

porto 25 > 26 september

International 2017 Conference

ANAEROBIC DIGESTION SLUDGE COMPOSTING Assessment of the Star-up process

M.E. Silva (ESTGV/-IPV/ CI&DETS),

S. Araújo (ESTGV/-IPV),

G. Lobo (Ferrovial),

A. Cordeiro (Ferrovial),

M. Faria (Ferrovial),

A.C. Cunha-Queda (UL/LEAF),

O. C. Nunes (FEUP/LEPABE),

I. Brás (ESTGV/-IPV/ CI&DETS)

lepabe

INTRODUCTION

PERSU 2020

Goal

Reduction up to 35% of Biodegradable Municipal Waste deposition in landfill

(regarding the production of 1995)

Measures to be implemented

- Divert organic wastes from municipal landfills;
- Divert the recyclable wastes from municipal landfills;
- Decrease of wastes deposition on landfill;
- Progressive eradication of industrial non-hazardous waste deposition in Municipal Waste landfills.

Introduction

European waste management policy

Organic wastes valorisation goal of 65% until 2020

Mechanical Biological Treatment (MBT) for recycling the MSW organic fraction

Biodegradable organic fraction valorisation

Anaerobic digestion 👄

Composting process of the digested sludge

INTRODUCTION

Composting

Mineralised Materials (CO_2, H_2O, NH_4^+)

Stabilised Organic Matter (mostly humic substances)

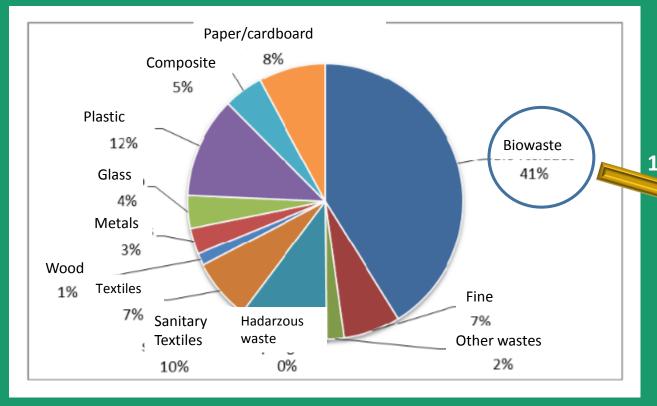
Compost

- Soil remediation
- Wastewater treatment
- Enhance plant growth
- Positive effect on physical, chemical and biological properties of soils
- Calorific value to be used as fuel

INTRODUCTION

PURPOSE

- Follow the star-up of the composting process of a municipal MBT unit.
- Evaluate the agronomic value and the energetic potential of the final compost

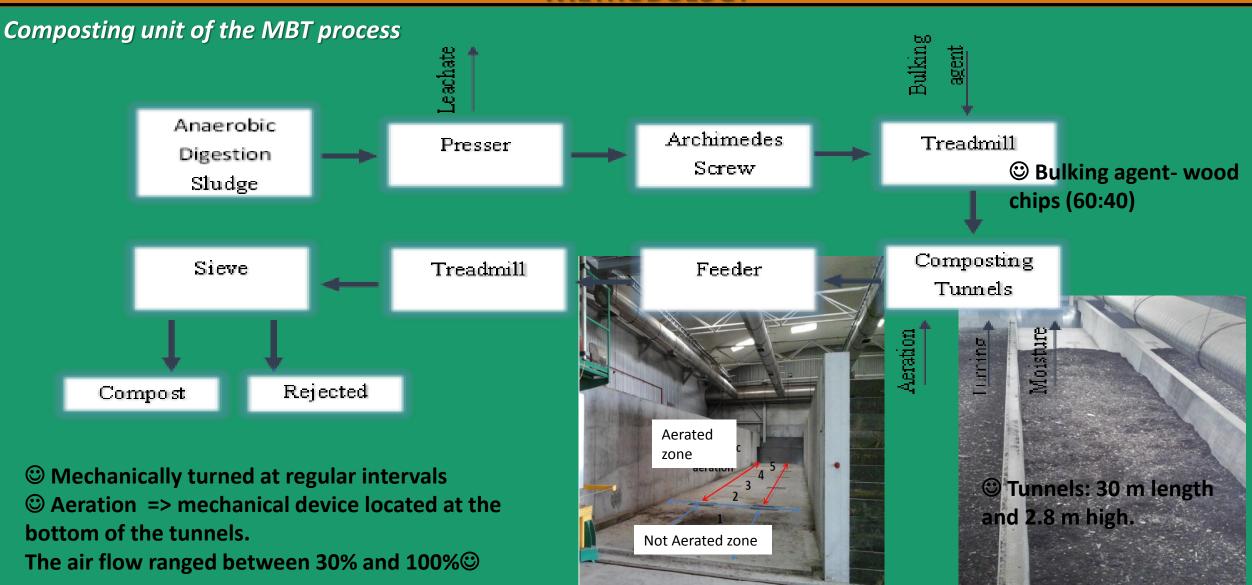


METHODOLOGY

Study Case

Municipal Solid Waste (MSW)

MBT process


130000 ton/year

METHODOLOGY

METHODOLOGY

Composting Process

Process Characterization

10 weeks:

T1 - beginning of the composting process

T10 - end of the process /final compost

Daily => Dry Matter Temperature

Additional process characterization

T1 - T4 - T10

EC – Electric Conductivity

OM – Organic Matter

TN – Total Nitrogen

TC – Total Carbon

GI – Germination Index (Cress seeds)
Stability Class

HHV – Higher Heating Value

Compost characterization

Sieved

+

separate the bulking agent and some physical contaminants

Anaerobic Sludge Characterization

Sample	рН	EC	OM	Moisture	TN	TC	C/N
		mS/cm	% dm	%	% dm	%	
Digestion Sludge	7.8±0.1	2.24±0.15	33.4±3.2	38.4±1.6	1.04±0.09	16.7±1.5	16.1

EC – Electric Conductivity; OM – Organic Matter; TN – Total Nitrogen; TC – Total Carbon; dm – dry matter

Organic Waste Valorisation Process

Indicators of composting process state

Time (weeks)	Temperature (°C)						Dry Mater	Aeration
(weeks)	1	2	3	4	5	Average	(%)	(%)
T1	30.3±2.9	30.9±0.8	26.1±2.6	30.4±2.3	33.5±0.9	29.4±0.8	(59.3±2.4)	100
T2	37.2±1.9	19.6±0.9	17.3±0.9	21.7±0.9	17.4±0.9	25.7±0.1	58.3±1.8	100
Т3	51.8±1.3	17.6±1.4	14.9±0.3	24.3±1.6	16.0±0.4	24.9±0.7	63.1±1.7	100
T4	34.1±0.6	16.8±0.8	15.8±0.7	16.5±0.4	14.9±0.3	19.6±0.3	63.0±0.5	WA
T5	52.1±0.8	21.3±1.6	18.7±0.5	20.0±1.7	16.0±0.3	25.6±0.6	64.0±0.3	WA
Т6	50.9±2.3	25.6±0.9	20.8±0.9	20.9±1.1	16.9±0.4	27.0±0.2	66.6±1.8	30
Т7	50.1±2.3	40.0±1.1	25.3±0.4	30.5±1.2	18.9±0.3	33.0±0.1	66.1±1.3	30
Т8	39.1±2.3	31.2±0.9	28.7±0.4	38.7±1.2	24.3±0.3	32.4±0.1	58.4±1.0	30
Т9	23.4±1.1	28.9±0.9	29.2±0.4	24.2±1.2	19.9±0.3	25.1±0.1	65.5±0.8	30
T10	18.7±1.3	22.3±2.3	23.1±2.8	20.1±0.4	19.3±0.1	20.8±0.1	(65.6±0.2)	30

Evolution of Composting Process

Sample	рН	EC	ОМ	TN	TC	C/N
		mS/cm	% dm	% dm	%	
T1	8.0±0.1	2.5±0.1	30.1±3.5	0.93±0.17	15.0±1.8	16.2
T4	8.0±0.1	2.1±0.1	29.8±0.3	0.90±0.90	16.9±0.7	18.8
T10	8.0±0.0	1.7±0.1	31.7±1.3	1.08±1.36	15.8±0.2	14.6

EC – Electric Conductivity; OM – Organic Matter; TN – Total Nitrogen; TC – Total Carbon; dm – dry matter

Compost Characterization



Sample	GI	Stability Class	HHV	
	%		MJ/kg	
Т4	ND	ND	5	
T10	133±4	V	7	

GI –Germination Index; HHV – Higher Heating Value; ND –not determined

+

35% of inerts (20mm-1mm)

CONCLUSIONS

Biological treatments of the studied MBT unit seem to be effective methods for producing stabilized organic end-products, ensuring their maximum benefit for agriculture.

The properties of final compost indicate that it had standard quality for the parameters analysed.

The process can be further improved through operating conditions optimization, namely, aeration.

ACKNOWLEDGMENT

The authors thank to Instituto Politécnico de Viseu (IPV), the Center for Studies in Education, Technologies and Health (CI&DETS) and the Portuguese Foundation for Science and Technology (FCT).

Maria Elisabete Ferreira Silva

beta@ipv.pt
http://www.estv.ipv.pt

"You must be the change you wish to be in the world."

- Mahatma Gandhi