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ABSTRACT

ACTOR-BASED CONCURRENCY IN NEWSPEAK 4

by Nikolay Botev

 

 

Actors are a model of computation invented by Carl Hewitt in the 1970s. It has seen a 
resurrection of mainstream use recently as a potential solution to the latency and concurrency 
that are quickly rising as the dominant challenges facing the software industry. In this project 
I explored the history of the actor model and a practical implementation of actor-based 
concurrency tightly integrated with non-blocking futures in the E programming language 
developed by Mark Miller. I implemented an actor-based concurrency framework for Newspeak 
that closely follows the E implementation and includes E-style futures and deep integration into 
the programming language via new syntax for asynchronous message passing.
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1 Introduction
Newspeak is a modular, object-oriented programming language. From the Newspeak home 
page [1]:

Like Self, Newspeak is message-based; all names are dynamically bound. However, like Smalltalk, 
Newspeak uses classes rather than prototypes. As in Beta, classes may nest. Because class names are 
late bound, all classes are virtual, every class can act as a mixin, and class hierarchy inheritance falls out 
automatically. Top level classes are essentially self contained parametric namespaces, and serve to define 
component style modules, which naturally define sandboxes in an object-capability style.

In its current version -- Newspeak 3, the language has no support for concurrent programming. 
The goal for Newspeak from its inception is to eventually provide first-class support for Actor-
based concurrency with E-style non-blocking futures [2]. This thesis describes the motivation, 
specification, design and implementation of an Actor-based concurrency framework built for the 
next version of the Newspeak language -- Newspeak 4.

We begin Chapter 2 with an overview of the actor model as a theory of computation. Chapter 
3 details the motivation for the choice of actors as opposed to more traditional approaches to 
concurrency, including the definition of a set of criteria for a good actor framework and a brief 
evaluation of existing concurrency frameworks based on these criteria. Chapter 4 provides 
a high-level overview of actors in Newspeak 4. Then in Chapter 5 we introduce Newspeak 
4 actors by example, highlighting a number of patterns of actor usage. Chapter 6 discusses 
the core architecture of the actor framework in Newspeak 4, followed by a brief discussion 
of the integration of actors with the Newspeak reflection facilities, the semantics of actor 
communication through far references, actor lifecycle, futures, and an examination of the 
order of actor message delivery. Chapter 7 discusses the design and implementation of the 
Newspeak actor framework and finally, Chapter 8 concludes with an optimistic outlook for the 
future of actors.

2 Motivation
The many-core problem [3] is well understood and has been widely discussed over the past 
several years [4, 5, 6, 29]. The trend of flattening out single-thread performance and increasing 
number of cores per CPU is pushing the limits of the traditional approach to concurrency, 
namely that of using shared state (memory) for communication among multiple independent 
threads of execution. Shared-state concurrency suffers from a number of problems, such as 
deadlock, livelock, race conditions etc., in addition to a difficulty in scaling out to large datasets. 
All of these problems are well understood1 and a detailed discussion is beyond the scope of this 
report.

An alternative approach to shared-state concurrency is message passing without shared 
state. An example of an important modern application based on message passing is Google 
MapReduce -- a model designed to simplify computation on large clusters [7]. Open-source 
implementations of Google MapReduce, such as Hadoop have seen large adoption over the 
past several years [8] and play an important role in dealing with Big Data that is spread across 
many nodes on a cluster. A key aspect of MapReduce is that code runs on the nodes where the 

1 Chapter 13 of [13] contains a thorough examination of the problems of shared-state concurrency.
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data resides and that data is sent between nodes for further processing, i.e. the distribution of 
the data among nodes in the cluster is explicit and MapReduce is inherently a greedy approach 
to computation, based on the classic divide-and-conquer technique [7].

2.1 The Actor Model
The Actor model is a theoretical model of computation developed by Carl Hewitt that is 
exclusively based on asynchronous message passing between primitives called “Actors” [9]:

An Actor is a computational entity that, in response to a message it receives, can concurrently:
○ send messages to other Actors;
○ create new Actors;
○ designate how to handle the next message it receives.

 
The actor model stands at the same level of abstraction and can be contrasted to other models 
of computation such as the Turing machine and the von Neumann machine.

In the author’s opinion, it is crucially important to understand that the Actor model as a 
theoretical model captures the essence of message passing as an abstraction and this 
abstraction must be kept separate from the specific implementation details of any actor-inspired 
concurrency framework. In Hewitt’s own words, “[t]he following are not required by an Actor: a 
thread, a mailbox, a message queue, its own operating system process, etc” [9]. For example, 
while many actor-based concurrency frameworks (for example Akka [10]) employ one message 
queue per actor, this is not strictly necessary -- an actor framework could conceivably share the 
same message queue among many actors.

2.2 Pure Actor-based Languages
A pure actor-based language is one, which expresses computation exclusively via the use 
of actors. A small number of such languages exist, such as SAL [11] and Humus [12]. The 
fundamental primitives in a pure actor-based language closely mirror the definition of an Actor 
quoted in the previous section:

● SEND - send a message to an actor
● NEW - create a new actor
● BECOME - designate how the current actor should handle the next message

In practice, however, pure actor-based languages also include a primitive for pattern-matching 
on the value of an incoming message. For example, a part of the implementation of a future 
actor in Humus looks like this [14]:

LET future_beh = \msg.[
CASE msg OF
(cust, #write, value) : [

BECOME value_beh(value)
SEND SELF TO cust

]
(cust, #read) : [

BECOME wait_beh(cust)
]
END
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]

In the code above, LET binds the identifier future_beh to the behavior definition that follows the 
equal sign, and “CASE msg OF …” is the pattern-matching primitive, which is used to select the 
code to execute based on the contents of the incoming message msg. A plausible alternative 
approach to the design of a pure actor language is to model actors as objects, and rely on 
object-oriented virtual message dispatch (polymorphism), eliminating the need for a pattern-
matching primitive. In the example above, the behavior of future_beh would then be modeled as 
an instance of a class with two methods -- write and read, which accept arguments (cust, value) 
and (cust) respectively. In this sense, a pure actor system can be viewed as a collection of 
objects (actors), which communicate exclusively via asynchronous one-way message passing.

2.3 Critiques of Actors
There are two main critiques of actors and other message passing systems -- inversion of 
control, and the performance overhead of message passing. Inversion of control refers to the 
break of control flow that occurs in pure one-way message passing systems. If function A calls, 
or waits for B and then does something with the result in a traditional shared-memory system, 
then to implement the same behavior in a pure one-way message passing system, A and B 
must be rewritten such that A is split into two parts -- A’, which contains the first part of A up 
to the point of calling B, and A’’ -- the second half of function A, which processes the result 
of B. Then B must be rewritten to explicitly send a message back to A’’, instead of directly 
returning its result to A as in the shared-memory system case. This transformation is practically 
equivalent to continuation passing style, and indeed this is how pure actor-based languages 
such as SAL and Humus deal with control flow. The common pattern in such languages is for 
A’ to create a customer actor representing A’’ (the remainder of the computation) and pass that 
actor as a parameter to B, which then sends a message back to the A’’ actor with the result of 
its computation.This style of programming is indeed cumbersome -- it adds more burden to the 
programmer and makes code harder to read, understand and maintain. The inversion of control 
problem can be addressed via the use of E-style futures, which are described in detail later in 
this report.

The performance overhead of message passing refers to the need to copy data that is passed 
in messages between actors. In a hypothetical example, if we have a large data structure 
representing a jumbo jet airplane, which needs to be accessed and manipulated by several 
actors, then the performance overhead of passing the jumbo jet data structure between 
actors can become prohibitively expensive. This problem is typically addressed in two ways in 
actor systems. The first is to create a single actor responsible for manipulating the large data 
structure and encapsulate all code, which accesses and manipulates it in this actor. All other 
actors, which need to initiate some manipulation on the jumbo jet would then delegate their work 
by sending a message to the jumbo jet actor, who then safely performs the manipulation. A 
practical example of this approach is a Graphical User Interface (GUI) system - an application’s 
GUI can consist of multiple top-level windows, each consisting of hundreds or even thousands 
of GUI widgets. The GUI is best represented as a single actor, which takes full responsibility 
of maintaining and manipulating all of the windows, widgets and other graphical objects that 
comprise the GUI system. The single actor pattern in effect enforces a serialization of all 
operations on the large data structure it maintains, which is the logical equivalent of a lock in a 
shared memory system.

The second way to address the overhead of message passing when manipulating 
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large volumes of data is via the use of immutable data structures. A good actor system 
implementation, which runs on hardware optimized for shared-memory concurrency can 
avoid the expensive copy operation when passing immutable data between actors that are 
running within the same address space. Since the data structure is immutable, such sharing 
is transparent to the running application and does not affect the runtime semantics of actors. 
Efficient algorithms for immutable data structures, which can avoid making a full copy of the 
data exist, and can be used to further alleviate the cost of manipulating large data sets [15]. A 
discussion of such algorithms is beyond the scope of this report.

2.4 Advantages of Actors
The first and primary advantage of actors is that since Actors execute concurrently and do 
not share state, but instead communicate exclusively via message passing, an actor-based 
concurrency framework does not suffer from any of the problems of shared-state concurrency, 
such as deadlocks.

Actors are a natural fit for implementing frameworks such as Google MapReduce. Each pieces 
of a MapReduce job [7] can be modeled as an actor performing the map or reduce phase of 
the computation on its local subset of the data, and communicating the results in a message 
to another actor responsible for the next computation phase. In this sense, actors are greedy 
by design and can naturally lead towards a divide-and-conquer solution to the problem at 
hand. This is the second main advantage of actors over shared-state concurrency -- adaptive 
concurrency. A good actor implementation allows a computation problem to be expressed in 
many fine-grained actors, and the actors can then be scheduled efficiently and transparently on 
the number of execution resources available in the system, whether it is a small 2-core laptop, 
a large SMP box with multiple CPU sockets and cores, or a large-scale cluster with hundreds 
of interconnected computer nodes. Carl Hewitt calls this iAdaptive concurrency and defines it 
as “the ability to express computations that can be adapted s to fit available resources in terms 
of demand and available capacity” [9].

2.5 Criteria for a Good Actor-based Concurrency Implementation
Implementing a good actor-based concurrency framework is hard. As we saw in the previous 
sections, solutions to the commonly cited drawbacks of actor systems and the ability to take 
full advantage of the benefits of actors depend on the availability of certain infrastructure and 
characteristics of the actor system implementation. This section aims to lay out a concrete set 
of criteria for the design and implementation of a high-quality actor system. We identify the 
following set of high level criteria:

1. No blocking operations
2. E-style (integrated and non-blocking) Futures 
3. Automatic actor lifecycle
4. Low per-actor overhead

Criterion 1 refers to the full absence of blocking operations on actors, i.e. operations, which 
block an actor from receiving and processing further messages. The two most common 
examples of such an operation, are blocking call and blocking receive. A blocking call is an 
operation, which sends a message to an actor and blocks the current actor until a response 
is received. A blocking receive is an operation, which blocks the current actor, waiting for a 
message of a certain type to arrive, suspending the processing of messages, which do not 
match the type(s) of messages being awaited. Blocking operations introduce the possibility of 
deadlocks and therefore their presence eliminates one of the main advantages of actor-based 
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concurrency over shared-state concurrency. In an actor framework without blocking operations, 
problems that require “blocking” are solved via the explicit use of insensitive actors, a pattern 
described in [11].

Integrated futures (criterion 2) provide for fully-functional asynchronous two-way communication 
between actors, i.e. a non-blocking way to receive the result or exception of an asynchronous 
message. Without integrated futures, actors suffer from inversion of control and control flow 
must be expressed via continuation-passing style, which requires extra development effort 
and results in code that is more difficult to read and maintain. Error handling also becomes 
more difficult. Erlang-style actors [27], for example, resort to supervisor hierarchies -- a pattern, 
which provides orthogonal error handling via linked actors called supervisors. Supervisors 
trap all errors that occurs in other actors. This a good pattern, which alleviates the need for 
custom error-handling boilerplate code, but error handling via supervisors is orthogonal to the 
control flow of the program and still suffer from inversion of control. E-style futures propagate 
exceptions in a manner that is equivalent to the way exceptions are propagated along the call 
stack in traditional sequential computation. In order to fulfil criterion 1, futures must also be 
non-blocking and therefore code that receives a message response can only be scheduled 
asynchronously. In order to properly integrate into an actor-based concurrency implementation, 
futures must use actors as the means of scheduling code for asynchronous execution. This 
implies that Futures must be tightly coupled to the internal actor message dispatch mechanism 
of the implementation.

The last two criteria -- automatic actor lifecycle and low per-actor overhead are required in 
order to alleviate the developer from the burden of worrying about the number of actors created 
and the need manual performance tuning configuration depending on the number of execution 
resources available in the hardware (CPUs, cores, hardware threads etc). Automatic actor 
lifecycle means that an actor is not tied to any operating system resource such as a process, 
thread, fiber etc, and all of the actor’s resources (heap, mailbox, stack etc) are automatically 
reclaimed as soon as all references to that actor go away, and the actor’s mailbox becomes 
empty. The per-actor overhead must be low enough such that there is no need for creating 
actor pools. Resource pools (thread pools, memory pools, connection pools etc) are typically 
created to manage and reuse resources that are expensive to create and destroy. An actor-
based concurrency implementation is very likely to internally make use of such resource pools, 
but must hide their presence by decoupling individual actors from the underlying expensive 
resources, and keep the costs of creating and destroying actors to a minimum. This ensures 
that the actor implementation can provide iAdaptive concurrency, which is one of the key 
advantages of actors.

3 Related Work
This chapter presents a brief survey and evaluation of related work on asynchronous message-
passing-based concurrency in terms of the criteria outlined in the previous section.

3.1 Asynchrony in Mainstream Java Frameworks
In early versions of Java application servers -- EJB up to version 3, the only means for 
asynchronous communication is via JMS beans. JMS beans are heavyweight -- each bean is 
tied to a Java thread, and there is a blocking send operation. Beans are created in pools via 
XML or annotation-based configuration, and there is no integration of non-blocking futures. 
JMS does not meet any of the criteria for a good message-passing framework. Starting with 
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EJB 3.1, session EJBs can contain methods that are invoked asynchronously, via the use 
of the @Asynchronous annotation. Asynchronous EJB methods that return a value must 
use java.util.concurrent.Future, which only provides a blocking get API for retrieving the 
future’s result. Session EJBs also suffer from the same lifecycle deficiencies as JMS beans - 
configuration-based creation and pooling. Prior to EJB 3.1, application servers such as JBoss 
provide asynchronous extensions to the EJB specification. The JBoss extensions also rely 
exclusively on java.util.concurrent.Future and therefore suffer from the same limitations as the 
EJB 3.1 standard.

The Spring Framework, which is a popular alternative to EJB standard-based application 
servers, also provides for asynchronous method invocation on Spring beans via an @Async 
annotation. Spring @Async also relies exclusively on the blocking java.util.concurrent.Future 
for passing return values. Spring beans are relatively lightweight objects, but are typically 
singletons that are always assigned a unique name and registered in a global bean factory and 
live for the entire duration of the application. Therefore Spring beans do not meet the lifecycle 
criteria either.

3.2 Mainstream Actor Frameworks
Scala actors [28] are inspired by erlang actors and are very lightweight and have a semi-
automatic lifecycle. However, as in erlang, Scala actors support a blocking receive API. Scala 
actors include a fully integrated Future API, however scala actor futures include a blocking 
retrieve operation. While it is possible to program scala futures in a purely non-blocking fashion 
[22], it can be difficult to do so correctly and especially so when programming asynchronous 
control flow.

Scalaz actors [30] are lightweight but provide for one-way message-passing only. The included 
scalaz Future API is not integrated with scalaz actors, as scalaz futures schedule their non-
blocking operations outside of the context of actors. This is a surprisingly recurring pattern 
across actor frameworks for programming languages that execute on the Java Virtual Machine. 
Lift Actors, the GPars groovy parallels library, Akka, and Twitter’s Finagle framework all 
include an actor framework along with a futures API, which is supposed to be used with actors, 
but schedules code for execution outside of the context of an actor. The problem with this 
approach is that code scheduled by a Future cannot safely access any actor’s state. All of the 
aforementioned frameworks also include a blocking API for retrieving a future’s result.

3.3 Fringe Alternatives
This section evaluates a collection of mostly academic efforts in the area of actors, which were 
surveyed in [16].

Kilim is not strictly an actor framework since it employs the use of explicit channels, which 
can be of a bounded size and therefore can block. Kilim does not include a Future API for 
asynchronous control flow. ActorFoundry, Actor Architecture and AJ all include a blocking call 
API as the sole means for asynchronous control flow. JavAct includes a blocking Futures API 
via its Future.getReply() method. Actors Guild includes a Future API in AsyncResult, which 
supports non-blocking result handling but is not integrated and schedules non-blocking code 
outside of the context of an actor. Actor Guild’s AsyncResult also includes a blocking get() 
method.

Jsaab, which is not strictly an actor framework, provides higher-level asynchronous primitives 
such as publisher-subscriber channels with multiple producers and consumers very similar to 
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JMS. Two-way communication uses a blocking request/reply API. Jetlang is also not an actor 
framework, since it employs separate notions of channels for communication, and fibers for 
execution. Fibers are lightweight and channel communication is fully asynchronous, however 
without the presence of non-blocking futures for asynchronous control flow, even simple 
examples in Jetlang are counter-intuitive and hard-to-understand.

SALSA -- a pure actor-based language, supports the use of tokens for asynchronous control 
flow. Tokens are similar to but more restrictive than futures -- tokens cannot be used as return 
values themselves, and cannot accept messages. SALSA actors are heavyweight because 
each actor executes in a separate a Java thread [16].

3.4 Conclusion
Judging based on the results of the above survey alone one might jump to the conclusion that 
it must be impossible to implement an actor framework that meets all of the criteria outlined 
earlier in this report. Yet such an implementation does exist in the E language and its E-on-Java 
implementation, and BootComm system. E futures provide an exclusively non-blocking API 
and are properly integrated with E vats (actors), and E vats running within the same JVM are 
lightweight -- multiple vats can share a single Java thread and associated message queue. E 
vats have an automatic lifecycle as well. AmbientTalk is another language with an actor-based 
concurrency framework that is directly inspired by E and meets all of the criteria outlined here. 
Actors in Newspeak 4 also closely follow the design of E, and attempt to take its ideas further 
by reducing the per-actor overhead to the greatest extent possible and providing a very simple 
actor creation API.

4 Overview of Newspeak 4 Actors
Newspeak Actors are similar to OS threads in the sense that each actor executes in its own 
logical thread of control. A Newspeak 4 program consists of one or more actors at runtime, 
just like a Java program consists of one or more threads. Just as a Java program begins its 
execution with one main thread, a Newspeak 4 program begins its execution with one main 
actor.

There are a few differences between the original Actor model and Actors in Newspeak that we 
outline in the following sections.

4.1 Carl Hewitt’s Actor Model
The original Actor model is purely functional – every actor consists of two parts -- a function, 
and a mailbox. The function defines the actor’s behavior and the mailbox receives pending 
asynchronous invocation requests of the function. The behavior of an actor can be mutated, 
by assigning a new function to take over subsequent message processing (invocations), via a 
built-in become statement. All functions in that model are only used as part of actors, including 
primitive functions such as number addition, multiplication etc. Computation bottoms out at 
these primitive functions, and control flow can be expressed via futures and/or continuation 
passing style. The order of message delivery is undefined. The only guarantee is that every 
message sent will eventually be delivered at some indeterminate point in the future.
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4.2 E-style Actors in Newspeak 4
Actor-based concurrency in Newspeak 4 differs from the original Actor model and pure actor-
based languages such as SAL and Humus in the following ways:

1. In Newspeak, an actor’s mailbox is explicitly defined as a (virtual) queue, and there is a 
well-defined order of message delivery (E-ORDER). This is in contrast to Hewitt’s Actor 
model, where message delivery order is undefined.

2. Actors in Newspeak are object-oriented. That is, each actor message, instead of 
representing a function call, represents a message send to an object. In other words, 
each message contains an implicit argument representing the receiver object and 
message dispatch in an actor relies on OO method dispatch versus pattern matching in 
SAL/Humus.

3. Actors in Newspeak are not “pure.” In a “pure” actor-based language every object is 
an actor, and therefore objects communicate exclusively via asynchronous message 
passing. Newspeak 4 is a hybrid system, in the same way as the E language. An 
actor encapsulates a collection of objects with an associated mailbox and activation 
stack. All objects of an actor then share the same mailbox and activation stack, and 
can communicate with each other synchronously, just as in traditional object-oriented 
programming languages. Each object belongs to one and only one actor for the object’s 
entire lifetime.

4.3 Comparison to Java Threads
The simplest way to model a Newspeak Actor in concrete Java terms is as a Java thread with 
an associated message queue, which runs in a loop taking messages from the queue and 
processing them one at a time:

class NaiveActor extends Thread {
  private final Queue queue;
  public void run() {
    while (true) {
      Message msg = queue.dequeue();
      msg.method.invoke(msg.receiver, msg.arguments);
    }
  }
}

The above class is an oversimplification and misrepresentation in a number of ways, however it 
does highlight the following important features of actors:

1. All objects belonging to an actor share the same queue.
2. All objects belonging to an actor share the same activation stack, just like all method 

calls within a single thread in Java share the same call stack.
Newspeak 4 Actors differ from this example in the following important ways:

1. Every object belongs to one and only one actor for the entire duration of its life span. 
This is unlike in Java, where threads can share direct access to the same object.

2. Synchronous communication is only possible between objects belonging to the same 
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actor.
3. The above NaiveActor class omits the logic for returning a result from an asynchronous 

message, which is supported via the integration of E-style futures in Newspeak.
4. Actors are much more lightweight than Java threads. Java threads map directly to OS 

threads, and carry the associated scheduling and OS resource overhead. Actors are 
lightweight – the overhead of a Newspeak 4 actor is the same as that of a small object.

5. Actor lifecycle is managed automatically, whereas threads have to be explicitly started 
and stopped (when using thread pools).

6. In normal operation (the reflection use case aside), there is no object representing an 
actor as a whole akin to a Java Thread object (in the reflection use case an actor mirror 
object can be created). There is no direct access to the actor’s queue, and only cross-
actor object references contain the ability to mutate the queue of their target object’s 
actor. References to objects within the same actor, can also be used to communicate 
asynchronously with their target object, and therefore can mutate the currently executing 
actor’s queue.

4.4 Actors as a Method of Execution Resource Management
Actors are fundamentally an abstraction of the execution resources (CPUs) of the system. An 
actor in Newspeak 4 is the unit of allocation of the execution resources on the system. At its 
core, a language runtime environment (such as a Java/.Net/Javascript/Squeak/Dalvik/Dart VM) 
provides two types of resources – execution resources (CPU cores/hardware threads) and 
memory (RAM) and provides facilities for the management of these resources. In this section, 
we will compare and contrast the Newspeak 4, Java and C programming languages in terms of 
their facilities for execution resource and memory management.

4.4.1 Memory Management
In Java memory is managed via object construction (new). Compared to C, memory 
management in Newspeak and Java is simple, lightweight and automatic2. It is simple, 
because there is only one way to allocate memory – object construction, compared to the 
variety of APIs available in C, such as malloc, alloca etc. It is lightweight (at least in the common 
case for small short-lived objects), because the cost of an object allocation (“new ...”) in Java is 
lower than the cost of a malloc in C [17]. It is automatic, because object lifecycle is managed by 
the runtime and objects are automatically freed when no longer used via garbage collection – 
there is no need for memory bookkeeping code in the application, having to call free() in order to 
release memory at the right time in the right place.

Garbage collection in Newspeak or Java, and explicit memory management in C are two 
alternative paradigms for memory resource management with fundamentally different 
characteristics.

4.4.2 Execution Resource Management
The story of execution resource management in Java is different. Java execution resource 
management is practically the same as that in C. At a high level Java threads are not much 
different from POSIX threads available in C and C++. Both Java threads and posix threads 
map directly to Operating System (OS) threads on all modern operating systems, including 

2 Both Newspeak and Java derive their memory management model from Smalltalk, where it is referred 
to as “automatic storage management.” Today this type of memory management is often referred to as 
garbage-collected memory.
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Windows, OS X, Linux and Solaris. OS threads are neither simple, nor lightweight, nor 
automatic. OS Threads are not simple, because efficient thread management requires the 
careful allocation of threads in thread pools, explicit coordination of shared data access via 
locks, and communication among threads is managed via a multitude of non-trivial mechanisms 
such as conditions, barriers, phasers (see [18] for a case in point), blocking queues etc. OS 
Threads are not lightweight, because thread creation is a relatively expensive operation as it 
requires the allocation of a limited OS resource -- a thread handle, and the allocation of a fixed-
size thread stack, and other thread-local structures in the operating system kernel. OS Threads 
are not automatic, because their lifecycle is manually managed by the programmer – an OS 
thread must be explicitly started via its start method, and potentially explicitly stopped if part of 
a thread pool – additional complications arise from the different lifecycle semantics of daemon 
threads versus regular threads.

Newspeak 4 actors stand in stark contrast to Java and C threads in that actors share all of 
the characteristics of Newspeak and Java memory management described earlier -- actors 
are simple, lightweight and automatic. Actors are simple, because there is only one way to 
schedule an execution – via an actor, and since actors are lightweight (as explained later) there 
is no need for explicit pooling of actors. Actors are simple, also because there is no need for 
explicit coordination of shared state access and the associated complexities that come with 
that. Finally, actors are simple because there is only one way of communication between actors, 
and that is via asynchronous message passing between actors’ objects. Actors are lightweight, 
because creation of an actor does not require the explicit allocation of any OS resources, such 
as a process, thread or stack. Both the actor’s heap and queue can be virtual, in the sense that 
multiple actors can internally share the same queue. Actors running within the same address 
space can share the same heap, with actor heap state isolation enforced by the message 
passing infrastructure (which can rely on thread-safe pointer manipulation [13]).

Actors in Newspeak 4 and Java or C threads are two alternative paradigms for execution 
resource management with fundamentally different characteristics.

4.4.3 Conclusion
The analysis in this section demonstrated how Newspeak 4 actors compare to Java and 
C threads , just as garbage collection in Newspeak and Java compares to explicit memory 
management in C. Actors provide the same advantages for execution resource management 
that garbage collection provides for memory resource management. Just like garbage 
collection, actors are simple, lightweight and automatic. This is in contrast to OS threads and 
explicit memory management, which provide none of those three qualities. Just like garbage 
collection eliminates the need for most memory resource (object) pooling (assuming a high-
quality garbage collector implementation), actors eliminate the need for most execution 
resource (OS thread) pooling (assuming a high-quality actor implementation).

5 Newspeak 4 Actors by Example
This chapter introduces Newspeak 4 actors by example. We begin with a brief introduction to 
Newspeak syntax, then introduces the various actor features with simple examples, which are 
followed by recipes for transforming sequential code into asynchronous. The last few examples 
then demonstrate basic patterns for actor programming. 

5.1 A Gentle Introduction to Newspeak
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Let’s begin with a simple example -- the factorial function implemented in Java:

public int factorial(int n) {
  if (n > 1) return n * factorial(n - 1);
  else return 1;
}

The equivalent function in Newspeak looks like this:

public factorial: n <Integer> ^ <Integer> = (
  (n > 1) ifTrue: [ ^n * factorial: (n - 1) ]
  ifFalse: [ ^1 ].
)

Note a few differences in Newspeak syntax. The type annotations (<Integer>) for the 
argument n and the return value are enclosed in angle braces and follow, instead of preceding, 
their target. This is similar to languages like Pascal as opposed to the Java syntax for type 
annotations, which is in the C tradition. The method body is enclosed in regular parentheses 
instead of curly braces. The hat (^) character is the equivalent to the return keyword in Java. A 
more significant difference is in the if statement, which in Newspeak is expressed as a message 
send3 (method call) to the boolean expression (n > 1). In this case the message selector 
(method name) is ifTrue:ifFalse: and takes two code blocks (closures) as arguments. 
Code blocks are enclosed in square brackets. Only one of the code blocks will be evaluated 
depending on the value of the boolean expression, resulting in the same semantics as those of 
an if expression in Java.

5.2 Asynchronous Factorial
The factorial implementation above can be rewritten in an asynchronous fashion with only one 
very small modification:

public factorial: n <Integer> ^ <Promise[Integer]> = (
  (n > 1) ifTrue: [ ^n <-: * factorial: (n - 1) ]
  ifFalse: [ ^1 ].
)

The only change in the code above is the addition of the eventual-send operator <-: to the 
recursive case (ifTrue:) of the branch. With this change the factorial function (except for the 
bottom case where n <= 1) will return a promise for the result of its computation, instead of 
blocking the caller until the function computes the result. Note that in this example there is no 
explicitly added concurrency or parallelism to the internal operations involved in the factorial 
computation itself. There is external concurrency, however, in that the computation of the 
factorial will proceed concurrently (although not in parallel) with other processing done by the 
same actor.

The primary purpose of this example is to illustrate the common pattern of transforming 
sequential code to asynchronous code in Newspeak. A primary goal of Newspeak 4 actors is 
to make the task of transforming sequential code into asynchronous and/or parallel code as 
simple and straightforward as possible. The example above demonstrates the simplest possible 

3 Newspeak, like Smalltalk, has no built-in control structures. All control structures, including loops and 
branches in Newspeak are expressed as message sends.
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scenario and how easy it is to convert code to asynchronous execution. The code still looks 
and feels natural as the intent of the program is expressed in the same was as in the sequential 
case. There are no special methods, or explicit creation of heavy-weight custom objects such 
as tasks, queues, channels, futures, pipes, processes, threads, thread pools, executors etc, 
typical of other asynchronous libraries. There are no new APIs to learn. The only new concept 
is an eventual-send operator <-:, which expresses the explicit intent to schedule an individual 
computation for eventual (asynchronous) instead of immediate execution. This operator is built 
into the language and can be used universally when sending any message to any object. The 
eventual-send operator is a first-class citizen of the language and therefore so is asynchronous 
computation. There is no need for a special distinction between Actor objects, Enterprise 
Objects, Enterprise Beans, etc versus regular objects. Every value in Newspeak is a first class 
object, including primitives such as numbers. 

5.3 Subtleties of Asynchrony
The above example is interesting in that the multiplication operator is applied asynchronously, 
but the recursive call to the factorial function is still synchronous. Even in a simple example 
as this, we had several choices of where to insert asynchrony. In addition to asynchronously 
scheduling the multiplication operation, we could have also asynchronously scheduled the 
recursive call to the factorial function:

public factorial: n <Integer> ^ <Promise[Integer]> = (
  (n > 1) ifTrue: [ ^(self <-: factorial: (n - 1)) <-: * n ]
  ifFalse: [ ^1 ].
)

Note that we had to reverse the order or the operands to the multiplication function, so that 
n is the argument of the multiplication message, instead of the receiver. This is because 
in Newspeak (as in E), primitive operations such as number multiplication cannot accept 
unresolved promises as arguments4. In this example n is a number that is expected to be 
an immediately available value and can therefore be safely passed as an argument to the 
multiplication message.

Another important point is that once we transform the recursive call to an asynchronous 
eventual-send, we end up with a promise for the result of the recursion, and we have no choice, 
but to eventual-send the multiplication message as well. This is because promises can only 
accept eventual-sends and therefore eventual-sending the factorial message while immediate-
sending the multiplication message is not an option. The result of an eventual-send expression 
can only be the receiver of other eventual-sends5.

5.4 Transparent Potential for Parallelism
The last, fully asynchronous example of our factorial function is arguably too complex, 
without adding enough benefit. Multiplication is the only fundamental operation performed 
by the factorial function and thus scheduling the multiplication asynchronously should be 
enough. Since multiplication is commutative, computation of the factorial function is inherently 

4 Multiplication and other arithmetic operations on primitive types in Newspeak are double-dispatched. 
Double dispatch, however, always uses immediate-sends, which precludes the use of unresolved 
promises as arguments in this case. A more detailed discussion of this topic is provided in Section 6.15.5.
5 A means for extracting the value of a promise is given later in this chapter.
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parallelizable. The question arises then, how can we exploit this inherent parallelism in the 
context of actor-based concurrency. In the first asynchronous factorial example, an execution 
of factorial: n will in fact synchronously recurse all the way down to n = 1, but instead of 
performing all multiplication operations along the way, the function will simply schedule those 
operations for later execution and return a promise for the final combined result. Graphically, the 
result of the execution of factorial: 4 can be represented as follows:

Each box represents a promise object created as a result of an eventual-send of the 
multiplication message. The label in the top half of each box represents one specific invocation 
of factorial. For example P(f(4)) represents the promise for the result of computing the factorial 
of the number 4 and is the result of invoking factorial: 4. Each of the promise objects additionally 
holds a buffered message (represented by the 3 boxes underneath the main box) enqueued 
on the actor’s message queue to be processed once the promise value (denoted by ?) gets 
becomes available.

The simplest way to process these messages is the default mechanism of sequential execution 
already described: each message is dequeued and processed one by one, as depicted below:

While the above method works, it is sub-optimal. We can do better by exploiting the fact that the 
multiplication function is commutative and each of the operands is a known immutable value6. 

6 Numbers in Newspeak are value objects. The notion of a value object is described in Section 6.8.
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By exploiting this inherent parallelism we can compute the factorial of 4 in two steps instead of 
three:

 

The above parallelism can be detected and exploited by a smart actor implementation7 in a 
manner fully transparent to the programmer. Note that the factorial function was implemented in 
the most intuitive and simple way, by encoding the function’s mathematical recursive definition 
in the syntax of the Newspeak language. No optimizing transformations were required to 
explicitly enable parallel execution. Such transformations obscure the original intent and make 
code more difficult to maintain.

To achieve the same in Scala, for example, one can use the parallel collections library. The 
factorial function can then be computed by explicitly applying the reduce operator on the 
sequence of numbers from 1 to n:

def factorial(n: Int): Int = (1 to n).par.reduce(_ * _)

The above code, however, encodes the understanding that the factorial function can be 
expressed as a reduce operation on a sequence of numbers. The original recursive (and 
presumably intuitive) definition of the factorial function is completely lost. Scala is able in certain 
cases to transform tail-recursive functions into operations on parallel collections. However, this 
is still not fully transparent to the user, the function definition must be transformed into its tail-
recursive form by carrying over the result in an explicit additional parameters.

One could speculate that potential for parallelism in a chain of promises (such as in the example 
described in this section) can be detected and exploited efficiently and transparently at runtime 
and thus provide benefits comparable to those of the scala parallel collections library but at 
a lower cost to the programmer. This is not implemented in the Newspeak 4 actor framework 

7 Actors in Newspeak 4 provide concurrency but not parallel execution. The parallelization scheme 
described in this section is not implemented in Newspeak 4.
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and the author is not aware of other work in this area. Thus, this is potentially an open area for 
research.

5.5 Patterns for Asynchronous Programming
The examples in this section demonstrate some basic patterns for asynchronous programming 
using Actors in Newspeak 4. We begin by trying to answer the question of how to translate 
synchronous code that uses immediate-sends to asynchronous code using eventual-sends.

5.5.1 Using Promise Pipelining
A transformation from synchronous code to asynchronous code always begins with substituting 
an eventual-send for an immediate-send in some method doX:

public doX: a <SomeClass> ^ <Object> = (
  | b | “local variables”
  b:: a doY. “setter send - equivalent to ‘b = a.doY();’ in Java”
  ^b doZ.
)

The code above contains a bit of new Newspeak syntax that deserves explanation. The vertical 
bars on the first line of the method enclose a space-separated list of local variables (in this case 
a single variable named b). Double-quoted strings contain comments, which are used to explain 
the Newspeak syntax in the above example. The :: notation represents a setter-send, which 
(in this specific example) is functionally equivalent to an assignment operator in conventional 
languages.

Let’s assume we want to perform the doY operation asynchronously. As we saw in the factorial 
example, the first step is to replace the immediate-send of doY with an eventual-send. 

public doX: a <SomeClass> ^ <Object> = (
  | b |
  b:: a <-: doY.
  ^b doZ. “error - promises can only accept eventual-sends”
)

Since the receiver of the doZ message is the result of the doY message send, we can no longer 
send doZ immediately. The solution is simply to replace the immediate-send of doZ with an 
eventual-send as well:

public doX: a <SomeClass> ^ <Promise[Object]> = (
  | b |
  b:: a <-: doY.
  ^b <-: doZ. “OK”
)

Note that we also changed the return type annotation of the doX: method from Object to 
Promise[Object]. Once a method is transformed to use asynchronous eventual-sends, if 
the return value of the method depends on any of the asynchronous operations, then the 
asynchrony creeps up to the method return value, which now becomes a promise (or a far 
reference) and the process of replacing immediate-sends with eventual-sends must proceed up 
along the caller hierarchy of doX:. In other words, methods that call doX: and make use of the 
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return value of doX: must also be modified to use eventual-sends when invoking doX:.

5.5.2 Using whenResolved:
Sometimes the code that follows a message send expects the actual value of the result to 
be available. This is the case when the result of a computation is used as the argument of a 
subsequent message send instead of as the receiver:

public doX: a ^ <Object> = (
  | b |
  “... preceding code ..."
  b:: a doY.
  “... subsequent code ..."
  ^doZ: b.
)

Assuming the doZ method expects the actual value of b, we can translate the above method to 
use asynchrony for doY as follows:

public doX: a ^ <Promise[Object]> = (
  | b |
  “... preceding code ..."
  b:: a <-: doY.
  ^b whenResolved: [
    “... subsequent code ..."
    doZ: b.
  ].
)

The gist of the transformation is wrapping the code that follows the eventual-send in a closure 
that is passed in a whenResolved: message to the promise b. If the wrapped code contains a 
return statement (as in this example) an additional step is required. Return statements must be 
removed from the wrapped code, and the return statement is moved up to the whenResolved: 
expression. The whenResolved: message on Promise makes it possible to obtain the return 
value of the subsequent code because whenResolved: returns a new promise for the value of 
the closure that is passed to it.

In the example above, there is a single return statement at the end of the subsequent code, 
which represents the simplest possible case. If there are multiple return statements, the 
wrapped code must be rewritten to save the desired return value explicitly and make that the 
value of the last expression of the closure. This kind of transformation is beyond the scope of 
this discussion.

5.5.3 Dealing with Loops
The above simple transformations do not apply when the code involves loops or other non-
trivial control structures. In the case of loops, the standard way to transform the code is by first 
translating the loop to tail recursion. If there are multiple nested loops, this might also require 
refactoring nested loops out into separate methods. Here is an example of transforming a 
simple Read-Eval-Print loop (REPL):

public repl = (
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  [ running ] whileTrue: [
    | line result |
    line:: console readLine.
    result:: self eval line.
    console printLine: result.
  ].
)

Using eventual-sends to access the console, the code would look like this:

public replAsync = (
  [ running ] ifTrue: [
    | line result |
    line:: console <-: readLine.
    line whenResolved: [
      result:: self eval line.
      console <-: printLine: result.
      replAsync. “tail-recursion”
    ]
  ].
)

Note that we had to use whenResolved:, since the eval message assumes that the actual 
contents of the line are available (line must be resolved when we call eval). Furthermore, 
note that since we do not expect a return value from the console printLine: message, the 
transformation of this message to an eventual-send did not require any additional steps besides 
inserting the <-: eventual-send operator.

5.5.4 Waiting for Several Results
Sometimes the result of several computations is necessary for the next step:

public combine = (
  | a b |
  a:: self calculateA.
  b:: self calculateB.
  process: a and: b.
)

If we want to compute a and b asynchronously, we can wait for both results by combining the 
two promises via the comma (,) operator:

public combine = (
  | a b |
  a:: self <-: calculateA.
  b:: self <-: calculateB.
  (a, b) whenResolved: [ 
    process: a and: b.
  ]
)
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The above example is the simplest way to group and await multiple promises at once. The 
combined promise (a, b) forms a logical conjunction of a and b -- it will resolve only when both 
a and b have resolved, and will be smashed with an exception if either a or b gets smashed. 
The implementation of promise conjunction is based on the whenAll example described in [13].

5.5.5 MapReduce
A common pattern that occurs in asynchronous, concurrent processing is to launch a number of 
tasks and then combine their results. In the sequential case, the variable number of tasks can 
be processed one at a time and then the results combined:

public mapReduce: tasks = (
  | results <Collection[Object]> |
  “map tasks to results”
  results:: tasks collect: [ :task | 
    task process.
  ].
  “... process (reduce) the results ..."
)

The asynchronous version can be written using the PromiseGroup class, which combines a 
variable number of promises into one promise for a sequence of all results:

public mapReduceAsync: tasks = (
  | resultPromises <Collection[Promise[Object]]>
    results <Promise[Collection[Object]]> |
  “map tasks to results”
  resultPromises:: tasks collect: [ :task | 
    task <-: process
  ].
  results:: PromiseGroup for: resultPromises.
  results whenResolved: [
    “... process (reduce) the results ..."
  ]
)

Note that the resultPromises temporary variable is introduced in the place where the results 
variable was in the synchronous example. We cannot use resultPromises directly, because 
it contains a collection of promises. The simplest way to combine the promises into a single 
promise is to use the PromiseGroup for: constructor. The , (comma) operator on Promise 
that was used previously returns a PromiseGroup object, and the PromiseGroup class supports 
the , operator as well as the whenResolved: protocol of Promise.

5.6 Publisher/Subscriber
Implementing an asynchronous publisher/subscriber service in Newspeak 4 is trivial as 
illustrated in the following example implementation of a StatusHolder class, adapted from [13]:

class StatusHolder initialStatus: s = (| “slots”
  private status ::= s.
  private listeners = MutableArrayList new.
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|) ( “instance methods go here”
  addListener: newListener = (
    listeners add: newListener.
    newListener <-: value: status.
  )
  setStatus: newStatus = (
    status:: newStatus.
    listeners do: [ :listener |
      listener <-: value: status.
    ].
  )
) : ( “class (static) methods go here”
)

A status holder object has two slots (fields), which store a status object, and a list of listeners 
to be notified when the status changes. The addListener: method appends the given listener 
object to the list of listeners and notifies the new listener of the current status. The notification to 
the new listener is sent asynchronously via the value: message -- by convention all Newspeak 
closure objects that accept a single argument support the value: message. The setStatus: 
method updates the status and notifies all registered listeners of the new value. Notification 
is again done asynchronously, and the setStatus: method returns immediately without 
waiting for listeners to process the notification. The setStatus: method can be invoked many 
times in a short period of time and the entire sequence of changes will be enqueued to all 
registered listeners for eventual processing at a later time and independently by each listener. 
Listeners can reside in the same actor, a different actor running in the same Newspeak VM, or a 
distributed actor running on a different node and communicating over a network8. 

In the above example, any object with a reference to the status holder can take on the role of 
either a publisher -- via the setStatus: method, or a subscriber -- by enlisting a listener via the 
addListener: method. The example can be extended by separating the authority to subscribe 
and publish into two nested class objects (similar to the example in [13]).

class StatusHolder2 initialStatus: s = (| “slots”
  private status ::= s.
  private listeners = MutableArrayList new.
|) ( “instance members”
  class Subscriber = (||) () : ( “class members”
    addListener: newListener = (
      listeners add: newListener.
      newListener <-: value: status.
    )
  )
  class Publisher = (||) () : ( “class members”
    setStatus: newStatus = (
      status:: newStatus.
      listeners do: [ :listener |

8 Support for distributed actors is not implemented in Newspeak 4
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        listener <-: value: status.
      ].
    )
  )
) : ()

Each instance of StatusHolder2 contains its own Subscriber and Publisher classes. 
Objects with a reference to the Subscriber class object can only take on the subscriber role by 
enlisting a listener, and objects with a reference to the Publisher class object can only publish 
status changes.

5.7 Breadth-first Tree Walking Using Recursion
The following is a simple binary tree implementation in Newspeak with a method to walk the tree 
recursively in depth-first fashion:

class BinaryTree data: d left: l right: r = (|
  private data = d.
  private left = l.
  private right = r.
) (
  depthFirstWalk: handler <[]> = (
    handler value: self.
    left isNil ifFalse: [ left depthFirstWalk: handler ].
    right isNil ifFalse: [ right depthFirstWalk: handler ].
  )
) : ()

What if we wanted to add a breadth-first walk method? The textbook breadth-first search 
example uses a queue and a loop:

breadthFirstWalk: handler <[]> = (
  | queue = MutableArrayList new. |
  queue add: self.
  [ queue isEmpty ] whileFalse: [
    | node = queue removeFirst. |
    handler value: node.
    node left isNil ifFalse: [ queue add: node left ].
    node right isNil ifFalse: [ queue add: node right ].
  ].
)

In Newspeak 4, we can implement breadth-first walk in a simpler way via the use of 
asynchronous message passing and recursion:

breadthFirstWalk2: handler <[]> = (
  handler value: self.
  left isNil ifFalse: [ left <-: breadthFirstWalk: handler ].
  right isNil ifFalse: [ right <-: breadthFirstWalk: handler ].

25



 
 

)

The implementation above is almost identical to the depthFirstWalk: method, with only the 
recursive method calls changed to their asynchronous equivalent. This implementation is much 
simpler and easier to read, mostly because it does not require the explicit use of a queue data 
structure. Instead of explicitly using a queue, the recursive asynchronous message sends 
make use of the internal queue of the current actor. In this sense, asynchronous message 
sends act as an abstraction that hides a queue data structure, in the same way that traditional 
immediate message sends (the equivalent of a method or procedure call) hide a stack in 
their implementation. In fact, we could rewrite the depthFirstWalk: method to use a stack 
data structure in a loop, simply by modifying the breadthFirstWalk: method to send the 
removeLast message to queue instead of removeFirst, in effect utilizing the queue object (a 
generic MutableArrayList instance) as a stack.

5.8 Modules, Mutual Recursion and Actors
Top-level classes in Newspeak effectively function as modules [19]. The Newspeak language 
does not have a global namespace and all imports are passed as parameters to a top-level 
class constructor. A top-level Newspeak class is a fully self-contained parametric namespace. 
Instances of a top-level class can only access classes and objects given to it as parameters at 
construction time. Newspeak supports mutually recursive modules via the use of simultaneous 
slots. Simultaneous slots support mutual recursion via lazy initialization. The following example 
contains two module definitions -- A and B, which are instantiated in a mutually recursive fashion 
by a third module called Whole.

class Whole = (
|| “double-bars denote simultaneous slots”
  partA = PartA using: self.
  partB = PartB using: self.
||
)()

class PartA using: whole = (
  | Y = whole partB Y. |
)(
  class X = ()()
)
class PartB using: whole = (
  | X = whole partA X. |
)(
  class Y = ()()
)

In the example above, the partA and partB slots of Whole must be simultaneous (lazy), 
because the default factories (constructors) of both PartA and PartB refer to each other via 
their references to the instance of the Whole module object. This is a non-trivial example of 
indirect mutual recursion that poses challenges for the implementation of lazy slots in Newspeak 
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[20]. Implementing the same type of mutually-recursive structure with lazy vals in scala, for 
example, requires that the X and Y slots of PartA and PartB be lazy as well in order to avoid 
divergence [21].

Actors in Newspeak 4 can be used to provide an alternative solution for mutually recursive 
modules. We can create a new version of the Whole module, which creates PartA and PartB 
as actors:

class WholeActors usingActors: actors = (
|
  partA = (actors createActor: PartA) <-: using: self.
  partB = (actors createActor: PartB) <-: using: self.
|
)()

The createActor: method of the built-in actors module creates a new actor and seeds it 
with an instance of the given class object. We then invoke the factory (constructor) of the 
class asynchronously. Note that in this case the partA and partB slots do not need to be 
simultaneous. Since partA and partB are now actors they must communicate with each other, 
and with WholeActors exclusively via asynchronous message sends. The factories of PartA 
and PartB must be rewritten to obtain each other’s reference asynchronously as well:

class PartA using: whole = (
  | Y = whole <-: partB <-: Y. |
...
class PartB using: whole = (
  | X = whole <-: partA <-: X. |
...

The above example illustrates how actors naturally support mutual recursion. Asynchronous 
communication via eventual-sends in Newspeak is, in effect, lazy.

6 Functional Specifications

6.1 Introduction
A Newspeak actor is a virtual process (equivalent to the vat in E [13]) and consists of the 
following parts:

● Activation Stack
● Message Queue
● Heap
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An actor is similar in structure to an Operating System process or thread, with the exception 
of the addition of a message queue. The message queue is managed by the actor and 
continuously serves messages, which are then pushed onto the activation stack and executed 
as conventional method calls. The execution of an actor proceeds in a right-to-left and top-to-
bottom order.

6.2 Messages
Objects in a actor’s heap can exchange messages with each other via immediate- or eventual-
sends.

6.2.1 Immediate-send
An immediate-send is the equivalent of a standard method call in languages like Java, or a 
message send in Smalltalk. Newspeak immediate-sends build on and extend the Smalltalk 
message send syntax:

account deposit: 100 withDescription: ‘paycheck’.

The above code corresponds to 

account.depositWithDescription(100, “paycheck”);

in traditional Java method call syntax. An immediate-send pushes a new activation frame on 
the activation stack with the message selector, arguments and return address, and proceeds 
to execute the method immediately.
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The heap section of the above picture contains a Granovetter diagram [13] representing the 
immediate-send of the deposit:withDescription: message to the account object. Each 
circle represents an object, each arrow represents a reference, and the boxed arrow represents 
the immediate-send of the deposit:withDescription: message from the object of the 
currently-executing method (self) to the account object. The arrows coming out of the boxed 
arrow represent the object references carried as arguments inside the message. The new 
activation frame created as a result of the immediate-send is shown at the top of the stack in 
blue. An immediate-send does not change the message queue.

6.2.2 Eventual-send
In addition to the standard, familiar behavior of immediate-sends, objects inside an actor can 
also communicate via eventual-sends, courtesy of the message queue. An eventual-send 
enqueues a message onto the message queue to be executed at a later time and returns 
immediately to the caller. Our immediate-send example from the previous section can be 
converted to an eventual-send as follows:

account <-: deposit: 100 withDescription: ‘paycheck’.

The above operation corresponds to

account <- depositWithDescription(100, “paycheck”);

in the E and AmbientTalk languages, which follow the Java syntax for immediate-sends.
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Instead of pushing the message on the stack and immediately executing it, the eventual-
send operation adds the message to the end the message queue and immediately resumes 
execution of the current method. The message will be processed only after the current message 
has finished executing and all other messages between the current and the new message have 
been processed. The new message created as a result of the eventual-send is shown at the 
right end of the queue in blue. An eventual-send does not change the activation stack.

6.3 Activation Stack
The activation stack of an actor consists of activation frames just like the thread stack in 
traditional programming languages and operating systems. The activation stack is affected 
by immediate-send operations as described previously -- an immediate-send pushes a new 
activation frame on the stack and the activation frame is popped off the stack when the 
immediate-send returns.

Each activation frame consists of:

1. Receiver - the object receiving the message
2. Selector - the message selector, or method name
3. Arguments - a list of arguments passed to the method
4. Return address - the location, at which to resume execution after completion.

Local variable slots are also a part of the activation frame, but since those are allocated 
dynamically by the message receiver, we do not list them here.

6.4 Message Queue
The message queue holds a sequence of messages eventually-sent to the actor. Messages are 
processed in FIFO order. Newly arriving messages are appended to the tail of the queue and 
the next message to be processed is picked up from the head of the queue.
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Each message in the queue consists of:

1. Receiver - a reference to the object receiving the message
2. Selector - the message selector, or method name
3. Arguments - a list of arguments passed to the method
4. Resolver - a message resolver

The structure of a message is almost identical to that of an activation frame -- it only lacks 
local slots, and instead of a return address it has a resolver. The resolver is an object, which 
is capable of transferring the result of the message processing back to the sender9. Unlike the 
return address of an activation frame, the resolver of a message is optional and can be missing 
in certain special cases.

6.5 Heap
The heap of an actor is where all objects are allocated. Heaps of different actors are virtually 
isolated, and each actor only has access to its own heap. The heaps are only virtually isolated, 
because in practice all actors running within a single shared-memory Newspeak VM share that 
VM’s heap. Virtual isolation is achieved by tightly controlling the flow of data and references 
between actors -- transitively immutable (value) objects are passed by value, and references to 
transitively mutable objects are encapsulated in far references, which can only accept eventual 
sends that get posted on the message queue of the target object’s actor.

6.6 Actor Communication
Multiple actors can reside within the same Newspeak VM. Objects in one actor can hold 
references to objects residing in other actors. Such object references are called far references. 
Far references are one kind of eventual reference. Promises, which are discussed later, are 
another kind of eventual reference. Eventual references are defined by the fact that they only 
accept eventual-sends. Immediate-sends on eventual references are not allowed.

9 Resolvers and promises are fully explained in Section 6.15.

31



 
 

In the picture above, the object Mads resides in Actor 1 and holds a far reference r1 to object 
Jin, which resides in Actor 2. The far reference r1 is a proxy, which accepts eventual-sends and 
forwards them to Jin by placing them on Actor 2’s message queue. Attempting to immediate-
send a message to r1 results in an error. 

Mads also holds a direct reference n1 to Phil, who resides in the same actor. Regular direct 
object references are called near references in order to distinguish them from eventual 
references. Near references such as n1 can accept both immediate- and eventual-sends.

The actors in the above diagram can live within the same Newspeak VM, or on different 
Newspeak VMs communicating over a network. Unless otherwise noted, all further discussions 
on semantics of inter-actor communication apply to both the single-VM and multi-VM case. 
Multi-VM (aka distributed) actors are not implemented in Newspeak 4, however, their behavior 
is fully specified in this chapter, in order to ensure that the implementation is future-proof and 
can be extended to support the multi-VM case as transparently as possible.

6.7 Reflection and Actors

6.6.1 Introduction to Mirrors
Reflection in Newspeak is provided via mirrors [23]. In contrast to languages like Java or C# 
where the reflection API is embedded in the Object class protocol and therefore publicly visible 
to all running code, mirrors encapsulate reflection capabilities in external adapter objects, 
which enables the separation of different reflection capabilities and the restriction of access to 
reflection via capability-based security -- an object can only access reflection capabilities that 
are explicitly exposed to it via references to mirror library objects that provide reflection services.

The actor mirror library in Newspeak 4 provides mirrors for reflecting on references, actors, and 
actor messages.

32



 
 

6.6.3 The Reference Mirror
A reference mirror reflects an object reference and can be used to determine whether the 
reference is near or far and to extract the referent from far references. In addition, the reference 
mirror provides access the actor mirror for the actor of the referent.

6.6.2 The Actor Mirror
Actor mirrors can be retrieved based on an eventual reference of the currently executing actor. 
An actor mirror provides access to the activation stack and message queue of an actor.

6.6.3 Eventual-send Proxies
Eventual-send proxies are proxy objects, which accept immediate-send messages and convert 
them into eventual-sends to the target reference. For example, the following two lines of code 
produce equivalent results:

joe <-: hello.
(actorMirrors forReference: joe) esendProxy hello.

Both lines result in an eventual-send of the hello message to joe, even though the second 
message is syntactically an immediate-send to an esend-proxy object for joe.

6.8 Argument-passing Semantics
Newspeak supports the notion of a value object (as defined in Section 3.1.1 of the Newspeak 
Language Specification [2]). A value object is an object whose contents are deeply immutable 
and whose identity is based on its contents (multiple instances of a value object with the same 
contents are virtually indistinguishable from each other). In eventual-sends across actors, value 
objects are passed by value, and all other objects are passed by far reference. The same 
semantics apply to both the arguments and the return value of a message.

6.8.1 Pass-by-Far-Reference
In the following diagram, Phil is a mutable object, and Mads passes a reference to Phil in 
message x: to Jin (double quotes are comment delimiters in Newspeak):

“Mads says:”
r1 <-: x: n1 “Phil”.
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As the message x: Phil travels across actor boundaries from the far reference r1 to the actual 
receiver Jin, a new far reference r2 is created inside Actor 2 pointing back to Phil in Actor 1. 
The message x: Phil is also shown in blue as the new last message on the queue of Actor 2, 
holding a far reference to Phil. The message also holds a near reference to its receiver Jin, and 
a reference to the resolver of a promise given to Actor 1, even though those references are not 
shown in the diagram.

6.8.2 Pass-by-Value
In the following diagram, gin is a transitively immutable value object (of questionable content), 
which is passed as an argument in a message from Mads to Jin:

“Mads says:”
r1 <-: y: n1 “gin”.

In the multi-VM case, as the message y: gin passes across from Actor 1 to Actor 2, a deep 
copy of the contents of object gin is serialized from Actor 1’s heap, transferred over the network, 
and deserialized into Actor 2’s heap. The new message in Actor 2’s message queue then holds 
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a reference to Actor 2’s copy of the gin object.

When Actors 1 and 2 both reside in the same Newspeak VM, the serialization and 
deserialization steps steps are omitted for performance reasons. The new message in Actor 2’s 
queue holds a direct reference to the object gin inside Actor 1’s heap. Since gin is a transitively 
immutable value object, references to it can be safely shared between actors, while still 
maintaining the virtual isolation of actors’ heaps. Thus, within a single Newspeak VM only an 
actor’s mutable objects are truly isolated, via far reference encapsulation.

6.8.3 Far Reference Passing Semantics
An individual actor cannot contain far references between objects in its own heap. This is a 
conscious design choice aimed at keeping the semantics and functionality of actors simple and 
predictable. To enforce this rule, far references to objects in a receiver’s heap are unboxed to 
near references as part of message dispatch .This is shown in the following example.

● Actor A holds a reference r1 to object X in actor B’s heap.
● Actor A sends r1 in a message to actor B.
● r1 is unboxed and actor B now holds r1’ -- a near reference to object X in its own heap.

If an actor could have both a far and a near reference to an object in its heap, then comparing 
those references becomes problematic. From the point of view of a programmer, it is simpler 
and more consistent if all objects within the same actor’s heap can immediately reach each 
other. 

Since value objects are always passed by-value, far references can only point to non-value 
objects in other actors’ heaps. Far references like r1 are also not treated as value objects 
themselves. This means that a value object cannot contain far references and therefore 
message passing between actors running in the same address space (single-VM case) does 
not require deep serialization/deserialization of objects.

Furthermore, the above semantics imply that eventual-sends, where both sender and receiver 
reside inside the same actor, follow the same semantics as those for immediate-sends -- all 
objects are passed by near reference.

6.9 The Glue Holding Actors Together
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Eventual references are the glue that binds actors together. The only way actors can affect 
each other (besides the special case of creating a new actor) is by eventual-sending messages 
to one another. In Newspeak, the only way actors can send messages to each other is via 
eventual references. In the fundamental actor model, as described by [11], actor messages can 
be arbitrary tuples of objects. In contrast, actor messages in Newspeak follow a stricter form, 
as every message is the 4-tuple described earlier, consisting of receiver, selector, arguments 
and resolver. An eventual reference is a reference to an object across actor boundaries. In other 
words, an eventual reference is a reference that resides in one actor’s heap but points to an 
object in another actor’s heap. Eventual references take their name from the fact that they can 
only accept eventual-sends.

6.10 Eventual-sends
As in Smalltalk, objects in Newspeak communicate solely by exchanging messages. Messages 
can be sent in two ways -- immediate-send and eventual-send. An immediate-send is the 
equivalent of a method call in standard object-oriented terminology. It has the same constituent 
parts -- a receiver (the object on which the method is called), a selector (the method name), and 
a list of arguments. An immediate-send creates a new activation frame on the actor’s activation 
stack and proceeds to immediately execute the selected method in the context of that new 
activation frame, just as a method call does.

An eventual-send functions in an analogous way, with the primary difference that instead of 
immediately executing the selected method, it enqueues a message on the actor’s message 
queue.

6.11 Actor Lifecycle

 
An actor can be in one of three states -- creating, running and garbage. Creating is an 
ephemeral state and only included here for completeness. User code never sees actors in the 
creating state -- the actor framework is free to complete the creation of the actor either before 
or after (asynchronously) returning a reference to the application. There is also no created 
state and no explicit operation to “start” an actor. An actor enters the running state as soon as 
it is created and is immediately ready to receive and process messages. If an actor is created 
asynchronously, then actor creation will return a promise for the result of the actor creation. 
Since actor creation always results in a far reference, this is transparent to the user of the actor 
framework. Far references and promises are both eventual references, and in this sense they 
are indistinguishable from the point of view of the user.

While in the running state, the execution of each actor proceeds in an infinite loop around the 
message queue. At every iteration of the loop, the actor completes one turn of its execution. 
The actor takes a message from the head of the queue, translates it into an immediate-send 
to the message’s receiver and thus converts the message into an activation frame. Once this 
immediate-send completes, the result is sent to the resolver, or if an exception is thrown, that 
exception is forwarded to the resolver instead.

An actor’s existence comes to an end when the actor becomes garbage. An empty queue 
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does not lead to the termination of an actor -- if the actor’s queue is empty, that actor becomes 
quiescent until a new message arrives on the queue, as long as there are far references 
pointing to objects in the actor’s heap. An actor becomes garbage once its queue is exhausted 
and there are no far references pointing to objects in its heap. At this point, the objects in 
the actor’s heap, including its queue are garbage collected just like any other objects in the 
Newspeak VM. In effect, an actor does not have a lifetime of its own, instead its lifetime is that 
of all objects on its activation stack, message queue and heap.

6.12 Actor Creation
Actors are created via an actor factory provided by the standard Newspeak platform. An actor 
is brought into being by bootstrapping its heap with a single instance of a class object10 -
- this initial class object is special and is called the actor’s primordial class. The primordial 
class is provided in the form of a mixin11 of a top-level class. This ensures the complete virtual 
separation of the heaps of actors running on the same Newspeak VM.

The result of creating an actor is an eventual reference to the actor’s primordial class object. 
The new actor’s message queue is not  automatically seeded with any messages. To make 
the new actor do something, the current actor sends eventual messages to the new actor’s 
primordial class object. Usually a newly created actor is initialized by sending the primordial 
class its factory message, which creates an object in the new actor’s heap and returns a far 
reference to it.

Creating an actor happens in three steps. First, the actor’s heap is seeded with a copy of the 
supplied mixin object12. Second, the mixin is applied to Object in order to produce the primordial 
class object. Third and last, the actor is enabled for execution and enters the running state. The 
first step is only a conceptual one because in practice the mixin object is a value and can be 
reused. Although the second step must conceptually occur in the context of the newly created 
actor, it is executed immediately from the current actor’s context because it is a known non-
blocking operation.

The above applies to actors created inside the same Newspeak VM. Remote actors can only be 
created by eventual-sends to objects living inside the remote VM, which indirectly expose their 
platform’s actor factory.

6.13 Bootstrapping Newspeak
Execution of a Newspeak VM begins with the creation of a new actor -- the main actor. The 
main actor has a primordial class object just like any other actor in Newspeak. That main class 
is instantiated and a main: message is eventual-sent to the new instance. This begins the 
execution of the new Newspeak VM.

Since the main actor is created outside of the context of another actor, the process of its 
creation is handled by bootstrapping code and the above steps execute in sequence without the 
use of eventual-sends and promises.

10 Classes in Newspeak are first-class objects that act as a factory for their instances.
11 Mixins in Newspeak are immutable objects, which capture a class declaration’s code and nothing else.
12 Mixin application in Newspeak results in the construction of a class object -- in this case the actor’s 
primordial class, which is the first object created in the heap of the new actor.
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6.14 Actor Termination
There is no explicit operation to terminate an actor, because such an operation is not needed. 
While actors require external resources -- OS threads or processes, in order to execute, these 
execution resources are not statically allocated to individual actors. Instead, the actor framework 
internally manages the available execution resources, automatically allocating and releasing 
them, and scheduling actors among them dynamically, in the most efficient manner that the 
framework can.

An actor becomes garbage when the actor’s queue is exhausted, the actor has completed its 
last turn, and no far references remain to objects in the actor’s heap. The second condition is 
important. It means that the actor’s message queue lifetime is tied to that of the actor’s heap. 
This is a natural dependence -- in practice if an actor’s queue is reified as a distinct object by 
the actor framework implementation, far references will necessarily hold (possibly indirect) 
references to this object. This is not prescriptive, however -- a simple actor framework can 
schedule the messages of many or all actors on a single queue, in which case actor creation 
and disposal does not involve the explicit management of per-actor queue objects. A more 
complicated actor framework implementation might maintain individual message queues for 
each actor, so that it can efficiently utilize available execution resources by scheduling actors 
across multiple hardware threads, cores and processors. In this case, separate lists of empty 
and non-empty actor message queues might have to be maintained. These two lists are 
analogous to the running and blocked queues typical of OS thread schedulers. The empty 
message queue list (the blocked queue) must hold weak references to actors’ queues, in 
order to allow these message queues to be garbage collected in case no far references to the 
corresponding actors remain.

6.15 Futures in Newspeak
Up to this point, the discussion of actor communication (via eventual-sends) only focused on 
passing parameters as part of a message to an actor. An eventual-sent message can also result 
in a response (return value) being sent the message’s sender. Return values in eventual-sent 
messages are passed via futures. An Actor Future in Newspeak consists of two distinct facets 
-- a promise and a resolver. As part of the construction of an eventual message, a future is 
created and the resolver of that future is transmitted along with the message arguments to the 
message recipient, while the promise facet of the future is returned immediately to the message 
sender. The recipient of the message uses the future resolver to send the return value back 
to the message sender and the sender in turn can use the promise to register a listener to be 
notified when the return value becomes available.

Promises are a type of eventual reference, meaning they only accept eventual-sends. The other 
type of eventual reference -- far references, were discussed earlier as part of parameter-passing 
semantics.

6.15.1 Promise Listeners
The following sample code demonstrates the use of a promise to register a listener for the 
return value of an eventual-sent computation:

p:: math <-: factorial: 10.
p whenResolved: [
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  transcript show: ‘factorial of 10 = ‘ + p.
]

The first line sends a message to the math object asking it to compute the factorial of 10 and 
stores the promise for the result in p. On the second line a block closure object is registered 
with the promise to execute when the result of the computation becomes available. The closure 
block executes in a later turn of the current actor. At that time the promise p holds the result 
of the computation and will forward all immediate- and eventual-sent messages to that result. 
Since the result is a number -- an immutable value object, p is now effectively a near reference 
to a Number object. Return values are passed between actors following the same semantics as 
those for parameter passing -- transitively immutable value objects are passed by value, and all 
other objects are passed by far reference.

6.15.2 Exceptions
A promise listener can also include a catch block, which will be executed if the processing of the 
message in the target actor completes abnormally with an exception:

p:: math <-: factorial: 10.
p whenResolved: [
  transcript show: ‘factorial of 10 = ‘ + p.
] catch: [ :e |
  transcript show: ‘exception occurred: ‘ , e.
]

If the processing of the factorial message results in an exception, the second block above 
will be executed with the exception passed in the e argument. Since exceptions are by 
convention value objects in Newspeak, e will hold a near reference to a copy of the exception 
triggered in the actor processing the factorial message.

6.15.3 Promise Sequencing
Multiple promises can be combined via the , (comma) operator, such that a block of code will 
execute only when all of the promises have been resolved:

p1:: math <-: factorial: 10.
p2:: math <-: factorial: 20.
(p1, p2) whenResolved: [
  transcript show: ‘factorial of 10, 20 = ‘ + p1 + ‘, ‘ + p2.
] catch: [ :e |
  transcript show: ‘exception occurred: ‘ , e.
]

The code above is semantically equivalent to the following:

p1:: a <-: factorial: 10.
p2:: a <-: factorial: 20.
p1 whenResolved: [
  p2 whenResolved: [
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    transcript show: ‘factorial of 10, 20 = ‘ + p1 + ‘, ‘ + p2.
  ] catch: [ :e |
    transcript show: ‘exception occurred: ‘ , e.
  ]
] catch: [ :e |
  transcript show: ‘exception occurred: ‘ , e.
]

Notice that with promise chaining the exception block does not need to be replicated, and 
execution can be more efficient since the two promises will be awaited concurrently.

6.15.4 Promise Pipelining
Being eventual references, promises can receive eventual-sent messages. Before a promise 
is resolved, the target of eventual-sent messages is unknown, and so these messages are 
queued up inside the promise and forwarded to the target object when the promise is resolved. 
Messages eventual-sent to an already resolved promise are immediately forwarded to the target 
object (the resolution of the promise). The following example demonstrates the use of a promise 
before its resolution:

employee:: db <-: findEmployeeById: 100.
employee <-: promote.

First the db object is queried for an employee with id 100 using an eventual-send. The eventual-
send enqueues the query with the database actor and returns immediately with a promise 
for the result of the query. The promote message is then saved by the promise and will be 
delivered to the actual employee object once the query completes and the result is available at 
some later point in time.

The result of an eventual-send to a promise is another promise, which is tied to the original 
promise. For example:

employee:: db <-: findEmployeeById: 100.
manager:: employee <-: getManager.
manager <-: promote.

In this case, when the code above executes both the employee <-: getManager and 
manager <-: promote messages are queued up for later delivery. Once the db <-: 
findEmployeeById: message is processed the employee future will be resolved, and it 
will eventual-send the getManager message to the actual employee object. Then once the 
employee <-: getManager message is processed, the manager future will be resolved and 
it will eventual-send the promote message to the actual manager object. This form of delayed 
execution is called promise pipelining [13].

6.15.5 Promises and Double Dispatch
Like in Smalltalk, primitive messages in Newspeak, such as addition (+), subtraction (-), 
multiplication (*) and division (/) are double-dispatched [24]. This means that if an argument to 
one of these messages cannot be coerced to a number of the same type as the receiver of the 
message, the implementation will attempt to send the message to the argument before giving 
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up. In the following example:

42 + n

the message + is sent to the object 42 with an argument n. If n is not an integer object, the 
+ method will attempt to delegate the addition operation to n (double dispatch). One way to 
implement this is by sending the sumFromInteger: message to n [25]:

n sumFromInteger: 42

If n points to an unresolved promise the above message will fail, because unresolved promises 
do not accept immediate-sends. Given a means to determine if a method was invoked via an 
eventual-send, it is conceivable that double-dispatched methods can be adapted to support 
unresolved promises as arguments, by ensuring that the double-dispatch occurs in the same 
manner (eventual vs immediate) as the manner in which the current message was received. It 
is possible for the activation mirror protocol in Newspeak to be extended with information about 
the type of send that produced the current activation. However, this information is not presently 
available in Newspeak activation mirrors.

6.15.6 The Promise Protocol
The Promise protocol includes a small set of messages, such as the comma composition 
operator and the whenResolved:catch: message. In Newspeak these messages serve the 
role of the corresponding control structures, supported as part of the language syntax in E and 
AmbientTalk. In most cases, the Promise protocol does not interfere with promise pipelining 
(where the promise functions as a transparent proxy for its resolution) because pipelined 
message are always eventual, while messages sent directly to the promise are immediate.

In the example below, the resolution of p is an object that supports the whenResolved: 
message:

“wait for p to resolve”
p whenResolved: [ ... ].
“forward the whenResolved: message to p’s resolution”
p <-: whenResolved: ...

The first statement uses the Promise protocol to register a listener for the promise’s result, 
while the second message buffers the whenResolved: message to be delivered to p’s 
resolution at a later time. The two messages have the same selector, but produce different 
results and do not interfere with each other.

There is one case, which could be a source of confusion. In the example below, while the 
otherMessage: is forwarded to p’s resolution, the whenResolved: message is sent to the 
Promise p itself:

p whenResolved: [
p whenResolved: ... “sent to the Promise p”
p otherMessage: ... “forwarded to p’s resolution”

]
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The solution in this case is to introduce a parameter to the block closure, which will be 
populated with the actual resolution of the promise:

p whenResolved: [ :r |
r whenResolved: ... “sent directly to p’s resolution r”
r otherMessage: ... “sent directly to p’s resolution r”

]

6.16 Order of Message Delivery
The actor model of computation [9] does not include any guarantees for the order of message 
delivery. While asynchronous messages sent between actors are guaranteed eventual delivery, 
the delivery can occur in any order, regardless of the order, in which messages were sent. 
While this makes the model very simple and flexible, in practice it imposes a heavy burden on 
today’s programmer who is accustomed to a more orderly and predictable world.

There are two scenarios in particular where ordering of messages can be useful, and a 
programmer might intuitively expect a certain order of message delivery.

The first scenario directly follows from the sequential nature of program execution in 
conventional programming languages. Given the following code where two messages are 
eventual-sent to the same actor bob one after the other:

bob <-: hello.
bob <-: world.

It seems natural to expect that bob will receive the hello message before the world message.

The second scenario involves the introduction of two actors to each other. Let’s assume that 
Alice says:

bob <-: initialize.
carol <-: sayHelloTo: bob.

And then in response to the sayHelloTo: message, Carol says:

sayHelloTo: friend = (
  friend <-: hello.
)

It seems natural to expect that Bob will receive the initialize message from Alice before the 
hello message from Carol. This guarantees that Bob will be initialized and ready to respond 
when he receives the hello message from Carol.

The above two ordering guarantees are exactly what is provided by E-ORDER [13], an order 
defined and used by the E language. E-ORDER can be summarized as follows:

1. All messages eventual-sent to the same reference from the same actor are delivered in 
the order, in which they were sent.

2. All messages eventual-sent to reference X from actor A before X is forwarded by A in 
message M to actor B are delivered before any of the messages sent from B to the 
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reference X that it received as part of message M,
Eventual-sent messages in Newspeak are delivered in E-ORDER.

6.16.1 Non-determinism in E-ORDER
E-ORDER is weaker than TOTAL ORDER and should not be confused with the latter. This 
section highlights what is not guaranteed by E-ORDER.

Expanding on the example from the previous section, we show several scenarios of non-
determinism in message delivery that could be unexpected and ways to introduce determinism 
to match expected behavior by using the guarantees provided by E-ORDER.

6.16.1.1  Scenario 1
If Alice says:

bob <-: initialize.
carol <-: sayHelloTo: bob.
bob <-: destroy.

Bob might be destroyed before Carol gets a chance to say hello to him. The execution flow 
graph in this case looks like this:

In the flow graph, each box represents a message and arrows indicate a happens-before 
relationship between messages. For example, bob <-: initialize is guaranteed to happen 
before bob <-: destroy. Notice that Carol might actually receive the sayHelloTo: message 
before Bob receives the initialize message, but Bob is still guaranteed to receive the 
initialize and hello messages in order, because of the second rule of E-ORDER. The first 
rule of E-ORDER dictates that Bob will receive the destroy message after the initialize 
message, but the hello and destroy messages can be delivered in any order relative to each 
other.

A first attempt to fix this might look like this:

bob <-: initialize.
(carol <-: sayHelloTo: bob) whenResolved: [
  bob <-: destroy.
]

However, this is still incorrect. In this case, Bob will be destroyed only after Carol is done 
processing the sayHelloTo: message but Bob might still be destroyed before he receives the 
hello message. As the updated execution flow graph shows, all we did was add a happens-
before relationship between carol <-: sayHelloTo: and bob <-: destroy.
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A proper way to fix this requires that we change the way Carol processes the sayHelloTo: 
message. Carol needs to send back the reference to Bob that she used so that we can use the 
second rule of E-ORDER to guarantee the order of delivery of the three messages to Bob:

sayHelloTo: friend = (
  friend <-: hello.
  ^friend.
)

Then Alice can say:

bob <-: initialize.
bob2:: carol <-: sayHelloTo: bob.
bob2 <-: destroy.

In this case, both bob and bob2 are far references to the same target object -- Bob, but they 
are different in one very important way. Messages sent to bob2 are guaranteed to be delivered 
after the hello message sent by Carol. This is illustrated in the updated execution flow diagram 
below:

Note one very important difference in the diagram above from the previous diagrams: the 
initialize message no longer has a direct happens-before relationship to the destroy 
message. However, since initialize happens-before hello and hello happens-before 
destroy, by transitivity we can deduce that initialize happens-before destroy.

6.16.1.2  Scenario 2
If Carol already contains another reference to Bob -- bob3, which was obtained prior to receiving 
the message sayHelloTo: bob, then in the following example:

sayHelloTo: friend = (
  friend <-: hello.
  bob3 <-: goodbye.
)
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it is possible that Bob receives the goodbye message prior to the hello message. Note that in 
the code above both friend and bob3 are both references to Bob, but bob3 is a pre-existing 
reference, while friend is a reference received as part of the current sayHelloTo: message.

The fix in this case is simple -- we need to use the friend reference when sending both 
messages to Bob:

sayHelloTo: friend = (
  friend <-: hello.
  friend <-: goodbye.
)

The execution flow diagram now shows the messages to Bob appearing in the expected order.

7 Design and Implementation

7.1 Design

7.1.1 Overview
The actor system implementation in Newspeak 4 consists of three primary modules -
- Pastime, ProcessPoolDispatcherForSqueak and ActorSystem. The Pastime 
module implements E-style futures that function as an integral part of actors. The 
ProcessPoolDispatcherForSqueak module contains classes related to scheduling actor 
execution and actor message dispatch and message passing via far references. The 
ActorSystem module is the composition of the other two modules into a complete actor system. 
The following chart highlights the most important classes comprising the three modules and 
their interactions.
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7.1.2 Actor System Portability
Because futures and actors are tightly integrated the Pastime and Dispatcher modules are 
mutually dependent. The motivation to separate the two modules is based on an important 
practical concern -- portability. The Pastime module contains pure Newspeak code and only 
relies on standard Newspeak libraries. The ProcessPoolDispatcherForSqueak module, 
however, imports implementation-specific classes, such as Process. As the name of the 
dispatcher module suggests, that module contains a dispatcher implementation for Newspeak-
on-Squeak, which is the reference Newspeak implementation that runs on the Squeak Smalltalk 
VM and can interact with Smalltalk code running in the same VM. When porting Newspeak 
4 and the actor system to another Newspeak implementation (e.g. Newspeak-on-Javascript 
or Newspeak-on-Dart), the Pastime module can be reused and only the implementation-
specific dispatcher module needs to be re-implemented and provided for the new system. This 
follows the Newspeak best practice of isolating code that depends on the specific underlying 
implementation into separate modules.

7.1.3 Actor System Module Interactions
The createActor method of the ActorSystem module is the main API entry point to the 
Newspeak actor system. It accepts a Newspeak mixin object, clones the mixin object in a 
newly created actor’s heap, applies the mixin to Object, and returns a far reference to the 
resulting class object. Instances of the FarReference class are a reification of far references 
in Newspeak. Each far reference is a tuple of two values -- a reference to the target object 
and a reference to the actor, in whose virtual heap the target resides. Eventual-sends to a 
far reference get routed to the postMessage method of the far reference’s actor. Each actor 
is pinned to an EventLoop. An EventLoop is backed by a Squeak process (a green thread) 
and manages the execution of one or more actors. The actor’s postMessage method wraps 
an eventual-send into an ActorMessage object and enqueues it to the actor’s eventloop. 
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The ActorMessage class contains the implementation of actor message processing. Each 
ActorMessage object holds a reference to its target object, the message selector, arguments 
and a reference to the resolver, which is to receive the result of processing the message. 
ActorMessage instances get enqueued on an event loop’s queue and are executed via their 
dispatchMessage method. The dispatchMessage method handles actor message processing, 
including passing on the return value or exception from a message execution to the messages’ 
resolver. Each resolver object contains a reference to its corresponding promise object and its 
resolve and smash methods trigger the resolution of its promise.

7.1.4 GUI as an Actor
All code of a Newspeak 4 application runs inside the context of an actor. The first code that runs 
in a Newspeak 4 system is part of the GUI actor. To minimize the effort of integrating actors 
into Newspeak, the GUI actor is implemented by a custom bridge class -- UIActor, which 
implements the postMessage method by enqueueing the ActorMessage on the GUI event loop 
via Newspeak’s existing scheduleUIAction: API. The scheduleUIAction: API is part of the 
Newspeak desktop system called Brazil, and is similar to the invokeLater API of Java Swing -- it 
takes a block closure and schedules it for execution on the GUI event loop.

7.1.5 Pastime and Past
The Newspeak platform includes a module called Past, which contains the implementations 
of Delay, Future and other classes needed to support lazy evaluation of simultaneous slots. 
The original design goal of Past was for actor futures to be included in the Past library and 
potentially even share the same future implementation between actors and simultaneous slots. 

During the implementation of the actor framework for Newspeak, this author discovered that it 
is not feasible to share the same Future class for implementing simultaneous slots and actors. 
As a corollary of this, although possible, it does not seem desirable to keep actor futures and 
simultaneous slot futures in the same module. Hence the birth of the Pastime module, which is 
similar in goals, as in name to the Past module, but is dedicated to serving actors exclusively.

It is not feasible to use actor futures for simultaneous slots, because, as outlined in the 
previous sections, actor futures require tight coupling to the actor dispatcher module. This is 
because actor futures provide one of the two primitive means for scheduling computation on 
a Newspeak actor’s mailbox. The first means is via eventual-sends, and the second means 
is the whenResolved: protocol on Promise. Furthermore, actor future promises, being 
eventual references, accept only eventual-sends, while futures used in the implementation 
of simultaneous slots must work in the purely sequential case, i.e. they must be able to 
accept immediate sends and function without the presence of actors or any other means of 
concurrency, for that matter.

7.2 Implementation

7.2.1 The Dispatcher
The dispatcher module is responsible for handling the message processing of all actors 
running inside a Newspeak VM. The dispatcher runs a pool of Squeak processes, each of 
which executes a single event loop. Each actor is pinned to an event loop process for its 
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entire lifetime. All actors belonging to the same event loop share that event loop’s message 
queue. Assignment to event loops is done in a round-robin fashion at actor creation time. Since 
Squeak processes are green threads, the advantage to having a pool of processes is that 
actor execution can be interleaved, although there is no added parallelism. In order to increase 
interleaving even more, the dispatcher module yields execution to the next Squeak process at 
every eventual-send. The main advantage of this design is its simplicity and very low per-actor 
overhead. The primary drawback is that an actor taking a long time to complete one turn can 
potentially starve all other actors that share the same process. This issue can be eliminated 
by implementing actor stealing logic, where an idle event loop can steal idle actors from other 
processes and re-assign them to itself. However, since the Newspeak actor system is designed 
to encourage the use of many short-lived actors, this is not considered an issue of significant 
importance. 

7.2.2 The Actor Class
One of the most interesting classes in the Newspeak actor system is the Actor class:

class Actor = (
"An actor class that is stateless and as lightweight as possible."
||) (
  postMessage: message <ActorMessage> = (
    messageQueue nextPut: message.
  )
) : ()

Note that the actor class is completely stateless -- it contains no slots. This is a conscious 
design decision based on the goal of minimizing the overhead of actor creation to the greatest 
extent possible. As mentioned in the previous section, each actor delegates its message 
processing to an EventLoop object. This means that an actor does not have its own queue, and 
therefore does not incur the overhead of queue object creation and storage. The main purpose 
that an actor object serves is to represent the unique identity of an actor -- different actor objects 
can be distinguished with the object identity comparison message (==).

The actor class does not need an explicit reference to its EventLoop object. The link to its 
associated EventLoop is implemented by nesting the Actor class inside the EventLoop class:

class EventLoop index: i <Integer> = (|
  private messageQueue <SharedQueue2> = SharedQueue2 new.
  … more slots … 
|) (
  class Actor = ( … )
  … more instance members … 
)

In Newspeak each instance of the EventLoop class carries its own instance of the Actor class, 
and the enclosing object reference is contained in the Actor class object, not in each Actor 
instance object, as is done for example for inner classes in Java. This means that the enclosing 
object reference is shared by all Actor objects and this results in further savings in the storage 
overhead per actor. 
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7.2.3 Argument Passing
There are two key operations involved in eventual-sends between actors. The first one 
is implementing argument passing semantics, which includes wrapping non-value object 
arguments in far references. This is done inside the wrapArgs:from:to: method of the 
dispatcher module:

wrapArgs: args <{}> from: srcActor <Actor> to: targetActor <Actor> = (
  ^args collect: [ :rawArg| | arg = pastime unwrapPromise: rawArg.|
    "1) Handle far references"
    (isFarReference: arg) ifTrue: [
      “.. unwrap far references to target actor ...”
    ]
    ifFalse: [
      "2) Handle promises"
      (pastime isPromise: arg) ifTrue: [
        “... create a new promise in the target actor chained to the 
promise being passed ...”
      ]
      ifFalse: [
        "3) Handle value objects"
        (isValueObject: arg)
          ifTrue: [ "... pass by value ..." ]
          ifFalse: [ "... pass by far reference ..." ]
      ]
    ]
  ].
)

The wrapArgs:from:to: method takes a list of arguments, and a source and target actor. The 
source and target actor are assumed to be different, and the args are valid references in the 
source actor, which must be transformed into valid references in the target actor. There are 
three cases that must be handled -- far references, promises and value objects. Far references 
require special handling because a far reference from the source actor to the target actor must 
be unwrapped into a near reference in the target actor’s heap. Promises must always be near 
references (local objects) and are handled by creating a new promise in the target actor and 
chaining it to the original promise from the source actor. The chaining is done by an inlined 
eventual-send of the whenResolved: message from the target actor to the promise in the 
source actor. Value objects are passed by reference since Newspeak actors run in a shared 
memory environment and value objects, which are deeply immutable can be safely passed 
directly between actor. All other objects are wrapped in a FarReference and the far reference 
is passed along.

The exclusive use of local promises is a simplification over the original model of Promises in 
E. E distinguishes between local and remote promise states. This allows for a more efficient 
implementation and facilitates the implementation of promise pipelining, and distributed actors. 
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Pipelined (batch) delivery of pipelined messages is an optimization that is transparent to the 
user and most critical in the distributed case because it reduces the number of round-trips 
across the network. Since distributed actors are not included in this initial implementation 
of Newspeak 4 actors, remote promises and pipelined delivery are also not supported. The 
implementation can be enhanced with those features in the future without impact on the 
semantics of actors and promises from the point of view of the actor system user.

7.2.4 Promise resolution
The second key operation of message passing in Newspeak is promise resolution. This is 
implemented in the resolve: method of the Resolver class:

resolve: resolution <Object> ^ <Boolean> = (
  | unresolved = promise state == 'unresolved'. |
  unresolved ifTrue: [
    (isPromise: resolution) ifTrue: [
      "Detect divergence."
      resolution == promise ifTrue: [ Error signal: 'divergence' ].
      resolution 
        whenResolved: [ :finalResolution | resolve: finalResolution ]
        catch: [ :error | smash: error ] resolver: nil.
    ]
    ifFalse: [
      promise doResolve: resolution type: 'resolved'.
    ].
  ].
  ^unresolved.
)

First, the resolve: method ensures that the promise can be resolved only once. Repeated 
calls to the resolve method are ignored. Then the resolve: method handles promise chaining 
transparently to the user. If a promise is resolved with another promise, then resolution is 
delayed by chaining this promise to the provided promise. If the resolution is any other type of 
reference then the promise doResolve: method is called, which forwards all messages buffered 
by the promise. This ensures that whenResolved: handlers and pipelined message sends are 
only delivered when a promise is fully resolved to a near or far reference.

Unresolved Promise objects buffer two types of messages. Chained messages are buffered in 
response to whenResolved: and whenResolved:catch:, and have a known receiver (the block 
closure to be executed upon resolution) but take the yet-unknown resolution as an argument. 
Pipelined messages are buffered in response to messages eventually-sent to the yet-unknown 
resolution but their arguments are known. In both cases the buffered messages must carry 
a resolver object in addition to their receiver (chained messages) or selector and arguments 
(pipelined messages). The resolver is needed because both types of messages immediately 
return a promise themselves that can be used to await the result of processing these delayed 
messages. Chained and pipelined messages are represented by the ChainMessage and 
PipelineMessage private nested classes of Promise. Both classes support the same protocol 
that is defined in the abstract PromiseMessage class and includes the dispatch message.
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7.2.5 Value objects
Newspeak 4 does not yet include first-class support for value objects with enforcement of deep 
immutability at the language level. Instead, objects that wish to be treated as values and passed 
by value between actors must return true in response to the isValueObject message:

isValueObject ^ <Boolean> = (
  ^true.
)

It is up to the application developer to ensure that objects that advertise themselves as values 
are truly deeply immutable, or otherwise safe for sharing between actors running in the same 
address space.

The Newspeak platform object, which contains the standard Newspeak libraries, such as 
collections, is treated as a value object. The platform object contains internal implementation 
classes and objects some of which are by necessity mutable. Access to such mutable state 
required for Newspeak implementation is properly guarded by using traditional shared-state 
concurrency primitives such as locks to ensure that the platform can be safely and efficiently 
shared among actors running on the same Newspeak VM.

7.2.6 Asynchronous Control Structures
Unlike the E language, Newspeak follows in the tradition of Smalltalk and Self in that it lacks 
built-in control structures. Branching and loops are implemented as message sends to boolean 
and collection objects. This means that control structures transparently integrate with actor 
message passing and can be used in an asynchronous fashion via eventual-sends.

In the following example, the delete message returns a boolean indicating success or failure 
and is awaited via message pipelining:

(file <-: delete) 
  <-: ifTrue:  [ transcript <-: print: ‘success’ ] 
      ifFalse: [ transcript <-: print: ‘failure’ ].

The same example in E must use the built-in when statement to await the result of the delete 
operation because the built-in if statement expects a value that is immediately available.

The current limitation of asynchronous control structure use in Newspeak is that the receiver of 
an asynchronous control structure message must eventually resolve to a near reference. This 
is always the case for boolean objects since true and false are value objects and passed by 
value between actors. More care must be taken with loop control structures, which can operate 
on collections that can potentially be mutable.

The reason for the restriction to near references is that control structure messages always 
immediately call the block closures they take as arguments. Block closures are not value 
objects in Newspeak and are therefore always passed by far reference. Sending the 
do: message to a mutable collection in another actor, for example, will fail when the do: 
implementation attempts to immediately invoke the closure argument, which will be received as 
a far reference that only accepts eventual-sends.
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8 Conclusion
This report described how actors combined with E-style futures have a great potential to 
address the problems of asynchrony and parallelism, which are of growing importance in 
computer science today. In addition, we demonstrated how the actor-based concurrency 
framework in Newspeak 4 takes the first steps towards providing such capabilities in the 
Newspeak system.

One of the main arguments in this report is that an actor-based concurrency framework 
captures a very common pattern in asynchronous programming -- the event loop, and 
that E-style futures can be used to restore asynchronous control flow that spans multiple 
independently executing event loops. This unique combination of actors and non-blocking 
futures originates in Mark Miller’s work on the E programming language and is what Miller 
calls “communicating event loops” [13].

A similar view of the future, in which actors play an important role in solving the concurrency 
challenges we face today is also echoed by other thought leaders in the software industry. Joe 
Duffy of Microsoft, the author of “Concurrent Programming on Windows” and a lead developer 
of Parallel LINQ says [26]:

The major shift we face will be that mainstream languages will start to incorporate more concurrency-
safety -- immutability and isolation -- and the platform libraries and architectures will better support this 
style of software decomposition. OOP developers are accustomed to partitioning their program into classes 
and objects; now they will need to become accustomed to partitioning their program into asynchronous 
Actors that can run concurrently. Within this sea of asynchrony will lay ordinary imperative code, 
frequently augmented with fine-grained task and data parallelism.
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Appendix I - Scope and Limitations of the Current 
Implementation

Eventual-send Operator
Support for the eventual-send operator is implemented by translating <-: to a unary send of the 
ESEND message at parse time. For instance, the following code:

actor <-: message.

gets compiled into:

actor ESEND message.

The ESEND method is defined in Kernel`Object and returns an eventual-send proxy -- an object 
that accepts immediate-sens and forwards them as eventual-sends to a designated target.

This approach only requires a small modification to the Newspeak grammar and save a large 
amount of work in:

● precisely specifying the behavior of eventual-sends for all types of message sends 
(unary, binary, keyword and cascaded) in the grammar,

● defining and generating new AST nodes for eventual-sends, and
● generating the correct bytecodes from the AST.

The limitations of the above approach include:

● Dangling eventual-sends without a message will compile into innocent no-ops instead of 
generating a compile-time error, as in:

actor <-:.
 

● Eventual-sends to literals (numbers, characters, strings, tuples, arrays) do not work, 
because literals in Newspeak still use the built-in Squeak classes, which do not extend 
from the Kernel`Object Newspeak class and therefore do not support the ESEND 
protocol.

● Carrying through of control structures will not work in some cases, because the compiler 
will fail to detect the eventual-send and will inline the control structure message. For 
example:

| esendProxy = self <-: flipACoin ESEND. |
esendProxy ifTrue: [ … ]. “error, the ifTrue: message was inlined.”

Promise Pipelining and Reference States
While promise pipelining is fully supported by the Promise implementation in Newspeak, 
multiple pipelined messages to the same vat are not delivered in a single round-trip, and this 
optimization cannot be implemented based on the current design. This is because, Promises do 
not currently distinguish between near and far unresolved states. The following figure compares 
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the reference states of E on the left vs Newspeak 4 on the right (source: Figure 17.1 in [13]):

There are two differences in the diagrams above -- Newspeak lacks the remote promise state 
and the transition from the vat-crossing states (far and remote promise) to the broken state 
(caused by partition). The first difference is critical to the actual pipelined delivery of pipelined 
eventual-sends -- the remote promise state holds the knowledge of the destination vat whose 
response is being awaited and to whom pipelined messages can be optimistically forwarded 
(in the expectation that the resolution resides in the destination vat where it can receive the 
pipelined messages without additional round-trips).

The second difference -- the lack of a transition from vat-crossing states to the broken state, is 
there because this transition is not needed. Actors that share the same address space cannot 
experience a partition, because the unit of failure is the Newspeak VM. Note that an unhandled 
exception does not cause an actor to be terminated. An actor lives as long as references to 
objects in its heap exist (which can originate either in its message queue or in far references 
from other actors). Partition can only occur between distributed actors that communicate over a 
network, and distributed actors are not supported by the current implementation.

From a functional perspective, the distinction between the local and remote promise states is 
completely transparent to the application code using actors and promises. Therefore, remote 
promise state can be introduced to the Newspeak actor framework implementation in the 
future without impact on existing code. Messages will be delivered more efficiently and in 
a fewer number of round-trips but the semantics of message delivery will remain the same 
from the point of view of the application. The lack of the partition transition represents missing 
functionality, which can also be added when support for distributed actors is implemented, along 
with its supporting APIs (something similar to _whenBroken in E would be needed) without any 
impact on existing code.

E-ORDER
E-ORDER is only really relevant in the distributed case when three or more actors communicate 
with each other over a network. In this scenario, for efficiency considerations a hypothetical 
implementation might decide that the act of enqueuing a message on a remote destination 
actor’s queue will be asynchronous with respect to the eventual-send operator executed by the 
sending actor. This means that the eventual-send operator returns control to the sending actor 
before the message is guaranteed to have arrived in the recipient’s queue. Without additional 
work by this hypothetical actor framework to enforce the constraints specified by E-ORDER, 
messages will be delivered in fail-stop FIFO (see Chapter 19 of [13]), which is weaker than E-
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ORDER.

For actors that share an address space, it is usually more efficient to enqueue messages 
on the destination actor’s queue synchronously, which leads to messages being delivered 
in CAUSAL order, which is stronger than E-ORDER. This is the case in the current actor 
implementation in Newspeak. E-ORDER is specified in this report because, even though 
Newspeak actors currently provide accidental CAUSAL order, the only guarantee as per the 
specification that developers can rely on is E-ORDER, and the implementation is free to evolve 
and provide weaker orders of message delivery (down to E-ORDER) in the future. In practice 
the implementation is likely to always deliver messages in CAUSAL order between actors within 
the same address space, and in E-ORDER between actors across address spaces. However, 
the scope of a Newspeak VM (which is presently not defined in the language specification, and 
no VM specification exists as of the time of this writing), while tied to a single address space in 
the current implementation, can evolve to span multiple address spaces in the future.

Value Objects
Value objects are not thoroughly defined in the Newspeak language specification (as of version 
0.07) and not implemented at this time. The current actor implementation works around this 
issue by defining value objects as the set of the built-in literals nil, false, true, and all objects 
that advertise themselves as a Number, String, Character, or ValueObject. Furthermore, 
the Newspeak platform object (an instance of NewspeakRuntimeForSqueak) is tweaked to 
advertise itself as a ValueObject in order to facilitate sharing of the platform among actors. 
Without this modification, only the GUI actor would have direct access to the platform, which 
would make developing useful actos quite difficult.

For a truly useful actor system, an implementation of value objects is needed, which needs to 
include a list of built-in platform and implementation-specific classes and objects that are treated 
as value objects, even though they might hold mutable shared state, and are not necessarily 
serializable. Such objects protect their state using conventional locking primitives and are 
shared among actors of the same address space, and serialized “by key” between address 
spaces, and deserialized to the corresponding equivalent object that already exists in the target 
VM. This is a well-known issue related to serialization in general. Examples of such special 
objects include built-in Kernel class objects, such as String, Character, Object etc.

GUI as an Actor
The current implementation only provides the minimal necessary support for treating the GUI as 
an actor, which allows objects of the GUI actor to accept eventual-sends. A more thorough and 
radical implementation would include:

● Translating all existing GUI code (mostly in the IDE) that uses Squeak Processes for 
background tasks to use actors instead, and

● re-architecting the Newspeak GUI framework Brazil to send all user input and window 
system events as actor messages up the stack.

This could have implications on the design of the debugger infrastructure in Newspeak as well.
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Debugging Actors
A minimal support is provided for debugging actors in the following form:

● halt in actor code will bring up the debugger. halt is a built-in message in Squeak, 
which signals the Halt exception. As a consequence, the Halt exception is 
treated specially in the actor framework and cannot be trapped by user code via 
Promise`whenResolved:catch:.

● Exceptions coming out of an eventual-send that are not handled by any 
whenResolved:catch: handler will bring up the debugger. The original activation stack 
that signaled the exception is lost, because passing along activation stacks in exceptions 
from one actor to another is not supported.

This is a far cry from full support for debugging actors. Some of the missing but desired 
functionality includes:

● the message queue of an actor is not available in the debugger;
● inspecting far references "sees through" the implementation and allows you to unsafely 

inspect the referent;
● passing along activation stacks in exceptions from one actor to another is not supported;
● all other actors pinned to the same dispatcher process as the actor whose code is being 

debugged will be suspended as well.
The core functionality required to implement some of the features is already available. For 
example, actor mirrors support inspecting an actor’s queue of pending messages. Other 
functionality, such as passing along activation stacks in exceptions between actors could 
benefit  from a complete Newspeak exceptions framework. Currently Newspeak relies directly 
on the Squeak exception library and Newspeak exceptions are not fully defined in the language 
specification. A definition of Newspeak exception should probably be done only after fully 
defining and implementing value objects, since exceptions that pass between actors must be 
first converted to, or treated implicitly as value objects.

Inspecting activation frames of an actor should ideally be done exclusively via eventual-sends 
by the debugger. This would allow the debugger to transparently support debugging of actors 
running in an address space different from that of the GUI actor executing the debugger.

The actor mirror API is currently only only a prototype, and the debugger is one of the major use 
cases for the actor mirrors and would be a driving factor in redefining and solidifying the API in 
the future.

Actor-based I/O APIs
Newspeak currently lacks an I/O library of its own for access to the filesystem, network etc. 
This is not a major issue in the absence of concurrency as Newspeak code can directly access 
Squeak classes and make use of the existing Squeak I/O libraries.

For a complete Newspeak 4 system where all code executes in the context of an actor, a purely 
asynchronous actor-based I/O library would be needed. Such a library can be implemented on 
top of the libuv cross-platform C library for non-blocking I/O, that is the foundation of the node.js 
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Javascript platform. libuv already comes with support for all major Operating Systems, including 
Windows, OS X and Linux, and is already designed with dynamic language bindings in mind 
(Javascript). The Newspeak Aliens API already provides full support for accessing libraries such 
as libuv from Newspeak on the Squeak platform, and thus libuv is likely the best candidate for 
use as the back-end of a non-blocking actor-based I/O API in Newspeak-on-Squeak.

Distributed Actors
The current implementation only supports actors running within the same Newspeak VM 
and address space. Actors distributed across Newspeak VMs and address spaces, and 
communicating over a network are not supported. An implementation of distributed actors 
depends on many of the aforementioned missing pieces:

● remote promises and the partition transition;
● E-ORDER guarantees (via forked references, as described in [13]);
● value objects;
● use of actor mirrors and eventual-sends for reflection by the debugger;
● actor-based I/O APIs.
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Appending II - Bootstrapping the Actor Framework
All of the code of the actor framework implementation is available in the following two public 
bitbucket mercurial repositories:

● https://bitbucket.org/bono8106/nsactors
● https://bitbucket.org/bono8106/newspeak (actors0 branch)

To bootstrap the actor framework on top of an existing Newspeak 3 image:

1. Use MemoryHole to pull in the code from the above two repositories into your image. 
From the newspeak repository in particular, you need the changes to the following 
classes:

a. Kernel`Object (the ESEND method)
b. NewspeakRuntimeForSqueak (the actors slot and isValueObject method)
c. Newspeak3Grammar

Note: run `Language resetNewspeak3` from a Squeak workspace, save the 
image and restart the IDE after loading the Newspeak3Grammar changes;

d. Newspeak3Compilation`Compiler`Rewriter
2. Create the ActorSystem object from a workspace inspector:

ActorSystem usingPlatform: platform 
  withDispatcher: ProcessPoolDispatcherForSqueak
  withPastime: Pastime withMirrors: ActorMirrors
 

3. Open an inspector on the newly-created ActorSystem object and run:

install
To run a few simple tests of the ActorSystem:

1. Create an ActorSystemTests object from a workspace inspector:

ActorSystemTests usingPlatform: platform
 

2. Open an inspector on the newly-created object and run:

testAll
The testAll method will create and run a few simple actors and produce output on the Squeak 
transcript.

There are currently no Minitest unit tests written for the actor framework.
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