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ABSTRACT

Implementing Dynamic Coarse & Fine Grained Taint Analysis for Rhino
JavaScript

by Tejas Saoji

Web application systems today are at great risk from attackers. They use

methods like cross-site scripting, SQL injection, and format string attacks to exploit

vulnerabilities in an application. Standard techniques like static analysis, code audits

seem to be inadequate in successfully combating attacks like these. Both the techniques

point out the vulnerabilities before an application is run. However, static analysis

may result in a higher rate of false positives, and code audits are time-consuming and

costly. Hence, there is a need for reliable detection mechanisms.

Dynamic taint analysis offers an alternate solution — it marks the incoming data

from the untrusted source as ‘tainted.’’ The flow of tainted data is tracked during

the program execution. Whenever tainted data is used in a security-sensitive context,

a proper action is taken. The execution may also be suspended depending upon the

severity of the operation.

This project implements dynamic taint analysis in Rhino JavaScript. The focus is

on adding support for coarse-grained and fine-grained string tainting. Coarse-grained

tainting works at the granularity level of a string while fine-grained tainting works at

the granularity level of a character in a string. Both approaches are discussed in further

detail in the paper. I have also written a SQL library to leverage my implementation

of taint analysis in Rhino and conducted performance tests to contrast the overhead

of coarse & fine grained taint analysis. My test results show that fine-grained taint

analysis in general incurs more overhead than coarse-grained taint analysis.



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Prof. Thomas Austin for

his continuos engagement and guidance throughout this project, offering valuable

feedback, and motivating me to do better. I would also like to thank Prof. Robert

Chun and Prof. James Casaletto for agreeing to be on my project committee, and

reviewing the report. Finally, I would like to thank my parents and friends for

providing me with constant support and encouragement throughout my years of study,

and through this project.

v



TABLE OF CONTENTS

CHAPTER

1 The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Web Application Vulnerabilities . . . . . . . . . . . . . . . . . . . 7

2.1.1 SQL Injection . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Cross-Site Scripting (XSS) . . . . . . . . . . . . . . . . . . 8

2.2 Conventional techniques & their limitations . . . . . . . . . . . . 9

2.3 Taint Analysis Approaches . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Static Taint Analysis . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Dynamic Taint Analysis . . . . . . . . . . . . . . . . . . . 13

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Coarse-grained taint analysis . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Taint Propagation . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Limitations of coarse-grained taint analysis . . . . . . . . . 20

3.2 Fine-grained taint analysis . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Taint Propagation . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



vii

3.2.4 Sanitize Function . . . . . . . . . . . . . . . . . . . . . . . 28

4 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . 34



LIST OF TABLES

1 Performance Test Results With No Tainted Variables . . . . . . . 31

2 Taint Performance Test Results . . . . . . . . . . . . . . . . . . . 33

viii



LIST OF FIGURES

1 String tainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 String tainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Query string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Taint analysis approaches . . . . . . . . . . . . . . . . . . . . . . 11

5 SQL query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 PHP string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 String tainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Taint propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Query string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Handling a tainted query . . . . . . . . . . . . . . . . . . . . . . . 20

11 String tainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 Taint propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Untainting a query string . . . . . . . . . . . . . . . . . . . . . . 25

14 Sample web-page . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 Untainting a user input string . . . . . . . . . . . . . . . . . . . . 27

16 Sanitize function . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 Sanitize function call . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 Incremental taint introduction . . . . . . . . . . . . . . . . . . . . 32

ix



CHAPTER 1

The Basics

Web application systems today are at great risk from attackers. They use

techniques like SQL injection, format string attacks, and cross-site scripting to exploit

vulnerabilities in web applications [1]. Attacks like these are caused due to ‘‘bad’’

user input. Attacks on web applications caused due to unchecked user input are

recognized as being the most common. The above mentioned attacks are a form of

code injection. SQL injection is where a user inputs bad SQL statements into the

data sent to an application that results in unintended actions being performed on

the database. Cross-site scripting occurs when a dynamically generated web page

shows user input that has not been properly validated. Format string attacks occur

when user input is treated as a command by an application. When unchecked user

input is provided as a format string to the printf function in C, the attacker can

control the behavior of printf by inserting format directives [2]. The eval is another

such example. The eval is a dynamic feature provided by JavaScript that contain a

code string that is executed dynamically. When user entered data is passed to eval, it

enables the attacker to have his desired code executed when the program is executed.

It is very crucial to prevent the above mentioned attacks. However, it is difficult

to do so by imposing standard access control policies [2]. For example, in the case

of an SQL injection, a policy is enforced that does not allow special characters (for

e.g. semicolon, single-quote) and/or SQL keywords/commands (for e.g. UPDATE,

DELETE, DROP, WHERE) in the user input. Though enforcing such a policy may

prevent a possible SQL injection attack, it may sometimes clash with valid user inputs.

It does in this specific case when the user input is ‘‘O’Reilly.’’ An entry like this
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would be considered as invalid, and hence a perfectly valid query would be rejected.

Such a policy makes the use of database very difficult, and may result in failure of

the web application [2].

Other methods like static analysis and code audits also turn out to be not very

fruitful in successfully combating the attacks mentioned above. One advantage that

static analysis provides is that it finds all the vulnerabilities before the application is

run. It avoids runtime taint tracking and hence is more efficient that dynamic analysis.

However, it lacks precision. Static analysis may produce a warning whenever untrusted

data is used in a security-critical operation, even if there is no attack. This problem

can be addressed by the use of the concept of endorsement. The developer needs to put

validation checks on the untrusted data to ensure that it is safe, and then ‘‘endorse’’

it to indicate that that data can be safely used in a security-sensitive operation. The

difficult task is to identify all the places in the code that require validation checks [2].

This requires detailed code audits. Code audits are very time consuming and costly

affairs. As most developers do not possess expertise in performing security audits,

they are often outsourced to security consultants, which adds to the cost [3]. The

notion of validity is determined by the source of the input and the manner the input is

used in the program. Hence, one needs to go back and forth to determine appropriate

validation checks to be put at appropriate places in the code. Moreover, it is hard

for the programmers to code validation checks correctly, and the checks themselves

frequently have been the source of vulnerabilities [2]. Hence, this altogether is a very

error prone process.

Hence, to address such vulnerabilities, the paper suggests implementing taint

analysis. Taint analysis is a form of information flow analysis [1]. The incoming data

from outside the code is not trustworthy. Hence, taint analysis marks the data coming
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from untrusted sources as tainted. It also tracks the flow of taint in the program.

Taint information flows from one variable to another. When tainted data affects

untainted data, the previously untainted data is also marked as tainted. This is how

taint propagates in a program. When tainted data is used in security-critical functions,

an error is thrown. As an example, a tainted string used in a print statement. Taint

analysis helps in detection and prevention of the aforementioned vulnerabilities in

web application systems.

Two ways to implement taint analysis are:

1. Static analysis

2. Dynamic monitors

Static analysis provides one advantage over dynamic analysis; it finds all the

potential vulnerabilities before program is executed. However, in comparison to

dynamic analysis, static analysis lacks accuracy. The incoming data is tainted while

the program is in execution in dynamic taint analysis. The tainted data is tracked

throughout the program execution. Whenever tainted data is used in a security-

sensitive context, a proper action is taken. The execution may also be suspended

depending upon the severity of the operation.

This project implements dynamic taint analysis in JavaScript. JavaScript is one

of the most popular languages for client-side as well as server-side web applications.

It was recently reported that 98 websites out of the 100 most favored websites use

JavaScript [4]. JavaScript is also used by many tablets and smartphones to provide

platform independent features. The flexibility and dynamism that the language

provides makes it vulnerable to attacks like the ones mentioned above. Given the

popularity of the language, it is critical to address these vulnerabilities [4].
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Dynamic taint analysis tracks taint propagation when the program is in execution.

Two main approaches to dynamic taint analysis are [5] :

1. Coarse-grained taint analysis

2. Fine-grained/Precise-grained taint analysis

Coarse-grained taint analysis tracks taint information at the granularity level of

a string. It marks an untrusted string coming in from an outside source as tainted.

The taint propagates through the program execution at the string level. Hence, in

Figure 1 concatenation of an untainted string in variable x and a tainted string in

variable y results in the resultant string ‘‘Hello O’Reilly’’ in variable z to be marked

as tainted.

var x = " He l lo " ; // unta inted s t r i n g
var y = ta i n t ( "O’ Re i l l y " ) ; // ta in t ed s t r i n g
var z = x + y ; // ta in t ed s t r i n g

Figure 1: String tainting

The limitation with coarse-grained taint analysis is that, since it tracks taint at

the string level, it marks an entire string tainted even if it derives only a part from an

untrusted string. Hence, it is hard to sanitize a tainted string, untaint it, and use it

in a security-sensitive operation. This results in frequent false positives [5].

Languages like Perl and Ruby also provide taint support to prevent the systems

from attacks that are caused due to invalid input. Ruby has functions like taint to

explicitly mark the object as tainted, tainted? to check whether an object is tainted,

and untaint to remove the tainted mark from the object [6]. In Perl, one can use the

-T command line flag to explicitly enable the taint mode. In taint mode, Perl keeps a

check on every variable to see if it is tainted. Perl taints every data that comes from
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outside the code (for e.g., environment variables, command line arguments, all file

input, etc.), and does not allow such data to be used in an eval, passed through a shell,

or used in any of the Perl commands that modify files, directories, or processes [7].

One can use the tainted or istainted functions to determine whether a variable

contains tainted data. By using the tainted values as keys in a hash the values may

be untainted. The other way to do it is by using regular expressions. One can refer

to the subpatterns by matching tainted data to the regular expressions. The regular

expression match checks that the tainted data has only ‘‘good’’ characters, and no

‘‘bad’’ characters. Its the developers job to know what is ‘‘safe,’’ and design the regular

expressions accordingly.

Both Ruby & Perl implement tainting at coarser granularity. Perl is conservative

while determining if the data is tainted or not. It follows the principle of ‘‘one tainted

value taints the whole expression’’ [7]. Consider a subexpression of an expression that

contains tainted data. The subexpression is also marked as tainted, even if its value

itself does not contain any part of the tainted data.

Fine-grained taint analysis helps overcome the limitations posed by coarse-grained

taint analysis. Fine-grained taint analysis tracks taint information at the granularity

level of a character in a string. In Figure 2, concatenation of an untainted string

in variable x and a tainted string in variable y results in the resultant string ‘‘Hello

O’Reilly’’ with tainted characters indexed from 6 to 13 in variable z to be marked as

tainted.

var x = " He l lo " ; // unta inted s t r i n g
var y = ta i n t ( "O’ Re i l l y " ) ; // ta in t ed s t r i n g
var z = x + y ; // s t r i n g has ta in t ed cha ra c t e r s

Figure 2: String tainting
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Performance tests were conducted against an unmodified version of Rhino, and

my own two implementations of Rhino — Rhino coarse-grained and Rhino fine-grained.

SunSpider benchmark test suite was considered for this experiment. The performance

tests were conducted to contrast the overhead of coarse-grained & fine-grained taint

analysis. My test results show that fine-grained taint analysis in general incurs more

overhead than coarse-grained taint analysis.

Organization of the paper is as follows — The next chapter focuses on common

vulnerabilities in web application systems, traditional techniques to prevent these

attacks, and their limitations, and taint analysis. Chapters 3 talks about the

implementation in detail, and provides an insight into how dynamic taint analysis

helps us prevent these attacks by giving some nice examples. Chapter 4 presents the

performance test results. Chapter 5 concludes the paper and also discusses the scope

of future work.
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CHAPTER 2

Literature Review

In this chapter, we discuss two common vulnerabilities in web application

systems — SQL injection and cross-site scripting. We also discuss a few conventional

techniques to counter these attacks and some of their limitations. Finally we explore

how taint analysis can be deployed to overcome those limitations to help successfully

combat these attacks. Through this survey, we will try to find answers to the questions:

What is taint analysis? and Why taint analysis? The articles that are chosen in this

survey focus on both fundamental research and new developments in the application

of taint analysis in order to prevent these attacks on web applications.

2.1 Web Application Vulnerabilities

In this section, we talk about two attacks that are frequent in web application

systems in detail.

2.1.1 SQL Injection

SQL injection is one of the most common vulnerabilities in web application

systems. It is a form of code injection technique that is used to attack applications

driven by user data. A user enters ‘‘Bad’’ SQL statements into a textfield on a web

form for execution (e.g. to drop a table from the database, to update an entry in

the table etc.) [2] [3] [8]. Figure 3 shows a SQL query. The query in the variable

queryString derives a part of its value from the variable name, which contains

untrusted or a ‘‘tainted’’ string accepted from a user as input.
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queryStr ing=" s e l e c t * from employee where fname =‘"+name+" ’ " ;

Figure 3: Query string

An authorized user will enter a valid string. An attacker might enter something like:

‘‘Jane’ ; DROP TABLE employee; -- ’’;

With this value in the variable name, the query string in queryString looks like:

select * from employee where fname = ‘Jane’; DROP TABLE employee; --’

The semicolon is used to end the first query. The query string constructed in

the variable queryString consists of two queries. The first query retrieves all the

details of a person named Jane from the employee table, and the second query drops

the employee table from the database. Even though, the attacker does not have

permissions to drop the table from the database, he is able to do so by inserting bad

SQL statement in an entry field.

Imposing a policy that forbids the query string or a part of it to have tainted special

characters (for e.g. semicolon and single-quote) and/or SQL keywords/commands (for

e.g. UPDATE, DROP, WHERE, DELETE) will help prevent the attack [2].

2.1.2 Cross-Site Scripting (XSS)

Cross-site scripting attack is caused when dynamically generated web pages

display user input on the browser before it is rightly checked and validated [3]. An

attacker may insert JavaScript code designed to so something bad into dynamically

generated content on a web page . When a user views such a page, the malicious code

gets executed on his/her machine. This script may steal the user’s account credentials
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or cookie information stored on his machine, and dump it to the attacker. Xu et al. [2]

gives a good example of a cross-site scripting attack. In this example, the web page

contains a form that submits a query to the web site. The query looks like this:

http://www.xyzbank.com/findATM?zip=95126

If a wrong zip code is entered, the website displays an error message like:

<HTML> ZIP code not found: 95126 </HTML>

In the above response, the user entered zip code is displayed back on the browser.

A sophisticated cross-site scripting attack may be constructed by an attacker who

misuses this. The attacker may send an email that contains a link to an unaware

user. The link could be like — click ‘‘here’’ to claim a reward. He implants a nasty

JavaScript code in the link. When the user clicks on the link ‘‘here,’’ a request is

sent to the bank with the nasty script as the zip code. The bank returns the same

response as above, this time embedding the nasty script in its response. This nasty

code is then downloaded and executed on the user’s machine. Since the response was

sent from a trusted website (i.e. the bank’s website), the code has access to all the

private information on the user machine.

2.2 Conventional techniques & their limitations

Conventional techniques like static analysis, code reviews, and access control

policies are popular to detect vulnerabilities caused because of invalid user input, like

the ones discussed above.

The main advantage of static analysis is that it finds the vulnerabilities statically,

and hence is more efficient than dynamic analysis. However, it lacks precision. Static
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analysis may produce a warning whenever untrusted data is used in a security-sensitive

operation. This problem can be addressed by the use of the concept of endorsement.

Endorsement is indicating that a particular dependency is ‘‘safe’’ to use. The developer

needs to put validation checks on the untrusted data to ensure that it is ‘‘safe, ’’ and

then endorse it to indicate that it can be used safely. The difficult task is to identify

all the places in the code that require validation checks [2]. This requires detailed code

reviews. Code reviews are very time consuming and costly affairs. They are often

outsourced to security consultants as most developers do not possess the expertise

in performing security audits, which adds to the cost. Also, new security errors are

often introduced as the old ones are corrected. Hence, this may require a second code

review [3]. The source of the input and the manner the input is used in determine the

notion of validity. Hence, one needs to go back and forth to determine appropriate

validation checks to be put at appropriate places in the code. Moreover, it’s hard for

programmers to code validation checks appropriately, and they themselves frequently

have been identified as the source of vulnerabilities [2]. Hence, this makes the entire

process prone to a lot of errors.

Enforcing traditional access control policies also does not provide an effective

solution to prevent these attacks [2]. For example, in the case of an SQL injection, a

policy is enforced that does not allow special characters (for e.g. semicolon, single-

quote) and/or SQL keywords/commands (for e.g. UPDATE, DELETE, DROP,

WHERE) in the user input. Though enforcing such a policy may prevent a possible

SQL injection attack, it may sometimes clash with valid user inputs. It does in this

specific case when the user input is ‘‘O’Reilly.’’ An entry like this would be considered

as invalid, and hence a perfectly valid query would be rejected. Such a policy makes

the use of database very difficult, and may result in failure of the web application [2].
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2.3 Taint Analysis Approaches

Taint analysis is a form of information flow analysis. Information flow analysis

ensures integrity of sensitive data by ensuring that information from tainted variables

do not flow into untainted variables [9]. Taint analysis tracks the flow of taint

information from one variable to another.

Two main approaches to taint analysis are — static approach and dynamic

approach, both of which have their own advantages and disadvantages. Figure 4

shows the different approaches to taint analysis. This section discusses each approach

in detail.

Figure 4: Taint analysis approaches
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2.3.1 Static Taint Analysis

Static taint analysis techniques are widely used to detect common vulnerabilities

in web application systems like SQL injection attacks, format string bugs, and input

validation errors. Static analysis detects dependencies instead of vulnerabilities [2].

In the case of an SQL injection attack, when a query uses unchecked untrusted data

in any manner, static analysis may give a warning. This may cause a problem if a

dependency like that is an essential part of the system. This problem can be addressed

by the use of the concept of endorsement [2]. The developer codes some validation

checks that are run on that untrusted piece of data to make sure it does not contain

any bad input. If it does, the data is ‘‘sanitized,’’ and then ‘‘endorsed’’ to suggest

that the data is now safe to be used in sensitive operations.

In W. Chang et al. [10], the system performs static analysis on the program to

recognize any violations of the security policies in place. If it finds violations of the

security policies, an analysis is performed to identify all the positions in the code that

demand dynamic analysis. The code is modified accordingly to enforce those policies

dynamically by performing dynamic analysis. Thus, the amount of dynamic tracking

needed is minimized by doing static analysis first.

One advantage of static analysis over dynamic analysis is that it finds all the

potential vulnerabilities before the program is executed [3]. However, in comparison

to dynamic analysis it lacks precision. Also, the programmer needs to understand

what is safe before ‘‘sanitizing’’ the untrusted data, and then ‘‘endorse’’ it. However,

there is no straightforward way to do this. The source of the input and the manner

in which the input is used later in the program determine if the input is ‘‘safe’’ or

not. Developers have to trace forward in the program to identify all the possible uses

of the untrusted input in security-critical operations, which is a very tedious task.
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Validation checks need to be performed at the point where the untrusted data is used

and at the source, which requires tracing back from security sensitive operations to

determine how its inputs were constructed. This requires manual examination of

a large number of programming paths, which can be very difficult and a laborious

task. [2].

2.3.2 Dynamic Taint Analysis

Newsome and Song [5] have implemented TaintCheck, a mechanism to detect

format string vulnerabilities and buffer overruns by performing dynamic taint analysis.

Dynamic taint analysis labels the data coming from the untrusted outside sources

as tainted. The program is observed throughout its execution to track the flow of

the tainted data. This help to keep a check on what new data becomes tainted. The

usage of tainted data in security-critical operations is also tracked [11], as this may

lead to an exploitation of security vulnerabilities. For example, when tainted data is

used as a jump address or a format string, it may lead to attacks like buffer overrun

or format string vulnerability.

The dynamic taint analysis can be performed in two ways:

1. Coarse-grained taint analysis

2. Fine-grained taint analysis

2.3.2.1 Coarse-Grained Taint Analysis

Coarse-grained taint analysis marks a program variable thats holds the incoming

data from an untrusted source as tainted. Figure 5 shows an SQL query. The entire

query string in the variable $cmd is marked as tainted, even if it derives only a portion

of its value from the variable name, which stores untrusted incoming data [2]. Hence,
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differentiating between a permissible query string, when the variable name contains

a valid string, from an attack, when it contains SQL commands (for e.g. DROP,

UPDATE, DELETE) and/or special characters is impossible.

$cmd = "SELECT pr i c e FROM products WHERE name = ‘ " . $name . " ’ "

Figure 5: SQL query

Coarse-grained taint analysis rejects the tainted query string in variable $cmd.

Thus, it successfully prevents a possible SQL injection attack; however, it also makes

it impossible for a legitimate query string to be executed.

Perl tracks taint at a coarser granularity — that of a variable [2] [7]. In Perl,

taint mode can be enabled by using the -T command line flag. In taint mode, Perl

taints every data that comes from outside the code. The data needs to be explicitly

untainted before it is used in a security sensitive context. The data is untainted after

validation checks are performed to ensure that it is safe to use. Ruby also tracks taint

at a coarser granularity. In Ruby, one can explicitly taint and untaint objects [6].

The objects need to be untainted before they are used in security-sensitive operations.

Detectors that implement coarse-grained taint analysis may result in more number

of false positives [5], as they lack the ability to differentiate between an actual attack

from a ‘‘good’’ data marked as tainted. Thus, they fail to provide detailed information

about the vulnerability.

2.3.2.2 Fine-Grained Taint Analysis

Tainting is marking incoming data from untrusted sources as ‘‘tainted.’’ While

coarse-grained taint analysis marks an entire string as tainted even if it derives only

a part of it’s value from tainted data, fine-grained taint analysis, marks individual
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characters in the string as tainted. Nguyen-Tuong et al. [12] has modified the

implementation of string datatype in a PHP interpreter such that it holds the taint

information for string values at the granularity level of a character in the string. The

taint information propagates across compositions, assignment operations, and function

calls at the granularity level of individual character. Hence, the name fine-grained or

precise-grained taint analysis.

Nguyen-Tuong et al. [12] also give a good example on fine-grained taint analysis.

Figure 6 shows a piece of code. In the code, the string in the variable $x derives one

part of its value from the user input and the other comes from a cookie. The values of

$_GET[‘name1’] and $_COOKIE[‘name2’] are marked as tainted as they come from

an untrusted source (let’s consider they are Jane and John). After concatenation, the

string in the variable $x and its taint markings (underlined) are: Hello Jane. I am

John. All characters in the two underlined strings are marked as tainted.

Chang et al.’s implementation [10] tracks taint at the granularity of a byte. This

enables fine-grained tracking of the data flow properties. This is essential because

tracking the taint at the granularity level of a variable is not safe in C, which is a

type-unsafe language.

$x = " He l lo " .$_GET[ ‘ name1 ’ ] . " . I am " .$_COOKIE[ ‘ name2 ’ ] ; $

Figure 6: PHP string

Fine-grained tainting helps to detect and prevent the most common web

application vulnerabilities like SQL & command injection attacks, cross-site scripting

attacks, etc. When a security-critical function uses tainted data in a dangerous way,

we can either reject the function call or sanitize the tainted data, endorse it (i.e. mark

it untainted), and then use it safely.
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2.4 Conclusion

Security vulnerabilities pose a great risk to the web application systems. It is

important to have a mechanism in place that helps in detection and prevention of

these vulnerabilities. Traditional access control policies fall inadequate in preventing

these attacks. Taint analysis marks incoming data from an untrusted source as tainted.

It tracks the introduction and flow of taint in the program. Static taint analysis

involves writing validation checks on the user input to make sure that the input is

safe. The programmer needs to code the validation checks, sanitize the input and

endorse it to mark it as safe to use. Dynamic taint analysis tracks taint while the

program is executing. Coarse-grained and fine-grained taint analysis are the two

flavors of dynamic taint analysis. Fine-grained tainting is an attractive option as it

tracks taint at the granularity level of individual characters in a string as apposed

to coarse-grained tainting that tracks taint at the string level. This precision allows

more sophisticated defenses against some of the attacks that we have discussed.

16



CHAPTER 3

Implementation details

This section discusses two implementations of taint analysis in Rhino

1.7.8 — coarse-grained taint analysis & fine-grained taint analysis. Rhino is a

JavaScript engine written in Java. It is an open source software managed by the

Mozilla Foundation [13].

3.1 Coarse-grained taint analysis

Coarse-grained taint analysis tracks taint information at the granularity level of a

string. The idea is to mark incoming untrusted data as tainted. Taint information is

transferred from one variable to another variable through program execution. When

tainted data is used in a security critical operation, the program is crashed.

3.1.1 Functionalities

Three basic functionalities that coarse-grained taint analysis provide are -

1. taint

2. untaint

3. isTainted

taint marks an untrusted string read in from the outside environment as tainted.

isTainted provides a check to see whether a string is tainted or untainted. untaint

allows a tainted string to be marked as untainted. A tainted string should be marked

untainted only after it has been properly sanitized. This is called ‘‘endorsement.’’ An

endorsed variable is considered safe to be used in security-critical operations.
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The three functionalities have been realized in my Rhino implementation by

the taint, untaint, and isTainted methods respectively. All three methods are

implemented in the top-level scope. All three functions accept string variables or

string literals as a parameter. taint taints an input string and returns the tainted

string. untaint marks an input string untainted and returns the untainted string

which needs to be assigned to a variable. isTainted returns a boolean; it returns

true if the incoming string is tainted else it returns false.

Figure 7 shows how coarse-grained taint analysis taints and untaints a string

variable, and how to check whether a variable is tainted or untainted. In

Figure 7 taint(a) returns a tainted string ‘‘O’Reilly’’, and assigns it to variable

b. isTainted(b) returns true as the string b is referring to is marked as tainted.

b.replace(/’/g, "”") sanitizes the tainted string in variable b by replacing a single

quote with two single quotes, and untaint marks the sanitized string as untainted

and returns it, which is assigned to variable c. Hence, isTainted(c) returns false.

var a = "O’ Re i l l y " ;
var b = ta i n t ( a ) ;
i sTa inted (b) ; // r e tu rn s t rue
var c = unta int (b . r ep l a c e (/ ’ /g , " ’ ’ ") ) ; // c = "O’ ’ R e i l l y "
i sTa inted ( c ) ; // r e tu rn s f a l s e

Figure 7: String tainting

3.1.2 Taint Propagation

Taint analysis tracks the flow of an untrusted string throughout the program

execution. If a variable that contains a tainted string is used to initialize some other

variable, then the newly initialized variable is also marked as tainted. Figure 8 shows

an example of taint propagation through program execution.
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var a = " He l lo " ;
var b = ta i n t ( a ) ;
var c = b . bold ( ) . i t a l i c s ( ) . f o n t s i z e (6 ) . f o n t c o l o r ( " ye l low " ) ;
var d = c ;
var e = d . tr im ( ) ;
var f = e . r ep l a c e ( " He l lo " , "Hey" ) ;
var g = f + "Tejas " ;
var h = g . subs t r ( 0 , 3 ) ;
i sTa inted (h) ; // r e tu rn s t rue

Figure 8: Taint propagation

The string ‘‘Hello’’ is explicitly tainted using the taint function. Support has

been added to all the string functions (like bold, italics, trim, replace, concat, substr,

etc.) to handle taint propagation. So, if a function is called on a tainted string or a

tainted string is passed as a parameter to any of these functions, the resulting string

returned is also tainted.

3.1.3 Examples

This section discusses SQL injection attacks, and how coarse-grained taint analysis

helps in preventing web application systems from these attacks.

3.1.3.1 SQL Injection Attack

In Figure 9 user entered name is accepted and assigned to the variable name.

The name string is marked as tainted as it is an untrusted piece of data coming from

outside the code. The variable query contains a dynamically formed query that uses

the user entered id marked as tainted in the variable tainted_name.

In the case of coarse-grained taint analysis, the entire query string in the variable

query is marked as tainted as it derives a portion from the tainted data. Hence, it
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var name = document . getElementById ("name") . va lue ;
var tainted_name = ta i n t (name) ; // t a i n t s s t r i n g in id
query=" s e l e c t * from employee where ename =‘"+tainted_name

+" ’";

Figure 9: Query string

gets difficult to distinguish an attack from a legitimate query string. Thus, it makes it

all the more difficult to sanitize the query string and then execute it. Coarse-grained

taint analysis thus rejects the query string if its tainted, and throws an error and

crashes the system; if not the query is executed. Thus, this prevents the system from

a possible SQL injection attack, but at the cost of crashing on many valid queries.

Figure 10 shows how coarse-grained analysis may be used to handle the tainted query

string.

i f ( i sTa inted ( queryStr ) ) {
throw new Error ("Can ’ t execute a ta in t ed query ! " ) ;

}
e l s e {

exec_query ( queryStr ) ; // execute the query
}

Figure 10: Handling a tainted query

3.1.4 Limitations of coarse-grained taint analysis

Coarse-grained taint analysis tracks taint at the granularity level of a string. In

Figure 8, two string are concatenated and the resulting string is stored in the variable

g. The entire string in the variable g is marked as tainted as it derives a part of its

value from the variable f that contains tainted data.

Thus, coarse-grained tainting makes it difficult to sanitize a tainted string, as the

entire string is marked as tainted even if only a small portion of the string is derived
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from tainted data. Hence, in the case of coarse-grained taint analysis the best way to

prevent an attack is to suspend the execution, or crash the system whenever a tainted

string is passed to a security critical operation.

Coarse-grained taint analysis also results in high false positives, as it is hard to

sanitize the tainted string, even in the case of a legitimate user input. In contrast,

fine-grained taint analysis works at the granularity level of a character in a string. It

thus helps us keep track of the exact characters in the string are actually tainted.

3.2 Fine-grained taint analysis

Unlike coarse-grained taint analysis that tracks taint at the granularity level of

a string, fine/precise grained taint analysis tracks taint at the granularity level of a

character in a string. Hence, it gets easier to sanitize a tainted string and mark it as

untainted to indicate that it can be safely used in security-sensitive operations.

3.2.1 Functionalities

The fine grained taint analysis API extends the coarse-grained taint analysis API

with taintedRegions and sanitize functions.

In fine-grained taint analysis the function taint works a little differently than it

does in coarse-grained taint analysis. Fine-grained tainting taints individual characters

in a string, and keeps track of which characters are tainted. The untaint function

works exactly like it does in coarse-grained taint analysis. It is used to untaint a tainted

string after it is properly sanitized. This is called ‘‘endorsement.’’ An endorsed variable

is considered safe enough to be used in security-critical operations. The isTainted

function provides a check to see if either the entire string or region(s)/subset(s) of

the string are tainted. The taintedRegions function returns an array containing
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left & right boundaries of tainted region(s)/subset(s) in a string. One can iterate

over the tainted regions, sanitize them, and construct an untainted string that is safe

to use. If called on an untainted string, the function returns an empty array. The

sanitize function is introduced later, which allows string sanitization for different

attacks in an easier and a cleaner way, thus eliminating the need for duplicate code at

multiple places. It takes two arguments — a tainted string, and a callback function

to be applied on the untainted string to sanitize it. The function internally uses

the taintedRegions function to get all the tainted subsets in the string argument,

sanitizes them, and constructs a well-formed, sanitized, and safe-to-use string that is

untainted. It then returns the string. The callback function is specific to the attack

at hand, thus allowing the sanitize function to be used to prevent the system from

multiple possible attacks.

Figure 11 shows how fine-grained taint analysis taints and untaints a string. It

also shows how to check whether a string is tainted or not, and how to sanitize a

string that is marked as tainted.

var a = ta i n t ( "Hi" ) + " Jane " + ta i n t ( "Doe ! " )
i sTa inted ( a . sub s t r i ng (3 , 7 ) ) ; // r e tu rn s f a l s e
ta intedReg ions ( a ) ; // r e tu rn s [ [ 0 , 1 ] , [ 8 , 1 1 ] ]
// r e tu rn s a s a n i t i z e d s t r i n g
var b = s a n i t i z e ( a , f unc t i on ( s ) {return s . r ep l a c e (/ ’ /g , " ’ ’ ") ; } )
i sTa inted (b) ; // r e tu rn s f a l s e

Figure 11: String tainting

In Figure 11, variable a contains a string ‘‘Hi Jane Doe’’ with character ‘H’, ‘i’, ‘D’,

‘o’, ‘e’, and ‘!’ marked as tainted. isTainted(a.substring(3,7)) returns false as the

substring ‘‘Jane’’ does not contain tainted characters. taintedRegions(a) returns [[0,

1], [8, 11]], essentially an array of left & right boundaries of all the tainted regions in the
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string in variable a. sanitize(a,function(s){return s.replace(/’/g,"”");})

sanitizes all the taintedRegions in the string ‘‘Hi Jane Doe’’, and returns a reconstructed

well-formed sanitized untainted string back, which is assigned to variable b. Hence,

isTainted(b) returns false. The callback function is specific to the context the string

is going to be used in. The callback function that is passed as a parameter to the

sanitize function in the figure sanitizes the string for use in a SQL query.

3.2.2 Taint Propagation

Taint propagation in fine-grained taint analysis works similarly to how taint

propagates in coarse-grained taint analysis. Figure 12 shows an example of taint

propagation through program execution in fine-grained taint analysis.

var a = ta i n t ( " Hi" ) + " John " + ta i n t ( "Doe ! " ) ;
var b = a . t r imLe f t ( ) ;
var c = b ;
var d = c . tr imRight ( ) ;
var e = " He l lo ! " + d ;

var f = e . subs t r ( 0 , 6 ) ; // f = " He l lo ! "
i sTa inted ( f ) ; // r e tu rn s f a l s e
ta intedReg ions ( f ) ; // r e tu rn s an empty array

var g = e . subs t r (10 , e . l ength ) ; // g = "John Doe ! "
i sTa inted ( g ) ; // r e tu rn s t rue
ta intedReg ions ( g ) ; // r e tu rn s [ [ 5 , 8 ] ]

Figure 12: Taint propagation

The variable a contains a string ‘‘Hi John Doe!’’ with characters ‘H’, ‘i’, ‘D’, ‘o’,

‘e’, and ‘!’ explicitly marked as tainted. Taint support has been added to all the string

functions (like trimLeft, trimRight, replace, concat, substr, etc.). So, in the case of

either a function being called on a tainted string or a tainted string being passed as a

23



parameter to a function, the characters in the resulting string are marked as tainted.

The variable f contains the string ‘‘Hello!’’, a substring of the tainted string in variable

e. However, none of the characters in the string ‘‘Hello!’’ are marked as tainted.

Hence, isTainted(f) returns false and taintedRegions(f) returns an empty array.

The variable g contains a substring ‘‘John Doe!’’ with characters ‘D’, ‘o’, ‘e’, and

‘!’ marked as tainted. Hence, isTainted(g) returns true and taintedRegions(g)

returns [[5,8]], an array containing the left and right boundary of the only tainted

region in the string.

3.2.3 Examples

This section discusses two attacks — SQL injection and cross-site scripting, and

how fine-grained taint analysis helps in preventing web application systems from these

attacks.

3.2.3.1 SQL Injection Attack

Let’s consider the same example as discussed in 3.1.3.1. In the case of fine-grained

taint analysis, only the characters in the query string in the variable query that come

from outside the code are marked as tainted. A user enters something like ‘‘O’Reilly’’

for name. With ‘‘O’Reilly’’ as the user entered name, the query string appears like:

select * from employee where ename = "O’Reilly";

with characters ‘O’, ‘’’, ‘R’, ‘e’, ‘i’, ‘l’, ‘l’, and ‘y’ marked as tainted. The

taintedRegions function is used to sanitize the tainted query. Figure 13 shows how

fine-grained analysis handles a tainted query. We iterate over the tainted regions in

the query string. The idxInQuery keeps tracks of the current index in the query.
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i f ( i sTa inted ( query ) ) {
l e t idxInQuery = 0 ;
l e t t a i n t e d r e g i on s = ta intedReg ions ( query ) ;
f o r ( i = 0 ; i < t a i n t ed r e g i o n s . l ength ; i++) {

l e t taintLBound = ta i n t ed r e g i on s [ i ] [ 0 ] ;
l e t taintRBound = ta i n t ed r e g i o n s [ i ] [ 1 ] ;

untaintedQuery += untaintQuery ( query , idxInQuery ,
taintLBound , taintRBound ) ;

idxInQuery = taintRBound + 1 ;
}
i f ( idxInQuery != queryLen )

untaintedQuery += query . sub s t r i ng ( idxInQuery , queryLen ) ;

exec_query ( untaintedQuery ) ; // execute the unta inted query
}
e l s e { exec_query ( query ) ; } // execute the query

func t i on untaintQuery ( ) {
i f ( taintLBound===0)

unta intedStr = "" ;
e l s e

unta intedStr = query . sub s t r i ng ( indexInQuery , taintLBound ) ;

ta intedSubStr = query . sub s t r i ng ( taintLBound , taintRBound+1) ;
sanitizedStr = taintedSubStr.replace(/’/g, "’’");

r e turn unta intedStr + s an i t i z e dS t r ;
}

Figure 13: Untainting a query string

The taintLBound & taintRBound correspond to the left and right boundaries of a

tainted region respectively. The untaintQuery function takes the query, idxInQuery,

taintLBound, and taintRBound as parameters. It sanitizes the tainted subquery

indexed from idxInQuery to taintLBound by replacing single quotes with two single

quotes, and returns the untainted substring. At the end of the for loop an untainted

query is constructed in the variable untaintedQuery, which looks like:
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select * from employee where ename = "O’’Reilly";

The untainted query string can be safely executed. Thus, fine-grained taint analysis

prevents the system from a possible SQL injection attack without having to crash the

program execution.

3.2.3.2 Cross-Site Scripting

Flanagan [14, Section 13.6.4] gives a fine example of a cross-site scripting attack.

Consider the web-page in Figure 14. It uses JavaScript to greet the user by name:

<s c r i p t >
var name = decodeURIComponent (window . l o c a t i o n . search .

sub s t r i ng (1 ) ) | | "" ;
document . wr i t e (" He l lo " + name) ;
</s c r i p t >

Figure 14: Sample web-page

window.location.search return the contents of the page URL after the question

mark. The dynamically generated content is then written to the document using

document.write(). The URL used to access the page looks like:

http://www.example.com/greet.html?John

The user is greeted as ‘‘Hello John’’. However, an attacker can inject a script after

the question mark which can lead to an unexpected behavior. For example, when the

URL is invoked with this (%3C is code for < & %3E is code for >):

http://www.example.com/greet.html?%3Cscript%3Ealert(‘!’)%3C/script%3E

It displays a dialogue box. This is a very simple example of cross-site scripting.
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In the case of fine-grained taint analysis, all the characters in the string in the

variable name are marked as tainted. The taintedRegions function is used to sanitize

the tainted string. Figure 15 shows how fine-grained analysis handles the tainted

string.

i f ( i sTa inted (name) ) {
l e t idx InSt r = 0 ;
l e t t a i n t e d r e g i on s = ta intedReg ions (name) ;
f o r ( i = 0 ; i < t a i n t ed r e g i o n s . l ength ; i++) {

l e t taintLBound = ta i n t ed r e g i on s [ i ] [ 0 ] ;
l e t taintRBound = ta i n t ed r e g i o n s [ i ] [ 1 ] ;

untaintedName += unta in tS t r i ng (name , idxInStr , taintLBound ,
taintRBound ) ;

idx InSt r = taintRBound + 1 ;
}
i f ( i dx InSt r != nameLen)

untaintedName += name . sub s t r i ng ( idxInStr , nameLen) ;

document . wr i t e (" He l lo " + untaintedName ) ;
}
e l s e { document . wr i t e (" He l lo " + name) ; }

func t i on unta in tS t r i ng ( ) {
i f ( taintLBound===0)

unta intedStr = "" ;
e l s e

unta intedStr = name . sub s t r i ng ( idxInStr , taintLBound ) ;

ta intedSubStr = name . sub s t r i ng ( taintLBound , taintRBound+1) ;
sanitizedStr =

taintedSubStr.replace(/</g,"&lt;").replace(/>/g,"&gt;");

r e turn unta intedStr + s an i t i z e dS t r ;
}

Figure 15: Untainting a user input string
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As one can see, the code to sanitize a string in the cross-site scripting attack is very

similar to the code to sanitize the query string in an SQL injection attack 3.2.3.1. The

major difference is the actual method of sanitization, highlighted in bold in figures 13

and 15. In case of SQL injection it is done as replace(/’/g, "”"), while in the case of

cross-site scripting it is done as replace(/</g, "&lt;").replace(/>/g, "&gt;").

Hence, the better way would be to generalize the code, and write a single sanitize

function that can sanitize the strings in case of both types of attacks.

3.2.4 Sanitize Function

The sanitize function aims to reduce code duplication by generalizing the code

to sanitize the tainted strings. It takes 2 arguments — a tainted string, and a callback

function to sanitize the tainted string. Figure 16 shows the sanitize function.

func t i on s a n i t i z e ( s t r , c a l l b a ck ) {
l e t idx InSt r = 0 ;
l e t t a i n t e d r e g i on s = ta intedReg ions ( s t r ) ;
f o r ( i = 0 ; i < t a i n t ed r e g i o n s . l ength ; i++) {

l e t taintLBound = ta i n t ed r e g i on s [ i ] [ 0 ] ;
l e t taintRBound = ta i n t ed r e g i o n s [ i ] [ 1 ] ;

i f ( taintLBound===0) unta intedStr = "" ;
e l s e unta intedStr = s t r . s ub s t r i ng ( idxInStr , taintLBound ) ;

t a i n t edS t r = s t r . s ub s t r i ng ( taintLBound , taintRBound+1) ;
s a n i t i z e dS t r = ca l l b a ck . c a l l ( th i s , t a i n t edS t r ) ;
unta intedStr = unta intedStr + s an i t i z e dS t r ;
i dx InSt r = taintRBound + 1 ;

}
i f ( i dx InSt r != strLen ) unta intedStr+=s t r . sub s t r i ng ( idx InSt r ) ;
r e turn unta intedStr ;

}

Figure 16: Sanitize function
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Figure 17 shows how the sanitize function can be used to sanitize a tainted

query in the case of an SQL injection attack, and a tainted string in the case of

a cross-site scripting attack. In the case of an SQL injection attack, the callback

function replaces all the single quotes with two single quotes. The sanitize function

returns a sanitized and untainted query string, which is safe to use. The untainted

query string in the variable untaintedQuery could then be executed safely.

//Example − SQL i n j e c t i o n
i f ( i sTa inted ( query ) ) {

untaintedQuery = s a n i t i z e ( query , f unc t i on ( s ) { re turn s .
r ep l a c e (/ ’/ g , " ’ ’ " ) ; } ) ;

exec_query ( untaintedQuery ) ;
}
e l s e {

exec_query ( query ) ;
}

//Example − Cross−s i t e s c r i p t i n g
i f ( i sTa inted (name) ) {

sanit izedName = s a n i t i z e (name , func t i on ( s ) \{ re turn s .
r ep l a c e (/</g , "\& l t ; " ) . r ep l a c e (/>/g , "\&gt ; " ) ; \ } ) ;

document . wr i t e (" He l lo " + sanit izedName ) ;
}
e l s e {

document . wr i t e (" He l lo " + name) ;
}

Figure 17: Sanitize function call

In the case of a cross-site scripting attack, the callback function replaces the

angular brackets in the tainted string in the variable name with their corresponding

HTML entities. This helps to escape and deactivate any HTML tags in the tainted

string. The sanitized and untainted string in the variable sanitizedName could then

be used safely in document.write().
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CHAPTER 4

Performance Tests

In order to quantify the performance overhead caused because of coarse-grained

and fine-grained taint analysis, I modified the popular JavaScript performance

benchmark SunSpider [15]. The JavaScript files in the SunSpider benchmark test suite

were interpreted and executed on both the variants of Rhino — one with support added

for coarse-grained taint analysis and the other with support added for fine-grained

taint analysis. The results were compared against the baseline. These tests were

performed on a Mac Book Pro with one 2.7 GHz dual-core Intel Core i5 processor, 8

GB 1867 MHz DDR3 RAM, and an Intel Iris Graphics 6100 graphics processor with

1536 MB of memory.

The SunSpider benchmark test suite contains tests that are balanced between

different areas of the language and different types of code. It consists of tests on

String & RegExp manipulation, mathematical & bit operations, and other tests like

cryptography and code decompression. It runs each test multiple times and determines

an error range with a confidence interval of 95% [16]. Hence, claims to be statistically

sound.

I have commented out 5 tests from the test suite due to errors in code interpretation

on both my variants of Rhino. Two experiments were conducted as a part of the

performance tests. The first experiment was to run all the tests in the test suite

on all three variants of Rhino, with no variable explicitly marked as tainted. This

gave a comparison of the performance overhead caused by the implementation of

fine-grained taint analysis and coarse-grained taint analysis in my two variants of
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Rhino respectively against the unmodified version of Rhino. Table 1 shows the results

of the experiment. It compares the time taken in milliseconds for each test to run on

all three variants of Rhino. As observed from the table, in comparison to the Rhino

base version, the version with coarse-grained taint analysis adds an overhead of ≈ 4%,

while the fine-grained taint analysis version adds an overhead of ≈ 22%.

Table 1: Performance Test Results With No Tainted Variables

Test Rhino Base Rhino Coarse Rhino Fine
Mean 95% CI Mean 95% CI Mean 95% CI

3d 551.6ms ±88.6% 573.7ms ±122.7% 573.1ms ±83.2%
cube 189.6ms ±114.8% 172.7ms ±76.9% 159.1ms ±92.3%
morph 211.9ms ±69.9% 240.4ms ±85.2% 245.3ms ±48.1%
raytrace 150.1ms ±82.8% 160.6ms ±231.6% 168.7ms ±140.6%

access 890.1ms ±41.1% 804.7ms ±67.0% 838.7ms ±48.5%
binary-trees 69.7ms ±64.3% 71.7ms ±142.5% 81.6ms ±74.6%
fannkuch 465.1ms ±23.5% 406.3ms ±52.6% 421.4ms ±40.9%
nbody 178.6ms ±40.6% 177.0ms ±82.1% 196.6ms ±65.2%
nsieve 176.7ms ±86.7% 149.7ms ±55.5% 139.1ms ±61.4%

bitops 904.9ms ±24.1% 1015.6ms ±12.7% 1061.9ms ±62.0%
3bit-bits-in-byte 152.9ms ±93.6% 154.1ms ±50.2% 145.9ms ±35.2%
bits-in-byte 263.6ms ±14.1% 234.4ms ±28.1% 241.3ms ±130.3%
bitwise-and 244.0ms ±9.7% 405.6ms ±2.5% 432.9ms ±78.9%
nsieve-bits 244.4ms ±10.0% 221.4ms ±4.6% 241.9ms ±46.2%

controlflow 93.3ms ±119.4% 84.4ms ±13.7% 101.1ms ±58.4%
recursive 93.3ms ±119.4% 84.4ms ±13.7% 101.1ms ±58.4%

crypto 266.3ms ±35.2% 267.9ms ±58.43% 766.7ms ±50.0%
md5 172.7ms ±35.8% 174.9ms ±80.6% 594.9ms ±50.7%
sha1 93.6ms ±34.1% 93.0ms ±17.3% 171.9ms ±49.8%

date 108.7ms ±124.0% 166.3ms ±109.8% 192.1ms ±106.3%
format-tofte 108.7ms ±124.0% 166.3ms ±109.8% 192.1ms ±106.3%

math 524.4ms ±12.9% 550.0ms ±35.4% 585.7ms ±49.7%
cordic 254.9ms ±16.8% 249.3ms ±37.7% 267.6ms ±41.9%
partial-sums 173.3ms ±8.1% 206.9ms ±33.8% 223.4ms ±46.6%
spectral-norm 96.3ms ±14.5% 93.9ms ±33.3% 94.7ms ±84.0%

string 249.6ms ±73.2% 263.7ms ±66.7% 264.7ms ±85.5%
fasta 145.0ms ±55.9% 196.0ms ±60.5% 198.9ms ±61.3%
unpack-code 104.6ms ±98.0% 67.7ms ±88.1% 65.9ms ±167.0%

total 3588.9ms ±44.7% 3726.3ms ±55.4% 4384.1ms ±56.0%
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In the second experiment in the crypto-md5 test was modified to introduce taint

in an incremental fashion. The first test kicked off with ten calls to the crypto-md5

test with no taint explicitly introduced. The subsequent tests are conducted with +1

tainted calls than the previous test, until all the ten calls are tainted. The Figure 18a

shows Test0 with no tainted calls, and Figure 18b shows Test1 with one tainted call

out of all the ten calls. Similarly, Test2 with two tainted calls, and so on until Test10

with all the calls tainted.

// Test 0
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;

(a) Test 0

// Test 1
var md5Output = hex_md5(

t a i n t ( p la inText ) ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;
var md5Output = hex_md5(

pla inText ) ;

(b) Test 1

Figure 18: Incremental taint introduction

The tests were run on my two implementations of Rhino to compare the

performance overhead caused on both variants when taint is introduced in the program.
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Table 2 shows the results of the second experiment.

Table 2: Taint Performance Test Results

Tainted variables Rhino Coarse Rhino Fine
Mean 95% CI Mean 95% CI

0 933.2ms ±83.5% 2692.4ms ±81.6%
1 976.0ms ±69.7% 2756.0ms ±80.0%
2 966.8ms ±82.5% 2833.0ms ±44.0%
3 967.6ms ±107.0% 2890.2ms ±40.3%
4 872.0ms ±162.1% 2836.0ms ±79.7%
5 868.2ms ±164.8% 2630.2ms ±61.1%
6 925.6ms ±150.9% 2667.2ms ±56.7%
7 883.8ms ±133.7% 2662.8ms ±51.4%
8 953.8ms ±129.9% 2711.4ms ±53.4%
9 919.4ms ±109.5% 2626.4ms ±43.2%
10 895.0ms ±94.2% 2628.6ms ±50.1%
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As seen in Table 2, the execution time of the tests on both the versions of Rhino

go up & down, and does not increase in proportion with the increase in the number of

tainted calls. However, all the tests on fine-grained taint analysis version of Rhino

take ≈ 3𝑋 time to execute as compared to the coarse-grained taint analysis version.
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CHAPTER 5

Conclusion & Future Work

In the paper, I have provided an insight into how dynamic taint analysis could

be deployed to tackle prevalent attacks on web application systems. Most common

attacks on the web application systems like SQL injection, cross-site scripting, and

format string attacks are caused due to unchecked user input. The paper discusses

conventional techniques like static analysis, access control policies, and code reviews

and how they are inadequate to prevent these attacks.

Dynamic taint analysis provides a mechanism to track taint while the program is

in execution. The data coming from outside the code is not trustworthy. Hence, it is

marked as tainted, and tracked throughout the program execution. In this project, I

implemented dynamic taint analysis in Rhino, a JavaScript engine. JavaScript being

one of the most favored languages for web application is prone to the aforementioned

attacks. Hence, it is crucial to address these vulnerabilities.

I have shown two flavors of dynamic taint analysis namely coarse-grained and

fine/precise-grained taint analysis, implemented on two variants of Rhino respectively.

Coarse-grained taint analysis tracks taint information at the granularity level of a

string. Fine-grained taint analysis tracks taint at the granularity level of the characters

in the string. Fine-grained taint analysis provides more control in terms of being

able to sanitize a tainted string than coarse-grained taint analysis. Although both

the approaches are equally good at preventing the system from a possible attack,

fine-grained taint analysis edges out coarse-grained taint analysis in terms of number

of false positives, and its ability to help library writers sanitize strings.
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The paper showed that fine-grained taint analysis in general incurs more overhead

as compared to coarse-grained taint analysis, as expected. It causes an overhead of

≈ 22%, and coarse-grained taint analysis causes an overhead of ≈ 4% in comparison

to the Rhino base version, when no variable is tainted. The paper also made an

observation that fine-grained taint analysis is ≈ 3𝑋 slower than coarse-grained taint

analysis, when taint is introduced in the program in an incremental fashion.

With the ever increasing popularity of web applications, and the prevalent security

vulnerabilities that pose a threat to them, implementing language level features to

prevent these security vulnerabilities is essential. The paper shows that implementing

dynamic taint analysis as a language feature proves more effective in preventing

these attacks as compared to the conventional techniques. While coarse-grained

taint analysis stops the attack by crashing the system after an attack is detected,

fine-grained taint analysis provides more control in preventing the attack. It enables

a tainted string to be sanitized and used safely later on, thus preventing the system

from a possible attack without having to crash it. While the paper mainly talks about

preventing the web applications from SQL injection and cross-site scripting, both

fine-grained and coarse-grained dynamic taint analysis approaches could be easily

extended to Eval and other constructs in the language to prevent the systems from

eval injection and format string attacks. In the future, I would also like to dig deeper

into the code to identify optimizations that can be done to the code to improve the

performance.
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