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ABSTRACT

Image Spam Detection

by Aneri Chavda

Email is one of the most common forms of digital communication. Spam can be

defined as unsolicited bulk email, while image spam includes spam text embedded

inside images. Image spam is used by spammers so as to evade text-based spam filters

and hence it poses a threat to email based communication. In this research, we analyze

image spam detection methods based on various combinations of image processing

and machine learning techniques.
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CHAPTER 1

Introduction

Electronic mail or email is one of the most common forms of digital communication

today. A survey conducted in 2010 indicated that 94% of the respondents had used

email and 62% used emails daily. These numbers have significantly grown since

2010 [1].

Spam can be defined as unsolicited bulk email. The widespread use of email makes

it an attractive target for spammers. Spam email which can include advertisements,

malware, phishing links, adult content, and so on, represents a significant threat to

the utility of email as a communication medium.

In its nascent stages, spam was seen in the form of text emails. Many strong

classifiers were developed to filter spam emails, based on content, subject, header,

etc. For example, Lai and Tsai [2] explore 4 machine learning algorithms used to

build detection schemes using different parts of the email message. Machine learning

algorithms including 𝑘-nearest neighbors (KNN), Support Vector Machines (SVM),

Naïve Bayes, etc. were used for spam detection.

With strong text based classifiers being developed, spammers reacted by devel-

oping new techniques including blank spam, image spam, and backscatter spam to

evade text based detection. Image spam is email spam sent in the form of images.

Spam text embedded inside an image can be an effective method to evade text-based

detection [3]. According to a recent report from Symantec [4], spam now accounts for

90.4% of all email.

Initially, image spam was seen in the form of simple text converted to images.

To detect this type of image spam, Optical Character Recognition (OCR) was used.

Optical Character Recognition extracts the text inside these images and then it is

subjected to text based detection techniques. As a reaction to OCR based detection,
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spammers introduced obfuscation techniques in spam images. Obfuscation prevents

OCR from reading the text embedded inside the images [5].

Instead of detecting image spam based on OCR techniques, it is possible to

consider a more direct approach based on properties of the images themselves. In this

research, we consider such an image processing approach in conjunction with machine

learning algorithms.

In addition to our experiments on publicly available image spam datasets, we

developed a synthetic dataset. The aim of constructing this dataset was to provide a

more challenge test case for proposed detection schemes.

The remainder of this paper is organized as follows. In Chapter 2, we give a brief

overview about what is image spam, detection techniques and related work done in

this domain. In Chapter 3, we talk about image features used in the experiments.

Chapter 4 give a brief overview machine learning model used for the experiments.

Chapter 5 we discuss the process of generating the synthetic dataset and evaluate it.

Chapter 6 details the environmental setup and then dives into the experimental results

of SVM Model with the datasets. We further analyze the feature distribution between

ham and spam images with Expectation Maximization Clustering in chapter 7. In

chapter 8 we conclude our findings of this research and talk about some future work

2



CHAPTER 2

Background
2.1 Types of Image Spam

Image Spam is an email spam technique developed to evade content based

detection techniques. Image spam techniques have evolved today. We can loosely

classify them into 3 generations [6].

• First Generation Image Spam: The onset of image spam began with simple

text embedded inside images. This was a successful effort to evade content

based detection schemes. Combining OCR technique with content based filtering

served as a good classifier for this class of image spam.

• Second Generation Image Spam: In the second generation of image spam,

background images and noise were introduced in the image. This was an

attempt make OCR filtering difficult. Since OCR is looking for text inside the

images,adding background noise made it difficult for OCR to detect the text.

• Third Generation Image Spam: This class of image spam introduced relevant

images along with the text. For instance adding an image of a watch along with

the advertisement text. In this scenario, even if OCR detects the text, having

an actual watch in the image would confuse the detection scheme.

2.2 Spam Detection Techniques

Spam detection techniques can be loosely split into two categories based on the

content of the email.

• Content Based Filters: Content based detection schemes can be used to filter

text based spam emails. They rely on the content/text inside the spam emails.

String classifiers are built using keywords extracted from spam emails, headers,

payload, etc. Machine learning techniques have been used exhaustively to build

these type of classifiers [1].

3



• Non-content based Filters: Non-content based detection schemes are used to

detect more advanced forms email spams like image spam. These detection

schemes heavily rely on other properties of the emails like image properties.

2.3 Related Work

Since the onset of spam detection, machine learning techniques have been used

exhaustively. Image spam has further widened this research area. A combination of

image processing and machine learning techniques have resulted in strong image spam

detection schemes.

Kumaresan et al. [7] used combination of 10 metadata features and 3 texture

features to construct a feature vector for each image. They used SVM for detection

and Particle Swarm Optimization(PSO) to improvise on top of the SVM results. PSO

improves the results by iteratively going through candidate solutions and moving the

particles in search space. PSO works on a very small dataset compared to SVM. The

paper presented SVM plus PSO results for various ratios of training data. Using SVM

with particle swarm optimization, they achieved an accuracy of 90% on Dredze dataset

for 300 training images and 380 test images.

Annapurna et al. [6] constructed a feature set using 21 image properties. Each fea-

ture is associated a weight based on how much it contributes to the SVM classification.

Based on these weights, they conducted various experiments, with feature selection

and feature elimination. These experiments were conducted on 2 datasets [3, 8] and

the accuracy achieved with each dataset was 97% and 99%. As compared to [7]; a lot

more features were used to contruct the feature set; and hence the accuracy improved

by 9% on Dredze dataset. Additionally, a new in-house dataset was constructed to

challenge their SVM classifier.

Soranamageswari et al. [9] proposed a similar architecture with Neural Networks.
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The authors used Back Propagation Neural Networks(BPNN) for image spam detection.

They achieved an accuracy of 92.82% on the Spam Archive dataset [10] with color

features. An interesting feature used in this paper was image composition. Image is

partitioned in blocks and the blocks representing left, right and center are considered

as super blocks. The mean of these super blocks and uniformity of blocks adjacent to

the super blocks are used as features. These features combined give an overview of

image composition. They achieved an accuracy of 89.32% on the same dataset using

only image composition features.

Chowdhury et al. [11] extracted metadata features and visual features and fed

it to BPNN. They presented a comparison of 3 machine learning algorithms; Naive

Bayes, SVM and BPNN on the same dataset, with the same set of features. The

results showed that despite of increased complexity, neural networks achieved greater

accuracy than the other two models.
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CHAPTER 3

Image Processing
3.1 Image Features

Image features are analogous to image properties. Spam images are computer

generated. They lack the basic color properties and composition of that of a nor-

mal/ham image. Hence, image properties of spam images vary a lot from natural/ham

images. For instance change in brightness in natural images is very high compared

to that of spam images. We used advanced image processing techniques to extract

many such properties from images. A total of 41 features were collected, of which 21

are based on previous research [12]. Table 1 gives a brief overview of all the features.

These features can be loosely classified in 5 domains.

• Metadata Features: Properties like image size, height, width, aspect ratio,

compression ratio, bit depth, image name, etc. are the basic set of properties of

an image. A certain anomaly can be seen in computer generated images versus

natural images. We used compression ratio, aspect ratio, etc. as 6 metadata

features.

• Color Features: Various histograms contain information about image constitu-

tion.

– Color Histogram: A color histogram contains information about the usage

of red, green, and blue colors. Normally, in a spam image, very few colors

are used compared to natural images. We also quantized RGB histograms

and used them for classification. Figure 1 compares the RGB channels of

ham and spam images.

– Red, Green, Blue Histograms: Mean, Variance, Skew and Kurtosis of each

of these 3 histograms is calculated. All combined 12 features are extracted

from the 3 histograms.
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(a) Ham (b) Spam

Figure 1: RGB Channels of Color Histogram

– Hue, Saturation and Value (HSV) Histogram: HSV Histogram captures

the following 3 aspects of the colors of an image.

∗ Hue: It defines how close the color is to red. Hue is measured between

0 to 1; 0 being red.

∗ Saturation: It defines how pure the color is. Higher values of saturation

correspond to deeper/richer colors. White corresponds to 0 saturation.

∗ Intensity/Value: Intensity defines brightness. Higher values of intensity

correspond to white.

– Hue, Saturation, Intensity Histograms: Mean, skew, variance nd kurtosis

of each of these histograms are captured. This adds up to 12 features

extracted from the 3 features. Figure 2 compares the HSV channels of ham

and spam images.

• Texture Features:

– Local Binary Pattern (LBP) Histogram: This histogram captures informa-

tion about the texture of the image. For each pixel, LBP helps quantify

how similar or different each pixel is from its neighboring pixels. Since

spam images do not have a real background, LBP captures relatively less
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(a) Ham (b) Spam

Figure 2: HSV Channels of HSV Histogram

information.

• Shape Features:

– Histogram of Oriented Gradients: This histogram is commonly used for

object detection. It describes how the intensity of gradients change in the

image.

– Edges: Edges mark the change in contrast. Edges highlight boundaries

of features in an image [12]. Figure 3 shows canny edge filter output on

a spam image and a ham image. Spam images in general contain a lot of

text, resulting in an increased number of edges than ham images. Another

observation we can make by looking at the images is that edges in spam

images are smaller compared to that in ham images. Number of edges and

average edge length have been considered as 2 features.

• Noise Features:

– Entropy of Noise: Amount of noise in a spam image is less than a normal

image. Entropy of noise histogram is measured as a feature.

– Signal to Noise Ratio (SNR): For this paper SNR is the ratio of mean and

standard deviation in grayscale image’s histogram.
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Figure 3: Canny Edge

3.2 Feature Extraction

Once image properties have been extracted, these features have to be quantified.

This process can be called as preparing the data. Machine learning algorithms require

input in the form of feature vectors, wherein each feature is a number. Hence image

features like canny edges, histograms, etc. have to be converted to numbers. Various

statistical techniques like entropy of histograms, mean, variance, kurtosis, extracting

number of edges from canny edge image, etc. are used. Once feature vectors are

constructed, multiple experiments can be conducted to select a subset of features to

achieve greater accuracy.

9



Table 1: Feature set

Feature Domain Feature Description

Metadata
Features

Height Height of the image
Width Width of image

Aspect Ratio Ratio of height and width
Compression Ratio How compressed is image

File Size Size on disk
Image Area Area of image

Color
Features

entr-color Entropy of color histogram
r-mean Mean of red channel histogram
g-mean Mean of green channel histogram
b-mean Mean of blue channel histogram
r-skew Skew of red channel histogram
g-skew Skew of green channel histogram
b-skew Skew of blue channel histogram
r-var Variance of red channel histogram
g-var Variance of green channel histogram
b-var Variance of blue channel histogram
r-kurt Kurtosis of red channel histogram
g-kurt Kurtosis of green channel histogram
b-kurt Kurtosis of blue channel histogram

entr-hsv Entropy of HSV histogram
h-mean Mean of hue channel of hsv histogram
s-mean Mean of saturation channel of hsv histogram
v-mean Mean of brightness channel of hsv histogram
h-var Variance of hue channel of hsv histogram
s-var Variance of saturation channel of hsv histogram
v-var Variance of brightness channel of hsv histogram

h-skew Skew of hue channel of hsv histogram
s-skew Skew of saturation channel of hsv histogram
v-skew Skew of brightness channel of hsv histogram
h-kurt Kurtosis of hue channel of hsv histogram
s-kurt Kurtosis of saturation channel of hsv histogram
v-kurt Kurtosis of brightness channel of hsv histogram

Texture Features lbp Entropy of Local Binary Patterns histogram

Shape
Features

entr-hog Entropy of histogram of gradients
edges Total number of edges in an image

avg-edge-length Average edge length
Noise
Features

snr Signal to Noise Ratio
entr-noise Entropy of noise
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CHAPTER 4

Support Vector Machines (SVM)
4.1 SVM Model

SVM is a supervised learning algorithm, generally used for classification. SVM

has been exhaustively used in email spam detection [2] and image spam detection [6].

In the training phase SVM constructs a separating hyper-plane. In this section, we

give a brief overview of the SVM algorithm.

There are 4 key concepts of SVM algorithm as described by Stamp M., in Machine

Learning with Applications in Information Security [13].

• Separating Hyperplane: In the training phase, SVM attempts to find a

separating hyper-plane which divides labeled input data into two classes. In an

ideal scenario, all the data of one class falls on one side of the hyperplane and

other class falls on the other side.

• Maximize Margins: To construct an optimal hyperplane, only a subset of

training data is required. These points are called the support vectors. The

idea behind choosing an optimal hyperplane is to maximize the distance/margin

between the support vectors of each class and the hyperplane. Figure 4 shows a

separating hyperplane and support vectors for 2D data.

• Work in higher dimensions: Separating hyperplane is essentially a linear

decision function. However, data of the input space is often not linearly separable.

Hence, SVM converts the input data to a feature space higher dimension. Input

data in this form is more spread out and linearly separable. Hence, classifying

data becomes easier. This transformation is however an expensive task.

• Kernel Trick: Kernel Trick is the mapping function used to transform input

space to a linearly separable higher dimension. It makes a non-linear transforma-

tion an easy task. It doesn’t actually perform the transformation to the higher
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Figure 4: Separating Hyper-plane

dimension yet gives us the advantages of working in higher dimensions. Multiple

Kernel functions are available like Linear Kernel, Polynomial Kernel, Radial

Basis Function(RBF), etc.

4.1.1 Training Phase

Training phase involves generating an equation for the separating hyper plane.

It is done by solving a Lagrangian Duality problem. Given a set of input data

𝑋0, 𝑋1...., 𝑋𝑛, with labels 𝑧0, 𝑧1...., 𝑧𝑛, where 𝑧𝑖 ∈ {−1, 1}, the training phase solves

the Lagrangian Duality Problem for Select Kernal function 𝐾 and 𝐶 as follows

Maximize 𝐿( 𝜆) = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜆𝑖𝜆𝑗𝑧𝑖𝑧𝑗(𝑋𝑖 · 𝑋𝑗)

Subject to
𝑛∑︁

𝑖=1
𝜆𝑖𝑧𝑖 = 0 and 𝐶 ≥ 𝜆𝑖 ≥ 0 for 𝑖 = 1, 2 . . . 𝑛.

4.1.2 Testing Phase

In the testing phase, we classify a point by determining on which side of the

hyperplane the point lies on.
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4.2 Feature Selection

In a multidimensional input space, the cost of converting the input space to a

higher dimension increases. Though SVM is a classification algorithm, SVM also

calculates weights for each feature and ranks them based on their contribution to

classification. The idea behind feature selection is reduction of dimensionality. The

cost of converting an input space to higher dimension/applying kernel transformations

is high. So instead, using the ranks for each feature, we select only top k features for

testing phase. Ranks of each feature indicate the relevance of these features. Some

features become redundant in presence of other correlated features. For instance, color

histogram and hsv histogram extract different channels of the color properties from

an image, hence they are correlated. It could be possible that having color histogram

in the feature set alone is sufficient. Hence we use feature selection to cut down this

redundancy and increase processing speed. We use two techniques for feature selection

described in the following subsections.

4.2.1 Recursive Feature Elimination

Recursive Feature Elimination(RFE)[14] is a statistical feature selection technique,

used to remove features that contribute the least to SVM classification. RFE assigns

weights to features and ranks them in accordance to the amount of contribution they

make towards SVM classification. The feature with least rank is eliminated and the

process is repeated till the desired number of features are eliminated. RFE works only

with Linear Kernel of SVM.

while 𝑁𝑜.𝑜𝑓𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑜𝑠𝑒𝑙𝑒𝑐𝑡 ̸=k do
Train SVM classifier.
Calculate weights for each feature and rank them.
Eliminate least contributing feature.
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4.2.2 Univariate Feature Selection

Univariate Feature Selection (UFS) [15] uses univariate statistical properties of

each individual feature to rank the features. UFS helps understand data structure

and characteristics. In contrast to RFE, UFS does not account for feature correlation.

This allows UFS to be faster than RFE [16]. The purpose of analyzing this feature

selection technique was to contrast RFE selection which is correlation based. UFS

uses the coefficients assigned to features by the SVM classifier. This technique is

model dependent. When features are highly correlated, model becomes unstable [17].

4.3 Scoring Metrics

When any data point is scored, the result is one of the following 4 outcomes-

1. True Positive(TP): The scored sample is a spam, and it is rightly classified as

spam.

2. True Negative(TN): The scored sample is a ham, and it is rightly classified as

ham.

3. False Positive(FP): The scored sample is ham, and it is wrongly classified as

spam.

4. False Negative(FN): The scored sample is spam, and it is wrongly classified as

ham.

In the real world, we want to reduce the FP rate as low as possible and increase

TP and TN. We measure SVM scores in the form of accuracy. Accuracy can be defined

as-
Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁

where P = total positive samples and N = total negative samples.
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4.3.1 Confusion Matrix

Confusion Matrix visualizes the four cases for given dataset. Figure 5 shows a

confusion matrix.

Figure 5: Confusion Matrix

4.3.2 Receiver Operating Characteristic(ROC) Curve

For any binary classifier, ROC curve is constructed by plotting True Positive

Rate(TPR) versus False Positive Rate(FPR) for varying threshold values. True

Positive Rate(TPR) is also called sensitivity, True Negative Rate(TNR) is also called

specificity. FPR = 1 - specificity. TPR and TNR can be defined as follows-

TPR = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
and TNR = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Area Under the Curve(AUC) for an ROC is used as a scoring metric. An AUC

of 1.0 is perfect accuracy and AUC of 0.5 is like flipping a coin. “AUC gives the

probability that a randomly selected match case scores higher than a non-match

case” [18, 13] Figure 6 shows an example of an ROC curve.
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Figure 6: ROC Curve
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CHAPTER 5

Challenge Dataset Generation
5.1 Existing Datasets

Two datasets have been used in this research. Two of these datasets are public

datasets, images from actual spam and ham emails exchanged.

5.1.1 Dataset 1

This dataset was developed by writers of Image Spam Hunter [3] at Northwestern

University. After cleaning the dataset, 920 spam images and 810 ham images were

retained for the research. All the images are in jpg/jpeg format.

5.1.2 Dataset 2

Dredze et. al in their paper Learning Fast Classifiers [8], created an image spam

corpus which is publicly available. After cleaning the dataset, 1089 spam and 1029

ham images were retained for research. All the images are in jpg/jpeg format.

5.2 Challenge Dataset Generation - Method

The aim of generating this dataset was to challenge the existing detection scheme.

Image properties between ham and spam images vary. We used image processing

techniques on spam images, to make it look more like a ham image. A public corpus;

Spam Archive, from Dredze et. al in their paper Learning Fast Classifiers [8] included

only spam images. We used this corpus and overlayed it on the ham images from

Dataset 1. The resulting spam images were harder to detect. We used two approaches

to develop the challenge dataset. The essential difference between both the approaches

was overlay technique.

In approach 1, we attempted to target a set of properties in each step. Steps used

to generate challenge dataset using approach 1:

1. We resize the spam images to the image dimensions of a ham image. This will

alter the metadata features of spam image, and align them to that of the ham
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images.

2. Since spam images are computer generated, background noise is generally very

low in spam images. We added a noise filter to these spam images to introduce

some noise in these images. It also masked the sharpness of the edges in spam

images.

3. Last step was to overlay this altered spam image to a ham image. We used

a weighted overlay technique[]. Weighted overlay technique blends both the

images based on the weights specified for each of the image. We experimented

with multiple ratios and the ratio that worked best for us was 60% ham and

40% spam.

Figure 7 shows an example of challenge dataset generated using Approach 1.

We can see hints of both the images in challenge image. This dataset offsets color,

metadata and noise features of the spam image and brings them closer to those of

ham images.

Figure 7: Challenge dataset example - Approach 1

The second approach is relatively simple and straightforwards. We essentially
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extracted all the content of spam image and overlayed it on ham image. Steps to

generate challenge dataset using Approach 2:

1. We resize the spam image to the dimensions of ham image. This resizing helps

align the file properties of the test dataset to that of ham set.

2. We overlay the resized spam images on top of ham images. A general observation

we made with the spam images, was that spam images have a light (white/yellow)

background. Eliminating the background, we picked up only the content of the

spam image and overlaid it on ham image. Doing so, helped us align many

image properties like color histogram and edges with that of ham images.

Fig. 8. shows an example of the generated dataset. We can see that the test

image(generated image), has the ham image as the background and the content of the

spam image as the foreground.

Figure 8: Challenge dataset example - Approach 2

Our evaluation criteria for both the approaches was SVM Scores. We subjected

these datasets generated by both the approaches to our SVM detection model and

approach 1 scored 79% and approach 2 scored 70% accuracy. Since our aim of
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generating these datasets is to challenge the SVM detection model we constructed,

approach 2 is clearly better as it brings down the accuracy by 9% as compared to

approach 1. All in all, both the datasets give a bigger challenge to the detection

schemes and would serve as good challenge datasets for research purposes.

Figure 9 shows scatterplots of compression ratio and color entropy values for ham,

spam and test(challenge-spam) images for Approach 2. It can be noted from these

scatterplots, that the properties of ham and test image align. Appendix A lists scatter

plots of rest of the features. Figure 10 shows the difference in ranks associated to each

feature in dataset 1 and challenge dataset. We calculated the ranks per feature for

both the datasets and plotted the values of difference between dataset 1 and challenge

dataset.

(a) Compression Ratio (b) Entropy of color histogram

Figure 9: Feature value comparison scatter plots
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Figure 10: Difference between feature ranks for Dataset 1 and Challenge Dataset
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CHAPTER 6

Experiments and Results

SVM has been widely used in text based detection techniques [1]. In this section

we will analyze how SVM can be used in image spam detection. SVM is a supervised

classification algorithm. SVM generates a separating hyper-plane at the end of training

phase which separates our data into two classes [19]. We use this trained model to

test the remaining data.

6.1 Environment Setup

All the experiments were conducted on a Windows 7 Machine with 8 GB RAM

and 256 GB SSD. We chose Python as our primary language. Python 3.5.0 with

OpenCV [20] were primarily used for all image processing tasks. Scikit-learn library [21]

in Python was used for data preprocessing and machine learning tasks. Table 2 lists

all the python packages that were used and their purpose.

Table 2: Python Packages

Library Purpose
Open-cv Image Processing for feature extraction
PIL [22] Image Processing for feature extraction

Scikit-learn SVM and preprocessing
Numpy [23] Mathematical computations like mean, var

Matplotlib [24] Charting

Scikit-learn library provides 3 classes for SVM classification - C-Support Vector

Classification (SVC), Nu-Support Vector Classification(NuSVC) and Linear Support

Vector Classification. SVC internally uses libsvm[25] implementation. SVC is fit

for smaller datasets contained within 10000 samples. Since our dataset was a small

dataset we used SVC for the experiments. SVC allows multiple kernels of which

we used linear, rbf and polynomial. Nu-SVC is nothing but SVC with a specified

number of support vectors. Linear SVC is again similar to SVC but does not allow
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kernel selection. Kernel is defaulted to Linear Kernel only. For the experiments we

tune various parameters in the SVC method like C, gammma, degree, etc. to achieve

optimal results.

OpenCV library is an Open Source Computer Vision library distributed under

BSD license. It is widely used in many areas; image processing being one of them.

OpenCV library provides interfaces in C, C++, Python, and Java. We used the

Python interface of the library. The advantage of using OpenCV against most other

image processing libraries was the multitude of features OpenCV came with. Also,

since its designed for multi-core processing, we had an added advantage of processing

speed.

6.2 Experiments

Figure 11 shows the flow of train and test phases for the SVM detection model.

First the ham and spam images are split into train and test sets. Train and test sets

are exclusive i.e. there is no overlap between the two. All the 41 features are then

extracted from the datasets. We then train the SVM classifier with scaled train data.

Test set is then passed to the SVM classifier for detection. Additionally, in the train

phase, feature selector is added to perform dimensionality reduction based on feature

weights.
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Figure 11: SVM Detection Model

To analyze the weight of each feature we calculated SVM scores for each feature

individually. Figure 12 shows SVM scores for individual features for all the three

datasets. It is easy to note from the three graphs that the SVM AUC scores for

individual features for test dataset has gone down significantly compared to those of

Dataset 1 and 2.
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(a) Dataset 1 AUC scores for Individual Features

(b) Dataset 2 AUC scores for Individual Features

(c) Test Dataset AUC scores for Individual Features

Figure 12: AUC for individual features
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6.2.1 Dataset 1

From spam and ham images of dataset 1, we extracted 41 features and scaled

them. We used 6% of ham and spam images as training set and rest for testing. A

total of 55 spam and 48 ham images were used as train objects. Remaining 865 spam

images and 762 ham images were used for testing. Table 3 shows the accuracies and

FPR for each of the three SVM kernels. We achieved best results for linear kernel.

Figure 13 shows the ROC curve and confusion matrix for linear kernel. Figures 14

and 15 show the results for the kernels rbf and polynomial respectively.

Table 3: Dataset 1 - SVM Results

Kernel Accuracy FPR
Linear 0.97 0.06
RBF 0.96 0.07
Poly 0.95 0.08

(a) ROC Curve (b) Confusion Matrix

Figure 13: Dataset 1 - Linear Kernel
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(a) ROC Curve (b) Confusion Matrix

Figure 14: Dataset 1 - RBF Kernel

(a) ROC Curve (b) Confusion Matrix

Figure 15: Dataset 1 - Polynomial Kernel

6.2.2 Dataset 2

All 41 features were extracted and scaled for our dataset. We used 45% of ham

and spam images as training set and rest for testing. A total of 490 spam and 463

ham images were used as train objects. Remaining 599 spam images and 566 ham

images were used for testing. Table 4 shows the accuracies and FPR for each of the

three SVM Kernels. We achieved similar results for linear and rbf kernels. Figures

16,17 and 18 show ROC curve and confusion matrix for all the three kernels.
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Table 4: Dataset 2 - SVM Results

Kernel Accuracy FPR
Linear 0.98 0.02
RBF 0.98 0.02
Poly 0.95 0.10

(a) ROC Curve (b) Confusion Matrix

Figure 16: Dataset 2 - Linear Kernel

(a) ROC Curve (b) Confusion Matrix

Figure 17: Dataset 2 - RBF Kernel
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(a) ROC Curve (b) Confusion Matrix

Figure 18: Dataset 2 - Polynomial Kernel

6.2.3 Challenge Dataset

Forty one features were extracted and scaled for images of our in-house generated

challenge dataset. We used the dataset we generated with approach 2. We used 30%

of ham and spam images as training set and rest for testing. A total of 243 spam and

243 ham images were used as train objects. Remaining 567 spam images and 567 ham

images were used for testing. Table 5 shows the accuracies and FPR for each of the

three SVM kernels. We achieved best results for Linear Kernel. Figures 19,20 and 21

show ROC curve and confusion matrix for all the three kernels.

Table 5: Test Dataset - SVM Results

Kernel Accuracy FPR
Linear 0.70 0.38
RBF 0.64 0.34
Poly 0.56 0.78
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(a) ROC Curve (b) Confusion Matrix

Figure 19: Challenge Dataset - Linear Kernel

(a) ROC Curve (b) Confusion Matrix

Figure 20: Challenge Dataset - RBF Kernel

(a) ROC Curve (b) Confusion Matrix

Figure 21: Challenge Dataset - Polynomial Kernel
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6.3 Feature Selection

Since we have a vast number of features, our next step was to explore techniques

to cut down the number of features. Also since we are using image processing to

extract these features, feature extraction becomes a computationally intensive task.

SVM assigns weights to each of the features it uses. Our initial approach was to rank

these features and elect top 𝑘 features. But, that is not an ideal approach as the

feature weights change per dataset. It can be noted from graphs in Appendix B.

We explored two known statistical techniques for features selection - RFE and

UFS. Each technique elected a different set of features based on the internal algorithm

that they use. It can be noted in the graphs in Figure 22 how feature weights vary

based on the feature selection algorithm.

In the following sub-sections we compare and contrast RFE and UFS. From these

experiments, it is interesting to note how each algorithm needs a different number of

features to gain good accuracy. For our datasets, UFS does a better task at feature

selection. UFS requires lesser features to gain the same accuracy as that in RFE. We

can see from the graphs in Figure 22 that RFE assigns a lot of weight to multiple

features. This can be seen specially in Dataset2 and Challenge Dataset. Appendix B

shows graphs for comparison of weight per feature; for all three datasets. For instance,

for UFS, we can see the weight of Intensity for Dataset 1 and Dataset 2 is high while

for Challenge Dataset it is very low. This is due to the fact that Challenge Dataset

successfully altered the color properties of spam images to imitate that of ham images.
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(a) Dataset 1

(b) Dataset 2

(c) Challenge Dataset

Figure 22: Feature Weight Comparison for Dataset 1, Dataset 2 and Test Dataset
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6.3.1 Recursive Feature Elimination

RFE is a feature selection technique used to eliminate features that contribute

the least to classification. Here, we use RFE to further tune SVM classification. RFE

assigns weights to features and ranks them according to the amount of contribution

towards the classification; and eliminates the least ranked features to enhance the

accuracy of SVM. RFE algorithm has been discussed in chapter 4.

To gauge how many features are actually needed to achieve maximum accuracy, we

ran SVM with RFE with no-of-features-to-select ranging from 1 to 41. For each value

of no-of-features-to-select, we note down the SVM scores. The following subsection

shows the results of this experiment on all the 3 datasets. We used scikit-learn library

function rfe for these experiments.

6.3.1.1 Dataset 1

Figure 23 shows RFE results for Dataset 1. We can see from the graph that we

achieved maximum 95.57% accuracy after eliminating 13 features.

Figure 23: RFE - Dataset 1
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6.3.1.2 Dataset 2

Figure 24 shows RFE results for Dataset 2. We can see from the graph that we

achieved maximum 98.02% accuracy with only 16 features. Note that as compared to

dataset 1, dataset 2 requires less number of features for classification.

Figure 24: RFE - Dataset 2

6.3.1.3 Challenge Dataset

Figure 25 shows RFE results for Test Dataset. We can see from the graph that

we achieved maximum 69.32% accuracy with 26 features.
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Figure 25: RFE - Test Dataset

6.3.2 Univariate Feature Selection

UFS works differently as compared to RFE. It does not iterate multiple times

through the feature set to select the top k features. Instead it performs statistical

calculations on features individually and ranks them all at once. Like discussed UFS

does not consider the correlation between the features. This allows UFS to be faster.

UFS requires a model as an input. Since, like RFE, we are not bound to one

kernel(linear), we used SVM classifier with rbf kernel as an input model to UFS.

We used scikit-learn library to implement UFS. We used the method selectKBest

along with f-classif classifier which internally uses F-Test. F-Test determines linear

dependency of the scaled features. Like RFE, we conducted similar set of experiments

on the 3 Datasets with UFS. Following sections show the results of each dataset.

6.3.2.1 Dataset 1

Figure 26 shows UFS results for Dataset 1. We can see from the graph that we

achieved maximum 95.15% accuracy with just 1 feature.
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Figure 26: UFS - Dataset 1

6.3.2.2 Dataset 2

Figure 27 shows UFS results for Dataset 2. We can see from the graph that we

achieved maximum 97.93% accuracy with 24 features.

Figure 27: UFS - Dataset 2
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6.3.2.3 Challenge Dataset

Figure 28 shows UFS results for Test Dataset. We can see from the graph that

we achieved maximum 67.07% accuracy with 15 features.

Figure 28: UFS - Test Dataset

6.4 Discussion

In summary, we conducted 2 set of experiments with SVM and Image Processing.

In the first set, we considered all the 41 features we extracted from the images. We

achieved a good accuracy of 97% and 98% with public datasets Dataset 1 and Dataset

2 respectively. However, with our challenge dataset, the accuracy took a dip to 70%.

Which implies we have successfully weakened the system we developed.

In the next set of experiments, we tried to reduce the number of features used

in this experiment. We explored 2 different feature selection algorithms - RFE and

UFS. We began with comparing and contrasting the weights associated to each of

the feature based on feature selection algorithm. In this comparison we could make

out that RFE was assigning a lot of weight to multiple features. Hence a solution of

SVM with RFE would require more features than that with UFS. We verified this by
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running an experiments to find out optimal number of features required to achieve

maximum accuracy. For instance, for Challenge dataset, RFE took 26 features to gain

maximum accuracy while UFS needed only 15.
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CHAPTER 7

Expectation Maximization Clustering

Clustering is an unsupervised machine learning technique. The basic idea behind

clustering is to form clusters of data, based on some "distance" measurement. Based

on this distance measurement, each data point is labeled; where labels describe

which cluster the data point belongs to. Expectation Maximization(EM) Clustering

algorithm uses probability distributions to label data. EM Clustering algorithm is a 2

step iterative hill climb process [13] -

1. Expectation Step: Recompute the probabilities for each datapoint, that are

required in the M step.

2. Maximization Step: Recompute the crucial parameters of the probability

distributions.

We used Purity as our scoring parameter for clustering based experiments. Purity

measures how clean the clusters are. Its value ranges between 0 to 1. Clusters with

multiple classes should have purity value nearing 0, while perfect clustering will have

purity value of 1.

7.1 Experiments
7.1.1 EM Clustering with two clusters

To analyze how the ham and spam cluster, we subjected the 41 image features

that we extracted, to EM clustering. In an ideal scenario, with 2 clusters, we would

expect all ham images to fall in one cluster and all spam images in another cluster.

Figure 29 shows EM clustering results for 3 datasets, using gaussian mixture function

from scikit-learn library, with full clustering method.
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(a) Dataset 1

(b) Dataset 2

(c) Challenge Dataset

Figure 29: EM clustering results for 2 clusters

40



Table 6 shows the various scores for all the experiments. For Dataset 1, the cluster

have a dominating class for each cluster. All the clustering scores for Dataset 1 are

also high compared to the other 2 clusters. Dataset 2 also has a dominating class in

each cluster, but the proportions of non-dominating class is higher. Challenge dataset

however forms very poor clusters. It only highlights the fact that spam set in challenge

dataset is very similar to ham set, and hence, it is difficult to distinguish between the

two. We can see the decline in scores from Dataset 1 to Challenge Dataset.

Table 6: Clustering Scores

Dataset Purity Folkes Mallows Homogeneity Completeness V-Measure
Dataset 1 0.87 0.77 0.49 0.49 0.49
Dataset 2 0.70 0.58 0.12 0.12 0.12

Challenge Dataset 0.52 0.57 0.002 0.003 0.002
Combined Datasets 0.62 0.57 0.43 0.40 0.41

In the next set of experiments, we combined Dataset 1 and Challenge Dataset

and subjected them to EM clustering. Since we have 3 different labels, we changed the

number of clusters to 3. Figure 30 shows the cluster distributions for this experiment.

Table 7 shows the number of ham, spam and challenge images in each cluster. We can

see from the table that cluster 1 has only spam images. The interesting thing to note

in this cluster distribution is that cluster 2 is a combination of challenge and ham

images only. We generated the challenge spam set such that it looks more like ham

set, and cluster 2 distribution verifies that.
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Figure 30: EM clustering results for 2 clusters on Combined Dataset

Table 7: Cluster Distribution

Cluster Ham Spam Challenge
Cluster 1 7 577 4
Cluster 2 606 0 648
Cluster 3 197 343 158

7.1.2 EM Clustering with multiple clusters

We further subjected our datasets to EM clustering with more clusters than the

number of labels. We analyzed the purity score for each of these and saw a rise in the

purity of clusters as the number of clusters are increased. But, the difference between

the scores between datasets, remains constant. Figure 31 shows purity scores versus

number of clusters for all 3 datasets and combined dataset. Appendix C shows the

cluster distributions for 5, 10, 15 and 20 clusters respectively.
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Figure 31: Purity Scores for increasing clusters

EM Clustering gave us an insight to what our feature distributions are like. Even

though the clusters are not perfect, with our rich feature set of image properties, we

got decent results with Dataset 1 and Dataset 2.
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CHAPTER 8

Conclusion and Future Work

With improved spamming techniques, spammers have been successful in evading

traditional spam detection techniques like content-based detection and OCR. This

opened a door for techniques like image processing to detect image spam. A combi-

nation of machine learning algorithms and image processing can be used to constuct

strong classifiers. We developed a similar classifier using SVM with image properties

as our feature set, which provided good results in image spam detection on two public

datasets.

Due to lack of public datasets for image spam research, we explored techniques

for constructing new datasets. We successfully constructed a dataset that weakened

the detection scheme that we developed.

Since the evolution of spam, spammers have come up with better techniques

to beat the system. Hence, the next logical step to this research after developing a

strong detection scheme, would be to add learning capability to it. Updating defense

mechanism frequently can be a very costly and an inconvenient task in the real world.

Having a defense mechanism that learns by itself would be ideal. Classifiers using

machine learning algorithms like SVM, Decision Trees, etc., need to be trained on a

certain set of data before they can prove to be effective. Like we saw in the paper, a lot

of analysis and tuning goes into developing an effective train model. Now, if spammers

come up with a new type of image spam, these detection schemes will have to be

tuned again to generate a new train model. Instead, if we have a detection scheme

that learns for itself, then it will handle such upgrades by itself. Neural Networks have

the potential to provide us such a detection scheme. Even though a Neural Networks

based solution might be computationally intensive, but the possibility of developing a

classifier that learns for itself seems like a good direction to focus in.
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APPENDIX A

Feature value comparison scatter plots for test dataset

Figure A.32: Height Figure A.33: Width

Figure A.34: Aspect Ratio Figure A.35: Compression Ratio
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Figure A.36: File Size Figure A.37: Image Area

Figure A.38: Entropy of color histograms Figure A.39: Red channel mean

Figure A.40: Green channel mean Figure A.41: Blue channel mean
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Figure A.42: Red channel Skew Figure A.43: Green channel skew

Figure A.44: Blue channel Skew Figure A.45: Red channel Variance

Figure A.46: Green channel Variance Figure A.47: Blue channel Variance
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Figure A.48: Red channel Kurtosis Figure A.49: Green channel Kurtosis
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Figure A.50: Blue channel Kurtosis Figure A.51: Entropy of HSV

Figure A.52: Hue channel mean Figure A.53: Saturation channel mean

52



Figure A.54: Intensity channel mean Figure A.55: Hue channel Skew

Figure A.56: Saturation channel Skew Figure A.57: Intensity channel skew

Figure A.58: Hue channel Variance Figure A.59: Saturation channel Variance
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Figure A.60: Intensity channel Variance Figure A.61: Hue channel Kurtosis

Figure A.62: Saturation channel Kurtosis Figure A.63: Intensity channel Kurtosis

Figure A.64: Entropy of Local Binary Pat-
tern

Figure A.65: Entropy of Histogram Of Gra-
dients
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Figure A.66: Edge Count Figure A.67: Average Edge Length

Figure A.68: Signal to Noise Ratio Figure A.69: Entropy of Noise
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APPENDIX B

Feature Weight Comparison for Dataset 1, Dataset 2 and Challenge

Dataset

Figure B.70: Feature selector - None
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Figure B.71: Feature selector - RFE

Figure B.72: Feature selector - Univariate Feature Selection
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APPENDIX C

EM Clustering Results
C.1 EM clustering results for 5 clusters

Figure C.73: EM clustering results for 5 clusters: Dataset 1
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Figure C.74: EM clustering results for 5 clusters: Dataset 2

Figure C.75: EM clustering results for 5 clusters: Challenge Dataset
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Figure C.76: EM clustering results for 5 clusters: Combined Dataset

C.2 EM clustering results for 10 clusters

Figure C.77: EM clustering results for 10 clusters: Dataset 1
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Figure C.78: EM clustering results for 10 clusters: Dataset 2

Figure C.79: EM clustering results for 10 clusters: Challenge Dataset
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Figure C.80: EM clustering results for 10 clusters: Combined Dataset

C.3 EM clustering results for 15 clusters

Figure C.81: EM clustering results for 5 clusters: Dataset 1
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Figure C.82: EM clustering results for 15 clusters: Dataset 2

Figure C.83: EM clustering results for 15 clusters: Challenge Dataset

63



Figure C.84: EM clustering results for 15 clusters: Combined Dataset
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C.4 EM clustering results for 20 clusters

Figure C.85: EM clustering results for 20 clusters: Dataset 1
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Figure C.86: EM clustering results for 20 clusters: Dataset 2
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Figure C.87: EM clustering results for 20 clusters: Challenge Dataset
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Figure C.88: EM clustering results for 20 clusters: Combined Dataset
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