaves in a manner that is consistent with

the observations so far. The detection rates for AVG Antivirus are in line with the

collective detection rates obtained for all the malware detectors. AVG performs very

poorly only against the manifest obfuscator. In addition to this, the only other instance

when this malware detector fares poorly is when all the obfuscators are combined.

Similar to the detection rates observed for the AVG antivirus, we look at the

detection rates for the BitDefender, and the TrendMicro antivirus as well. The

performance of the BitDefender Antivirus is showing in Figure 13.
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Figure 12: Detection Ratio for AVG Antivirus

Figure 13: Detection Ratio for the BitDefender Antivirus

The BitDefender Antivirus program behaves in a manner that is consistent with

the results obtained for all the malware detectors in general. The difference observed

with AVG antivirus is not seen with BitDefender. However, it can be seen that the

BitDefender antivirus still fails against the combination of all the obfuscators.
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Figure 14: Detection Ratio for the TrendMicro Antivirus

The TrendMicro Antivirus performs well only against unobfuscated malware samples,

as seen in Figure 14. The performance of this antivirus is consistently poor across all

the obfuscators. We can surmise that the algorithm being employed by the TrendMicro

antivirus is not very effective against obfuscated Android malware.

It is safe to conclude that the detection algorithms of AVG and BitDefender

are much more efficient against obfuscated malware, than the algorithm used by the

TrendMicro program.
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CHAPTER 8

Conclusion and Future Work

From the results obtained in this experiment it is evident that the malware detectors

of today are incapable of handling code obfuscation in android malware. This problem

presents a huge gap in the domain of Android Anit-Virus products. The first step in

building a robust malware detector for the Android operating system is to identify the

flaws in the current implementation of the malware detectors. To be able to identify

truly polymorphic malware, the anti virus programs need to be able to defeat the

different types of obfuscators and their combinations. From this experiment, it is

evident that the current malware detectors can be easily defeated and the only true

defense against mobile malware is at the point of installation.

8.1 Conclusion

Due to the limited processing capacity of the mobile devices, it is imperative that

stand alone malware detectors are able to sufficiently defend against known threats

and variants of known malware that are detectable by signature scanning. In this

experiment, we used different obfuscators to test the resilience of malware detectors

against obfuscated malware. Unsurprisingly, the malware detectors fared very poorly

against such obfuscation techniques.

We also observed that by applying all the obfuscators, it is becomes a trivial task

to defeat a very large number of obfuscators. While certain obfuscators, such as

the Lib obfuscator (explained in chapter 5 and results included in appendix C), do

not contribute much to the detection mechanism, some other obfuscators contribute

heavily to the detection algorithm. From the experiments, it is evident that the

manifest obfuscator, as shown in Figure 8, contributes the most to the malware

classification algorithm in most of the malware detectors. The importance of this
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Figure 15: Part of an obfuscated Manifest file

Figure 16: Part of a normal Manifest file

obfuscator can be gauged from the fact that this obfuscator gave better results than

the combination of four other combined obfuscators 9. A part of an obfuscated sample

manifest file is shown in Figure 15. A normal, unobfuscated sample of the same

manifest file is shown in Figure 16. As can be observed, a simple switching of the

values in the manifest file is enough to defeat the malware detectors. This leads to

the conclusion that the selection of the obfuscators to use could greatly determine the

detection chances for a malicious file.

Irrespective of the contribution of an individual obfuscator, combining the maximum

number of obfuscators leads to significantly lower detection rates. Therefore, the

higher the number of obfuscations employed, the lower the chance for a malware

getting detected. The current generation of malware detectors are incapable of

handling encryption in the body of malware. This experiment reiterates this fact and

supports the conclusions drawn by Preda et al. in [17]. The conclusions drawn by
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them indicating a huge gap in the requirement and the availability of sophisticated

anti-virus products is still very much prevalent.

8.2 Future Work

Similar to the obfuscators employed in this experiment, it should be possible to

create ‘‘de-obfuscators’’ for Android files. It would be interesting to see the effect of

each de-obfuscator against the corresponding obfuscator that has been used here. If

employing such a de-obfuscator helps in thwarting the obfuscation, then it could form

the basis for developing more generic de-obfuscation algorithms for incorporation into

malware detectors. As was evident from the experiment, the selection of the right

obfuscator could greatly influence the detection rate. This proves that the majority

of the malware detectors place too much of significance on one aspect of a file, for

classifying it. This shortcoming with the malware detectors for Android should be

taken care of.

The detection mechanism employed in this experiment was employed various

statistical methods. The experiment could be repeated with different datasets and

with different dynamic detection methods. If dynamic detection mechanisms are able

to defeat the obfuscators, they could be used to accumulate data over a large set of

samples to create a library of known malware. This library could then be utilized

by malware detectors that have very less processing power for performing dynamic

analysis. The ease of decompiling and compiling APK files makes it an easy target

for malware writers. If access to the source code of antivirus products are provided,

defense mechanisms against such obfuscation techniques can be built in. With our

increasing dependence on mobile phones and their proliferation into our lives, it is of

utmost importance that sophisticated malware detectors are able to handle obfuscated

malware.
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With these conclusions, we hope to make future malware detectors more resilient

against polymorphic virus with the expectation that the creators of the anti virus

software incorporate the necessary changes to their programs.
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APPENDIX A

Appendix 1
A.1 Abbreviations and Terminologies Used

• APK - A file format used for installing applications on the Android operating

system.

• AAMO - Short for Another Android Malware Obfuscator - A program for

applying obfuscators to android files.

• Obfuscator - A small program that scrambles the source code of a program to

make its functions less obvious.

• Apktool - A program that is used to decompile and compile APK files.

• Smali -

1. An assembler/disassemble for the dex format used by Android’s virtual

operating system.

2. An intermediate file type between compiled dex code and java source

code.
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APPENDIX B

Appendix 2
B.1 Malware File to Symbol Mapping

Label Filename
A 00d430877eed07d10c1e730926dcca9f82f282af
B 00e74c118fa3902e5c85fd8e37f3d084

C
08061663E638B5AC1D780CAACBE9FAD8_1074178_370436_GlamorousS

moke
D 0cbcfbebfb33fde66c282fec0248b0d99a829eab
E 0cc2c8461c78394b186a599c2d5baad364fb41c7
F 0D28FA54F9C0D41801E8FB5A7B0433DD
G 0e8236ddb163e7f3816cfef38b92c6e064887b3f
H 0ef158c897f91a58aa2a13d25cd3019bc19b9954
I 11A7767BFE4926458EC84385214B82C9
J 1485F498084F963801ED76013749C9FA
K 153c94a6d464497b07f1ea3511b87206a3621efd
L 156790b2ef37080cdc301324fa3f5a28d4c310d3
M 1F68ADDF38F63FE821B237BC7BAABB3D_IBanking_Chase
N 232e08bda4856b56e06a45ac5c27350fb30ddf5c

O
2C3B92FFE8123611AE9D9BED000C99F7_1074807_371216__3dtimeclockt

icks
P 2D66D7942148DE2D9F08EAB403921C89
Q 314d66e71040b36ba63ad5a376647dd63ecf3a5c
R 3E076979644672A0EF750A4C3226F553_assassins_creed
S 4021A1E00B3ABEE730994F1EE17219B4
T 4084939A0864B645F6C6A915586FB1AB_com.gmdcd.pic_1345165918398
U 40F3F16742CD8AC8598BF859A23AC290
V 4A300481411AB1992467959491DF412C
W 4D13D1BC63026B9C26C7CD4946B1BAE0_com.bntsxdn.pic
X 4d3a1a769255402be23ae5e6b3445d79b7b4b702
Y 4e80480daf4ab573121d839c2c74cc845945be38
Z 4FD1194F8127439609319CDBE244C0A7_1074349_370686__BlueArt
AA 55d716895ea0934c4a91e1e2cfbd682dec30cb2f
AB 55e2a4d0d89bc70e84159385ed9f078c5d7d9947
AC 561b37c04e92e1a4aadbc51138c787863408a014
AD 564431a34d65836481741ed83d6cb21c9a9bb7ba
AE 56b70b6d31dc3315cdd3b448416f2e2704a1ab25
AF 574e59a377b696c4bdfb83d4bef5478891c000e0
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AG 57e8901381a4e9de94b26f458499c49051b19af2
AH 57f21111f6da9fb9a18af88dff688e59e8e24156

AI
58E73A03025BA95337C952223F18F479_1074703_371102__lordssacredheav

enlycross
AJ 598df80d1d5279e3204ef023dd4dbbe08be6bbd9
AK 5a37e9dd95ffaaae0c29197d2b45fd2afdf77f05
AL 5af738a737ce7ab4005505ab9ca43b08d4e3b503
AM 5c325c70250cbd294fae4cb321b3d8d39f1c1cd3
AN 5c53c9e54294250c0318c35086523449fa917f5c
AO 5cd906b76a1c15373bc7a0ed0d24ef69f84b2c28
AP 5cddd6f6585b0dff93ce1ecc6d8680e83c61e5b3
AQ 5d42e63a02548c15801c2da5b16cbcfb33c4230b
AR 5e9a4e1bb7fb4c94bceef4cd2af54bddaf1f1c34
AS 5f0b8bb59061451a5e45241858c3f8ac62569371
AT 5f0ba094e83ee321b331a3acd7252ae92b4d5734
AU 5fdcb3d86a949d73ddbf721640733917dc300d41
AV 60761527bdec07e7cf5fc35c8aaccf4de7617649
AW 60b1c98fc6ca2b86fbd7c772dc08a73e
AX 60b4ef7037ca6a4d1ee7e3c35c8e27d7
AY 6107f1f26bcd78b628f80e4531998c4b9444ca77
AZ 613398fef32a47a195ae493c8e635ceab6f4fcbd
BA 6214285ed81d3209d4947efe3a2291034877d417
BB 6260c6ba44308c0c4610468784b055ad69fa1095
BC 62bf7ab29610d47737ce01b9becbf4f56651e367
BD 62f6d3b57f0bcea6b9edebff7d67b4a1fb7ece7d
BE 634283bcea6d075b157b76a5f88d23cee733fcb7
BF 63616b5ed2253761c3e9aa47bc155a1743ac9a6f
BG 637d93c7c4d63b5c5d292c24a4a3ddff0f89cb99
BH 6386ea80441002cbfd69fd8ab74b7921d4378abb
BI 63e46c5c180d9b83a5866e770df00cadcc746e6a
BJ 63fc9581928251540df5a811eb20b9024065fcc9
BK 6414962b8bdc09247d92c1317a3e0aa31a973de2
BL 64a8be553cd05c4ac08738df819f231fc16b4b6c
BM 65324abd9ceb8166487d756f474c04ab618b5c30
BN 654d374da14a9edb95f85651be60e1888f237b98
BO 6594767af663113e6c46d2a3ede5d87ec1d034ee
BP 6599cffb03d95b07dafe8e1be726b160d7541c33
BQ 65d40b7b0e9eda5d5a209f3d34ed93357289dafe
BR 65f66e7b862db8c23074da1c2fe697d594ca1cdc
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BS 661cc12f341af0120fbe74b33a8bc4863cae37b9
BT 667a3d0763101b1494c981fbdb9f6f18a41ecabc
BU 669f41369d3bfa56439e7fb6ef01a4a36e08729c
BV 6726709a16a54d457a8d4da73cc45bc5295d7168
BW 676d73270dfd198a8d7867e1df243dbb9b0e102e
BX 69B9691A8274A17CDC22E9681B3E1C74
BY 69be497da755a8259af5cdeda4ac0c9de67a81e2
BZ 6a6176fc043b821b1ceb48425f2bce9c1f3a6cb8
CA 6b26dd8548bad85e2b4bbf2650dc3c5879abc029
CB 6BAE149BC65576831AC635A23938BE36_smartphone5-1
CC 6bb6b3143790f0870f39e80cd3d6bd78fb3a9a57
CD 6c0b900a17faf11d9efc68951b2d04fdb180bfe8
CE 6c13a359586f9cab20f2bc9b4fd8294e61e6e852
CF 6c93ef2106647eb9e9322de5d106ae9df6146277
CG 6d02439c416349545211e382bc0f27b2383123f1
CH 6d43b3bc85770fafeb598eb5297bc341
CI 6d6b779ea0b3d31c9453db8268b1e85463fe4725
CJ 6db96e8a52382fa6f2d3220b592d7ae92f1d78f2
CK 6dba2c4cc420d3c43067cd0f8a86e1718f9639cb
CL 6dbef6bf711c74227550da5a033a0ae4c4c1c1cb
CM 727a33c78e4329ee5e1586a13ee867132790e436
CN 737395cf1bccbc23531fb109b4a8ee1e8cce26b4
CO 73ff558ea62c0835761eced6b292cc930728cf43
CP 74333980ae5bafcb25a9031fb46275435cdbba2e
CQ 749ff6f09b3b6de044ddadf447860b7fd63d8672
CR 74d9dc5a2c95e9eaa880ec11a32d9b109794474b
CS 75459a5009bf08067a1e15ee4e2992c23e00433c
CT 75f31fe1a07986080b6a6f4cd2d9347cc72201b4
CU 761c6c36d81c1edd9e0645447a4e638d7d88356e
CV 766a65fe6d1e4be4551d7d30a1b4539f19991e0e
CW 76f3739c16fb978eafde4ebfae105dc8a94731a5
CX 780b5f7c07ab98de7d8d07eed781973a415ebc5d
CY 780d5124b448249d948a60b43775a424634024ac
CZ 7828066c4804b6364a6f55b6aff3b657899a9d99
DA 792BBB3DDC46E3D0E640D32977434ACA
DB 7c0e0b1ca01e97c2f0d043eb0aabe61cae6216f7
DC 857ee29d88796e1f1b7b440dc9eadc77
DD 88870ad3c7bd42cfe1d728b4a4ccc104
DE 8D52070201F2A81FB1298E133D74057C
DF 8d574d94ba9445979723cfc810637fd84d4c06e1
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DG 8F7A41A921FC15F4FD47A33E476D7B3B_1074179_370437__SkullLighter
DH 9C9AFD6B77D8D3A66A2DB2D2CF0B94B3
DI 9d1625aa79b55a79064dac7a0ecc2f91
DJ A31245022C60FC50B81F7FFC4F4967B2_com.hxmv696.pic
DK A4D6033F66DA3BE83CBF80724CA013D1
DL Activator
DM alfasafe
DN Alsalah
DO Android.Beita_com.beita.contact_10953B741D166D9E22937FE00FBF1038
DP Android.Core.Defender
DQ android.dds.com-STiNiTER
DR Android.Hehe_1CAA31272DAABB43180E079BCA5E23C1
DS Angry_BirdTransformers_1.1.0
DT apk
DU atticlab.bodyscanner

DV
B0E22A785041229A644F015472E738BA_1074810_371221__ghostiderfirefla

messremixFAMOUS3DAPPS
DW B2B7D5999DCE0559D13AB06D30C2C6EC
DX B6CACC0CF7BAD179D6BDE68F5C013E6E_xqxmn18
DY B8B434AB21D394DAA0A9A78A515BD517
DZ b9622e587ae28cfff8ffc5645221e422
EA BlackList_Pro_v2.8
EB btm
EC c1f9283b7ad8457160d3c189430f2c75
ED c2dfe44d9f130033ecd89ba33f8a2e0a
EE C424F9AD311F3B55F8DB5DABF6985856_Accutrack
EF C71740EE94467AE70A71265116D54186_com.zqbb1221.pic
EG c85d37585dbe2ad77572d9a27165ed63c9c8685e
EH caa04deff90081fd4b0b441b9bf16edeb05f52ee
EI CAFFFDEE7479A8816F4551AC8C3A0178
EJ carddeemamaAndroid
EK CCC01FD6D875B95E2AF5F270AAF8E842.576B9B86
EL cce1a35b5fee30883ea3ddca8312109691116cba

EM
CE7B9B2242A71BBEAC0B2839B1063013_1074139_370393__NoiseDetecto

rNonG
EN cenix.android.vbr
EO CFB7E66B2FB605CC94DEBD01238B4995
EP ch.smalltech.ledflashlight.free
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EQ com.adobe.air
ER com.adobe.flashplayer
ES com.adobe.reader
ET com.advancedprocessmanager
EU com.alioth.imdevil_jp.DevilsCreed.full_1.8_installer
EV com.android.googledalvik
EW com.android.googlekernel
EX com.android.installer.full
EY com.android.locker
EZ com.android.Materialflow
FA com.anglefish.livewallpaper.hotchick1
FB com.antivirus
FC com software.compass
FD com.app.lotte.auth-1
FE com.appspot.swisscodemonkeys.jokes
FF com.appspot.swisscodemonkeys.paintfx
FG com.atools.cuttherope-LeNa.b
FH com.bb.iphone
FI com.biggu.shopsavvy
FJ com.c101421042723
FK com.cootek.smartinputv5
FL com.devuni.flashlight
FM com.droidmojo.awesomejokes
FN com.dropbox.android
FO com.ebay.mobile
FP com.estrongs.android.pop
FQ com.evernote.skitch
FR com.facebook.katana
FS com.facebook.orca
FT com.fdhgkjhrtjkjbx.model
FU com.fede.launcher
FV com.gau.go.launcherex
FW com.gau.go.launcherex.gowidget.taskmanager
FX com.gau.go.launcherex.theme.iphoneazooz
FY com.google.android.apps.maps
FZ com.google.android.apps.plus
GA com.google.android.apps.translate
GB com.google.android.stardroid
GC com.google.android.street
GD com.google.android.voicesearch
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GE com.google.android.youtube
GF com.google.earth
GG com.google.zxing.client.android
GH com.hm
GI com.icq.mobile.client
GJ com.incredibleapp.wallpapershd
GK com.intsig.camscanner
GL com.jb.gosms
GM com.jiubang.goscreenlock
GN com.lovekamasutra.ikamasutralite
GO com.metago.astro
GP com.movieshow.down
GQ com.mxtech.videoplayer.ad
GR com.netbiscuits.kicker
GS com.nnew.GTAHDBackground
GT com.opera.browser
GU com.opera.mini.android
GV com.outfit7.talkingben
GW com.outfit7.talkinggina
GX com.outfit7.talkingsantafree
GY com.outfit7.talkingtom
GZ com.parental.control.v4
HA com.piviandco.fatbooth
HB com.qq.assistant
HC com.rechild.advancedtaskkiller
HD com.saavn.android
HE com.sancronringtones.funnysmssb
HF com.security.patch
HG com.skype.raider
HH com.splunchy.android.alarmclock
HI com.starfinanz.smob.android.sfinanzstatus
HJ com.stephbriggs5.batteryimprove-2
HK com.stylem.wallpapers
HL com.teamviewer.teamviewer.market.mobile
HM _com.tebs3.cuttherope_6_1.1.5
HN com.viber.voip
HO com.vlcdirect.vlcdirect
HP com.vlingo.client
HQ com.VoiceChange.VoiceChangeIL-1.4
HR com.watchtv
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HS com.wetter.androidclient
HT com.whatsapp
HU com.whatsapp.wallpaper
HV copy9_23
HW ctm

HX
D67A07E3DE88C0130420588FD158B967_1074808_371217__eyeseeyouSA

MSUNG
HY d

HZ
DE5BFA8715DAC2E29E206C19CA98F2F4_1074141_370394__JingleBellN

onG
IA de.blitzer
IB de.cellular.tagesschau
IC de.dasoertliche.android
ID de.frauentausch.andreas
IE de.hafas.android.db
IF de.is24.android
IG de.kaufda.android
IH de.mehrmannd.sdbooster-GAMEX
II de.spiegel.android.app.spon
IJ de.tvspielfilm
IK de.web.mobile.android.mail
IL de.wutprobe211.de
IM dtm
IN E1B86054468D6AC1274188C0C579CCAF_iBanking
IO E8063DE12976D371441F15F2C5715627
IP e8237a583fe7b2362b4addf01518600b
IQ Extension.2nd.stage
IR F05839EB7156B434A893BBEDDB68AD85
IS F06AF629D33F17938849F822930AE428_iBanking_ing
IT F1AA24C1641471F5FBEF08AE56A53FB4
IU F1BC8520754D2AC4A920B3EF5C732380_iBanking_bot
IV F836F5C6267F13BF9F6109A6B8D79175_fbi
IW fakeAV_148B76C664F2854E2947AF01160FFA99_LabelReader
IX fakeAV_1CA532F171A0B765A46AF995EBAAB1D2_LabelReader
IY fakeAV_1E178E501B41659FFACE85153615DEA7_LabelReader
IZ fakeAV_36B177910C99872B33E90DEA71B16617_LabelReader
JA fakeAV_6F237D25472D9D09FC44ECE7DC9CED92_LabelReader
JB fakeAV_75B8F9DBB1CD79B7FC074F7F499150CF_LabelReader
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JC fakeAV_77BB7F86FB0AC66C97B1AB3573ADFFC1_LabelReader
JD fakeAV_934527F8EBB5C1088009CC9329DC3DE6_LabelReader
JE FAKEAV
JF fakeAV_ED1E0689F93B0C57E403489BB5338F59_LabelReader
JG Fakemart_.D002F0581A862373AA6C6C0070EC3156
JH FakeSMSInstaller_Geared_1.0.2
JI FB9FEFFB1FEF13C4A5E42ACE20183912_1074813_371228__SaveTenDollar
JJ flashplayer.android.update
JK GoogleKernel
JL hippo_sample
JM HtcLoggers
JN hu.tonuzaba.android
JO il.co.egv-3
JP instagram
JQ install
JR jin_old_2.1
JS kim
JT krep.itmtd.ywtjexf-1_02E231F85558F37DA6802142440736F6
JU kr.sira.measure
JV kr.sira.sound
JW la.droid.qr
JX live.photo.savanna
JY Loozfon_04C9E05D0F626CC3F47DC0BC9B65A8CF
JZ miyowa.android.microsoft.wlm
KA mms475843
KB net.uloops.android
KC net.zedge.android
KD Newfpwap_com_liveprintslivewallpaper
KE org.leo.android.dict
KF org.mozilla.firefox
KG PhoneLocator_Pro_4.6
KH _pl.byq.new_19_1.2.5
KI Ransomware-locker-67BDE6039310B4BB9CCD9FCF2A721A45_koler
KJ ru.blogspot.playsib.savageknife
KK SandroRat
KL santander
KM sb
KN sber
KO Scan-For-Viruses-Now
KP schgg
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KQ smart.apps.droidcleaner-1
KR smart.apps.superclean-1
KS smtp_C9B7BE2C1518933950B0284FC254C485_20130802_031615
KT sp_k_test
KU sp_mtm
KV sp_ntm
KW spyera
KX SuiConFo
KY SuperClean-11
KZ suspect
LB test97
LC test98
LD test99
LE testService
LF ThreatJapan_4C937667CB23E857D42B664334E1142A_NewsAndroidcode03
LG ThreatJapan_BA73E96CAA95999321C1CDD766BDF58B_NewsAndroidcode02
LH ThreatJapan_CF45E1288B47D97326ED279F2EE41E4D_NewsAndroidcode01
LI ThreatJapan_D09A1FF8A96A6633B3B285F530E2D430_NewsAndroidnocode
LJ tunein.player
LK tvtotalnippeltrial.app
LL uk.co.exelentia.wikipedia
LM Update
LN vertu.jp
LO vertu.kr
LP vksafe
LQ waterfall3dLive.boa.liveWPcube
LR Whats_app
LS XXshenqi
LT zitmo
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APPENDIX C

Appendix C
C.1 Single Obfuscator Results

52



Figure C.17: Detection Rates before obfuscation. Average: 0.7138

Figure C.18: Average Detection Ratio after using All Obfuscators. Average: 0.219044
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Figure C.19: Detection Rates after applying the Obfuscator Debug. Average: 0.478202

Figure C.20: Detection Rates after applying the Obfuscator Renaming. Average:
0.478202
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Figure C.21: Detection Rates after applying the Obfuscator Resigned. Average:
0.507732

Figure C.22: Detection Rates after applying the Obfuscator Indirection. Average:
0.504374
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Figure C.23: Detection Rates after applying the Obfuscator Lib. Average: 0.584618

Figure C.24: Detection Rates after applying the Obfuscator Manifest. Average:
0.386791
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Figure C.25: Detection Rates after applying the Obfuscator Renaming, Reordering,
Goto, and Arithmetic Branch. Average: 0.403457

Figure C.26: Detection Rates after applying the Obfuscator Alignment. Average:
0.572892
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